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Tropical Africa is affected by intense land use change, particularly forest conversion 

to agricultural land. Four small headwater catchments that cover a degradation 

gradient ranging from intact forest to agricultural land under maize cultivation for 5, 

10 and 50 years were examined. With increasing duration of cultivation, soil bulk 

density (ρb) at a depth of 0-0.1 m increased by 46%, while soil organic carbon (SOC) 

concentrations and total porosity decreased by 75% and 20%, respectively. The annual 

catchment discharge expressed as a percentage of rainfall increased from an average 

of 16.0% in the forest to 32.4% in the 50-year-old agricultural catchment. The average 

runoff ratio was 0.033 in the forest and increased gradually to 0.095 with increasing 

duration of cultivation. Flow-weighted stream water concentrations of different 

organic C fractions, all N species, total P, K and Na significantly (P<0.05) increased in 

streams after forest conversion and long-term cultivation. Solute concentrations 

increased despite the fact that soil contents decreased and total water flow increased 

indicating mobilization of C and N, P and K from soil with progressing cultivation. 

Total C and nutrient exports increased with longer cultivation (P<0.05) due to greater 



 

water discharge. Fluvial organic C and total N losses were 2% and 21% of total SOC 

and total N decline, respectively, in the top 0.1m over 50 years. During storm events, 

concentrations of DOC and K increased with larger discharge in all studied 

watersheds. This suggests a quick transfer of these solutes to the stream through 

overland flow and preferential flow through soil macropores. The Ca, Mg, Na, TDN 

and NO3
--N concentrations did not change in the forested watershed, while their 

concentrations decreased with increasing discharge in the agricultural watersheds. 

Baseflow that is rich in Ca, Mg, and Na was diluted by the storm event runoff. Based 

on end-member mixing analysis (EMMA) modeling, groundwater was shown to be 

the dominant flowpath which was higher (P<0.05) in the forest compared to the 10- 

and 50-year conversion watersheds. The contribution of overland flowpath compared 

to streamwater was significantly lower (P<0.05) in the forest and 5-year watershed 

than the 50-year watershed. 

 



 

iii 

BIOGRAPHICAL SKETCH 

 

John’s childhood was spent on a peasant farm in Mumias, Kakamega County 

of western Kenya. He is the son of an elementary school teacher. His mother worked 

entirely on the farm. The childhood life spurred John to develop interest in acquiring 

agricultural skills, in order to help his people get enough food and income. After 

graduating from high school in Musingu, Kakamega County, he completed a Bachelor 

of Science degree in Agriculture at the University of Nairobi in Kenya. 

John went on to start a secondary school in his home village in 1996, where he 

worked for nine months before moving on to teach in an established secondary school 

after getting government employment. He pursued a school based Post Graduate 

Diploma in Education at Kenyatta University between 1997 and 1998. He received a 

scholarship for his Master of Science degree in Soil Science and Land Management at 

Sokoine University of Agriculture in the United Republic of Tanzania, which was 

completed in 2000. He married Beatrice Augustine Madeghe in Morogoro, Tanzania. 

Returning to Kenya in 2001, he continued to teach in high school for two 

years. In 2003, he joined a non-governmental organization and worked on 

management of environmental resources. In 2004, he began a career in research 

working as a technician with the World Agroforestry Centre (ICRAF) in western 

Kenya. He began working towards a PhD in Soil Science at Cornell University with 

Dr. Johannes Lehmann in 2007. John and Beatrice have 4 children, Joycatherine, 

Shammah, Josiah and Ethan. 

 



 

iv 

 

 

 

 

 

 

 

 

 

 

To my wife Beatrice, our daughter Joycatherine, our sons Shammah, Josiah and Ethan, 

my parents, brothers, sisters, and friends 

 

For all your support and patience, you merit



 

v 

ACKNOWLEDGMENTS 

 

This dissertation is based upon work supported by various donors.  The main 

donor was the Ford Foundation International Fellowships Program. Other donors were 

the National Science Foundation (Grant No. 0215890) through the Cornell 

International Institute for Food, Agriculture and Development, the Institute for African 

Development tuition fellowship, the Norman Borlaug Leadership Enhancement in 

Agriculture Program Fellowship, the Biogeochemistry and Environmental 

Biocomplexity Small grant program Ref. DGE 0221658, the Towards Sustainability 

Fund, the Richard Bradfield Research Award, the Mario Einaudi Center Travel Grant, 

the Graduate School Travel Grant, the International Hunger Grant from the First 

Presbyterian Church of Ithaca, and the Department of Crop & Soil Sciences that 

offered teaching assistantship. The World Agroforestry Centre (ICRAF) gave me a 

research fellowship position that paved way for logistical support from the western 

Kenya office in Kisumu. 

I would like to sincerely recognize the financial support, advice, valuable 

feedback and assistance of my main advisor Dr. Johannes Lehmann. I am equally 

grateful to my other advisors Dr. Alice N. Pell, and Dr. Michael Todd Walter. Each of 

the above named professors contributed in significant ways towards the work 

summarized in this dissertation. Dr. Lehmann’s unique intellectual discernment, 

patience and gentle instruction are reflected in this document.  Dr. Walter’s expertise 

provided a background for stimulating discussions on hydrological processes in the 

complex landscape. In addition to facilitating funding for part of the program, Dr. Pell 



 

vi 

emphasized the solute dynamics and challenged me to look at the big picture of 

agriculture and rural development. 

I had the opportunity of getting support from other professors in the 

Department of Crop and Soil Sciences. Dr. Stephen DeGloria assisted me with the GIS 

outputs. Dr. Janice Thies provided additional soil microbiology skills, and financial 

support in the transition from the program towards postdoctoral work. I am grateful to 

ICRAF scientists, Dr. Louis Verchot (now with CIFOR), and Dr. Laura Dutaur for 

intellectual input and fieldwork support. Dr. David Mbugua provided guidance into 

the program. Dr. Mark Johnson not only guided us during installation of the weirs and 

instrumentation, but also gave feedback on the results. Brett Gleitsmann did the initial 

field instrumentation and sample collection, while Henry Biwott religiously helped 

with all the fieldwork. Hellen Ochieng of the ICRAF training unit facilitated logistics 

in Nairobi. 

I would like to give thanks to Dr. Dawit Solomon, David Guerena, David 

Bluhm, Kelly Hanley, and Akio Enders for their research help and kind support at 

various stages. The rest of Dr. Lehmann’s lab group made academic life bearable for 

me; like Dr. Bente Foereid, Dr. Steven Vanek, Dorisel Torres, Thea Whitman, Karen 

Heyman, Lydiah Gatere and Susan Blum. Last but not least, I thank all the Christian 

friends in the Winston Court Fellowship, Asbury Church, in Kenya, in Tanzania, and 

elsewhere who constantly encouraged, supported and prayed for me all the time. All 

the glory goes back to God for the ability to accomplish this work.  



 

vii 

TABLE OF CONTENTS 
 
BIOGRAPHICAL SKETCH                                                                                         iii    
 
DEDICATION                                                                                                               iv 
 
AKNOWLEDGEMENTS                                                                                              v 
 
LIST OF FIGURES                                                                                                      vii 
 
LIST OF TABLES                                                                                                          x 
 
CHAPTER 1: STREAM DISCHARGE IN TROPICAL HEADWATER  
                       CATCHMENTS AS A RESULT OF FOREST CLEARING  
                      AND SOIL DEGRADATION                                                                  1 
 
CHAPTER 2: HYDROCHEMICAL BEHAVIOUR OF NUTRIENTS IN  
                       TROPICAL HEADWATER CATCHMENTS AT A SOIL                         
                        DEGRADATION GRADIENT                                                            33 
 
CHAPTER 3: SOURCES AND SHORT-TERM NUTRIENT DYNAMICS  
                       OF STREAM DISCHARGE FROM FORESTED AND  
                      AGRICULTURAL HEADWATERS DURING STORM  
                       EVENTS                                                                                                69 
 
CHAPTER 4: SUMMARY AND CONCLUSIONS                                                  102 
 
APPENDIX A: Raw data pertaining to Chapter 1                                                      104 
 
APPENDIX B: Raw data pertaining to Chapter 2                                                      143 
 
APPENDIX C: Raw data and extra graphs pertaining to Chapter 3                           163   



 

viii 

LIST OF FIGURES 
 

Figure 1.1: Map of the study area of the Kapchorwa headwater catchments. The weir 
positions are shown by dots in each catchment.                                                           7 
 

Figure 1.2: Soil carbon (mg g-1) at various depths in the watersheds. Bars are ±1 
standard deviation of the mean for each soil depth. Error bars at the right indicate the 
LSD at each depth. LSD error bars followed by * are significantly different at P < 0.05 
(n=4).                                                                                                                             12 
 
Figure 1.3: Daily discharge and rainfall of the Kapchorwa catchments in 2007 and 
2008.                                                                                                                              14                           
 
Fig. 2.1: Long term shift in the isotopic composition of δ13C of the soils at various 
depths in the watersheds. n=4. Bars are ±1 standard deviation of the mean for each 
depth.                                                                                                                             44                           
 
Figure 2.2: Bi-weekly discharge and concentrations of DOC, Na, Ca, K and Mg of the 
Kapchorwa headwater catchments.                                                                               48  
 
Figure 2.3: The relationship between discharge and DOC, Na and nutrient 
concentrations in the 50 year watershed.                                                                      49 
 
Figure 3.1 Rainfall, discharge and solute concentrations for watershed storms that 
occurred on various dates (other figures shown in Appendix C1-C4).                         80 
 
Figure 3.2: Hysteresis of Ca, Mg, K, Na, DOC and TDN in the 50 year conversion 
watershed for the 45 minute storm that occurred on July 31, 2008.                             82   
 
Figure 3.3: Correlations between solutes of the 50 year conversion watershed for the 
45 minute storm that occurred on July 31, 2008. ** indicate significant correlations at 
P<0.0001 (n=17); * indicate significant correlations at P=0.0006 (n=17).                  83 
 
Figure 3.4: Mixing diagram showing DOC and Ca concentrations for stream water 
and end members in various rainstorms; contributions shown in Figure 3.5 and Table 
3.2 (other diagrams shown in Appendix C5-C8).                                                         84 
 
Figure 3.5: Estimated event water contributions for the rainstorms using EMMA; total 
contributions for all storms shown in Table 3.3 (other storms shown in Appendix C9-
C12).                                                                                                                              85 
 
Appendix list of figures 
 
Figure C1. Rainfall, discharge and solute concentrations for forest watershed storms.                            
                                                                                                                                     168 



 

ix 

 
Figure C2. Rainfall, discharge and solute concentrations for 5 year old watershed 
storms.                                                                                                                         174 
 
Figure C3. Rainfall, discharge and solute concentrations for 10 year old watershed 
storms.                                                                                                                         180 
 
Figure C4. Rainfall, discharge and solute concentrations for 50 year watershed 
storms.                                                                                                                         186 
 
Figure C5: Mixing diagram showing DOC and Ca concentrations fro stream water 
and end member members in various rainstorms in the forest watershed; contributions 
shown in Figure C9 and Table 3.2).                                                                            199 
 
Figure C6: Mixing diagram showing DOC and Ca concentrations fro stream water 
and end member members in various rainstorms in the 5 year old watershed; 
contributions shown in Figure C10 and Table 3.2).                                                    205 
 
 
Figure C7: Mixing diagram showing DOC and Ca concentrations fro stream water 
and end member members in various rainstorms in the 10 year old watershed; 
contributions shown in Figure C11 and Table 3.2).                                                    211 
 
 
Figure C8: Mixing diagram showing DOC and Ca concentrations fro stream water 
and end member members in various rainstorms in the 50 year old watershed; 
contributions shown in Figure C12 and Table 3.2).                                                    217 
 
 
Figure C9: Estimated Event water contributions for rainstorms using the EMMA, for 
the 4 remaining events in the forest (total contributions shown in Table 3.3).           226 
 
Figure C10: Estimated Event water contributions for rainstorms using the EMMA, for 
the 4 remaining events in the 5 year old watershed (total contributions shown in Table 
3.3).                                                                                                                             230 
 
Figure C11: Estimated Event water contributions for rainstorms using the EMMA, for 
the 4 remaining events in the 10 year old watershed (total contributions shown in 
Table 3.3).                                                                                                                   234 
 
Figure C12: Estimated Event water contributions for rainstorms using the EMMA, for 
the 4 remaining events in the 50 year old watershed (total contributions shown in 
Table 3.3).                                                                                                                   238 
  



 

x 

LIST OF TABLES 
 

Table 1.1: Catchment soil properties in the top 0.1 m.                                                11 
 
Table 1.2: The hydrological attributes of the Kapchorwa catchments in 2007 and 
2008.                                                                                                                              15 
 
Table 1.3: Correlation coefficients (r2) and regression equations for some physical and 
hydrological attributes averaged for both 2007 and 2008 of the Kapchorwa headwater 
catchments.                                                                                                                    16 
 
Table 2.1: Soil properties in the top 0.1 m.                                                                  43 
 
Table 2.2: The isotopic composition of δ 13C of the CPOC and DOC, and the flow 
weighted nutrient concentrations of the headwater catchments.                                   45 
 
Table 2.3: Streamwater carbon and nutrient exports (kg ha-1 yr-1) from the Kapchorwa 
headwater catchments.                                                                                                  47 
 
Table 3.1: A summary of the storm characteristics and solute response in each 
watershed.                                                                                                                     79 
 
Table 3.2: The percent contribution to the stream flow.                                              86 
 
Table 3.3: Average solute concentrations (mg L-1) in the overland flow, soil water, 
and ground water from mid-June up to mid-August 2008.                                           87 
 
 
Appendix list of tables 
 
Appendix A 
Table A1: Data table for Chapter 1, Table 1.1.                                                          104 

Table A2: Data table for Chapter 1, Figure 1.2.                                                         106 

Table A3: Data table for Chapter 1, Figure 1.3.                                                         107 

Appendix B 

Table B1: Data table for Chapter 2, Table 2.1.                                                          143 

Table B2: Data table for Chapter 2, Figure 2.1.                                                         145 

Table B3: Data table for Chapter 2, Table 2.2.                                                          146 



 

xi 

Table B4: Data table for Chapter 2, Figure 2.2.                                                         155 

Table B5: Data for chapter 2, Figure 2.3.                                                                  161 

Appendix C 

Table C1: Data for chapter 3 Figure 3.1.                                                                   163 

Table C2: Data for Figure C1.                                                                                   169 

Table C3: Data for Figure C2.                                                                                   175 

Table C4: Data for Figure C3.                                                                                   181  

Table C5: Data for Figure C4.                                                                                   187 

Table C6: Data for chapter 3 Figure 3.2.                                                                   192 

Table C7: Data for chapter 3 Figure 3.3.                                                                   193 

Table C8: Data for chapter 3 Figure 3.4.                                                                   194 

Table C9: Data for Figure C5.                                                                                   200 

Table C10: Data for Figure C6.                                                                                 206 

Table C11:    Data for Figure C7.                                                                              212 

Table C12: Data for Figure C8.                                                                                 218 

Table C13: Data for chapter 3 Figure 3.5                                                                  223 

Table C14: Data for Figure C9.                                                                                 227 

Table C15: Data for Figure C10.                                                                               231 

Table C16: Data for Figure C11.                                                                               235 

Table C17: Data for Figure C12.                                                                               239 

Table C18: Data for chapter 3 Table 3.2.                                                                   242 

Table C19: Data for chapter 3 Table 3.3.                                                                   258 



  1

CHAPTER 1 
 

STREAM DISCHARGE IN TROPICAL HEADWATER CATCHMENTS AS A RESULT OF 

FOREST CLEARING AND SOIL DEGRADATION 

 

Abstract 

Tropical Africa is affected by intense land use change, particularly forest conversion to 

agricultural land. In this study, the hydrology of four small headwater catchments located within 

an area of 6 km2 in western Kenya was examined for two years (2007, 2008). The catchments 

cover a degradation gradient ranging from intact forest to agricultural land under maize 

cultivation for 5, 10 and 50 years. With increasing duration of cultivation, soil bulk density (ρb) 

at a depth of 0-0.1 m increased by 46%, while soil organic carbon (SOC) concentrations and total 

porosity decreased by 75% and 20%, respectively. The annual catchment discharge expressed as 

a percentage of rainfall increased from an average of 16.0% in the forest to 32.4% in the 50-year-

old agricultural catchment. Similarly, the average runoff ratio was 0.033 in the forest and 

increased gradually to 0.095 with increasing duration of cultivation. The conversion from forest 

to agricultural land in the first 5 years caused about half of the total observed increases in runoff 

ratio (46.3%) and discharge in relation to rainfall (50.6%). The other half of the changes in 

discharge occurred later during soil degradation after forest clearing. The changes in 

hydrological responses that only started after forest clearing may suggest a significant potential 

for improved land management in alleviating runoff and enhanced storm flow and moisture 

retention in agricultural watersheds. 
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INTRODUCTION 

Land use is one of the key parameters controlling fluxes in the hydrologic cycle. Removal of 

forest cover typically results in a considerable increase in water yield (Bosch and Hewlett, 1982, 

Farley et al., 2005) with significant effects on stream water quality, soil erosion and losses of 

nutrients (Grip et al., 2004). The impact of land use change on hydrologic processes in the 

tropics is particularly severe since soil degradation is more rapid than in temperate zones due to 

more rapid mineralization of tropical soil organic matter (SOM) and often high erosion (Spaans 

et al., 1989; Malmer and Grip, 1990; Hartemink et al., 2008; Solomon et al., 2009). Changes in 

watershed dynamics in response to deforestation in the humid tropics were widely investigated 

during the 1980s (Bruijnzeel, 1990; Bonell and Balek, 1993) but less work has been done 

recently. Most of these studies focused on catchments in tropical Asia or Central and South 

America. Limited results from West Africa are available showing that forest clearing and 

subsequent land use significantly affect the magnitude of runoff and erosion using plot studies 

(Lal, 1981). Yet there are limited studies on stream water discharge, runoff partitioning and their 

relation to land use change, particularly for East Africa where forest pressures continue to be 

acute due to the rural population density which is among the highest in the world (Kenya Forest 

Service, 2007). 

 

Forest removal is a major factor increasing total stream water discharge and the proportion of 

discharge occurring as storm runoff (Mumeka, 1986). In humid regions, the forest vegetation 

transpires water throughout the entire year (Calder, 1998), whereas in agricultural landscapes 

annual crops consume water only during the growing season. In addition, the larger plant litter 

input and root turnover in forests compared to cropped fields maintain greater soil organic 
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carbon (SOC) concentrations, which in turn preserves soil structure and promotes higher 

infiltration capacities, lower Hortonian overland flow and greater water storage capacity (Fritsch, 

1993). With continued cultivation, particularly in low-input and subsistence systems, soils begin 

to lose SOC and become compacted, which has profound effects on soil hydrology (Giertz and 

Diekkruger, 2003; Awiti et al., 2008). Particularly in the tropics, SOC losses can be rapid 

(Solomon et al., 2007). It is, therefore, especially likely that for tropical agricultural landscapes, 

soil degradation, in addition to the loss of forest cover, has important impacts on stream water 

discharge. 

 

The aim of this study was to quantify the effects of forest conversion to continuous cultivation on 

the stream discharge of headwater catchments in tropical Africa. The effects of cultivation on 

water yield were investigated for a chronosequence of catchments in Western Kenya comprised 

of a forested headwater catchment and three headwater catchments under continuous maize 

production for 5, 10, and 50 years following forest conversion. 

 

METHODS 

The study site 

The field measurements were done in Kapchorwa, located in the Nandi district in western Kenya 

(Figure 1). The site is located 60 km northeast of Lake Victoria at longitude 35°0'0" E and 

latitude 0°10'0"N. The region belongs to the sub-humid ecological zone characterized by a 

bimodal rainy season with a mean annual precipitation of 2000 mm (Haupt, 2000). The “long 

rain season” is from April to June (~1200 mm) and the “short rain season” from August to 
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October (~800 mm). The site has an elevation of 1750-1900 m above sea level, an average 

maximum daily temperature of 26°C and a minimum of 11°C (Glenday, 2006).  

 

The Kakamega-Nandi forest in Western Kenya is the country’s only remaining tropical rain 

forest. Total forest cover in Kenya decreased by 0.3% year-1 on average between 1990 and 2005, 

to 35,220 km2, which represents 6% of the country’s territory according to the Global Forest 

Resources Assessment (FAO [Food and Agriculture Organization of the United Nations], 2006). 

The forest forms the easternmost relic of the Guinean-Congolian rainforest belt, which once 

spanned from East to West Africa. The area around this forest is among the most densely 

populated rural areas in the world. It had a population density of 778 persons per km2 in 2009 

compared to 73 persons per km2 for the entire country (Kenya National Bureau of Statistics, 

2010). Consequently, the forest is under high anthropogenic pressure, which is mirrored by the 

decreasing natural forest cover and intensive cultivation (deGraffenried and Shepherd, 2009; 

Swallow et al., 2009). Past deforestation rates in the Kakamega-Nandi forest indicated a decrease 

of forest area and an increase in the fragmentation of natural, old-growth forest (Mitchell, 2004; 

Lung and Schaab, 2006). 

 

Soils in the Kapchorwa catchment are kaolinitic Acrisols (FAO-UNESCO-ISRIC, 1988), which 

are classified as Ultisols in the US soil taxonomy (Soil Survey Staff, 1998). The parent material 

of these soils is principally granitic, with some inclusions of Precambrian gneisses, which 

supports Luvisols (Werner et al., 2008) and other undifferentiated basement system rocks at 

higher elevations (Jätzold and Schmidt, 1983). Soils in the study area have 45-49% clay, 15-25% 

silt, and 26-40% sand (Kimetu et al., 2008). 
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The forest section of the Kapchorwa catchment is part of the Kakamega-Nandi forest composed 

of tropical rainforest species. It is largely an indigenous forest with a 30 m closed canopy 

dominated by evergreen hardwood species. The most common species are Funtumia africana, 

Ficus species, Croton species, and Celtis species (Glenday, 2006). Other species include 

Aningeria altissima (A. Chev.), Milicia excelsa (Welw.) C.C. Berg, Antiaris toxicaria (Lesch) 

and Chrysophyllum albidum (G. Don), Olea capensis (L.) and Croton megalocarpus (Hutch) 

(Kinyangi, 2008). The above and below ground net primary production of trees in a tropical 

forest was estimated at 15.2 Mg ha-1 year-1 (Hertel et al., 2009). The agricultural catchments 

have maize as the sole crop, and have been under maize cultivation since conversion from forest. 

The maize grain yield without fertilizer input in the 5, 10 and 50 year old agricultural catchments 

are 6.5, 5.5 and 2.5 Mg ha-1 year-1, respectively (Ngoze et al., 2008).  

 

Hydrologic instrumentation and field data collection 

The headwater catchments were identified in August 2006. The specific age classes designating 

when native forests were converted to agriculture were determined from historical community 

settlement patterns over the last century (Bleher et al., 2005). Specific years of conversion were 

verified from data available from records of the Kenyan government from the Department of 

Forests, the Ministry of Agriculture, as well as from interviews with officials of local institutions 

and from county council records. Within each site, there were distinct population settlement 

patterns where newly acquired fields were excised from sections of the native forest for 

agriculture. All four headwater catchments are located within an area of 6 km2 and represent a 

soil degradation gradient that corresponds to years under maize cultivation that has been used 
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and its validity verified by several other studies (Solomon et al., 2007; Kimetu et al., 2008, 2009; 

Ngoze et al., 2008). Such chronosequences substitute time for space and have to be carefully 

selected to assure similar properties before the change (Huggett, 1998). Also hydrological 

differences between catchments unrelated to land cover have to be considered (Elsenbeer, 2001; 

Johnson et al., 2006). Therefore, the relationship between hydrological responses and physical 

watershed attributes such as size and slope as well as location characteristics such as rainfall 

were investigated as a source of random variation. 

 

Hydrologic instrumentation was installed in mid-December 2006 and catchments monitored for 

2 years. The boundaries of each catchment were surveyed and delineated using a Global 

Positioning System (GPS). The GPS data were then used to generate Geographical Information 

System (GIS) output and a map of the area (Figure 1.1). The sizes of the catchments were 12.8 

ha for the forest, 14.4 ha for the 5 year old conversion, 9.1 ha for the 10 year conversion and 10.0 

ha for the 50 year conversion. A standard V-notch weir was constructed at each catchment outlet 

for determining stream discharge. Stream stage was recorded using water capacitance probes 

(Odyssey Dataflow Systems Pty Ltd, New Zealand) installed at the weir. The probes were 

programmed to give a reading of the average stream stage between 2-4 minutes. Data from these 

probes were downloaded biweekly. The weir ratings were determined at low and intermediate 

flows using a stage downstream and discharge at the weir. The correlation coefficients of the 

weir ratings were r2= 0.944 (y=0.5483x-12.079), r2= 0.915 (y=0.5495x-18.286), r2= 0.926 

(y=0.5329x-16.382), and r2= 0.931 (y=0.8608x-48.769) for the forest, 5 year, 10 year and 50 year 
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Figure 1.1: Map of the study area of the Kapchorwa headwater catchments. The weir positions 

are shown by dots in each catchment. 

 

conversions, respectively. The stream hydrographs were normalized by corresponding catchment 

sizes to allow comparison among responses for the 4 catchments. These data were subjected to 

online hydrograph separation implemented in WHAT (Web GIS based Hydrograph Analysis 

Tool) using the Recursive Digital Filter method for baseflow separation (Lim et al., 2005, 2010). 

This approach to hydrograph separation has been used in hydrological studies of forested and 

agricultural watersheds in tropical and temperate regions (Longobardi and Villani, 2008; 

Schwartz, 2007). Two other separation techniques, specifically the WHAT Local Minimum 
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Method and the WHAT One Parameter Digital Filter Method (Lim et al., 2005) were used for 

comparison. The trends in the amount of baseflow and runoff were similar for all the methods, 

with a variation of up to 12.8% in the final results. The WHAT Web GIS system can be used in 

the calibration and validation processes of hydrologic and water quality models (Lim et al., 

2010). 

 

Precipitation for each catchment was determined from a tipping bucket rain gauge connected to a 

data logger installed 1 m above the ground surface, representing throughfall for the forested 

catchment, and above-canopy rainfall for the agricultural catchments. For all calculations, an 

average of above-canopy precipitation was used (CV of less than 1% between watersheds). The 

below-canopy throughfall in the forest was on average 5% lower than above-canopy rainfall over 

both years. 

 

Five soil samples from 0-0.1 m depth were collected randomly by stratifying for location within 

slope and plateau of each catchment, after removing the litter layer (capturing the mineral A 

horizon). In addition, four sites were randomly selected in each catchment and soil sampled at  

depths of 0.1-0.3m, 0.3-0.9m, 0.9-1.5m, 1.5-2.4m. The average slopes for the headwater 

catchments were measured using clinometers. The final average slope figure is a mean of five 

readings taken from the position of the weir up the slope. The resulting mean slope for the 

catchments were 7.5% for the forest, 6.4% for the 5 year conversion, 4.4% for the 10 year 

conversion and 5.8 % for the 50 year conversion. Bulk density was determined from undisturbed 

soil cores; we used five soil samples from a depth of 0-0.1 m in each catchment (Campbell and 
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Henshall, 1991). The soil porosity (ø) was computed from bulk density (ρb) and particle density 

(ρp) using the formula ø=1- (ρb /ρp). 

 

Laboratory measurements of soil properties  

Total C was determined by dry combustion after fine grinding soil using a Mixer Mill (MM301, 

Retsch, Germany). The five replicate samples were analyzed for C content with a Europa 

ANCA-GSL CN analyzer (PDZ Europa Ltd., Sandbach, UK). SOM was determined by loss on 

ignition (Storer, 1984). The soil moisture retention curve was determined by applying soil 

suction to undisturbed soil cores (Klute, 1986). 

 

Statistical analyses 

Statistical analyses were done using JMP Version 8 (SAS Institute Inc, Cary, NC, USA) for soil 

properties, runoff ratio, baseflow index, and streamflow discharge as a percentage of rainfall 

against the physical properties of the four catchments. The runoff ratio is the ratio of the total 

runoff to total rainfall (e.g., Berger and Entekhabi, 2001) and the baseflow index is the ratio of 

total baseflow to total rainfall, which is somewhat different than the traditional baseflow index 

that is the ratio of baseflow to total discharge (e.g., Bloomfield et al., 2009). The comparisons 

were made at P<0.05 unless otherwise stated.  A linear function was fitted for all the 

correlations.  
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RESULTS 

Soil properties 

Within the top 0.1 m, the SOM levels decreased by 59% and SOC by 75% from the forest to the 

50 year old agricultural catchment (Table 1.1). SOM and SOC degradation was very rapid in the 

first 10 years of conversion linearly decreasing by 50% and 66%, respectively (r2 = 0.99; 

P<0.05). At a depth of below 0.5 m, the SOC values are not significantly different between the 

watersheds (Figure 1.2). The soil ρb increased rapidly by 28.8% in the first 10 years from 0.80 to 

1.03 g cm-3 (r2 = 0.98; P<0.1). Overall, the soil ρb increased by 46.3% from 0.8 to 1.17 within 50 

years of cultivation. The rapid increase in ρb in the first 10 years following conversion leads to a 

12.9% drop in the total porosity from 0.70 to 0.61 in the same period (r2 = 0.99; P<0.1).  

 

The porosity decreased by 20% following 50 years of continuous cultivation.  The topsoil 

moisture content at field capacity followed a similar trend to the total porosity. It dropped by 

28.3% in the first 10 years of cultivation, with an overall reduction of 33.8% in the 50 years of 

cultivation. More than half the changes in hydrologically important topsoil properties occurred 

between 5 and 50 years of cultivation. Changes during the conversion process, as indicated by 

differences between the forest and the 5-year conversion, caused comparatively lower changes in 

the important hydrological properties of the topsoil, with the exception of SOC. 
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Table 1.1: Catchment soil properties in the top 0.1 m. 

Means within a row followed by the same letters are not significantly different from each other at 

P < 0.05 (n=5). 

  

 Forest 5 year 
conversion 

10 year 
conversion 

50 year 
conversion 

Soil organic matter  
(mg g-1) 

170.8a 136.7b 85.3c 70.0d 

Soil organic carbon 
(mg g-1) 

108.3a 68.8b 36.4c 27.5c 

Soil bulk density  
(g/ cm3) 

0.80c 0.91b 1.03ab 1.17a 

Total porosity 0.70a 0.66b 0.61bc 0.56c 
Moisture at 0.1 bar (%) 48.09a 43.71a 38.97b 31.72c 
Moisture at 0.33 bar 
(field capacity) (%) 

34.70a 34.05a 24.88b 22.97b 

Moisture at 1 bar (%) 33.44a 32.95a 23.33b 21.89b 
Moisture at 3 bar (%) 31.89a 29.56a 20.07b 18.71c 
Moisture at 15 bar 
(permanent wilting 
point) (%) 

30.27a 27.78b 17.18c 15.54c 
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Figure 1.2: Soil carbon (mg g-1) at various depths in the watersheds. Bars are ±1 standard 

deviation of the mean for each soil depth. Error bars at the right indicate the LSD at each depth. 

LSD error bars followed by * indicate the presence of significant differences at P < 0.05 (n=4). 

 

 

Hydrologic fluxes 

There was no clear separation between the long rainy (April - June) and short rainy (August – 

October) seasons in the Kapchorwa catchment area during the study period (Figure 1.3). Truly 

dry seasons occurred between November and March. The streamflow response to precipitation 

events varied with land use history (Figure 1.3). Unlike the rapid streamflow responses for 

catchments under cultivation, the discharge in the forest did not respond immediately to the 

rainfall. There was minimal storm runoff for the forest and a gradual increase in the streamflow 

discharge in the forest during the rainy season that reached its peak in October. The initial 
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rainfall in April 2007 following the usual dry season did not lead to sudden increased discharge 

in agricultural catchments. After about one month of rainfall, the streamflow exhibited periods of 

slowly increased discharge in the agricultural catchments associated with rainfall and longer 

periods of slowly decreasing discharge of water stored in the catchment. 

 

The annual water yield of the catchments (Table 1.2) indicates a pronounced increase between 

forest and 5 years cultivation catchment, followed by a gradual increase in the streamwater 

discharge with longer periods of cultivation. The total streamwater yield for the year 2007 in 

relation to the precipitation was 17.9% in the forest, 26.6% in the 5 year, 30.3% in the 10 year 

and 34.0% in the 50 year conversion to agriculture. The annual streamwater yield for the year 

2008 in relation to the precipitation was 14.1% in the forest, 22.0% in the 5 year, 27.4% in the 10 

year and 30.7% in the 50 year conversions. About half of the change (50.6%) in discharge as a 

fraction of rainfall occurred over the first 5 years of cultivation after forest clearing, with the 

remaining increase over the chronosequence (49.4%) observed for 5 to 50 years of cultivation. A 
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Figure 1.3: Daily discharge and rainfall of the Kapchorwa catchments in 2007 and 2008. 

 

similar observation was made for the runoff ratio, discharge and baseflow index (Table 1.2). The 

runoff ratio for the forested catchment increased from 0.033 and 0.029 (2007 and 2008 data, 

respectively) to 0.092 and 0.097 after 50 years of cultivation (2007 and 2008). Slightly less than 

half of the change (46.3%) was observed within the first 5 years of cultivation (0.064 and 0.059 

for 2007 and 2008, respectively). On average for both years, the baseflow index decreased by  
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Table 1.2: The hydrological attributes of the Kapchorwa catchments in 2007 and 2008. 

 Forest 5 year 
conversion 

10 year 
conversion 

50 year 
conversion 

2007 2008 2007 2008 2007 2008 2007 2008 

Precipitation (mm) 2064.7 2099.7 2064.7 2099.7 2064.7 2099.7 2064.7 2099.7 

Discharge (mm) 369.87 296.43 548.58 462.23 636.66 574.35 702.40 645.25 

Discharge/precipitation 0.179 0.141 0.266 0.220 0.303 0.274 0.340 0.307 

Direct runoff (mm) 76.91 61.26 131.17 123.04 162.95 150.48 189.47 202.83 

Runoff ratioa 0.037 0.029 0.064 0.059 0.079 0.072 0.092 0.097 

Base flow (mm) 292.96 235.17 417.41 339.19 473.71 423.87 512.93 442.42 

Base flow indexb 0.792 0.793 0.761 0.734 0.744 0.738 0.730 0.686 

aStorm runoff/precipitation 

bBase flow/total discharge 

 

11% over 50 years of continuous agriculture following forest clearing. Less than half (45%) of 

that decrease occurred after forest clearing and within the first 5 years of cultivation.  

 

Streamwater discharge as a percentage of rainfall and the runoff ratio were inversely related to 

SOC (P<0.01) and total porosity (P<0.05) and positively correlated to ρb (P<0.05; Table 1.3). 

Conversely, the baseflow index had a significant inverse relationship with ρb (P<0.05), positive 

correlation with total porosity (P<0.05), but was not significantly correlated with SOC. There 

were no significant relationships between the three aforementioned hydrological properties and  
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Table 1.3: Correlation coefficients (r2) and regression equations for some physical and 

hydrological attributes averaged for both 2007 and 2008 of the Kapchorwa headwater 

catchments. 

 Discharge as a 
percentage of rainfall 

Runoff ratio Baseflow index 

Soil organic 
carbon (%) 

y = - 1.9233x+36.988 

r2 = 0.987* 

y = - 0.007x+0.1086 

r2= 0.958* 

y = 0.0096x + 0.693 

r2 = 0.896 ns 

Bulk  density 
(g/cm3) 

y = 43.15x-16.779x - 
14.496 

r2 = 0.937* 

y = 0.1613x-0.0911 

r2 = 0.965* 

y = - 0.212x + 0.954 

r2 = 0.925* 

Total porosity y = - 112.96x+96.845 

r2 = 0.937* 

y = - 0.4212x+0.3329 

r2 = 0.961* 

y = 0.5503x + 0.3994 

r2 = 0.913* 

Soil moisture 
content at field 
capacity (%) 

y = - 1.0407x+55.736 

r2 = 0.799 ns 

y = - 0.0038x+1778 

r2 = 0.793 ns 

y = 0.0047x + 0.609 

r2 = 0.679ns 

Average slope 
(%) 

y = - 4.3015x+51.317 

r2 = 0.614 ns 

y = - 0.0146x+0.1545 

r2 = 0.520 ns 

y = 0.0173x  + 0.643 

r2 = 0.409 ns 

Catchment size 
(ha) 

y = - 1.8969x+47.357 

r2 = 0.431 ns 

y =  0.0068x+0.1447 

r2 = 0.403 ns 

y =  0.0075x + 0.661 

r2 = 0.276 ns 

* indicate significant correlations at P<0.05, respectively (n=5).  

ns, not significant at P<0.05 

 

either the average slope or catchment size (P<0.05) that would indicate a bias in watershed 

responses due to random spatial effects. 
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DISCUSSION 

Effects of forest removal 

The conversion of forest to maize cultivation led to drastic changes of the landscape that 

significantly affected the stream discharge.  The discharge expressed as a percentage of the 

rainfall increased by an average of 44.2% from forest to the adjacent catchment after 5 years of 

maize cultivation (Table 1.2). This translates to a yearly average increase of 34.4 mm year-1 

(8.8%). The reduced water use of annual crops such as maize compared to a full-grown forest 

reflects not only the diminished capacity of short vegetation to intercept and evaporate rainfall 

(Van Dijk and Bruijnzeel, 2001), but also to extract water from deeper soil layers during periods 

of drought (Eeles, 1979). The former relates primarily to the lower aerodynamic roughness of 

short annual crops (and possibly to their smaller leaf area), whereas the reduced water uptake of 

crops reflects their more limited rooting depth (Nepstad et al., 1994; Calder, 1998). Interception 

likely reduced discharge and throughfall, and while spatially and temporally highly variable 

(Zimmermann et al., 2009) is typically about 10-25% lower than above-canopy rainfall as shown 

for a variety of tropical forests (Cuartas et al., 2007; De Villiers and Du, 1982, Tobon et al., 

2000). A study by Ruprecht and Schofield (1989) in a catchment area of 94 ha showed that 

clearing native vegetation and establishment of agricultural plants on a small catchment in 

southwest Australia resulted in a large streamflow increase. The streamflow increased markedly 

in the first year after clearing (about 10% rainfall) and continued to increase linearly at a slower 

rate for a further five years, when a new streamflow equilibrium was reached (Ruprecht and 

Schofield, 1989). Low and Goh (1972), reporting on catchment research in peninsular Malaysia, 

showed an annual increase of 10% in water yield in a largely cleared catchment compared to 

yield trends in three forested catchments. Therefore, the removal of forest vegetation in our study 
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in Kenya appeared to have increased stream discharge at a magnitude similar to the upper end of 

other observations. 

 

Unlike the forested catchment, the immediacy of streamflow response to rainfall after 5 years of 

continuous cultivation (Figure 1.3) suggests that part of the rainfall follows a rapid route to the 

stream channel, producing quickflow. In the forest, the complex of permanent soil cover, litter 

layer and roots acts as a sponge soaking up water during rainy spells and releasing it evenly 

(Bruijnzeel, 2004a). The beneficial effects on soil aggregate stability and water intake capacity 

afforded by the high organic matter content and abundant faunal activity of forest soils may 

persist for one or two years after clearing (Bruijnzeel, 2004b). However, exposure of the soil to 

continuous cultivation generally leads to a rapid decline thereafter (Lal, 1987). Lal (1983) 

studied a 44-ha forested drainage basin on an Alfisol in the humid tropical area of western 

Nigeria from 1979 to 1981. He observed virtually no Hortonian overland flow and soil erosion 

and attributed it to the thick undergrowth and leaf litter layer. Deforestation significantly 

increased the total water yield by 140 mm per year (10%) from 1979 to 1981 (Lal, 1983). An 

additional aspect in agricultural catchments is that considerable areas may become permanently 

occupied by compacted surfaces such as houses, yards, trails and paths. This is almost inevitably 

followed by increases in amounts of runoff (Grip et al., 2004). A study in sub-humid, tropical 

Benin by Giertz et al. (2005) showed that continuous cropping for 100 years led to a streamwater 

discharge yield of 16.4% (190 mm) of the rainfall per year, which was only a small increase 

compared to a yield of 10.2% (117 mm) in the forest catchment. However, in the Benin study, 

both the forest and agricultural catchments were larger in size than in our experiment; about 300 

ha each. Rigorous experimental designs like the ‘paired catchment’ technique have produced 
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detectable changes in streamflow also including large basins (Trimble et al., 1987; Bruijnzeel, 

1990; Malmer, 1992; Fritsch, 1993; Costa et al., 2003). In all cases, the removal of more than 

33% of forest cover resulted in significant increases in annual streamflow during the first 3 years. 

Initial gains in water yield after complete forest clearance ranged between 145 mm year-1 (9.7%) 

and 820 mm year-1 (32.8%) (Bruijnzeel, 1990; Malmer, 1992; Fritsch, 1993). In addition, 

increases in water yield proved to be roughly proportional to the fraction of biomass removed. 

These changes in water yield mainly reflect the different evaporative characteristics of mature 

tropical forest and (very) young secondary or planted vegetation and, to a much lesser extent, 

increases in storm runoff (response to rainfall). Under mature tropical rain forest, typically 80–

95% of incident rainfall infiltrates into the soil, of which over 1000 mm year-1 (67%) is 

transpired again by the trees when soil moisture is not limiting, whereas the remainder sustains 

streamflow (Bruijnzeel, 2004).  Chevallier and Planchon (1993) found a mean annual 

evapotranspiration of 1600 mm in a four year study in a 136 ha humid savannah basin in Ivory 

Coast. 

 

During the dry seasons, the water discharge in the agricultural watersheds gradually diminished 

to low levels but never dried completely. A review by Bruijnzeel (2004) suggested that the water 

holding capacity i.e., ‘sponge effect’ is lost after clearing, resulting in diminished dry season 

flows despite the logical assumption that the reduced evaporation associated with the removal of 

forest should have produced higher baseflow. The dry season and inter-storm streamflow consist 

solely of ground water.  
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The 42.6% increase in the runoff coefficient from the forest to the maize fields after 5 years of 

cultivation is consistent with the study by Giertz et al. (2005) in Benin. In the Benin study, 

runoff coefficients were 0.095 and 0.158 for the forest and agricultural catchments, respectively. 

In formerly forested areas in Indonesia, typical surface runoff coefficients associated with bench 

terraced rainfed agriculture on volcanic soils in upland West Java also ranged from 0.16 to 0.18 

for terraces on moderately steep slopes to greater values of 0.27 – 0.33 on steep slopes (Purwanto 

and Bruijnzeel, 1998). Our data and data from various other studies therefore indicate that 

conversion to agriculture causes a dramatic shift in the hydrological behavior of headwater 

catchments. 

 

Effects of cultivation 

The similar increase in runoff ratio and storm discharge during the cultivation phase between 5 

and 50 years following conversion compared to the change associated with the initial 

deforestation (Table 1.2) may possibly be explained by the continued and significant changes in 

soil properties. Despite the greater increase in runoff ratio per year between forest and 5 years of 

cultivation (15% year-1) compared to the following 45 years (1% year-1), the total change after 

forest clearing and during the first 5 years (43% of total increase) or between 5 and 50 years 

(57% of total increase) after forest conversion suggests long-term soil changes and their 

management to be important drivers of headwater hydrology. The increase in topsoil ρb from the 

5 to the 50 year old agricultural catchment may be an indication of changes in the soil profile that 

cause reduced rainfall infiltration. Several factors may contribute to reduced infiltration 

including continued exposure of bare soil after forest clearance to intense, high energy rainfall 

(Lal, 1996), loss of SOC (Table I; Solomon et al., 2007), compaction of topsoil by mechanical 



  21

operations (Malmer and Grip, 1990) or grazing (Gilmour et al., 1987), gradual disappearance of 

soil faunal activity (Aina, 1984), and increases in the area occupied by impervious surfaces such 

as paths and settlements (Ziegler and Giambelluca, 1997). Increased bulk density and reduced 

infiltration may lead to a more pronounced catchment response to rainfall (Giertz and 

Diekkruger, 2003) and increases in storm runoff during the rainy season may become so large as 

to seriously impair the recharging of the soil and groundwater reserves feedings springs and 

maintaining baseflow. It is not clear, however, whether lower infiltration at the soil surface 

triggered the observed greater runoff, since infiltration rates may still be greater than rainfall 

intensities (Zimmermann et al., 2006). Often, subsurface compaction may rather be responsible 

for overland flow through saturation excess. A perched water table was found to be responsible 

for a doubling in runoff events and a 17-fold increase in runoff volume by conversion of forest to 

pasture in western Amazonia (Germer et al., 2010). We are not able to distinguish between 

subsurface and soil surface processes that led to the observed increases in runoff in our study. It 

is unlikely, however, that a subsurface layer with low permeability is present in all watersheds 

which caused the greater proportion of runoff through a perched water table, as we would not 

expect greater runoff with longer duration of maize cultivation without other changes in 

management or plant cover. However, compaction of not only the topsoil but also the subsoil 

through cultivation may be a possible explanation for the observed greater runoff. If existing, any 

subsoil compaction seem unrelated to SOC contents, however, as SOC contents did not change 

below a depth of 0.5 m. 

 

In the Benin study, Giertz et al. (2005) showed that 100 or more years of cultivation led to soil 

loss and biological degradation. These authors attributed the reduction of permeability to lower 
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abundance and activity of soil organisms due to the mechanical destruction of the soil structure 

as well as a decrease in litterfall (Edwards and Bohlen, 1996). Lower microbial activity (Kimetu 

et al., 2009) was also found at our sites but an explicit connection between microbial activity and 

soil hydrological properties has not been examined. Pedobiological investigations by Giertz et al. 

(2005) also demonstrated that a reduction of macrofauna activity on agricultural fields compared 

with natural vegetation may cause an extreme reduction of macropores at the soil surface. 

Reduced macroporosity is an important contributor to lower permeability of the surface in 

agricultural catchments. An explicit connection between macrofauna and soil permeability was 

not examined in our study, but could well have played a role in increasing the runoff ratio. 

 

Following 50 years of cultivation in the Kapchorwa catchments, the ability of the topsoil (0-0.1 

m) to hold moisture at field capacity was reduced by about 34% (Table 1.1). This may be 

attributed to losses in SOC, erosion of finer soil particles, or mechanical compaction. Soil 

organic C losses have been found to be significant with 67-86% over 100 years following forest 

conversion to permanent cultivation at our study site (Solomon et al., 2007). Similar results are 

obtained using SOC stocks with fixed sampling depth (Nguyen et al., 2008) or with equivalent 

mass (Kinyangi, 2008). Such SOC losses can only be compensated with organic matter 

amendments (Kimetu et al., 2008). Therefore, maintenance of SOC and soil biological activity, 

including soil macrofauna, may help reduce storm runoff and, to some extent, stream discharge 

in tropical headwater catchments to compensate for the loss of maintenance of a forest cover. 

Whether such interventions in the topsoil would actually reduce discharge cannot be proven and 

warrants manipulative experimentation. 
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CONCLUSIONS 

The physical soil properties were shown to be significantly affected by forest conversion to 

agriculture as well as by subsequent long-term cultivation. Impacts of cultivation on soils 

included a decrease in SOC, total porosity, field capacity and increased bulk density, whereas 

moisture retention at field capacity did not change in the short term due to loss of forest cover. 

The increase of surface runoff as a result of the loss of forest cover was similar in magnitude as 

increases observed corresponding to long-term cultivation. This would suggest that preservation 

of forest cover is only one avenue for decreasing storm water runoff and discharge from 

headwaters. Equally important is the maintenance of infiltration and water retention in soil, but it 

is not clear to what extent subsurface changes contributed to the observed runoff responses. 

Further experimentation is required to evaluate whether discharge and runoff can be reduced by 

SOC build-up, reduced compaction or less sealing of surfaces. This would have important 

implications for policy interventions to promote soil conservation techniques. Questions arise 

whether nutrient and C losses follow the same trends as water discharge shown here. In addition, 

soil management that maintains water retention and decreases runoff and discharge warrant 

evaluation on a watershed scale. 
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CHAPTER 2 

 

HYDROCHEMICAL BEHAVIOR OF NUTRIENTS IN TROPICAL HEADWATER 

CATCHMENTS AT A SOIL DEGRADATION GRADIENT 

 

Abstract 

Carbon and nutrient losses were quantified from four small headwater catchments in western 

Kenya. They include a forested catchment and three catchments under maize continuously 

cultivated for 5, 10 and 50 years following forest conversion. The C isotopic composition of 

dissolved organic C (DOC) in stream discharge suggested that soil organic C (SOC) derived 

from the original forest rather than C from maize may have contributed to a large extent to 

watershed OC losses. Flow-weighted stream water concentrations of different organic C 

fractions, all N species, total P, K and Na significantly (P<0.05) increased in streams after forest 

conversion and long-term cultivation. Solute concentrations increased despite the fact that soil 

contents decreased and total water flow increased indicating mobilization of C and N, P and K 

from soil with progressing cultivation. In contrast, Ca and Mg concentrations in stream water did 

not systematically change after deforestation and cultivation, and may be controlled by 

geochemical weathering rather than by changing water flow paths or topsoil contents. All total C 

and nutrient exports increased with longer cultivation (P<0.05) as a result of greater water 

discharge. Fluvial organic C and total N losses were 2% and 21% of total SOC and total N 

decline, respectively, in the top 0.1 m over 50 years. Fluvial OC losses therefore played a minor 

role, and SOC losses were mainly a result of microbial mineralization. Resulting total N losses 
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by stream discharge, however, were large with 31 kg ha-1 yr-1 after 50 years of continuous 

cropping in comparison to fertilization of 40 kg N ha-1 yr-1. Most (91%) of the N losses occurred 

as NO3
-. In contrast, P losses by stream discharge were negligible in comparison to plant uptake. 

Water losses should be managed to reduce soil fertility declines especially through large N 

export from agricultural headwater catchments. However, stream concentrations of both P (0.01-

0.15 mg L-1) and N (0.4-4.8 mg L-1) were moderate or low with respect to possible consequence 

for human health or eutrophication. 

 

INTRODUCTION 

Human activity affects land cover and land use (Hartemink et al., 2008). Historically, the driving 

force for most land use changes is population growth (Ramankutty et al., 2002) although there 

are several other interacting factors involved and rates of deforestation and population growth 

differ (Lambin et al., 2003). Land use is one of the key parameters controlling soil nutrient 

dynamics. Undisturbed forests can maintain their well developed growth by efficiently 

conserving nutrient capital (Yusop et al., 2006). Amongst the features of tropical forests that 

enhance nutrient conservation is a large root biomass, dense root mats in the topsoil, abundant 

aerial roots and the maintenance of a complex below-ground microbial community (Jordan, 

1985). These sensitive structures may be severely damaged during forest harvesting and clearing, 

thus losing their ability to protect soil against erosion and nutrient loss (Hartono et al., 2003). 

Germer et al. (2010) found that deforestation for the establishment of pasture altered 

fundamental mechanisms of storm flow generation and increased runoff volumes in Rondonia in 
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the southwestern Amazon Basin. Consequently, removal of forest cover typically results in 

significant effects on stream water quality, soil erosion and losses of nutrients (Grip et al., 2004).  

 

The impact of land use change on nutrient dynamics in the tropics is particularly severe since soil 

degradation is more rapid than in temperate zones (Hartemink et al., 2008; Malmer and Grip, 

1990; Solomon et al., 2009; Spaans et al., 1989). Continuous cultivation and land tillage cause 

rapid loss of C (Davidson and Ackerman, 1993; Tilman et al., 2002; McLauchlan, 2006; 

Solomon et al., 2007) due to the disruption of the physical, biochemical, and chemical 

mechanisms of soil organic matter (SOM) stabilization exposing it to microbial degradation. Soil 

organic matter decline leads to reduced cation exchange capacity resulting in diminished nutrient 

retention of the soil (Lal, 2006). However, surprisingly little information is available on how soil 

degradation following land use conversion affects nutrient losses from watersheds. 

 

On a plot level, information on accelerated losses of nutrients resulting from various types of 

agricultural practices has been gathered in both temperate (Nair and Graetz 2004; Schipper et al., 

2007) and tropical regions (Pandey et al., 2010). Studies on nutrient losses from entire 

catchments in tropical forests have mostly been confined to Malaysian and Amazonian forests 

rather than to different agricultural watersheds. The Malaysian studies examined impacts of 

disturbances (Zulkifli, 1990) and forest clearing (Malmer, 1996). In the central Amazon, Lesack 

(1993) estimated the annual export of nutrients from a terra firme rain forest by extrapolating 

biweekly baseflow and continuous storm event water quality. This catchment was subsequently 

deforested and increased losses of N were reported by Williams and Melack (1997) and Williams 

et al. (1997). In southwestern Amazonia, Thomas et al. (2004) found that a second order stream 
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originating in pasture had lower concentrations of nitrate, higher concentrations of total 

suspended solids, particulate organic C, particulate organic N, ammonium and phosphate than a 

second order stream originating from forest. Zhang et al. (2006) reported from a chronosequence 

in China on solute exports from headwaters under native forest, and maize under conventional 

cultivation for 19 years. In contrast to the Amazonian studies, they found significantly lower 

SOC, total soil N, total and available soil P in the cultivated soil compared to the native forest. 

Even less clear is what effect continuous cultivation and accompanying soil degradation have on 

fluvial nutrient losses in addition to the effects of loss of forest cover. 

 

The distribution of nutrient and C losses over the course of the year can provide insight into the 

mechanism and pathways of nutrient and C in watersheds (Markewitz et al., 2004; Johnson et 

al., 2006a). Typically, we expect a dilution of nutrient and C concentrations during the rainy 

season (Likens et al., 1995). However, under certain circumstances of highly weathered soils, 

concentrations may increase during the wet season as a result of greater surficial flow paths that 

mobilize solutes from nutrient and C-rich topsoils (Markewitz et al., 2004). It is not clear 

whether forest conversion and soil cultivation may change the relationship between water and 

nutrient concentrations. The fluvial organic C losses may be a significant fraction of C losses and 

of total solute losses in watersheds (Selva et al., 2007). In forest ecosystems, the majority of the 

fluvial organic C losses occurred as DOC (Johnson et al., 2006b; Selva et al., 2007). Despite the 

lower importance of particulate organic C, most of the organic C was mobilized from the topsoil 

litter layer (Johnson et al., 2006a, 2006b). Whether the same is true for agricultural soils, or 

whether subsoil organic C may gain in importance for soils depleted in SOC by long-term 

cultivation is not clear. 
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The purpose of this study was to quantify the fluvial nutrient losses from headwater catchments 

as a function of either soil degradation and soil organic matter contents or forest clearing in 

tropical Africa. The effects of continuous agricultural land use on nutrients were investigated by 

comparing three headwater catchments following forest conversion to continuous maize 

production for either 5, 10, or 50 years in Western Kenya with a catchment that has remained 

forested. 

 

METHODS 

The study site 

The field measurements were done in Kapchorwa, located in the Nandi district in western Kenya. 

The site is located 60 km northeast of Lake Victoria at longitude 35°0'0" E and latitude 

0°10'0"N. The region belongs to the sub-humid ecological zone characterized by a bimodal rainy 

season with a mean annual precipitation of 2000 mm (Awiti et al., 2004). The “long rain season” 

is from April to June (~1200 mm) and the “short rain season” from August to October (~800 

mm). The site has a mean elevation of 1800 m above sea level, a maximum daily temperature of 

26°C and a minimum of 11°C (Glenday, 2006).  

 

The Kakamega-Nandi forest in Western Kenya is the country’s only remaining tropical rain 

forest. Massive deforestation has taken place to create land for settlement and farming. About 

16% of forest cover was lost between 1986 and 2001 (Awiti et al., 2004). The forest forms the 

easternmost relic of the Guinean-Congolian rainforest belt, which once spanned from East to 
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West Africa. The area around this forest is among the most densely populated rural areas in the 

world. It had a population density of 778 persons per km2 in 2009 compared to 73 persons per 

square kilometer for the entire country (Kenya National Bureau of Statistics, 2010). 

Consequently the forest is under high anthropogenic pressure, which is mirrored by the 

decreasing natural forest cover and intensive cultivation (deGraffenried and Shepherd, 2009; 

Swallow et al., 2009). Past deforestation rates in the Kakamega-Nandi forest indicated a decrease 

of forest area and an increase in the fragmentation of natural, old-growth forest (Lung and 

Schaab, 2006). 

 

Soils in the Kapchorwa catchment are kaolinitic Acrisols (FAO-UNESCO-ISRIC, 1988), which 

are classified as Ultisols in the US soil taxonomy (Soil Survey Staff, 2003). The parent material 

of these soils is principally granite, with some inclusions of Precambrian gneisses, which 

supports Luvisols (Werner et al., 2007) and other undifferentiated basement system rocks at 

higher elevations (Jaetzold and Schmidt, 1983). Soils in the catchment have 45-49% clay, 15-

25% silt, and 26-40% sand (Kimetu et al., 2008). 

 

The forest section of the Kapchorwa catchment is part of the Kakamega-Nandi forest composed 

of tropical rainforest species. It is largely an indigenous forest with a 30 m closed canopy 

dominated by evergreen hardwood species. The most common species are Funtumia africana, 

Ficus spp, Croton spp, and Celtis spp (Glenday, 2006). Other species include Aningeria 

altissima (A. Chev.), Milicia excelsa (Welw.) C.C. Berg, Antiaris toxicaria (Lesch) and 

Chrysophyllum albidum (G. Don), Olea capensis (L.) and Croton megalocarpus (Hutch) 

(Kinyangi, 2008). The above and below ground net primary production of trees in a tropical 
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forest is estimated at 15.2 Mg ha-1 year-1 (Hertel et al., 2009). The agricultural catchments have 

maize as the sole crop, and have been under maize cultivation since conversion from forest 

cover. The maize grain yields without fertilizer input in the 5, 10 and 50 year old agricultural 

catchments are 6.5, 5.5 and 2.5 Mg ha-1 year-1, respectively (Ngoze et al., 2008).  

 

Hydrologic instrumentation and fieldwork 

In order to identify the headwater catchments, the time when native forests were converted to 

agriculture was determined from historical community settlement patterns over the last century 

(Bleher et al., 2005). Specific years of conversion were verified from data available from records 

of the Kenyan government from the Department of Forests, the Ministry of Agriculture, as well 

as from interviews with officials of local institutions and from county council records. Within 

each site, population settlement patterns were distinct and newly acquired fields were excised 

from sections of the native forest for agriculture. All four headwater catchments are located 

within an area of 6 km2 (Fig. 1) and represent a soil degradation gradient that corresponds to 

years under maize cultivation that has been used in several other studies (Kimetu et al., 2008, 

2009; Ngoze et al., 2008; Kimetu and Lehmann 2010). Such chronosequences substitute time for 

space and have to be carefully selected to assure similar properties before the change (Huggett, 

1998). Also hydrological differences between catchments have to be considered (Elsenbeer, 

2001; Johnson et al., 2006) and only clear trends across the entire set of the four catchments are 

interpreted here. 

 

Hydrologic instrumentation was installed and catchments monitored for the year 2008. The 

boundaries of each catchment were determined using a Global Positioning System (GPS) on the 
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landscape around each spring up to the plateau. The GPS data were then used to generate a 

Geographical Information System (GIS) output and map of the area. The sizes of the catchments 

were 12.8 ha for the forest, 14.4 ha for the 5 year old conversion, 9.1 ha for the 10 year 

conversion and 10.0 ha for the 50 year conversion. There were a total of one, six, and eleven 

households living in the 5, 10, and 50 year conversion catchments, respectively. A standard V-

notch weir was constructed at each catchment outlet for determining stream discharge. Stream 

stage was recorded using water capacitance probes (Odyssey Dataflow Systems Pty Ltd, New 

Zealand) installed at the weir. The probes were programmed to give a reading of the average 

stream stage at 2 minutes. Data from these probes were downloaded biweekly. The weir ratings 

were determined at low and intermediate flows. The weir rating correlation coefficients were r2= 

0.944, r2= 0.915, r2= 0.926, r2= 0.931 for the forest, 5 year, 10 year and 50 year conversions, 

respectively. The stream hydrographs were normalized by corresponding catchment sizes to 

allow comparison between responses for the 4 catchments.  

 

Stream water sampling was done biweekly at the weir outlet, at the beginning and mid of every 

month. The water samples were filtered through 0.45-μm pore-size glass-fiber filter, into two 

separate 50-mL centrifuge vials. We added thymol into the first 50-mL centrifuge vial that was 

used for determination of calcium (Ca), magnesium (Mg), sodium (Na), potassium (K), total 

dissolved phosphorus (TDP), nitrate nitrogen (NO3-N), ammonium nitrogen (NH4
+-N) and total 

dissolved nitrogen (TDN). We added 10% HCl into the second 50-ml centrifuge vial that was 

used for determination of dissolved organic carbon (DOC) and the DOC isotopic ratio of 13C to 

12C. The 0.45-μm pore-size glass-fiber filter paper with sediment was air dried and kept for the 
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determination of coarse particulate organic carbon (CPOC), the CPOC isotopic ratio of 13C to 

12C, and coarse particulate nitrogen (CPON). 

 

Five soil samples from 0-0.1 m depth were randomly collected from the slope to the plateau of 

each catchment for analyses of SOM, SOC, total N, available P, Ca, K, Mg and Na. Also four 

sites were randomly selected on each catchment and soil sampled at depths of 0.1-0.3m, 0.3-

0.9m, 0.9-1.5m, 1.5-2.4m. Bulk density was determined by the soil core method; we used five 

soil samples from a depth of 0-0.1 m in each catchment (Campbell and Henshall, 1991). The soil 

porosity (ø) was computed from bulk density (ρb) and particle density (ρp) using the formula 

ø=1- (ρb /ρp). The use of organic and inorganic fertilizers was assessed in all studied agricultural 

watersheds by a full survey of all households using interviews. 

 

Laboratory measurements 

Soil total C was determined by dry combustion after fine grinding soil using a Mixer Mill 

(MM301, Retsch, Germany). Samples were analyzed for total C contents with a Europa ANCA-

GSL CN analyzer (PDZ Europa Ltd., Sandbach, UK). Soil organic matter (SOM) was 

determined by loss on ignition (Storer, 1984) and soil pH (in water) at the w/v ratio 1:2.5 using a 

glass electrode (Thermo Scientific, Beverly, MA, US).  Filters containing CPOC were ground 

using a Mixer Mill (MM301, Retsch, Germany) and analyzed for total C, the isotopic ratio of 13C 

to 12C, and CPON using a coupled Europa 20-20 continuous isotope ratio mass spectrometry 

(PDZ Europa Ltd., Sandbach, UK). The Mehlich 3 extraction procedure  (Mehlich, 1984) was 

used for the available soil P, Ca, Mg, K and Na. The Ca, Mg, K, Na and P concentrations were 

obtained by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES, ARCOS, 
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Germany). TDN was analyzed using Shimadzu’s Total Nitrogen Module, TNM-1 that uses 

chemiluminescence. Dissolved organic nitrogen (DON) was computed using the formula 

DON=TDN- NO3
- and NH4

+. DOC analysis was carried out on a Shimadzu Total Organic 

Carbon-Visionary Series (TOC-VCSH) analyzer following the procedure described by Qian and 

Mopper (1996). NO3-N and NH4
+-N were determined on a Seal AQ2-Automated Discreet 

Analyzer (Seal Analytical, England). 

 

Statistical analyses 

Statistical analyses were done using JMP Version 8 (SAS Institute Inc, Cary, NC, USA) for soil 

properties and stream water solutes of the four catchments. A one way ANOVA was used for the 

soil properties, and a repeated measure analysis controlling for the date was performed for the 

stream water solutes.  Both analyses were followed with posthoc multiple comparisons using a 

Tukey correction for multiple comparisons when the catchment effect was significant. 

Comparisons were considered significant at P<0.05. 

 

RESULTS 

Soil properties 

Within the top 0.1 m, the SOM and SOC concentrations significantly decreased by 59% and 

75%, respectively, and the soil N contents by 79% from the forest to the 50 year old agricultural 

catchment (Table 1). The forest SOC and soil N were significantly (P<0.05) higher than the 5 

year conversion. Soils in the 10 and 50-year conversion did not differ. The SOM, SOC and N 

loss was very rapid in the first 10 years of conversion decreasing by 50%, 66% and 70% 
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respectively. Available soil P, K and Na did not change as a result of forest clearing and soil use 

between the studied watersheds. In contrast, extractable Ca and Mg significantly (P<0.05) 

decreased over time (Table 2.1). Similarly, pH values significantly decreased from forest (7.39) 

to agriculture (5.81). 

 

Table 2.1: Soil properties in the top 0.1 m 

Soil organic carbon  
(t ha-1) 

86.64a 62.61b 37.49c 32.18c 

Means within a row followed by the same letters are not significantly different from each other at 

P< 0.05 (n=5). 

 

The soil ρb increased rapidly by 28.8% in the first 10 years of cultivation from 0.80 to 1.03 g cm-

3 (Table 1). Overall, the soil ρb increased by 46.3% from 0.8 to 1.17 within 50 years of 

 Forest 5 year 
conversion 

10 year 
conversion 

50 year 
conversion 

Soil organic matter (%) 17.08a 13.67b 8.53c 7.00d 
Soil organic carbon (g 
kg-1) 

108.3a 68.8b 36.4c 27.5c 

Soil nitrogen (g kg-1) 11.2a 6.9b 3.4c 2.3c 
Soil nitrogen (t ha-1) 8.96a 6.28b 3.50c 2.69c 
Soil bulk density  
(g cm-3) 

0.80c 0.91b 1.03ab 1.17a 

Total porosity 0.70a 0.66b 0.61bc 0.56c 
% moisture at 0.33 bar 
(field capacity) 

34.70a 34.05a 24.88b 22.97b 

pH (water, 1:2.5) 7.39a 6.48b 6.23b 5.81c 
Available P (g kg-1) 0.011a 0.007a 0.003a 0.006a 
Available K (g kg-1) 0.69a 0.58ab 0.23b 0.44ab 
Available Ca (g kg-1) 6.25a 4.98a 1.77b 2.91b 
Available Mg (g kg-1) 0.73a 0.45b 0.20c 0.33bc 
Available Na (g kg-1) 0.026a 0.020a 0.010a 0.011a 
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cultivation. The rapid increase in ρb in the first 10 years following conversion leads to a 12% 

drop in the total porosity from 0.69 to 0.61 in the same period.  
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Fig. 2.1: Long term shift in the isotopic composition of δ13C of the soils at various depths in the 

watersheds. n=4. Bars are ±1 standard deviation of the mean for each depth 

 

In the 0-0.1 m depth, the soil δ13C values were -26.07 ± 0.68 ‰, -25.37 ± 0.84 ‰, -21.21 ± 0.87 

‰ and -19.18 ± 0.44 ‰ for the forest, 5 yr, 10 year and 50 year conversion catchments, 

respectively (Figure 2.1). This indicates enrichment in the heavier isotope from the forest than in 

the catchment under cultivation for 50 years. The δ13C values at the topsoil (0-0.1 m) increased 

linearly over time from -26.07 ‰ to -19.18 ‰ (r2=0.95; P<0.0001), with similar trends at depth. 

Similarly, the δ13C values became less negative deeper in the profile for all the catchments 

indicating a slight enrichment in the heavier isotope from the topsoil.  
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Table 2.2: The isotopic composition of δ 13C of the CPOC and DOC, and the flow weighted 

nutrient concentrations of the headwater catchments. 

 Forest 5 year conversion 10 year 
conversion 

50 year 
conversion 

Sediment and filtered streamwater 

CPOC δ 13C (‰) -27.52b -27.29b -27.28b -26.40a 

DOC δ 13C (‰) -28.59c -28.25c -26.79b -22.75a 

Streamflow concentrations 

DOC (mg L-1) 1.31a 1.48a 1.47a 1.52a 

CPOC (mg L-1) 1.25a 1.43a 1.49a 1.65a 

CPON (mg L-1) 0.12a 0.14a 0.15a 0.16a 

TDN (mg L-1) 0.49b 0.67b 4.83a 4.64a 

NO3
-(mg L-1) 0.40b 0.58b 4.71a 4.52a 

DON (mg L-1) 0.10a 0.09a 0.10a 0.12a 

TDP (mg L-1) 0.03b 0.01b 0.05b 0.15a 

K (mg L-1) 0.36c 0.80b 0.95a 1.18a 

Ca (mg L-1) 7.23a 5.55b 5.48b 7.16a 

Mg (mg L-1) 3.01a 2.04c 1.61d 2.54b 

Na (mg L-1) 2.99c 3.70c 4.65b 5.61a 

Means within a row followed by the same letters are not significantly different from each other at 

P< 0.05 (n=24 for CPOC δ 13C, n=4 for DOC δ 13C, and n=12 for all others). 
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Stream water chemistry 

The δ13C composition of CPOC (Table 2) did not change from the forest (-27.52‰) to the 10 

year conversion (-27.28‰). The 50 year old catchment had a slightly higher δ13C value 

compared to the other catchments. The streamwater DOC δ13C composition followed the same 

trend as the sediment but with a significantly greater magnitude of enrichment in the heavier 

isotope from the forest and recent conversion to the 10 year old conversion.  Discharge in the 50 

year conversion had a significantly higher value than that of all other headwaters (-22.75‰). The 

flow-weighted average concentrations of DOC, CPOC and CPON did not change with forest 

conversion and duration of cultivation (Table 2). TDN concentrations in the discharge from 

forest and 5 year catchments did not differ, but increased with longer cultivation. NO3
- was the 

dominant form of dissolved N (91%) in the Kapchorwa watershed fluvial ecosystem, followed 

by DON (9%), whereas NH4
+ was below our detection limit.  The 10- and 50-year conversion 

watersheds had nine times higher TDN concentrations compared to the forest and most recent 

conversion. Stream TDP concentrations were at least one order of magnitude lower compared to 

TDN, Ca, K, and Mg. TDP concentrations of the forest, 5 and 10 year conversions were 

threefold lower than that of the 50 year conversion (P<0.05). Stream water K and Na 

concentrations both increased upon forest conversion and subsequent cultivation. Overall, K 

concentrations increased threefold and Na concentrations twofold following 50 years of 

cultivation after forest conversion. In contrast to all other solutes, Ca and Mg concentrations did 

not show a consistent trend from forest to cultivation.  
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Table 2.3: Streamwater carbon and nutrient exports (kg ha-1 yr-1) from the Kapchorwa headwater 

catchments 

 Forest 5 year 
conversion 

10 year 
conversion 

50 year 
conversion 

DOC  3.87 6.85 8.46 9.79 

CPOC 3.94 6.60 8.57 10.63 

CPON 0.33 0.64 0.87 1.03 

TDN 1.45 3.12 27.76 29.93 

NO3
- 1.18 2.68 27.09 29.16 

DON 0.27 0.44 0.67 0.77 

TDP 0.09 0.03 0.29 0.98 

K 1.06 3.68 5.44 7.61 

Ca 21.43 25.66 31.46 46.22 

Mg 8.93 9.42 9.23 16.38 

Na 8.86 17.08 26.70 36.22 

 

The total C exports increased after forest conversion and with subsequent cultivation (Table 2.3). 

The DOC and CPOC export doubled in the first 5 years following forest conversion. The 

increase continued by a further 43% and 70% from the 5 to the 50 year conversions, respectively. 

Amounts of CPON, TDN and NO3
- exported were also twice the first five years after forest 

conversion. Upon longer cultivation between 5 and 10 years, CPON export increased 3.5 times, 

while the TDN and NO3
- export increased eightfold. Between 10 and 50 years of continuous 

cultivation, the amount of CPON export doubled while that of TDN and NO3
- did not increase 

further. The magnitude of TDP export was far less than that of C and all other nutrients.  The 

amounts of TDP exported did not change after forest conversion (<0.03 kg ha-1), but increased 
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with subsequent cultivation up to the 0.98 kg ha-1. The cations (K, Ca Mg and Na) exhibited a 

similar trend whereby the amounts exported increased from the forest to the 5, 10 and 50 year 

conversions.  Among those cations, K had the lowest export while Ca had the highest. 
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Figure 2.2: Bi-weekly discharge and concentrations of DOC, Na, Ca, K and Mg of the 

Kapchorwa headwater catchments 
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There was not a clear separation of the hydrograph between the long rainy (April-June) and short 

rainy (August-October) seasons in the Kapchorwa catchment in 2008. The stream flow response 

to precipitation events increased with longer cultivation (Figure 2.2). There were no relevant 

changes in the concentrations of DOC, TDN, TDP, Ca, and Mg across the whole year. The K and 

Na concentrations, however, decreased slightly after the long rainy season in August and 

remained low for the short rainy season. Overall, there was no relationship between the solute 

concentrations and discharge (Fig. 5). 
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Figure 2.3: The relationship between discharge and DOC, Na and nutrient concentrations in the 

50 year watershed 
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DISCUSSION 

Sources of soil C and nutrient losses 

The SOC reduction following land use conversion and cultivation is typically largely due to 

microbial respiration (Mann, 1986). Indeed, annual DOC and CPOC losses by stream water of 

22 kg ha-1 from the highly degraded soils were only 2% of mineralization losses of 1,200 kg ha-1 

determined by direct measurements from the soil surface using static vented chambers (Kimetu 

and Lehmann, 2010). Similarly, cumulative fluvial organic C losses were 0.9 t ha-1 (2%) over the 

first 50 years (using linear interpolation of the sum of DOC and CPOC) compared to SOC losses 

of 54 t ha-1 in the first 0.1 m (calculated from Table 1). It is possible that inorganic C and 

particular dissolved CO2 may significantly contribute to total fluvial C losses from watersheds as 

shown in the Amazon (Johnson et al., 2008). However, even with a possibly larger inorganic 

than organic C loss, microbial mineralization from the soil still exceeds 90% of total SOC losses. 

The quantified fluvial C export is low compared to other studies. Moore et al. (2010) observed a 

fluvial total organic C removal of 12% by a Bornean blackwater river in a peat covered area of 

Indonesia. Cumulative fluvial N losses over the first 50 years (using linear interpolation of the 

sum of TDN and CPON) were 1.3 t ha-1 compared to the total soil N losses of 6.3 t ha-1 

(representing 21%) in the first 0.1 m (calculated from Table 1). Similar to fluvial C losses, 

watersheds at our site showed lower export than at other locations.  

 

Stable isotope ratios of C in topsoil increased with number of years of cultivation. Isotopic 

enrichment was due to establishment of the C4 maize crop which discriminates less against 13C 

compared to the original forest vegetation. Agren et al. (1996) also attributed isotopic 

enrichment of δ13C to isotopic fractionation associated decomposition and humification 
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processes, which explain the observed increase with depth. Increasing δ13C values with soil 

depth were also found by Krull et al. (2002) at a nearby site. Both fluvial CPOC and DOC were 

mainly mobilized from the topsoil, as δ13C values in stream discharge were lower than in the 

topsoil and soil values increased with depth. Similar conclusions were drawn by Frank et al. 

(2000) and Raymond and Saiers (2010) who found most of the DOC losses to be derived from 

the topsoil in catchments in central Switzerland and eastern United States, respectively. 

Alternatively, the low δ13C values in our study may also indicate that organic C losses originated 

from older SOC fractions characterized by small size and association with minerals. This 

conclusion is in accordance with data from Kinyangi (2006) who showed decreasing δ13C values 

with smaller particle size and association with the organo-mineral fraction in soils from the same 

chronosequence. The isotopic composition of the topsoil correlated fairly strongly with the DOC 

δ13C (r2=0.84; y=1.132x+7.1478) as well as with the CPOC δ13C (r2=0.83; y=18.25x-49.523), 

but with a low slope for CPOC. 

 

Nutrient losses, crop production and stream pollution 

Total N (TDN + CPON) losses of 31 kg ha-1 yr-1 in the highly degraded soils were relevant 

compared to crop N uptake of maize at the same sites with 90 kg N ha-1 yr-1 (Kimetu et al., 

2008). There was no fertilizer application in the recent conversion, while applications in the 10 

and 50 year conversions were about 40 kg N ha-1 (average from all farms in the studied 

catchments). The typical application rates to maize by most farmers in the entire region are 20 kg 

N ha-1 (Ngoze, 2008), less than the stream water losses reported here. Even more dramatic were 

the fluvial Ca and Mg losses of 46 and 16 kg ha-1 yr-1, respectively, which were greater than 

uptake by a single maize crop of 20 and 10 kg ha-1, respectively (Kimetu et al., 2008). In 
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contrast, annual fluvial P losses of 1 kg ha-1 were low compared to plant uptake of 10 kg ha-1 

(Kimetu et al., 2008) and fertilization of about 7.5 kg P ha-1 (sum of inorganic and organic 

fertilizers averaged for all farms) in the oldest conversion. Both Ca and Mg as well as P losses by 

stream water may not be as serious as N losses because available P, Ca, and Mg in soil decreased 

much less than total N (Table 1), and crops were found to respond less to P than to N additions 

(Ngoze et al., 2008). In addition, TDN concentrations and total losses by stream discharge 

increased the most by forest conversion and continuous cultivation compared to any other 

nutrient studied here.   

 

Despite the significant N losses from stream discharge for agricultural productivity, the observed 

concentrations in the studied headwater catchments are not an environmental concern for aquatic 

environments. Average annual N concentrations at or below 3 mg L-1 and maximum 

concentrations of 6 mg L-1 during the dry season of December to March do not pose a risk for 

human health (Rubio-Arias et al., 2010) and are not expected to cause eutrophication (King and 

Balogh, 2011; Hill et al., 2011). Similarly, P concentrations of 0.01-0.15 mg P L-1 in the stream 

discharge are moderate but not a cause for significant environmental concern (Auer et al., 1986; 

King and Balogh, 2011; Yu et al., 2011). Values up to 6.7 mg PO4-P L-1 have been found in the 

River Thames catchment in the UK (Young et al., 1999) and up to 10 mg PO4-P L-1 in the Spree 

River in Germany (Lewandowski and Nutzmann, 2010). Therefore, the well documented 

contamination of the lower Yala River (Aloo, 2003) and Lake Victoria (Hecky et al., 2010) with 

N and P and the resulting eutrophication does not seem to be caused by agriculture in the 

headwater catchments, but must occur further downstream. 
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Carbon and nutrient losses after landuse change 

Our DOC concentrations and total losses were in the same range as reported by Lesack et al. 

(1984) from the Gambia River in the West African savannah with a DOC concentration of 1.98 

mg L-1 and DOC export of 2.67 kg ha-1 yr-1. Similar DOC concentrations but 2-10 times greater 

export were found by Cairns et al. (2009) in the forests of the Oregon Cascades and of southern 

Amazonia by Johnson et al. (2006). A study in peatland landscapes by Stutter et al. (2008) in 

Scotland found stream flow weighted DOC concentrations between 1.42 and 9.69 mg L-1 while 

the annual export flux ranged from 10.2-49.9 kg ha-1 yr-1. The flow weighted CPOC 

concentrations from the 5 to the 50 year old catchments were 1.43 mg L-1 and 1.65 mg L-1, with 

an export of 6.6 and 10.63 kg ha-1 yr-1 respectively. The figures are within the range reported for 

a variety of watersheds elsewhere (Lesack et al., 1984; Stutter et al., 2008; Waldron et al., 2009; 

Selva et al., 2007). The CPOC and CPON concentrations and export were in the same order of 

magnitude as those of DOC and DON. This finding differs from that of Vidal-Abarca et al. 

(2001) who found DOC to be the most important fraction (98%) of organic carbon flowing in a 

saline and semi-arid stream in Spain. Similarly greater proportions of DOC were also reported by 

Johnson et al. (2006ab) from southern Amazonia.  

 

The increase in streamwater concentrations of TDN, NO3
- and DON with longer duration of 

cultivation can be attributed to three sources. (1) Mineralization of SOM led to accumulation of 

mineral N and especially nitrate (as seen from stream water concentrations) which is weakly 

adsorbed to soil minerals and easily leached. (2) The greater number of households on older 
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conversions presumably led to higher inputs of farm manure from the cattle kept by the farmers. 

The manure was shown to consist of 22 g N kg-1 (Kimetu et al., 2008). Half of the farmers in the 

older conversions applied inorganic fertilizer equivalent to 40 kg N ha-1. (3) As stated above, 

only farmers with fields that have been cultivated for 10 years or longer apply mineral fertilizers. 

Fields that have been recently cleared at the same sites are rarely fertilized due to their high N 

mineralization rates and their low response to mineral (Ngoze et al., 2008) and organic N 

applications (Kimetu et al., 2008). 

 

The increase in K and Na concentrations with longer cultivation may be explained by lower SOC 

contents and the soil mineralogy being dominated by kaolins, both resulting in lower cation 

retention. Krull et al. (2002) reported mineralogy dominated by quartz, kaolin and mica, with 

minor components associated with feldspars and oxides in the adjacent Kakamega part of the 

forest. They observed an abundance of quartz, kaolin, muscovite and microcline with a slight 

increase in goethite with increasing soil depth. The observed greater proportion of surface runoff 

of 4% to 10% of rainfall from forest compared to long-term cultivated fields (Recha, unpubl. 

data) may also have led to a greater mobilization of K and Na near the surface. Extractable K 

concentrations did not decrease with forest conversion and cultivation (Table 1). Similar to N, a 

greater number of households in the older conversion watersheds may have added more kitchen 

waste that are rich in K and Na such as ash from firewood cookstoves and farm yard manure. 

Kimetu et al. (2008) documented contents of 23.2 g K kg-1 in the manure. 
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The lack of change or even slight decrease in Ca and Mg stream water concentrations may be a 

result of a dominance of weathering as the primary source of Ca and, to a certain extent, Mg. The 

low weathering index (Fig. 5) supports that explanation. In addition, the significant decrease in 

extractable Ca in the topsoil (Table 1) in combination with the rather decreasing stream water 

concentrations after forest conversion point at the subsoil as the primary source of Ca.  

 

Intra-annual dynamics of stream water solutes 

None of the solute concentrations (except DOC, Na and K) changed with the strong changes in 

discharge between January and December 2008. No significant correlations were established 

between any of the solutes and stream discharge which is in contrast to other studies that 

typically show significant changes in DOC and nutrient concentrations throughout the year 

(Markewitz et al., 2001; Johnson et al., 2006b; Bucker et al., 2011). Although variations in intra-

annual stream concentrations are often observed, the solutes can either be more concentrated 

during high flow in the rainy season due to export of mainly surficial nutrients (Markewitz et al., 

2001) or less concentrated due to dilution during heavy rainfall and larger volume of stream 

discharge (Elsenbeer et al., 1994; Anderson et al., 1997; Tsujimura et al., 2001; Grimalsi et al., 

2004). The constant concentration of N, P, Mg and Ca with varying discharge in our study may 

be explained by a balance between changes in water delivery and chemical delivery (Salmon et 

al., 2001). Ca and Mg can be delivered from both organic-rich soil horizons and weathering of 

deeper soil (Yusop et al., 2006). During low flows, the Ca and Mg would be derived from the 

weathered mineral subsoil, whereas near surface storm event flow (Noguchi et al., 1997) could 
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entrain these solutes from the organic-rich topsoil. As stated before, the measured low Na/(Na+ 

Ca) values indicate greater weathering inputs of Ca.  

 

In contrast, the Na and K concentrations in all four catchments dropped during the month of 

August at the onset of the second rainy season. The sources of K as well as Na are associated 

with leaching and decomposition of leaves and organic matter, and thus are expected to be 

available at greater quantities in the upper soil profile (Proctor et al., 1989; Veneklass, 1991). 

Therefore, prolonged rain may have leached K and Na contained in the litter layer from the soil 

surface similar to what has been observed for DOC in southern Amazonia (Johnson et al., 

2006b) where the litter layer disappeared towards the end of the rainy season (Selva et al., 2007). 

 

CONCLUSION  

Results from this study indicate that conversion of forest catchments to continuous maize 

cropping had a significant effect on the hydrochemistry of headwater streams. All C species and 

nutrient concentrations increased with forest conversion and cultivation except for Ca and Mg. 

The reason may be the proportional greater importance of geochemical weathering for Ca and 

Mg. Dilution of major solutes during the rainy season frequently observed elsewhere did not 

occur here, except for K and Na. Fluvial C export was low compared to mineralization of SOC 

and P losses were negligible, but N losses by stream water must be addressed to curtail declining 

crop productivity. In terms of nutrient pollution and possible contamination of water resources, 

the N and P levels are not of concern and agriculture in the headwaters seems to play a minor 

role for the observed eutrophication of the downstream Yala River system and Lake Victoria. 
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CHAPTER 3 

 

SOURCES AND SHORT-TERM NUTRIENT DYNAMICS OF STREAM DISCHARGE 

FROM FORESTED AND AGRICULTURAL HEADWATERS DURING STORM EVENTS 

 

Abstract 

Stream water concentrations of dissolved organic carbon (DOC), calcium (Ca), potassium (K), 

magnesium (Mg), sodium (Na), total dissolved nitrogen (TDN), and nitrate nitrogen (NO3
--N) 

were examined under 20 storm flow conditions in four watersheds in Western Kenya. Three of 

the watersheds had been under maize cultivation for 5, 10 and 50 years after forest conversion. 

The other watershed was forested. The agricultural watersheds discharged the newly fallen 

rainwater 10-20 minutes more quickly compared to the forest watershed. Three patterns of 

changes in the concentrations of different solutes were observed as a function of increased 

stream water discharge and land use. (i) Concentrations of DOC and K increased with larger 

discharge in all studied watersheds. This suggests a quick transfer of these solutes to the stream 

through overland flow and preferential flow through soil macropores. The observed hysteretic 

response for both solutes suggests temporary depletion of terrestrial DOC and K due to soil 

water flushing. (ii) The Ca, Mg, Na, TDN and NO3
--N concentrations did not change in the 

forested watershed, while their concentrations decreased with increasing discharge in the 

agricultural watersheds. (iii) Baseflow that is rich in Ca, Mg, and Na was diluted by the storm 

event runoff. Saturated areas along river channels may favor production of dilute quickflow, 

leading to marked dilution of TDN and NO3
--N.  Based on end-member mixing analysis 

(EMMA) modeling, groundwater was shown to be the dominant flowpath which was higher 
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(P<0.05) in the forest compared to the 10- and 50-year conversion watersheds. The contribution 

of overland flowpath compared to streamwater was significantly lower (P<0.05) in the forest and 

5-year watershed than the 50-year watershed.  

 

INTRODUCTION 

Headwater streams are important sites of nutrient processing (Peterson et al., 2001) and carbon 

(C) dynamics. They are strongly influenced by the surrounding headwater catchment that is a 

source of organic matter, nutrients, and sediments (Vannote et al., 1980). Headwater catchment 

characteristics such as geology and land use affect the rate at which solutes are delivered to 

streams (Omernik, 1976; Richards et al., 1996). The importance of rain storms in affecting both 

hydrological and chemical response of drainage waters has been documented for a variety of 

catchment types ranging from snow-dominated systems where seasonal snowmelt dynamics play 

a critical role (Sickman et al., 2003) to arid catchments where antecedent moisture conditions are 

especially important (Castillo et al., 2003). Storm events may contribute substantial amounts of 

solute and sediment export in drainage waters (Mitchell et al., 2006).  

 

Tropical regions are characterized by episodic rainfall events during which potentially large 

amounts of sediments and nutrients can be discharged (Blanco et al., 2010). In western Kenya, 

storm events make up a significant percentage of the total rainfall (Kipkorir, 2002). The amount 

of materials discharged depends on the complex interaction of different factors including rainfall, 

vegetation cover, soil conditions, and agricultural management. Agricultural land use typically 

increases the inputs of sediments and nutrients to streams (Allan et al., 1997; Strayer et al., 
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2003). Forest removal contributes greatly to higher stream water discharge and storm runoff 

(Mumeka, 1986). Deforestation can also dramatically increase sediment runoff (Kreutzweiser 

and Capell, 2001) and increase the export of nutrients to the streams (Harr and Fredriksen, 1988; 

Martin et al., 2000). The impacts of land use changes on hydrologic processes in the tropics are 

especially severe because of rapid soil degradation (Spaans et al., 1989; Malmer and Grip, 1990). 

Light and heavy rainfall affects hydrologic processes in different ways. The changes in 

watershed hydrology, solute dynamics and flowpaths in relation to heavy precipitation has been 

studied in temperate regions (Jeppesen et al., 2011), but less work has been done in the tropics, 

especially in Africa. 

 

Storm events significantly affect the nutrient runoff and nutrient budget because runoff pathways 

and residence times of water vary from the beginning to the end of storm events (Zhang et al., 

2007). Subsurface flow on hill slopes is produced by rapid infiltration of rain which flows to the 

stream through interconnected macropores or through saturated soil horizons (Beven and 

Germann, 1982). Partial-area overland flow may occur on certain portions of a watershed where 

rainfall rates are greater than soil infiltration rates (Betson and Marius, 1969). More commonly, 

saturation overland flow is generated by precipitation on near-stream areas that have become 

saturated by a rising water table (Bonell and Gilmour 1978) or a perched water table above a less 

permeable soil horizon (Germer et al., 2010).  

 

These changing water flow paths during storms may activate nutrient-poor or nutrient-rich areas 

of the watershed. Flow pathways that dominate during storm events determine the surface water 

chemistry (Bonell, 1993). Changes in NO3
--N and DOC concentrations may be attributed to 
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flushing from various sources in the soil matrix and locations of the watershed (Brown et al., 

1999; Inamdar et al., 2004). In upland forested catchments of the Colorado Rocky Mountains, 

stream DOC concentrations peaked on the rising limb of the snowmelt hydrograph, prior to peak 

discharge, followed by a rapid decrease in the concentrations as snowmelt continued 

(Hornberger et al., 1994). This temporal pattern in DOC concentrations was attributed to the 

flushing of the near-surface soil DOC pool by the rising water table. Creed and Band (1998) 

found a similar trajectory in NO3
--N concentrations during snowmelt discharge from glaciated 

catchments in the Canadian Shield and attributed this pattern to the flushing of NO3
--N from 

near-surface soil layers. In contrast to the flushing of DOC and NO3
- from near-surface layers, 

Hill et al. (1999) and McHale et al. (2002) did not find any evidence of NO3
--N flushing in 

Canada and New York, respectively. No information is available that links storm flow to flow 

paths and nutrient export during storms in watersheds in Africa. 

 

These runoff processes and pathways are complex. Stormflow generation is favored when 

critical runoff production processes and rainfall thresholds are surpassed (Tromp-Van Meerveld 

and McDonnell, 2006; James and Roulet 2007). Rapid water delivery to the stream also depends 

on variability in soil depth (Ross et al., 1994) and underlying bedrock topography (Brammer and 

McDonnell, 1996). Variability in the concentration of solutes in streamwater may be an effective 

indicator of mapping complex flowpaths during storm runoff (Moore, 1989). Such studies rely 

on natural tracers for testing the hypothesis of storm flow generation (Ali et al., 2010). They 

assume that stream water is a mixture of discrete solutions that have extreme solute 

concentrations in comparison to stream flow (Christophersen and Hooper, 1992). For example, 

soil water DOC is efficiently immobilized in the streambed during base flow, but flushing of 
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DOC along preferential flow paths away from the stream channel in the riparian zone leads to 

higher DOC concentrations during higher flow conditions (Fiebig et al., 1990). Stream water 

DOC concentrations may, therefore, be an indicator of contributions from a rapid event-based 

shallow subsurface flowpath (Brown et al., 1999). In order to detect subsurface sources, studies 

of active and maybe connected flow sources using the geochemical signature of stream and soil 

waters (Bazenmore et al., 1994; Weiler et al., 2005) have been carried out. Similarly appropriate 

tracers include cations, electrical conductivity, nitrate-nitrogen and sulfate (Ali et al., 2010). 

 

This study quantifies the effects of forest conversion to agriculture on DOC and nutrient 

dynamics during storm events, as well as determines the dominant flowpaths. The specific 

objectives of this study are: (1) to investigate the catchment temporal patterns of DOC and 

nutrient concentrations during storms, (2) to determine the potential mechanisms controlling the 

characteristics of DOC and nutrient components during storm events and (3) to identify trends in 

water sources to stream flow. The effects of continuous agricultural land use on flowpaths were 

investigated by comparing three headwater catchments following forest conversion to continuous 

maize production for either 5, 10, or 50 years in Western Kenya to a catchment that has remained 

forested. 

 

METHODS 

The study site 

The field measurements were done in Kapchorwa, located in the Nandi district in western Kenya 

(Figure 1). The site is located 60 km northeast of Lake Victoria at longitude 35°0'0" E and 
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latitude 0°10'0"N. The region belongs to the sub-humid ecological zone characterized by a 

bimodal rainy season with a mean annual precipitation of 2000 mm (Awiti et al, 2004). The 

“long rain season” is from April to June (~1200 mm) and the “short rain season” from August to 

October (~800 mm). The site has a mean elevation of 1800m above sea level, a maximum daily 

temperature of 26°C and a minimum of 11°C (Glenday, 2006).  

 

The Kakamega-Nandi forest in Western Kenya is the country’s only remaining tropical rain 

forest. Massive deforestation has taken place to create land for settlement and farming. About 

16% of forest cover was lost between 1986 and 2001 (Awiti et al., 2004). The forest forms the 

easternmost relic of the Guinean-Congolian rainforest belt, which once spanned from East to 

West Africa. The area around this forest is among the most densely populated rural areas in the 

world. It had a population density of 778 persons per km2 in 2009 compared to 73 persons per 

square kilometer for the entire country (Kenya National Bureau of Statistics, 2010). 

Consequently the forest is under high anthropogenic pressure, which is mirrored by the 

decreasing natural forest cover and intensive cultivation (deGraffenried and Shepherd, 2009; 

Swallow et al., 2009). Past deforestation rates in the Kakamega-Nandi forest led to lower forest 

areas and greater fragmentation of natural, old-growth forest (Lung and Schaab, 2006). 

 

Soils in the Kapchorwa catchment are kaolinitic Acrisols (FAO-UNESCO-ISRIC, 1988), or 

Ultisols (Soil Survey Staff, 2003). The parent material of these soil is mainly granitic, with some 

inclusions of Precambrian gneisses (Werner et al., 2007) and other undifferentiated basement 

system rocks at higher elevations (Jaetzold and Schmidt, 1983). Soils in the catchment have 45-
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49% clay, 15-25% silt, and 26-40% sand (Kimetu et al., 2008). The forest section of the 

Kapchorwa catchment is part of the Kakamega-Nandi forest with a 30 m closed canopy 

dominated by evergreen hardwood species. The agricultural catchments studied here have maize 

as the dominant crop, and have been under maize cultivation since conversion from forest cover. 

The maize grain yield without fertilizer input in the 5, 10 and 50 year old agricultural catchments 

are 6.5, 5.5 and 2.5 Mg ha-1 year-1, respectively (Ngoze et al., 2008).  

 

Hydrologic instrumentation and field data collection 

All four headwater catchments are located within an area of 6 km2 and represent a soil 

degradation gradient that corresponds to years under maize cultivation that has been used in 

several other studies (Kimetu et al., 2008, 2009; Ngoze et al., 2008; Moebius-Clune et al., 2011). 

Such chronosequences substitute time for space and must be carefully selected to assure similar 

properties before the change (Huggett, 1998), including hydrological differences between 

catchments (Elsenbeer, 2001; Johnson et al., 2006). Only clear trends across the entire set of the 

four catchments are interpreted here. Hydrologic instrumentation was installed in January 2008. 

The extents of each catchment were determined using a Global Positioning System (GPS). The 

sizes of the catchments were 12.8 ha for the forest, 14.4 ha for the 5 year old conversion, 9.1 ha 

for the 10 year conversion and 10.0 ha for the 50 year conversion. A standard V-notch weir was 

positioned at each catchment outlet for determining stream discharge. Stream stage height was 

recorded using water capacitance probes (Odyssey Dataflow Systems Pty Ltd, New Zealand) 

installed at the weir. The probes were programmed to give a reading of the average stream stage 

every 2-5 minutes. Data from these probes were downloaded biweekly. Rainfall dynamics for 

each catchment was estimated from a tipping bucket rain gauge connected to a data logger 
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installed 1 m above the ground. The rainfall was measured below the canopy for the forested 

catchment and above-canopy rainfall for the agricultural catchments.  

 

During storm events, sampling was done simultaneously for streamflow at the weir and runoff 

(overland flow) at two locations upslope to the position of each weir. Each watershed had 5 

peizometers and 5 free draining lysimeters located randomly. The piezometers were sampled 

biweekly, while the lysimeters were sampled one day after a rainfall event. Typically, the storm 

events were characterized by rain that lasted between 40 and 70 minutes, amounting to over 8 

mm rainfall per single event. The sampling began at the start of the storm event, continued at 

intervals of 5 minutes up to 30 minutes after that rainfall had stopped. The five longest storms 

per watershed were considered for this paper (n=20). The water samples were filtered through 

0.45-μm pore-size glass-fiber filter, into two separate 50-mL centrifuge vials. We added thymol 

into the first 50-mL centrifuge vial that was to be used for determination of Ca, Mg, Na, K, TDN 

and NO3
--N. We added 10% HCl into the second 50-mL centrifuge vial that was to be used for 

determination of DOC. The Ca, Mg, K, Na available P and TDP were obtained by Inductively 

Coupled Plasma Atomic Emission Spectroscopy (ICP-AES, ARCOS, Germany). TDN was 

analyzed using Shimadzu’s Total Nitrogen Module (TNM-1, Shimadzu Scientific Instruments, 

Maryland, US). DOC analysis was carried out on a Shimadzu Total Organic Carbon-Visionary 

Series analyzer (TOC-VCSH,  Shimadzu Scientific Instruments, Maryland, US) following the 

procedure described by Qian and Mopper (1996). NO3
--N was determined on a Seal AQ2-

Automated Discreet Analyzer (Seal Analytical, Hampshire, England). 
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Model and statistical analysis 

Solutes that mix conservatively within the system were selected from linear plots of every 

pairwise combination of solutes (mixing diagrams). The set of end-members whose orthogonal 

projections best bound the stream water observations were chosen. End-member mixing analysis 

(EMMA) was performed using a three-component hydrograph separation involving overland 

flow, soil water, and groundwater, with two tracers DOC and Ca as described by Ogunkoya and 

Jenkins (1993). We used the model to calculate the proportion of stream water derived from each 

of the three end members for each sample collected during the storms by solving the following 

mass-balance expressions:  

Qst = Qgr + Qso + Qov                                                                          (1)                                            

Qst [1]st = Qgr[1]gr + Qso [1]so + Qov[1]ov                                           (2)   

Qst [2]st = Qgr[2]gr + Qso [2]so + Qov[2]ov                                           (3) 

Where Q is the discharge, and [1] and [2] are the first and second tracers. The subscripts st, gr, 

so, and ov signify stream, ground, soil, and overland areas, respectively. 

 

A repeated measure statistical analysis was performed for the pathways for 19 events. One storm 

event for the forest that occurred on June 30, 2008 was not included as it was contaminated with 

an unidentified source of DOC. The analyses was followed with posthoc multiple comparisons 

using a Tukey correction for multiple comparisons when the catchment effect was significant 

(P<0.05). 
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RESULTS 

The stream discharge started to increase about 10 minutes after the onset of the storm events, 

followed by a higher discharge rate that showed a rising limb on the hydrograph (Fig. 3.1; 

summary in Table 3.1). The discharge peaks of the catchment limbs were about 30% higher 

compared to the pre-event baseflow, respectively. The increase in stream discharge led to 

increases in the DOC and K solute concentrations. The highest solute concentrations occurred 

around the peak discharge and were still higher when the hydrograph limb was falling. The DOC 

and K levels decreased with the falling limb of the discharge after the peak. The agricultural 

watersheds had similar hydrochemical storm characteristics regardless of the year of conversion. 

The other four storms in each of the catchments followed the trends described here, as well (see 

Appendix C).  
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Table 3.1: A summary of the storm characteristics and solute response in each watershed 
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Figure 3.1 Rainfall, discharge and solute concentrations for watershed storms that occurred on 

various dates (other figures shown in Appendix C1-C4). 
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Hysteresis patterns may provide clues about the sources of nutrients during storm events. A 

clockwise hysteresis in the plot of concentration versus discharge occurs when solute 

concentrations are higher on the rising limb of the storm hydrograph and suggests that solute 

concentrations in surface event water exceeded those in soil water concentrations (Houser et al., 

2006). A counterclockwise hysteresis occurs when solute concentrations are higher on the falling 

limb of the storm hydrograph, and suggests that solute concentrations in soil water exceeded 

those in surface event water. Intermediate shapes occur when neither limb of the hydrograph 

exhibits consistently higher solute concentrations. These inferences are generalities but remain 

informative. For the storm event in the 50-year conversion on July 31, 2008 the shape and 

rotation of the K hysteresis is similar to the one of DOC (Fig. 3.2). They rotate in 

counterclockwise direction and present a single loop. Both show an increase in concentration 

with discharge and a similar flushing behavior towards the end of the storm event. In contrast, 

the hysteresis patterns for Ca, Mg, Na and TDN were clockwise with both Ca and TDN having 

loops. The trend in the latter patterns indicates similar decreases in concentration with discharge 

and a diluting behavior. For this event, there were highly significant correlations between DOC 

and K (r2=0.87; P<0.0001; n=17), Na and K (r2=0.71; P<0.0001; n=17), Mg and K (r2=0.67; 

P<0.0001; n=17), Mg and Ca (r2=0.50; P=0.0006; n=17) and  Na and Ca (r2=0.55; P=0.0006; 

n=17), but there were no correlations between the other solute concentrations (Fig. 3.3). 

  



  82

 
K

 c
o

n
ce

n
tr

at
io

n
 (

m
g

 L
-1

)

0

2

4

6

8

10

Discharge (L min-1)

18 19 20 21 22 23 24 25

D
O

C
 c

o
n

ce
n

tr
at

io
n

 (
m

g
 L

-1
)

0

2

4

6

8

10

C
al

ci
u

m
 c

o
n

ce
n

tr
at

io
n

 (
m

g
 L

-1
)

3

4

5

6

7

8

M
ag

n
es

iu
m

 c
o

n
ce

n
tr

at
io

n
 (

m
g

 L
-1

)

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

S
o

d
iu

m
 c

o
n

ce
n

tr
at

io
n

 (
m

g
 L

-1
)

3.5

4.0

4.5

5.0

5.5

6.0

Discharge (L min-1)

18 19 20 21 22 23 24 25

T
D

N
 c

o
n

ce
n

tr
at

io
n

 (
m

g
 L

-1
)

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

 

Figure 3.2: Hysteresis of Ca, Mg, K, Na, DOC and TDN in the 50 year conversion watershed for 

the 45 minute storm that occurred on July 31, 2008. 
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Figure 3.3: Correlations between solutes of the 50 year conversion watershed for the 45 minute 

storm that occurred on July 31, 2008. ** indicate significant correlations at P<0.0001 (n=17); * 

indicate significant correlations at P=0.0006 (n=17). 
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Figure 3.4: Mixing diagram showing DOC and Ca concentrations for stream water and end 

members in various rainstorms; contributions shown in Figure 3.5 and Table 3.2 (other diagrams 

shown in Appendix C5-C8). 
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Figure 3.5: Estimated event water contributions for the rainstorms using EMMA; total 

contributions for all storms shown in Table 3.3 (other storms shown in Appendix C9-C12).  

 

For the EMMA model, DOC and Ca were chosen because of their consistent response to events 

in the streams.  They gave the widest mixing triangle defined by the end members as shown in 

Fig. 3.4 that allowed computation of the estimated discharge components that are graphically 

represented in Fig. 3.5. The stream water samples were generally adjacent to the ground water 
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end member in the mixing triangle, with a slight drift towards to overland flow in the longest 

conversion watershed. The DOC values for overland and soil water components were 

consistently higher than groundwater (Table 3.2). The contribution of overland flow to stream 

discharge increased by 25% after forest conversion. In comparison, cultivation for 50 years led to 

a 73% increase in the contribution of overland flow to stream flow during storm events. 

 

Table 3.2: The percent contribution to the stream flow 

 Forest 5 yr 10 yr 50 yr 

Groundwater 80.64a 74.10ab 71.55b 71.23b 

Soil water 4.91b 7.93a 7.91a 3.68b 

Overland flow 14.44b 17.99b 20.53ab 25.04a 

Means within a row followed by the same letters are not significantly different from each other at 

P < 0.05 (n=4 for forest, and n=5 for agricultural watersheds). 
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Table 3.3: Average solute concentrations (mg L-1) in the overland flow, soil water, and ground 

water from mid-June up to mid-August 2008  

 

Means within a row (small letters) and a column (capital letters) followed by the same letters are 

not significantly different from each other at P<0.0001 (n=20 for soil water and groundwater, 

n=35 for all overland flow) 
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DISCUSSION 

The response time of discharge to the rainstorms was very rapid. The peak discharge in the 

agricultural watersheds appeared about 40 minutes after commencement of the storm while the 

response was delayed by between 10 and 15 minutes in the forest watershed. The agricultural 

soils could have had higher levels of overland flow and shallow throughflow that might have 

contributed to higher runoff drainage during the storms. The hydrographs had long recession 

limbs which did not reach pre-event levels by 30 minutes after the end of precipitation. This long 

recession limb could be caused by slow movement of shallow subsurface or interflow. Giusti and 

Neal (1993) observed that it took 24 hours before runoff subsided in a subcatchment in Scotland. 

 

DOC and K concentrations significantly increased with increasing discharge regardless of the 

watershed land use, which is typically reported from headwaters in both tropical and temperate 

climates (Wilson et al., 1991; Inamdar et al., 2004; Mitchell et al., 2006; Vidon et al., 2008 

2009; Deyton et al., 2009; Germer et al., 2009; Raymond and Saiers, 2010). The DOC and K 

concentrations peaked with discharge in all studied watersheds. This dynamic suggests a quick 

transfer of DOC and K to the stream as soon as discharge increases due to precipitation. 

Precipitation characteristics and discharge are therefore the primary determinants of stream DOC 

and K concentrations during storm events despite differences in the forested and agricultural 

watersheds. The high solute concentrations are associated with high contributions of storm event 

water through overland flow. The higher DOC concentrations in overland flow could be 

explained by an accumulation of DOC in the upper soil which was flushed at the beginning of 

runoff (Blake et al., 2003; Hornberger et al., 1994) making the overland flow concentrations 



  89

much higher than groundwater (Austnes et al., 2011). Royer and David (2005) observed that 

DOC appearing in small streams during storms is derived primarily from allochthonous 

terrestrial sources. K is also assumed to be abundant at the soil surface and hence in overland 

flow (Germer et al., 2009), and concentrations of K may be related to the length of the flow path 

(Luxmoore et al., 1990). That means, as the flow rate increases, longer path lengths of the 

transporting water contribute to greater K concentration (Wilson et al., 1991). Higher K levels 

are also associated with enhanced hydrological access (Caissie et al., 1996). 

 

The lower DOC and K concentrations during the falling hydrograph indicate that the DOC and K 

storm response is hysteretic (Butturini et al., 2006). This may reflect temporary depletion of the 

terrestrial DOC and K due to soil water flushing or perhaps changes in timing of runoff 

contributions from the riparian zone and hill slope during the course of the precipitation event. 

The pattern of DOC and K concentrations also reflects the evolution of subsurface flow through 

the upper horizons of the soil. The rainfall possibly leads to increased groundwater levels in 

areas close to the stream channel that could initiate subsurface flow in soil horizons having lower 

DOC and K concentrations. At peak flow levels, the contribution of DOC- and K-rich soil 

horizons to stream flow reaches a maximum as water saturation progresses both vertically in the 

profile and spatially in areas surrounding the channel. During the recession phase of the 

hydrograph, saturation decreases and the contribution of DOC-rich horizons diminishes. 

Accordingly, the DOC and K concentrations in the stream decreased before the discharge 

decreases.  

 



  90

In contrast to DOC and K, internal weathering appears to be the primary source of Ca, Mg and 

Na in stream water. During base flow in the Kapchorwa catchments, concentrations of Ca, Mg 

and Na which are produced through weathering are dominated by deep soil water irrespective of 

land use. With increasing discharge, both deep and shallow soil water reservoirs contribute to 

stream concentrations with little contribution from overland flow compared to observations for 

DOC and K. This is different from results reported by other studies on forests who showed 

increasing concentrations also of Ca, Mg and Na (Wilson et al., 1991) or NO3
--N (Houser et al., 

2006; Turgeon and Courchesne, 2008) during storm events. In the forest watershed, the constant 

level of the concentrations of Ca, Mg, Na, TDN and NO3
--N may partially be attributed to the 

interception of the precipitation and to relatively higher infiltration and retention by the higher 

organic matter in the soil (Bruijnzeel, 2004). Also Lal (1983) observed virtually no Hortonian 

overland flow and soil erosion due to thick undergrowth and leaf litter layer, in a humid tropical 

forest in western Nigeria. The small proportion of shallow soil water (5% of stream water) may 

not have been large enough to dilute the solute concentrations in the base flow-dominated stream 

water within the forest watershed. 

 

In contrast, the Ca, Mg, Na, TDN and NO3
--N rich base flow in the agricultural watersheds was 

diluted by the storm surface runoff that contains lower concentrations of these solutes, largely 

confirming reports on agricultural watersheds (Webb and Walling, 1985; Giusti and Neal, 1993; 

Hill, 1993; Salmon et al., 2001; Inamdar et al., 2004; Lehrter, 2006; Wiegner et al., 2009). The 

storms were collected during the height of the main rainy season in the months of June to August 

2008. Any soil moisture deficits generated during the November-March dry season have been 

replenished during the preceding three months of rainfall; and saturated areas along the river 



  91

channel, at the base of hill slopes and in the heads of the stream valleys may have been 

expanded. We hypothesize that these conditions favor the production of dilute quick flow from 

the expanded saturated source areas during the storms, leading to marked dilution of TDN and 

NO3
--N. Antecedent wetness are known to affect the hydrological routing and transport of N in 

the near-stream zone of saturation (Cirmo and McDonnell, 1997).  

 

CONCLUSIONS  

Dilution during storm events is the most dominant mechanism in the agricultural waters for Ca, 

Mg and Na generated internally through weathering in the deeper soil layers.  In these 

agricultural watersheds, the lower Ca, Mg and Na concentrations of shallow soil water dilute the 

solute contribution from the ground water and lead to a decreasing stream water concentration 

during storm events. In stark contrast, the abundance of DOC and K near the soil surface lead to 

greater stream concentrations for DOC and K with increased stream discharge during the storm 

events owing to overland flow. The changes in concentrations of different solutes in the 

Kapchorwa watersheds during storm events are to a greater extent controlled by flow paths and 

differences in nutrient and C reservoirs between top and subsoil than by land use studied here. 

Therefore, addressing nutrient and DOC losses during storm flow do not require differential 

management recommendations for forested and cultivated fields of different ages similar to the 

ones examined in this work. 
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CHAPTER 4 

 

SUMMARY AND CONCLUSIONS 

 

Forest conversion to agriculture as well as its subsequent long-term cultivation affected the 

physical soil properties. Impacts of cultivation on soils included a decrease in SOC, total 

porosity, field capacity and increased bulk density, whereas moisture retention at field capacity 

did not change in the short term due to loss of forest cover. The increase of surface runoff of the 

cultivated watersheds corresponded to the years of conversion. Therefore preservation of forest 

cover is only one avenue for decreasing storm water runoff and discharge from headwaters. The 

second avenue is the maintenance of infiltration and water retention in soil.  Further research on 

what extent subsurface changes contributed to the observed runoff responses needs to be 

undertaken. Further experimentation is required to evaluate whether discharge and runoff can be 

reduced by SOC build-up, reduced compaction or less sealing of surfaces. Thirdly, there is a 

need to evaluate on watershed scale, soil management that maintains water retention and 

decreases runoff and discharge. 

 

The hydrochemistry of headwater streams was affected by forest conversion to continuous maize 

cultivation. This led to increased C species and nutrient concentrations except for Ca and Mg that 

could have had geochemical weathering. Mineralization of SOC was higher compared to fluvial 

C exports. The P losses were negligible, while fluvial N losses need to be addressed to improve 

crop productivity. The farming activities in the headwaters play a minor role in the pollution of 

the Lake Victoria basin. Dilution during storm events is the most dominant mechanism in the 
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agricultural waters for Ca, Mg and Na generated internally through weathering in the deeper soil 

layers. During storm events, the lower Ca, Mg and Na concentrations of shallow soil water dilute 

the solute contribution from the ground water and lead to a decreasing stream water 

concentration. However, the abundance of DOC and K near the soil surface lead to greater 

stream concentrations for DOC and K with increased stream discharge during the storm events 

owing to overland flow. The changes in solute concentrations during storm events are to a 

greater extent controlled by flow paths and differences in nutrient and C reservoirs between top 

and subsoil than by land use. Mitigation of nutrient and DOC losses during storm flow need 

similar management practices. 

  



  104

 
APPENDIX A 

Raw data pertaining to Chapter 1 

Table A1: Data table for Chapter 1, Table 1.1 

 0.1 bar 0.33 bar 1bar 3bar 15bar 
forest 45.925 36.194 34.56 33.72 31.464
forest 45.37 35.232 32.478 31.53 29.157
forest 44.865 33.449 32.986 31.1 31.189
forest 44.175 34.065 33.757 30.38 29.523
forest 45.1 34.575 33.4 32.71 30.002
5yr 44.03 35.88 35.51 30.87 29.172
5yr 42.97 33.258 32.02 28.43 26.251
5yr 43.41 33.879 31.91 29.18 28.674
5yr 43.94 32.761 32.73 30.21 27.296
5yr 44.18 34.492 32.6 29.12 27.483
10yr 39.97 26.537 21.98 20.773 16.319
10yr 40.54 23.147 24.597 18.98 18.742
10yr 37.85 25.94 24.114 19.739 16.253
10yr 36.96 24.056 22.689 20.328 17.765
10yr 39.55 24.7 23.29 20.55 16.802
50yr 32.774 23.31 19.93 17.549 16.39 
50yr 30.226 21.88 22.545 19.274 14.873
50yr 31.138 23.26 21.76 18.036 15.521
50yr 33.052 22.84 23.42 19.865 15.062
50yr 31.385 23.54 21.782 18.801 15.87 

 Soil 
Organic 
Matter 

(mg g-1) 

Soil 
Organic 
Carbon 

(mg g-1) 

Bulk 
density 

(g cm-3) 

Porosity 

 

forest 149.46 95.3 0.791 0.702 

forest 147.51 105.2 0.818 0.691 

forest 217.7 124.5 0.785 0.704 

forest 179.1 116.7 0.851 0.679 
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forest 160.3 99.8 0.755 0.715 

5yr 138.12 71.5 0.905 0.658 

5yr 123.2 59.8 0.909 0.657 

5yr 140.02 75.0 0.967 0.635 

5yr 139.7 70.1 0.953 0.64 

5yr 142.6 67.6 0.84 0.683 

10yr 81.63 33.9 1.18 0.555 

10yr 87.44 40.3 0.921 0.652 

10yr 86.81 34.9 0.983 0.629 

10yr 84.5 39.7 1.14 0.57 

10yr 86.2 33.2 0.95 0.642 

50yr 62.09 24.9 1.19 0.551 

50yr 76.7 26.9 0.98 0.63 

50yr 71.23 30.6 1.22 0.54 

50yr 68.5 28.6 1.21 0.543 

50yr 71.5 26.5 1.25 0.528 
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Table A2: Data table for Chapter 1, Figure 1.2 

 
Forest  

(mg g-1) 
5 year 

(mg g-1) 
10 year 
(mg g-1) 

50 year  
(mg g-1) 

Random 0-10 80.30 53.81 41.91 40.36 
Random 10-30 63.92 45.64 34.98 38.27 
Random 30-90 14.23 17.71 19.20 27.77 
Random 90-150 11.18 8.19 12.33 9.65 
Random 150-240 5.93 5.33 6.74 3.02 
25m 0-10 99.64 79.12 47.18 36.30 
25m 10-30 46.87 47.35 17.60 34.38 
25m 30-90 26.62 19.25 37.81 26.88 
25m 90-150 9.13 7.87 13.27 12.86 
25m 150-240 10.07 4.59 7.89 6.25 
100m 0-10 133.11 93.22 34.76 31.10 
100m 10-30 59.99 47.29 30.89 28.51 
100m 30-90 29.36 19.25 16.28 15.32 
100m 90-150 8.32 10.23 9.60 8.86 
100m 150-240 5.16 4.50 4.73 5.81 
175m 0-10 104.63 75.35 37.09 24.92 
175m 10-30 54.45 36.95 22.34 24.09 
175m 30-90 31.07 16.96 13.61 13.18 
175m 90-150 11.80 10.43 10.70 10.06 
175m 150-240 4.60 5.18 4.99 3.82 
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Table A3: Data table for Chapter 1, Figure 1.3 

Date 
 

Forest  
rainfall 
(mm) 

Forest  
Discharge 
(mm day-1) 

Date 
 

5 year 
rainfall 
(mm) 

5year 
discharge 

(mm day-1) 
1/1/2007 0 0.61 1/1/2007 0 0.72 
1/2/2007 8.9 0.61 1/2/2007 3.5 0.72 
1/3/2007 1.9 0.61 1/3/2007 4.7 0.72 
1/4/2007 3.1 0.61 1/4/2007 2.4 0.72 
1/5/2007 3.6 0.61 1/5/2007 3.3 0.72 
1/6/2007 1.1 0.61 1/6/2007 2 0.72 
1/7/2007 0 0.61 1/7/2007 0 0.72 
1/8/2007 0 0.61 1/8/2007 0 0.72 
1/9/2007 0 0.61 1/9/2007 0 0.72 
1/10/2007 1.6 0.61 1/10/2007 1.3 0.72 
1/11/2007 6.6 0.61 1/11/2007 6 0.72 
1/12/2007 4.3 0.61 1/12/2007 3.7 0.72 
1/13/2007 5.4 0.61 1/13/2007 6.7 0.72 
1/14/2007 3.3 0.61 1/14/2007 2.9 0.72 
1/15/2007 5.6 0.61 1/15/2007 6.4 0.72 
1/16/2007 6.9 0.61 1/16/2007 7.2 0.72 
1/17/2007 0 0.61 1/17/2007 0 0.71 
1/18/2007 0 0.61 1/18/2007 0 0.71 
1/19/2007 0 0.61 1/19/2007 0 0.71 
1/20/2007 0 0.60 1/20/2007 0 0.71 
1/21/2007 0 0.60 1/21/2007 0 0.71 
1/22/2007 0 0.60 1/22/2007 0 0.71 
1/23/2007 0 0.60 1/23/2007 0 0.71 
1/24/2007 0 0.60 1/24/2007 0 0.71 
1/25/2007 0 0.60 1/25/2007 0 0.71 
1/26/2007 0 0.60 1/26/2007 0 0.71 
1/27/2007 0 0.60 1/27/2007 0 0.71 
1/28/2007 5.2 0.60 1/28/2007 11.2 1.5 
1/29/2007 18.1 0.60 1/29/2007 20 1.5 
1/30/2007 8.3 0.60 1/30/2007 7.9 1 
1/31/2007 1.8 0.60 1/31/2007 1.8 0.94 
2/1/2007 6.6 0.60 2/1/2007 7.3 1 
2/2/2007 3.2 0.60 2/2/2007 2.4 0.91 
2/3/2007 9.1 0.61 2/3/2007 10.8 1.5 
2/4/2007 2.1 0.61 2/4/2007 3.2 0.75 
2/5/2007 9.6 0.61 2/5/2007 12.3 1.5 
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2/6/2007 2.4 0.61 2/6/2007 1.6 0.75 
2/7/2007 0 0.61 2/7/2007 0 0.75 
2/8/2007 0 0.61 2/8/2007 0 0.75 
2/9/2007 4.6 0.61 2/9/2007 5.5 0.8 
2/10/2007 0 0.61 2/10/2007 0 0.75 
2/11/2007 10 0.61 2/11/2007 9.8 1.3 
2/12/2007 0 0.61 2/12/2007 0 0.9 
2/13/2007 24.3 0.61 2/13/2007 24.4 2.1 
2/14/2007 0 0.61 2/14/2007 0 0.89 
2/15/2007 0 0.61 2/15/2007 0 0.88 
2/16/2007 0 0.61 2/16/2007 0 0.87 
2/17/2007 0 0.61 2/17/2007 0 0.86 
2/18/2007 0 0.61 2/18/2007 0 0.85 
2/19/2007 0 0.61 2/19/2007 0 0.84 
2/20/2007 0 0.61 2/20/2007 0 0.83 
2/21/2007 0 0.61 2/21/2007 0 0.82 
2/22/2007 0 0.61 2/22/2007 0 0.81 
2/23/2007 0 0.61 2/23/2007 0 0.8 
2/24/2007 1.6 0.61 2/24/2007 1.3 0.85 
2/25/2007 14.6 0.61 2/25/2007 17.1 1.9 
2/26/2007 3.1 0.61 2/26/2007 1.3 0.9 
2/27/2007 13.7 0.61 2/27/2007 16.5 2 
2/28/2007 14 0.61 2/28/2007 16.1 2 
3/1/2007 0 0.61 3/1/2007 0 1 
3/2/2007 0 0.61 3/2/2007 0 0.99 
3/3/2007 0 0.61 3/3/2007 0 0.95 
3/4/2007 0 0.61 3/4/2007 0 0.93 
3/5/2007 0 0.61 3/5/2007 0 0.91 
3/6/2007 0 0.61 3/6/2007 0 0.89 
3/7/2007 0 0.61 3/7/2007 0 0.87 
3/8/2007 0 0.61 3/8/2007 0 0.85 
3/9/2007 0 0.61 3/9/2007 0 0.83 
3/10/2007 0 0.61 3/10/2007 0 0.81 
3/11/2007 9.5 0.62 3/11/2007 10.6 1.9 
3/12/2007 4.3 0.62 3/12/2007 4.9 1.5 
3/13/2007 5.2 0.62 3/13/2007 4.5 1.5 
3/14/2007 4.6 0.62 3/14/2007 5.8 1.6 
3/15/2007 8.4 0.62 3/15/2007 10.1 1.7 
3/16/2007 3.4 0.62 3/16/2007 3.4 1.4 
3/17/2007 9.7 0.63 3/17/2007 7.2 1.3 
3/18/2007 17.7 0.63 3/18/2007 23.5 2.5 
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3/19/2007 29.3 0.64 3/19/2007 36.1 3 
3/20/2007 15.1 0.63 3/20/2007 13.9 2 
3/21/2007 0 0.62 3/21/2007 0 1.6 
3/22/2007 0 0.62 3/22/2007 0 1.4 
3/23/2007 0 0.62 3/23/2007 0 1.2 
3/24/2007 0 0.62 3/24/2007 0 1.1 
3/25/2007 0 0.62 3/25/2007 0 0.99 
3/26/2007 0 0.62 3/26/2007 0 0.98 
3/27/2007 0 0.62 3/27/2007 0 0.97 
3/28/2007 0 0.62 3/28/2007 0 0.96 
3/29/2007 0 0.62 3/29/2007 0 0.95 
3/30/2007 0 0.62 3/30/2007 0 0.94 
3/31/2007 0 0.62 3/31/2007 0 0.93 
4/1/2007 0 0.62 4/1/2007 0 0.92 
4/2/2007 0 0.62 4/2/2007 0 0.91 
4/3/2007 0 0.62 4/3/2007 0 0.9 
4/4/2007 0 0.62 4/4/2007 0 0.89 
4/5/2007 0 0.62 4/5/2007 0 0.88 
4/6/2007 0 0.62 4/6/2007 0 0.87 
4/7/2007 0 0.62 4/7/2007 0 0.87 
4/8/2007 0 0.62 4/8/2007 0 0.87 
4/9/2007 2.2 0.62 4/9/2007 2.6 0.9 
4/10/2007 14.8 0.63 4/10/2007 16.5 2 
4/11/2007 24.7 0.65 4/11/2007 39.2 4 
4/12/2007 12.5 0.68 4/12/2007 14 2.7 
4/13/2007 9.5 0.72 4/13/2007 20 2.8 
4/14/2007 19.2 0.74 4/14/2007 30.1 3.8 
4/15/2007 5.7 0.78 4/15/2007 6.2 2.6 
4/16/2007 37.7 0.78 4/16/2007 32.6 4 
4/17/2007 15.4 0.80 4/17/2007 35.4 4.1 
4/18/2007 36.5 0.80 4/18/2007 27 3.2 
4/19/2007 17.3 0.80 4/19/2007 17.5 2.9 
4/20/2007 32.9 0.80 4/20/2007 24.1 3.5 
4/21/2007 14.8 0.82 4/21/2007 19.5 2.4 
4/22/2007 12.3 0.83 4/22/2007 19.9 2.5 
4/23/2007 9.3 0.84 4/23/2007 8.6 2.1 
4/24/2007 12.1 0.85 4/24/2007 14.1 2.2 
4/25/2007 11.6 0.86 4/25/2007 14.9 2.3 
4/26/2007 12 0.86 4/26/2007 14.3 2.4 
4/27/2007 11.7 0.86 4/27/2007 12.3 2.3 
4/28/2007 13.4 0.87 4/28/2007 14.4 2.5 
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4/29/2007 14.5 0.87 4/29/2007 12.3 2.4 
4/30/2007 7.6 0.87 4/30/2007 11.9 2.3 
5/1/2007 10.4 0.88 5/1/2007 7.8 2.2 
5/2/2007 11.8 0.88 5/2/2007 11.7 2.3 
5/3/2007 15.4 0.88 5/3/2007 13.9 2.4 
5/4/2007 19.7 0.88 5/4/2007 17.2 2.5 
5/5/2007 10.7 0.88 5/5/2007 7.8 2.3 
5/6/2007 19 0.88 5/6/2007 13.1 2.6 
5/7/2007 19.5 0.89 5/7/2007 15.9 2.8 
5/8/2007 24.3 0.89 5/8/2007 14.2 2.9 
5/9/2007 12.4 0.89 5/9/2007 12.9 2.4 
5/10/2007 5.7 0.89 5/10/2007 5.6 1.7 
5/11/2007 6.5 0.90 5/11/2007 6.8 1.7 
5/12/2007 4.4 0.90 5/12/2007 5 1.7 
5/13/2007 7.6 0.90 5/13/2007 12.7 2.3 
5/14/2007 17.7 0.90 5/14/2007 27.9 4 
5/15/2007 10.8 0.91 5/15/2007 4.3 3 
5/16/2007 6.9 0.91 5/16/2007 8.8 3.2 
5/17/2007 25.9 0.91 5/17/2007 22.3 4 
5/18/2007 8 0.91 5/18/2007 16.8 3.5 
5/19/2007 0 0.91 5/19/2007 1.8 2.6 
5/20/2007 1.9 0.92 5/20/2007 2.7 2 
5/21/2007 0 0.92 5/21/2007 0 1.9 
5/22/2007 0 0.92 5/22/2007 0 1.8 
5/23/2007 0 0.94 5/23/2007 0 1.7 
5/24/2007 0 0.94 5/24/2007 0 1.6 
5/25/2007 9.8 0.96 5/25/2007 4.9 1.8 
5/26/2007 19.5 0.98 5/26/2007 7.1 1.7 
5/27/2007 25.6 0.99 5/27/2007 8.2 1.6 
5/28/2007 33.3 1.00 5/28/2007 8.6 1.5 
5/29/2007 4.5 1.00 5/29/2007 4.8 1.4 
5/30/2007 3.9 1.02 5/30/2007 1.5 1.4 
5/31/2007 28.3 1.05 5/31/2007 30.6 3.1 
6/1/2007 14.7 1.07 6/1/2007 7.2 1.5 
6/2/2007 4.8 1.08 6/2/2007 5.5 1.4 
6/3/2007 9.8 1.08 6/3/2007 9.1 1.8 
6/4/2007 8.5 1.10 6/4/2007 8 1.7 
6/5/2007 6.2 1.10 6/5/2007 7.6 1.5 
6/6/2007 4.8 1.11 6/6/2007 2 1.2 
6/7/2007 3.4 1.12 6/7/2007 6.7 1.3 
6/8/2007 1.9 1.12 6/8/2007 2.3 1.3 
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6/9/2007 9.7 1.13 6/9/2007 18 2.2 
6/10/2007 11.8 1.14 6/10/2007 16.9 2.2 
6/11/2007 8.8 1.15 6/11/2007 1.8 1.9 
6/12/2007 0 1.15 6/12/2007 0 1.6 
6/13/2007 8.6 1.16 6/13/2007 7 2 
6/14/2007 0 1.16 6/14/2007 0 1.5 
6/15/2007 0 1.17 6/15/2007 0 1.4 
6/16/2007 4.7 1.17 6/16/2007 5 1.7 
6/17/2007 0 1.17 6/17/2007 0 1.3 
6/18/2007 0 1.17 6/18/2007 0 1.2 
6/19/2007 0 1.17 6/19/2007 0 1.2 
6/20/2007 0 1.17 6/20/2007 0 1.2 
6/21/2007 0 1.17 6/21/2007 0 1.2 
6/22/2007 0 1.17 6/22/2007 0 1.2 
6/23/2007 0 1.17 6/23/2007 0 1.2 
6/24/2007 0 1.17 6/24/2007 0 1.2 
6/25/2007 3.9 1.17 6/25/2007 6.3 1.7 
6/26/2007 6.5 1.16 6/26/2007 2 1.3 
6/27/2007 9.3 1.16 6/27/2007 11.1 1.9 
6/28/2007 10.6 1.15 6/28/2007 10.2 2 
6/29/2007 3.8 1.15 6/29/2007 4.5 1.8 
6/30/2007 1.3 1.14 6/30/2007 3 1.7 
7/1/2007 1.1 1.14 7/1/2007 4 1.7 
7/2/2007 11.2 1.14 7/2/2007 14.1 1.9 
7/3/2007 1.7 1.13 7/3/2007 1.9 1.2 
7/4/2007 19.1 1.13 7/4/2007 19.8 1.3 
7/5/2007 0 1.13 7/5/2007 0 1.25 
7/6/2007 0 1.13 7/6/2007 0 1.2 
7/7/2007 0 1.13 7/7/2007 0 1.15 
7/8/2007 0 1.13 7/8/2007 0 1.13 
7/9/2007 0 1.13 7/9/2007 0 1.12 
7/10/2007 0 1.12 7/10/2007 0 1.11 
7/11/2007 0 1.12 7/11/2007 0 1.1 
7/12/2007 0 1.11 7/12/2007 0 1.1 
7/13/2007 0 1.11 7/13/2007 0 1.1 
7/14/2007 0 1.11 7/14/2007 0 1.1 
7/15/2007 0 1.10 7/15/2007 0 1.1 
7/16/2007 0 1.10 7/16/2007 0 1.1 
7/17/2007 0 1.10 7/17/2007 0 1.1 
7/18/2007 0 1.10 7/18/2007 0 1.1 
7/19/2007 17.8 1.10 7/19/2007 18 2.5 
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7/20/2007 0 1.10 7/20/2007 0 1.4 
7/21/2007 6.2 1.10 7/21/2007 5.5 1.7 
7/22/2007 4.5 1.11 7/22/2007 5.1 1.6 
7/23/2007 10.6 1.11 7/23/2007 10.1 1.9 
7/24/2007 38 1.11 7/24/2007 39.7 3.9 
7/25/2007 18.7 1.12 7/25/2007 19.3 2 
7/26/2007 0 1.12 7/26/2007 0 1.3 
7/27/2007 15.8 1.12 7/27/2007 12.1 1.8 
7/28/2007 16.6 1.13 7/28/2007 16.4 1.9 
7/29/2007 10.7 1.13 7/29/2007 10.3 1.7 
7/30/2007 9.6 1.13 7/30/2007 2.3 1.3 
7/31/2007 1.4 1.13 7/31/2007 2.2 1.2 
8/1/2007 12.3 1.13 8/1/2007 13.6 1.7 
8/2/2007 23.9 1.13 8/2/2007 22.9 2.6 
8/3/2007 11.9 1.13 8/3/2007 12.5 1.8 
8/4/2007 34.2 1.13 8/4/2007 38 3.6 
8/5/2007 0 1.13 8/5/2007 3 2.1 
8/6/2007 0 1.14 8/6/2007 0 1.6 
8/7/2007 36.2 1.14 8/7/2007 39 3.8 
8/8/2007 33.2 1.15 8/8/2007 29.2 3 
8/9/2007 0 1.15 8/9/2007 0 1.7 
8/10/2007 11.7 1.16 8/10/2007 20.5 2 
8/11/2007 12.3 1.16 8/11/2007 12.5 1.8 
8/12/2007 9.1 1.17 8/12/2007 9.4 1.6 
8/13/2007 22.2 1.17 8/13/2007 22 2.2 
8/14/2007 10.4 1.18 8/14/2007 12.4 1.4 
8/15/2007 4.8 1.18 8/15/2007 4.5 1.2 
8/16/2007 7.6 1.19 8/16/2007 8 1.3 
8/17/2007 11.5 1.19 8/17/2007 12.4 1.4 
8/18/2007 4.7 1.20 8/18/2007 5.8 1.2 
8/19/2007 9.9 1.20 8/19/2007 10.8 1.3 
8/20/2007 5.3 1.21 8/20/2007 6.1 1.2 
8/21/2007 9 1.21 8/21/2007 11.9 1.5 
8/22/2007 7.2 1.22 8/22/2007 3.3 1.2 
8/23/2007 5.5 1.22 8/23/2007 9.1 1.5 
8/24/2007 1.9 1.22 8/24/2007 3.8 1.3 
8/25/2007 4.6 1.22 8/25/2007 5.8 1.5 
8/26/2007 7.8 1.22 8/26/2007 3.5 1.4 
8/27/2007 5.1 1.23 8/27/2007 5.7 1.5 
8/28/2007 2 1.23 8/28/2007 3.7 1.3 
8/29/2007 1.8 1.23 8/29/2007 3.8 1.4 
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8/30/2007 4.9 1.23 8/30/2007 4.9 1.5 
8/31/2007 3.8 1.24 8/31/2007 4.3 1.5 
9/1/2007 4.6 1.24 9/1/2007 7.4 1.6 
9/2/2007 2.7 1.25 9/2/2007 4.9 1.5 
9/3/2007 11.3 1.26 9/3/2007 9.8 1.7 
9/4/2007 12 1.28 9/4/2007 12.2 1.9 
9/5/2007 28 1.32 9/5/2007 29.9 3.9 
9/6/2007 7.2 1.38 9/6/2007 9.8 2.4 
9/7/2007 4.3 1.38 9/7/2007 3.4 2 
9/8/2007 8.9 1.42 9/8/2007 8.8 2.2 
9/9/2007 10.7 1.42 9/9/2007 13.2 2.9 
9/10/2007 9.7 1.47 9/10/2007 12.4 2.8 
9/11/2007 7.8 1.47 9/11/2007 11.2 2.2 
9/12/2007 5.1 1.48 9/12/2007 9.3 2 
9/13/2007 37.2 1.48 9/13/2007 29 3 
9/14/2007 12.9 1.49 9/14/2007 15.5 2.9 
9/15/2007 14.3 1.49 9/15/2007 14.1 2.6 
9/16/2007 0 1.50 9/16/2007 16.5 2.9 
9/17/2007 0 1.50 9/17/2007 7 2 
9/18/2007 0 1.51 9/18/2007 0 1.7 
9/19/2007 8.7 1.52 9/19/2007 0 1.6 
9/20/2007 0 1.53 9/20/2007 0 1.5 
9/21/2007 10.1 1.54 9/21/2007 11.7 2 
9/22/2007 9.8 1.55 9/22/2007 10 1.9 
9/23/2007 5.6 1.56 9/23/2007 7.4 1.7 
9/24/2007 12.3 1.58 9/24/2007 12 1.9 
9/25/2007 12.7 1.60 9/25/2007 16.7 2.7 
9/26/2007 0 1.61 9/26/2007 0 1.8 
9/27/2007 0 1.64 9/27/2007 0 1.75 
9/28/2007 0 1.67 9/28/2007 0 1.7 
9/29/2007 0 1.68 9/29/2007 0 1.65 
9/30/2007 0 1.68 9/30/2007 0 1.6 
10/1/2007 0 1.69 10/1/2007 0 1.55 
10/2/2007 0 1.69 10/2/2007 0 1.5 
10/3/2007 11.7 1.70 10/3/2007 8.3 2 
10/4/2007 4.8 1.70 10/4/2007 3.7 1.9 
10/5/2007 8.6 1.71 10/5/2007 9.1 2 
10/6/2007 4.1 1.72 10/6/2007 5.1 1.9 
10/7/2007 15 1.72 10/7/2007 15.2 2.2 
10/8/2007 10.4 1.72 10/8/2007 10 2.1 
10/9/2007 2.9 1.72 10/9/2007 3 2 
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10/10/2007 4.1 1.72 10/10/2007 6 2 
10/11/2007 3.7 1.72 10/11/2007 3.7 2 
10/12/2007 0 1.71 10/12/2007 0 1.5 
10/13/2007 0 1.71 10/13/2007 0 1.4 
10/14/2007 0 1.71 10/14/2007 0 1.35 
10/15/2007 0 1.71 10/15/2007 0 1.3 
10/16/2007 9.3 1.71 10/16/2007 9.6 2.1 
10/17/2007 4.6 1.71 10/17/2007 4.5 1.9 
10/18/2007 0 1.70 10/18/2007 0 1.4 
10/19/2007 2.2 1.69 10/19/2007 2.2 1.5 
10/20/2007 3.7 1.68 10/20/2007 3.9 1.7 
10/21/2007 2.4 1.67 10/21/2007 2.4 1.6 
10/22/2007 1.1 1.66 10/22/2007 1.3 1.5 
10/23/2007 2 1.65 10/23/2007 2.3 1.6 
10/24/2007 0 1.64 10/24/2007 0 1.5 
10/25/2007 0 1.63 10/25/2007 0 1.3 
10/26/2007 0 1.62 10/26/2007 0 1.3 
10/27/2007 2.1 1.61 10/27/2007 2.5 1.5 
10/28/2007 1.8 1.61 10/28/2007 2.6 1.5 
10/29/2007 0 1.60 10/29/2007 0 1.3 
10/30/2007 0 1.58 10/30/2007 0 1.3 
10/31/2007 0 1.56 10/31/2007 0 1.25 
11/1/2007 1.5 1.54 11/1/2007 4.9 1.5 
11/2/2007 1.2 1.52 11/2/2007 2.9 1.4 
11/3/2007 0.9 1.50 11/3/2007 3.5 1.3 
11/4/2007 1.4 1.49 11/4/2007 2.7 1.25 
11/5/2007 0 1.47 11/5/2007 0 1.2 
11/6/2007 0 1.45 11/6/2007 0 1.15 
11/7/2007 0 1.42 11/7/2007 0 1.14 
11/8/2007 0 1.39 11/8/2007 0 1.13 
11/9/2007 0 1.37 11/9/2007 0 1.12 
11/10/2007 0 1.33 11/10/2007 0 1.11 
11/11/2007 0 1.29 11/11/2007 0 1.1 
11/12/2007 0 1.20 11/12/2007 0 1.06 
11/13/2007 0 1.18 11/13/2007 0 1.03 
11/14/2007 0 1.17 11/14/2007 0 1.02 
11/15/2007 0 1.15 11/15/2007 0 1.02 
11/16/2007 0 1.14 11/16/2007 0 1.01 
11/17/2007 0 1.13 11/17/2007 0 1.01 
11/18/2007 0 1.13 11/18/2007 0 1.01 
11/19/2007 0 1.12 11/19/2007 0 1 
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11/20/2007 0 1.11 11/20/2007 0 1 
11/21/2007 0 1.09 11/21/2007 0 1 
11/22/2007 0 1.07 11/22/2007 0 0.98 
11/23/2007 0 1.06 11/23/2007 0 0.96 
11/24/2007 0 1.06 11/24/2007 0 0.94 
11/25/2007 0 1.06 11/25/2007 0 0.92 
11/26/2007 0 1.05 11/26/2007 0 0.9 
11/27/2007 0 1.04 11/27/2007 0 0.88 
11/28/2007 0 1.03 11/28/2007 0 0.86 
11/29/2007 0 1.01 11/29/2007 0 0.84 
11/30/2007 0 1.01 11/30/2007 0 0.83 
12/1/2007 0 1.01 12/1/2007 0 0.82 
12/2/2007 0 1.00 12/2/2007 0 0.82 
12/3/2007 0 0.99 12/3/2007 0 0.81 
12/4/2007 0 0.98 12/4/2007 0 0.8 
12/5/2007 0 0.97 12/5/2007 0 0.8 
12/6/2007 0 0.96 12/6/2007 0 0.78 
12/7/2007 0 0.94 12/7/2007 0 0.77 
12/8/2007 0 0.92 12/8/2007 0 0.76 
12/9/2007 0 0.88 12/9/2007 0 0.75 
12/10/2007 0 0.86 12/10/2007 0 0.75 
12/11/2007 0 0.83 12/11/2007 0 0.75 
12/12/2007 0 0.79 12/12/2007 0 0.75 
12/13/2007 0 0.77 12/13/2007 0 0.75 
12/14/2007 0 0.74 12/14/2007 0 0.74 
12/15/2007 0 0.73 12/15/2007 0 0.74 
12/16/2007 0 0.69 12/16/2007 0 0.74 
12/17/2007 0 0.66 12/17/2007 0 0.74 
12/18/2007 0 0.65 12/18/2007 0 0.74 
12/19/2007 0 0.63 12/19/2007 0 0.74 
12/20/2007 0 0.62 12/20/2007 0 0.73 
12/21/2007 0 0.61 12/21/2007 0 0.73 
12/22/2007 0 0.61 12/22/2007 0 0.73 
12/23/2007 0 0.61 12/23/2007 0 0.73 
12/24/2007 0 0.61 12/24/2007 0 0.73 
12/25/2007 0 0.61 12/25/2007 0 0.73 
12/26/2007 0 0.61 12/26/2007 0 0.73 
12/27/2007 0 0.61 12/27/2007 0 0.73 
12/28/2007 0 0.61 12/28/2007 0 0.73 
12/29/2007 0 0.61 12/29/2007 0 0.73 
12/30/2007 0 0.61 12/30/2007 0 0.73 
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12/31/2007 0 0.61 12/31/2007 0 0.73 
1/1/2008 0 0.61 1/1/2008 0 0.72 
1/2/2008 0 0.61 1/2/2008 0 0.72 
1/3/2008 0 0.61 1/3/2008 0 0.71 
1/4/2008 0 0.61 1/4/2008 0 0.71 
1/5/2008 0 0.61 1/5/2008 0 0.71 
1/6/2008 0 0.61 1/6/2008 5.7 0.7 
1/7/2008 0 0.61 1/7/2008 5.4 0.7 
1/8/2008 0 0.61 1/8/2008 3.2 0.7 
1/9/2008 0 0.6 1/9/2008 0 0.7 
1/10/2008 0 0.6 1/10/2008 0 0.7 
1/11/2008 0 0.6 1/11/2008 0 0.69 
1/12/2008 0 0.6 1/12/2008 0 0.69 
1/13/2008 0 0.6 1/13/2008 0 0.69 
1/14/2008 0 0.6 1/14/2008 0 0.69 
1/15/2008 0 0.6 1/15/2008 8.1 0.68 
1/16/2008 3.8 0.6 1/16/2008 5.8 0.68 
1/17/2008 4.6 0.6 1/17/2008 10 0.68 
1/18/2008 0 0.6 1/18/2008 0 0.68 
1/19/2008 0 0.6 1/19/2008 0 0.67 
1/20/2008 0 0.6 1/20/2008 0 0.67 
1/21/2008 0 0.6 1/21/2008 0 0.67 
1/22/2008 0 0.6 1/22/2008 0 0.67 
1/23/2008 0 0.6 1/23/2008 0 0.66 
1/24/2008 0 0.6 1/24/2008 0 0.66 
1/25/2008 0 0.6 1/25/2008 0 0.66 
1/26/2008 0 0.6 1/26/2008 0 0.65 
1/27/2008 0 0.6 1/27/2008 0 0.65 
1/28/2008 5.9 0.6 1/28/2008 0 0.65 
1/29/2008 9.8 0.6 1/29/2008 0 0.65 
1/30/2008 0 0.6 1/30/2008 0 0.65 
1/31/2008 3.8 0.59 1/31/2008 0 0.64 
2/1/2008 0 0.59 2/1/2008 0 0.64 
2/2/2008 0 0.59 2/2/2008 0 0.64 
2/3/2008 0 0.59 2/3/2008 0 0.64 
2/4/2008 0 0.59 2/4/2008 0 0.64 
2/5/2008 0 0.59 2/5/2008 0 0.63 
2/6/2008 4.8 0.59 2/6/2008 0 0.63 
2/7/2008 4.9 0.59 2/7/2008 0 0.63 
2/8/2008 6.4 0.59 2/8/2008 0 0.63 
2/9/2008 1 0.59 2/9/2008 0 0.63 
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2/10/2008 0 0.59 2/10/2008 0 0.62 
2/11/2008 4.1 0.59 2/11/2008 5.4 0.62 
2/12/2008 7.8 0.59 2/12/2008 10.3 0.62 
2/13/2008 0 0.59 2/13/2008 0 0.62 
2/14/2008 0 0.59 2/14/2008 0 0.61 
2/15/2008 0 0.59 2/15/2008 0 0.61 
2/16/2008 0 0.59 2/16/2008 0 0.61 
2/17/2008 0 0.59 2/17/2008 0 0.61 
2/18/2008 0 0.59 2/18/2008 0 0.61 
2/19/2008 0 0.59 2/19/2008 0 0.61 
2/20/2008 0 0.59 2/20/2008 0 0.6 
2/21/2008 0 0.59 2/21/2008 0 0.6 
2/22/2008 0 0.59 2/22/2008 0 0.6 
2/23/2008 0 0.59 2/23/2008 0 0.6 
2/24/2008 0 0.59 2/24/2008 0 0.6 
2/25/2008 0 0.59 2/25/2008 0 0.6 
2/26/2008 0 0.59 2/26/2008 0 0.6 
2/27/2008 7.3 0.59 2/27/2008 0 0.6 
2/28/2008 12.1 0.59 2/28/2008 0 0.6 
2/29/2008 0 0.59 2/29/2008 0 0.59 
3/1/2008 0 0.59 3/1/2008 0 0.59 
3/2/2008 0 0.59 3/2/2008 0 0.59 
3/3/2008 7.2 0.59 3/3/2008 0 0.59 
3/4/2008 0 0.59 3/4/2008 0 0.59 
3/5/2008 8.3 0.59 3/5/2008 0 0.59 
3/6/2008 0 0.59 3/6/2008 0 0.59 
3/7/2008 0 0.59 3/7/2008 0 0.59 
3/8/2008 0 0.59 3/8/2008 0 0.59 
3/9/2008 0 0.59 3/9/2008 0 0.58 
3/10/2008 0 0.59 3/10/2008 0 0.58 
3/11/2008 0 0.59 3/11/2008 0 0.58 
3/12/2008 0 0.59 3/12/2008 0 0.58 
3/13/2008 0 0.59 3/13/2008 0 0.58 
3/14/2008 0 0.59 3/14/2008 0 0.58 
3/15/2008 10.9 0.59 3/15/2008 0 0.58 
3/16/2008 7 0.59 3/16/2008 0 0.58 
3/17/2008 10.8 0.59 3/17/2008 0 0.58 
3/18/2008 10.6 0.59 3/18/2008 0 0.58 
3/19/2008 8.2 0.59 3/19/2008 4.6 0.58 
3/20/2008 12.2 0.59 3/20/2008 15.3 0.58 
3/21/2008 11 0.59 3/21/2008 6.2 0.59 
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3/22/2008 8.4 0.59 3/22/2008 4.5 0.59 
3/23/2008 5.1 0.59 3/23/2008 7.2 0.59 
3/24/2008 8.5 0.6 3/24/2008 5 0.6 
3/25/2008 15.1 0.6 3/25/2008 4.4 0.6 
3/26/2008 29.1 0.6 3/26/2008 23.6 0.94 
3/27/2008 8.4 0.6 3/27/2008 5.9 1 
3/28/2008 13.4 0.6 3/28/2008 8.4 1 
3/29/2008 8.6 0.6 3/29/2008 10.1 1.4 
3/30/2008 15.4 0.6 3/30/2008 14.3 1.4 
3/31/2008 16.3 0.6 3/31/2008 11.3 1.3 
4/1/2008 6.2 0.6 4/1/2008 20.2 1.4 
4/2/2008 7.4 0.6 4/2/2008 8 1 
4/3/2008 8.4 0.6 4/3/2008 11.7 1.1 
4/4/2008 6.3 0.6 4/4/2008 7.3 1.1 
4/5/2008 3.6 0.6 4/5/2008 12.4 1.1 
4/6/2008 8.2 0.6 4/6/2008 10.9 1.1 
4/7/2008 4.2 0.6 4/7/2008 13.2 1.2 
4/8/2008 6.3 0.6 4/8/2008 12.3 1.3 
4/9/2008 11.7 0.6 4/9/2008 10.6 1.3 
4/10/2008 30.5 0.61 4/10/2008 29.4 2.9 
4/11/2008 23.6 0.61 4/11/2008 13.2 1.5 
4/12/2008 27.7 0.61 4/12/2008 20.2 2.7 
4/13/2008 10.1 0.61 4/13/2008 21.6 2.9 
4/14/2008 7.5 0.62 4/14/2008 19.7 2.5 
4/15/2008 7.4 0.62 4/15/2008 9.9 1.9 
4/16/2008 8.2 0.62 4/16/2008 16.2 2.1 
4/17/2008 23.6 0.62 4/17/2008 22.8 3 
4/18/2008 25.3 0.62 4/18/2008 27.2 3.3 
4/19/2008 25.9 0.62 4/19/2008 25.5 3.2 
4/20/2008 14.6 0.62 4/20/2008 17.7 2.5 
4/21/2008 8.2 0.62 4/21/2008 12.3 1.9 
4/22/2008 5.3 0.62 4/22/2008 11.9 1.8 
4/23/2008 9.6 0.63 4/23/2008 13.2 1.9 
4/24/2008 5 0.63 4/24/2008 14.5 2.1 
4/25/2008 7.8 0.63 4/25/2008 12.4 1.9 
4/26/2008 4.8 0.63 4/26/2008 14.4 2.2 
4/27/2008 6.2 0.63 4/27/2008 15 2.1 
4/28/2008 4.7 0.63 4/28/2008 8.6 1.6 
4/29/2008 4.5 0.63 4/29/2008 15.3 2.2 
4/30/2008 7.9 0.64 4/30/2008 5.6 1.7 
5/1/2008 3 0.64 5/1/2008 6.7 1.5 
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5/2/2008 5 0.64 5/2/2008 15.6 2.1 
5/3/2008 6.9 0.64 5/3/2008 13.1 2.1 
5/4/2008 5.2 0.65 5/4/2008 18.2 2.5 
5/5/2008 2.5 0.65 5/5/2008 15.9 2.3 
5/6/2008 9.6 0.65 5/6/2008 13.2 2.1 
5/7/2008 8.4 0.65 5/7/2008 7.9 1.5 
5/8/2008 7.9 0.66 5/8/2008 10.4 1.5 
5/9/2008 6.7 0.66 5/9/2008 13.9 2 
5/10/2008 10.2 0.66 5/10/2008 11.7 1.9 
5/11/2008 20 0.66 5/11/2008 12.8 2 
5/12/2008 9.7 0.66 5/12/2008 7.8 1.4 
5/13/2008 7.5 0.67 5/13/2008 16.7 2.4 
5/14/2008 5.2 0.67 5/14/2008 22.4 3.1 
5/15/2008 8.8 0.67 5/15/2008 8.7 1.6 
5/16/2008 4.5 0.67 5/16/2008 4.3 1.4 
5/17/2008 5.3 0.68 5/17/2008 18 2.5 
5/18/2008 5.4 0.68 5/18/2008 12.9 2 
5/19/2008 7.9 0.69 5/19/2008 13.9 2.1 
5/20/2008 4.3 0.69 5/20/2008 10.2 1.8 
5/21/2008 6.1 0.7 5/21/2008 0 1.6 
5/22/2008 5.6 0.7 5/22/2008 0 1.5 
5/23/2008 7.7 0.71 5/23/2008 0 1.4 
5/24/2008 5.2 0.71 5/24/2008 11.8 1.9 
5/25/2008 8.1 0.71 5/25/2008 16.9 2.3 
5/26/2008 9.8 0.72 5/26/2008 18.2 2.5 
5/27/2008 7.8 0.73 5/27/2008 2.3 1.5 
5/28/2008 16.5 0.73 5/28/2008 6.6 1.4 
5/29/2008 8.9 0.74 5/29/2008 9 1.5 
5/30/2008 11 0.74 5/30/2008 7.7 1.4 
5/31/2008 7.8 0.75 5/31/2008 8.9 1.7 
6/1/2008 0 0.76 6/1/2008 12 1.9 
6/2/2008 11.1 0.77 6/2/2008 7.6 1.5 
6/3/2008 10.1 0.78 6/3/2008 7.2 1.4 
6/4/2008 12.2 0.79 6/4/2008 24.8 3.2 
6/5/2008 9.7 0.8 6/5/2008 1.4 1.3 
6/6/2008 13.4 0.8 6/6/2008 4.9 1.3 
6/7/2008 13.9 0.81 6/7/2008 8.6 1.6 
6/8/2008 14.8 0.81 6/8/2008 8.2 1.6 
6/9/2008 9.4 0.82 6/9/2008 7.1 1.5 
6/10/2008 5.8 0.82 6/10/2008 4.9 1.4 
6/11/2008 4.6 0.82 6/11/2008 0 1.2 
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6/12/2008 0 0.82 6/12/2008 0 1.1 
6/13/2008 0 0.87 6/13/2008 5 0.86 
6/14/2008 0 0.88 6/14/2008 0 0.85 
6/15/2008 0 0.89 6/15/2008 0 0.84 
6/16/2008 6.2 0.89 6/16/2008 7.1 1.3 
6/17/2008 0 0.89 6/17/2008 0 1.2 
6/18/2008 7.4 0.9 6/18/2008 0 1.1 
6/19/2008 5.6 0.9 6/19/2008 0 1 
6/20/2008 0 0.9 6/20/2008 0 0.95 
6/21/2008 0 0.9 6/21/2008 19.7 2.5 
6/22/2008 4.5 0.9 6/22/2008 1.9 1.1 
6/23/2008 0 0.9 6/23/2008 14.1 1.8 
6/24/2008 1.9 0.9 6/24/2008 2 0.9 
6/25/2008 0 0.9 6/25/2008 3 0.9 
6/26/2008 0 0.9 6/26/2008 1.4 0.8 
6/27/2008 4.6 0.9 6/27/2008 10.2 1.8 
6/28/2008 6.3 0.9 6/28/2008 11 1.9 
6/29/2008 7 0.9 6/29/2008 2.1 0.8 
6/30/2008 0 0.9 6/30/2008 11.4 2.1 
7/1/2008 5.9 0.9 7/1/2008 0 0.9 
7/2/2008 6.9 0.9 7/2/2008 9.8 1.4 
7/3/2008 5.3 0.9 7/3/2008 0 1.3 
7/4/2008 4.6 0.9 7/4/2008 0 1.2 
7/5/2008 0 0.92 7/5/2008 0 1.15 
7/6/2008 0 0.92 7/6/2008 0 1.1 
7/7/2008 0 0.92 7/7/2008 0 1.05 
7/8/2008 0 0.92 7/8/2008 0 1 
7/9/2008 0 0.92 7/9/2008 0 0.98 
7/10/2008 0 0.92 7/10/2008 0 0.96 
7/11/2008 5.1 0.92 7/11/2008 0 0.94 
7/12/2008 3.5 0.92 7/12/2008 0 0.92 
7/13/2008 4.5 0.92 7/13/2008 0 0.9 
7/14/2008 7.7 0.92 7/14/2008 11.2 1.8 
7/15/2008 12.2 0.92 7/15/2008 0 1.25 
7/16/2008 5.3 0.92 7/16/2008 9.1 1.6 
7/17/2008 5.6 0.93 7/17/2008 13 2.1 
7/18/2008 9.5 0.93 7/18/2008 4.9 1.4 
7/19/2008 4.7 0.93 7/19/2008 15 2.1 
7/20/2008 2.4 0.93 7/20/2008 10 1.8 
7/21/2008 12.5 0.93 7/21/2008 11.9 1.9 
7/22/2008 0 0.93 7/22/2008 19.3 2.5 
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7/23/2008 0 0.93 7/23/2008 18.9 2.4 
7/24/2008 0 0.93 7/24/2008 12.5 2 
7/25/2008 0 0.94 7/25/2008 23.1 2.9 
7/26/2008 0 0.94 7/26/2008 13.7 2.1 
7/27/2008 0 0.94 7/27/2008 10.5 1.9 
7/28/2008 1 0.94 7/28/2008 16.2 2.3 
7/29/2008 7 0.94 7/29/2008 11.6 1.9 
7/30/2008 8.4 0.94 7/30/2008 18.5 2.5 
7/31/2008 2.6 0.94 7/31/2008 13.8 2.1 
8/1/2008 8.8 0.94 8/1/2008 10.1 1.1 
8/2/2008 8.4 0.94 8/2/2008 9.3 1.6 
8/3/2008 6.2 0.94 8/3/2008 5.2 1.2 
8/4/2008 5.7 0.95 8/4/2008 0 1.1 
8/5/2008 2.8 0.95 8/5/2008 0 1 
8/6/2008 7.6 0.95 8/6/2008 7.1 1.5 
8/7/2008 5.5 0.95 8/7/2008 12 2 
8/8/2008 6.9 0.95 8/8/2008 6.2 1.7 
8/9/2008 9.2 0.95 8/9/2008 11.1 2 
8/10/2008 0 0.96 8/10/2008 6.6 1.4 
8/11/2008 2.2 0.96 8/11/2008 12.7 2 
8/12/2008 0 0.96 8/12/2008 13.4 2.1 
8/13/2008 19.3 0.96 8/13/2008 4.4 1.5 
8/14/2008 0 0.97 8/14/2008 22.9 2.9 
8/15/2008 0 0.97 8/15/2008 11.4 2.1 
8/16/2008 7.8 0.97 8/16/2008 14.1 2.3 
8/17/2008 8.5 0.97 8/17/2008 20.7 2.8 
8/18/2008 4.8 0.97 8/18/2008 10 1.4 
8/19/2008 9.1 0.98 8/19/2008 27.1 3.3 
8/20/2008 15.6 0.98 8/20/2008 26.4 3.2 
8/21/2008 9.9 0.98 8/21/2008 12.9 1.9 
8/22/2008 4.4 0.98 8/22/2008 7.8 1.5 
8/23/2008 7.5 0.99 8/23/2008 15.6 2.3 
8/24/2008 14.5 0.99 8/24/2008 7.6 1.5 
8/25/2008 29.8 0.99 8/25/2008 27.2 3.4 
8/26/2008 13.3 0.99 8/26/2008 3.8 1.4 
8/27/2008 9.9 0.99 8/27/2008 0 1.4 
8/28/2008 1.7 1 8/28/2008 0 1 
8/29/2008 7.4 1 8/29/2008 14.4 2.3 
8/30/2008 8.2 1 8/30/2008 15.3 2.2 
8/31/2008 16 1 8/31/2008 22 2.9 
9/1/2008 0 1 9/1/2008 19.6 2.7 
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9/2/2008 9 1 9/2/2008 11.4 2.1 
9/3/2008 0 1.02 9/3/2008 12.5 2.3 
9/4/2008 17.5 1.03 9/4/2008 13.4 2.5 
9/5/2008 0 1.05 9/5/2008 9.4 1.7 
9/6/2008 10.2 1.05 9/6/2008 9.8 1.7 
9/7/2008 6.4 1.06 9/7/2008 13.4 2.2 
9/8/2008 0 1.07 9/8/2008 20.2 2.8 
9/9/2008 21.3 1.08 9/9/2008 12.3 1.8 
9/10/2008 3.2 1.09 9/10/2008 9.9 1.7 
9/11/2008 11 1.1 9/11/2008 4.8 1.2 
9/12/2008 15 1.1 9/12/2008 7.4 1.5 
9/13/2008 5.5 1.11 9/13/2008 4.3 1 
9/14/2008 13.5 1.11 9/14/2008 6.5 1.3 
9/15/2008 0 1.12 9/15/2008 8 1.5 
9/16/2008 6.2 1.12 9/16/2008 3.7 1.4 
9/17/2008 28 1.12 9/17/2008 0 1.3 
9/18/2008 23.5 1.12 9/18/2008 0 1.2 
9/19/2008 6.4 1.13 9/19/2008 0 1.1 
9/20/2008 6.1 1.13 9/20/2008 0 1 
9/21/2008 5.4 1.13 9/21/2008 0 0.9 
9/22/2008 15 1.14 9/22/2008 4.1 1.2 
9/23/2008 4.9 1.14 9/23/2008 14.4 2.8 
9/24/2008 21.6 1.15 9/24/2008 10.1 1.7 
9/25/2008 9.9 1.15 9/25/2008 8.7 1.5 
9/26/2008 0 1.16 9/26/2008 13.5 2.7 
9/27/2008 0 1.16 9/27/2008 0 1.3 
9/28/2008 0 1.17 9/28/2008 0 1.2 
9/29/2008 0 1.2 9/29/2008 0 1.1 
9/30/2008 6.5 1.3 9/30/2008 0 1 
10/1/2008 11.5 1.35 10/1/2008 0 0.95 
10/2/2008 13.8 1.35 10/2/2008 0 0.9 
10/3/2008 9.9 1.36 10/3/2008 3.7 1 
10/4/2008 10.7 1.36 10/4/2008 6.5 1.4 
10/5/2008 12.6 1.36 10/5/2008 5.7 1.2 
10/6/2008 15.1 1.36 10/6/2008 10.2 2.3 
10/7/2008 8.8 1.36 10/7/2008 5.3 1.1 
10/8/2008 9 1.37 10/8/2008 15.3 2.4 
10/9/2008 11.8 1.37 10/9/2008 5.2 1.1 
10/10/2008 5.8 1.37 10/10/2008 9.1 1.7 
10/11/2008 7.9 1.37 10/11/2008 4.3 1.4 
10/12/2008 12.8 1.37 10/12/2008 0 1.1 
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10/13/2008 9.9 1.37 10/13/2008 6.9 1.2 
10/14/2008 13.3 1.38 10/14/2008 2 1 
10/15/2008 10.7 1.38 10/15/2008 2.6 1 
10/16/2008 19.6 1.38 10/16/2008 2.8 1 
10/17/2008 16.5 1.38 10/17/2008 1.9 1 
10/18/2008 9.7 1.39 10/18/2008 3.7 1 
10/19/2008 7.4 1.39 10/19/2008 1.5 1 
10/20/2008 8.2 1.38 10/20/2008 9 1.5 
10/21/2008 15.7 1.34 10/21/2008 10.1 1.7 
10/22/2008 10 1.3 10/22/2008 4.5 1.1 
10/23/2008 8.3 1.27 10/23/2008 6.3 1.2 
10/24/2008 0 1.24 10/24/2008 7.4 1.5 
10/25/2008 5.2 1.21 10/25/2008 2.1 1.1 
10/26/2008 1.3 1.16 10/26/2008 3.8 1.1 
10/27/2008 0 1.13 10/27/2008 3.9 1.1 
10/28/2008 4.9 1.08 10/28/2008 3.2 1 
10/29/2008 0 1.06 10/29/2008 2.2 1 
10/30/2008 2.2 1.04 10/30/2008 0 0.9 
10/31/2008 0 1.02 10/31/2008 0 0.9 
11/1/2008 2.1 1 11/1/2008 0 0.9 
11/2/2008 2.9 1 11/2/2008 0 0.9 
11/3/2008 1.9 1 11/3/2008 0 0.89 
11/4/2008 2.5 0.99 11/4/2008 0 0.89 
11/5/2008 3.9 0.99 11/5/2008 0 0.88 
11/6/2008 3.5 0.98 11/6/2008 0 0.88 
11/7/2008 3.7 0.98 11/7/2008 0 0.88 
11/8/2008 6.5 0.97 11/8/2008 0 0.87 
11/9/2008 4.6 0.97 11/9/2008 0 0.87 
11/10/2008 0 0.96 11/10/2008 0 0.87 
11/11/2008 0 0.95 11/11/2008 0 0.86 
11/12/2008 7.8 0.93 11/12/2008 0 0.86 
11/13/2008 2.1 0.91 11/13/2008 0 0.86 
11/14/2008 4.7 0.88 11/14/2008 0 0.85 
11/15/2008 0 0.86 11/15/2008 0 0.85 
11/16/2008 3.3 0.85 11/16/2008 0 0.85 
11/17/2008 5.3 0.84 11/17/2008 0 0.84 
11/18/2008 0 0.83 11/18/2008 0 0.84 
11/19/2008 2.7 0.82 11/19/2008 0 0.84 
11/20/2008 0 0.81 11/20/2008 0 0.84 
11/21/2008 0 0.79 11/21/2008 0 0.83 
11/22/2008 0 0.77 11/22/2008 0 0.83 
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11/23/2008 0 0.75 11/23/2008 0 0.83 
11/24/2008 3.6 0.73 11/24/2008 0 0.83 
11/25/2008 0 0.71 11/25/2008 0 0.82 
11/26/2008 0 0.69 11/26/2008 0 0.82 
11/27/2008 0 0.68 11/27/2008 0 0.81 
11/28/2008 0 0.67 11/28/2008 0 0.81 
11/29/2008 0 0.66 11/29/2008 0 0.8 
11/30/2008 0 0.65 11/30/2008 0 0.79 
12/1/2008 0 0.64 12/1/2008 0 0.78 
12/2/2008 0 0.64 12/2/2008 0 0.77 
12/3/2008 0 0.64 12/3/2008 0 0.76 
12/4/2008 0 0.63 12/4/2008 0 0.75 
12/5/2008 0 0.63 12/5/2008 0 0.74 
12/6/2008 0 0.63 12/6/2008 0 0.73 
12/7/2008 0 0.63 12/7/2008 0 0.72 
12/8/2008 0 0.63 12/8/2008 0 0.71 
12/9/2008 0 0.62 12/9/2008 0 0.7 
12/10/2008 0 0.62 12/10/2008 0 0.69 
12/11/2008 0 0.62 12/11/2008 0 0.68 
12/12/2008 0 0.62 12/12/2008 0 0.67 
12/13/2008 0 0.62 12/13/2008 0 0.66 
12/14/2008 0 0.61 12/14/2008 0 0.65 
12/15/2008 0 0.61 12/15/2008 0 0.64 
12/16/2008 0 0.61 12/16/2008 0 0.63 
12/17/2008 0 0.61 12/17/2008 0 0.62 
12/18/2008 0 0.61 12/18/2008 0 0.61 
12/19/2008 0 0.61 12/19/2008 0 0.6 
12/20/2008 0 0.61 12/20/2008 0 0.59 
12/21/2008 0 0.6 12/21/2008 0 0.58 
12/22/2008 0 0.6 12/22/2008 0 0.57 
12/23/2008 0 0.6 12/23/2008 0 0.56 
12/24/2008 0 0.6 12/24/2008 0 0.55 
12/25/2008 0 0.6 12/25/2008 0 0.55 
12/26/2008 6.3 0.6 12/26/2008 0 0.55 
12/27/2008 0 0.59 12/27/2008 0 0.55 
12/28/2008 0 0.59 12/28/2008 0 0.55 
12/29/2008 0 0.59 12/29/2008 0 0.55 
12/30/2008 0 0.59 12/30/2008 0 0.55 
12/31/2008 7.1 0.59 12/31/2008 0 0.55 
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Date 
 

10 year 
rainfall 
(mm) 

10 year 
discharge 
(mm day-1) 

Date 
 

50 year 
rainfall 
(mm) 

50 year 
discharge 
(mm day-1) 

1/1/2007 0 0.73 1/1/2007 0 0.71
1/2/2007 4.1 0.73 1/2/2007 9.1 0.71
1/3/2007 3.5 0.73 1/3/2007 5.1 0.71
1/4/2007 2.2 0.73 1/4/2007 10.1 0.71
1/5/2007 3 0.73 1/5/2007 5.4 0.72
1/6/2007 2.4 0.73 1/6/2007 2.4 0.72
1/7/2007 0 0.73 1/7/2007 0 0.71
1/8/2007 0 0.73 1/8/2007 0 0.71
1/9/2007 0 0.73 1/9/2007 0 0.71
1/10/2007 5.5 0.73 1/10/2007 10.8 0.73
1/11/2007 5 0.73 1/11/2007 5.1 0.72
1/12/2007 3.3 0.73 1/12/2007 3.6 0.72
1/13/2007 4.5 0.73 1/13/2007 7.4 0.73
1/14/2007 2.8 0.73 1/14/2007 6.8 0.72
1/15/2007 6.8 0.73 1/15/2007 4.6 0.72
1/16/2007 8.7 0.73 1/16/2007 5.3 0.72
1/17/2007 0 0.72 1/17/2007 0 0.72
1/18/2007 0 0.72 1/18/2007 0 0.72
1/19/2007 0 0.72 1/19/2007 0 0.71
1/20/2007 0 0.71 1/20/2007 0 0.71
1/21/2007 0 0.71 1/21/2007 0 0.71
1/22/2007 0 0.7 1/22/2007 0 0.71
1/23/2007 0 0.72 1/23/2007 0 0.71
1/24/2007 0 0.7 1/24/2007 0 0.71
1/25/2007 0 0.71 1/25/2007 0 0.7
1/26/2007 0 0.71 1/26/2007 0 0.7
1/27/2007 0 0.71 1/27/2007 0 0.7
1/28/2007 10.1 0.77 1/28/2007 6.8 0.74
1/29/2007 19.5 0.79 1/29/2007 13.6 1
1/30/2007 8.2 0.77 1/30/2007 6 0.8
1/31/2007 2.4 0.75 1/31/2007 3.8 0.76
2/1/2007 6.5 0.75 2/1/2007 4.2 0.77
2/2/2007 4.2 0.75 2/2/2007 5.5 0.78
2/3/2007 11.6 0.81 2/3/2007 6.4 0.79
2/4/2007 3.8 0.79 2/4/2007 11.9 0.9
2/5/2007 11.3 0.82 2/5/2007 9.2 0.85
2/6/2007 2 0.76 2/6/2007 4.8 0.77
2/7/2007 0 0.76 2/7/2007 0 0.73
2/8/2007 0 0.76 2/8/2007 0 0.71
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2/9/2007 6.7 0.77 2/9/2007 4.2 0.74
2/10/2007 2.5 0.76 2/10/2007 4.2 0.8
2/11/2007 9.9 0.78 2/11/2007 9.9 0.94
2/12/2007 0 0.76 2/12/2007 5.7 0.82
2/13/2007 29.9 1.24 2/13/2007 16 1
2/14/2007 0 0.9 2/14/2007 16.9 1.1
2/15/2007 0 0.89 2/15/2007 0 0.76
2/16/2007 0 0.88 2/16/2007 0 0.74
2/17/2007 0 0.88 2/17/2007 0 0.73
2/18/2007 0 0.86 2/18/2007 0 0.72
2/19/2007 0 0.85 2/19/2007 0 0.72
2/20/2007 0 0.85 2/20/2007 0 0.71
2/21/2007 0 0.85 2/21/2007 0 0.71
2/22/2007 0 0.85 2/22/2007 0 0.7
2/23/2007 0 0.85 2/23/2007 0 0.7
2/24/2007 1.4 0.77 2/24/2007 8.6 0.86
2/25/2007 17.3 1.03 2/25/2007 11.6 0.96
2/26/2007 1.5 0.81 2/26/2007 1.7 0.79
2/27/2007 16.9 0.92 2/27/2007 11.7 0.97
2/28/2007 19.5 1.23 2/28/2007 14 1
3/1/2007 3.3 0.97 3/1/2007 0 0.74
3/2/2007 0 0.89 3/2/2007 0 0.73
3/3/2007 0 0.92 3/3/2007 0 0.73
3/4/2007 0 0.82 3/4/2007 0 0.72
3/5/2007 0 0.81 3/5/2007 0 0.72
3/6/2007 0 0.81 3/6/2007 0 0.71
3/7/2007 0 0.81 3/7/2007 0 0.7
3/8/2007 0 0.81 3/8/2007 0 0.7
3/9/2007 0 0.8 3/9/2007 0 0.7
3/10/2007 0 0.8 3/10/2007 0 0.7
3/11/2007 10.9 1.54 3/11/2007 7.7 0.85
3/12/2007 5.9 1.54 3/12/2007 8.5 0.89
3/13/2007 6.3 1.64 3/13/2007 5.7 0.83
3/14/2007 5.1 1.54 3/14/2007 8 0.9
3/15/2007 8.9 1.63 3/15/2007 6.3 0.8
3/16/2007 6.6 1.61 3/16/2007 5.2 0.8
3/17/2007 9.2 1.74 3/17/2007 7.7 0.84
3/18/2007 17.5 2.47 3/18/2007 13.9 1.7
3/19/2007 35.5 3.9 3/19/2007 27.3 3.5
3/20/2007 14.4 2.98 3/20/2007 16.8 2
3/21/2007 0 1.75 3/21/2007 0 1.1
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3/22/2007 0 1.03 3/22/2007 0 0.96
3/23/2007 0 0.92 3/23/2007 0 0.94
3/24/2007 0 0.87 3/24/2007 0 0.92
3/25/2007 0 0.86 3/25/2007 0 0.88
3/26/2007 0 0.85 3/26/2007 0 0.84
3/27/2007 0 0.84 3/27/2007 0 0.82
3/28/2007 0 0.83 3/28/2007 0 0.8
3/29/2007 0 0.82 3/29/2007 0 0.79
3/30/2007 0 0.82 3/30/2007 0 0.78
3/31/2007 0 0.82 3/31/2007 0 0.77
4/1/2007 0 0.82 4/1/2007 0 0.76
4/2/2007 0 0.82 4/2/2007 0 0.75
4/3/2007 0 0.81 4/3/2007 0 0.74
4/4/2007 0 0.81 4/4/2007 0 0.73
4/5/2007 0 0.8 4/5/2007 0 0.72
4/6/2007 0 0.79 4/6/2007 0 0.72
4/7/2007 0 0.79 4/7/2007 0 0.72
4/8/2007 0 0.79 4/8/2007 0 0.72
4/9/2007 7.8 0.87 4/9/2007 5.3 0.9
4/10/2007 19.1 1.23 4/10/2007 18.6 2.6
4/11/2007 34.3 2.36 4/11/2007 24.8 3.7
4/12/2007 13.3 1.64 4/12/2007 13.9 2
4/13/2007 17.4 1.69 4/13/2007 16.8 2.9
4/14/2007 28 1.75 4/14/2007 28.2 4.2
4/15/2007 5.4 1.95 4/15/2007 6.9 2.3
4/16/2007 30.4 3 4/16/2007 36.2 5.4
4/17/2007 39.8 3.2 4/17/2007 34.1 5.3
4/18/2007 29.4 2.9 4/18/2007 17.8 2.7
4/19/2007 18.3 1.6 4/19/2007 19.4 2.8
4/20/2007 38.1 2.9 4/20/2007 30.1 5.2
4/21/2007 18.9 2.7 4/21/2007 16.2 3.2
4/22/2007 17.2 2.7 4/22/2007 13.6 3
4/23/2007 8.2 1.9 4/23/2007 4 2.1
4/24/2007 13.2 2.2 4/24/2007 5.8 2.9
4/25/2007 14.5 2.3 4/25/2007 16.6 3.2
4/26/2007 14.9 2.4 4/26/2007 10.8 2.5
4/27/2007 13.6 2.5 4/27/2007 13.3 2.7
4/28/2007 14.9 2.6 4/28/2007 11.9 2.4
4/29/2007 39.6 4.2 4/29/2007 10.6 2.5
4/30/2007 27.5 3.6 4/30/2007 16 3.1
5/1/2007 9.9 2.6 5/1/2007 12.9 2.9
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5/2/2007 13.2 2.9 5/2/2007 13.7 3
5/3/2007 12.8 3.1 5/3/2007 17.6 3.6
5/4/2007 19.4 3.3 5/4/2007 18.7 3.8
5/5/2007 6.7 2.8 5/5/2007 0 2.3
5/6/2007 18.9 3.3 5/6/2007 16.6 3.4
5/7/2007 15.3 3.1 5/7/2007 21.4 4.4
5/8/2007 21.3 3.3 5/8/2007 20 4
5/9/2007 15.9 3.3 5/9/2007 13.5 3
5/10/2007 4.9 2.9 5/10/2007 7.9 2.5
5/11/2007 5.6 2.7 5/11/2007 7.2 2.2
5/12/2007 2.9 2.36 5/12/2007 5.6 2
5/13/2007 12.7 3.2 5/13/2007 9.3 2.7
5/14/2007 26.9 3.9 5/14/2007 15.2 3.4
5/15/2007 5.8 3 5/15/2007 10.4 3.1
5/16/2007 9.3 3.1 5/16/2007 9.4 2.8
5/17/2007 24.1 3.8 5/17/2007 30.1 5.6
5/18/2007 14.8 3.2 5/18/2007 12.4 3.3
5/19/2007 2 2.5 5/19/2007 10.5 3.2
5/20/2007 3 1.9 5/20/2007 6.3 2.6
5/21/2007 0 1.8 5/21/2007 0 2.4
5/22/2007 0 1.7 5/22/2007 0 2.3
5/23/2007 0 1.7 5/23/2007 0 2.2
5/24/2007 0 1.6 5/24/2007 0 2.1
5/25/2007 5.4 2.4 5/25/2007 7 2.8
5/26/2007 5 2 5/26/2007 7.3 2.8
5/27/2007 6.8 2.1 5/27/2007 19.7 4.4
5/28/2007 7.4 2.2 5/28/2007 24.9 5
5/29/2007 5.1 2.3 5/29/2007 10.4 3
5/30/2007 2.8 1.7 5/30/2007 4.8 2.9
5/31/2007 27.4 3.9 5/31/2007 18.8 4.4
6/1/2007 15.5 3.2 6/1/2007 6.9 3.3
6/2/2007 5.1 2.6 6/2/2007 7.2 3.3
6/3/2007 9.7 2.8 6/3/2007 8.6 3.3
6/4/2007 9.3 3 6/4/2007 11.7 3.9
6/5/2007 10.2 3 6/5/2007 7.2 3.2
6/6/2007 3.8 2.6 6/6/2007 9.7 2.9
6/7/2007 5.5 2.7 6/7/2007 8.9 3.3
6/8/2007 3 2.4 6/8/2007 0 2.3
6/9/2007 17.2 3.3 6/9/2007 6.4 3.3
6/10/2007 18.9 3 6/10/2007 13 4.3
6/11/2007 2.7 2.4 6/11/2007 8.7 3.3
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6/12/2007 0 1.75 6/12/2007 0 2
6/13/2007 5.5 2.2 6/13/2007 6 1.9
6/14/2007 0 1.74 6/14/2007 0 1.85
6/15/2007 0 1.34 6/15/2007 0 1.8
6/16/2007 4.1 2 6/16/2007 0 1.75
6/17/2007 0 1.5 6/17/2007 0 1.7
6/18/2007 0 1.4 6/18/2007 0 1.65
6/19/2007 0 1.4 6/19/2007 0 1.6
6/20/2007 0 1.3 6/20/2007 0 1.55
6/21/2007 0 1.2 6/21/2007 0 1.5
6/22/2007 0 1.2 6/22/2007 0 1.47
6/23/2007 0 1.1 6/23/2007 0 1.45
6/24/2007 0 1.1 6/24/2007 0 1.41
6/25/2007 9.7 2.2 6/25/2007 0 1.38
6/26/2007 2.2 1.3 6/26/2007 0 1.35
6/27/2007 10.1 3.1 6/27/2007 0 1.32
6/28/2007 9.2 3.1 6/28/2007 0 1.3
6/29/2007 2 2.4 6/29/2007 0 1.29
6/30/2007 2.2 2.5 6/30/2007 0 1.28
7/1/2007 1.7 2.2 7/1/2007 10.8 3.4
7/2/2007 14.7 3.1 7/2/2007 17.3 3.8
7/3/2007 1.3 2.1 7/3/2007 15 3.9
7/4/2007 18.1 3.4 7/4/2007 0 1.95
7/5/2007 0 2.4 7/5/2007 0 1.9
7/6/2007 0 2.8 7/6/2007 0 1.85
7/7/2007 0 1.6 7/7/2007 0 1.8
7/8/2007 0 1.5 7/8/2007 0 1.75
7/9/2007 0 1.4 7/9/2007 0 1.7
7/10/2007 0 1.4 7/10/2007 0 1.65
7/11/2007 0 1.2 7/11/2007 0 1.6
7/12/2007 0 1.2 7/12/2007 0 1.55
7/13/2007 0 1.2 7/13/2007 0 1.5
7/14/2007 0 1.2 7/14/2007 0 1.47
7/15/2007 0 1.2 7/15/2007 0 1.45
7/16/2007 0 1.2 7/16/2007 0 1.41
7/17/2007 0 1.1 7/17/2007 0 1.4
7/18/2007 0 1.3 7/18/2007 0 1.39
7/19/2007 19.9 3.2 7/19/2007 17 3.4
7/20/2007 0 2 7/20/2007 0 2.2
7/21/2007 6.2 2.6 7/21/2007 7.2 2.7
7/22/2007 7.3 2.7 7/22/2007 10 2.9
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7/23/2007 10.4 3 7/23/2007 7.3 2.8
7/24/2007 39.9 5.5 7/24/2007 37 5.8
7/25/2007 14.1 3.6 7/25/2007 15.8 3.3
7/26/2007 2 2.7 7/26/2007 0 2.2
7/27/2007 14.5 3 7/27/2007 14 2.8
7/28/2007 13.2 3 7/28/2007 12 2.8
7/29/2007 12.9 3.1 7/29/2007 11.3 3.1
7/30/2007 6.5 2.8 7/30/2007 11.5 3.1
7/31/2007 2.9 2.5 7/31/2007 2.8 2.5
8/1/2007 14.4 3 8/1/2007 11.4 3.1
8/2/2007 17.6 3.4 8/2/2007 24.6 5.1
8/3/2007 14.1 3.3 8/3/2007 12.2 3.3
8/4/2007 32.6 5.3 8/4/2007 29 5.6
8/5/2007 0 3.6 8/5/2007 0 2.4
8/6/2007 0 3 8/6/2007 0 2.2
8/7/2007 29 3.6 8/7/2007 30 5.7
8/8/2007 33.2 5.4 8/8/2007 38.2 6.3
8/9/2007 0 3.3 8/9/2007 9.8 2.9
8/10/2007 14.9 3.5 8/10/2007 13.4 3.6
8/11/2007 12.2 3.3 8/11/2007 12 3
8/12/2007 10.8 3.2 8/12/2007 10.3 3.2
8/13/2007 18.8 3.5 8/13/2007 22.8 5.3
8/14/2007 11.6 3.2 8/14/2007 9.9 2.7
8/15/2007 3.6 2.5 8/15/2007 0 2.3
8/16/2007 8.6 3 8/16/2007 10.9 3.2
8/17/2007 9.7 3.1 8/17/2007 13.3 3.5
8/18/2007 5 2.7 8/18/2007 0 2.1
8/19/2007 9.9 3 8/19/2007 0 1.95
8/20/2007 6.3 2.8 8/20/2007 0 1.85
8/21/2007 7.5 2.9 8/21/2007 0 1.8
8/22/2007 2.9 2.6 8/22/2007 0 1.75
8/23/2007 8 2.7 8/23/2007 0 1.7
8/24/2007 4.1 1.7 8/24/2007 0 1.65
8/25/2007 4.4 1.8 8/25/2007 0 1.6
8/26/2007 3.9 1.75 8/26/2007 8.9 2.7
8/27/2007 3.3 1.7 8/27/2007 7.4 2.5
8/28/2007 2.8 1.6 8/28/2007 13.1 3.5
8/29/2007 1.8 1.5 8/29/2007 0 2.1
8/30/2007 3.6 1.6 8/30/2007 12.2 3.3
8/31/2007 3.8 1.7 8/31/2007 5.8 2.1
9/1/2007 5.2 1.8 9/1/2007 10.3 3
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9/2/2007 7 1.9 9/2/2007 4.6 2.4
9/3/2007 11.6 2.5 9/3/2007 13.8 3.5
9/4/2007 12.6 2.9 9/4/2007 12.8 3.2
9/5/2007 25.6 4.6 9/5/2007 28 4.9
9/6/2007 4.2 2.7 9/6/2007 0 2.2
9/7/2007 4.9 2.1 9/7/2007 7.5 2.1
9/8/2007 8.8 2.8 9/8/2007 8.9 2.3
9/9/2007 1.6 1.9 9/9/2007 10.8 3.6
9/10/2007 9.6 2.2 9/10/2007 9.2 2.6
9/11/2007 9 2.4 9/11/2007 9.9 2.6
9/12/2007 10.8 3 9/12/2007 9.4 2.5
9/13/2007 23.7 4.5 9/13/2007 25.3 5.4
9/14/2007 10.4 2.6 9/14/2007 13.3 3.9
9/15/2007 13.1 3 9/15/2007 15.5 3.9
9/16/2007 0 2.8 9/16/2007 0 2.1
9/17/2007 0 2.6 9/17/2007 0 1.9
9/18/2007 0 2.3 9/18/2007 0 1.7
9/19/2007 0 2.3 9/19/2007 0 1.6
9/20/2007 0 2.3 9/20/2007 0 1.5
9/21/2007 9.5 2.7 9/21/2007 9.5 2.6
9/22/2007 8.5 2.8 9/22/2007 9.9 2.7
9/23/2007 5.3 2.6 9/23/2007 8.8 2.6
9/24/2007 10.1 2.9 9/24/2007 13.8 3.9
9/25/2007 5.9 2.1 9/25/2007 10.5 3.5
9/26/2007 0 2 9/26/2007 0 2.1
9/27/2007 0 1.9 9/27/2007 0 1.9
9/28/2007 0 1.85 9/28/2007 0 1.7
9/29/2007 0 1.8 9/29/2007 0 1.6
9/30/2007 0 1.7 9/30/2007 0 1.5
10/1/2007 0 1.6 10/1/2007 0 1.4
10/2/2007 0 1.5 10/2/2007 0 1.3
10/3/2007 3.8 1.7 10/3/2007 7.9 2.1
10/4/2007 2.8 1.6 10/4/2007 6.7 2
10/5/2007 6.2 1.8 10/5/2007 9.8 2.6
10/6/2007 7.1 1.9 10/6/2007 8.2 2.3
10/7/2007 10.2 2 10/7/2007 13.6 3.6
10/8/2007 7.6 2 10/8/2007 17.5 4.2
10/9/2007 4.5 1.7 10/9/2007 7.3 2.9
10/10/2007 6.1 1.9 10/10/2007 9 2.2
10/11/2007 4.2 1.7 10/11/2007 5.1 2
10/12/2007 0 1.5 10/12/2007 0 2.1
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10/13/2007 0 1.4 10/13/2007 0 1.9
10/14/2007 0 1.4 10/14/2007 0 1.8
10/15/2007 0 1.4 10/15/2007 0 1.7
10/16/2007 9.1 2.4 10/16/2007 7.6 3.6
10/17/2007 6.7 2.3 10/17/2007 8.5 3.8
10/18/2007 0 1.6 10/18/2007 0 2
10/19/2007 4.1 1.7 10/19/2007 0 1.8
10/20/2007 7.2 1.8 10/20/2007 4.7 2.5
10/21/2007 1 1.5 10/21/2007 7 3.2
10/22/2007 1.2 1.5 10/22/2007 9.3 3.8
10/23/2007 1.5 1.6 10/23/2007 0 2
10/24/2007 0 1.4 10/24/2007 0 1.9
10/25/2007 0 1.35 10/25/2007 0 1.8
10/26/2007 0 1.3 10/26/2007 0 1.7
10/27/2007 1.3 1.8 10/27/2007 6.9 2.9
10/28/2007 2 1.9 10/28/2007 5.6 2.5
10/29/2007 0 1.5 10/29/2007 0 2
10/30/2007 0 1.4 10/30/2007 0 1.9
10/31/2007 0 1.3 10/31/2007 0 1.8
11/1/2007 1 1.7 11/1/2007 7.6 3.3
11/2/2007 1.6 1.6 11/2/2007 13 4.4
11/3/2007 2.3 1.6 11/3/2007 9.2 3.9
11/4/2007 0 1.4 11/4/2007 6.9 3.3
11/5/2007 0 1.3 11/5/2007 0 2
11/6/2007 0 1.2 11/6/2007 0 1.9
11/7/2007 0 1.19 11/7/2007 0 1.85
11/8/2007 0 1.17 11/8/2007 0 1.81
11/9/2007 0 1.15 11/9/2007 0 1.7
11/10/2007 0 1.13 11/10/2007 0 1.6
11/11/2007 0 1.11 11/11/2007 0 1.5
11/12/2007 0 1.08 11/12/2007 0 1.4
11/13/2007 0 1.05 11/13/2007 0 1.3
11/14/2007 0 1.03 11/14/2007 0 1.1
11/15/2007 0 1.01 11/15/2007 0 1.1
11/16/2007 0 1.01 11/16/2007 0 1
11/17/2007 0 1.01 11/17/2007 0 0.9
11/18/2007 0 1.01 11/18/2007 0 0.85
11/19/2007 0 1 11/19/2007 0 0.84
11/20/2007 0 1 11/20/2007 0 0.83
11/21/2007 0 1 11/21/2007 0 0.82
11/22/2007 0 0.98 11/22/2007 0 0.8
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11/23/2007 0 0.96 11/23/2007 0 0.78
11/24/2007 0 0.94 11/24/2007 0 0.77
11/25/2007 0 0.92 11/25/2007 0 0.75
11/26/2007 0 0.9 11/26/2007 0 0.75
11/27/2007 0 0.88 11/27/2007 0 0.74
11/28/2007 0 0.86 11/28/2007 0 0.73
11/29/2007 0 0.84 11/29/2007 0 0.73
11/30/2007 0 0.83 11/30/2007 0 0.73
12/1/2007 0 0.82 12/1/2007 0 0.72
12/2/2007 0 0.82 12/2/2007 0 0.72
12/3/2007 0 0.81 12/3/2007 0 0.72
12/4/2007 0 0.8 12/4/2007 0 0.72
12/5/2007 0 0.8 12/5/2007 0 0.72
12/6/2007 0 0.78 12/6/2007 0 0.72
12/7/2007 0 0.76 12/7/2007 0 0.72
12/8/2007 0 0.75 12/8/2007 0 0.72
12/9/2007 0 0.75 12/9/2007 0 0.72
12/10/2007 0 0.75 12/10/2007 0 0.72
12/11/2007 0 0.75 12/11/2007 0 0.72
12/12/2007 0 0.75 12/12/2007 0 0.72
12/13/2007 0 0.74 12/13/2007 0 0.72
12/14/2007 0 0.74 12/14/2007 0 0.71
12/15/2007 0 0.74 12/15/2007 0 0.71
12/16/2007 0 0.74 12/16/2007 0 0.71
12/17/2007 0 0.74 12/17/2007 0 0.71
12/18/2007 0 0.74 12/18/2007 0 0.71
12/19/2007 0 0.74 12/19/2007 0 0.71
12/20/2007 0 0.73 12/20/2007 0 0.71
12/21/2007 0 0.73 12/21/2007 0 0.71
12/22/2007 0 0.73 12/22/2007 0 0.71
12/23/2007 0 0.73 12/23/2007 0 0.71
12/24/2007 0 0.73 12/24/2007 0 0.71
12/25/2007 0 0.73 12/25/2007 0 0.71
12/26/2007 0 0.73 12/26/2007 0 0.71
12/27/2007 0 0.73 12/27/2007 0 0.71
12/28/2007 0 0.73 12/28/2007 0 0.71
12/29/2007 0 0.73 12/29/2007 0 0.71
12/30/2007 0 0.73 12/30/2007 0 0.71
12/31/2007 0 0.73 12/31/2007 0 0.71
1/1/2008 0.0 0.73 1/1/2008 0 0.71
1/2/2008 0.0 0.72 1/2/2008 0 0.71
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1/3/2008 0.0 0.72 1/3/2008 0 0.71
1/4/2008 0.0 0.72 1/4/2008 0 0.71
1/5/2008 0.0 0.71 1/5/2008 0 0.71
1/6/2008 2.4 0.71 1/6/2008 14.4 0.71
1/7/2008 4.3 0.71 1/7/2008 10.6 0.71
1/8/2008 3.5 0.7 1/8/2008 7.4 0.71
1/9/2008 0.0 0.7 1/9/2008 0 0.71
1/10/2008 0.0 0.7 1/10/2008 0 0.71
1/11/2008 0.0 0.7 1/11/2008 0 0.71
1/12/2008 0.0 0.69 1/12/2008 0 0.70
1/13/2008 0.0 0.69 1/13/2008 0 0.70
1/14/2008 0.0 0.69 1/14/2008 0 0.70
1/15/2008 5.2 0.69 1/15/2008 9 0.70
1/16/2008 4.6 0.68 1/16/2008 10.1 0.70
1/17/2008 7.5 0.68 1/17/2008 6 0.70
1/18/2008 0.0 0.68 1/18/2008 8 0.70
1/19/2008 0.0 0.68 1/19/2008 0 0.70
1/20/2008 0.0 0.67 1/20/2008 0 0.70
1/21/2008 0.0 0.67 1/21/2008 0 0.70
1/22/2008 0.0 0.67 1/22/2008 0 0.70
1/23/2008 0.0 0.67 1/23/2008 0 0.70
1/24/2008 0.0 0.66 1/24/2008 0 0.69
1/25/2008 0.0 0.66 1/25/2008 0 0.69
1/26/2008 0.0 0.66 1/26/2008 0 0.69
1/27/2008 0.0 0.65 1/27/2008 0 0.69
1/28/2008 0.0 0.65 1/28/2008 0 0.69
1/29/2008 0.0 0.65 1/29/2008 0 0.69
1/30/2008 0.0 0.65 1/30/2008 0 0.69
1/31/2008 0.0 0.65 1/31/2008 0 0.68
2/1/2008 0.0 0.64 2/1/2008 0 0.68
2/2/2008 0.0 0.64 2/2/2008 0 0.68
2/3/2008 0.0 0.64 2/3/2008 0 0.68
2/4/2008 0.0 0.64 2/4/2008 0 0.68
2/5/2008 0.0 0.64 2/5/2008 0 0.68
2/6/2008 0.0 0.63 2/6/2008 0 0.68
2/7/2008 0.0 0.63 2/7/2008 0 0.68
2/8/2008 0.0 0.63 2/8/2008 0 0.67
2/9/2008 0.0 0.63 2/9/2008 0 0.67
2/10/2008 0.0 0.63 2/10/2008 0 0.67
2/11/2008 0.0 0.62 2/11/2008 0 0.67
2/12/2008 0.0 0.62 2/12/2008 0 0.67



  135

2/13/2008 0.0 0.62 2/13/2008 0 0.67
2/14/2008 0.0 0.62 2/14/2008 0 0.66
2/15/2008 0.0 0.61 2/15/2008 0 0.66
2/16/2008 0.0 0.61 2/16/2008 0 0.66
2/17/2008 0.0 0.61 2/17/2008 0 0.66
2/18/2008 0.0 0.61 2/18/2008 0 0.66
2/19/2008 0.0 0.61 2/19/2008 0 0.66
2/20/2008 0.0 0.61 2/20/2008 0 0.66
2/21/2008 0.0 0.6 2/21/2008 0 0.65
2/22/2008 0.0 0.6 2/22/2008 0 0.65
2/23/2008 0.0 0.6 2/23/2008 0 0.65
2/24/2008 0.0 0.6 2/24/2008 0 0.65
2/25/2008 0.0 0.6 2/25/2008 0 0.65
2/26/2008 0.0 0.6 2/26/2008 0 0.64
2/27/2008 0.0 0.6 2/27/2008 0 0.64
2/28/2008 0.0 0.6 2/28/2008 0 0.64
2/29/2008 0.0 0.6 2/29/2008 0 0.64
3/1/2008 0.0 0.59 3/1/2008 0 0.64
3/2/2008 0.0 0.59 3/2/2008 0 0.63
3/3/2008 0.0 0.59 3/3/2008 0 0.63
3/4/2008 0.0 0.59 3/4/2008 0 0.63
3/5/2008 0.0 0.59 3/5/2008 0 0.63
3/6/2008 0.0 0.59 3/6/2008 0 0.62
3/7/2008 0.0 0.59 3/7/2008 0 0.62
3/8/2008 0.0 0.59 3/8/2008 0 0.62
3/9/2008 0.0 0.59 3/9/2008 0 0.62
3/10/2008 0.0 0.58 3/10/2008 0 0.62
3/11/2008 0.0 0.58 3/11/2008 0 0.60
3/12/2008 0.0 0.58 3/12/2008 0 0.60
3/13/2008 0.0 0.58 3/13/2008 0 0.60
3/14/2008 0.0 0.58 3/14/2008 0 0.60
3/15/2008 0.0 0.58 3/15/2008 0 0.60
3/16/2008 0.0 0.58 3/16/2008 0 0.60
3/17/2008 0.0 0.58 3/17/2008 0 0.60
3/18/2008 3.7 0.58 3/18/2008 12.5 0.59
3/19/2008 6.7 0.58 3/19/2008 9.8 0.59
3/20/2008 10.2 0.6 3/20/2008 7.7 0.59
3/21/2008 6.1 0.61 3/21/2008 8.6 0.59
3/22/2008 6.7 0.62 3/22/2008 9.7 0.59
3/23/2008 5.3 0.63 3/23/2008 10.9 0.60
3/24/2008 6.6 0.63 3/24/2008 13.7 0.60
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3/25/2008 12.1 0.68 3/25/2008 11 0.60
3/26/2008 18.1 0.8 3/26/2008 25.2 1.30
3/27/2008 7.5 0.9 3/27/2008 9 0.70
3/28/2008 8.5 1 3/28/2008 12.7 0.95
3/29/2008 10.6 1.5 3/29/2008 10.5 1.20
3/30/2008 10.0 1.3 3/30/2008 11.6 1.30
3/31/2008 11.5 1.3 3/31/2008 10.7 1.10
4/1/2008 17.9 2 4/1/2008 19.1 3.10
4/2/2008 5.0 1.1 4/2/2008 5.5 0.90
4/3/2008 11.8 1.2 4/3/2008 10.4 1.20
4/4/2008 9.2 1.2 4/4/2008 11.7 1.10
4/5/2008 6.4 1.1 4/5/2008 0 1.00
4/6/2008 9.0 1.2 4/6/2008 0 0.90
4/7/2008 18.2 1.5 4/7/2008 15.7 1.90
4/8/2008 13.5 1.7 4/8/2008 17 2.10
4/9/2008 8.4 1.4 4/9/2008 10 1.30
4/10/2008 25.1 3.4 4/10/2008 28.5 4.50
4/11/2008 14.9 1.7 4/11/2008 15 2.20
4/12/2008 19.3 1.8 4/12/2008 18.1 2.50
4/13/2008 14.0 1.7 4/13/2008 12.3 2.10
4/14/2008 15.0 1.8 4/14/2008 0 1.70
4/15/2008 11.0 1.5 4/15/2008 12.8 2.10
4/16/2008 15.3 1.8 4/16/2008 15.1 2.40
4/17/2008 27.7 2.6 4/17/2008 29.4 4.80
4/18/2008 25.0 2.6 4/18/2008 23.5 4.40
4/19/2008 26.1 2.7 4/19/2008 28.1 4.80
4/20/2008 17.9 2.5 4/20/2008 0 1.90
4/21/2008 12.5 1.9 4/21/2008 14.2 1.80
4/22/2008 13.6 2.1 4/22/2008 13.1 2.10
4/23/2008 15.5 2.2 4/23/2008 13.9 2.20
4/24/2008 17.9 2.5 4/24/2008 17.8 2.70
4/25/2008 13.8 2.2 4/25/2008 13.8 2.20
4/26/2008 5.6 1.6 4/26/2008 0 1.70
4/27/2008 11.2 1.8 4/27/2008 18 2.70
4/28/2008 15.5 2.1 4/28/2008 16.7 2.50
4/29/2008 19.3 3 4/29/2008 19.6 3.70
4/30/2008 8.4 2.4 4/30/2008 0 1.70
5/1/2008 3.5 2 5/1/2008 0 1.60
5/2/2008 11.3 2.2 5/2/2008 0 1.40
5/3/2008 15.8 2.4 5/3/2008 17.1 3.40
5/4/2008 13.1 2.3 5/4/2008 18.2 3.50
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5/5/2008 13.4 2.3 5/5/2008 13.7 2.70
5/6/2008 15.6 2.5 5/6/2008 17.9 3.70
5/7/2008 6.7 1.7 5/7/2008 0 1.90
5/8/2008 10.0 1.9 5/8/2008 12.9 2.60
5/9/2008 12.4 2.1 5/9/2008 16.4 2.90
5/10/2008 5.0 1.5 5/10/2008 0 2.00
5/11/2008 5.6 1.4 5/11/2008 0 1.80
5/12/2008 8.7 1.6 5/12/2008 12.4 2.60
5/13/2008 8.9 1.7 5/13/2008 12 2.70
5/14/2008 26.5 3.8 5/14/2008 25.6 4.60
5/15/2008 9.3 1.9 5/15/2008 0 1.80
5/16/2008 15.1 2.6 5/16/2008 0 1.60
5/17/2008 12.8 2.2 5/17/2008 15.4 3.50
5/18/2008 10.5 2.1 5/18/2008 13.8 3.50
5/19/2008 8.8 1.7 5/19/2008 0 1.80
5/20/2008 9.4 1.9 5/20/2008 0 1.60
5/21/2008 0.0 1.6 5/21/2008 0 1.50
5/22/2008 0.0 1.4 5/22/2008 0 1.40
5/23/2008 0.0 1.2 5/23/2008 0 1.30
5/24/2008 11.7 2.3 5/24/2008 13 2.80
5/25/2008 19.9 3.2 5/25/2008 17.3 3.60
5/26/2008 19.6 3.3 5/26/2008 23.3 4.50
5/27/2008 9.7 2.1 5/27/2008 14.2 2.90
5/28/2008 10.4 2.2 5/28/2008 11.2 2.70
5/29/2008 8.6 1.9 5/29/2008 10.1 2.60
5/30/2008 8.2 2.1 5/30/2008 0 1.80
5/31/2008 13.5 2.3 5/31/2008 13.2 2.80
6/1/2008 18.3 2.9 6/1/2008 22.8 4.60
6/2/2008 8.7 2.1 6/2/2008 9.9 2.60
6/3/2008 8.1 2 6/3/2008 15.2 2.50
6/4/2008 25.7 3.6 6/4/2008 22.3 4.60
6/5/2008 2.7 1.9 6/5/2008 0 1.90
6/6/2008 5.6 1.8 6/6/2008 0 1.70
6/7/2008 5.4 1.8 6/7/2008 0 1.50
6/8/2008 5.1 1.9 6/8/2008 11.4 2.60
6/9/2008 9.9 2.1 6/9/2008 11.6 2.70
6/10/2008 7.6 2.1 6/10/2008 9.2 2.60
6/11/2008 0.0 1.6 6/11/2008 0 1.90
6/12/2008 0.0 1.4 6/12/2008 0 1.80
6/13/2008 0.0 1.2 6/13/2008 0 1.70
6/14/2008 0.0 1.1 6/14/2008 0 1.60
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6/15/2008 0.0 1 6/15/2008 0 1.50
6/16/2008 9.0 1.8 6/16/2008 10.3 2.50
6/17/2008 0.0 1.6 6/17/2008 0 1.80
6/18/2008 0.0 1.4 6/18/2008 0 1.70
6/19/2008 0.0 1.2 6/19/2008 0 1.50
6/20/2008 0.0 1.1 6/20/2008 0 1.30
6/21/2008 13.0 2.3 6/21/2008 0 1.20
6/22/2008 4.1 1.7 6/22/2008 15.1 2.50
6/23/2008 15.5 2.6 6/23/2008 22.8 4.60
6/24/2008 6.1 1.9 6/24/2008 0 1.80
6/25/2008 3.9 1.8 6/25/2008 0 1.60
6/26/2008 3.7 1.8 6/26/2008 0 1.40
6/27/2008 15.0 2.6 6/27/2008 13.8 3.00
6/28/2008 18.6 2.9 6/28/2008 16.1 3.20
6/29/2008 6.0 1.9 6/29/2008 25.6 4.80
6/30/2008 9.8 2.1 6/30/2008 0 1.90
7/1/2008 0.0 1.7 7/1/2008 0 1.70
7/2/2008 9.9 2.2 7/2/2008 11.2 2.80
7/3/2008 0.0 1.7 7/3/2008 0 2.00
7/4/2008 0.0 1.7 7/4/2008 0 1.80
7/5/2008 0.0 1.6 7/5/2008 0 1.80
7/6/2008 0.0 1.5 7/6/2008 0 1.75
7/7/2008 0.0 1.4 7/7/2008 0 1.70
7/8/2008 0.0 1.3 7/8/2008 0 1.65
7/9/2008 0.0 1.3 7/9/2008 0 1.60
7/10/2008 0.0 1.2 7/10/2008 0 1.50
7/11/2008 0.0 1.1 7/11/2008 0 1.40
7/12/2008 0.0 1.1 7/12/2008 0 1.30
7/13/2008 0.0 1 7/13/2008 0 1.20
7/14/2008 13.0 2.3 7/14/2008 15.2 3.10
7/15/2008 0.0 1.7 7/15/2008 0 1.70
7/16/2008 8.0 1.9 7/16/2008 9.3 2.60
7/17/2008 9.8 2.1 7/17/2008 10.9 2.70
7/18/2008 10.5 2.3 7/18/2008 0 1.70
7/19/2008 10.3 2.4 7/19/2008 10.2 2.70
7/20/2008 11.5 2.5 7/20/2008 11.3 2.80
7/21/2008 15.1 2.8 7/21/2008 11.5 2.80
7/22/2008 14.4 2.7 7/22/2008 14.6 3.10
7/23/2008 15.4 2.8 7/23/2008 15.9 3.40
7/24/2008 13.6 2.6 7/24/2008 12.2 3.00
7/25/2008 25.3 3.5 7/25/2008 27.5 4.90
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7/26/2008 14.7 2.8 7/26/2008 17 3.50
7/27/2008 10.2 2.5 7/27/2008 0 1.80
7/28/2008 15.1 2.8 7/28/2008 0 1.60
7/29/2008 15.5 2.9 7/29/2008 16.4 3.60
7/30/2008 14.9 2.8 7/30/2008 12.3 3.00
7/31/2008 11.7 2.5 7/31/2008 10.3 2.80
8/1/2008 14.1 2.6 8/1/2008 13.5 3.00
8/2/2008 13.0 2.6 8/2/2008 12.2 2.90
8/3/2008 6.3 1.9 8/3/2008 0 2.00
8/4/2008 0.0 1.7 8/4/2008 0 1.80
8/5/2008 0.0 1.5 8/5/2008 0 1.60
8/6/2008 7.4 1.9 8/6/2008 0 1.40
8/7/2008 15.6 2.8 8/7/2008 12.2 2.80
8/8/2008 12.7 2.7 8/8/2008 13.4 3.00
8/9/2008 9.8 2.1 8/9/2008 0 1.90
8/10/2008 11.0 2.6 8/10/2008 18.3 3.60
8/11/2008 10.1 2.6 8/11/2008 13.5 3.00
8/12/2008 14.9 2.8 8/12/2008 14 3.50
8/13/2008 5.1 2.1 8/13/2008 0 1.90
8/14/2008 23.2 3.4 8/14/2008 24.3 4.90
8/15/2008 6.5 2.4 8/15/2008 0 1.90
8/16/2008 10.9 2.6 8/16/2008 13.3 3.30
8/17/2008 20.2 3.2 8/17/2008 21.6 4.80
8/18/2008 11.0 2.6 8/18/2008 0 2.10
8/19/2008 23.0 3.5 8/19/2008 29.8 5.50
8/20/2008 25.7 3.8 8/20/2008 24.6 5.30
8/21/2008 9.3 2.6 8/21/2008 0 2.00
8/22/2008 8.8 2.5 8/22/2008 0 1.80
8/23/2008 8.4 2.4 8/23/2008 0 1.60
8/24/2008 9.1 2.6 8/24/2008 14.7 3.30
8/25/2008 20.5 3.3 8/25/2008 25.4 5.40
8/26/2008 4.1 1.9 8/26/2008 0 2.00
8/27/2008 0.0 1.7 8/27/2008 0 1.80
8/28/2008 0.0 1.5 8/28/2008 0 1.60
8/29/2008 12.9 2.6 8/29/2008 0 1.40
8/30/2008 13.2 2.7 8/30/2008 25.6 5.40
8/31/2008 21.4 3.7 8/31/2008 24.6 5.30
9/1/2008 12.7 2.7 9/1/2008 13.8 3.00
9/2/2008 5.7 2.1 9/2/2008 14.2 3.10
9/3/2008 5.6 2.1 9/3/2008 13.4 3.00
9/4/2008 7.9 2.2 9/4/2008 0 1.90
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9/5/2008 4.7 2.1 9/5/2008 0 1.70
9/6/2008 5.1 2 9/6/2008 0 1.50
9/7/2008 12.9 2.7 9/7/2008 12.2 2.80
9/8/2008 21.5 3.8 9/8/2008 23.5 5.00
9/9/2008 11.1 2.6 9/9/2008 13.6 3.40
9/10/2008 5.1 2 9/10/2008 0 2.00
9/11/2008 10.9 2.6 9/11/2008 22.1 4.80
9/12/2008 9.8 2.5 9/12/2008 0 1.90
9/13/2008 9.5 2.4 9/13/2008 10.9 2.80
9/14/2008 11.0 2.5 9/14/2008 24.1 5.20
9/15/2008 14.1 2.8 9/15/2008 10.1 2.80
9/16/2008 6.3 2.4 9/16/2008 18.3 4.10
9/17/2008 0.0 1.9 9/17/2008 0 2.10
9/18/2008 0.0 1.8 9/18/2008 0 1.90
9/19/2008 0.0 1.7 9/19/2008 0 1.70
9/20/2008 0.0 1.6 9/20/2008 0 1.60
9/21/2008 0.0 1.5 9/21/2008 0 1.50
9/22/2008 6.0 2.3 9/22/2008 0 1.40
9/23/2008 7.6 2.4 9/23/2008 0 1.30
9/24/2008 9.6 2.7 9/24/2008 12.4 2.90
9/25/2008 8.8 2.8 9/25/2008 14.6 3.20
9/26/2008 8.0 2.6 9/26/2008 13.1 3.00
9/27/2008 0.0 1.9 9/27/2008 0 1.90
9/28/2008 0.0 1.7 9/28/2008 0 1.80
9/29/2008 0.0 1.6 9/29/2008 0 1.70
9/30/2008 0.0 1.5 9/30/2008 0 1.60
10/1/2008 0.0 1.4 10/1/2008 0 1.50
10/2/2008 0.0 1.3 10/2/2008 0 1.40
10/3/2008 9.2 2.7 10/3/2008 0 1.30
10/4/2008 6.7 2.5 10/4/2008 11.3 2.80
10/5/2008 7.2 2.6 10/5/2008 15.3 3.40
10/6/2008 12.8 2.8 10/6/2008 18.7 3.60
10/7/2008 4.4 2.1 10/7/2008 0 1.70
10/8/2008 12.4 2.8 10/8/2008 12 2.80
10/9/2008 7.7 2.5 10/9/2008 18.3 3.70
10/10/2008 4.5 2.3 10/10/2008 19.5 3.80
10/11/2008 6.3 2.4 10/11/2008 0 1.90
10/12/2008 0.0 2.1 10/12/2008 0 1.80
10/13/2008 10.4 2.7 10/13/2008 0 1.70
10/14/2008 8.9 2.6 10/14/2008 0 1.60
10/15/2008 5.3 2.3 10/15/2008 0 1.50
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10/16/2008 7.5 2.5 10/16/2008 0 1.45
10/17/2008 5.6 2.4 10/17/2008 0 1.40
10/18/2008 5.5 2.4 10/18/2008 15.4 3.40
10/19/2008 5.4 2.3 10/19/2008 0 1.90
10/20/2008 10.5 2.7 10/20/2008 16.6 3.50
10/21/2008 9.1 2.6 10/21/2008 12.8 2.80
10/22/2008 4.9 2.3 10/22/2008 0 1.70
10/23/2008 4.2 2.2 10/23/2008 23.8 5.10
10/24/2008 7.2 2.5 10/24/2008 16.6 3.30
10/25/2008 5.9 2.3 10/25/2008 21.9 4.90
10/26/2008 5.5 2.2 10/26/2008 0 1.90
10/27/2008 8.9 2.4 10/27/2008 0 1.80
10/28/2008 6.0 2.3 10/28/2008 0 1.70
10/29/2008 8.4 2.4 10/29/2008 0 1.60
10/30/2008 0.0 1.7 10/30/2008 20.4 4.7
10/31/2008 0.0 1.6 10/31/2008 0 1.4
11/1/2008 0.0 1.5 11/1/2008 0 1.3
11/2/2008 2.0 1.8 11/2/2008 0 1.2
11/3/2008 2.8 1.9 11/3/2008 0 1.1
11/4/2008 2.2 1.9 11/4/2008 0 1
11/5/2008 1.4 1.3 11/5/2008 14.3 0.95
11/6/2008 0.9 1.1 11/6/2008 13.8 0.93
11/7/2008 2.0 1.4 11/7/2008 0 0.92
11/8/2008 0.0 1.2 11/8/2008 0 0.91
11/9/2008 0.0 1.1 11/9/2008 0 0.9
11/10/2008 0.0 1 11/10/2008 0 0.89
11/11/2008 0.0 0.9 11/11/2008 0 0.88
11/12/2008 0.0 0.93 11/12/2008 0 0.87
11/13/2008 0.0 0.92 11/13/2008 0 0.86
11/14/2008 0.0 0.91 11/14/2008 0 0.85
11/15/2008 0.0 0.89 11/15/2008 0 0.84
11/16/2008 0.0 0.86 11/16/2008 0 0.81
11/17/2008 0.0 0.85 11/17/2008 0 0.8
11/18/2008 0.0 0.83 11/18/2008 0 0.78
11/19/2008 0.0 0.82 11/19/2008 0 0.77
11/20/2008 0.0 0.8 11/20/2008 0 0.75
11/21/2008 0.0 0.79 11/21/2008 0 0.74
11/22/2008 0.0 0.78 11/22/2008 0 0.74
11/23/2008 0.0 0.77 11/23/2008 0 0.73
11/24/2008 0.0 0.77 11/24/2008 0 0.72
11/25/2008 0.0 0.76 11/25/2008 0 0.71
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11/26/2008 0.0 0.76 11/26/2008 0 0.71
11/27/2008 0.0 0.75 11/27/2008 0 0.7
11/28/2008 0.0 0.75 11/28/2008 0 0.7
11/29/2008 0.0 0.74 11/29/2008 0 0.69
11/30/2008 0.0 0.74 11/30/2008 0 0.69
12/1/2008 0.0 0.73 12/1/2008 0 0.68
12/2/2008 0.0 0.72 12/2/2008 0 0.68
12/3/2008 0.0 0.71 12/3/2008 0 0.67
12/4/2008 0.0 0.7 12/4/2008 0 0.66
12/5/2008 0.0 0.69 12/5/2008 0 0.65
12/6/2008 0.0 0.68 12/6/2008 0 0.64
12/7/2008 0.0 0.68 12/7/2008 0 0.63
12/8/2008 0.0 0.67 12/8/2008 0 0.63
12/9/2008 0.0 0.66 12/9/2008 0 0.62
12/10/2008 0.0 0.65 12/10/2008 0 0.62
12/11/2008 0.0 0.64 12/11/2008 0 0.61
12/12/2008 0.0 0.63 12/12/2008 0 0.61
12/13/2008 0.0 0.62 12/13/2008 0 0.61
12/14/2008 0.0 0.61 12/14/2008 0 0.6
12/15/2008 0.0 0.6 12/15/2008 0 0.6
12/16/2008 0.0 0.59 12/16/2008 0 0.6
12/17/2008 0.0 0.59 12/17/2008 0 0.59
12/18/2008 0.0 0.58 12/18/2008 0 0.59
12/19/2008 0.0 0.58 12/19/2008 0 0.59
12/20/2008 0.0 0.58 12/20/2008 0 0.58
12/21/2008 0.0 0.58 12/21/2008 0 0.58
12/22/2008 0.0 0.57 12/22/2008 0 0.58
12/23/2008 0.0 0.57 12/23/2008 0 0.58
12/24/2008 0.0 0.57 12/24/2008 0 0.58
12/25/2008 0.0 0.57 12/25/2008 0 0.57
12/26/2008 0.0 0.57 12/26/2008 13.3 0.57
12/27/2008 0.0 0.57 12/27/2008 0 0.57
12/28/2008 0.0 0.56 12/28/2008 0 0.57
12/29/2008 0.0 0.56 12/29/2008 0 0.57
12/30/2008 0.0 0.56 12/30/2008 0 0.57
12/31/2008 0.0 0.56 12/31/2008 0 0.57
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APPENDIX B 

Raw data pertaining to Chapter 2. 

Table B1: Data table for Chapter 2, Table 2.1 

 0.33 bar 

Bulk 
density 
(g cm-3) 

Total 
porosity 

SOM  
(%) 

SOC  
(g kg-1) 

forest 36.194 0.691 0.739 14.946 95.3 
forest 35.232 0.718 0.729 14.751 105.2 
forest 33.449 0.685 0.742 21.77 124.5 
forest 34.065 0.751 0.717 17.91 116.7 
forest 34.575 0.655 0.753 16.03 99.8 
5yr 35.88 0.905 0.658 13.812 71.5 
5yr 33.258 0.909 0.657 12.32 59.8 
5yr 33.879 0.967 0.635 14.002 75 
5yr 32.761 0.953 0.64 13.97 70.1 
5yr 34.492 0.84 0.683 14.26 67.6 
10yr 26.537 1.18 0.555 8.163 33.9 
10yr 23.147 0.921 0.652 8.744 40.3 
10yr 25.94 0.983 0.629 8.681 34.9 
10yr 24.056 1.14 0.57 8.45 39.7 
10yr 24.7 0.95 0.642 8.62 33.2 
50yr 23.31 1.19 0.551 6.209 24.9 
50yr 21.88 0.98 0.63 7.67 26.9 
50yr 23.26 1.22 0.54 7.123 30.6 
50yr 22.84 1.21 0.543 6.85 28.6 
50yr 23.54 1.25 0.528 7.15 26.5 

 
SOC  

(t ha-1) 
Soil N  
(g kg-1) 

Soil N  
(t ha-1) 

available 
Ca  

(g kg-1) 

available 
K  

(g  kg-1) 
forest 76.24 11.2 8.96 6.760 0.470 
forest 84.16 10.6 8.48 6.511 1.433 
forest 99.6 11.3 9.04 6.425 0.369 
forest 93.36 12.1 9.68 5.909 0.565 
forest 79.84 10.5 8.4 5.685 0.623 
5yr 65.065 7.3 6.643 5.170 0.256 
5yr 54.418 5.8 5.278 3.692 0.394 
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5yr 68.25 7.7 7.007 5.955 0.897 
5yr 63.791 6.6 6.006 5.488 0.754 
5yr 61.516 7.1 6.461 4.611 0.603 
10yr 34.917 3.1 3.193 1.355 0.153 
10yr 41.509 3.9 4.017 2.466 0.306 
10yr 35.947 3.1 3.193 2.195 0.198 
10yr 40.891 3.2 3.296 1.475 0.354 
10yr 34.196 3.4 3.502 1.359 0.138 
50yr 29.133 2.2 2.574 3.410 0.399 
50yr 31.473 1.9 2.223 2.412 0.389 
50yr 35.802 2.6 3.042 3.903 0.532 
50yr 33.462 2.1 2.457 2.502 0.492 
50yr 31.005 2.3 2.691 2.344 0.393 

 

available 
Mg  

(g kg-1) 

available 
Na  

(g kg-1) 

available 
P  

(g kg-1) pH  

forest 0.643 0.011 0.013 7.26  

forest 0.542 0.017 0.006 7.51  

forest 0.735 0.012 0.025 7.45  

forest 0.893 0.012 0.004 7.54  

forest 0.843 0.080 0.010 7.19  

5yr 0.511 0.014 0.019 6.34  

5yr 0.455 0.010 0.002 6.19  

5yr 0.467 0.053 0.006 6.65  

5yr 0.437 0.011 0.005 6.78  

5yr 0.400 0.012 0.004 6.44  

10yr 0.194 0.013 0.003 6.46  

10yr 0.273 0.011 0.004 6.17  

10yr 0.203 0.010 0.002 6.24  

10yr 0.181 0.008 0.002 6.29  

10yr 0.171 0.009 0.004 6.01  

50yr 0.374 0.011 0.022 5.92  

50yr 0.284 0.009 0.002 5.98  

50yr 0.433 0.015 0.003 5.97  

50yr 0.280 0.010 0.002 5.35  

50yr 0.286 0.010 0.003 5.85  
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Table B2: Data table for Chapter 2, Figure 2.1 

 

0-10 cm 
 

(‰) 

10-30 
cm 
(‰) 

30 -90 
cm 
(‰) 

90-150 
cm 
(‰) 

150-240 
cm 
(‰) 

forest -25.05 -24.10 -20.76 -17.90 -18.62 
forest -26.42 -23.01 -19.55 -14.36 -16.95 
forest -26.44 -24.14 -20.74 -19.61 -21.98 
forest -26.34 -22.90 -20.33 -17.75 -17.27 
5yr -24.13 -23.23 -20.13 -14.92 -16.68 
5yr -25.60 -23.46 -19.87 -15.57 -17.39 
5yr -25.79 -23.45 -19.61 -17.30 -17.32 
5yr -25.97 -22.44 -18.37 -16.04 -15.69 
10yr -21.46 -20.56 -17.95 -15.56 -16.05 
10yr -22.35 -20.36 -22.24 -18.53 -17.68 
10yr -20.53 -20.62 -17.29 -14.55 -14.50 
10yr -20.52 -19.57 -16.68 -13.51 -14.89 
50yr -19.29 -19.09 -17.54 -15.36 -14.85 
50yr -19.74 -19.40 -17.10 -15.28 -13.68 
50yr -18.71 -18.48 -16.77 -15.21 -14.22 
50yr -18.97 -18.53 -17.63 -16.62 -14.19 
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Table B3: Data table for Chapter 2, Table 2.2 

  

 

d13C-CPOC 
(‰) 

   

d13C-CPOC 
(‰) 

forest -26.608   5yr -28.04
 forest -27.305   5yr -27.218
forest -28.042   5yr -27.907
forest -28.083   5yr -26.893
forest -28.014   5yr -27.321
forest -28.479   5yr -27.749
forest -27.441   5yr -27.932
forest -28.098   5yr -28.268
forest -27.857   5yr -23.531
forest -28.414   5yr -27.623
forest -28.153   5yr -27.999
forest -27.994   5yr -28.524
forest -27.757   5yr -27.082
forest -27.063   5yr -27.779
forest -27.902   5yr -28.102
forest -28.138   5yr -27.348
forest -27.918   5yr -27.874
forest -26.549   5yr -26.867
forest -26.471   5yr -26.555
forest -26.071   5yr -25.598
forest -27.739   5yr -27.375
forest -27.499   5yr -27.246
forest -26.676   5yr -27.418
forest -26.145   5yr -26.633
10yr -28.041   50yr -26.602
10yr -27.933   50yr -26.933
10yr -27.258   50yr -25.73
10yr -25.917   50yr -27.242
10yr -27.664   50yr -26.762
10yr -27.262   50yr -27.142
10yr -27.778   50yr -26.645
10yr -27.89   50yr -27.304
10yr -27.598   50yr -26.126
10yr -27.441   50yr -26.422
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10yr -28.327   50yr -27.358
10yr -27.343   50yr -25.645
10yr -26.783   50yr -25.333
10yr -28.569   50yr -26.835
10yr -27.442   50yr -26.433
10yr -27.318   50yr -27.033
10yr -27.182   50yr -26.003
10yr -26.006   50yr -25.658
10yr -26.33   50yr -26.001
10yr -25.976   50yr -25.199
10yr -27.499   50yr -26.526
10yr -26.696   50yr -26.468
10yr -27.281   50yr -26.285
10yr -27.22   50yr -25.82

 DOC-d13C (‰)   
forest -28.77  
forest -28.81  
forest -28.17  
forest -28.61  
5yr -28.42  
5yr -28.07  
5yr -28.25  
5yr -28.25  
10yr -27.34  
10yr -26.24  
10yr -26.79  
10yr -26.80  
50yr -22.52  
50yr -22.14  
50yr -22.59  
50yr -23.75  

 

NO3-N – forest 

(mg L-1) 

TDN – forest 

(mg L-1) 

Ca – forest 

(mg L-1) 

K – forest 

(mg L-1) 

January-08 0.424 0.557 6.830 0.243 

February-08 0.401 0.556 7.048 0.624 

March-08 0.412 0.548 7.108 0.442 



  148

April-08 0.4148 0.555 7.323 0.812 

May-08 0.443 0.558 7.535 0.628 

June-08 0.397 0.462 7.492 0.490 

July-08 0.345 0.402 7.650 1.067 

August-08 0.381 0.428 7.163 0.090 

September-08 0.404 0.482 7.062 0 

October-08 0.401 0.473 7.162 0 

November-08 0.395 0.486 7.138 0 

December-08 0.398 0.471 7.208 0 

 

 

Mg – forest 

(mg L-1) 

 

 

Na – forest 

(mg L-1) 

CPOC – forest 

(mg L-1) 

CPON – forest 

(mg L-1) 

January-08 2.840 3.467 0.930 0.014 

February-08 2.955 3.557 1.716 0.044 

March-08 2.944 3.556 1.102 0.015 

April-08 3.067 3.610 1.131 0.058 

May-08 3.100 3.379 1.137 0.127 

June-08 3.106 3.535 1.050 0.057 

July-08 3.143 3.449 1.363 0.240 

August-08 2.996 2.285 1.112 0.091 

September-08 3.016 2.306 1.341 0.052 

October-08 2.986 2.380 1.479 0.238 

November-08 2.969 2.260 1.311 0.265 
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December-08 2.980 2.323 1.129 0.355 

 

TDP – forest 

(mg L-1) 

DOC – forest 

(mg L-1) 

DON – forest 

(mg L-1)  

January-08 0.001 1.635 0.132  

February-08 0 1.551 0.155  

March-08 0.019 1.500 0.135  

April-08 0.028 1.557 0.14  

May-08 0.036 1.440 0.115  

June-08 0.034 1.372 0.065  

July-08 0.015 0.951 0.057  

August-08 0.106 0.981 0.046  

September-08 0.016 1.533 0.078  

October-08 0.021 1.447 0.072  

November-08 0.013 0.984 0.091  

December-08 0.039 0.938 0.073  

 

NO3-N - 5yr 

(mg L-1) 

TDN - 5yr 

(mg L-1) 

Ca - 5yr 

(mg L-1) 

K - 5yr 

(mg L-1) 

January-08 0.632 0.718 4.920 0.858 

February-08 0.685 0.759 5.584 1.051 

March-08 0.710 0.787 5.273 1.150 

April-08 0.690 0.801 5.627 1.267 

May-08 0.591 0.671 5.752 1.258 

June-08 0.542 0.605 5.719 1.072 
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July-08 0.536 0.657 5.873 1.188 

August-08 0.577 0.673 5.645 0.403 

September-08 0.568 0.646 5.4877 0.353 

October-08 0.473 0.577 5.761 0.496 

November-08 0.528 0.669 5.351 0.314 

December-08 0.499 0.578 5.596 0.212 

     

 

Mg - 5yr 

(mg L-1) 

Na - 5yr 

(mg L-1) 

CPOC - 5yr 

(mg L-1) 

CPON - 5yr 

(mg L-1) 

January-08 1.720 3.836 1.500 0.099 

February-08 1.842 4.011 1.640 0.136 

March-08 1.944 4.226 1.897 0.167 

April-08 2.020 4.304 1.147 0.066 

May-08 2.003 4.325 1.906 0.216 

June-08 2.126 4.131 1.249 0.121 

July-08 2.161 3.625 1.242 0.1653 

August-08 2.032 3.251 1.616 0.126 

September-08 2.073 3.271 1.256 0.109 

October-08 2.146 3.267 1.302 0.311 

November-08 2.039 3.246 1.316 0.117 

December-08 1.966 2.91658047 1.309 0.108 
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TDP - 5yr 

(mg L-1) 

DOC - 5yr 

(mg L-1) 

DON - 5yr 

(mg L-1)  

January-08 0.001 1.788 0.087  

February-08 0.006 1.648 0.073  

March-08 0 1.700 0.077  

April-08 0 1.771 0.110  

May-08 0.019 1.975 0.080  

June-08 0.005 1.523 0.063  

July-08 0.010 1.188 0.121  

August-08 0.014 1.132 0.096  

September-08 0 1.458 0.078  

October-08 0.010 1.307 0.104  

November-08 0.005 1.176 0.141  

December-08 0.005 1.044 0.078  

 
 
 

 
 

 

 

 

 

 

 

NO3-N - 10yr 

(mg L-1) 

 

 

 

 

TDN - 10yr 

(mg L-1) 

 

 

 

 

Ca - 10yr 

(mg L-1) 

 

 

 

 

K - 10yr 

(mg L-1) 

January-08 4.530 4.566 5.364 1.442 

February-08 4.767 4.741 5.646 1.565 

March-08 4.614 4.820 5.635 1.759 
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April-08 4.680 4.908 5.890 1.637 

May-08 4.952 5.007 5.711 1.635 

June-08 4.788 4.731 5.561 1.502 

July-08 4.790 4.914 5.760 1.591 

August-08 4.890 4.948 5.385 0.300 

September-08 4.745 5.003 5.436 0.015 

October-08 4.566 4.725 5.275 0.034 

November-08 4.514 4.509 5.000 0.016 

December-08 4.643 5.015 5.215 0.180 

 

Mg - 10yr 

(mg L-1) 

Na - 10yr 

(mg L-1) 

CPOC - 10yr 

(mg L-1) 

CPON - 10yr 

(mg L-1) 

January-08 1.551 5.185 1.634 0.163 

February-08 1.623 5.245 1.730 0.060 

March-08 1.641 5.503 1.440 0.160 

April-08 1.699 5.583 1.594 0.201 

May-08 1.677 5.556 1.536 0.086 

June-08 1.626 5.286 1.614 0.129 

July-08 1.674 5.505 1.480 0.177 

August-08 1.595 4.099 1.282 0.169 

September-08 1.603 3.795 1.316 0.110 

October-08 1.553 3.458 1.631 0.209 

November-08 1.505 3.403 1.266 0.172 

December-08 1.542 3.468 1.465 0.274 
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TDP - 10yr 

(mg L-1) 

 

DOC - 10yr 

(mg L-1) 

 

DON - 10yr 

(mg L-1)  

January-08 0.034 1.902 0.035  

February-08 0.034 1.728 0.174  

March-08 0.022 1.779 0.106  

April-08 0.046 1.725 0.128  

May-08 0.044 1.665 0.055  

June-08 0.062 1.690 0.043  

July-08 0.054 1.042 0.124  

August-08 0.081 1.060 0.043  

September-08 0.038 1.298 0.238  

October-08 0.066 1.455 0.158  

November-08 0.014 1.297 0.095  

December-08 0.029 1.178 0.212  

 

 
NO3-N - 50yr 

(mg L-1) 
TDN - 50yr 

(mg L-1) 
Ca - 50yr 
(mg L-1) 

K - 50yr 
(mg L-1) 

January-08 4.531 5.331 7.274 1.584 

February-08 4.632 5.017 7.164 1.729 

March-08 4.563 5.374 7.101 1.601 

April-08 4.594 4.892 7.429 1.848 

May-08 4.415 4.854 6.964 1.560 

June-08 4.764 4.956 7.320 2.042 

July-08 4.612 4.643 7.208 2.303 

August-08 4.440 4.509 7.235 0.768 

September-08 4.336 4.468 7.347 0.385 
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October-08 4.189 4.299 7.017 0.090 

November-08 4.205 4.257 6.846 0.028 

December-08 4.217 4.322 6.790 0.281 

 

Mg - 50yr 

(mg L-1) 

Na - 50yr 

(mg L-1) 

 

CPOC - 50yr 

(mg L-1) 

CPON - 50yr 

(mg L-1) 

January-08 2.570 6.200 1.3165 0.158 

February-08 2.624 6.381 1.7563 0.178 

March-08 2.551 6.361 1.5477 0.176 

April-08 2.690 6.410 1.579 0.179 

May-08 2.425 6.392 2.031 0.144 

June-08 2.650 6.422 2.318 0.168 

July-08 2.632 6.613 1.618 0.161 

August-08 2.537 5.060 1.5477 0.188 

September-08 2.539 4.548 1.613 0.178 

October-08 2.453 4.414 1.392 0.128 

November-08 2.385 4.318 1.449 0.106 

December-08 2.432 4.321 1.890 0.111 

     

 

P - 50yr 

(mg L-1) 

DOC - 50yr 

(mg L-1) 

DON - 50yr 

(mg L-1)  

January-08 0.156 1.903 0.200  

February-08 0.278 1.723 0.184  

March-08 0.071 1.802 0.011  

April-08 0.171 1.853 0.198  

May-08 0.180 2.099 0.139  

June-08 0.168 1.470 0.192  

July-08 0.170 1.007 0.031  

August-08 0.221 1.370 0.069  

September-08 0.213 1.580 0.131  
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October-08 0.016 1.319 0.1094  

November-08 0.0243 1.229 0.052  

December-08 0.018 1.139 0.105  

 

 

Table B4: Data table for Chapter 2 , Figure 2.2 

Date 
 

Discharge 
 - forest 

(mm day-1) 

DOC 
 - forest 
(mg L-1) 

TDN – 
forest 

(mg L-1) 

TDP – 
forest 

(mg L-1) 
1/3/2008 0.61 1.749 0.550 0 
1/17/2008 0.60 1.512 0.563 0.003 
2/1/2008 0.59 1.561 0.576 0 
2/16/2008 0.59 1.540 0.535 0 
3/3/2008 0.59 1.518 0.544 0 
3/15/2008 0.59 1.483 0.552 0.037 
4/2/2008 0.60 1.576 0.554 0 
4/16/2008 0.62 1.539 0.556 0.055 
5/2/2008 0.64 1.401 0.576 0 
5/16/2008 0.68 1.474 0.541 0.068 
6/2/2008 0.76 1.648 0.489 0.066 
6/16/2008 0.88 1.133 0.438 0.006 
7/2/2008 0.91 0.996 0.435 0 
7/16/2008 0.93 0.909 0.372 0.029 
8/2/2008 0.94 0.956 0.409 0.074 
8/16/2008 0.97 1.003 0.446 0.134 
9/2/2008 1.02 1.176 0.468 0 
9/16/2008 1.12 1.859 0.495 0.031 
10/2/2008 1.28 1.646 0.522 0 
10/16/2008 1.36 1.271 0.429 0.040 
11/3/2008 1.04 1.016 0.509 0.023 
11/17/2008 0.84 0.945 0.459 0 
12/3/2008 0.65 0.987 0.468 0.061 
12/17/2008 0.60 0.888 0.474 0.017 
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Date 

 

 
Ca – forest 

(mg L-1) 

 
K – forest 
(mg L-1) 

 
Mg – 
forest 

(mg L-1) 

 
Na-forest 
(mg L-1) 

1/3/2008 6.817 0.244 2.845 3.374 
1/17/2008 6.843 0.241 2.836 3.568 
2/1/2008 6.968 0.774 2.938 3.504 
2/16/2008 7.134 0.462 2.974 3.615 
3/3/2008 7.136 0.385 2.956 3.584 
3/15/2008 7.083 0.496 2.932 3.530 
4/2/2008 7.197 0.770 3.033 3.564 
4/16/2008 7.446 0.853 3.099 3.656 
5/2/2008 7.528 0.613 3.079 3.748 
5/16/2008 7.542 0.641 3.121 3.618 
6/2/2008 7.509 0.803 3.112 3.564 
6/16/2008 7.477 0.965 3.103 3.510 
7/2/2008 7.737 1.269 3.168 3.829 
7/16/2008 7.570 0.882 3.120 3.675 
8/2/2008 7.303 0.189 3.039 3.025 
8/16/2008 7.036 0 2.957 2.376 
9/2/2008 7.331 0 3.023 2.284 
9/16/2008 6.818 0 3.010 2.327 
10/2/2008 7.280 0 2.998 2.369 
10/16/2008 7.057 0 2.975 2.389 
11/3/2008 7.292 0 3.011 2.282 
11/17/2008 6.947 0 2.918 2.232 
12/3/2008 7.176 0 2.977 2.283 
12/17/2008 7.242 0 2.983 2.363 

Date 
 

discharge  
- 5yr 

(mm day-1) 

DOC  
- 5yr 

(mg L-1) 
TDN - 5yr 
(mg L-1) 

TDP  
- 5yr 

(mg L-1) 
1/3/2008 0.71 1.589 0.723 0 
1/17/2008 0.68 2.009 0.714 0.002 
2/1/2008 0.64 1.536 0.684 0.011 
2/16/2008 0.61 1.774 0.842 0 
3/3/2008 0.59 1.67 0.791 0 
3/16/2008 0.58 1.729 0.784 0 
4/2/2008 1.11 1.729 0.676 0 
4/16/2008 2.44 1.79 0.858 0 
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5/2/2008 1.96 1.834 0.55 0.012 
5/16/2008 1.91 2.111 0.782 0.026 
6/2/2008 1.74 1.669 0.685 0.008 
6/16/2008 1.23 1.316 0.492 0 
7/2/2008 1.21 1.276 0.689 0.024 
7/16/2008 1.61 1.126 0.635 0 
8/2/2008 1.82 0.881 0.660 0 
8/16/2008 2.19 1.328 0.684 0.025 
9/2/2008 2.11 1.318 0.672 0 
9/16/2008 1.36 1.674 0.606 0 
10/2/2008 1.43 1.385 0.539 0.015 
10/17/2008 1.21 1.221 0.619 0.003 
11/3/2008 0.97 1.094 0.581 0.008 
11/17/2008 0.84 1.271 0.771 0 
12/3/2008 0.76 1.009 0.591 0.003 
12/17/2008 0.59 1.087 0.561 0.008 

     
     

Date 
 

Ca - 5yr 
(mg L-1) 

K - 5yr 
(mg L-1) 

Mg - 5yr 
(mg L-1) 

Na-5yr 
(mg L-1) 

1/3/2008 4.908 0.828 1.705 3.846 
1/17/2008 4.934 0.891 1.737 3.825 
2/1/2008 5.032 1.111 1.826 3.972 
2/16/2008 5.142 0.984 1.859 4.055 
3/3/2008 5.357 1.092 1.989 4.268 
3/16/2008 5.193 1.010 1.901 4.186 
4/2/2008 5.228 0.978 1.921 4.220 
4/16/2008 5.809 1.399 2.065 4.343 
5/2/2008 5.771 1.306 1.889 4.240 
5/16/2008 5.734 1.212 2.113 4.407 
6/2/2008 5.852 1.054 2.163 4.535 
6/16/2008 5.532 1.098 2.074 3.559 
7/2/2008 5.922 1.087 2.169 3.666 
7/16/2008 5.839 1.259 2.157 3.596 
8/2/2008 5.546 0.545 1.933 3.375 
8/16/2008 5.652 0.293 2.109 3.154 
9/2/2008 5.299 0.359 2.053 3.163 
9/16/2008 5.526 0.344 2.105 3.184 
10/2/2008 5.754 0.330 2.157 3.206 
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10/17/2008 5.643 0.258 2.134 3.335 
11/3/2008 5.196 0.296 2.030 3.009 
11/17/2008 5.467 0.334 2.050 3.088 
12/3/2008 5.257 0.167 1.990 2.942 
12/17/2008 5.077 0.266 1.938 2.886 

Date 
 
 

Discharge 
 - 10yr 

(mm day-1) 

DOC  
- 10yr 

(mg L-1) 

TDN - 
10yr 

(mg L-1) 

TDP 
 - 10yr 

(mg L-1) 
1/3/2008 0.71 1.887 4.355 0.036 
1/17/2008 0.68 2.131 4.8 0.033 
2/1/2008 0.64 1.805 4.693 0.035 
2/16/2008 0.61 1.642 4.796 0.034 
3/3/2008 0.59 1.802 4.73 0.031 
3/16/2008 0.59 1.757 4.905 0.015 
4/2/2008 1.21 1.96 5.079 0.076 
4/16/2008 2.16 1.749 4.812 0.030 
5/2/2008 2.19 1.726 4.93 0.038 
5/16/2008 1.90 1.807 5.091 0.051 
6/2/2008 2.32 1.944 4.678 0.087 
6/16/2008 1.58 1.317 4.81 0.026 
7/2/2008 1.84 1.204 4.804 0.020 
7/16/2008 1.99 0.901 5.01 0.083 
8/2/2008 2.48 0.955 4.97 0.082 
8/16/2008 2.79 1.147 4.93 0.080 
9/2/2008 2.49 1.327 5.148 0.060 
9/16/2008 2.17 1.48 4.836 0.013 
10/2/2008 2.22 1.835 4.568 0.046 
10/17/2008 2.41 1.313 4.86 0.085 
11/3/2008 1.76 1.343 4.516 0.013 
11/17/2008 0.84 1.51 4.494 0.016 
12/3/2008 0.71 1.191 4.963 0.027 
12/17/2008 0.58 1.163 5.074 0.034 

     
Date 

 
Ca - 10yr 
(mg L-1) 

K - 10yr 
(mg L-1) 

Mg - 10yr 
(mg L-1) 

Na-10yr 
(mg L-1) 

1/3/2008 5.233 1.374 1.512 5.128 
1/17/2008 5.510 1.728 1.594 5.250 
2/1/2008 5.605 1.657 1.612 5.313 
2/16/2008 5.693 1.675 1.635 5.381 
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3/3/2008 5.544 1.777 1.616 5.574 
3/16/2008 5.720 1.936 1.665 5.631 
4/2/2008 5.896 2.094 1.714 5.688 
4/16/2008 5.887 1.693 1.691 5.681 
5/2/2008 5.767 1.789 1.684 5.559 
5/16/2008 5.651 1.678 1.669 5.553 
6/2/2008 5.631 1.525 1.656 5.328 
6/16/2008 5.457 1.715 1.582 5.225 
7/2/2008 5.688 1.941 1.639 5.473 
7/16/2008 5.822 2.034 1.703 5.720 
8/2/2008 5.540 0.660 1.633 4.671 
8/16/2008 5.257 0 1.563 3.622 
9/2/2008 5.522 0.026 1.625 3.874 
9/16/2008 5.337 0.003 1.578 3.704 
10/2/2008 5.335 0.075 1.580 3.706 
10/17/2008 5.223 0 1.531 3.616 
11/3/2008 4.977 0.023 1.501 3.557 
11/17/2008 5.048 0.002 1.514 3.700 
12/3/2008 5.104 0.058 1.528 3.629 
12/17/2008 5.342 0.320 1.558 3.714 

Date 
 
 

discharge  
- 50yr 

(mm day-1) 

DOC  
- 50yr 

(mg L-1) 

TDN  
- 50yr 

(mg L-1) 

TDP  
- 50yr 

(mg L-1) 
1/3/2008 0.71 1.711 5.27 0.029 
1/17/2008 0.70 2.111 5.397 0.294 
2/1/2008 0.68 1.789 5.527 0.271 
2/16/2008 0.66 1.651 5.505 0.286 
3/3/2008 0.63 1.896 5.361 0.068 
3/16/2008 0.60 1.709 5.386 0.073 
4/2/2008 1.25 2.012 4.927 0.203 
4/16/2008 2.82 1.783 4.877 0.157 
5/2/2008 2.56 2.138 4.929 0.145 
5/16/2008 2.26 2.057 4.98 0.218 
6/2/2008 2.85 1.615 4.963 0.182 
6/16/2008 2.01 1.265 4.946 0.147 
7/2/2008 2.16 1.16 4.778 0.239 
7/16/2008 2.29 0.872 4.901 0.109 
8/2/2008 2.62 1.385 4.61 0.182 
8/16/2008 3.23 1.358 3.904 0.251 
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9/2/2008 3.04 1.427 4.33 0.217 
9/16/2008 2.51 1.765 3.971 0.207 
10/2/2008 2.39 1.402 4.187 0.023 
10/17/2008 2.40 1.241 4.403 0.010 
11/3/2008 1.74 1.186 4.103 0.026 
11/17/2008 0.80 1.322 4.591 0.020 
12/3/2008 0.67 1.2 4.774 0.009 
12/17/2008 0.59 1.075 4.666 0.027 

     
Date 

 
Ca - 50yr 
(mg L-1) 

K - 50yr 
(mg L-1) 

Mg - 50yr 
(mg L-1) 

Na-50yr 
(mg L-1) 

1/3/2008 7.131 1.864 2.527 6.205 
1/17/2008 7.430 1.697 2.617 6.195 
2/1/2008 6.989 1.751 2.538 6.255 
2/16/2008 7.357 2.126 2.719 6.520 
3/3/2008 7.019 1.862 2.527 6.371 
3/16/2008 7.182 1.542 2.575 6.350 
4/2/2008 7.048 1.724 2.543 6.317 
4/16/2008 7.598 1.903 2.755 6.509 
5/2/2008 6.749 1.491 2.298 6.365 
5/16/2008 7.191 1.633 2.561 6.421 
6/2/2008 7.282 1.922 2.624 6.563 
6/16/2008 7.373 2.211 2.688 6.706 
7/2/2008 7.164 2.312 2.612 6.602 
7/16/2008 7.247 2.296 2.649 6.623 
8/2/2008 7.239 1.321 2.578 5.626 
8/16/2008 7.232 0.347 2.507 4.630 
9/2/2008 7.456 0.400 2.581 4.706 
9/16/2008 7.216 0.367 2.488 4.579 
10/2/2008 7.085 0.184 2.465 4.536 
10/17/2008 6.954 0.002 2.442 4.494 
11/3/2008 6.825 0.04 2.374 4.252 
11/17/2008 6.893 0 2.409 4.462 
12/3/2008 6.98 0.224 2.474 4.320 
12/17/2008 6.588 0.342 2.387 4.322 
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Table B5: Data for chapter 2 Figure 2.3 

Discharge 
(mm day-1) 

DOC 
(mg L-1) 

TDN 
(mg L-1) 

P 
(mg L-1) 

Ca 
(mg L-1) 

0.71 1.711 5.27 0.029 7.131 
0.7 2.111 5.397 0.294 7.430 
0.68 1.789 5.527 0.271 6.989 
0.66 1.651 5.505 0.286 7.357 
0.63 1.896 5.361 0.068 7.019 
0.6 1.709 5.386 0.073 7.182 
1.25 2.012 4.927 0.203 7.048 
2.82 1.783 4.877 0.157 7.598 
2.56 2.138 4.929 0.145 6.749 
2.26 2.057 4.98 0.218 7.191 
2.85 1.615 4.963 0.182 7.282 
2.01 1.265 4.946 0.147 7.373 
2.16 1.16 4.778 0.239 7.164 
2.29 0.872 4.901 0.109 7.247 
2.62 1.385 4.61 0.182 7.239 
3.23 1.358 3.904 0.251 7.232 
3.04 1.427 4.33 0.217 7.456 
2.51 1.765 3.971 0.207 7.214 
2.39 1.402 4.187 0.023 7.085 
2.4 1.241 4.403 0.010 6.954 
1.74 1.186 4.103 0.026 6.825 
0.8 1.322 4.591 0.020 6.893 
0.67 1.2 4.774 0.009 6.98 
0.59 1.075 4.666 0.027 6.588 

     
Discharge 
(mm day-1) 

K 
(mg L-1) 

Mg 
(mg L-1) 

Na 
(mg L-1)  

0.71 1.864 2.527 6.205  
0.7 1.698 2.617 6.195  
0.68 1.751 2.538 6.255  
0.66 2.126 2.719 6.520  
0.63 1.862 2.527 6.371  
0.6 1.542 2.575 6.350  
1.25 1.724 2.543 6.317  
2.82 1.903 2.755 6.509  
2.56 1.491 2.298 6.365  
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2.26 1.633 2.561 6.421  
2.85 1.922 2.624 6.563  
2.01 2.211 2.688 6.706  
2.16 2.312 2.612 6.602  
2.29 2.296 2.649 6.623  
2.62 1.321 2.578 5.626  
3.23 0.347 2.507 4.630  
3.04 0.400 2.581 4.706  
2.51 0.367 2.488 4.579  
2.39 0.184 2.465 4.536  
2.4 0.002 2.442 4.494  
1.74 0.041 2.374 4.252  
0.8 0 2.409 4.462  
0.67 0.224 2.474 4.320  
0.59 0.342 2.387 4.322  
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APPENDIX C 

Raw data and extra graphs pertaining to Chapter 3 

Table C1: Data for chapter 3 Figure 3.1 

Forest storm (June 30, 2008)
      

Actual 
time 

Time 
(min) 

Rainfall 
(mm) 

Discharge 
 (L min-1) 

Ca 
 (mg L-1) 

K  
(mg L-1) 

15:25:00 0 0.9 6.3 5.98 0.24 
15:30:00 5 1.8 6.3 6.32 0.46 
15:35:00 10 1.4 6.4 6.48 0.33 
15:40:00 15 1.2 6.6 7.69 0.47 
15:45:00 20 2.1 6.8 6.23 0.69 
15:50:00 25 1.7 7.1 5.43 0.75 
15:55:00 30 1.1 7.5 5.49 0.56 
16:00:00 35 0.8 7.7 6.43 1.31 
16:05:00 40 0.6 7.9 5.82 1.93 
16:10:00 45 0.3 8.1 7.75 1.73 
16:15:00 50 0.2 8 6.18 2.79 
16:20:00 55 0.1 8.1 6.09 4.68 
16:25:00 60 0 7.9 5.81 2.43 
16:30:00 65 0 7.8 5.88 2.01 
16:35:00 70 0 7.7 6.12 2.88 
16:40:00 75 0 7.6 6.67 1.97 
16:45:00 80 0 7.5 7.31 2.12 
16:50:00 85 0 7.4 7.15 1.85 
16:55:00 90 0 7.3 6.58 2.23 

      
Time 
(min) 

Mg  
(mg L-1) 

Na  
(mg L-1) 

DOC  
(mg L-1) 

TDN  
(mg L-1) 

NO3  
(mg L-1) 

0 2.34 3.83 2.12 0.44 0.35 
5 2.53 4.61 2.58 0.34 0.29 
10 2.14 4.32 2.37 0.64 0.54 
15 2.67 4.53 3.99 0.65 0.38 
20 2.09 3.71 4.97 0.59 0.35 
25 2.79 4.13 5.67 0.37 0.24 
30 2.72 5.01 6.24 0.38 0.25 
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35 2.05 4.62 5.13 0.32 0.26 
40 2.14 4.51 6.64 0.69 0.49 
45 2.61 4.31 8.21 0.51 0.47 
50 2.38 4.93 8.82 0.56 0.44 
55 2.73 4.29 8.04 0.41 0.32 
60 1.96 4.32 7.26 0.43 0.32 
65 3.06 5.34 7.06 0.33 0.24 
70 2.57 3.67 6.52 0.31 0.25 
75 2.16 4.25 6.66 0.34 0.22 
80 2.35 4.98 6.25 0.37 0.27 
85 2.27 4.17 5.37 0.54 0.42 
90 2.31 4.63 5.83 0.35 0.29 

5 year (July 14, 2008)
       

 
Rainfall 

(mm) Time (min)
Discharge  
(L min-1) 

Ca  
(mg L-1) 

K  
(mg L-1) 

  0.8 0 12.5 5.62 0.35 
  1.3 5 12.6 5.28 0.43 
  2.1 10 13 5.43 0.42 
  2 15 13.4 5.84 0.53 
  1.5 20 13.9 5.51 0.49 
  1.5 25 14.7 5.22 0.57 
  1.1 30 15.3 4.83 0.79 
  0.7 35 15.6 4.27 1.13 
  0.2 40 15.8 4.14 2.44 
   45 15.5 3.92 5.31 
   50 15.3 4.77 4.38 
   55 14.6 4.16 5.21 
   60 14.4 4.35 4.51 
   65 14.2 4.41 4.94 
   70 13.9 4.85 4.11 
   75 13.7 4.08 4.76 
   80 13.5 4.24 3.75 
   85 13.3 4.63 4.17 
   90 13.2 4.87 4.03 
   95 13.1 5.01 3.79 
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Time 
(min) 

Mg  
(mg L-1) 

Na  
(mg L-1) 

DOC  
(mg L-1) 

TDN  
(mg L-1) 

NO3  
(mg L-1) 

0 2.24 3.32 1.78 0.63 0.52 
5 2.29 3.79 1.62 0.61 0.49 
10 2.06 3.54 1.72 0.68 0.58 
15 2.14 3.21 2.06 0.62 0.54 
20 2.15 3.12 1.98 0.67 0.61 
25 2.34 3.17 2.05 0.74 0.67 
30 2.11 3.04 2.25 0.65 0.49 
35 1.87 2.59 2.47 0.56 0.51 
40 1.61 2.82 3.17 0.54 0.48 
45 1.54 2.54 4.13 0.43 0.42 
50 1.71 2.35 4.66 0.47 0.24 
55 1.96 2.48 5.41 0.41 0.28 
60 1.46 2.37 5.38 0.45 0.29 
65 2.07 2.66 5.82 0.42 0.33 
70 2.01 3.04 5.69 0.53 0.24 
75 1.98 2.98 5.75 0.56 0.33 
80 2.18 3.15 5.18 0.49 0.41 
85 2.05 3.07 5.24 0.52 0.43 
90 2.13 3.11 5.36 0.47 0.41 
95 2.03 2.87 5.04 0.55 0.46 

10 year (July 20, 2008)

 
Rainfall 

(mm) 
Time 
(min) 

Discharge  
(L min-1) 

Ca  
(mg L-1) 

K  
(mg L-1) 

 0.8 0 19.1 5.47 1.29 
 1.6 5 19.3 5.34 1.13 
 1.9 10 19.8 5.49 1.37 
 2.1 15 20.3 4.25 1.96 
 1.9 20 20.8 4.08 2.39 
 1.4 25 21.1 4.11 3.61 
 0.7 30 21.5 3.23 4.58 
 0.5 35 22.1 3.02 4.79 
 0.4 40 22.5 3.07 4.76 
 0.2 45 22.9 3.99 4.59 
  50 22.6 3.98 4.51 
  55 21.7 3.94 4.74 
  60 21.3 4.35 4.42 
  65 20.9 4.29 4.43 
  70 20.6 4.37 3.91 
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  75 20.3 4.24 3.61 
  80 20 4.01 3.27 
 

Time 
(min) 

Mg  
(mg L-1) 

Na  
(mg L-1) 

DOC  
(mg L-1) 

TDN 
 (mg L-1) 

NO3  
(mg L-1) 

0 1.63 3.94 1.16 4.76 3.28 
5 1.44 4.18 1.36 4.83 3.73 
10 1.58 4.03 2.63 4.48 3.49 
15 1.51 4.26 3.71 5.12 3.76 
20 1.49 3.37 4.45 2.34 0.95 
25 1.62 2.45 5.02 2.46 1.01 
30 1.13 2.12 4.93 2.31 1.49 
35 1.02 2.18 4.92 2.23 1.13 
40 0.89 2.44 4.97 2.08 1.14 
45 1.07 2.79 5.14 2.35 1.41 
50 0.96 2.71 5.63 2.56 1.64 
55 0.81 2.01 5.07 2.31 1.37 
60 0.91 2.81 4.93 2.34 1.39 
65 1.27 3.88 5.69 2.51 1.12 
70 1.41 3.12 5.37 3.02 1.64 
75 1.59 4.29 4.73 3.37 1.79 
80 1.41 4.07 4.81 3.41 2.07 

50 year (July 31, 2008)

 
Rainfall 

(mm) 
Time 
(min) 

Discharge  
(L min-1) 

Ca 
 (mg L-1) 

K  
(mg L-1) 

 0.5 0 18.5 6.35 1.41 
 0.9 5 18.6 6.49 1.87 
 1.4 10 18.8 6.28 1.25 
 1.7 15 20.4 6.79 3.07 
 1.4 20 21.3 6.67 3.67 
 1.6 25 22.5 6.25 4.91 
 1.3 30 23.1 5.28 5.46 
 0.7 35 23.8 4.83 6.32 
 0.4 40 24.3 4.77 7.43 
 0.4 45 22.6 4.06 8.21 
  50 22.2 4.61 8.03 
  55 21.7 5.75 8.09 
  60 21.4 7.16 7.89 
  65 21.1 7.44 6.24 
  70 19.8 7.06 5.68 
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  75 19.5 6.87 5.07 
  80 19.2 6.53 5.31 
 

Time 
(min) 

Mg 
 (mg L-1) 

Na 
 (mg L-1) 

DOC  
(mg L-1) 

TDN  
(mg L-1) 

NO3  
(mg L-1) 

0 2.54 5.24 1.01 4.42 4.31 
5 2.44 5.74 1.35 4.19 3.97 
10 2.67 5.19 1.29 4.53 4.32 
15 2.35 5.55 1.71 4.62 3.48 
20 2.41 5.31 3.78 4.09 3.11 
25 2.17 4.96 6.84 3.78 2.53 
30 1.91 4.25 6.75 3.17 2.83 
35 1.69 4.11 7.92 3.02 1.43 
40 1.55 4.09 7.45 3.23 1.63 
45 1.73 3.81 6.94 3.43 2.09 
50 1.95 4.05 7.86 3.82 2.29 
55 1.82 4.15 8.19 4.53 3.76 
60 2.01 4.48 7.04 5.64 3.88 
65 2.12 5.12 6.15 4.85 3.61 
70 2.49 4.79 5.85 4.63 3.91 
75 2.31 4.65 4.49 4.27 3.27 
80 2.38 4.98 4.97 4.59 3.54 
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Figure C1. Rainfall, discharge and solute concentrations for forest watershed storms 
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Table C2: Data for Figure C1 

Forest (July 21, 2008)
      

 
Rainfall 

(mm) 
Time 
(min) 

Discharge 
(L/min) Ca (mg/L) K (mg/L) 

 0.8 0 6.5 6.71 0.34 
 1.4 5 6.5 6.98 0.47 
 1.7 10 6.6 7.23 0.53 
 1.8 15 6.8 6.41 0.79 
 1.9 20 7.1 7.05 1.09 
 1.6 25 7.3 6.42 1.01 
 1.4 30 7.5 6.19 1.33 
 0.9 35 7.7 6.56 1.66 
 0.6 40 7.9 5.74 1.42 
 0.4 45 8.1 5.86 2.71 
  50 8.3 6.99 2.12 
  55 8.4 5.77 3.02 
  60 8.4 5.93 2.81 
  65 8.2 6.85 2.96 
  70 7.9 5.99 2.54 
  75 7.7 6.64 3.05 
  80 7.6 5.74 2.65 
  85 7.4 6.53 2.31 
  90 7.3 6.21 2.08 
      

Time(min) 
Mg 
(mg/L) Na (mg/L) 

DOC 
(mg/L)

TDN 
(mg/L) 

NO3 
(mg/L) 

0 2.36 3.67 2.27 0.32 0.27 
5 2.54 3.47 2.04 0.37 0.29 

10 2.73 3.56 2.13 0.47 0.31 
15 2.98 2.59 2.19 0.55 0.45 
20 2.93 3.38 2.01 0.65 0.54 
25 2.62 3.07 2.32 0.72 0.53 
30 2.36 2.69 2.76 0.49 0.32 
35 2.38 2.71 2.97 0.39 0.31 
40 2.04 2.36 3.62 0.41 0.36 
45 2.14 3.38 3.72 0.32 0.23 
50 2.11 3.48 4.09 0.35 0.29 
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55 1.99 2.32 3.54 0.47 0.32 
60 2.07 2.45 3.87 0.48 0.36 
65 1.99 3.26 3.98 0.42 0.37 
70 2.04 3.32 4.06 0.43 0.38 
75 2.29 3.59 4.01 0.38 0.37 
80 2.78 3.03 3.65 0.35 0.25 
85 2.54 2.96 4.17 0.32 0.27 
90 2.46 3.42 3.18 0.42 0.31 

      
      

 
Forest (July 22, 2008)

      

 
Rainfall 

(mm) 
Time 
(min) 

Discharge 
(L/min) Ca (mg/L) K (mg/L) 

 0.3 0 6.5 6.66 0.13 
 0.4 5 6.5 7.12 0.41 
 0.5 10 6.6 7.26 0.43 
 0.6 15 6.7 6.87 0.12 
 0.7 20 6.8 6.44 0.36 
 0.9 25 6.9 7.09 0.45 
 1 30 7.1 5.49 0.51 
 0.9 35 7.3 7.33 0.78 
 0.6 40 7.4 6.35 1.01 
 0.6 45 7.6 7.08 1.93 
 0.5 50 7.7 6.49 1.31 
 0.4 55 7.8 7.07 1.42 
 0.5 60 7.9 7.23 1.11 
 0.2 65 8 6.97 1.53 
 0.1 70 8.1 7.12 1.91 
  75 8.2 7.09 1.86 
  80 8 6.99 1.74 
  85 7.9 7.41 1.89 
  90 7.8 7.42 1.76 
  95 7.8 7.21 1.84 
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Time(min) Mg 
(mg/L) 

Na (mg/L) DOC 
(mg/L) 

TDN 
(mg/L) 

NO3 
(mg/L) 

0 2.71 2.66 1.66 0.65 0.53 
5 2.52 2.29 1.57 0.54 0.47 

10 2.69 2.57 1.85 0.62 0.45 
15 2.33 3.56 1.91 0.57 0.51 
20 2.02 3.95 1.97 0.64 0.32 
25 2.46 3.86 2.11 0.41 0.38 
30 2.27 3.43 2.04 0.39 0.33 
35 2.74 2.96 2 0.58 0.31 
40 2.78 3.17 2.14 0.47 0.41 
45 2.17 3.13 2.02 0.69 0.49 
50 2.88 3.08 2.72 0.68 0.35 
55 2.89 3.01 3.13 0.65 0.46 
60 2.61 2.73 3.36 0.65 0.4 
65 2.74 3.12 3.17 0.57 0.41 
70 2.52 2.79 3.27 0.49 0.38 
75 2.71 3.1 3.01 0.65 0.49 
80 2.16 2.63 3.19 0.77 0.42 
85 2.62 3.55 2.92 0.74 0.43 
90 2.39 3.04 3.01 0.63 0.42 
95 2.28 2.86 2.89 0.71 0.52 

      
      

Forest (July 25, 2008)
      

 
Rainfall 

(mm) 
Time 
(min) 

Discharge 
(L/min) Ca (mg/L) K (mg/L) 

 0.7 0 6.5 6.49 0.12 
 1.2 5 6.5 7.07 0.36 
 1.4 10 6.5 7.23 0.45 
 2.1 15 6.6 6.97 0.51 
 1.5 20 6.7 7.12 0.13 
 1.9 25 6.8 7.09 0.41 
 1.3 30 6.8 6.99 0.43 
 0.9 35 6.9 7.41 0.99 
 0.5 40 6.9 7.42 1.29 
  45 7 7.09 1.13 
  50 7 5.49 1.81 
  55 7.1 7.33 1.82 
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  60 7.1 6.35 1.21 
  65 7 7.08 2.23 
  70 7 6.66 2.01 
  75 6.9 7.12 2.31 
  80 6.9 7.26 2.34 
  85 6.8 6.87 1.69 
  90 6.8 6.44 1.87 
      

Time(min) 
Mg 
(mg/L) Na (mg/L) 

DOC 
(mg/L)

TDN 
(mg/L) 

NO3 
(mg/L) 

0 2.43 3.56 1.89 0.39 0.31 
5 2.46 4.03 1.48 0.58 0.46 

10 2.27 3.85 2.07 0.47 0.32 
15 2.71 3.23 2.31 0.65 0.38 
20 2.74 3.08 3.02 0.77 0.38 
25 2.72 3.11 2.81 0.74 0.42 
30 2.17 2.79 2.49 0.63 0.53 
35 2.88 2.61 2.49 0.69 0.54 
40 2.89 3.55 2.34 0.68 0.45 
45 2.71 3.04 2.32 0.65 0.51 
50 2.16 2.86 3.12 0.65 0.49 
55 2.82 2.29 3.07 0.47 0.35 
60 2.88 2.56 3.16 0.62 0.46 
65 2.71 3.23 2.75 0.57 0.43 
70 2.56 2.95 3.21 0.64 0.49 
75 2.69 3.15 3.31 0.41 0.29 
80 2.43 3.02 3.04 0.65 0.44 
85 2.74 2.79 2.86 0.57 0.41 
90 2.78 3.19 3.27 0.49 0.38 

      
      

Forest (August 01, 2008)
      

 
Rainfall 

(mm) 
Time 
(min) 

Discharge 
(L/min) Ca (mg/L) K (mg/L) 

 0.4 0 6.8 5.56 0.27 
 0.3 5 6.8 6.39 0.23 
 0.4 10 6.8 5.57 0.34 
 0.6 15 6.9 6.4 0.65 
 0.8 20 6.9 7.03 0.89 
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 1.1 25 7 6.35 0.97 
 1 30 7 6.17 1.08 
 1.2 35 7.1 6.33 0.95 
 0.8 40 7.1 6.26 1.27 
 0.7 45 7.2 5.63 1.71 
 0.5 50 7.3 5.92 1.9 
 0.5 55 7.4 5.98 2.02 
 0.3 60 7.5 6.42 2.37 
 0.1 65 7.6 5.38 2.96 
 0.1 70 7.7 6.85 3.01 
  75 7.8 5.58 2.85 
  80 7.9 6.23 3.09 
  85 8 5.74 2.31 
  90 8 5.47 2.08 
  95 7.9 6.43 2.16 
      

Time(min) 
Mg 
(mg/L) Na (mg/L) 

DOC 
(mg/L)

TDN 
(mg/L) 

NO3 
(mg/L) 

0 1.99 2.45 1.77 0.35 0.31 
5 2.04 3.26 1.84 0.39 0.33 

10 2.29 3.32 1.73 0.47 0.37 
15 2.11 2.53 1.99 0.48 0.38 
20 1.99 3.48 1.93 0.47 0.31 
25 2.07 2.32 2.12 0.55 0.53 
30 2.14 3.47 2.58 0.65 0.51 
35 2.62 1.36 3.01 0.49 0.34 
40 2.36 3.56 2.82 0.39 0.23 
45 2.38 1.59 3.62 0.42 0.32 
50 2.04 3.38 3.84 0.35 0.31 
55 2.98 3.07 3.64 0.32 0.36 
60 2.93 1.69 3.77 0.73 0.54 
65 2.36 4.02 4.13 0.32 0.29 
70 2.54 3.59 3.98 0.37 0.54 
75 2.73 2.04 4.01 0.65 0.61 
80 2.78 2.96 3.89 0.72 0.57 
85 2.54 3.42 4.15 0.42 0.29 
90 2.46 2.72 4.23 0.43 0.39 
95 2.98 3.67 3.69 0.38 0.28 
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Figure C2. Rainfall, discharge and solute concentrations for 5 year old watershed storms 
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Table C3: Data for Figure C2 

 
5 year (June 30, 2008)

 
Rainfall 

(mm) 
Time 
(min) 

Discharge 
(L/min) Ca (mg/L) K (mg/L) 

 0.3 0 11.4 5.35 0.44 
 0.4 5 11.5 5.74 1.04 
 0.9 10 12 5.16 0.93 
 1.1 15 12.4 5.04 0.87 
 1.2 20 12.9 5.42 1.21 
 1.3 25 13.2 5.07 1.72 
 1.4 30 13.5 5.13 1.99 
 1.2 35 13.8 4.87 2.43 
 1.2 40 14.1 4.91 3.08 
 1.1 45 14.3 4.62 5.72 
 0.8 50 14.7 5.03 4.54 
 0.5 55 14.9 4.88 5.59 
  60 15.1 4.49 4.71 
  65 15.3 4.57 5.25 
  70 15.5 4.39 6.21 
  75 14.8 4.17 5.62 
  80 14.5 4.53 5.18 
  85 14.3 4.31 4.97 

5 year (June 30, 2008)

Time(min) 
Mg 

(mg/L) 
Na 

(mg/L) 
DOC 

(mg/L) 
TDN 

(mg/L) 
NO3 

(mg/L) 
0 2.45 3.41 2.45 0.83 0.65 
5 2.81 3.34 2.09 0.79 0.61 
10 2.93 3.64 2.18 0.89 0.72 
15 2.41 3.22 2.87 0.81 0.77 
20 2.12 3.81 3.05 0.87 0.65 
25 2.47 3.17 3.76 0.97 0.84 
30 2.32 3.03 3.53 0.85 0.71 
35 2.06 3.11 4.07 0.75 0.69 
40 2.31 2.94 3.98 0.73 0.68 
45 1.76 2.41 4.31 0.61 0.54 
50 1.43 2.65 4.75 0.54 0.39 
55 2.11 2.89 5.29 0.59 0.36 
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60 1.89 2.32 4.88 0.43 0.37 
65 1.74 2.01 5.14 0.55 0.48 
70 1.97 1.95 5.42 0.69 0.63 
75 2.53 2.06 5.76 0.75 0.64 
80 2.38 2.24 5.32 0.64 0.51 
85 2.22 2.46 5.19 0.68 0.53 
      

 
 

5year (July 20, 2008)

 
Rainfall 

(mm) 
Time 
(min) 

Discharge 
(L/min) Ca (mg/L) K (mg/L) 

 0.3 0 12.1 6.64 0.47 
 0.4 5 12.1 6.48 0.58 
 0.8 10 12.2 6.05 0.51 
 0.9 15 12.5 6.99 0.62 
 1.2 20 12.9 6.86 0.66 
 1.1 25 13.3 6.04 0.74 
 1 30 13.7 5.94 1.07 
 1.1 35 13.9 5.21 1.53 
 0.8 40 14.3 5.05 2.31 
 0.7 45 14.6 4.03 3.22 
 0.6 50 14.9 4.67 5.95 
 0.5 55 15.2 4.56 4.89 
 0.4 60 15.5 4.39 5.13 
 0.2 65 15.8 4.42 5.71 
  70 16.3 4.57 4.58 
  75 16.7 4.15 4.97 
  80 16.9 5.08 5.48 
  85 16.8 5.28 3.67 
  90 16.2 4.63 4.48 
  95 15.4 4.83 5.15 

5year (July 20, 2008)

Time(min) 
Mg 

(mg/L) 
Na 

(mg/L) 
DOC 

(mg/L) 
TDN 

(mg/L) 
NO3 

(mg/L) 
0 2.62 3.71 2.94 0.72 0.61 
5 2.07 3.58 2.33 0.69 0.54 
10 2.41 4.08 2.47 0.57 0.54 
15 2.26 4.88 3.06 0.61 0.49 
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20 2.51 4.77 2.98 0.56 0.48 
25 2.03 3.83 3.05 0.74 0.64 
30 2.46 3.67 3.51 0.64 0.47 
35 1.18 3.13 3.47 0.53 0.48 
40 1.88 3.71 3.68 0.42 0.36 
45 1.61 3.07 4.31 0.49 0.41 
50 1.76 3.84 4.56 0.43 0.36 
55 2.01 2.01 4.41 0.46 0.41 
60 1.69 2.86 4.81 0.41 0.34 
65 1.42 3.22 6.01 0.37 0.32 
70 1.35 2.67 5.76 0.41 0.33 
75 1.32 2.23 5.93 0.33 0.29 
80 1.55 2.81 6.08 0.35 0.27 
85 1.39 2.72 6.55 0.39 0.35 
90 2.19 2.86 6.29 0.43 0.39 
95 2.37 2.47 6.81 0.42 0.34 
      

 
 

5 year (July 31, 2008)

 
Rainfall 

(mm) 
Time 
(min) 

Discharge 
(L/min) Ca (mg/L) K (mg/L) 

 1.10 0 14.5 5.23 0.45 
 1.80 5 14.6 5.87 0.36 
 2.10 10 15.1 5.02 0.31 
 2.40 15 15.4 5.64 0.27 
 2.00 20 15.9 5.48 0.48 
 1.50 25 16.6 5.05 0.36 
 1.30 30 17.4 4.81 0.65 
 0.90 35 17.8 4.43 0.91 
 0.70 40 17.5 4.04 1.61 
  45 17.3 4.14 1.51 
  50 17.1 4.21 1.99 
  55 16.8 4.85 2.27 
  60 16.5 5.02 2.02 
  65 16.2 4.57 1.95 
  70 15.7 5.18 1.51 
  75 15.4 5.11 0.92 
  80 15.1 5.07 0.87 
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  85 14.9 5.32 0.76 
  90 14.7 5.35 0.81 

5 year (July 31, 2008)

Time(min) 
Mg 

(mg/L) 
Na 

(mg/L) 
DOC 

(mg/L) 
TDN 

(mg/L) 
NO3 

(mg/L) 
0 2.03 4.11 1.26 0.76 0.52 
5 2.14 4.34 1.43 0.68 0.53 
10 2.27 4.03 1.35 0.66 0.58 
15 2.09 4.29 1.04 0.69 0.54 
20 2.21 4.35 1.68 0.71 0.48 
25 1.94 3.97 2.52 0.73 0.47 
30 1.52 3.84 2.42 0.61 0.51 
35 1.36 3.25 2.33 0.58 0.42 
40 1.21 3.52 3.38 0.54 0.47 
45 1.52 3.36 3.4 0.53 0.46 
50 1.24 2.96 3.19 0.49 0.39 
55 1.19 3.14 3.55 0.43 0.47 
60 1.38 2.89 2.85 0.51 0.34 
65 1.25 3.23 2.56 0.44 0.42 
70 1.17 3.17 2.22 0.53 0.47 
75 1.67 2.81 2.78 0.55 0.44 
80 1.86 3.05 2.31 0.49 0.51 
85 2.01 3.86 2.14 0.56 0.49 
90 1.95 3.44 2.03 0.59 0.53 
      

 
 

5 year (August 01, 2008)

 
Rainfall 

(mm) 
Time 
(min) 

Discharge 
(L/min) Ca (mg/L) K (mg/L) 

 0.5 0 7.7 5.73 0.23 
 1.2 5 7.8 5.84 0.35 
 1.4 10 8 6.02 0.17 
 1.7 15 8.4 6.55 0.31 
 1.9 20 9.3 5.54 0.28 
 1.3 25 9.9 5.29 0.85 
 1.2 30 10.4 4.69 0.94 
 0.6 35 10.9 4.64 0.88 
 0.3 40 10.7 4.31 0.99 
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  45 10.4 4.24 1.61 
  50 9.9 4.42 1.48 
  55 9.6 4.44 1.66 
  60 9.3 5.32 1.41 
  65 9.1 4.68 1.21 
  70 8.8 5.17 0.98 
  75 8.6 4.98 0.69 
  80 8.4 5.34 0.43 
  85 8.2 5.02 0.78 

5 year (August 01, 2008)

Time(min) 
Mg 

(mg/L) 
Na 

(mg/L) 
DOC 

(mg/L) 
TDN 

(mg/L) 
NO3 

(mg/L) 
0 2.12 4.01 1.87 0.89 0.81 
5 2.21 3.65 2.03 0.75 0.67 
10 2.19 3.05 1.91 0.97 0.84 
15 2.03 3.27 1.69 0.67 0.52 
20 1.79 2.83 2.51 0.81 0.65 
25 1.42 2.1 4.18 0.74 0.69 
30 1.83 2.22 6.14 0.63 0.54 
35 1.28 2.07 5.23 0.58 0.49 
40 1.37 2.39 7.15 0.54 0.45 
45 1.43 2.65 4.83 0.63 0.56 
50 1.09 2.74 5.57 0.52 0.47 
55 1.71 2.77 4.95 0.48 0.41 
60 1.84 3.32 3.39 0.53 0.43 
65 2.09 3.01 3.09 0.58 0.52 
70 2.13 2.97 2.94 0.55 0.44 
75 1.97 3.16 2.76 0.59 0.51 
80 2.19 3.32 2.05 0.58 0.45 
85 2.06 3.86 2.16 0.61 0.49 
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Figure C3. Rainfall, discharge and solute concentrations for 10 year old watershed storms 
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Table C4: Data for Figure C3 

10 year (July14, 2008)

 
Rainfall 

(mm) 
Time 
(min) 

Discharge 
(L/min) Ca (mg/L) K (mg/L) 

 0.5 0 17.5 5.47 2.48 
 0.8 5 17.5 5.84 2.04 
 1.4 10 17.8 5.31 2.29 
 1.8 15 18.2 4.42 2.23 
 1.9 20 18.6 4.87 1.82 
 2.2 25 18.9 4.03 2.15 
 1.7 30 19.3 3.76 2.94 
 1.5 35 19.6 3.64 3.59 
 0.8 40 20 3.58 4.63 
 0.4 45 20.3 3.86 3.91 
  50 20.7 3.71 4.62 
  55 20.9 3.81 4.46 
  60 20.6 3.92 3.32 
  65 20.4 4.02 4.07 
  70 20.2 3.84 4.71 
  75 20 4.25 4.53 
  80 20 4.01 3.26 

10 year (July 14, 2008)

Time(min) 
Mg 

(mg/L) 
Na 

(mg/L) 
DOC 

(mg/L) 
TDN 

(mg/L) 
NO3 

(mg/L) 
0 1.41 3.95 2.43 3.71 2.88 
5 1.28 3.47 2.67 2.18 1.97 

10 1.16 3.28 2.83 2.91 2.71 
15 1.56 3.73 3.71 3.29 2.81 
20 0.97 3.12 4.35 2.44 2.25 
25 1.22 3.81 5.02 2.19 1.78 
30 0.79 2.55 4.93 1.76 1.22 
35 0.41 2.28 4.92 2.22 1.63 
40 0.55 1.57 4.97 1.25 0.84 
45 0.89 1.48 5.14 1.45 1.24 
50 0.94 2.04 5.63 1.71 1.56 
55 0.85 2.09 5.07 1.49 1.21 
60 0.83 2.35 4.91 1.38 1.31 
65 0.94 1.69 5.69 1.22 1.13 
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70 1.02 2.03 4.84 1.13 0.98 
75 0.98 2.36 4.93 1.47 1.32 
80 0.63 2.27 4.81 1.56 1.28 

      
 
 

10 year (July 27, 2008)

 
Rainfall 

(mm) 
Time 
(min) 

Discharge 
(L/min) Ca (mg/L) K (mg/L) 

 0.7 0 18.3 5.34 1.09 
 1.3 5 18.5 5.12 1.23 
 1.6 10 18.9 5.31 1.19 

 2 15 19.8 5.03 1.11 
 1.4 20 20.5 2.77 1.67 
 1.2 25 21.2 2.41 2.89 
 1.1 30 20.8 1.65 3.62 
 0.5 35 20.6 1.03 4.22 
 0.4 40 20.3 1.47 5.17 
  45 20.1 1.73 4.51 
  50 19.7 2.71 5.16 
  55 19.5 2.74 5.01 
  60 19.3 2.59 4.88 
  65 19.1 3.02 5.57 
  70 18.8 2.86 5.24 
  75 18.6 3.31 5.08 
  80 18.4 3.28 4.83 
  85 18.1 3.56 4.61 

10 year (July 27, 2008)

Time(min) 
Mg 

(mg/L) 
Na 

(mg/L) 
DOC 

(mg/L) 
TDN 

(mg/L) 
NO3 

(mg/L) 
0 1.46 4.63 1.67 4.21 3.14 
5 1.32 5.12 1.33 4.63 3.23 

10 1.51 4.94 1.59 4.38 2.95 
15 1.61 5.36 2.47 4.73 3.06 
20 1.01 1.99 5.54 3.07 1.47 
25 0.85 1.62 5.58 1.07 0.15 
30 0.51 1.39 5.46 1.12 0.24 
35 0.32 1.15 5.95 1.17 0.36 
40 0.57 1.41 5.93 1.21 0.27 
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45 0.92 1.33 5.84 1.11 0.32 
50 0.97 1.83 5.47 1.16 0.61 
55 0.88 1.87 5.89 1.15 0.23 
60 0.86 1.21 5.67 1.13 0.34 
65 1.08 1.75 6.29 1.27 0.31 
70 1.06 1.58 4.98 1.42 0.33 
75 1.02 1.92 4.36 1.76 0.68 
80 1.09 1.62 4.12 1.94 0.87 
85 1.13 2.01 4.01 2.02 1.05 

      
 
 
 
 

10 year (July 31, 2008)

 
Rainfall 

(mm) 
Time 
(min) 

Discharge 
(L/min) Ca (mg/L) K (mg/L) 

 0.4 0 21.4 5.08 0.74 
 0.8 5 21.4 4.78 0.54 
 1.1 10 21.5 4.12 0.87 
 1.2 15 21.9 5.04 0.58 
 1.3 20 22.4 4.63 1.42 

 1.2 25 22.9 4.25 1.29 
 1.1 30 23.3 4.08 1.01 

 1.1 35 23.8 4.35 1.43 
 1 40 24 4.29 2.17 
 0.8 45 24.4 4.37 2.02 
 0.6 50 24.8 4.24 2.59 
 0.5 55 25.3 4.01 3.19 
 0.4 60 25.9 3.23 2.82 
 0.2 65 26.3 3.02 3.36 
  70 26.6 3.07 3.61 
  75 26.9 3.99 4.67 
  80 26.5 3.98 4.15 
  85 26.1 3.94 3.45 
  90 25.7 3.42 4.21 
  95 25.4 3.87 3.84 
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10 year (July 31, 2008)

Time(min) 
Mg 

(mg/L) 
Na 

(mg/L) 
DOC 

(mg/L) 
TDN 

(mg/L) 
NO3 

(mg/L) 
0 2.91 3.12 2.27 2.85 1.73 
5 2.29 3.97 2.33 2.91 1.65 

10 2.67 3.53 2.82 2.62 2.25 
15 2.51 4.42 3.09 1.14 0.99 
20 2.78 4.29 3.21 1.49 1.38 
25 2.25 3.25 3.87 2.03 1.77 
30 2.73 3.07 4.11 1.87 1.56 
35 1.31 2.47 4.24 1.61 1.38 
40 2.08 3.12 4.43 1.58 1.13 
45 1.78 3.41 4.65 1.61 1.49 
50 1.95 3.26 4.75 1.37 1.23 
55 2.23 2.23 5.18 1.67 1.34 
60 1.87 2.17 5.01 1.09 0.91 
65 1.57 2.57 4.96 1.73 1.48 
70 1.49 2.96 5.46 0.84 0.59 
75 1.46 2.47 5.74 1.32 1.05 
80 1.72 2.12 4.43 1.56 0.82 
85 1.54 3.02 4.27 1.68 1.12 
90 1.43 2.17 5.13 1.91 1.47 
95 1.63 2.74 4.66 1.57 1.21 

      
 
 
 

10 year (August 02, 2008)

 
Rainfall 

(mm) 
Time 
(min) 

Discharge 
(L/min) Ca (mg/L) K (mg/L) 

 0.60 0 17.5 5.26 1.35 
 1.30 5 17.9 4.84 1.29 
 2.10 10 18.8 4.91 1.06 

 2.20 15 19.5 5.04 1.12 
 2.30 20 20.2 2.32 3.08 

 2.00 25 20.8 1.39 3.28 
 0.90 30 21.6 1.48 3.05 
 0.70 35 22.3 1.49 2.45 
 0.50 40 21.7 1.47 2.63 
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 0.3 45 21.4 1.47 3.48 
 0.1 50 21.1 1.41 3.19 
  55 20.7 1.52 2.84 
  60 20.4 1.64 3.17 
  65 20.1 1.58 3.76 
  70 19.6 1.53 3.43 
  75 19.4 1.71 3.13 
  80 19.1 1.97 2.95 
  85 18.7 2.15 2.34 

5 year (August 01, 2008)

Time(min) 
Mg 

(mg/L) 
Na 

(mg/L) 
DOC 

(mg/L) 
TDN 

(mg/L) 
NO3 

(mg/L) 
0 1.24 4.82 1.63 3.98 3.01 
5 1.61 5.01 1.91 4.16 3.29 

10 1.32 4.49 1.75 4.25 3.17 
15 1.53 4.71 3.36 4.32 3.54 
20 0.91 2.12 4.61 1.93 1.26 
25 0.52 1.45 5.02 0.85 0.52 
30 0.62 1.16 4.93 0.91 0.35 
35 0.48 1.12 4.92 0.92 0.36 
40 0.47 1.17 4.97 0.91 0.37 
45 0.54 1.29 5.14 0.88 0.34 
50 0.49 1.06 5.63 0.93 0.32 
55 0.49 1.24 5.07 0.83 0.38 
60 0.53 1.06 5.23 0.91 0.35 
65 0.51 1.51 5.69 0.95 0.61 
70 0.53 1.39 5.37 0.83 0.53 
75 0.62 1.92 4.78 0.98 0.68 
80 0.73 2.05 3.45 1.12 0.82 
85 0.82 2.38 4.06 1.25 1.04 
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Figure C4. Rainfall, discharge and solute concentrations for 50 year watershed storms 
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Table C5: Data for Figure C4 

50 year (July 02, 2008)

 
Rainfall 

(mm) 
Time 
(min) 

Discharge 
(L/min) Ca (mg/L) K (mg/L) 

 0.90 0 19.2 6.98 1.24 
 1.40 5 19.6 7.56 1.57 
 1.80 10 20.3 7.17 1.31 
 2.10 15 20.7 7.23 2.21 
 1.80 20 21.5 5.53 4.65 
 1.30 25 22.2 4.16 6.95 
 0.80 30 22.6 4.13 6.38 
 0.70 35 22.9 4.12 6.13 
 0.40 40 22.4 4.76 6.55 
  45 21.7 5.12 5.91 
  50 21.2 5.41 5.84 
  55 20.8 5.74 4.73 
  60 20.5 7.23 4.24 
  65 20.2 7.31 4.01 
  70 20.0 7.12 3.31 

50 year (July 02, 2008)

Time(min) 
Mg 

(mg/L) 
Na 

(mg/L) 
DOC 

(mg/L) 
TDN 

(mg/L) 
NO3 

(mg/L) 
0 2.53 5.02 1.67 4.36 3.43 
5 2.47 4.99 1.45 4.45 4.39 

10 2.65 5.13 1.81 4.49 4.27 
15 2.42 4.97 1.56 4.19 3.51 
20 1.98 4.61 5.06 3.22 2.08 
25 1.29 3.04 6.2 2.97 1.97 
30 1.34 2.93 7.96 2.96 2.3 
35 1.4 3.12 8.9 3.04 2.26 
40 1.64 3.77 7.44 3.41 2.6 
45 1.67 3.56 7.3 3.48 2.61 
50 1.79 4.21 7.04 3.42 2.41 
55 2.06 4.68 6.29 3.85 2.79 
60 2.41 4.71 4.76 4.44 3.43 
65 2.43 4.81 3.85 4.53 3.61 
70 2.4 4.74 3.89 4.37 3.57 
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50 year (July 20, 2008)

 
Rainfall 

(mm) 
Time 
(min) 

Discharge 
(L/min) Ca (mg/L) K (mg/L) 

 0.70 0 17.4 6.93 1.07 
 1.30 5 17.9 7.62 1.32 

 1.50 10 18.3 7.11 1.05 
 1.90 15 18.7 7.5 0.93 

 1.70 20 19.4 6.32 2.82 
 1.40 25 20.1 4.84 7.08 
 1.10 30 21.6 4.21 8.37 

 0.80 35 22.1 3.68 7.84 
 0.60 40 21.5 3.61 8.2 
 0.3 45 21.1 3.81 7.37 
  50 20.8 3.58 7.31 
  55 20.5 3.88 7.87 
  60 20.2 3.75 8.12 
  65 19.9 3.61 7.56 
  70 19.6 3.13 6.28 
  75 19.4 3.15 6.37 
  80 19.2 5.05 7.08 
  80 18.8 5.14 6.24 
  90 18.6 5.63 5.95 
  95 18.4 6.27 5.23 

10 year (July 20, 2008)

Time(min) 
Mg 

(mg/L) 
Na 

(mg/L) 
DOC 

(mg/L) 
TDN 

(mg/L) 
NO3 

(mg/L) 
0 2.35 4.89 1.72 3.85 4.04 
5 2.86 5.21 1.58 3.99 4.52 

10 2.72 4.96 1.33 3.78 4.26 
15 2.52 5.02 1.91 4.03 3.32 
20 2.07 3.96 3.13 3.41 2.79 
25 1.49 3.71 5.68 1.16 2.95 
30 1.31 3.11 6.56 1.52 1.16 
35 1.21 2.47 6.49 1.55 1.11 
40 1.27 1.78 6.41 1.06 0.23 
45 1.21 1.88 7.58 0.64 0.33 
50 1.17 2.25 6.76 1.73 1.26 
55 1.25 2.24 6.78 1.68 1.19 



  189

60 1.31 2.01 6.21 0.99 0.27 
65 1.13 2.09 6.11 1.74 1.17 
70 0.99 1.85 5.61 1.04 0.19 
75 1.01 1.74 5.67 0.81 0.31 
80 1.66 3.66 5.99 1.87 1.351 
80 1.78 3.89 4.52 1.97 1.21 
90 1.57 3.72 4.01 2.34 1.82 
95 1.94 4.05 3.84 2.18 1.97 

      
 
 
 
 
 

50 year (July 21, 2008)

 
Rainfall 

(mm) 
Time 
(min) 

Discharge 
(L/min) Ca (mg/L) K (mg/L) 

 0.3 0 22.4 5.67 1.78 
 0.7 5 22.9 5.78 0.57 
 0.9 10 23.3 5.12 1.92 
 1.1 15 23.8 6.04 0.91 
 1.2 20 24 5.63 1.21 

 1.3 25 24.4 5.25 1.36 
 1.2 30 24.8 5.08 0.87 

 1.1 35 25.3 4.65 1.51 
 1 40 25.9 4.29 2.31 
 0.9 45 26.3 4.37 2.14 
 0.6 50 26.6 4.24 3.74 
 0.5 55 26.9 4.01 3.38 
 0.4 60 26.8 4.23 2.98 
 0.3 65 27.2 4.02 3.56 
  70 27.5 4.07 2.82 
  75 27.9 4.99 3.95 
  80 28.1 4.98 3.39 
  85 27.7 4.74 2.65 
  90 27.5 4.67 2.46 
  95 27.3 4.38 3.07 
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50 year (July 21, 2008)

Time(min) 
Mg 

(mg/L) 
Na 

(mg/L) 
DOC 

(mg/L) 
TDN 

(mg/L) 
NO3 

(mg/L) 
0 2.08 3.98 2.45 3.04 2.82 
5 1.58 4.68 2.67 2.81 2.34 

10 2.01 4.16 2.35 3.28 2.63 
15 1.83 3.21 3.37 2.21 1.75 
20 3.14 3.06 3.58 2.59 1.61 
25 2.54 3.83 3.67 2.17 2.07 
30 3.08 3.22 4.72 2.05 1.74 
35 1.48 2.91 4.86 1.72 1.45 
40 1.35 2.68 4.88 1.49 1.23 
45 2.01 3.02 4.8 1.72 1.74 
50 1.21 2.84 5.35 1.46 1.43 
55 1.51 2.63 6.18 1.78 1.56 
60 1.81 1.56 6.01 1.16 1.06 
65 1.77 2.03 5.96 1.85 1.73 
70 1.38 1.49 5.81 0.99 0.69 
75 1.14 1.91 5.74 1.41 1.22 
80 0.94 1.51 4.23 1.66 1.35 
85 1.24 1.56 4.27 1.79 1.31 
90 1.31 2.06 5.19 2.04 1.54 
95 1.14 2.23 4.86 1.67 1.32 

      
 
 
 
 

50 year (August 02, 2008)

 
Rainfall 

(mm) 
Time 
(min) 

Discharge 
(L/min) Ca (mg/L) K (mg/L) 

 0.4 0 21.4 4.89 1.36 
 0.8 5 21.9 4.56 1.13 
 1.2 10 22.3 4.38 1.09 

 1.4 15 22.8 5.47 1.32 
 1.6 20 23.3 4.35 1.53 

 1.8 25 23.7 3.71 2.65 
 1.3 30 24.2 3.48 2.33 
 1.2 35 24.7 3.26 1.88 
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 1 40 25.2 4.05 2.75 
 0.9 45 25.6 3.48 3.14 
 0.6 50 26.3 3.59 3.74 
  55 26.9 3.42 3.61 
  60 27.4 4.29 3.48 
  65 27.7 3.77 4.12 
  70 27.4 4.47 2.82 
  75 27.1 4.32 3.67 
  80 26.8 3.49 3.44 
  85 26.4 4.52 3.24 

50 year (August 02, 2008)

Time(min) 
Mg 

(mg/L) 
Na 

(mg/L) 
DOC 

(mg/L) 
TDN 

(mg/L) 
NO3 

(mg/L) 
0 2.63 3.18 2.51 3.58 3.14 
5 2.47 3.73 2.85 3.94 3.23 

10 1.89 3.53 2.79 3.73 2.95 
15 2.87 3.02 3.18 4.02 3.06 
20 2.13 2.62 3.98 2.61 1.47 
25 1.95 2.81 4.68 2.27 2.15 
30 2.13 2.55 4.81 1.95 1.64 
35 2.35 3.28 4.79 2.69 2.36 
40 1.63 2.57 4.85 1.45 1.27 
45 2.03 2.48 4.95 2.13 1.82 
50 1.48 2.04 5.46 1.79 1.61 
55 1.38 2.98 5.34 1.38 1.13 
60 1.46 2.35 5.87 1.45 1.34 
65 1.23 1.96 6.23 1.52 1.31 
70 1.18 1.76 5.67 1.71 1.33 
75 1.14 2.15 5.74 2.11 1.87 
80 1.22 1.81 4.85 2.32 1.87 
85 1.49 2.25 4.32 2.42 2.05 
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Table C6: Data for chapter 3 Figure 3.2    

 
50 yr (July 31, 2008) 

Discharge  
(L min-1) 

K  
(mg L-1) 

DOC  
(mg L-1) 

Ca  
(mg L-1) 

18.5 1.41 1.01 6.35 
18.6 1.87 1.35 6.49 
18.8 1.25 1.29 6.28 
19.2 5.31 4.97 6.53 
19.5 5.07 4.49 6.87 
19.8 5.68 5.85 7.06 
20.4 3.07 1.71 6.79 
21.1 6.24 6.15 7.44 
21.3 3.67 3.78 6.67 
21.4 7.89 7.04 7.16 
21.7 8.09 8.19 5.75 
22.2 8.03 7.86 4.61 
22.5 4.91 6.84 6.25 
22.6 8.21 6.94 4.06 
23.1 5.46 6.75 5.28 
23.8 6.32 7.92 4.83 
24.3 7.43 7.45 4.77 

    
Discharge  
(L min-1) 

Mg  
(mg L-1) 

Na  
(mg L-1) 

TDN  
(mg L-1) 

18.5 2.54 5.24 4.42 
18.6 2.44 5.74 4.19 
18.8 2.67 5.19 4.53 
19.2 2.38 4.98 4.59 
19.5 2.31 4.65 4.27 
19.8 2.49 4.79 4.63 
20.4 2.35 5.55 4.62 
21.1 2.12 5.12 4.85 
21.3 2.41 5.31 4.09 
21.4 2.01 4.48 5.64 
21.7 1.82 4.15 4.53 
22.2 1.95 4.05 3.82 
22.5 2.17 4.96 3.78 
22.6 1.73 3.81 3.43 
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23.1 1.91 4.25 3.17 
23.8 1.69 4.11 3.02 
24.3 1.55 4.09 3.23 

 

Table C7: Data for chapter 3 Figure 3.3    

50 yr storm (July 31, 2008) 
Discharge  
(L min-1) 

Ca  
(mg L-1) 

K  
(mg L-1) 

Mg 
 (mg L-1) 

18.5 6.35 1.41 2.54 
18.6 6.49 1.87 2.44 
18.8 6.28 1.25 2.67 
20.4 6.79 3.07 2.35 
21.3 6.67 3.67 2.41 
22.5 6.25 4.91 2.17 
23.1 5.28 5.46 1.91 
23.8 4.83 6.32 1.69 
24.3 4.77 7.43 1.55 
22.6 4.06 8.21 1.73 
22.2 4.61 8.03 1.95 
21.7 5.75 8.09 1.82 
21.4 7.16 7.89 2.01 
21.1 7.44 6.24 2.12 
19.8 7.06 5.68 2.49 
19.5 6.87 5.07 2.31 
19.2 6.53 5.31 2.38 

    
Discharge 
 (L min-1) 

Na 
(mg L-1) 

DOC  
(mg L-1) 

TDN  
(mg L-1) 

18.5 5.24 1.01 4.42 
18.6 5.74 1.35 4.19 
18.8 5.19 1.29 4.53 
20.4 5.55 1.71 4.62 
21.3 5.31 3.78 4.09 
22.5 4.96 6.84 3.78 
23.1 4.25 6.75 3.17 
23.8 4.11 7.92 3.02 
24.3 4.09 7.45 3.23 
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22.6 3.81 6.94 3.43 
22.2 4.05 7.86 3.82 
21.7 4.15 8.19 4.53 
21.4 4.48 7.04 5.64 
21.1 5.12 6.15 4.85 
19.8 4.79 5.85 4.63 
19.5 4.65 4.49 4.27 
19.2 4.98 4.97 4.59 

 

 

Table C8: Data for chapter 3 Figure 3.4 

Forest (August 1, 2008)

Time (min) 
Ca – stream 

(mg/L) DOC – stream (mg/L)   
0 5.56 1.77    
5 6.39 1.84    
10 5.57 1.73    
15 6.4 1.99    
20 7.03 1.93    
25 6.35 2.12    
30 6.17 2.58    
35 6.33 3.01    
40 6.26 2.82    
45 5.63 3.62    
50 5.92 3.84    
55 5.98 3.64    
60 6.42 3.77    
65 5.38 4.13    
70 6.85 3.98    
75 5.58 4.01    
80 6.23 3.89    
85 5.74 4.15    
90 5.47 4.23    
95 6.43 3.69    
100 5.62 3.58    
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Forest (August 1, 2008)
Ca - 

groundwater 
DOC - 

groundwater 
Ca - 

soilwater 
DOC - 

soilwater 
Ca - 

overland 
DOC - 

overland
(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 

3.52 1.21 39.31 7.21 5.02 8.07 
3.78 1.38 40.97 5.31 5.41 8.36 
3.54 1.43 53.54 5.94 4.09 8.64 
3.72 1.14 37.53 5.47 3.13 11.49 
4.73 2.07 29.14 6.07 3.52 8.43 
4.71 1.34 35.92 8.32 4.53 7.92 
4.64 1.12 37.35 7.33 3.99 9.25 
3.59 1.36 46.21 6.51 3.29 9.41 
4.77 1.21 37.68 4.05 4.86 8.41 
5.32 1.31 36.23 7.55 3.13 8.32 

  32.36 8.86 4.32 10.9 
  35.38 9.12 3.74 9.45 
    4.41 8.43 
    4.25 9.71 
    4.36 9.65 
    5.97 9.72 
    3.98 8.03 
    3.91 7.86 
    4.67 8.32 
    3.29 9.38 
    4.04 8.27 
           

           

 
 

5yr (July 31, 2008)

Time (min) 
Ca – stream 

(mg/L) DOC stream (mg/L)   
0 5.51 2.91    
5 6.19 2.71    
10 5.42 3.01    
15 5.75 2.94    
20 6.01 3.65    
25 5.37 3.86    
30 4.83 3.59    
35 4.27 4.18    
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40 4.14 4.73    
45 4.92 4.92    
50 4.77 5.21    
55 4.16 5.41    
60 4.35 4.88    
65 3.91 5.29    
70 4.85 5.54    
75 3.08 4.64    

           

5yr (July 31, 2008)
Ca - 

groundwater 
DOC - 

groundwater 
Ca - 

soilwater 
DOC - 

soilwater 
Ca - 

overland 
DOC - 

overland
(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 

1.93 1.83 34.76 9.81 3.01 12.65 
1.59 1.34 30.83 10.06 2.96 14.93 
1.58 1.42 34.72 10.44 1.98 15.34 
1.67 1.57 33.06 9.46 3.77 15.26 
1.55 1.39 30.99 11.52 2.94 16.23 
1.69 1.35 30.29 11.14 2.82 13.94 
1.48 1.34 31.37 9.38 2.87 11.72 
1.61 1.78 29.29 11.03 2.36 12.93 
2.48 1.01 33.98 8.09 3.25 14.34 
2.72 1.29 31.37 10.28 2.92 13.73 

    2.71 16.19 
    3.09 13.41 
    2.31 13.84 
    2.23 10.83 
    2.67 9.81 
    3.09 15.55 
           

           

 
 

10yr (July 20, 2008)

Time (min) 
Ca stream 

(mg/L) DOC stream (mg/L)   
0 5.51 2.91    
5 6.19 2.71    
10 5.42 3.01    
15 5.75 2.94    
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20 6.01 3.65    
25 5.37 3.86    
30 4.83 3.59    
35 4.27 4.18    
40 4.14 4.73    
45 4.92 4.92    
50 4.77 5.21    
55 4.16 5.41    
60 4.35 4.88    
65 3.91 5.29    
70 4.85 5.54    
75 3.08 4.64    

           

10yr (July 20, 2008)
Ca - 

groundwater 
DOC - 

groundwater 
Ca - 

soilwater 
DOC - 

soilwater 
Ca - 

overland 
DOC - 

overland
(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 

1.36 1.19 37.58 13.27 1.07 10.31 
1.17 1.14 36.91 13.74 1.19 10.13 
1.44 1.09 34.25 11.07 1.15 10.91 
1.71 1.17 31.85 10.32 1.25 9.12 
1.27 1.06 36.87 12.07 1.18 13.29 
1.24 1.03 37.79 11.37 1.12 11.11 
1.45 1.24 38.72 10.94 1.05 10.24 
1.49 1.06 35.06 13.46 1.11 10.53 
1.61 1.07 39.97 12.42 1.13 14.92 
1.49 1.26 34.79 12.75 1.42 11.69 

  39.85 10.92 1.04 11.42 
    1.19 10.24 
    1.11 10.22 
    1.15 13.37 
    1.04 11.07 
    1.25 10.39 
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50yr (July 02, 2008) 

Time (min) 
Ca – stream 
(mg/L) DOC – stream (mg/L)   

0 6.81 3.89    
5 6.96 3.74    

10 6.02 3.65    
15 6.17 4.24    
20 5.74 4.56    
25 5.56 4.48    
30 5.66 5.06    
35 4.64 5.75    
40 4.58 5.42    
45 4.96 5.14    
50 5.71 5.33    
55 5.81 4.97    
60 4.92 5.48    
65 5.02 5.64    
70 5.84 5.66    
75 5.25 5.35    

           

50yr (July 02, 2008)
Ca - 

groundwater 
DOC - 

groundwater 
Ca - 

soilwater 
DOC - 

soilwater 
Ca - 

overland 
DOC - 

overland
(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 

5.94 1.75 21.46 15.31 1.59 10.72 
5.22 1.67 27.63 14.22 1.61 14.31 
5.31 1.06 26.54 15.55 2.65 14.74 
5.33 1.39 26.29 13.26 1.56 15.85 
5.88 1.09 21.92 13.91 2.16 11.77 
5.34 1.17 20.97 15.41 1.93 16.34 
5.77 1.04 21.94 13.75 3.05 15.65 
5.43 1.75 20.99 13.49 1.72 13.33 
5.56 1.05 27.56 15.27 1.99 14.65 
5.82 1.23 24.29 14.45 2 11.54 

  21.99 13.74 2.07 13.08 
  21.92 14.93 1.81 10.47 
  26.32 15.37 2.42 12.07 
    2.02 13.74 
    1.39 12.94 
    1.74 15.48 
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Figure C5: Mixing diagram showing DOC and Ca concentrations from stream water and 

end member members in various rainstorms in the forest watershed; contributions shown 

in Figure C9 and Table 3.2. 
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Table C9: Data for Figure C5. 

 
Forest (June 30, 2008) 

Time (min) 
Ca – stream 

(mg/L) 

DOC – 
stream 
(mg/L)    

0 5.98 2.12    
5 6.32 2.58    

10 6.48 2.37    
15 7.69 3.99    
20 6.23 4.97    
25 5.43 5.67    
30 5.49 6.24    
35 6.43 5.13    
40 5.82 6.64    
45 7.75 8.21    
50 6.18 8.82    
55 6.09 8.04    
60 5.81 7.26    
65 5.88 7.06    
70 6.12 6.52    
75 6.67 6.66    
80 7.31 6.25    
85 7.15 5.37    
90 6.58 5.83    

      
Forest (June 30, 2008) 

Ca - 
groundwater 

DOC - 
groundwater 

Ca - 
soilwater 

DOC - 
soilwater 

Ca - 
overland

DOC - 
overland 

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 
4.581 1.538 40.971 8.315 3.672 8.357 
5.035 1.393 43.744 7.345 4.098 8.641 
5.321 1.854 39.537 6.773 5.134 11.49 
5.654 1.787 42.954 7.169 5.159 8.432 
5.352 1.784 35.927 6.513 4.528 7.917 
4.981 1.572 37.916 7.563 3.986 9.252 
5.276 1.431 43.216 7.879 5.258 9.412 
4.879 1.431 41.685 6.424 4.862 8.409 
4.905 1.601 36.235 6.599 5.529 8.343 
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4.648 1.813 36.833 6.875 3.904 10.938 
4.285 1.928 42.382 7.456 4.231 9.452 
5.158 1.218 42.383 6.462 4.324 8.428 
3.815 1.047 46.687 7.901 5.159 9.742 
4.027 1.608 4.528 9.643 
4.716 1.618 3.986 9.192 

  4.258 8.025 
    4.303 8.586 
  5.231 8.332 
  4.809 7.389 
  3.861 6.877 
   

 
 

Forest (July 21, 2008) 

Time (min) 
Ca – stream 

(mg/L) 

DOC 
stream 
(mg/L)    

0 6.71 1.27    
5 6.98 1.04    

10 7.23 1.13    
15 6.41 1.19    
20 7.05 1.13    
25 6.42 1.32    
30 6.19 2.76    
35 6.56 2.97    
40 5.74 3.62    
45 5.86 3.72    
50 6.99 4.09    
55 5.77 3.54    
60 5.93 3.87    
65 6.85 3.98    
70 5.99 4.06    
75 6.64 4.01    
80 5.74 3.65    
85 6.53 4.17    
90 6.21 3.18    
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Forest (July 21, 2008) 
Ca - 
groundwater 

DOC - 
groundwater 

Ca - 
soilwater 

DOC - 
soilwater 

Ca - 
overland

DOC - 
overland 

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 
4.312 1.208 39.313 6.213 4.342 6.532 
4.378 1.384 40.974 5.312 4.192 7.212 
4.354 1.432 39.743 5.946 3.875 6.872 
4.592 1.139 37.532 5.473 4.425 7.359 
3.823 1.368 40.943 6.071 3.875 8.983 
3.931 1.336 35.922 8.324 4.154 8.274 
4.064 1.121 39.349 6.328 4.231 10.237 
4.159 1.364 36.211 6.509 3.923 8.982 
4.377 1.206 39.683 4.048 3.631 7.894 
4.632 1.313 36.227 7.987 4.431 7.984 
4.285 1.928 40.357 8.858 3.763 9.764 
3.958 1.218 39.379 8.123 3.436 9.056 
3.845 1.047 37.326 6.624 3.654 7.876 
4.067 1.608 40.608 6.655 3.765 9.264 
4.716 1.618 35.949 8.373 3.876 6.575 

  36.017 8.165 4.324 7.354 
  3.768 6.236 
  3.453 7.166 
  4.546 7.326 
    4.697 6.324 
    4.345 7.649 
      

 
 

Forest (July 22, 2008) 

Time (min) 
Ca stream 
(mg/L) 

DOC 
stream 
(mg/L)    

0 6.66 1.66    
5 7.12 1.57    

10 7.26 1.85    
15 6.87 1.91    
20 6.44 1.97    
25 7.09 2.11    
30 5.49 2.04    
35 7.33 2    
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40 6.35 2.14    
45 7.08 2.02    
50 6.49 2.72    
55 7.07 3.13    
60 7.23 3.36    
65 6.97 3.17    
70 7.12 3.27    
75 7.09 3.01    
80 6.99 3.19    
85 7.41 2.92    
90 7.42 3.01    
95 7.21 2.89    

100 6.79 3.28    
      

Forest (July 22, 2008) 
Ca - 

groundwater 
DOC - 

groundwater 
Ca - 

soilwater 
DOC - 

soilwater 
Ca - 

overland
DOC - 

overland 
(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 

4.312 1.208 39.313 6.213 3.873 9.323 
4.378 1.384 40.974 5.312 3.291 7.612 
4.354 1.432 39.743 5.946 4.037 7.432 
4.592 1.139 37.532 5.473 3.763 9.943 
3.823 1.368 40.943 6.071 4.421 8.305 
3.931 1.336 35.922 8.324 3.768 8.674 
4.064 1.121 39.349 6.328 3.879 8.325 
4.159 1.364 36.211 6.509 4.653 8.186 
4.377 1.206 39.683 4.048 4.526 8.087 
4.632 1.313 36.227 7.987 3.876 8.325 
4.285 1.928 40.357 8.858 3.764 7.536 
3.958 1.218 39.379 8.123 3.291 6.236 
3.845 1.047 37.326 6.624 3.932 7.345 
4.067 1.608 40.608 6.655 3.587 7.476 
4.716 1.618 35.949 8.373 3.781 6.143 

  36.017 8.165 3.947 7.365 
  4.826 7.315 
  4.627 8.327 
  3.765 9.549 
    3.528 8.675 
    4.241 8.459 
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Forest (July 25, 2008) 

Time (min) 
Ca – stream 

(mg/L) DOC – stream (mg/L)   
0 6.49 1.89    
5 7.07 1.48    

10 7.23 2.07    
15 6.97 2.31    
20 7.12 3.02    
25 7.09 2.81    
30 6.99 2.49    
35 7.41 2.49    
40 7.42 2.34    
45 7.09 2.32    
50 6.49 3.12    
55 7.33 3.07    
60 6.35 3.16    
65 7.08 2.75    
70 6.66 3.21    
75 7.12 3.31    
80 7.26 3.04    

      
Forest (July 25, 2008) 

Ca - 
groundwater 

DOC - 
groundwater 

Ca - 
soilwater

DOC - 
soilwater 

Ca - 
overland

DOC - 
overland 

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 
4.312 1.208 39.313 6.213 3.132 9.075 
4.378 1.384 40.974 5.312 3.398 8.362 
4.354 1.432 39.743 5.946 3.537 8.642 
4.592 1.139 37.532 5.473 3.983 7.493 
3.823 1.368 40.943 6.071 4.553 9.435 
3.931 1.336 35.922 8.324 3.534 7.924 
4.064 1.121 39.349 6.328 3.369 9.255 
4.159 1.364 36.211 6.509 5.293 9.416 
4.377 1.206 39.683 4.048 2.961 6.415 
4.632 1.313 36.227 7.987 4.134 8.325 
4.285 1.928 40.357 8.858 3.326 10.956 
3.958 1.218 39.379 8.123 3.743 9.756 
3.845 1.047 37.326 6.624 3.412 8.435 
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4.067 1.608 40.608 6.655 3.255 9.716 
4.716 1.618 35.949 8.373 4.156 9.656 

  36.017 8.165 5.927 9.925 
  3.983 8.035 
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Figure C6: Mixing diagram showing DOC and Ca concentrations from stream water and 

end member members in various rainstorms in the 5 year old watershed; contributions 

shown in Figure C10 and Table 3.2. 
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Table C10: Data for Figure C6. 

5yr (June 30, 2008) 

Time (min) 
Ca – stream 

(mg/L) 
DOC - 

Stream (mg/L)   
0 5.35 2.45    
5 5.74 2.09    

10 5.16 2.18    
15 5.04 2.87    
20 5.42 3.05    
25 5.07 3.76    
30 5.13 3.53    
35 4.87 4.07    
40 4.91 3.98    
45 4.62 4.31    
50 5.03 4.75    
55 4.88 5.29    
60 4.49 4.88    
65 4.57 5.14    
70 4.39 5.42    
75 4.17 5.76    
80 4.53 5.32    
85 4.31 5.19    

      
5yr (June 30, 2008) 

Ca - 
groundwater 

DOC - 
groundwater 

Ca - 
soilwater 

DOC - 
soilwater 

Ca - 
overland 

DOC - 
overland 

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 
2.014 0.951 34.763 9.813 2.082 13.054 
1.985 0.897 35.832 10.062 2.121 14.643 
1.961 1.123 34.725 7.542 1.954 11.532 
2.102 1.025 33.766 9.463 1.453 13.274 
2.292 1.262 38.991 9.224 1.898 14.653 
1.845 1.041 37.292 8.746 2.212 11.859 
1.797 0.989 32.373 9.384 2.035 12.532 
1.823 1.108 29.593 11.032 2.195 10.757 
2.231 1.129 34.981 8.091 1.796 9.732 
2.428 1.348 37.876 8.253 1.908 14.438 
2.626 0.953 39.598 8.052 2.102 14.106 
2.145 0.877 38.892 10.215 1.859 12.624 
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2.198 1.012 39.842 10.013 1.764 12.722 
2.324 1.089 38.473 9.241 1.982 11.764 
2.287 0.986   1.859 15.857 
2.211 1.231   2.201 14.543 

    2.335 10.433 
    1.784 12.864 
  2.231 13.654 
  2.501 14.433 
    

 
 

5yr (July 14, 2008) 

Time (min) 
Ca – stream 

(mg/L) 
DOC stream 

(mg/L)    
0 5.62 1.78    
5 5.28 1.62    

10 5.43 1.72    
15 5.84 2.06    
20 5.51 1.98    
25 5.22 2.05    
30 4.83 2.25    
35 4.27 2.47    
40 4.14 3.17    
45 3.92 4.13    
50 4.77 4.66    
55 4.16 5.41    
60 4.35 5.38    
65 4.41 5.82    
70 4.85 5.69    
75 4.08 5.75    
80 4.24 5.18    
85 4.63 5.24    
90 4.87 5.36    
95 5.01 5.04    
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5yr (July 14, 2008) 
Ca - 

groundwater 
DOC - 

groundwater 
Ca - 

soilwater 
DOC - 

soilwater 
Ca - 

overland 
DOC - 

overland 
(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 

2.014 0.951 34.763 9.813 3.018 12.152 
1.985 0.897 35.832 10.062 2.961 14.934 
1.961 1.123 34.725 7.542 2.984 15.329 
2.102 1.025 33.766 9.463 3.773 15.262 
2.292 1.262 38.991 9.224 2.948 16.233 
1.845 1.041 37.292 8.746 2.823 13.939 
1.797 0.989 32.373 9.384 2.874 15.018 
1.823 1.108 29.593 11.032 3.365 12.425 
2.231 1.129 34.981 8.091 3.751 14.338 
2.428 1.348 37.876 8.253 2.923 13.328 
2.626 0.953 39.598 8.052 2.709 16.193 
2.145 0.877 38.892 10.215 3.089 13.214 
2.198 1.012 39.842 10.013 2.314 13.242 
2.324 1.089 38.473 9.241 2.238 16.131 
2.287 0.986   2.669 15.813 
2.211 1.231   3.087 15.042 

    2.729 11.523 
    3.254 15.372 
    2.519 10.123 
    2.787 10.743 
      

 
 

5yr (July 20, 2008) 

Time (min) 
Ca stream 

(mg/L) 
DOC stream 

(mg/L)    
0 6.6389 2.94    
5 6.482 2.328    

10 6.0543 2.472    
15 6.9984 3.06    
20 6.8556 2.98    
25 6.037 3.05    
30 5.9442 3.51    
35 5.2065 3.47    
40 5.0537 3.68    
45 4.028 4.31    
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50 4.6681 4.56    
55 4.5568 4.41    
60 4.3973 4.81    
65 4.4217 6.01    
70 4.568 5.76    
75 4.1463 5.93    
80 5.0797 6.08    
85 5.2799 6.55    
90 4.6262 6.29    
95 4.8266 6.81    

      
5yr (July 20, 2008) 

Ca - 
groundwater 

DOC - 
groundwater 

Ca - 
soilwater 

DOC - 
soilwater 

Ca - 
overland 

DOC - 
overland 

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 
1.591 1.461 35.836 10.063 2.876 13.982 
1.984 1.551 31.724 9.546 2.135 10.233 
1.938 1.328 33.069 8.463 2.419 11.731 
1.652 1.699 30.997 10.251 2.287 15.673 
1.892 1.254 29.196 13.743 1.962 12.522 
1.687 1.441 32.375 11.385 2.701 12.482 
1.669 1.478 30.394 9.276 1.872 12.543 
1.681 1.681 34.981 9.092 2.318 12.184 
1.724 1.369 32.853 9.285 2.328 15.643 
1.923 1.508 31.527 10.458 2.718 11.982 
1.706 1.305 33.891 11.108 1.798 12.652 
1.945 1.405 28.876 10.052 2.241 13.661 
1.998 1.304 30.491 9.235 2.398 13.701 
2.194 1.826 32.831 9.776 2.285 12.104 
2.048 1.141   2.629 13.008 
1.694 1.205   2.419 12.027 

    2.987 11.386 
      

5 year (August 01, 2008) 

Time (min) 
Ca – stream 

(mg/L) DOC – stream (mg/L)   
0 4.62 2.21    
5 5.28 1.92    

10 4.73 2.17    
15 4.84 2.06    
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20 5.01 1.96    
25 4.22 2.05    
30 3.83 2.12    
35 3.27 2.74    
40 3.14 2.67    
45 3.92 3.13    
50 3.77 3.66    
55 3.16 3.41    
60 3.35 4.08    
65 3.41 4.82    
70 3.85 5.39    
75 3.08 4.75    

      
5 year (August 01, 2008) 

Ca - 
groundwater 

DOC - 
groundwater 

Ca - 
soilwater 

DOC - 
soilwater 

Ca - 
overland 

DOC - 
overland 

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 
1.591 1.461 35.836 10.063 3.363 12.992 
1.984 1.551 31.724 9.546 3.915 13.341 
1.938 1.328 33.069 8.463 3.773 15.262 
1.652 1.699 30.997 10.251 3.944 15.942 
1.892 1.254 29.196 13.743 3.826 12.941 
1.687 1.441 32.375 11.385 2.801 12.723 
1.669 1.478 30.394 9.276 2.963 12.405 
1.681 1.681 34.981 9.092 3.657 12.349 
1.724 1.369 32.853 9.285 2.924 12.731 
1.923 1.508 31.527 10.458 3.109 11.194 
1.706 1.305 33.891 11.108 3.697 13.287 
1.945 1.405 28.876 10.052 2.363 14.846 
1.998 1.304 30.491 9.235 2.757 11.834 
2.194 1.826 32.831 9.776 2.924 13.881 
2.048 1.141   3.709 10.523 
1.694 1.205   2.944 11.227 

    2.826 10.373 
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Figure C7: Mixing diagram showing DOC and Ca concentrations from stream water and 

end member members in various rainstorms in the 10 year old watershed; contributions 

shown in Figure C11 and Table 3.2). 
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Table C11:    Data for Figure C7. 

10yr (July 14, 2008) 

Time (min) 
Ca – stream 

(mg/L) 
DOC – 

Stream (mg/L)   
0 5.47 2.43    
5 5.84 2.67    

10 5.31 2.83    
15 4.42 3.71    
20 4.87 4.35    
25 4.03 5.02    
30 3.76 4.93    
35 3.64 4.92    
40 3.58 4.97    
45 3.86 5.14    
50 3.71 5.63    
55 3.81 5.07    
60 3.92 4.91    
65 4.02 5.69    
70 3.84 4.84    
75 4.25 4.93    
80 4.01 4.81    

      
10yr (July 14, 2008) 

Ca - 
groundwater 

DOC - 
groundwater 

Ca - 
soilwater 

DOC - 
soilwater 

Ca - 
overland 

DOC - 
overland 

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 
1.411 1.124 37.214 13.276 1.523 13.053 
1.369 1.042 34.743 12.135 1.387 14.658 
1.418 1.267 38.876 11.351 1.438 11.084 
1.484 1.113 36.476 11.133 1.598 15.229 
1.497 1.254 39.372 12.072 1.643 14.286 
1.407 1.098 38.653 13.231 1.764 12.403 
1.391 0.986 40.198 12.214 1.276 13.341 
1.407 1.172 39.322 13.132 1.379 13.267 
1.472 1.261 38.761 13.215 1.345 10.567 
1.469 1.016 33.422 12.082 1.493 11.491 
1.542 1.218 34.239 12.115 1.365 15.533 
1.412 1.002 33.753 11.083 1.477 16.272 
1.276 0.923 32.517 10.872 1.287 13.676 
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1.391 1.403 36.175 10.431 1.936 10.127 
1.424 1.138   1.288 13.684 

    1.437 10.498 
    1.242 12.876 
      

 
 

10yr (July 27, 2008) 

Time (min) 
Ca– stream 

(mg/L) 

DOC - 
stream 
(mg/L)    

0 4.78 2.08  
5 4.84 2.42  

10 4.63 2.14  
15 4.25 2.86   
20 4.08 3.21    
25 4.11 3.87    
30 3.23 3.65    
35 3.02 4.39    
40 3.07 4.62    
45 3.99 4.82    
50 3.98 5.16    
55 3.94 5.98    
60 4.35 5.35    
65 4.29 4.89    
70 4.37 4.37    
75 4.24 5.27    
80 4.01 5.13    

      
10yr (July 27, 2008) 

Ca - 
groundwater 

DOC - 
groundwater 

Ca - 
soilwater 

DOC - 
soilwater 

Ca - 
overland 

DOC - 
overland 

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 
1.411 1.124 37.214 13.276 1.543 15.682 
1.369 1.042 34.743 12.135 1.863 17.185 
1.418 1.267 38.876 11.351 1.532 14.234 
1.484 1.113 36.476 11.133 1.467 14.017 
1.497 1.254 39.372 12.072 1.617 13.299 
1.407 1.098 38.653 13.231 1.372 15.426 
1.391 0.986 40.198 12.214 1.239 17.216 
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1.407 1.172 39.322 13.132 1.258 15.354 
1.472 1.261 38.761 13.215 1.476 14.492 
1.469 1.016 33.422 12.082 1.654 16.166 
1.542 1.218 34.239 12.115 1.439 15.961 
1.412 1.002 33.753 11.083 1.728 14.851 
1.276 0.923 32.517 10.872 1.308 13.271 
1.391 1.403 36.175 10.431 1.452 15.877 
1.424 1.138   1.738 14.114 

    1.383 13.108 
    1.332 14.307 
      

 
 
 
 

10yr (July 31, 2008) 

Time (min) 
Ca – stream 

(mg/L) 

DOC –
stream 
(mg/L)    

0 5.08 2.27   
5 4.78 2.33   

10 4.12 2.82    
15 5.04 3.09    
20 4.63 3.21    
25 4.25 3.87    
30 4.08 4.11    
35 4.35 4.24    
40 4.29 4.43    
45 4.37 4.65    
50 4.24 4.75    
55 4.01 5.18    
60 3.23 5.01    
65 3.02 4.96    
70 3.07 5.46    
75 3.99 5.74    
80 3.98 4.43    
85 3.94 4.27    
90 3.42 5.13    
95 3.87 4.66    
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10yr (July 31, 2008) 
Ca - 

groundwater 
DOC - 

groundwater 
Ca - 

soilwater 
DOC - 

soilwater 
Ca - 

overland 
DOC - 

overland 
(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 

1.411 1.124 37.214 13.276 1.325 13.421 
1.369 1.042 34.743 12.135 1.376 15.428 
1.418 1.267 38.876 11.351 1.233 13.524 
1.484 1.113 36.476 11.133 1.124 12.627 
1.497 1.254 39.372 12.072 1.862 10.229 
1.407 1.098 38.653 13.231 1.077 16.136 
1.391 0.986 40.198 12.214 1.532 11.291 
1.407 1.172 39.322 13.132 1.465 11.315 
1.472 1.261 38.761 13.215 1.176 10.379 
1.469 1.016 33.422 12.082 1.264 12.211 
1.542 1.218 34.239 12.115 1.013 13.351 
1.412 1.002 33.753 11.083 1.278 13.012 
1.276 0.923 32.517 10.872 1.108 12.841 
1.391 1.403 36.175 10.431 1.542 10.427 
1.424 1.138   1.083 12.434 

    1.103 11.228 
    1.132 11.537 
    1.029 11.256 
    1.195 12.654 
    1.321 12.325 
      

 
 

10yr (August 02, 2008) 

Time (min) 
Ca – stream 

(mg/L) DOC – stream (mg/L)   
0 4.38 3.01    
5 4.85 2.86    

10 5.15 2.69    
15 4.68 3.26    
20 5.02 4.24    
25 4.79 3.92    
30 4.47 4.65    
35 4.23 4.67    
40 3.97 5.31    
45 3.25 5.68    
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50 4.31 5.36    
55 4.76 5.52    
60 3.97 4.98    
65 3.75 5.06    
70 4.01 4.87    
75 3.44 4.99    
80 3.76 4.38    
85 3.65 4.58    

      
10yr (August 02, 2008) 

Ca - 
groundwater 

DOC - 
groundwater 

Ca - 
soilwater 

DOC - 
soilwater 

Ca - 
overland 

DOC - 
overland 

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 
1.321 1.494 27.906 11.749 1.895 12.131 
1.359 1.493 24.247 9.075 1.396 11.907 
1.308 1.477 28.852 10.021 2.353 12.127 
1.374 1.461 26.856 10.073 1.484 9.297 
1.344 1.532 30.793 11.372 1.522 13.069 
1.347 1.443 31.716 10.741 1.257 9.243 
1.292 1.335 31.061 9.434 1.452 11.531 
1.305 1.387 30.972 8.442 1.666 14.925 
1.391 1.486 33.791 10.575 1.723 11.297 
1.396 1.461 30.045 9.904 1.949 10.021 
1.296 1.438 32.529 9.655 1.623 11.243 
1.306 1.504 30.533 12.333 1.387 12.722 
1.291 1.473 28.047 12.371 1.959 10.071 
1.363 1.397 27.725 9.201 2.043 9.047 
1.324 1.557 28.551 11.866 1.348 11.394 

    1.806 13.328 
    1.332 10.377 
    1.829 10.145 
    1.975 11.214 
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Figure C8: Mixing diagram showing DOC and Ca concentrations from stream water and 

end member members in various rainstorms in the 50 year old watershed; contributions 

shown in Figure C12 and Table 3.2. 
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Table C12: Data for Figure C8. 

50yr (July 20, 2008) 

Time (min) 
Ca – stream 

(mg/L) DOC – stream (mg/L)   
0 5.96 4.34    
5 6.21 3.98    

10 6.43 3.57    
15 6.18 4.27    
20 5.85 4.98    
25 5.67 5.07    
30 5.34 5.35    
35 4.56 5.89    
40 4.69 5.53    
45 4.51 5.84    
50 4.78 5.54    
55 4.85 5.91    
60 4.92 6.03    
65 4.54 5.76    
70 4.98 5.89    
75 5.09 5.73    
80 4.54 5.23    

      
50yr (July 20, 2008) 

Ca - 
groundwater 

DOC - 
groundwater 

Ca - 
soilwater

DOC - 
soilwater 

Ca - 
overland 

DOC - 
overland 

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 
5.123  1.372 23.601 13.222 2.312 16.167 
5.013  1.392 25.534 11.553 3.127 17.493 
5.132  1.247 21.292 12.261 2.346 18.615 
5.087  1.291 21.908 14.972 2.216 17.432 
5.046  1.514 21.414 14.417 2.494 14.314 
5.174  1.104 21.415 13.758 3.125 16.323 
5.132  1.098 20.156 13.493 2.532 15.613 
5.063  1.015 25.513 11.774 2.392 14.732 
4.925  1.033 24.223 12.456 2.124 17.233 
5.054  1.173 23.113 13.742 2.171 13.421 
5.085  1.171 22.107 12.334 3.037 15.583 
5.162  1.132 20.302 15.875 3.134 17.857 
5.144  1.014 22.413 12.226 2.385 17.422 
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4.958  1.194 21.516 14.832 2.039 16.532 
6.045  1.314   2.034 16.463 

    2.141 17.881 
    2.123 14.264 
      

 
50yr (July 21, 2008) 

Time (min) 
Ca – stream 

(mg/L) 

DOC -
stream 
(mg/L)  

0 5.67 2.45  
5 5.78 2.67  

10 5.12 2.35  
15 6.04 3.37   
20 5.63 3.58    
25 5.25 3.67    
30 5.08 4.72    
35 4.65 4.86    
40 4.29 4.88    
45 4.37 4.8    
50 4.24 5.35    
55 4.01 6.18    
60 4.23 6.01    
65 4.02 5.96    
70 4.07 5.81    
75 4.99 5.74    
80 4.98 4.23    
85 4.74 4.27    
90 4.67 5.19    
95 4.38 4.86    

      
50yr (July 21, 2008) 

Ca - 
groundwater 

DOC - 
groundwater 

Ca - 
soilwater

DOC - 
soilwater 

Ca - 
overland 

DOC - 
overland 

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 
5.123  1.372 23.601 13.222 2.313 13.131 
5.013  1.392 25.534 11.553 2.027 13.479 
5.132  1.247 21.292 12.261 2.206 13.052 
5.087  1.291 21.908 14.972 1.863 15.021 
5.046  1.514 21.414 14.417 2.034 13.241 
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5.174  1.104 21.415 13.758 2.025 13.162 
5.132  1.098 20.156 13.493 3.163 13.413 
5.063  1.015 25.513 11.774 2.322 14.102 
4.925  1.033 24.223 12.456 2.024 14.316 
5.054  1.173 23.113 13.742 2.613 14.068 
5.085  1.171 22.107 12.334 2.357 11.272 
5.162  1.132 20.302 15.875 2.177 14.153 
5.144  1.014 22.413 12.226 3.065 12.381 
4.958  1.194 21.516 14.832 1.839 13.042 
6.045  1.314   2.094 12.343 

    1.801 14.432 
    2.143 11.892 
    1.798 11.361 
      

 
 

50yr (July 31, 2008) 

Time (min) 
Ca - stream 

(mg/L) 

DOC -
stream 
(mg/L)    

0 6.35 1.21    
5 6.49 1.35    

10 6.28 1.29    
15 6.79 1.71    
20 6.67 3.78    
25 6.25 4.84    
30 5.28 5.75    
35 5.45 6.92    
40 5.66 6.45    
45 5.14 6.94    
50 5.03 6.86    
55 4.83 6.87    
60 4.77 6.91    
65 4.06 7.57    
70 4.61 6.85    
75 4.87 5.49    
80 4.53 5.97    
85 4.76 5.04    
90 4.43 5.56    
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50yr (July 31, 2008) 
Ca - 

groundwater 
DOC - 

groundwater 
Ca - 

soilwater
DOC - 

soilwater 
Ca - 

overland 
DOC - 

overland 
(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 

5.123  1.372 23.601 13.222 2.107 12.942 
5.013  1.392 25.534 11.553 2.735 13.483 
5.132  1.247 21.292 12.261 2.632 11.782 
5.087  1.291 21.908 14.972 2.862 12.714 
5.046  1.514 21.414 14.417 1.934 14.986 
5.174  1.104 21.415 13.758 2.584 15.094 
5.132  1.098 20.156 13.493 2.452 14.497 
5.063  1.015 25.513 11.774 3.238 14.449 
4.925  1.033 24.223 12.456 2.978 16.132 
5.054  1.173 23.113 13.742 3.371 14.523 
5.085  1.171 22.107 12.334 3.269 16.725 
5.162  1.132 20.302 15.875 3.377 14.944 
5.144  1.014 22.413 12.226 3.585 13.935 
4.958  1.194 21.516 14.832 2.839 15.441 
6.045  1.314   3.436 13.743 

    3.378 13.353 
    2.943 15.162 
    3.079 15.144 
    3.165 14.732 
    3.132 15.225 
      

 
 

50yr (August 02, 2008) 

Time (min) 
Ca – stream 

(mg/L) DOC – stream (mg/L)   
0 5.32 2.51    
5 6.05 2.85    

10 5.85 2.79    
15 5.95 3.18    
20 5.82 3.98    
25 5.12 4.68    
30 4.88 4.81    
35 4.85 4.79    
40 4.63 4.85    
45 4.87 4.95    
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50 4.99 5.46    
55 4.81 5.34    
60 4.67 5.87    
65 5.19 6.23    
70 4.86 5.67    
75 5.11 5.74    
80 4.79 4.85    
85 4.92 4.32    

      
50yr (August 02, 2008) 

Ca - 
groundwater 

DOC - 
groundwater 

Ca - 
soilwater

DOC - 
soilwater 

Ca - 
overland 

DOC - 
overland 

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 
5.123  1.372 23.601 13.222 1.911 14.311 
5.013  1.392 25.534 11.553 2.257 14.749 
5.132  1.247 21.292 12.261 2.466 14.854 
5.087  1.291 21.908 14.972 1.86 18.774 
5.046  1.514 21.414 14.417 1.934 12.341 
5.174  1.104 21.415 13.758 2.255 16.652 
5.132  1.098 20.156 13.493 1.726 16.313 
5.063  1.015 25.513 11.774 1.992 14.652 
4.925  1.033 24.223 12.456 1.224 12.536 
5.054  1.173 23.113 13.742 2.171 12.081 
5.085  1.171 22.107 12.334 2.027 13.472 
5.162  1.132 20.302 15.875 1.537 16.175 
5.144  1.014 22.413 12.226 1.585 13.941 
4.958  1.194 21.516 14.832 1.439 12.942 
6.045  1.314   2.094 13.483 

    1.614 11.784 
    1.941 12.712 
    2.379 15.731 
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Table C13: Data for chapter 3 Figure 3.5 

Forest storm (August 1, 2008) 

Time 
(min) 

Rainfall 
(mm) 

Stream 
discharge 
(L/min) 

Ground water 
discharge 
(L/min) 

Soil water 
discharge 
(L/min) 

Overland flow 
discharge 
(L/min) 

0 0.4 6.8 6.592 0.137 0.071 
5 0.3 6.8 6.489 0.293 0.017 
10 0.4 6.8 6.628 0.139 0.033 
15 0.6 6.9 6.443 0.302 0.155 
20 0.8 6.9 6.471 0.420 0.009 
25 1.1 7.0 6.415 0.299 0.286 
30 1.0 7.0 6.271 0.267 0.462 
35 1.2 7.1 5.646 0.315 1.139 
40 0.8 7.1 5.833 0.298 0.969 
45 0.7 7.2 5.161 0.192 1.847 
50 0.5 7.3 5.000 0.257 2.044 
55 0.5 7.4 5.267 0.269 1.865 
60 0.3 7.5 5.183 0.365 1.952 
65 0.1 7.6 4.932 0.160 2.508 
70 0.1 7.7 5.079 0.470 2.151 
75  7.8 5.179 0.205 2.416 
80  7.9 5.556 0.342 2.002 
85  8.0 5.150 0.248 2.602 
90  8.0 6.168 0.171 1.662 
95  7.9 5.545 0.385 1.970 

      
      

5 yr storm (July 31, 2008) 

Time 
(min) 

Rainfall 
(mm) 

Stream 
discharge 
(L/min) 

Groundwater 
discharge 
(L/min) 

Soil water 
discharge 
(L/min) 

Overland flow 
discharge 
(L/min) 

0 0.9 15.2 12.742 1.831 0.627 
5 1.3 15.3 13.055 2.205 0.041 
10 1.4 15.5 12.855 1.815 0.830 
15 1.6 16.1 13.428 2.069 0.603 
20 2.0 16.9 12.93 2.285 1.682 
25 2.1 17.4 13.035 1.964 2.402 
30 1.6 17.8 13.846 1.697 2.257 
35 1.5 18.1 13.127 1.350 3.623 



  224

40 0.9 18.5 12.467 1.268 4.765 
45 0.5 18.9 12.310 1.785 4.805 
50  19.2 11.995 1.699 5.506 
55  19.5 11.883 1.311 6.307 
60  19.8 13.038 1.490 5.273 
65  19.6 12.195 1.158 6.247 
70  19.3 11.445 1.742 6.113 
75  19.0 13.084 0.624 5.292 

      
      

10 yr storm (July 20, 2008) 

Time 
(min) 

Rainfall 
(mm) 

Stream 
discharge 
(L/min) 

Groundwater 
discharge 
(L/min) 

Soil water 
discharge 
(L/min) 

Overland flow 
discharge 
(L/min) 

0 0.8 19.1 19.225 0 0 
5 1.6 19.3 17.117 2.145 0.037 
10 1.9 19.8 17.036 2.289 0.476 
15 2.1 20.3 15.227 1.655 3.418 
20 1.9 20.8 14.063 1.608 5.128 
25 1.4 21.1 13.072 1.658 6.370 
30 0.7 21.5 13.467 1.156 6.876 
35 0.5 22.1 13.854 1.058 7.188 
40 0.4 22.5 13.996 1.109 7.395 
45 0.2 22.9 13.907 1.724 7.269 
50  22.6 12.623 1.704 8.273 
55  21.7 13.327 1.602 6.771 
60  21.3 13.398 1.816 6.086 
65  20.9 11.564 1.759 7.577 
70  20.6 12.057 1.775 6.768 
75  20.3 13.168 1.665 5.468 
80  20.0 12.803 1.512 5.689 

      
      

50 yr storm (July 02, 2008) 

Time 
(min) 

Rainfall 
(mm) 

Stream 
discharge 
(L/min) 

Groundwater 
discharge 
(L/min) 

Soil water 
discharge 
(L/min) 

Overland flow 
discharge 
(L/min) 

0 0.4 18.5 14.736 0 2.163 
5 0.7 18.9 15.294 1.724 1.881 
10 1.2 19.3 15.693 0.918 2.689 
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15 1.3 19.6 15.014 1.223 3.363 
20 1.4 20.2 14.920 0.956 4.324 
25 1.9 20.8 15.484 0.793 4.523 
30 1.7 21.2 14.797 1.072 5.332 
35 1.5 21.8 13.921 0.303 7.576 
40 0.8 22.3 14.830 0.149 7.321 
45 0.3 22.9 15.778 0.459 6.662 
50  23.4 15.826 1.322 6.252 
55  23.9 16.868 1.341 5.692 
60  24.3 16.072 0.556 7.673 
65  24.2 15.702 0.715 7.783 
70  24.2 15.737 1.618 6.848 
75  24.1 16.221 0.867 7.012 
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Forest (June 30, 2008)
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Figure C9: Estimated Event water contributions for rainstorms using EMMA, for the 4 

remaining events in the forest (total contributions shown in Table 3.3). 
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Table C14: Data for Figure C9. 

Forest (June 30, 2008) 

Time 
(min) 

Rainfall 
(mm) 

Stream 
discharge 
(L/min) 

Groundwater 
discharge 
(L/min) 

Soilwater  
discharge 
(L/min) 

Overland 
discharge 
(L/min) 

0 0.9 6.3 5.785 0.202 0.312 
5 1.8 6.3 5.372 0.265 0.663 
10 1.4 6.4 5.636 0.296 0.468 
15 1.2 6.6 4.288 0.538 1.774 
20 2.1 6.8 3.563 0.287 2.9 
25 1.7 7.1 3.071 0.149 3.880 
30 1.1 7.5 2.652 0.175 4.673 
35 0.8 7.7 3.855 0.369 3.476 
40 0.6 7.9 2.342 0.259 5.299 
45 0.3 8.1 0.549 0.712 6.839 
50 0.2 8 0 0.362 7.638 
55 0.1 8.1 0.824 0.339 6.937 
60  7.9 1.667 0.263 5.970 
65  7.8 1.858 0.273 5.670 
70  7.7 2.395 0.316 4.990 
75  7.6 2.191 0.428 4.981 
80  7.5 2.555 0.552 4.394 
85  7.4 3.426 0.504 3.470 
90  7.3 2.943 0.386 3.971 
      
      

Forest (July 21, 2008) 

Time 
(min) 

Rainfall 
(mm) 

Stream 
discharge 
(L/min) 

Groundwater 
discharge 
(L/min) 

Soilwater  
discharge 
(L/min) 

Overland 
discharge 
(L/min) 

0 0.8 6.5 6.059 0.340 0.101 
5 1.4 6.5 6.199 0.301 0 
10 1.7 6.6 6.089 0.440 0.071 
15 1.8 6.8 6.171 0.304 0.325 
20 1.9 7.1 6.566 0.438 0.096 
25 1.6 7.3 6.402 0.333 0.564 
30 1.4 7.5 6.295 0.302 0.903 
35 0.9 7.7 5.950 0.399 1.352 
40 0.6 7.9 5.301 0.251 2.347 
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45 0.4 8.1 6.340 0.263 1.496 
50  8.3 6.244 0.531 1.526 
55  8.4 5.745 0.271 2.384 
60  8.4 6.238 0.297 1.866 
65  8.2 5.005 0.519 2.677 
70  7.9 4.764 0.101 3.034 
75  7.7 5.283 0.430 1.987 
80  7.6 5.065 0.242 2.294 
85  7.4 4.488 0.404 2.508 
90  7.3 5.403 0.314 1.583 
      
      

Forest (July 22, 2008) 

Time 
(min) 

Rainfall 
(mm) 

Stream 
discharge 
(L/min) 

Groundwater 
discharge 
(L/min) 

Soilwater  
discharge 
(L/min) 

Overland 
discharge 
(L/min) 

0 0.3 6.5 6.376 0.124 0 
5 0.4 6.5 6.456 0.044 0 
10 0.5 6.6 6.265 0.335 0 
15 0.6 6.7 6.307 0.379 0.015 
20 0.7 6.8 6.348 0.306 0.146 
25 0.9 6.9 6.275 0.436 0.189 
30 1 7.1 6.575 0.138 0.387 
35 0.9 7.3 6.757 0.506 0.037 
40 0.6 7.4 6.715 0.319 0.366 
45 0.6 7.6 7.018 0.476 0.106 
50 0.5 7.7 6.289 0.378 1.034 
55 0.4 7.8 5.857 0.517 1.426 
60 0.5 7.9 5.645 0.565 1.691 
65 0.2 8 5.960 0.510 1.530 
70 0.1 8.1 5.904 0.552 1.644 
75  8.2 6.309 0.545 1.346 
80  8 5.935 0.515 1.551 
85  7.9 6.180 0.591 1.129 
90  7.8 5.992 0.588 1.220 
95  7.8 6.144 0.540 1.116 
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Forest (July 25, 2008) 

Time 
(min) 

Rainfall 
(mm) 

Stream 
discharge 
(L/min) 

Groundwater 
discharge 
(L/min) 

Soilwater  
discharge 
(L/min) 

Overland 
discharge 
(L/min) 

0 0.7 6.5 6.154 0.299 0.047 
5 1.2 6.5 6.497 0.003 0 
10 1.4 6.6 5.962 0.434 0.104 
15 2 6.7 5.846 0.399 0.355 
20 1.5 6.8 5.272 0.448 0.980 
25 1.9 6.9 5.549 0.445 0.806 
30 1.2 7.1 5.853 0.419 0.527 
35 0.9 7.3 5.921 0.505 0.475 
40 0.4 7.4 6.063 0.503 0.334 
45 0.3 7.6 6.185 0.447 0.368 
50  7.8 5.484 0.159 1.357 
55  8 5.528 0.517 1.055 
60  8.1 5.484 0.329 1.286 
65  8.2 5.771 0.455 0.775 
70  7.9 5.345 0.385 1.27 
75  7.6 5.153 0.468 1.278 
80  7.4 5.404 0.489 1.007 
85  7.3 5.512 0.405 0.8833 
90  7.1 5.146 0.334 1.32 
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Figure C10: Estimated Event water contributions for rainstorms using EMMA, for the 4 

remaining events in the 5 year old watershed (total contributions shown in Table 3.3). 
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Table C15: Data for Figure C10. 

5 yr (June 30, 2008) 

Time (min) 
Rainfall 

(mm) 

Stream 
discharge 
(L/min) 

Groundwater 
discharge 
(L/min) 

Soilwater  
discharge 
(L/min) 

Overland 
discharge 
(L/min) 

0 0.3 11.4 9.731 1.076 0.593 
5 0.4 11.5 10.123 1.216 0.161 
10 0.9 12 10.537 1.065 0.398 
15 1.1 12.4 10.182 1.060 1.158 
20 1.2 12.9 10.352 1.247 1.301 
25 1.3 13.2 9.848 1.144 2.209 
30 1.4 13.5 10.325 1.192 1.983 
35 1.2 13.8 9.961 1.116 2.723 
40 1.2 14.1 10.279 1.157 2.664 
45 0.9 14.3 10.067 1.053 3.180 
50 0.7 14.7 9.749 1.261 3.690 
55 0.4 14.9 9.226 1.215 4.459 
60  15.1 9.924 1.057 4.119 
65  15.3 9.710 1.108 4.482 
70  15.5 9.498 1.043 4.960 
75  14.8 8.676 0.902 5.222 
80  14.5 8.988 1.034 4.478 
85  14.3 9.050 0.927 4.323 
      
      

5 yr (July 14, 2008) 

Time (min) 
Rainfall 

(mm) 

Stream 
discharge 
(L/min) 

Groundwater 
discharge 
(L/min) 

Soilwater  
discharge 
(L/min) 

Overland 
discharge 
(L/min) 

0 0.8 12.5 10.82 1.27 0.41 
5 1.3 12.6 11.62 0.98 0 
10 2.1 13 11.87 1.13 0 
15 2 13.4 11.82 1.45 0.13 
20 1.5 13.9 12.4 1.37 0.13 
25 1.5 14.7 13.08 1.32 0.3 
30 1.1 15.3 13.45 1.19 0.66 
35 0.7 15.6 13.55 0.95 1.1 
40 0.2 15.8 12.9 0.88 2.02 
45  15.5 11.55 0.73 3.22 
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50  15.3 10.64 1.1 3.56 
55  14.6 9.41 0.76 4.43 
60  14.4 9.29 0.83 4.28 
65  14.2 8.67 0.84 4.69 
70  13.9 8.56 1 4.34 
75  13.7 8.49 0.67 4.54 
80  13.5 8.93 0.74 3.83 
85  13.3 8.68 0.88 3.74 
90  13.2 8.46 0.97 3.77 
95  13.1 8.69 1.02 3.39 
      

5 yr (July 20, 2008) 

Time (min) 
Rainfall 

(mm) 

Stream 
discharge 
(L/min) 

Groundwater 
discharge 
(L/min) 

Soilwater  
discharge 
(L/min) 

Overland 
discharge 
(L/min) 

0 0.3 12.1 10.038 1.915 0.147 
5 0.4 12.1 10.709 1.391 0 
10 0.8 12.2 10.682 1.518 0 
15 0.9 12.5 10.203 2.125 0.172 
20 1.2 12.9 10.635 2.135 0.130 
25 1.1 13.3 10.965 1.816 0.519 
30 1 13.7 10.746 1.787 1.167 
35 1.1 13.9 11.03 1.459 1.411 
40 0.8 14.3 11.098 1.406 1.797 
45 0.7 14.6 10.629 0.855 3.116 
50 0.6 14.9 10.445 1.182 3.273 
55 0.5 15.2 10.870 1.161 3.169 
60 0.4 15.5 10.554 1.059 3.887 
65 0.2 15.8 9.075 0.974 5.752 
70  16.3 9.705 1.113 5.482 
75  16.7 9.745 0.877 6.078 
80  16.9 9.517 1.422 5.961 
85  16.8 8.735 1.481 6.584 
90  16.2 8.877 1.085 6.238 
95  15.4 7.705 1.089 6.606 
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5 yr (August 1, 2008) 

Time (min) 
Rainfall 

(mm) 

Stream 
discharge 
(L/min) 

Groundwater 
discharge 
(L/min) 

Soilwater  
discharge 
(L/min) 

Overland 
discharge 
(L/min) 

0 0.5 13.1 11.936 1.128 0.037 
5 0.9 13.3 12.382 0.918 0 
10 1.2 13.7 12.518 1.182 0 
15 1.1 14.3 13.190 1.110 0 
20 1.2 14.9 13.852 1.048 0 
25 1.5 15.5 14.388 1.112 0 
30 1.3 16.1 14.898 0.955 0.247 
35 1.2 16.5 14.453 0.623 1.424 
40 0.8 16.9 14.925 0.567 1.409 
45 0.4 17.3 14.476 1.014 1.810 
50  17.8 14.095 0.917 2.788 
55  18.2 14.900 0.573 2.729 
60  18.4 13.961 0.654 3.786 
65  18.2 12.629 0.634 4.938 
70  17.9 11.469 0.856 5.575 
75  17.3 12.156 0.411 4.733 
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Figure C11: Estimated Event water contributions for rainstorms using EMMA, for the 4 

remaining events in the 10 year old watershed (total contributions shown in Table 3.3). 

  



  235

Table C16: Data for Figure C11. 

10 yr (July 14, 2008) 

Time 
(min) 

Rainfall 
(mm) 

Stream 
discharge 
(L/min) 

Groundwater 
discharge 
(L/min) 

Soilwater  
discharge 
(L/min) 

Overland 
discharge 
(L/min) 

0 0.5 17.5 15.419 0 0.071 
5 0.8 17.5 15.054 2.193 0.252 
10 1.4 17.8 15.105 1.964 0.731 
15 1.8 18.2 14.172 1.551 2.477 
20 1.9 18.6 15.011 1.821 1.766 
25 2.2 18.9 14.256 1.402 3.241 
30 1.7 19.3 14.080 1.285 3.935 
35 1.5 19.6 14.161 1.238 4.201 
40 0.8 20 13.712 1.231 5.058 
45 0.4 20.3 15.122 1.409 3.770 
50  20.7 15.105 1.349 4.246 
55  20.9 13.971 1.423 5.507 
60  20.6 14.035 1.466 5.099 
65  20.4 14.262 1.509 4.629 
70  20.2 13.884 1.392 4.925 
75  20 13.574 1.610 4.816 
80  20 13.786 1.474 4.740 

      
      

10 yr (July 27, 2008) 

Time 
(min) 

Rainfall 
(mm) 

Stream 
discharge 
(L/min) 

Groundwater 
discharge 
(L/min) 

Soilwater  
discharge 
(L/min) 

Overland 
discharge 
(L/min) 

0 0.4 20.3 19.843 0 0 
5 0.9 20.3 18.076 1.968 0.256 
10 1.2 20.5 17.881 1.864 0.755 
15 1.5 20.8 16.568 1.664 2.568 
20 1.7 21.3 15.850 1.599 3.852 
25 1.3 21.8 15.320 1.653 4.827 
30 1.2 22.4 16.007 1.139 5.254 
35 0.8 22.9 16.410 1.028 5.462 
40 0.6 23.2 16.534 1.074 5.592 
45 0.4 23.8 16.537 1.723 5.540 
50 0.2 24.2 15.960 1.744 6.497 
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55  24.7 17.295 1.754 5.652 
60  24.6 17.412 2.033 5.154 
65  24.3 15.875 1.965 6.461 
70  24 16.222 1.996 5.782 
75  23.7 17.133 1.886 4.681 
80  23.4 16.814 1.709 4.878 

      
      

10 yr (July 31, 2008) 

Time 
(min) 

Rainfall 
(mm) 

Stream 
discharge 
(L/min) 

Groundwater 
discharge 
(L/min) 

Soilwater  
discharge 
(L/min) 

Overland 
discharge 
(L/min) 

0 0.4 21.4 19.160 0 0.019 
5 0.8 21.4 19.052 2.040 0.308 
10 1.1 21.5 18.217 1.653 1.629 
15 1.2 21.9 18.012 2.255 1.633 
20 1.3 22.4 18.193 2.049 2.159 
25 1.2 22.9 17.263 1.855 3.782 
30 1.1 23.3 17.071 1.777 4.451 
35 1.1 23.8 17.157 1.998 4.645 
40 1 24 16.897 1.976 5.127 
45 0.8 24.4 16.699 2.066 5.634 
50 0.6 24.8 16.756 2.010 6.034 
55 0.5 25.3 16.132 1.891 7.278 
60 0.4 25.9 16.924 1.363 7.613 
65 0.2 26.3 17.307 1.228 7.765 
70  26.6 16.321 1.285 8.994 
75  26.9 15.813 2.001 9.086 
80  26.5 18.664 1.950 5.886 
85  26.1 18.755 1.890 5.456 
90  25.7 16.515 1.492 7.693 
95  25.4 17.373 1.793 6.235 
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10yr (August 2, 2008) 

Time 
(min) 

Rainfall 
(mm) 

Stream 
discharge 
(L/min) 

Groundwater 
discharge 
(L/min) 

Soilwater  
discharge 
(L/min) 

Overland 
discharge 
(L/min) 

0 0.3 20.6 17.167 0 1.224 
5 0.9 20.8 17.619 2.585 0.596 
10 1.2 21.3 18.389 2.881 0.030 
15 1.5 21.8 17.594 2.566 1.640 
20 1.7 22.6 15.972 2.907 3.722 
25 1.6 23.1 17.091 2.790 3.219 
30 1.3 23.8 15.872 2.58 5.348 
35 1.2 24.4 16.242 2.435 5.724 
40 1.1 25 15.041 2.242 7.718 
45 0.9 25.6 14.500 1.623 9.477 
50 0.7 25.9 15.423 2.636 7.841 
55 0.6 26.1 15.082 3.072 7.947 
60  26.7 16.956 2.405 7.339 
65  27.3 17.135 2.241 7.924 
70  27.5 17.767 2.520 7.213 
75  27.4 17.419 1.948 8.034 
80  27.2 18.945 2.266 5.989 
85  26.8 18.133 2.121 6.547 
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Figure C12: Estimated event water contributions for rainstorms using EMMA, for the 4 

remaining events in the 50 year old watershed (total contributions shown in Table 3.3). 
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Table C17: Data for Figure C12. 

50 yr (July 20, 2008) 

Time 
(min) 

Rainfall 
(mm) 

Stream 
discharge 
(L/min) 

Groundwater 
discharge 
(L/min) 

Soilwater  
discharge 
(L/min) 

Overland 
discharge 
(L/min) 

0 0.5 19.7 15.333 0 2.973 
5 0.8 19.9 15.926 1.598 2.376 
10 0.7 20.2 16.684 1.775 1.741 
15 1.3 20.8 16.242 1.694 2.864 
20 1.4 21.2 15.602 1.505 4.094 
25 1.6 21.8 15.949 1.364 4.487 
30 1.3 22.3 15.965 1.075 5.261 
35 1.4 22.9 15.733 0.300 6.867 
40 0.9 23.4 16.619 0.385 6.396 
45 0.8 23.9 16.514 0.241 7.146 
50 0.6 24.2 17.149 0.513 6.539 
55  24.4 16.660 0.687 7.054 
60  24.9 16.780 0.818 7.302 
65  25.1 17.472 0.273 7.355 
70  24.8 16.934 0.859 7.007 
75  24.5 16.969 0.951 6.580 
80  24.3 17.790 0.147 6.363 
      
      

50 yr (July 21, 2008) 

Time 
(min) 

Rainfall 
(mm) 

Stream 
discharge 
(L/min) 

Groundwater 
discharge 
(L/min) 

Soilwater  
discharge 
(L/min) 

Overland 
discharge 
(L/min) 

0 0.3 22.4 20.086 0 1.393 
5 0.7 22.9 20.117 1.126 1.657 
10 0.9 23.3 21.079 0.298 1.922 
15 1.1 23.8 19.526 1.676 2.598 
20 1.2 24 19.265 1.266 3.469 
25 1.3 24.4 19.398 0.856 4.146 
30 1.2 24.8 17.549 0.976 6.276 
35 1.1 25.3 17.602 0.502 7.197 
40 1 25.9 17.971 0.060 7.869 
45 0.9 26.3 18.424 0.140 7.736 
50 0.6 26.6 17.416 0.147 9.037 
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55 0.5 26.9 15.752 0.112 11.036 
60 0.4 26.8 16.076 0.347 10.377 
65 0.3 27.2 16.426 0.055 10.720 
70  27.5 16.951 0.073 10.476 
75  27.9 17.374 1.316 9.209 
80  28.1 21.027 0.801 6.272 
85  27.7 20.632 0.476 6.593 
90  27.5 18.378 0.682 8.441 
95    27.3  18.989  0.178  8.133 

           

           

50 yr (July 31, 2008) 

Time 
(min) 

Rainfall 
(mm) 

Stream 
discharge 
(L/min) 

Groundwater 
discharge 
(L/min) 

Soilwater  
discharge 
(L/min) 

Overland 
discharge 
(L/min) 

0  0.4  18.5  18.390  0  0 

5  0.7  18.9  18.574  0.326  0 

10  1.2  19.3  19.073  0.227  0 

15 1.3 19.6 18.700 0.900 0 
20 1.4 20.2 16.097 2.045 2.058 
25 1.9 20.8 14.933 1.842 4.025 
30 1.7 21.2 13.839 0.978 6.383 
35 1.5 21.8 12.271 1.416 8.113 
40 0.8 22.3 13.331 1.601 7.368 
45 0.3 22.9 12.886 1.124 8.890 
50  23.4 13.321 0.999 9.079 
55  23.9 13.608 0.776 9.516 
60  24.3 13.768 0.721 9.810 
65  24.2 12.569 0 11.665 
70  24.2 13.839 0.506 9.856 
75  24.1 16.252 0.548 7.301 
80  23.9 15.342 0.222 8.437 
85  23.7 17.018 0.316 6.666 
90  23.5 16.102 0.013 7.885 
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50yr (August 2, 2008) 

Time 
(min) 

Rainfall 
(mm) 

Stream 
discharge 
(L/min) 

Groundwater 
discharge 
(L/min) 

Soilwater  
discharge 
(L/min) 

Overland 
discharge 
(L/min) 

0 0.4 21.4 19.228 0 1.644 
5 0.8 21.9 19.046 1.419 1.437 
10  1.2  22.3  19.512  1.209  1.580 

15  1.4  22.8  19.254  1.456  2.090 

20 1.6 23.3 18.248 1.565 3.487 
25 1.8 23.7 17.339 0.977 5.385 
30 1.3 24.2 17.482 0.750 5.968 
35 1.2 24.7 17.884 0.723 6.093 
40 1 25.2 18.149 0.483 6.568 
45 0.9 25.6 18.218 0.824 6.558 
50 0.6 26.3 17.668 1.165 7.467 
55  26.9 18.338 0.914 7.648 
60  27.4 17.571 0.918 8.911 
65  27.7 16.942 1.758 8.999 
70  27.4 17.976 1.108 8.316 
75  27.1 17.608 1.452 8.040 
80  26.8 19.286 0.725 6.789 
85  26.4 20.067 0.713 5.620 
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Table C18: Data for chapter 3 Table 3.2 

Forest flowpaths

 
DOC 

(mg/L) 
K 

(mg/L) 
Ca 

(mg/L) 
Mg 

(mg/L) 
Na 

(mg/L) 
TDN 

(mg/L) 
Overland 8.07 4.09 5.02 0.97 1.21 2.13 
Overland 8.36 5.23 5.41 0.92 1.38 2.01 
Overland 8.64 2.41 4.09 1.02 1.17 1.68 
Overland 11.49 5.02 5.13 1.5 2.62 1.79 
Overland 8.43 4.64 5.52 0.79 1.35 1.87 
Overland 7.92 2.96 4.53 1.15 0.89 1.84 
Overland 9.25 3.35 3.39 0.65 2.03 1.81 
Overland 9.41 3.43 5.29 0.74 1.48 1.01 
Overland 6.41 4.47 4.86 0.83 1.36 1.27 
Overland 8.32 6.25 6.13 1.09 2.01 1.95 
Overland 10.9 2.74 4.32 1.11 1.46 1.71 
Overland 9.45 4.01 5.74 1.06 0.96 1.68 
Overland 8.43 3.02 4.41 1.03 1.05 1.81 
Overland 9.71 5.86 6.25 0.67 1.26 2.24 
Overland 9.65 3.98 4.16 0.56 1.14 1.84 
Overland 9.92 4.43 5.97 0.82 2.03 1.67 
Overland 8.03 3.64 3.98 0.66 1.15 1.58 
Overland 7.86 4.96 4.81 0.52 1.08 2.13 
Overland 8.32 2.35 4.67 0.83 1.14 1.32 
Overland 5.38 3.61 3.29 0.55 1.21 0.81 
Overland 8.27 3.79 4.04 0.76 2.63 1.61 
Overland 8.91 4.89 4.15 0.35 1.53 2.01 
Overland 6.83 3.51 4.12 0.47 1.24 2.15 
Overland 11.9 4.69 3.39 0.67 1.02 1.88 
Overland 9.45 3.09 5.18 0.85 1.19 1.84 
Overland 8.43 5.07 4.86 0.59 0.85 2.29 
Overland 9.74 3.19 5.13 0.98 1.23 2.01 
Overland 9.54 4.14 4.31 1.15 1.39 1.87 
Overland 11.19 4.52 4.23 0.73 1.49 1.75 
Overland 6.95 2.75 3.76 1.09 1.28 2.66 
Overland 8.79 5.83 4.29 0.98 1.19 1.61 
Overland 11.32 3.24 3.13 1.02 1.64 1.72 
Overland 8.79 4.96 4.19 1.07 1.03 2.12 
Overland 9.96 2.41 3.53 1.23 2.02 2.16 
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Overland 9.31 5.72 3.76 0.79 1.39 2.23 
Soilwater 7.21 4.97 39.31 10.17 0.68 9.72 
Soilwater 5.31 4.24 40.97 10.81 0.41 7.94 
Soilwater 5.94 3.16 53.74 13.99 0.63 8.14 
Soilwater 5.47 4.03 37.53 7.12 0.52 7.04 
Soilwater 6.07 4.41 29.94 8.23 0.39 8.05 
Soilwater 8.32 3.35 35.92 9.56 0.34 8.76 
Soilwater 7.33 3.09 37.35 5.16 0.29 6.51 
Soilwater 6.51 5.71 46.21 13.91 0.81 7.63 
Soilwater 4.05 4.08 37.68 6.04 0.28 11.1 
Soilwater 7.99 3.16 36.23 12.67 0.73 10.52 
Soilwater 8.86 4.18 32.36 10.83 0.32 10.91 
Soilwater 9.12 4.46 35.38 5.01 0.36 11.74 
Soilwater 9.62 5.01 37.33 6.12 0.49 12.93 
Soilwater 7.65 4.29 33.61 6.71 0.35 8.78 
Soilwater 9.37 3.24 31.95 11.53 0.38 7.46 
Soilwater 8.16 5.02 46.02 9.41 0.49 6.85 
Soilwater 8.18 3.99 37.74 9.73 0.35 9.47 
Soilwater 9.48 3.47 37.08 7.15 0.45 10.42 
Soilwater 7.29 4.23 47.33 9.11 0.56 9.84 
Soilwater 7.49 3.52 40.72 7.79 0.42 7.46 
Groundwater 1.21 0.32 4.52 2.81 3.93 1.34 
Groundwater 1.38 0.41 3.78 1.06 2.38 0.81 
Groundwater 1.43 0.23 5.54 2.47 3.81 1.28 
Groundwater 1.14 0.35 5.72 2.41 4.07 0.97 
Groundwater 2.37 0.48 4.73 1.88 2.92 1.09 
Groundwater 1.34 0.29 4.71 2.94 3.89 0.83 
Groundwater 1.12 0.49 4.64 2.02 3.55 0.96 
Groundwater 1.36 0.37 5.59 1.95 3.42 0.79 
Groundwater 1.21 0.46 4.77 2.53 3.41 0.88 
Groundwater 1.31 0.63 5.32 2.39 4.16 0.92 
Groundwater 1.93 0.53 4.85 2.19 2.77 0.78 
Groundwater 2.25 0.32 4.58 1.23 4.12 0.82 
Groundwater 1.05 0.26 3.84 1.36 2.77 1.03 
Groundwater 1.64 0.22 4.67 2.15 3.82 1.15 
Groundwater 1.75 0.49 5.71 1.87 4.36 1.08 
Groundwater 2.11 0.37 4.73 2.19 3.55 1.29 
Groundwater 1.65 0.46 5.71 2.23 3.72 1.17 
Groundwater 2.49 0.43 5.24 1.82 3.91 1.12 
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Groundwater 1.63 0.25 5.59 1.65 4.16 0.98 
Groundwater 1.32 0.32 4.43 2.51 3.77 1.18 

 
5 yr flowpaths 

 
DOC 

(mg/L) 
K 

(mg/L) 
Ca 

(mg/L) 
Mg 

(mg/L) 
Na 

(mg/L) 
TDN 

(mg/L) 
Overland 12.15 6.56 3.01 1.12 1.46 2.82 
Overland 14.93 4.05 2.96 1.03 1.05 2.36 
Overland 15.34 4.69 1.98 0.84 1.51 2.39 
Overland 15.26 5.96 3.77 1.06 1.79 2.03 
Overland 16.23 6.33 2.94 0.93 2.15 2.75 
Overland 13.94 3.62 2.82 0.86 1.14 3.32 
Overland 11.72 6.97 2.87 0.71 1.61 2.18 
Overland 12.43 4.12 2.36 0.79 1.72 2.12 
Overland 14.34 7.69 3.75 1.19 1.92 2.23 
Overland 13.73 5.32 2.92 0.72 1.02 2.31 
Overland 16.19 8.15 2.71 0.95 1.05 1.45 
Overland 13.41 4.61 3.09 0.76 1.79 2.32 
Overland 13.84 4.64 2.31 0.81 1.01 2.74 
Overland 10.83 3.96 2.23 0.92 1.32 3.36 
Overland 9.81 4.35 1.67 1.21 1.27 2.22 
Overland 15.55 7.42 3.09 1.15 0.96 2.97 
Overland 11.52 5.47 2.13 1.04 1.09 2.62 
Overland 15.37 6.25 2.25 1.22 1.02 2.57 
Overland 10.12 5.73 2.52 0.84 1.17 2.51 
Overland 10.74 4.67 2.39 1.01 1.02 2.41 
Overland 11.93 3.91 2.26 1.21 1.35 3.15 
Overland 10.38 5.23 2.86 0.94 2.01 2.42 
Overland 12.42 5.47 2.52 0.85 1.39 2.27 
Overland 13.58 6.44 3.31 0.78 1.43 2.59 
Overland 14.05 4.64 1.93 1.14 1.05 2.74 
Overland 17.78 3.76 2.32 0.97 1.56 1.92 
Overland 13.32 4.35 2.19 1.14 2.24 2.83 
Overland 15.38 6.42 2.03 0.81 1.31 2.62 
Overland 14.87 5.47 1.85 0.77 1.62 2.08 
Overland 13.49 4.41 1.52 0.96 1.36 2.51 
Overland 18.32 5.19 2.34 0.81 1.24 1.87 
Overland 10.29 5.13 4.52 0.89 1.03 1.85 
Overland 11.45 6.53 2.39 1.02 1.45 2.54 
Overland 9.42 5.51 5.05 1.15 0.91 2.31 
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Overland 10.74 6.33 4.81 0.73 1.01 2.75 
Soilwater 9.81 5.81 34.76 7.13 0.65 8.24 
Soilwater 10.06 4.09 35.83 9.03 0.58 6.31 
Soilwater 7.54 3.87 34.72 7.53 0.47 6.08 
Soilwater 9.46 7.19 33.06 6.52 0.67 5.12 
Soilwater 11.52 6.24 38.99 6.83 0.87 8.19 
Soilwater 8.74 5.59 37.29 7.14 1.26 7.43 
Soilwater 9.38 4.24 32.37 6.41 1.02 9.91 
Soilwater 11.03 4.88 29.29 5.21 0.58 6.51 
Soilwater 8.09 4.64 34.98 6.32 0.78 8.33 
Soilwater 10.28 5.32 37.87 8.13 1.18 6.35 
Soilwater 8.75 4.41 39.19 6.81 0.42 5.66 
Soilwater 10.21 3.97 38.89 7.63 0.51 6.31 
Soilwater 10.01 4.07 39.84 5.73 0.57 5.62 
Soilwater 9.24 4.04 33.49 6.63 0.62 7.96 
Soilwater 9.71 3.83 40.83 8.06 0.69 8.59 
Soilwater 8.81 4.32 37.94 6.28 1.03 7.91 
Soilwater 10.63 3.59 36.55 7.54 0.68 6.18 
Soilwater 8.92 3.29 37.95 5.53 0.53 6.42 
Soilwater 9.01 4.49 35.58 6.74 0.46 7.15 
Soilwater 12.24 4.53 34.78 7.25 0.68 8.57 
Groundwater 1.83 0.62 2.43 1.73 4.31 1.52 
Groundwater 1.54 0.44 2.59 1.26 3.88 1.43 
Groundwater 1.42 0.51 2.28 1.19 4.12 1.37 
Groundwater 1.57 0.49 2.17 1.97 4.35 1.34 
Groundwater 1.69 0.57 2.05 1.47 3.93 1.39 
Groundwater 1.75 0.53 2.39 1.36 4.12 1.33 
Groundwater 1.84 0.47 2.18 1.46 3.98 1.31 
Groundwater 1.78 0.58 2.11 1.39 3.89 1.31 
Groundwater 1.71 0.43 2.48 1.12 4.11 1.37 
Groundwater 1.69 0.48 2.72 1.54 3.96 1.43 
Groundwater 1.52 0.57 2.5 1.51 3.75 1.32 
Groundwater 1.45 0.42 1.77 1.42 3.95 1.28 
Groundwater 1.57 0.71 1.94 1.52 3.69 1.34 
Groundwater 1.74 0.46 1.99 1.46 3.98 1.25 
Groundwater 1.37 0.44 1.79 1.43 4.12 1.18 
Groundwater 1.46 0.61 1.74 1.45 4.03 1.53 
Groundwater 1.98 0.51 2.56 1.39 4.09 1.43 
Groundwater 1.78 0.45 1.97 1.79 3.97 1.29 
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Groundwater 1.69 0.51 2.54 1.49 3.95 1.15 
Groundwater 1.88 0.49 1.61 1.69 4.05 1.07 

10 yr flowpaths 

 
DOC 

(mg/L) 
K 

(mg/L) 
Ca 

(mg/L) 
Mg 

(mg/L) 
Na 

(mg/L) 
TDN 

(mg/L) 
Overland 16.31 4.47 1.67 0.73 1.23 4.21 
Overland 14.13 5.25 1.39 0.46 1.36 3.87 
Overland 15.91 4.89 1.55 0.79 1.12 3.34 
Overland 16.12 4.66 1.65 0.46 1.17 3.96 
Overland 13.29 6.84 1.48 0.51 1.29 3.75 
Overland 13.11 4.78 2.12 0.62 1.19 4.53 
Overland 15.24 4.59 1.75 0.51 1.32 5.41 
Overland 14.53 5.99 1.41 0.87 1.02 3.37 
Overland 14.92 5.41 1.63 0.53 0.96 3.16 
Overland 14.29 4.31 1.42 0.77 0.89 3.72 
Overland 11.02 5.91 1.64 0.55 0.78 4.05 
Overland 15.24 5.87 1.39 0.59 1.37 3.42 
Overland 13.22 4.66 1.61 0.61 0.65 3.67 
Overland 13.97 5.45 1.45 0.52 0.98 3.83 
Overland 14.07 5.91 1.34 0.68 1.19 3.23 
Overland 16.39 6.41 1.55 0.83 0.84 4.12 
Overland 14.32 3.17 1.51 0.95 0.86 4.04 
Overland 15.37 5.93 1.12 0.59 0.98 3.86 
Overland 16.15 5.16 1.48 0.64 0.91 3.69 
Overland 15.21 5.39 1.35 0.67 2.46 4.19 
Overland 14.55 4.55 2.26 0.57 1.06 3.29 
Overland 15.53 3.83 1.39 0.85 1.17 3.39 
Overland 15.32 5.53 1.65 0.71 0.97 4.52 
Overland 13.33 4.54 1.48 0.58 1.04 4.33 
Overland 13.62 4.46 1.77 0.74 1.15 4.14 
Overland 14.74 5.91 1.39 0.67 1.07 4.87 
Overland 13.51 5.26 1.24 0.72 1.13 3.94 
Overland 13.21 3.68 1.62 0.59 1.28 3.16 
Overland 15.08 4.46 1.58 0.88 1.27 3.48 
Overland 11.15 5.43 1.16 0.65 0.95 3.59 
Overland 13.62 5.04 1.04 0.78 0.98 3.77 
Overland 15.29 4.16 1.35 0.63 0.91 3.65 
Overland 14.75 4.93 1.81 0.76 0.84 4.61 
Overland 14.07 5.26 1.33 0.65 0.83 5.43 
Overland 15.61 4.39 1.71 0.81 0.72 4.48 
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Soilwater 13.27 4.67 37.58 7.42 0.65 13.48 
Soilwater 15.74 3.71 36.91 6.61 0.44 16.23 
Soilwater 11.07 4.51 34.25 7.96 0.69 14.83 
Soilwater 10.32 3.58 31.85 8.77 0.58 11.36 
Soilwater 12.07 3.49 36.87 6.38 0.49 10.79 
Soilwater 11.37 3.92 37.79 9.85 0.76 13.41 
Soilwater 14.74 3.19 38.72 10.19 0.61 10.73 
Soilwater 13.46 4.72 35.06 6.44 0.63 15.79 
Soilwater 13.42 2.95 39.97 9.25 0.58 13.65 
Soilwater 12.75 3.46 40.79 9.31 0.82 12.88 
Soilwater 10.92 3.48 39.85 12.88 0.56 10.82 
Soilwater 14.65 4.32 36.92 11.76 0.64 11.34 
Soilwater 13.83 3.87 34.53 10.73 0.39 12.18 
Soilwater 12.37 4.06 32.05 9.31 0.57 11.75 
Soilwater 11.21 3.95 30.06 8.74 0.62 10.13 
Soilwater 10.86 4.47 34.55 9.53 0.52 14.57 
Soilwater 12.81 4.84 33.88 9.96 0.44 13.24 
Soilwater 13.46 3.58 32.19 6.26 0.63 13.75 
Soilwater 9.85 4.73 35.85 8.87 0.65 13.94 
Soilwater 10.31 3.71 34.13 9.43 0.59 10.82 
Groundwater 1.29 0.56 1.76 1.89 5.52 5.98 
Groundwater 1.34 0.61 1.87 1.75 5.39 6.07 
Groundwater 1.39 0.67 1.84 1.78 5.32 5.95 
Groundwater 1.77 0.63 1.71 1.72 5.22 5.92 
Groundwater 1.86 0.64 1.97 1.74 5.05 5.95 
Groundwater 1.43 0.85 1.94 1.71 5.51 5.84 
Groundwater 1.24 0.61 1.45 1.68 5.15 5.81 
Groundwater 1.56 0.72 1.69 1.65 5.32 6.28 
Groundwater 1.87 0.69 1.61 1.69 5.27 5.71 
Groundwater 1.26 0.53 1.49 1.68 5.38 5.69 
Groundwater 1.61 0.62 1.59 1.69 5.76 5.76 
Groundwater 1.23 0.69 1.89 1.66 5.37 5.43 
Groundwater 1.24 0.97 1.61 1.65 5.39 5.79 
Groundwater 1.57 0.62 1.69 1.67 5.43 5.51 
Groundwater 1.48 0.57 1.56 1.71 5.41 5.84 
Groundwater 1.35 0.63 1.72 1.73 5.85 5.97 
Groundwater 1.24 0.62 1.82 1.71 5.36 5.94 
Groundwater 1.23 0.66 1.65 1.72 5.74 5.98 
Groundwater 1.34 0.64 1.74 1.72 5.67 6.19 
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Groundwater 1.36 0.54 1.64 1.74 5.53 5.61 
50 yr flowpaths 

 
DOC 

(mg/L) 
K 

(mg/L) 
Ca 

(mg/L) 
Mg 

(mg/L) 
Na 

(mg/L) 
TDN 

(mg/L) 
Overland 16.72 7.87 2.59 0.92 0.89 4.31 
Overland 14.31 7.51 1.61 1.07 1.34 5.3 
Overland 14.74 9.66 2.95 0.76 1.37 5.97 
Overland 15.85 8.61 2.56 1.24 0.65 5.21 
Overland 18.77 9.63 2.86 0.42 0.98 4.61 
Overland 16.34 7.91 3.93 0.96 0.99 4.64 
Overland 16.65 6.87 3.95 0.85 0.98 3.71 
Overland 16.33 7.91 1.72 0.79 0.91 4.16 
Overland 14.65 6.76 2.99 0.82 1.31 4.13 
Overland 18.54 7.37 3.02 0.84 1.06 3.44 
Overland 15.08 8.19 2.87 1.12 1.04 5.84 
Overland 16.47 6.53 1.31 0.74 0.97 3.09 
Overland 15.07 5.98 2.42 0.83 1.04 4.14 
Overland 13.94 6.34 3.02 0.74 1.05 4.55 
Overland 12.94 8.47 2.39 0.97 0.83 5.43 
Overland 15.48 8.53 3.34 0.88 0.98 5.14 
Overland 17.78 9.56 1.25 0.75 0.91 4.97 
Overland 16.71 9.72 2.33 1.16 1.24 4.67 
Overland 15.73 7.55 3.41 0.32 1.07 4.23 
Overland 16.35 8.15 2.34 0.78 1.13 4.39 
Overland 12.58 6.59 1.36 0.57 1.28 5.19 
Overland 14.69 7.41 2.35 1.15 1.27 4.89 
Overland 15.38 6.59 2.34 0.93 0.95 4.59 
Overland 16.31 7.54 2.36 0.82 1.13 5.75 
Overland 11.87 6.77 1.43 0.96 1.09 4.27 
Overland 16.27 6.43 2.37 0.95 0.84 5.03 
Overland 14.63 8.68 2.02 1.22 0.96 3.36 
Overland 15.35 6.76 1.97 0.67 1.23 5.03 
Overland 15.44 7.02 2.16 0.78 1.26 3.54 
Overland 16.74 5.83 2.18 0.86 1.12 5.21 
Overland 12.74 9.85 2.12 0.76 1.47 3.62 
Overland 11.08 8.98 2.08 0.45 1.29 3.81 
Overland 10.96 7.48 2.29 0.71 1.19 7.35 
Overland 11.16 6.23 2.19 0.65 1.32 5.92 
Overland 12.13 6.55 2.35 0.75 1.02 4.47 
Soilwater 15.31 3.58 21.46 8.35 1.03 12.53 
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Soilwater 14.22 2.35 27.6 6.64 1.19 10.65 
Soilwater 10.55 3.92 26.54 8.93 0.96 11.98 
Soilwater 13.26 3.21 26.29 10.26 0.89 13.45 
Soilwater 12.9 3.13 21.9 9.18 0.78 10.74 
Soilwater 9.41 2.41 28.97 5.67 0.83 10.59 
Soilwater 12.75 3.83 19.44 9.49 0.67 10.25 
Soilwater 13.49 4.66 29.21 10.79 1.02 11.36 
Soilwater 15.77 3.75 27.51 7.48 1.08 9.77 
Soilwater 14.45 5.62 24.23 4.16 0.89 12.53 
Soilwater 13.74 2.93 19.89 7.44 1.27 15.05 
Soilwater 14.23 2.12 21.92 8.36 0.95 16.49 
Soilwater 15.37 4.17 26.32 7.31 1.05 12.95 
Soilwater 10.62 2.28 27.41 7.43 0.98 10.36 
Soilwater 14.92 2.38 21.01 11.75 0.69 10.61 
Soilwater 13.86 4.45 24.72 6.91 1.05 9.43 
Soilwater 10.48 3.19 22.62 2.35 1.14 11.34 
Soilwater 14.52 4.31 21.39 7.54 0.76 16.07 
Soilwater 16.44 2.26 20.61 9.32 0.84 11.42 
Soilwater 12.74 3.86 25.65 7.29 0.76 9.434 
Groundwater 1.75 1.12 5.24 2.32 5.4 5.43 
Groundwater 1.67 1.15 5.22 2.29 5.55 5.45 
Groundwater 1.92 1.19 5.31 2.23 5.44 5.51 
Groundwater 1.87 1.16 5.33 2.32 5.56 5.49 
Groundwater 1.89 1.29 5.38 2.17 5.59 5.59 
Groundwater 1.87 1.21 5.34 2.25 5.68 5.42 
Groundwater 1.94 1.25 5.47 2.31 5.73 5.43 
Groundwater 1.75 1.36 5.43 2.23 5.78 5.56 
Groundwater 1.85 1.38 5.56 2.32 5.81 5.68 
Groundwater 1.83 1.31 5.52 2.28 5.72 5.67 
Groundwater 1.67 1.28 5.45 2.24 5.83 5.71 
Groundwater 1.89 1.23 5.35 2.25 5.96 5.66 
Groundwater 1.87 1.36 5.39 2.14 6.08 5.93 
Groundwater 1.79 1.31 5.41 2.21 5.95 5.87 
Groundwater 1.72 1.23 5.59 2.34 6.05 5.78 
Groundwater 1.74 1.19 5.44 2.26 5.93 5.84 
Groundwater 1.89 1.24 5.37 2.22 6.17 5.48 
Groundwater 1.64 1.31 5.33 2.14 5.76 5.43 
Groundwater 1.96 1.29 5.28 2.01 5.92 5.38 
Groundwater 1.98 1.23 5.26 2.07 5.97 5.93 
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Overland flow 

 
DOC 

(mg/L) 
K 

(mg/L) 
Ca 

(mg/L) 
Mg 

(mg/L) 
Na 

(mg/L) 
TDN 

(mg/L) 
Forest 8.07 4.09 5.02 0.97 1.21 2.13 
Forest 8.36 5.23 5.41 0.92 1.38 2.01 
Forest 8.64 2.41 4.09 1.02 1.17 1.68 
Forest 11.49 5.02 5.13 1.5 2.62 1.79 
Forest 8.43 4.64 5.52 0.79 1.35 1.87 
Forest 7.92 2.96 4.53 1.15 0.89 1.84 
Forest 9.25 3.35 3.39 0.65 2.03 1.81 
Forest 9.41 3.43 5.29 0.74 1.48 1.01 
Forest 6.41 4.47 4.86 0.83 1.36 1.27 
Forest 8.32 6.25 6.13 1.09 2.01 1.95 
Forest 10.9 2.74 4.32 1.11 1.46 1.71 
Forest 9.45 4.01 5.74 1.06 0.96 1.68 
Forest 8.43 3.02 4.41 1.03 1.05 1.81 
Forest 9.71 5.86 6.25 0.67 1.26 2.24 
Forest 9.65 3.98 4.16 0.56 1.14 1.84 
Forest 9.92 4.43 5.97 0.82 2.03 1.67 
Forest 8.03 3.64 3.98 0.66 1.15 1.58 
Forest 7.86 4.96 4.81 0.52 1.08 2.13 
Forest 8.32 2.35 4.67 0.83 1.14 1.32 
Forest 5.38 3.61 3.29 0.55 1.21 0.81 
Forest 8.27 3.79 4.04 0.76 2.63 1.61 
Forest 8.91 4.89 4.15 0.35 1.53 2.01 
Forest 6.83 3.51 4.12 0.47 1.24 2.15 
Forest 11.9 4.69 3.39 0.67 1.02 1.88 
Forest 9.45 3.09 5.18 0.85 1.19 1.84 
Forest 8.43 5.07 4.86 0.59 0.85 2.29 
Forest 9.74 3.19 5.13 0.98 1.23 2.01 
Forest 9.54 4.14 4.31 1.15 1.39 1.87 
Forest 11.19 4.52 4.23 0.73 1.49 1.75 
Forest 6.95 2.75 3.76 1.09 1.28 2.66 
Forest 8.79 5.83 4.29 0.98 1.19 1.61 
Forest 11.32 3.24 3.13 1.02 1.64 1.72 
Forest 8.79 4.96 4.19 1.07 1.03 2.12 
Forest 9.96 2.41 3.53 1.23 2.02 2.16 
Forest 9.31 5.72 3.76 0.79 1.39 2.23 
5year 12.15 6.56 3.01 1.12 1.46 2.82 
5year 14.93 4.05 2.96 1.03 1.05 2.36 
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5year 15.34 4.69 1.98 0.84 1.51 2.39 
5year 15.26 5.96 3.77 1.06 1.79 2.03 
5year 16.23 6.33 2.94 0.93 2.15 2.75 
5year 13.94 3.62 2.82 0.86 1.14 3.32 
5year 11.72 6.97 2.87 0.71 1.61 2.18 
5year 12.43 4.12 2.36 0.79 1.72 2.12 
5year 14.34 7.69 3.75 1.19 1.92 2.23 
5year 13.73 5.32 2.92 0.72 1.02 2.31 
5year 16.19 8.15 2.71 0.95 1.05 1.45 
5year 13.41 4.61 3.09 0.76 1.79 2.32 
5year 13.84 4.64 2.31 0.81 1.01 2.74 
5year 10.83 3.96 2.23 0.92 1.32 3.36 
5year 9.81 4.35 1.67 1.21 1.27 2.22 
5year 15.55 7.42 3.09 1.15 0.96 2.97 
5year 11.52 5.47 2.13 1.04 1.09 2.62 
5year 15.37 6.25 2.25 1.22 1.02 2.57 
5year 10.12 5.73 2.52 0.84 1.17 2.51 
5year 10.74 4.67 2.39 1.01 1.02 2.41 
5year 11.93 3.91 2.26 1.21 1.35 3.15 
5year 10.38 5.23 2.86 0.94 2.01 2.42 
5year 12.42 5.47 2.52 0.85 1.39 2.27 
5year 13.58 6.44 3.31 0.78 1.43 2.59 
5year 14.05 4.64 1.93 1.14 1.05 2.74 
5year 17.78 3.76 2.32 0.97 1.56 1.92 
5year 13.32 4.35 2.19 1.14 2.24 2.83 
5year 15.38 6.42 2.03 0.81 1.31 2.62 
5year 14.87 5.47 1.85 0.77 1.62 2.08 
5year 13.49 4.41 1.52 0.96 1.36 2.51 
5year 18.32 5.19 2.34 0.81 1.24 1.87 
5year 10.29 5.13 4.52 0.89 1.03 1.85 
5year 11.45 6.53 2.39 1.02 1.45 2.54 
5year 9.42 5.51 5.05 1.15 0.91 2.31 
5year 10.74 6.33 4.81 0.73 1.01 2.75 
10year 16.31 4.47 1.67 0.73 1.23 4.21 
10year 14.13 5.25 1.39 0.46 1.36 3.87 
10year 15.91 4.89 1.55 0.79 1.12 3.34 
10year 16.12 4.66 1.65 0.46 1.17 3.96 
10year 13.29 6.84 1.48 0.51 1.29 3.75 
10year 13.11 4.78 2.12 0.62 1.19 4.53 
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10year 15.24 4.59 1.75 0.51 1.32 5.41 
10year 14.53 5.99 1.41 0.87 1.02 3.37 
10year 14.92 5.41 1.63 0.53 0.96 3.16 
10year 14.29 4.31 1.42 0.77 0.89 3.72 
10year 11.02 5.91 1.64 0.55 0.78 4.05 
10year 15.24 5.87 1.39 0.59 1.37 3.42 
10year 13.22 4.66 1.61 0.61 0.65 3.67 
10year 13.97 5.45 1.45 0.52 0.98 3.83 
10year 14.07 5.91 1.34 0.68 1.19 3.23 
10year 16.39 6.41 1.55 0.83 0.84 4.12 
10year 14.32 3.17 1.51 0.95 0.86 4.04 
10year 15.37 5.93 1.12 0.59 0.98 3.86 
10year 16.15 5.16 1.48 0.64 0.91 3.69 
10year 15.21 5.39 1.35 0.67 2.46 4.19 
10year 14.55 4.55 2.26 0.57 1.06 3.29 
10year 15.53 3.83 1.39 0.85 1.17 3.39 
10year 15.32 5.53 1.65 0.71 0.97 4.52 
10year 13.33 4.54 1.48 0.58 1.04 4.33 
10year 13.62 4.46 1.77 0.74 1.15 4.14 
10year 14.74 5.91 1.39 0.67 1.07 4.87 
10year 13.51 5.26 1.24 0.72 1.13 3.94 
10year 13.21 3.68 1.62 0.59 1.28 3.16 
10year 15.08 4.46 1.58 0.88 1.27 3.48 
10year 11.15 5.43 1.16 0.65 0.95 3.59 
10year 13.62 5.04 1.04 0.78 0.98 3.77 
10year 15.29 4.16 1.35 0.63 0.91 3.65 
10year 14.75 4.93 1.81 0.76 0.84 4.61 
10year 14.07 5.26 1.33 0.65 0.83 5.43 
10year 15.61 4.39 1.71 0.81 0.72 4.48 
50year 16.72 7.87 2.59 0.92 0.89 4.31 
50year 14.31 7.51 1.61 1.07 1.34 5.3 
50year 14.74 9.66 2.95 0.76 1.37 5.97 
50year 15.85 8.61 2.56 1.24 0.65 5.21 
50year 18.77 9.63 2.86 0.42 0.98 4.61 
50year 16.34 7.91 3.93 0.96 0.99 4.64 
50year 16.65 6.87 3.95 0.85 0.98 3.71 
50year 16.33 7.91 1.72 0.79 0.91 4.16 
50year 14.65 6.76 2.99 0.82 1.31 4.13 
50year 18.54 7.37 3.02 0.84 1.06 3.44 
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50year 15.08 8.19 2.87 1.12 1.04 5.84 
50year 16.47 6.53 1.31 0.74 0.97 3.09 
50year 15.07 5.98 2.42 0.83 1.04 4.14 
50year 13.94 6.34 3.02 0.74 1.05 4.55 
50year 12.94 8.47 2.39 0.97 0.83 5.43 
50year 15.48 8.53 3.34 0.88 0.98 5.14 
50year 17.78 9.56 1.25 0.75 0.91 4.97 
50year 16.71 9.72 2.33 1.16 1.24 4.67 
50year 15.73 7.55 3.41 0.32 1.07 4.23 
50year 16.35 8.15 2.34 0.78 1.13 4.39 
50year 12.58 6.59 1.36 0.57 1.28 5.19 
50year 14.69 7.41 2.35 1.15 1.27 4.89 
50year 15.38 6.59 2.34 0.93 0.95 4.59 
50year 16.31 7.54 2.36 0.82 1.13 5.75 
50year 11.87 6.77 1.43 0.96 1.09 4.27 
50year 16.27 6.43 2.37 0.95 0.84 5.03 
50year 14.63 8.68 2.02 1.22 0.96 3.36 
50year 15.35 6.76 1.97 0.67 1.23 5.03 
50year 15.44 7.02 2.16 0.78 1.26 3.54 
50year 16.74 5.83 2.18 0.86 1.12 5.21 
50year 12.74 9.85 2.12 0.76 1.47 3.62 
50year 11.08 8.98 2.08 0.45 1.29 3.81 
50year 10.96 7.48 2.29 0.71 1.19 7.35 
50year 11.16 6.23 2.19 0.65 1.32 5.92 
50year 12.13 6.55 2.35 0.75 1.02 4.47 

Soil water 

 
DOC 

(mg/L) 
K 

(mg/L) 
Ca 

(mg/L) 
Mg 

(mg/L) 
Na 

(mg/L) 
TDN 

(mg/L) 
forest 7.21 4.97 39.31 10.17 0.68 9.72 
forest 5.31 4.24 40.97 10.81 0.41 7.94 
forest 5.94 3.16 53.74 13.99 0.63 8.14 
forest 5.47 4.03 37.53 7.12 0.52 7.04 
forest 6.07 4.41 29.94 8.23 0.39 8.05 
forest 8.32 3.35 35.92 9.56 0.34 8.76 
forest 7.33 3.09 37.35 5.16 0.29 6.51 
forest 6.51 5.71 46.21 13.91 0.81 7.63 
forest 4.05 4.08 37.68 6.04 0.28 11.1 
forest 7.99 3.16 36.23 12.67 0.73 10.52 
forest 8.86 4.18 32.36 10.83 0.32 10.91 
forest 9.12 4.46 35.38 5.01 0.36 11.74 
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forest 9.62 5.01 37.33 6.12 0.49 12.93 
forest 7.65 4.29 33.61 6.71 0.35 8.78 
forest 9.37 3.24 31.95 11.53 0.38 7.46 
forest 8.16 5.02 46.02 9.41 0.49 6.85 
forest 8.18 3.99 37.74 9.73 0.35 9.47 
forest 9.48 3.47 37.08 7.15 0.45 10.42 
forest 7.29 4.23 47.33 9.11 0.56 9.84 
forest 7.49 3.52 40.72 7.79 0.42 7.46 
5year 9.81 5.81 34.76 7.13 0.65 8.24 
5year 10.06 4.09 35.83 9.03 0.58 6.31 
5year 7.54 3.87 34.72 7.53 0.47 6.08 
5year 9.46 7.19 33.06 6.52 0.67 5.12 
5year 11.52 6.24 38.99 6.83 0.87 8.19 
5year 8.74 5.59 37.29 7.14 1.26 7.43 
5year 9.38 4.24 32.37 6.41 1.02 9.91 
5year 11.03 4.88 29.29 5.21 0.58 6.51 
5year 8.09 4.64 34.98 6.32 0.78 8.33 
5year 10.28 5.32 37.87 8.13 1.18 6.35 
5year 8.75 4.41 39.19 6.81 0.42 5.66 
5year 10.21 3.97 38.89 7.63 0.51 6.31 
5year 10.01 4.07 39.84 5.73 0.57 5.62 
5year 9.24 4.04 33.49 6.63 0.62 7.96 
5year 9.71 3.83 40.83 8.06 0.69 8.59 
5year 8.81 4.32 37.94 6.28 1.03 7.91 
5year 10.63 3.59 36.55 7.54 0.68 6.18 
5year 8.92 3.29 37.95 5.53 0.53 6.42 
5year 9.01 4.49 35.58 6.74 0.46 7.15 
5year 12.24 4.53 34.78 7.25 0.68 8.57 
10year 13.27 4.67 37.58 7.42 0.65 13.48 
10year 15.74 3.71 36.91 6.61 0.44 16.23 
10year 11.07 4.51 34.25 7.96 0.69 14.83 
10year 10.32 3.58 31.85 8.77 0.58 11.36 
10year 12.07 3.49 36.87 6.38 0.49 10.79 
10year 11.37 3.92 37.79 9.85 0.76 13.41 
10year 14.74 3.19 38.72 10.19 0.61 10.73 
10year 13.46 4.72 35.06 6.44 0.63 15.79 
10year 13.42 2.95 39.97 9.25 0.58 13.65 
10year 12.75 3.46 40.79 9.31 0.82 12.88 
10year 10.92 3.48 39.85 12.88 0.56 10.82 
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10year 14.65 4.32 36.92 11.76 0.64 11.34 
10year 13.83 3.87 34.53 10.73 0.39 12.18 
10year 12.37 4.06 32.05 9.31 0.57 11.75 
10year 11.21 3.95 30.06 8.74 0.62 10.13 
10year 10.86 4.47 34.55 9.53 0.52 14.57 
10year 12.81 4.84 33.88 9.96 0.44 13.24 
10year 13.46 3.58 32.19 6.26 0.63 13.75 
10year 9.85 4.73 35.85 8.87 0.65 13.94 
10year 10.31 3.71 34.13 9.43 0.59 10.82 
50year 15.31 3.58 21.46 8.35 1.03 12.53 
50year 14.22 2.35 27.6 6.64 1.19 10.65 
50year 10.55 3.92 26.54 8.93 0.96 11.98 
50year 13.26 3.21 26.29 10.26 0.89 13.45 
50year 12.9 3.13 21.9 9.18 0.78 10.74 
50year 9.41 2.41 28.97 5.67 0.83 10.59 
50year 12.75 3.83 19.44 9.49 0.67 10.25 
50year 13.49 4.66 29.21 10.79 1.02 11.36 
50year 15.77 3.75 27.51 7.48 1.08 9.77 
50year 14.45 5.62 24.23 4.16 0.89 12.53 
50year 13.74 2.93 19.89 7.44 1.27 15.05 
50year 14.23 2.12 21.92 8.36 0.95 16.49 
50year 15.37 4.17 26.32 7.31 1.05 12.95 
50year 10.62 2.28 27.41 7.43 0.98 10.36 
50year 14.92 2.38 21.01 11.75 0.69 10.61 
50year 13.86 4.45 24.72 6.91 1.05 9.43 
50year 10.48 3.19 22.62 2.35 1.14 11.34 
50year 14.52 4.31 21.39 7.54 0.76 16.07 
50year 16.44 2.26 20.61 9.32 0.84 11.42 
50year 12.74 3.86 25.65 7.29 0.76 9.434 

Ground water 

 
DOC 

(mg/L) 
K 

(mg/L) 
Ca 

(mg/L) 
Mg 

(mg/L) 
Na 

(mg/L) 
TDN 

(mg/L) 
forest 1.21 0.32 4.52 2.81 3.93 1.34 
forest 1.38 0.41 3.78 1.06 2.38 0.81 
forest 1.43 0.23 5.54 2.47 3.81 1.28 
forest 1.14 0.35 5.72 2.41 4.07 0.97 
forest 2.37 0.48 4.73 1.88 2.92 1.09 
forest 1.34 0.29 4.71 2.94 3.89 0.83 
forest 1.12 0.49 4.64 2.02 3.55 0.96 
forest 1.36 0.37 5.59 1.95 3.42 0.79 
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forest 1.21 0.46 4.77 2.53 3.41 0.88 
forest 1.31 0.63 5.32 2.39 4.16 0.92 
forest 1.93 0.53 4.85 2.19 2.77 0.78 
forest 2.25 0.32 4.58 1.23 4.12 0.82 
forest 1.05 0.26 3.84 1.36 2.77 1.03 
forest 1.64 0.22 4.67 2.15 3.82 1.15 
forest 1.75 0.49 5.71 1.87 4.36 1.08 
forest 2.11 0.37 4.73 2.19 3.55 1.29 
forest 1.65 0.46 5.71 2.23 3.72 1.17 
forest 2.49 0.43 5.24 1.82 3.91 1.12 
forest 1.63 0.25 5.59 1.65 4.16 0.98 
forest 1.32 0.32 4.43 2.51 3.77 1.18 
5year 1.83 0.62 2.43 1.73 4.31 1.52 
5year 1.54 0.44 2.59 1.26 3.88 1.43 
5year 1.42 0.51 2.28 1.19 4.12 1.37 
5year 1.57 0.49 2.17 1.97 4.35 1.34 
5year 1.69 0.57 2.05 1.47 3.93 1.39 
5year 1.75 0.53 2.39 1.36 4.12 1.33 
5year 1.84 0.47 2.18 1.46 3.98 1.31 
5year 1.78 0.58 2.11 1.39 3.89 1.31 
5year 1.71 0.43 2.48 1.12 4.11 1.37 
5year 1.69 0.48 2.72 1.54 3.96 1.43 
5year 1.52 0.57 2.5 1.51 3.75 1.32 
5year 1.45 0.42 1.77 1.42 3.95 1.28 
5year 1.57 0.71 1.94 1.52 3.69 1.34 
5year 1.74 0.46 1.99 1.46 3.98 1.25 
5year 1.37 0.44 1.79 1.43 4.12 1.18 
5year 1.46 0.61 1.74 1.45 4.03 1.53 
5year 1.98 0.51 2.56 1.39 4.09 1.43 
5year 1.78 0.45 1.97 1.79 3.97 1.29 
5year 1.69 0.51 2.54 1.49 3.95 1.15 
5year 1.88 0.49 1.61 1.69 4.05 1.07 
10year 1.29 0.56 1.76 1.89 5.52 5.98 
10year 1.34 0.61 1.87 1.75 5.39 6.07 
10year 1.39 0.67 1.84 1.78 5.32 5.95 
10year 1.77 0.63 1.71 1.72 5.22 5.92 
10year 1.86 0.64 1.97 1.74 5.05 5.95 
10year 1.43 0.85 1.94 1.71 5.51 5.84 
10year 1.24 0.61 1.45 1.68 5.15 5.81 
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10year 1.56 0.72 1.69 1.65 5.32 6.28 
10year 1.87 0.69 1.61 1.69 5.27 5.71 
10year 1.26 0.53 1.49 1.68 5.38 5.69 
10year 1.61 0.62 1.59 1.69 5.76 5.76 
10year 1.23 0.69 1.89 1.66 5.37 5.43 
10year 1.24 0.97 1.61 1.65 5.39 5.79 
10year 1.57 0.62 1.69 1.67 5.43 5.51 
10year 1.48 0.57 1.56 1.71 5.41 5.84 
10year 1.35 0.63 1.72 1.73 5.85 5.97 
10year 1.24 0.62 1.82 1.71 5.36 5.94 
10year 1.23 0.66 1.65 1.72 5.74 5.98 
10year 1.34 0.64 1.74 1.72 5.67 6.19 
10year 1.36 0.54 1.64 1.74 5.53 5.61 
50year 1.75 1.12 5.24 2.32 5.4 5.43 
50year 1.67 1.15 5.22 2.29 5.55 5.45 
50year 1.92 1.19 5.31 2.23 5.44 5.51 
50year 1.87 1.16 5.33 2.32 5.56 5.49 
50year 1.89 1.29 5.38 2.17 5.59 5.59 
50year 1.87 1.21 5.34 2.25 5.68 5.42 
50year 1.94 1.25 5.47 2.31 5.73 5.43 
50year 1.75 1.36 5.43 2.23 5.78 5.56 
50year 1.85 1.38 5.56 2.32 5.81 5.68 
50year 1.83 1.31 5.52 2.28 5.72 5.67 
50year 1.67 1.28 5.45 2.24 5.83 5.71 
50year 1.89 1.23 5.35 2.25 5.96 5.66 
50year 1.87 1.36 5.39 2.14 6.08 5.93 
50year 1.79 1.31 5.41 2.21 5.95 5.87 
50year 1.72 1.23 5.59 2.34 6.05 5.78 
50year 1.74 1.19 5.44 2.26 5.93 5.84 
50year 1.89 1.24 5.37 2.22 6.17 5.48 
50year 1.64 1.31 5.33 2.14 5.76 5.43 
50year 1.96 1.29 5.28 2.01 5.92 5.38 
50year 1.98 1.23 5.26 2.07 5.97 5.93 
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Table C19: Data for chapter 3 Table 3.3 

 
Ground 

water (%) 
Soil water  

(%) 
Overland 
flow (%) 

forest 76.54 4.52 18.93 
forest 84.32 5.63 10.05 
forest 83.31 5.73 10.96 
forest 78.40 3.77 17.83 
5yr 75.83 7.10 17.06 
5yr 83.22 5.71 11.07 
5yr 69.33 9.56 21.11 
5yr 71.00 8.09 20.99 
5yr 71.11 9.19 19.70 
10yr 74.64 7.36 17.99 
10yr 67.24 7.32 25.44 
10yr 76.19 7.41 16.40 
10yr 71.59 7.56 20.85 
10yr 68.11 9.92 21.97 
50yr 70.62 4.47 24.91 
50yr 72.19 4.01 23.80 
50yr 71.63 2.32 26.05 
50yr 68.62 3.45 27.70 
50yr 73.11 4.15 22.74 
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