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Focal Adhesion Kinase (FAK) is a cytoplasmic tyrosine kinase that mediates 

signal transduction of integrins and other cell surface receptors in a variety of cells, 

including endothelial cells (ECs). Phosphorylation of FAK and its interactions with 

other signaling molecules have been shown to trigger several signaling pathways in 

the regulation of cellular functions, including cell migration, cell cycle progression 

and cell survival. 

Consistent with its critical importance in the regulation of various cellular 

functions, deletion of the FAK gene in mice leads to death at embryonic day 8.5 

(E8.5) due to defects in the axial mesodermal tissues including the cardiovascular 

system with incomplete development of both the blood vessels and the heart. Using a 

conditional mouse knock out approach, we and others have recently shown a role of 

FAK in vascular angiogenesis. Further studies with primary FAK deficient ECs 

showed that the essential function of FAK in the regulation of EC activities, including 

EC migration, proliferation and survival may contribute to the regulation of 

angiogenesis in vivo (Chapter 2).

The availability of the floxed FAK mice and ECs isolated from these mice 

allowed us to further investigate the role of specific FAK downstream pathways in 

EC functions by rescuing the various phenotypes with FAK mutants lacking specific 

interactions with its target both in vitro and in vivo. In this dissertation, we revealed a 

novel function of FAK in the regulation of centrosomal functions in a Ser-732 



phosphorylation-dependent manner in ECs during mitosis, which plays a role in the 

regulation of EC proliferation and tubulogenesis in vitro and tumor angiogenesis in 

vivo (Chapter 3).
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CHAPTER 1:

INTRODUCTION
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A. Focal Adhesion Kinase (FAK)

A1. Characterization of FAK

Focal adhesion kinase (FAK) is a 125 kDa cytoplasmic tyrosine kinase that 

localizes to focal adhesions where FAK and other molecules transmit mechanical 

force and regulatory signals from extracellular matrix (ECM) to the cell interior. FAK 

was identified as a substrate of v-Src and as a highly tyrosine-phosphorylated protein 

in response to cell adhesion to ECM mediated by integrins (Guan and Shalloway 

1992). Based on its amino acid sequence and structure, FAK represents a distinctive 

family of protein-tyrosine kinases (PTKs). FAK contains a catalytic domain that 

shows 31-41% sequence identity to the catalytic domains of other PTKs. However, 

FAK has a unique structure, containing large N- and C-terminal domains flanking the 

catalytic domain, but not SH2 and SH3 domains (Schaller et al. 1992). The FAK 

subfamily of nonreceptor PTK includes only one other member, Pyk2 (Avraham et al. 

1995; Sasaki et al. 1995). Pyk2 shares 40% amino acid sequence identity with N- and 

C-terminal domain of FAK and 60% conservation in kinase domain of FAK. FAK is 

expressed in most tissues and cell types in many species, including human, rodent, 

chicken, Xenopus, zebrafish and Drosphila (Schaller et al. 1992; Parsons 2003)

whereas Pyk2 is expressed mainly in neuronal and hematopoietic cell types (Avraham 

et al. 1995; Lev et al. 1995; Sasaki et al. 1995). Several studies showed that the 

deletion of FAK in primary fibroblasts or endothelial cells increases Pyk2 expression, 

suggesting the compensatory function of Pyk2 in FAK deficient cells (Sieg et al. 

1998). 

FAK localization to focal adhesions requires its C-terminal focal adhesion

targeting (FAT) domain. Integrin-associated proteins paxillin and talin, have been 
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proposed to mediate FAK localization to focal adhesions. The C-terminal domain of 

FAK also has two proline-rich motifs, which connect FAK to SH3 domain-containing 

proteins such as p130Cas, endophilin A2, Graf (GTPase activating protein for Rho 

associated with FAK) and ASAP1 (ADP ribosylation factor [ARF]- GTPase-

activating protein [GAP] containing SH3, ANK repeats, and PH domain). The FAK 

C-terminal domain termed FRNK (FAK-Related-Non-Kinase) has been known to be

expressed as a separate mRNA transcript in several cells and function as a 

competitive inhibitor of FAK targeting to integrins and focal adhesions (Parsons 

2003; Schlaepfer and Mitra 2004). The N- terminal domain of FAK contains a FERM 

(erythrocyte band four.1-ezin-radixin-moesin) homology domain followed by a 

proline-rich motif that has been shown as SH3 domain binding site for Src-family 

PTKs (Parsons 2003). 

A2. Mechanisms of FAK activation

FAK is a major mediator of signal transduction by integrins and also 

participates in signaling by other cell surface receptors in a variety of cells (Schaller 

2001; Parsons 2003; Schlaepfer and Mitra 2004). In most adherent cells, FAK is 

activated upon integrin-mediated cell adhesion to extracellular matrix (ECM) proteins 

through disruption of an intramolecular inhibitory interaction between its amino-

terminal FERM domain and the kinase domain (Cooper et al. 2003; Lietha et al. 

2007). Once it is activated, FAK undergoes autophosphorylation at Tyr397, which 

creates a binding site for several Src homology 2 domain–containing molecules 

including Src family kinases, p85 subunit of PI3K, phospholipase C- and Grb7

(Parsons 2003; Schlaepfer and Mitra 2004). The formation of FAK-Src complex has 

been demonstrated to activate tyrosine phoshorylation of additional sites on FAK. 
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Phsophorylation of FAK within the kinase domain activation loop at Tyr576 and 

Tyr577 leads to maximal FAK activation and tyrosine phosphorylation of FAK 

residues in its C-terminal domain at Tyr861 and Tyr925 creates the binding sites for 

SH2-domain containing proteins (Schlaepfer et al. 1994; Calalb et al. 1995; Owen et 

al. 1999). FAK also functions as a scaffold to mediate Src family kinase

phosphorylation of several proteins, including paxillin (Burridge et al. 1992; Schaller 

and Parsons 1995), p130cas (Vuori et al. 1996; Ruest et al. 2001), and  endophilin A2 

(Wu et al. 2005), which bind to the carboxyl-terminal region of FAK. In addition, 

FAK has four known phosphorylatable serine residues in the C-terminal domain: 

Ser722, Ser732, Ser843, and Ser910. Several studies suggested that serine 

phosphorylation of FAK may play a role in modulating the interactions between 

downstream signaling proteins. However, the roles and specific mechanisms of serine 

phosphorylation of FAK in the regulation of cell functions are poorly characterized

(Ma et al. 2001; Parsons 2003). This cascade of phosphorylation events and protein-

protein interactions has been shown to trigger several signaling pathways in the 

regulation of a variety of cellular functions in different cells, which will be discussed 

in detail in Section A3.
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Figure 1.1. Overview of FAK domain structure and its interacting proteins

The N-terminal FERM domain interacts with integrins, growth factor receptors and G 

protein-coupled receptor. Phosphoylation of FAK at Tyr397 creates SH2-domain 

binding sites for Src, PI3K and PLC. The central domain is the kinase domain and 

the phosphorylations at Tyr576 and Tyr577 promote maximal catalytic activity. The 

FAK C-terminal FAT domain binds to paxillin and talin and mediates FAK 

localization to focal adtheions. The C-terminal domain also contains two prolin-rich 

motifs that provide binding sites for SH3 domain-containing proeins including 

p130Cas, Graf and ASAP1. Additional sites of tyrosine and serine phosphorylation 

are indicated.
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A2.1 Integrin-mediated FAK activation

Integrins are the major transmembrane receptors that consist of two 

noncovalently bound glycoprotein subunits,  and .  They mediate interactions 

between the extracellular matrix (ECM) and the actin cytoskeleton and play important

roles in regulating cell adhesion, spreading and migration, cell survival, and cell cycle 

progression. Since integrins lack intrinsic catalytic activity, signals from ECM are 

transmitted through the activation of integrin-associated proteins, including FAK. 

Tyrosine phosphorylation and activation of FAK has been shown to be 

increased following cross-linking of integrins as well as  plating of cells on ECM 

proteins including fibronectin, laminin, vitronectin, and typeIV collagen (Guan et al. 

1991; Kornberg et al. 1992; Lipfert et al. 1992). Upon activation of integrins, FAK 

indirectly interacts with integrins through its C-terminal domain by binding to focal 

adhesion proteins, including paxillin and talin at the sites of integrin clustering, called 

focal adhesions (Parsons 2003). In addition, a direct interaction between the N-

terminal domain of FAK and 1-integrin was reported in vitro (Schaller and Parsons 

1995). Although specific mechanisms of FAK activation by integrins are unclear, 

several studies suggest that the cytoplasmic domains of -integrins (1, 3 and ) 

are required for FAK activation (Schlaepfer and Mitra 2004).   

A2.2 FAK activation by cell surface receptors

In addition to integrins, many growth factor receptors also mediate FAK 

signaling pathways in several different cell types. For example, HGF (Hepatocyte 

Growth Factor) activates FAK and promotes integrin-mediated cell migration (Lai et 

al. 2000). Also, FAK associates with the activated PDGFR (Platelet- Derived Growth 

Factor Receptor) and EGFR (Epidermal Growth Factor Receptor) through its N-
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terminal FERM domain and promotes cell migration (Sieg et al. 1998). Interestingly, 

the kinase activity of FAK is not required to stimulate either PDGF- or EGF-

mediated cell migration in FAK-/-cells, although the same cells require the kinase 

activity of FAK to promote fibronectin-stimulated cell migration (Sieg et al. 1998). 

These results suggest that the mechanisms of FAK-mediated migration are different 

in integrin and growth-factor receptor mediated activation. VEGF (Vascular 

Endothelial Growth Factor) also has been shown to induce phosphorylation FAK at 

Tyr-397 and Tyr-861, and to promote the formation of a FAK-integrin v5 complex, 

thereby induce angiogenesis (Eliceiri et al. 2002).

In addition, G protein- coupled receptor (GPCR) signal transduction increases 

tyrosine phosphorylation of FAK (Rozengurt 2007) and Tumor necrosis factor-

(TNF) also activates FAK and mediates ERK2/mitogen-activated protein kinase 

(MAPK) activation and lipopolysaccharide-induced interleukin-6 (IL-6) production

(Schlaepfer et al. 2007) .

A2.3 FERM domain regulation of FAK activation

Several studies have demonstrated that the N-terminal domain of FAK may 

play a role in the regulation of FAK phosphorylation and activity. Truncations of the 

N-terminal domain of FAK caused increased tyrosine phosphorylation and FAK 

activity, suggesting an inhibitory role for the N-terminal domain in FAK activation 

(Toutant et al. 2002; Cooper et al. 2003). Since it was reported that the N-terminal 

domain of FAK can bind to the kinase domain of FAK and inhibit FAK activity in 

trans (Cooper et al. 2003), FAK activation may be regulated by an autoinhibitory 

mechanism. Indeed, the crystal structure of the FAK fragment, which contains the N-

termianl and kinase domain (31-686 residues) showed that the auto-inhibited state is 
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stabilized by the interaction between the N-termianl domain and the kinase C-lobe 

(Lietha et al. 2007). The N-terminal domain of FAK contains a region sharing some 

sequence identity (27%) with band 4.1 and the ezin/radixin/moesin (FERM) domain 

(Girault et al. 1998; Diakowski et al. 2006). Three subdomains (F1, F2, and F3) form 

a tertiary fold within the region, similar to those of known FERM structures. In the 

auto-inhibited state, the F2 subdomain binds to the C-lobe of the kinase domain and 

the F1 subdomain interacts with the linker segment containing the Tyr397 

autophosphorylation site. Therefore, the release of N-terminal domain from the kinase 

domain will allow autophosphorylation of FAK at Tyr397 and FAK activation. 

However, the exact mechanisms that activate FAK by disrupting these interactions 

are still unclear. 

A3. Control of cellular functions by FAK

A3.1 Cell migration

Cell migration needs the coordinated regulation of the dynamics of actin 

filaments and focal adhesions, which generate membrane protrusions and contraction 

force. Cell migration involves several cellular processes, including plasma membrane 

protrusions at the cell front, adhesions of cell front protrusions by integrins, the 

forward movement of the cell body, and release of adhesions at the cell rear 

(Lauffenburger 1996). FAK has been implicated in playing an important role in the 

regulation of cell migration. An early observation came from the detection of 

increased FAK expression in migrating keratinocytes of repairing epidermal wounds 

(Gates et al. 1994). Deletion of FAK in mice caused early embryonic lethality, 

showing mesodermal defects (Ilic et al. 1995) and FAK deficient cells from these 
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mutant embryos showed reduced cell migration in vitro. In addition, the inhibition of 

FAK activity by overexpressing FRNK reduced cell migration (Gilmore and Romer 

1996) and overexpression of FAK in Chinese hamster ovary (Sharp et al.) cells 

increased cell migration(Cary et al. 1996).  

A3.1.1 Signaling from FAK phosphotyrosine 397 in migration

Several studies suggested that Tyr-397 phosphorylation of FAK is essential 

for the regulation of migration. Re-expression of wild-type FAK, but not the Y397F 

FAK mutant increased cell migration in FAK-deficient cells. In addition, re-

expression of the P712/715A FAK mutant which cannot bind to p130Cas failed to 

rescue cell migration as wild-type FAK did, suggesting that activation of p130Cas 

through FAK-Src complex is required for cell migration (Cary et al. 1996; Sieg et al. 

1998). SH3 domain-mediated binding of p130Cas to FAK increases tyrosine 

phosphorylation of p130Cas, which can increase Crk adaptor protein binding to 

p130Cas. The interaction between p130Cas and Crk has been shown to promote cell 

migration by Rac activation mediated through the Rac GTPase exchange factor 

DOCK180 (Kiyokawa et al. 1998). Activated Rac plays a role in migration through 

enhanced lamellopodium extension (protrusion) at the leading edge (Ridley 2001). 

Paxillin is also phosphorylated by FAK-Src complex as mentioned in section A2 

(page 4), and the activated paxillin plays a similar role as p130Cas in cell migration 

since it can also bind to Crk (Petit et al. 2000). Alternatively, the phosphorylated 

paxillin can interact with SH2 domains of p120RasGAP and release p190PhoGAP 

from p120RasGAP resulting in suppression of Rho activity thereby contributing to 

cell migration (Tsubouchi et al. 2002). 
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The p85 regulatory subunit of PI3K binds to FAK at phosphorylated Tyr-397 

(See Section A2, page 4) and this interaction is also known to regulate cell migration. 

Inhibition of PI3K reduced FAK-promoted migration and the overexpression of the 

D395A FAK mutant that can bind to Src but not PI3K failed to promote cell 

migration (Reiske et al. 2000). PI3K signaling may regulate cell migration through 

the stimulation of protrusions at the leading edge, since PI3K has been shown to 

activate Rac (Reif et al. 1996). 

Another downstream molecule of FAK that binds to phosphorylated Tyr-397 

is Grb7. Phosphorylation of Grb7 by FAK has been shown to play a role in cell 

migration (Han et al. 2000). It was reported that the phosphorylation of Grb7 by FAK 

is dependent on PI3K activity, suggesting the cooperative regulation of Grb7 and 

PI3K in FAK-mediated cell migration (Shen et al. 2002). 

Therefore, these studies suggest that FAK regulates cell migration through the 

activation of multiple downstream pathways that cause Rac activation and Rho 

suppression, resulting in the stimulation of lamellipodium extension. FAK-mediated 

Rac activation and Rho suppression have also been implicated in playing an 

important role in cell migration through their contribution to the focal adhesion 

disassembly, which will be discussed in more detail in the next section. 

A3.1.2 Focal adhesion turnover

Focal adhesions are sites where integrins link the ECM to cytoplasmic actin 

cytoskeleton. The formation and turnover of focal adhesions is a dynamic process, 

whose coordinated regulation is essential for cell migration in response to a stimulus, 

such as ECM proteins, growth factors or cytokines. Focal adhesion dynamics in the 

migrating cell involve continuous assembly and disassembly of adhesion in a process 
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termed focal adhesion turnover at the cell front, center and rear. FAK has been 

demonstrated as a key trigger for focal adhesion turnover. FAK - deficient fibroblasts 

showed larger and more focal adhesions (Ilic et al. 1995) and the local increase of 

calcium concentration induces focal adhesion disassembly through increasing FAK 

recruitment at these sites (Giannone et al. 2004). 

FAK and its downstream pathways mediated by Src have been shown to 

stimulate adhesion disassembly. One pathway is by increasing actomyosin 

contractility through the activation of ERK (extracellular signal regulated kinase) and 

MLCK (myosin light chain kinase). Src-mediated phosphorylation of FAK at Tyr 925 

provides a SH2 domain binding site for Grb2 (growth factor receptor bound protein2) 

leading to ERK activation. The activation of ERK stimulates the phosphorylation of 

MLCK and thereby increases contractility, which causes adhesion disassembly 

(Webb et al. 2004). Another mechanism is through Rac activation or Rho inhibition 

by pathways mentioned in the previous section A3.1.1. Focal adhesion turnover is 

also regulated by the calcium - dependent protease, calpain (Schlaepfer and Mitra 

2004). Calpain has been shown to localize to focal adhesions and cleave several 

proteins in focal adhesions, such as talin, paxillin, FAK, Src, -actinin, and tensin. 

FAK has been demonstrated to stimulate caplain activity by recruiting both calpain 

and ERK to focal adhesion sites (Carragher et al. 2003).

A3.1.3 Serine phosphorylation of FAK in migration

In neuronal cells, cyclin-dependent kinase 5 (Cdk5), which plays an important 

role in neuronal migration during corticogenesis, directly phosphorylates FAK at 

Ser732 (Xie et al. 2003). Ser732-phosphorylated FAK was found predominantly in 

the distinct centrosome–associated microtubule structure that abuts the nucleus in 
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cultured neurons. Using the Ser732 to Ala mutant that can not be phosphorylated by 

FAK, it was shown that Ser732 phosphorylation is important to regulate the 

organization of a microtubule structure connecting the nucleus and the centrosome 

and, thereby, promote nuclear translocation during neuronal migration. Although 

specific mechanisms that link Ser732 phosphorylation of FAK and its regulation of 

microtubule structure are unknown, this study suggests that serine phosphorylation of 

FAK plays a role in neuronal migration.

A3.2 Cell proliferation and cell survival

A3.2.1 Function of FAK in G1 to S phase transition during cell cycle 

progression

It has been known that cell adhesions to the ECM are required for cell growth 

(Yancopoulos et al. 1998). Several studies suggest a role of FAK in cell cycle 

progression. Inhibition of FAK by overexpression of the C-terminal domain of FAK 

decreases cellular entry into S phase (Gilmore and Romer 1996). In addition, 

overexpression of the dominant-negative FAK mutant ∆C14, which can not localize 

to focal adhesions, blocks cell cycle progression at G1 phase whereas ovrexpression 

of wild-type FAK accelerates G1 to S phase transition (Zhao et al. 2003). Expression 

of Y397F FAK mutant, which cannot interact with Src, inhibits G1 to S phase 

transition and ERK activation. This result suggests the important roles of Y397 

phosphorylation of FAK and ERK activation in cell cycle progression (Zhao et al. 

2003). Consistent with this, fusion of the FAT sequence of FAK to Grb2 allows focal 

adhesion targeting of Grb2 and stimulates cell cycle progression as well as ERK 

activation (Shen and Guan 2001). Cell cycle progression from G1 to S phase is 
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regulated by distinct cyclin-dependent kinases that are regulated by various cyclins. 

The Ras-ERK signalling pathway has been demonstrated to activate cyclin D1 gene 

transcription. FAK was reported to regulate cyclin D1 expression through the EtsB 

binding site in the cyclin D1 promoter and ERK plays an important role in mediation 

of cyclin D1 expression (Zhao et al. 2003). These studies suggest that FAK regulates 

cell cycle progression through ERK-dependent stimulation of cyclin D1 gene 

transcription through its EtsB binding site.

A3.2.2 Serine phosphorylation of FAK during mitosis

It has been shown that phosphorylation of FAK at serine residues is increased 

during mitosis and this increase correlates with a decrease in FAK tyrosine 

phosphorylation and activation (Yamakita et al. 1999; Ma et al. 2001). During mitosis, 

focal adhesions are disassembled and integrin-mediated signalings are inactivated. 

After cytokinesis, cells start to reattach and integrin-mediated signaling is reactivated. 

This cycle of attachment and detachment during the cell cycle has been known to be 

critical for cell proliferation. It was reported that mitotic FAK shows reduced 

interaction with the integrin 1 subunit and FAK/Src/p130Cas signaling complex is 

dissociated during mitosis. Increased serine phosphorylaion of FAK during mitosis 

contributes to this dissociation between FAK and p130Cas, whereas tyrosine 

dephosphorylation of FAK disrupts FAK and Src interaction (Yamakita et al. 1999). 

Therefore, mitosis-specific serine phosphorylation of FAK contributes to the 

regulation of cell proliferation through the inactivation of integrin-mediated signaling 

during mitosis, showing the role of FAK in G2-M phase of cell cycle. However, 

specific functions and mechanisms of serine phosphorylation of FAK during mitosis 

are still undefined.
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A3.2.3 Cell survival         

It has been shown that the interaction between integins and ECM inhibits the 

detachment-induced apoptosis, anoikis. Both Tyr-397 phosphorylation and kinase 

activity of FAK have been demonstrated to play a role in the inhibition of anoikis, 

showing FAK is critical to this process (Frisch et al. 1996). One mechanism that 

contributes to cell survival is a FAK/p130Cas complex-mediated pathway, which 

activates c-Jun NH2-terminal kinase (JNK) through a Ras/Rac1/Pak1/MAPK kinase 4 

(MKK4) pathway (Almeida et al. 2000). FAK- mediated activation of PI3K can also 

stimulate cell survival by Akt activation or by activation of NF-B with the induction 

of inhibitor-of-apoptosis proteins (IAPs) thereby inhibiting apoptosis through

blocking caspase-3 cascade (Sonoda et al. 2000; Bellas et al. 2002). In addition, the 

inactivation of FAK increases apoptosis through p53-dependent pathway, suggesting 

FAK-mediated signaling pathways may be involved in the inhibition of p53 activity 

(Sieg et al. 1998).

B. FAK and angiogenesis

B1. Angiogenesis

Blood vessel formation is a fundamental event in embryonic development and 

organogenesis, as well as in the pathogenesis of many diseases including coronary 

heart disease, retinopathies, and cancer (Dvorak 2003). Blood vessels are formed by 

two processes :  vasculogenesis and angiogenesis (Risau 1991). Vasculogenesis is the 

de novo formation of new blood vessels from primitive cells (angioblasts) to form a 

primitive capillary network that occurs in the early embryogenesis, whereas 

angiogenesis, the sprouting of capillaries from preexisting blood vessels, is involved
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Figure 1.2. FAK signals that regulate cell functions

Once FAK is activated, it is autophosphorylated at Tyr-397, which creates a binding 

site for several Src homology 2 domain–containing molecules including Src, p85 

subunit of PI3K and Grb7. The formation of FAK-Src complex has been 

demonstrated to activate tyrosine phoshorylation of additional sites on FAK as well as 

other substrates, such as paxillin, p130cas and endophilin A2. FAK-induced activation 

of these signaling molecules has been shown to trigger several downstream signaling 

pathways that regulate several cellular functions. FAK - mediated activation of PI3K 

and p130Cas stimulates cell survival. Phosphorylation of FAK at Tyr 925 provides a 

binding site for Grb2 leading to ERK activation, which stimulates cell cycle 

progression from G1 to S phase through cyclin D1 gene transcription. FAK also has 

been shown to regulate cell migration through the activation of PI3K, Grb7, p130Cas 

and paxillin. 
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in the late stage of embryogenesis and in the adult (Yancopoulos et al. 1998).

Currently, the term angiogenesis has been used to indicate the growth, expansion and 

remodeling of primitive network into the mature vascular network, including the 

process of sprouting, bridging and intussusception (Carmeliet 2000). Angiogenesis is 

essential for physiological and pathological conditions including wound healing, 

chronic inflammation and carcinogenesis as well as embryonic development 

(Carmeliet et al. 1996; Yancopoulos et al. 1998). Complex and diverse cellular 

actions are implicated in angiogenesis, such as degradation and remodeling of the 

ECM, proliferation and migration of endothelial cells (ECs), and formation of a 

lumen completing vascular network (Section B1.1~1.3 and figure 1. 3)(Bussolino et 

al. 1997). 

ECs line the inner surface of blood vessels, lymphatics, and the chamber of 

the heart and play an essential role in both vasculogenesis and angiogenesis. Their 

functions are tightly regulated by proangiogenic growth factors, ECM components 

and integrins (Yancopoulos et al. 1998). However, it is still unclear how these 

proangiogenic factors and integrin receptor-mediated events regulate angiogenesis 

and vasculogenesis in ECs. In addition to ECs, periendothelial cells (pericytes for 

small vessels and smooth muscle cells for large vessels) are required for vascular 

maturation during angiogenesis. They play a role in hemostatic control and protection 

of new endothelium lined vessels from regression (Benjamin et al. 1998).                                                    

B1.1 Regulation of vascular permeability and ECM degradation

The primary step in the early angiogenic process is the production and 

secretion of EC-specific VEGF into the extracellular environment. Several angiogenic 

stimuli have been shown to induce VEGF expression, including several growth 
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factors, cytokines, hormones, nitric oxide (NO), and hypoxia (Kimura et al. 2000). 

The secreted VEGF increases vascular permeability through its effects on the 

redistribution of intercellular adhesion molecules, such as platelet endothelial cell 

adhesion molecule (PECAM)-1 and vascular endothelial (VE)–cadherin, and 

induction of Src kinases (Eliceiri et al. 1999; Conway et al. 2001). Vascular 

permeability is tightly regulated by an anti-permeability factor, angiopoietin-1 (Ang1), 

which is a ligand for the endothelial receptor Tie2 (Gale and Yancopoulos 1999). 

ECs exist in a quiescent state when they are bound to ECM, including 

basement membrane, which consist of molecules such as type IV, XV and XVII 

collagen, laminin, heparin-sulphate proteoglycans, and perlecans (Kalluri 2003). In 

response to angiogenic stimuli, including VEGF, bFGF, PDGF and chemokines, 

ECM has been shown to be degraded by several matrix-degrading enzymes, such as 

matrix metalloproteinases (MMPs), plaminogen activator, chymase and heparanase 

families. This ECM degradation leads ECs to proliferate and migrate into the adjacent 

tissues. In addition, it releases growth factors, such as VEGF, bFGF and Insulin-like 

growth factor-1 (IGF-1), which were sequestered within the matrix (Conway et al. 

2001). Several studies have shown that MMP9 and MMP2 are required for the VEGF 

release from the matrix (Kalluri 2003). This MMP-mediated degradation of ECM 

produces cryptic domains of partially degraded collagen, which provide 

proangiogenic cues. It also produces fragments that have anti-angiogenic activity, 

such as endostatin, arrestin, canstatin and tumstatin (Kalluri 2003). Therefore, MMP-

mediated ECM degradation acts as both an activator and an inhibitor during 

angiogenesis. In addition, angiopoietin-2 (Ang2), an antagonist of Ang1 plays a role 

in smooth muscle cell detachment and matrix loosening (Gale and Yancopoulos 

1999). 
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B1.2 EC proliferation and migration

It has been shown that several factors, including VEGFs, angiopoietins, and 

FGFs play a role in the regulation of EC migration and proliferation during 

angiogenesis. 

There are five VEGF homologues, VEGF-A ~D and placental growth factor 

(P1GF) in mammals and they interact with three receptor tyrosine kinases, VEGFR-

1/Flt-1, VEGFR-2/KDR/Flk-1, and VEGFR-3/Flt-1 (Gale and Yancopoulos 1999). It 

was reported that VEGF-A stimulates EC proliferation, migration and sprouting in 

vitro. In vivo studies also showed that VEGF-A is critical for sprouting as well as 

lumen formation, vessel survival, and initial states of vasculogenesis. These effects of 

VEGF-A on angiogenesis are known to be mediated by the VEGFR-2 receptor 

(Carmeliet et al. 1996). The deletion of VEGFR-1 in mice leads to vascular 

disorganization in mutant embryos with increased number of ECs in the lumens of the 

abnormal vessels, suggesting a role of VEGFR-1 in the downregulation of VEGF 

activity to control numbers of ECs (Fong et al. 1995). VEGF-B knockout mice 

showed a reduced size of their hearts and vascular dysfunction after coronary

occlusion, suggesting that it may play a role in the development or function of 

coronary vasculature (Bellomo et al. 2000). In addition, VEGF-C was reported to 

stimulate angiogenesis in adult mice and its receptor, VEGFR-3 is required for 

vascular remodelling and angiogenesis (Conway et al. 2001). 

Several studies suggest that roles of angiopoietins in angiogenesis are 

different from VEGF, but it has been shown that angiopoietins work in coordination 

with VEGF to regulate angiogenesis. In vitro studies reveal that Ang1 stimulates EC 

sprouting, but it could not directly promote the EC growth and tube formation as 

VEGF did (Davis et al. 1996; Koblizek et al. 1998). The deletion of either Ang1 or its 
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receptor, Tie2, in mice caused severely impaired vessels, although the early stage of 

VEGF-dependent vasculogenesis is still normal. These defects were caused by 

disrupting the role of Ang1 in mediating interactions between the ECs and 

surrounding matrix and support cells (Suri et al. 1996). Consistent with the notion 

that Ang2 is an antagonist of Ang1, Ang2 transgenic mice showed similar disruption 

of blood vessel formation in the embryo to that caused by either Ang1 or Tie2 

deletion (Maisonpierre et al. 1997). However, the effect of Ang2 on angiogenesis 

depends on the presence of VEGF. Ang2 has been shown to lead vessel regression in 

the absence of VEGF, whereas it stimulates angiogenesis in the presence of VEGF 

(Gale and Yancopoulos 1999).  

Several other factors have been demonstrated to play a role in angiogenesis, 

including FGFs, PDGF, endothelial nitric oxide synthase (eNOS), and Eph/ephrins 

(See table 1.1 for additional factors). 

B1.3 Vessel maturation

When ECs migrate into ECM, they form continuous connections between 

existing vessels and assemble into capillary tubes, and subsequently acquire a lumen. 

Lumen diameter has been demonstrated to be tightly regulated by several factors, 

including VEGF, Ang1, and integrins (Conway et al. 2001). 

Stabilization of newly formed vessels is an important step in angiogenesis and 

this is accomplished by recruiting mural cells (pericytes and smooth muscle cells) and 

by generating ECM. Several factors have been shown to regulate this process, 

including PDGF-B, PDGF receptor (PDGFR)-, Ang1/Tie2 and transforming growth 

factor (TGF)-. PDGF-B promotes mural cell proliferation, migration, and 

incorporation into the vessel wall (Armulik et al. 2005). The deletion of PDGF-B in 
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mice also showed that its expression in ECs is important for the recruitment of 

pericytes and normal vessel wall formation (Enge et al. 2002). Also the Ang/Tie-

signaling system plays an important role in vessel stabilization as mentioned in B1.2 

section. In addition, TGF-1 plays a role in vessel maturation through stimulating 

ECM production and inducing differentiation of mesenchymal cells to mural cells 

(Jain 2003). In vivo studies revealed a role of TGF-1 and its receptors (TGF- Rs I, 

II and endoglin) in mice embryonic vascular assembly and vessel maturation (Pepper 

1997).

Vessel maturation involves the final patterning of vascular network for an 

organ by branching, remodelling and pruning. For this process, several ECM 

components and factors, which play a role in nervous system branching, such as 

ephrins and neuropilins, are involved in regulating EC and mural cell proliferation, 

survival, migration and differentiation (Jain 2003). 

B2. Role of FAK in angiogenesis

Several studies suggest the importance of both integrins and growth factor 

receptors in the regulation of key aspects of angiogenesis as mentioned in section B1 

(Eliceiri and Cheresh 2001). Since FAK mediates signaling from integrins as well as 

from growth factor receptors, these studies strongly suggest a potential role of FAK in 

angiogenesis and vasculogenesis. A potential role of FAK in angiogenesis and 

vasculogenesis has been suggested by several other studies. The pattern of FAK 

expression was examined during mouse development and it was found to be

particularly abundant in the blood vessels (Polte et al. 1994). Also, increased EC 

migration into a wounded monolayer was correlated with the increased FAK activity

(Romer et al. 1994). Moreover, the disruption of FAK in mice has demonstrated the
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importance of FAK in vascular development. The deletion of the FAK gene in the 

mouse leads to death at embryonic day 8.5 (E8.5) due to defects in the axial 

mesodermal tissues including the cardiovascular system with incomplete 

development of both the blood vessels and the heart (Ilic et al. 1995). Several studies 

in vitro and in vivo (Section B2.1 and B2.2) have shown the important roles of FAK 

in angiogenesis, although how FAK signaling pathways are linked to the regulation of 

angiogenesis still remained unclear.

B2.1 FAK signaling in angiogenesis 

FAK has been demonstrated to be involved in various angiogenic signaling 

pathways. Ang-1, which is known to stimulate EC sprouting, induces FAK 

phosphorylation in endothelial cells and the activated FAK plays a role in Ang-1 

induced EC migration through PI3-Kinase activation (Kim et al. 2000). VEGF-

A/VEGFR-2 signaling also activates FAK and the following PI 3-kinase activation by 

FAK is required for VEGF-A-stimulated migration of porcine aortic endothelial cells 

expressing VEGFR-2 (Qi and Claesson-Welsh 2001). In response to VEGF, Src-

dependent phosphorylation of FAK at Tyr-861 has been shown to be significantly 

increased in HUVECs and this phosphorylation promotes the formation of a signaling 

complex containing FAK and integrin v5, which is essential for VEGF-stimulated

angiogenesis (Eliceiri et al. 1999; Abu-Ghazaleh et al. 2001; Eliceiri et al. 2002).

However, Src - dependent phosphorylation of FAK at Y861 is not involved in FAK 

activated PI3-kinase pathway, suggesting VEGF independently activates Src –

dependent and – independent mechanisms to regulate angiogenesis.



24

Table 1.1. Angiogenesis activators and inhibitors               
                                                                                                                                                                       

Activators Function Inhibitors Function
Hypoxia Stimulates 

activation of 
hypoxia-inducible 
factor, which 
activates 
angiogenesis-
related genes, 
including VEGF 
and VEGFR

VEGFR-1, 
soluble 
VEGFR-1 and 
neuropilin-1 
(NP-1)

Sink for VEGF, VEGF-B, 
PlGF (VEGFR-1)and for 
VEGF165 (NP-1)

VEGF, VEGF-
C, PlGF and 
homologues

Stimulate
angiogenesis, 
permeability;           
VEGF-C: 
stimulates 
lymphangiogenesis;
PlGF: role in 
pathologic 
angiogenesis

Angiopoietin-2 Antagonist of Ang1: 
induces vessel 
regression in the 
absence of angiogenic 
signals

VEGF receptors 
(VEGFR)

VEGFR-2: 
angiogenic 
signaling receptor;                     
VEGFR-3: (lymph) 
angiogenic 
signaling receptor;      
neuropilin-1 (NP-
1): binds 
specifically 
VEGF165; 
coreceptor of 
VEGFR-2

Thrombospondi
n-1 (TSP-1)

Extracellular matrix 
protein; Type I repeats 
inhibit endothelial 
migration, growth, 
adhesion,survival; 
related TSP-2 also 
inhibits angiogenesis

Angiopoietin-1 
(Ang1) and 
Tie2-receptor

Ang1: stabilizes 
vessels by 
tightening 
endothelial- smooth 
muscle interaction; 
inhibits 
permeability;                   
Ang2: destabilizes 
vessels before 
sprouting

Meth-1, Meth-2 Inhibitors containing 
metalloprotease,thrombo
spondin and disintegrin 
domains
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Table 1.1 (Continued).

PDGF-BB and 
receptors

Recruit smooth 
muscle cells

Angiostatin and 
related 
plasminogen 
kringles

Proteolytic fragments of 
plasminogen; inhibit 
endothelial migration 
and survival

TGF-β1, 
endoglin, TGF-β
receptors

Stabilize vessels by 
stimulating 
extracellular matrix 
production 

Endostatin Fragment of type XVIII 
collagen; inhibits 
endothelial survival and 
migration

FGF, HGF, 
MCP-1

Stimulate 
angiogenesis (FGF, 
HGF) and 
arteriogenesis 
(FGF, MCP-1)

Vasostatin, 
calreticulin

Calreticulin and N-
terminal fragment 
(vasostatin) inhibit 
endothelial growth

Integrins vβ3, 
vβ5

Receptors for 
matrix 
macromolecules 
and proteinases 
(MMP2)

Platelet factor-4 Heparin-binding CXC 
chemokine inhibits 
binding of bFGF and 
VEGF

VE-cadherin, 
PECAM (CD31)

Endothelial 
junctional 
molecules; 
essential for
endothelial survival 
effect; 
antibodies block 
tumor angiogenesis

Tissue-
inhibitors of 
MMP (TIMPs), 
MMP-
inhibitors, PEX

Suppress pathologic 
angiogenesis;         
PEX: proteolytic 
fragment of MMP2, 
blocks binding of 
MMP2 to vβ3

Ephrins Regulate 
arterial/venous 
specification

Tissue-
inhibitors of 
MMP (TIMPs), 
MMP-
inhibitors, PEX

Suppress pathological 
angiogenesis
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Table 1.1 (Continued).

Plasminogen 
activators,      
matrix 
metalloproteinas
es

Proteinases 
involved in cellular 
migration and 
matrix remodeling; 
liberate bFGF and 
VEGF from the 
matrix; 
activate TGF-β1; 
generate angiostatin

Interferon 
(IFN) , β,  ; 
IP-10, IL-4, IL-
12, IL-18

Cytokines and 
chemokines, inhibiting 
endothelial migration; 
IFN downregulates 
bFGF

Nitric oxide 
synthase, 
cyclooxygenase-
2

Nitric oxide and 
prostaglandins 
stimulate 
angiogenesis and 
vasodilation; 
Cox2 inhibitors 
suppress tumor 
angiogenesis

Prothrombin 
kringle-2, anti-
thrombin III 
fragment

Fragments of the 
hemostatic factors 
suppress endothelial 
growth

Other activators AC133 (orphan 
receptor involved 
in angioblast
differentiation); 
chemokines c 
(pleiotropic role in 
angiogenesis); 
inhibitors of 
differentiation 
(Id1/Id3;helix-loop-
helix transcriptional 
repressors)

Other inhibitors 16 kDa-prolactin 
(inhibits bFGF/VEGF); 
canstatin (fragment of 
the a2-chain of collagen 
IV); maspin (serpin); 
troponin-I (inhibits 
actomyosin ATPase); 
VEGI (member of TNF 
family); restin (NC10 
domain of collagen 
XV);fragment of 
SPARC (inhibits 
endothelial binding and 
activity of VEGF); 
osteopontin fragment 
(contains RGD 
sequence)

                                      Modified from  Conway et al. 2001.
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Figure 1.3. The processes of angiogenesis

Angioenesis is initiated by the activation of ECs in response to angiogenesis stimuli. 

Permeability across the EC layer increases (1) and the degradation of ECM (2) enable 

EC to proliferate and migrate (3) into the interstitial space. Finally, stabilization of 

new vessels is accomplished by recruiting mural cells and generating ECM (4). 
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B2.2 Analysis of FAK function for angiogenesis in mice

Consistent with its role in vitro, several studies in mice have demonstrated the 

importance of FAK in the regulation of angiogenesis. Transgenic mice, which 

overexpressed FAK in ECs under the control of the Tie-2 promoter and enhancer, 

show increased angiogenesis in both the wound-induced angiogenesis model and the 

ischemia skeleton muscle model (Peng et al. 2004). Moreover, recent studies of EC-

specific FAK conditional knockout (CFKO) mice strongly suggest a role of FAK in 

angiogenesis during embryonic development (Shen et al. 2005; Braren et al. 2006). 

Analysis of EC-specific FAK conditional knockout (CFKO) embryos showed that 

FAK is required for the vascular development in late embryogenesis. Although the 

CFKO embryos developed normally in the formation of the vascular structures in

early embryogenesis, FAK deletion in ECs led to multiple defects in late 

embryogenesis including reduced blood vessel arborization in the embryos, yolk sac 

and placenta, EC death and associated hemorrhage, edema, developmental delay in 

the embryos, and late embryonic lethality (Shen et al. 2005). 

B2.3 The role of FAK in tumor angiogenesis

  Angiogenesis plays a critical role in cancer progression as well as in 

physiological neovascularization. Tumor angiogenesis is necessary for tumor growth 

and metastasis and it is thought to depend on the balance between proangiogenic 

factors, generally VEGF and bFGF, and angiogenesis inhibitors (Hanahan et al. 

1996). Tumor angiogenesis involves increased EC proliferation, migration, and tube 

formation into the tumor mass and these processes of angiogenesis require changes in 

cell adhesion, which are mediated by integrins, whose expression is increased during 

tumor angiogenesis (Silva et al. 2008). Several studies have demonstrated an 
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important role of integrins in tumor angiogeneis (Brooks 1996). The inhibition of 

v3 or v5 integrin effectively suppressed both tumor angiogenesis and tumor 

growth (Eliceiri et al. 1999), although genetic ablations of the genes encoding these 

integrins resulted in increased angiogenesis (Reynolds et al. 2002). In addition, the 

64 integrin promotes tumor angiogenesis by promoting nuclear translocation of P-

ERK and NF-B (Nikolopoulos et al. 2004). 

Several reports have shown increased levels of FAK expression in a wide 

range of human epithelial cancers. Levels of FAK expression correlate with the 

malignancy of tumors. In addition, FAK expression increased in the microvascular 

endothelial cells in astrocytic tumor and oral squamous cell carcinoma, implicating a

role of FAK in tumor angiogenesis (Kornberg 1998; Haskell et al. 2003). However, 

the specific mechanisms of FAK in the regulation of tumor angiogenesis are still 

undefined. A recent study in 4T1 breast carcinoma cells showed a novel role for FAK 

in tumor angiogensis. Src phosphorylation of FAK at Tyr-925 followed by Grb2 

adaptor protein binding to FAK and signaling to mitogen-activated protein kinase 

(MAPK) can enhance VEGF expression thereby promote tumor angiogenesis 

(Schlaepfer and Mitra 2004).

C. Centrosome

The centrosome is the microtubule organizing center (MTOC) that regulates 

microtubule-related functions, including cell migration, polarity, adhesion, 

maintenance of cell shape, intracellular transport and positioning of organelles as well 

as cell division (Doxsey 2001; Meraldi and Nigg 2002). It has been shown that the 

structure and number of centrosomes are tightly regulated throughout the cell cycle 

(Hinchcliffe et al. 1999; Doxsey 2001; Meraldi and Nigg 2002) and the centrosome is 
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increasingly being recognized for its significant contribution to cell cycle regulation 

(Hinchcliffe et al. 1999; Lange 2002). The centrosome regulates mitosis entry, 

anaphase onset, cytokinesis and G1/S transition, and monitors DNA damage 

(Schatten 2008).  

A single centrosome consists of two centrioles that are surrounded by 

pericentriolar material (PCM). Each centriole has a barrel-shaped structure, which 

contains nine sets of triplet microtubules (Doxsey 2001). Within the centrosome, two 

non-identical centrioles are arranged perpendicular to one another and called the 

mother and daughter centrioles. Cenrioles play a role in the assembly of PCM and in 

the anchoring of the microtubule. The PCM is a lattice-like structure and consists of 

many coiled-coil scaffold proteins that serve as docking sites for other PCM 

components. The PCM is the major site for nucleation of microtubules. It contains -

tubulin ring complexes (TuRCs) that act as a template for microtubule nucleation 

(Meraldi and Nigg 2002). 

   

C1. Centrosome cycle

The centrosome needs to be precisely duplicated in concert with the 

chromosomes in every cell cycle (Hinchcliffe et al. 1999). This centrosome 

duplication, or reproduction, can be divided into several steps integrated into cell 

cycle progression (fig.1.4). During mitosis, each centrosome contains a pair of 

centrioles and these centrioles are disassociated by the process of centriole 

disorientation, or centriole splitting, at the end of mitosis. Centriole duplication then 

starts during G1 and S phases through the nucleation of short daughter centrioles, or 

procentrioles, at the proximal wall of each parental centriole (Blagden and Glover 

2003). These procentrioles then elongate during S and G2 phases until they reach the 
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mature length. Elongation is complete when they obtain markers such as ninein and 

Cenexin/Odf2 (Lange and Gull 1995; Nakagawa et al. 2001). During G2 and M 

phases, centrosome maturation occurs. In order to nucleate a sufficient number of 

mitotic microtubules, centrosome maturation involves the expanding of PCM 

components and the recruitment of additional TuRCs (Meraldi and Nigg 2002). At 

prophase, the centrosome undergoes disjunction, which leads to the loss of cohesion 

between two parental centrioles that were provided by the interconnecting bridge of 

the centriole-associated protein, C-Nap1 (Blagden and Glover 2003). Through the 

activation of microtubule-dependent motor proteins including dynein and kinesin, 

centrosomes then separate from each other and migrate around the nucleus to develop 

two centrosomes at the opposite sides (Sharp et al. 2000).  

C2. Centrosome functions in cell division

The centrosome has been shown to play essential roles in the regulation of 

spindle bipolarity, spindle positioning and cytokinesis through its microtubule 

organizing capabilities during mitosis (Meraldi and Nigg 2002). Abnormality in 

centrosome numbers can disrupt bipolar spindle formation and chromosome 

segregation, suggesting the coordinated regulation of cell, centrosome and nuclear 

cycles. The presence of many regulatory molecules including cell cycle regulators on 

the centrosomes has demonstrated that the centrosome plays a role not only in the 

regulation of microtubule nucleation, but also in the coordination of centrosome 

duplication with cell cycle progression (Lange 2002). Some centrosome proteins are 

permanently associated with the centrosome core structure, including -tubulin, 

TuRCs, and centrin whereas several centrosome proteins are temporarily associated 

with the centrosome core structure and may use centrosomes as a docking station to 
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Figure 1.4. The centrosome cycle

In early G1, the centrosome contains mother and daughter centrioles. These contrioles 

move apart and lose their orthogonal orientation during late G1 or early S phase 

(Centriole disorientation/splitting). Each centriole (parent centriole) then nucleates

the new centiole (procentriole) during S phase (Centriole duplication). By mitosis, 

procentioles elongate until they reach their maximal length and centrosome 

maturation occurs. The two mature centrosomes are then separated through the action 

of microtubule-based motor proteins. Finally, each daughter cell acquires one 

centrosome after mitosis (Adapted from Nature Reviews Cancer, vol. 2 (11), pp.818) 

(Meraldi and Nigg 2002). 
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coordinate cell cycle specific functions such as NuMA (Nuclear Mitotic Apparatus) 

(Schatten 2008). However, much remains unclear about the coordinated regulation of 

the cell, centrosome and nuclear cycles and the functions of centrosomal proteins. 

C2.1 Microtubule nucleation and anchoring

Microtubule organization is regulated by the microtubule nucleation and 

microtubule anchoring activities at the centrosome. Microtubules are nucleated by 

ring-shaped multiprotein complexes containing tubulins, TuRCs (as mentioned in 

previous section C.) and the pericentrin has been demonstrated to recruit TuRCs at

centrosomes (Doxsey 2001). Following microtubule nucleation, microtubules are 

either released to the cytoplasm or recaptured and anchored to the centrosomes. The 

sub-distal appendages of the mother centrioles are known as a major site for 

microtubule anchoring (Azimzadeh and Bornens 2007). It was reported that ninein 

and centriolin are associated with the sub-distal appendages of the mother centrioles 

and are also play a role in anchoring (Mogensen et al. 2000; Doxsey 2001). In 

addition, the dynactin, dynein activator complex is implicated in playing a role in 

anchoring microtubules at the centrosome through the interaction with microtubule 

associated protein EB1 (Askham et al. 2002).

The levels of TuRCs at centrosomes are increased significantly before 

mitosis and at the same time many centrosomal proteins that are required for mitotic 

spindle formation, cell cycle progression, and centrosome duplication are recruited to 

centrosome. Centrosomal proteins, including pericentrin, PCM1 (pericentriolar 

satellites) and NuMA are known to be assembled to centrosomes from cytoplasmic 

pools for the centrosome function. Cytoplasmic dynein has been known to recruit 
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these proteins to centrosome through its interactions with many centrosomal proteins 

and microtubules (Zimmerman and Doxsey 2000; Doxsey 2001).

C2.2 Regulation of centrosome functions and its coordination with cell cycle

It has been shown that centrosome structure and function are regulated by 

several kinases during centrosome duplication in coordinated with chromosome cell 

cycle (Sankaran and Parvin 2006). Several important kinases that regulate centrosome 

functions will be discussed (Also see table 1-2 for additional kinases).

Cyclin-dependent kinase (cdk)

Cyclin and cdk have been demonstrated to play an important role in cell cycle 

regulation. Several studies revealed that cdk2 binding to cyclin E is required for 

initiating centrosome duplication as well as DNA replication (Sankaran and Parvin 

2006). In some cell types, centrosome duplication has been shown to be regulated by 

cdk2-cyclin A (Meraldi and Nigg 2002). The specific mechanisms that initiate the 

centrosome duplication through cdk2 and cyclinE/A are still undefined. However, it 

was reported that nucleophosmin (NPM/B23), a phosphoprotein of nucleolus, can 

associate with unduplicated centrosomes and serve as a substrate of cdk2-cyclin E in 

centrosome duplication (Tokuyama et al. 2001). NPM/B23 dissociates from 

centrosomes through its phosphorylation mediated by cdk2-cyclinE, which is required

for centrosomes to initiate duplication. In addition, recent studies suggest a role of 

centrosome in the G2 to M transition, showing cdk1- cyclinB as a key regulator in 

initiating mitosis (Schatten 2008). Although cyclinB is present throughout the 

cytoplasm, active cdk1-cyclinB is localized to centrosome during prophase, 

suggesting that centrosomes might serve as sites for integration of cell cycle 

regulators (Doxsey et al. 2005). 
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Aurora Kinases

Aurora kinases are a family of serine/threonine kinases that consists of three 

members, Aurora A, B, and C. Aurora A and B are essential for mitosis whereas 

Aurora C plays a role in the regulation of cilia and flagella (Ducat and Zheng 2004). 

Aurora A starts to localize at centrosomes in S phase and then, it is degraded in early 

G1. Aurora A has shown that it contributes to centrosome maturation, separation and 

bipolar spindle assembly. In contrast, Aurora B localized to chromosomes, 

centromeres and central spindles, playing a role in chromosomes segregation and 

cytokinesis (Dutertre et al. 2002). 

Aurora A regulates several centrosome proteins for centrosome maturation 

during mitosis. Aurora A is known to directly bind and phosphorylate TACC 

(transforming acidic-coiled-coil-containing) protein, which recruits ch-

TOG/XMAP215, a protein required for microtubule nucleation and stabilization, 

thereby contributing to centrosome maturation (Ducat and Zheng 2004). Several 

studies also showed that Aurora A regulates TuRCs recruitment by another 

centrosomal protein, centrosomin (CNN). The interaction of Aurora A and CNN is 

required for the localization of both proteins to the centrosome and it enhances the 

microtubule nucleation through increasing its recruitment of TuRCs at centrosome 

(Ducat and Zheng 2004). In addition, a serine-threonine kinase, LATS2 and NDEL 

are known to be phosphorylated by Aurora A and affect centrosome maturation (Barr 

and Gergely 2007). 

Aurora A also plays a role in the regulation of centrosome separation and 

bipolar spindle assembly. Both centrosome separation and the assembly of mitotic 

spindle requires a coordinated regulation of microtubule based motor proteins, 

including the minus-end directed motor dynein and the plus-end directed motor 
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kinesin Eg5. Although specific molecular mechanisms are unclear, Aurora A has 

been implicated in the regulation of separation and bipolar spindle assembly through 

the coordination of these motor proteins (Barr and Gergely 2007). Aurora A 

phosphorylates the kinesin-related protein Eg5, which is required for both centrosome 

separation and spindle assembly and stability. Recent studies also showed that Aurora 

A is activated by RanGTP, which plays a role in spindle assembly. Since it was 

reported that RanGTP regulates spindle assembly in part through the activation of 

Eg5 indirectly, Aurora A might mediate RanGTPase signaling by directly 

phosphorylating Eg5 (Ducat and Zheng 2004). 

In addition, Aurora A regulates cell cycle progression, entry into mitosis. 

During centrosome maturation, Aurora A contributes to centrosomal targeting of 

cdk1- cyclinB and it phosphorylates CDC25B, which in turn activates cdk1- cyclinB 

at the centrosome, thereby promoting entry into mitosis (Barr and Gergely 2007).

Polo-like kinase

Polo-like kinases (Plk 1-4) are a family of serine/threonine kinases, which 

have been recognized as key regulators of mitosis and cytokinesis. Plks are involved 

in the regulation of centrosome functions although its molecular mechanisms remain 

unclear. In mammalian cells, Plk1 is the best investigated Plk member so far, showing 

its roles in the centrosome maturation and separation, entry into mitosis, bipolar 

spindle formation and cytokinesis (Barr et al. 2004). Plk1 is known to be involved in 

the recruitment of TuRCs during centrosome maturation. It was reported that Plk1 

phosphorylates Nlp (ninein-like protein), which interacts with TuRCs during 

interphase, and contributes to the dissociation of Nlp from the centrosome at the onset 

of mitosis. This dissociation may allow the increased recruitment of scaffold proteins 

that are required for centrosome maturation (Barr et al. 2004). Plk1 also plays a role 
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in the regulation of mitotic entry, through its ability to activate cdk1-cyclin B, which 

functions as a key regulator of mitotic entry (Barr et al. 2004). In addition, it may 

contribute to centrosome separation and bipolar spindle formation presumably 

through the cdk1 mediated activation of Eg5 (Wang et al. 2008).

NIMA-related kinase (Nek2)

Nek2 is a serine/threonine kinase that localized to centrosomes. Its activity is 

cell cycle regulated with peak levels in S/G2 phase. Nek2 has been demonstrated to 

phosphorylate C-Nap1 and displace C-Nap1 from the centrioles, thereby contributing 

to the splitting of centrolies at the onset of mitosis. Nek2 also phosphorylates protein 

phosphatase 1 (PP1), which in turn de-phosphorylates both C-Nap1 and Nek2 (Mayor 

et al. 2002). Therefore, these studies suggest that Nek2, C-Nap1 and PP1 may exist in 

cells as a ternary complex with Nek2 and PP1 antagonistically regulate the 

phosphorylations of both Nek2 and C-Nap1 (Fry 2002) . 

C3. The potential function of FAK in centrosome functions

As previously described in section A3.2, FAK has been implicated in playing 

a role in cell cycle progression by the regulation of G1 to S transition. Furthermore, 

the levels of phosphoylations of FAK were reported to be changed during mitosis, 

suggesting a potential role for FAK in mitosis. A recent study showed that inhibition 

of integrin function disrupted centrosome functions, spindle assembly, and 

cytokinesis in mitotic cells (Reverte et al. 2006). Together with the report that 

described in section A3.1.3, showing a role of FAK Ser732 phosphorylation in the 

regulation of microtubule structure in neuronal cells (Xie et al. 2003), FAK may also 

possibly play a role in centrosome function regulating the microtubule structure, the 
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Table 1.2. Functions of mitotic kinase throughout the cell cycle

Kinase Known substrate(s) Role(s)

Cdk1 Cdc25 family, CAK, cyclin B1, 
Myt1, Wee1

Mitotic entrance, chromosome 
condensation, bipolar spindle 
assembly, nuclear envelope 
breakdown, APC/C regulation

Chk1/Chk2 ATM, ATR, Cdc25 family, 
Wee1, Plk3, p53, BRCA1

DNA damage checkpoint, mitotic 
entrance

Plk1 Cdc25 family, Cdk1, cyclin B1, 
p53, ATM/ATR, BRCA1, Chk1, 
Emi1

Mitotic entrance, centrosome 
maturation, bipolar spindle 
formation, APC/C regulation

Plk2 p53 Centriole duplication, spindle 
damage checkpoint

Plk3 ATM, Cdc25 family, Chk2, p53 DNA damage checkpoint, mitotic 
entrance

Plk4 Not known Centriole duplication APC/C 
regulation

Aurora A TPX2, p53 Spindle formation, centrosome 
separation

Aurora B INCENP, survivin, borealin Spindle assembly checkpoint, 
cytokinesis

Bub Family Mps1, Mad1, Mad2, CENPE, 
Cdc20

Spindle assembly checkpoint, 
APC/C regulation

NIMA 
Family

C-Nap1 Centrosome assembly, maturation 
and separation, mitotic entrance

                                                                          Adapted from Schmit and Ahmad 2007.   
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mitotic spindle, which plays an essential role during mitosis in non-neuronal cells. In 

this regard, it is 

interesting to note that several other focal adhesion proteins, including HEF1 

(Pugacheva and Golemis 2005), paxillin (Herreros et al. 2000), zyxin (Hirota et al. 

2000), and ILK (Fielding et al. 2008) have been shown to localize and function in 

centrosomes. Therefore, these studies suggest that FAK may contribute to centrosome 

function as integrin and other focal adhesion proteins did, providing a mechanistic 

link for the control of the cell attachment and cell division.

D. Project overview

FAK is a cytoplasmic tyrosine kinase that plays an important role in signal 

transduction by integrins and other cell surface receptors in a variety of cells 

including endothelial cells (ECs). Phosphorylation of FAK on Tyr 397 and its binding 

to Src has been shown as a critical step to activate FAK itself and its downstream 

signaling molecules that mediate cellular functions of FAK, including cell migration, 

cell cycle progression and cell survival (Section A). Several studies suggest the 

importance of both integrins and growth factor receptors in the regulation of key 

aspects of angiogenesis (Section B1). Since FAK mediates signaling from integrins 

and growth factor receptors, these studies strongly suggest a potential role of FAK in 

angiogenesis. Moreover, targeted disruption of FAK in mice has demonstrated the 

importance of FAK in vascular development. FAK gene knockout in mice leads to 

death at embryonic day 8.5 (E8.5) due to defects in the axial mesodermal tissues 

including cardiovascular system. Recent studies of EC-specific FAK conditional 

knockout mice revealed that FAK is indeed required for the vascular development 

during embryogenesis (Section B2). 
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To investigate the underlying mechanims of FAK in the regulation of 

angiogenesis and vasculogenesis in mutant embryos, primary ECs will be isolated 

from FAK floxed mice and infected by recombinant adenoviruse encoding Cre 

recombinase (Ad-Cre) to delete endogenous FAK. Using these FAK-deficient ECs, 

the role of FAK in the regulation of EC function will be determined (Chapter 2). In 

order to study the specific mechanisms of FAK in angiogenesis, recombinant 

adenovirues encoding FAK mutants that are incapable of interacting with various 

targets of FAK were genereated (Appendix). For the in vitro study, FAK-deficient 

ECs will be reinfected with Ad-FAK and/or Ad-FAK mutants to examine their ability 

to rescue the various phenotypes upon the deletion of endogeneous FAK. In this 

dissertation, the differential requirement of FAK kinase acivity in FN- and VEGF-

stimulated EC migration (Chapter 2) and the role of Serine 732 phosphorylation of 

FAK in EC proliferation and angiogenesis (Chapter 3) will be discussed. In addition, 

the role of FAK and FAK signaling pathways in vivo as a regulator of angiogenesis 

will be determined by infecting floxed FAK adult mice with recombinant 

adenoviruses using Marigel plug assay (Chapter 3).
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CHAPTER 2: 

ESSENTIAL FUNCTION OF FAK IN THE REGULATION OF VARIOUS 

ENDOTHELIAL CELL FUNCTIONS*

Data in this chapter is taken from a part of Journal of Cell Biology, 2005, vol. 169, pp. 

941-952, which was contributed by *Ann Y.-J. Park.



60

A. Abstract

Focal adhesion kinase (FAK) is a critical mediator of signal transduction by 

integrins and growth factor receptors in a variety of cells including endothelial cells 

(ECs). The analysis of EC-specific FAK knockout mice showed that FAK plays a role 

in vasculogenesis and angiogenesis (Shen et al. 2005; Braren et al. 2006). The

inactivation of FAK in ECs caused reduced blood vessel network in the embryos, 

yolk sac, and placenta, EC death and associated hemorrhage, edema, and 

developmental delay, and embryonic lethality in late embryogenesis (Shen et al. 

2005). To further investigate the mechanisms of the endothelial defects in mutant 

embryos, here we isolate primary ECs from homozygous floxed FAK mice and 

inactivate FAK by infecting recombinant adenoviruses encoding Cre recombinase. 

Consistent with the phenotypes in vivo, deletion of FAK in ECs showed reduced 

tubulogenesis, proliferation, and migration in vitro. Together, these results suggest 

that FAK is required for angiogenesis and vasculogenesis due to its essential function 

in the regulation of multiple EC activities. 

B. Introduction

Blood vessel formation is fundamental to embryonic development and 

organogenesis, as well as to the pathogenesis of many diseases including coronary 

heart disease, diabetes, retinopathies, and cancer (Dvorak 2003). Blood vessels are 

formed by two processes: vasculogenesis, whereby a primitive vascular network is 

established during embryogenesis from the pluripotent mesenchymal progenitors, and 

angiogenesis, in which the growth of new capillaries occurs from the preexisting 

vessels (Yancopoulos et al. 1998). Endothelial cells (ECs) play a pivotal role in both 

vasculogenesis and angiogenesis, and function as both transducers and effectors of 
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local environmental signals for vessel formation. Multiple cell surface receptors and 

their ligands have been shown to play important roles in the regulation of blood vessel 

formation. These include proangiogenic growth factors and their receptors on EC, 

multiple integrins, and their ECM ligands (Yancopoulos et al. 1998; Hynes 2002).

However, much less is known about the roles and mechanisms of the intracellular 

signaling pathways triggered by these receptors in the regulation of angiogenesis and 

vasculogenesis.

FAK is a cytoplasmic tyrosine kinase that plays a key role in integrin-

mediated signal transduction pathways (Parsons 2003; Schlaepfer and Mitra 2004). 

Integrin-mediated cell adhesion leads to FAK activation and autophosphorylation in a 

variety of cell types. Activated FAK associates with a number of Src homology 2 

domain–containing signaling molecules including Src family kinases, p85 subunit of 

PI3K, phospholipase C-, and Grb7 (Parsons 2003). FAK binding to Src family 

kinases contributes to the activation of both kinases, which leads to phosphorylation

of several other sites on FAK and a number of other substrates including paxillin 

(Burridge et al. 1992; Schaller and Parsons 1995), p130cas (Vuori et al. 1996; Ruest 

et al. 2001), and Shc (Schlaepfer et al. 1998). FAK and its interactions with these 

signaling molecules have been shown to trigger several downstream signaling 

pathways that regulate cell spreading and migration, cell survival, and cell cycle 

progression (Parsons 2003; Schlaepfer and Mitra 2004).

Consistent with its critical roles in vitro, FAK gene knockout in mice resulted 

in an embryonic lethal phenotype due to defects in the axial mesodermal tissues and 

cardiovascular system (Ilic et al. 1995). Both vasculogenesis and angiogenesis of the 

vasculature were impaired and neither a normal heart nor fully developed blood 

vessels were present in the FAK-null embryos. These results suggested a crucial role 
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of FAK in the development of the vasculature. However, the relatively early (E8.5) 

embryonic lethality prevented analysis of the role of FAK in the late stage of 

embryonic development including angiogenesis in vivo.

A potential role of FAK in angiogenesis has also been suggested by a number 

of other studies. During the mouse embryo development, FAK expression became 

increasingly restricted to the blood vessels (Polte et al. 1994). Increased EC migration 

into a wounded monolayer was correlated with increased tyrosine phosphorylation

and kinase activity of FAK (Romer et al. 1994). In addition, activation of VEGF 

receptor-2 by VEGF-A induced association of FAK with PI3-kinase, which is 

required for the stimulation of migration of porcine aortic ECs (Qi and Claesson-

Welsh 2001). Angiopoietin-1, another angiogenesis stimulator, also increased FAK 

phosphorylation during angiogenesis in vitro (Kim et al. 2000). Lastly, several 

members of the integrin family play important roles in the regulation of angiogenesis 

(Eliceiri and Cheresh 2001). A recent report also showed that formation of a signaling 

complex containing FAK and integrin v5 in an Src-dependent manner is essential 

for VEGF-stimulated angiogenesis (Eliceiri et al. 2002). Given FAK's role in 

mediating signaling by integrins and growth factor receptors, these results also 

strongly suggest a potential role for FAK in vasculogenesis and angiogenesis.

To investigate the physiological role of FAK in vascular development and 

angiogenesis in vivo, we previously generated a strain of mice with FAK gene 

flanked by two loxP sites (floxed FAK) (Shen et al. 2005). To specifically inactivate 

the FAK gene in ECs, the floxed FAK mice were intercrossed with transgenic mice 

expressing Cre recombinase under the control of the Tie2 endothelial-specific 

promoter. In contrast to the total FAK knockout, deletion of FAK in ECs did not 

affect early embryonic development. The majority of conditional FAK knockout 
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(CFKO) embryos until E12.5 were seen normally in the overall gross appearance and 

development. However, a decreased number of CFKO embryos than the expected 

25% Mendelian ratio was found at E13.5 and thereafter, suggesting that EC-specific

deletion of FAK leads to a late embryonic lethality. Analysis of the CFKO embryos 

showed multiple defects in late embryogenesis including reduced blood vessel 

network in the superficial vasculature, hemorrhage, edema, developmental delay in 

the embryos, and abnormalities of blood vessels in both yolk sac and placental 

labyrinth. Histologically, ECs and blood vessels in the mutant embryos present a 

disorganized, detached, and apoptotic appearance. Therefore, these results strongly 

suggest a role of FAK in angiogenesis and vascular development in vivo. In the 

present study, we identify the critical cellular functions of FAK in the regulation of 

ECs.    

C. Materials and methods

  1. Culture of ECs and adenovirus infection

ECs with homozygous FAK floxed alleles were isolated from E12.5 embryos 

using the magnetic bead (Dyanbead M-450; Dynal Corp.) purification with rat anti–

mouse PECAM-1 (BD Biosciences), as described previously (Cattelino, 2003; Peng, 

2004). The endothelial nature of the cells was confirmed by FACS and 

immunofluorescence microscopy with antibodies to endothelial markers, PECAM-1 

(1:100) and VE-Cadherin (1:50). Approximately 90% purity of ECs was routinely 

obtained in the preparations. Cells were cultured in high glucose DME with 20% FCS 

(Hyclone), EC growth supplement (5 µg/ml; Worthington), and heparin (100 µg/ml; 

Sigma-Aldrich) maintenance medium (Peng et al. 2004) on gelatin-coated tissue 

culture plates. MEFs with floxed FAK alleles were isolated from E12.5 FAKflox/flox
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embryos as described previously (Sage et al. 2000). The recombinant adenoviruses 

encoding Cre recombinase or lacZ control were purchased from Gene Transfer Vector 

Core (University of Iowa, Iowa City, IA). For most studies, 108 plaque-forming units 

were used for 10-cm dish. To increase efficiency, a second infection was performed 

after 9–12 h. The recombinant adenoviruses encoding FAK (Ad-FAK), its kinase-

defective mutant (Ad-KD), or GPF control (Ad-GFP) were generated using the 

Adeasy-1 system (Stratagene) according to manufacturer's instruction. For the rescue 

experiments, cells infected with Ad-Cre were reinfected with Ad-FAK, Ad-KD, or 

Ad-GFP control at 108 plaque-forming units 2 d after infection of Ad-Cre to delete 

endogenous FAK. No detectable cell toxicity was observed.

2. Western blotting

Antibodies used are anti-FAK (C20; Santa Cruz Biotechnology, Inc.), anti-

vinculin (Sigma-Aldrich), anti-Pyk2 (Zheng et al. 1998), anti-phospho-tyrosine397-

FAK and anti-phospho-tyrosine118-paxillin (Upstate Biotechnology), anti-phospho-

JNK (Cell Signaling Technology), or anti-phospho-Erk1/2 (New England Biolabs, 

Inc.).

3. Tube formation assay

ECs infected with Ad-LacZ or Ad-Cre were plated on a thin layer of Matrigel 

(BD Biosciences) at 104 cells/well of a 96-well plate in 10% FBS DME and allowed 

to form a tubular structure for 8 h to overnight. Cells were assessed on their ability to

form simple tube structures and their morphology. The samples were examined on a 

microscope (model IX70; Olympus) with UplanF1 x10/0.3 objective lens and 

photographed with a progressive 3CCD camera (Sony) and Image-Pro Plus ver. 
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3.0.00.00 at RT. The length and branch points were determined as described 

previously (Haskell et al. 2003).

4. TUNEL assay

ECs infected with Ad-LacZ or Ad-Cre were assessed for apoptosis by TUNEL 

assay using the In Situ Cell Death Detection Kit (Roche), according to the 

manufacturer's recommendations.

5. BrdU incorporation assay

2 d after infection, ECs were serum starved for 18 h to arrest the cells in G0. 

BrdU incorporation assay was performed as described previously (Zhao et al. 2003)

with the following modifications. In brief, cells were released from G0 by replating 

the cells in 10% FBS and 150 µM BrdU. After 48 h of growth, cells were fixed, 

treated with DNase I, and processed for double immunofluorescent staining with anti-

BrdU and anti-PECAM-1, as described below. The percentage of BrdU(+)/ECs 

(PECAM-1) was determined for 100 cells in multiple fields in each independent 

experiment.

6. Boyden chamber cell migration assay

Cell migration assays were performed using a Neuro Probe (Cabin John) 48-

well chemotaxis Boyden chamber as described previously (Cary et al. 1996) with the 

following modifications. 7.5 x 103 cells were added in each upper well, and the 

bottom wells contained either 10 ng/ml VEGF or 10 µg/ml fibronectin as 

chemoattractant, or DME alone as a control. They were then incubated for 4 h in a 
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37°C humidified CO2 incubator. At the end of the experiment, cells were fixed with 

methanol for 8 min and stained with modified Giemsa stain (Sigma-Aldrich).

7. Wound closure cell migration assay

Wound closure assays were performed essentially as described previously 

(Liang et al. 2007). Infected ECs or MEFs were plated (106 cells) on gelatin (for 

VEGF-stimulated cell migration) or FN-coated dishes (60 mm), allowed to adhere and 

spread for 4 h, and then used for assays.

8. Immunofluorescence staining

ECs infected with Ad-LacZ or Ad-Cre were processed for 

immunofluorescence staining as described previously (Cary et al. 1996). The primary

antibodies used were anti-phosphotyrosine (PY20; 1:100), anti-vinculin (1:50), anti-

BrdU (1:50), and anti-PECAM-1 (1:100). FITC-conjugated goat anti–rabbit IgG 

(1:150) and FITC-conjugated goat anti–mouse IgG (1:150) were used as the 

secondary antibodies. They were then mounted on Slowfade (Molecular Probes, Inc.)

and examined under a microscope (model BX41; Olympus) with UplanF1 x20/0.5 

objective lens at RT. The images were captured using a camera (model DP70; 

Olympus) with DP Controller ver. 1.2.1.108.
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D. Results

1. Deletion of FAK in isolated primary ECs results in reduced capillary 

formation and multiple cellular deficiencies in vitro

To further understand the mechanisms of the endothelial defects in CFKO 

embryos (Shen et al. 2005), we isolated primary ECs from homozygous floxed FAK 

mice. The isolated floxed FAK ECs were infected by recombinant adenoviruses 

encoding Cre recombinase (Ad-Cre). As shown in Fig. 2.1A, Ad-Cre infection of the 

floxed FAK ECs led to a dose-dependent decrease in the expression of FAK protein 

concomitant with excision of exon 3 of FAK gene. As expected, infection of the cells 

with a control recombinant adenovirus encoding lacZ (Ad-lacZ) did not affect FAK 

protein expression or the flox allele of the FAK gene. These ECs are designated as 

CFKO and control ECs, respectively.

The effect of FAK inactivation in the isolated ECs was assessed by examining 

their ability to change morphology and form capillaries when cultured on Matrigel, 

which is a process mimicking sprouting and tube formation during angiogenesis in 

vivo. Fig. 2.1B shows the significantly reduced formation of tubules of CFKO ECs 

compared with the control ECs. Quantitation of multiple experiments indicated that 

both the length of the tubules and the number of branch points were reduced in the 

CFKO ECs (Fig. 2.1C and D). Interestingly, consistent with EC necrosis and 

apoptosis observed in the CFKO embryos (Shen et al. 2005), we noted that some of 

CFKO ECs, but few control ECs, appeared to be apoptotic under this condition.

Indeed, the CFKO ECs showed reduced survival in serum-free condition when 

compared with the control ECs (unpublished data). TUNEL assays were then 

performed to test a possible role of FAK on EC apoptosis directly. Fig. 2.2A shows 

that inactivation of FAK resulted in increased apoptosis of the primary ECs. These 
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results suggested that increased apoptosis and decreased survival of ECs upon FAK 

KO may be responsible for the defective vascular development and associated 

hemorrhage and edema, and possibly also reduced angiogenesis in the CFKO 

embryos.

We also investigated the effects of FAK inactivation on the proliferation and 

migration of the primary ECs to determine the contribution of their possible changes 

to the in vivo vascular defects of CFKO embryos. Fig. 2.2B shows a decreased cell 

cycle progression of CFKO ECs upon serum stimulation in comparison to control ECs, 

as measured by the BrdU incorporation as described in Materials and methods. 

Analysis of cell migration using the Boyden chamber assays showed reduced 

migration of CFKO ECs in response to VEGF stimulation compared with control ECs. 

Surprisingly, however, little difference was observed between the CFKO and control 

ECs in their migration in response to FN (Fig. 2.2C). The important role of FAK in 

FN-stimulated migration is well described for many cell types, including ECs in 

previous studies (Parsons 2003; Schlaepfer and Mitra 2004). Therefore, we further

investigated migration of CFKO ECs using the potentially more physiologically 

relevant wound closure assays. Fig. 2.2D shows that deletion of FAK reduced EC 

migration in response to both FN and VEGF. As both EC migration and proliferation 

are critical for angiogenesis, these data suggested that reduced proliferation and 

migration of ECs upon FAK deletion could both contribute to the defective 

angiogenesis in the CFKO embryos in vivo.
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Figure 2.1. Defective tubulogenesis of the isolated FAK–/– primary ECs

(A) ECs isolated from homozygous floxed FAK mice (flox/flox) were infected with 

increasing amount of recombinant adenoviruses encoding Cre (Ad-Cre) or a control 

insert (Ad-lacZ), as indicated. Cell lysates were analyzed by Western blotting with 

anti-FAK or anti-vinculin (top two panels). Genomic DNA was analyzed by PCR 

(bottom two panels). (B–D) Primary ECs from floxed FAK mice and infected with 

Ad-Cre or Ad-lacZ were cultured on Matrigel as described in Materials and methods. 

Images of representative fields are shown in B. The length of the tubules (C) and 

branch points (D) were quantified from three independent experiments and shown as 

the relative ratio of the value ± standard error. *, P = 0.023 and **, P = 0.017 in 

comparison to value from Ad-lacZ–induced cells.
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Figure 2.2. Increased apoptosis, and reduced proliferation and migration of the 

isolated FAK–/– primary ECs

Primary ECs from floxed FAK mice and infected with Ad-lacZ or Ad-Cre were 

measured for apoptosis using TUNEL assay (A), proliferation by BrdU incorporation 

assay (B), and migration in response to VEGF or FN by Boyden chamber assay (C) 

and wound closure assay (D), as described in Materials and methods. The mean ±

standard error from at least three experiments is shown. *, P = 0.014 and **, P < 

0.001 in comparison to value from Ad-lacZ–infected cells.
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2. Differential requirement of FAK kinase activity in VEGF-stimulated EC 

migration

To gain more insights into the role of FAK in EC migration in response to 

VEGF and FN as well as its potential differential function in various cell types, we 

prepared recombinant adenoviruses encoding FAK (Ad-FAK) and its kinase-defective 

mutant (Ad-KD) and examined their ability to rescue cell migration deficiency upon 

deletion of endogenous FAK. The isolated floxed FAK ECs were infected 

sequentially by Ad-Cre and Ad-FAK, Ad-KD, or a control recombinant adenovirus 

Ad-GFP, as described in Materials and methods. As shown in Fig. 2.3A, infection 

with Ad-FAK or Ad-KD, but not Ad-GFP, led to expression of the exogenous FAK in 

the CFKO ECs. Analysis of the exogenous FAK with anti-PY397 antibody (specific 

for the major FAK autophosphorylation site Y397) showed that FAK is 

phosphorylated at this site, whereas the KD mutant is not. As expected, reexpression 

of FAK rescued their deficiency in VEGF- and FN-stimulated migration (Fig. 2.3B 

and C). Interestingly, however, reexpression of FAK KD mutant rescued CFKO EC 

migration in response to FN (Fig. 2.3C), but not VEGF (Fig. 2.3B). We also isolated 

mouse embryonic fibroblasts (MEFs) from the floxed FAK mice and examined their 

migration upon deletion of FAK via Ad-Cre infection (CFKO MEF). In contrast to 

results from ECs, deletion of FAK only affected MEF migration in response to FN, 

but not to VEGF (Fig. 2.3D). As in the case of EC migration on FN, both wild-type 

and KD mutant FAK rescued CFKO MEF migration on FN (Fig. 2.3E). Together, 

these results suggest that FAK may play differential roles in migration of ECs and 

MEFs and that FAK activity is required for VEGF-stimulated EC migration, whereas 

it is dispensable for FN-stimulated migration of either ECs or MEFs.
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Figure 2.3. Differential requirement of FAK kinase activity for VEGF-

stimulated EC migration

 (A–C) Primary ECs from floxed FAK mice were infected with Ad-Cre to delete 

endogenous FAK followed by infection of Ad-FAK, Ad-KD, or the control Ad-GFP 

as indicated. Aliquots of lysates were analyzed by Western blotting using anti-FAK, 

anti-pY397, or anti-vinculin, as indicated (A). The infected cells were subjected to 

wound closure assay in response to VEGF (B) or FN (C), as described in Materials 

and methods. The mean ± standard error from at least three experiments is shown. *, 

P < 0.005; **, P = 0.448; and ***, P = 0.012 in comparison to value from Ad-GFP–

infected cells. (D and E) MEFs were isolated from floxed FAK mice, and then 

infected with Ad-lacZ or Ad-Cre (D) or Ad-Cre followed by Ad-FAK, Ad-KD, or the 

control Ad-GFP (E), as indicated. The infected cells were then subjected to wound 

closure assays in response to VEGF (D as indicated) or FN (D as indicated and E). 

The mean ± standard error from at least three experiments is shown. *, P < 0.01 and 

**, P = 0.17 in comparison to value from (D) Ad-lacZ– or (E) Ad-GFP–infected cells.
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3. Reduced paxillin phosphorylation and decreased MAP kinase signaling in 

FAK-deficient ECs

Multiple targets and signaling pathways have been implicated in mediating 

regulation of cellular functions by FAK (Parsons 2003; Schlaepfer and Mitra 2004). 

The activation states of several FAK targets were examined. As shown in Fig. 2.4A, 

FAK expression is abolished in the CFKO ECs compared with the control ECs. In 

contrast to FAK-null cells from the total FAK KO embryos (Sieg et al. 1998), the 

FAK-related tyrosine kinase Pyk2 was not up-regulated in the absence of FAK in ECs. 

Furthermore, the major FAK target paxillin showed a significant decrease in 

phosphorylation at Tyr 118 in CFKO ECs that is critical for paxillin regulation of cell 

spreading and migration (Petit et al. 2000). Phosphorylations of JNK (C-Jun NH2-

terminal kinase) and Erk1/2 were also decreased in the CFKO ECs. Consistent with

the absence of FAK and reduced paxillin phosphorylation, we found a marked 

reduction of tyrosine phosphorylation staining in focal contacts with a 

phosphotyrosine-specific antibody (PY20) (Fig. 2.4B). Staining of focal contacts with 

anti-vinculin showed an increased number of focal contacts in CFKO ECs than 

control ECs, as observed previously in the fibroblasts from total KO embryos (Ilic et 

al. 1995), suggesting that reduced phosphotyrosine staining is not due to a reduction 

in focal contacts in the CFKO ECs, per se. Together, these data suggest that 

deficiencies in paxillin phosphorylation and JNK and Erk signaling may be

responsible for the cellular defects in the isolated primary CFKO ECs in vitro and 

defective angiogenesis and vascular development of CFKO embryos in vivo.



77

Figure 2.4. Effects of FAK deletion on downstream targets in the isolated 

primary ECs (A) Cell lysates of primary ECs from floxed FAK mice and infected 

with Ad-lacZ or Ad-Cre were analyzed by Western blotting with various antibodies 

as indicated. (B) Immunofluorescent staining of the above ECs (see A) with anti-

phosphotyrosine antibody PY20 (top panels) or anti-vinculin (bottom panels). Focal 

adhesions are marked by arrows.
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4. EC-specific FAK transgene expression cannot rescue total FAK KO 

embryonic lethality

Together with the previous studies showing early embryonic lethality of FAK 

total KO embryos (Ilic et al. 1995), our results from the analysis of EC-specific FAK 

KO embryos suggested that FAK is required for both early and late embryogenesis

perhaps in different cells/tissues (Shen et al. 2005). To further test this possibility, we 

examined whether restoration of FAK expression in ECs would rescue the early 

embryonic lethal phenotype of the total KO embryos. We have previously generated 

FAK transgenic mice with EC-specific expression of the FAK transgene under the 

control of Tie2 promoter/enhancer (Peng et al. 2004). These mice were crossed with 

FAK /+ heterozygous mice to introduce Tie2-FAK transgene into the FAK-null 

background, which were then intercrossed for the generation of possibly rescued 

progeny with FAK / ; Tie2-FAK genotype. Of the 84 pups analyzed, we did not 

obtain any offspring with the rescued genotype, although the Mendelian ratio of this

genotype for the crossing is 12.5%. These results suggest that introduction of EC-

specific FAK gene could not rescue the early embryonic lethal phenotype of the total 

FAK KO embryos. They provide further support for the role of FAK in both early 

embryogenesis (perhaps for mesoderm cells) and vascular development in late

embryogenesis.
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E. Discussion

As a critical mediator of signaling by integrins and growth factor receptors, 

FAK has been implicated in playing an important role in the regulation and function 

of ECs by a number of studies in vitro (Romer et al. 1994; Kim et al. 2000; Qi and 

Claesson-Welsh 2001). Furthermore, vascular defects were observed in FAK total 

KO embryos and ECs from these embryos or cultured embryoid bodies (Ilic et al. 

1995; Ilic et al. 2003). However, the early embryonic lethality of the total KO mice 

precluded in vivo analysis of potential roles of FAK in angiogenesis, which is an 

integral part of vascular development in late embryogenesis and adult organisms. 

Using a conditional KO approach that specifically inactivates FAK gene in ECs, we 

found that FAK expression is required for the vascular development in late 

embryogenesis (Shen et al. 2005). Although they developed normally, including 

formation of the vascular structures in early embryogenesis, the CFKO embryos 

showed multiple defects in late embryogenesis including defective angiogenesis in 

the embryos, yolk sac, and placenta, impaired vasculature and associated hemorrhage, 

edema, and developmental delay, and late embryonic lethal phenotype. Furthermore, 

here we showed that EC-specific expression of a FAK transgene could not rescue the 

early embryonic lethality of the total KO embryos. These studies demonstrate that 

FAK is required for angiogenesis and vascular development and integrity in late 

embryogenesis, and together with the previous total KO data (Ilic et al. 1995), they 

suggest that FAK plays a role in at least two different stages of embryonic 

development in multiple cell/tissue types.

A role for FAK expression in ECs for angiogenesis and vascular development 

and integrity in late embryogenesis is suggested by the observation of multiple 

vascular defects in the CFKO embryos (Shen et al. 2005). Consistent with other
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studies of FAK using HUVEC cells (Romer et al. 1994; Gilmore and Romer 1996; 

Kim et al. 2000; Qi and Claesson-Welsh 2001; Ilic et al. 2003), we found that 

deletion of FAK in primary ECs led to increased apoptosis, reduced proliferation and 

migration, and reduced ability to form capillaries on Matrigel. As embryonic 

angiogenesis involves both EC proliferation and migration, the above cellular defects 

could contribute to the reduced angiogenesis in CFKO embryos in vivo. Interestingly, 

consistent with inactivation of FAK, tyrosine phosphorylation of paxillin at Tyr118 is 

significantly reduced in the CFKO ECs. Paxillin is a focal adhesion protein and major 

substrate for the FAK/Src complex, and has been shown to play important roles in the 

regulation of cell adhesion and migration (Turner 1998; Petit et al. 2000; Schaller 

2004). We also observed decreases of JNK and Erk1/2 activities in CFKO ECs, 

which are consistent with previous studies showing regulation of cell cycle 

progression and migration by FAK via both of these pathways (Parsons 2003; 

Schlaepfer and Mitra 2004). Thus, reduced paxillin phosphorylation, JNK and/or Erk 

signaling could contribute to the reduced cell migration and proliferation in the 

primary CFKO ECs and defective angiogenesis in the CFKO embryos. 

Our analysis of FAK and its kinase-defective mutant in their ability to rescue 

migration deficiency of primary ECs and MEFs suggested a potential kinase-

independent function for FAK. We found that although FAK kinase activity is 

required for VEGF-stimulated EC migration, it is dispensable for FN-stimulated 

migration of either ECs or MEFs. The ability of KD mutant to rescue migration of EC 

and MEF on FN is consistent with our previous observation that it promoted 

migration of CHO cells as effectively as the wild-type FAK (Cary et al. 1996). This 

activity was attributed to trans-phosphorylation of the KD mutant by endogenous 

FAK in CHO cells, allowing it to function in a similar manner as wild-type and 
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phosphorylated FAK. In the case of ECs and MEFs here, however, endogenous FAK 

was deleted from these cells and the KD mutant in ECs was not phosphorylated on 

Y397. Therefore, these results suggest that promotion of migration of both EC and 

MEF on FN by FAK is independent of its kinase activity. They reveal potentially 

differential roles of FAK in mediating cell migration on ECM such as FN and growth 

factors like VEGF. Future studies will be needed to understand the potential kinase-

independent function of FAK as well as the mechanisms underlying a differential role 

of FAK in EC migration on FN and VEGF. 

In conclusion, these in vitro studies together with the analysis of EC-specific 

FAK KO mice demonstrate that FAK is required for angiogenesis and vascular 

development and integrity in late embryogenesis due to its important role in the 

regulation of EC functions. 
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A. Abstract

Focal adhesion kinase (FAK) is the major cytoplasmic tyrosine kinase in focal 

adhesions and a critical mediator of integrin signaling in a variety of cells, including 

endothelial cells (ECs). Here we describe a new function for FAK in the regulation of 

centrosome functions in a S732 phosphorylation-dependent manner during mitosis. 

Deletion of FAK in primary ECs causes increases in centrosome numbers, multipolar 

and disorganized spindles, and unaligned chromosomes during mitosis. Re-expression 

of wild-type FAK, but not the S732A mutant, rescued these mitotic defects, 

suggesting a role for S732 phosphorylation in the regulation of centrosomal functions. 

Consistent with this possibility, S732-phosphorylated FAK was found to co-localize 

in centrosomes in mitotic cells. FAK also associated with cytoplasmic dynein in a 

S732-phosphorylation dependent manner. Further analysis in FAK-null primary ECs 

showed that S732A mutant could rescue EC migration, but not proliferation or 

tubulogenesis in vitro. Lastly, we showed that deletion of FAK in ECs reduced tumor 

angiogenesis in vivo, which could be restored by re-expression of wild-type FAK, but 

not S732A mutant. Together, these studies demonstrated a novel role for S732 

phosphorylation of FAK in the regulation of centrosome function during mitosis, 

which may contribute to EC proliferation and angiogenesis.

B. Introduction

Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase that is a major 

mediator of signal transduction by integrins and also participates in signaling by other 

cell surface receptors in a variety of cells, including endothelial cells (ECs) (Schaller 

2001; Parsons 2003; Schlaepfer and Mitra 2004; Siesser and Hanks 2006). In most 

adherent cells, FAK is activated upon integrin-mediated cell adhesion to extracellular 
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matrix proteins through disruption of an intramolecular inhibitory interaction between 

its amino-terminal FERM domain and the kinase domain (Cooper et al. 2003; Lietha 

et al. 2007). Once it is activated, FAK undergoes autophosphorylation at Y397, which 

creates a binding site for several SH2 domain-containing proteins including Src 

family kinases. The cascade of phosphorylation events and protein-protein 

interactions which are mediated by the FAK-Src complex has been shown to trigger 

several signaling pathways in the regulation of a variety of cellular functions in 

different cells (Parsons 2003; Schlaepfer and Mitra 2004).

Besides these well-characterized tyrosine phosphorylations, recent studies 

have identified FAK phosphorylation on several serine residues (Ma et al. 2001; 

Grigera et al. 2005). In the post-mitotic neurons, S732 has been shown to be 

phosphorylated by Cdk5, which plays an important role in microtubule organization 

and proper nuclear movement during neuronal migration (Xie et al. 2003; Xie and 

Tsai 2004). Indeed, S732-phosphorylated FAK is enriched in centrosome-associated 

microtubule fork that abuts the nucleus and a perinuclear region around the 

centrosome, consistent with its regulation of these functions in neurons. S732 of FAK 

has also been shown to be phosphorylated by Rho-dependent Kinase (ROCK) in ECs, 

which has been suggested to play a role in VEGF-stimulated EC migration (Le Boeuf 

et al. 2006). In addition to S732, the S722, S843 and S910 in the carboxy-terminal 

domain of FAK have also been found to be phosphorylated and regulate cell 

spreading and migration in recent studies (Hunger-Glaser et al. 2004; Bianchi et al. 

2005; Grigera et al. 2005; Jacamo et al. 2007; Jiang et al. 2007; Villa-Moruzzi 2007). 

Despite these findings, our understanding of serine phosphorylation of FAK is very 

limited in contrast to the wealth of information on the regulation and function of 

tyrosine phosphorylation of FAK. In particular, it is not clear whether and how serine 
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phosphorylation is involved in the regulation of cell cycle progression and 

proliferation by FAK. 

Focal adhesion localization of FAK in adherent cells is essential for its 

functions in the regulation of cell migration as well as proliferation (Parsons 2003; 

Schlaepfer and Mitra 2004). During mitosis, however, focal adhesion complexes 

dissociate as cells round up and detach from ECM. Interestingly, serine 

phosphorylation of FAK is increased during mitosis and this has been suggested to 

cause FAK dissociation from p130Cas and Src to inactivate signaling at focal 

adhesions (Yamakita et al. 1999), although the relevant sites of phosphorylation were 

not mapped in this study. It is not known whether FAK is localized to any specific 

sub-cellular structures and/or plays a role in mitosis and whether these are regulated 

by serine phosphorylation of FAK in mitotic cells. 

Consistent with its critical importance in the regulation of various cellular 

functions, deletion of FAK gene leads to early embryonic lethality at embryonic day 

8.5 (E8.5) due to defects in the axial mesodermal tissues including the cardiovascular 

system with incomplete development of both the blood vessels and the heart (Ilic et al. 

1995). Using a conditional mouse KO approach, we and others have recently shown a 

role of FAK in vascular angiogenesis through its regulation of multiple functions of 

ECs including their survival, proliferation, migration, and tubulogenesis (Shen et al. 

2005; Braren et al. 2006; Weis et al. 2008). The availability of the floxed FAK mice 

and ECs isolated from these mice also allowed us to investigate FAK signaling 

pathways involved in the regulation of EC functions and angiogenesis in vivo by a 

reconstitution strategy, where endogenous FAK is deleted via recombinant 

adenoviruses encoding Cre followed by re-expression of FAK or its various mutants 

in ECs both in vitro and in vivo. In this study, we present data showing a novel 
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function of FAK in the regulation of centrosomal functions in a S732 

phosphorylation-dependent manner in ECs during mitosis, which plays a role in the 

regulation of EC proliferation and tubulogenesis in vitro and tumor angiogenesis in 

vivo.

C. Materials and methods

1. Recombinant adenoviruses

Recombinant adenoviruses encoding Cre recombinase or lacZ control were 

purchased from Gene Transfer Vector Core (University of Iowa, Iowa City, IA). The 

recombinant adenoviruses encoding FAK (Ad-FAK), its kinase-defective (Ad-KD), 

Y397F (Ad-Y397F), P712/715A (Ad-P712/715A) and S732A (Ad-S732A) mutants, 

or GPF control (Ad-GFP) were generated using the Adeasy-1 system (Stratagene) 

according to manufacturer's instruction.

2. Isolation and infection of ECs

ECs were isolated from 4- to 6-week-old homozygous FAK floxed mice using 

the magnetic bead (Dyanbead M-450; Dynal Corp.) purification protocol with rat 

anti-mouse PECAM-1 (BD Biosciences), as described previously (Cattelino et al. 

2003; Peng et al. 2004; Shen et al. 2005). EC population was approximately 90% pure 

as determined by anti-PECAM-1 staining. Isolated ECs were infected at an m.o.i of 

100 with Ad-lacZ or Ad-Cre. To increase efficiency, a second infection was 

performed after 9-12 h and incubated for 48 h. For the rescue experiments, cells 

infected with Ad-Cre were re-infected with recombinant adenoviruses encoding FAK, 

its mutants, or Ad-GFP 2d after infection of Ad-Cre at an m.o.i of 100. No detectable 

cell toxicity was observed.
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3. Cell culture and transfections

Isolated ECs were cultured on a 0.1% gelatine (Sigma-Aldrich)- coated dish 

in high glucose DMEM supplemented with 20% FCS (Hyclone), Endothelial mitogen 

(Biomedical Technologies), and heparin (100 g/ml; Sigma-Aldrich) (Peng et al. 

2004; Shen et al. 2005). 293T, HeLa, MEF and Cos-7 cells were maintained in 

DMEM supplemented with 10% fetal bovine serum. 293T cells were transfected with 

Cdk5, Rock1, or control shRNA (University of Michigan Comprehensive Cancer 

Center shRNA Core Facility) for 3 days by use of Lipofectamine following the 

manufacturer’s instructions.  

4. Flow cytometry Analysis

ECs were fixed with 70% ice cold ethanol at 4oC for more than 2h. After 

fixation, cells were stained with 50 g/ml propidium iodide (Sigma-Aldrich) with 100 

g/ml RNase A in PBS containing 0.1% Triton X-100. Flow cytometry analysis was 

performed by a Becton Dickinson BD-LSR II Flow Cytometer.

5. Immunofluorescence staining

Cells were processed for immunofluorescence staining as described previously 

(Cary, 1996). The primary antibodies used were anti-pS732 FAK (BioSource; 1:100), 

anti--tubulin (Zymed laboratories, Inc.; 1:50), anti--tubulin (Sigma-Aldrich; 1:100), 

anti-dynein intermediate chain (Sigma-Aldrich; 1:100) and anti-BrdU (Sigma-

Aldrich; 1:50). FITC-conjugated goat anti-rabbit IgG (Jackson ImmunoResearch 

Laboratory; 1:200) and Texas red-conjugated goat anti-mouse IgG (Jackson 

ImmunoResearch Laboratory; 1:200) were used as the secondary antibodies. Cells

were examined by a microscope (model BX41; Olympus) with UplanF1 x40/0.75 
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objective lens at RT. The images were captured using a camera (model DP70; 

Olympus) with DP Controller ver. 1.2.1.108.

6. Immunoprecipitation and Western blotting

Immunoprecipiataion and Western blotting analysis was performed as 

described previously (Cary, 1996). Antibodies used are anti-FAK (C20; Santa Cruz 

Biotechnology, Inc.), anti-vinculin (Sigma-Aldrich), anti-actin (Santa Cruz 

Biotechnology, Inc.), anti-myc (9E10; Santa Cruz Biotechnology, Inc.), anti-dynein 

intermediate chain (clone 70.1; Sigma-Aldrich), anti-cdk5 (C8; Santa Cruz 

Biotechnology, Inc.), and anti-Rock1 (H-85; Santa Cruz Biotechnology, Inc.).

7. BrdU incorporation assay

ECs were serum-starved for 18 h to arrest the cells in G0. BrdU incorporation 

assay was performed as described previously (Shen et al. 2005). Three independent 

experiments were performed and the percentage of cells positive for BrdU was 

quantified using a microscope (model BX41; Olympus) with UplanF1 x10/0.3 

objective lens at RT. Approximately 100 cells were examined for each condition in 

each independent experiment.

8. Wound closure cell migration assay

ECs were plated on gelatin-coated dishes (60 mm) and stimulated with 50 

ng/ml VEGF, and then subjected to assays. Wound closure assays were performed as 

described previously (Shen et al. 2005; Liang et al. 2007).
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9. Tube formation assay

ECs were plated on a layer of Matrigel (Growh Factor Reduced, BD 

Biosciences) and allowed to form a tubular structure as described previously (Shen, 

2005). Tubulogenesis in each condition was examined on a microscope (model IX70; 

Olympus) with UplanF1 x10/0.3 objective lens and photographed with a progressive 

3CCD camera (Sony) at RT. The length and branch points were determined using 

Image-Pro Plus ver. 3.0.00.00 as described previously (Haskell et al. 2003).

10. Matrigel plug assays

Matrigel (Growth Factor Reduced, BD Biosciences) was supplemented with 

5x108 pfu/mL recombinant adenoviruses and 5x105 B16F10 melanoma cells in a final 

volume of 0.5 mL. Matrigel mixture was then injected s.c. into the flank region of 

eight-week-old floxed FAK mice. Mice were sacrificed 10 d after injection and 

Matrigel weights were determined. Vascularization in Matrigel plugs was visualized 

by immunohistological examination using anti-PECAM-1 antibody (M-20, 1:200 

dilution; Santa Cruz Biotechnology, Inc.) as described previously (Shen, 2005). They 

were then examined under a microscope (model BX41; Olympus) with UplanF1 

x10/0.3 objective lens at RT, and the images were captured using a camera (model 

DP70; Olympus) with DP Controller ver. 1.2.1.108. Five representative images were 

obtained from each Matrigel plug, and vessel density was quantified using Image-Pro 

Plus ver. 3.0.00.00.
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D. Results

1. Deletion of FAK causes spindle and centrosomal abnormalities in mitotic ECs

Previous studies of EC-specific FAK knockout mice and isolated ECs showed 

a role of FAK in angiogenesis and vascular development due to its essential role in 

the regulation of EC functions, including proliferation, migration, cell survival, and 

tubulogenesis (Shen et al. 2005). To further investigate mechanisms of FAK in the 

regulation of EC proliferation, we performed flow cytometric analyses in order to get 

more detailed information on the cell cycle profile in FAK-/- ECs. Primary ECs were 

isolated from floxed FAK mice and were infected by a recombinant adenovirus 

encoding Cre recombinase (Ad-Cre) to delete endogenous FAK or by a control 

recombinant adenovirus encoding lacZ  to produce FAK-/- ECs or control FAK+/+ ECs, 

respectively, as described previously (Shen et al. 2005). Analysis of these cells by 

flow cytometry showed an altered cell cycle profile for FAK-/- ECs compared to the 

control FAK+/+ ECs (Fig. 3.1A). Consistent with our previous results showing 

increased apoptosis in FAK-/- ECs, a significant increase in SubG1 population was 

found for these cells compared to FAK+/+ ECs (from about 10% to 22%). We also 

found a significantly increased G2/M population in FAK-/- ECs compared to FAK+/+

ECs (from about 20% to 32%), suggesting a possibly increased mitotic arrest upon 

FAK deletion in ECs. 

To investigate the mechanisms of mitotic abnormalities in FAK-/- ECs, we 

examined the effect of FAK deletion on mitotic spindle organization and 

chromosome alignment and segregation in these cells. As shown in Fig. 3.1B, normal 

mitotic spindles and chromosome alignment were detected in FAK+/+ECs during 

mitosis by staining for -tubulin and DNA, respectively (a, f, k). In contrast, the 

analysis of FAK-/- ECs revealed various defects including multiple and randomly 
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positioned spindles (b-d), loosely congregated chromosomes (g-i), and unaligned 

chromosomes (i, n, arrow heads). In some cells, anaphase proceeded with an 

unattached chromosome (j, o, arrows). Because centrosomes are the primary 

microtubule organization center and play an essential role in mitotic spindle 

organization and chromosome segregation, we next evaluated possible defects in 

centrosome organizations in FAK-/- ECs by immunostaining for -tubulin, a 

centrosome marker. Fig. 3.1C shows that whereas FAK+/+ ECs have a typical staining 

of two centrosomes on the opposite sides of the condensed chromosomes during 

mitosis (a, f, k), deletion of FAK in ECs (FAK-/- ECs) caused various centrosomal 

defects in the number, size, and position of centrosomes (b-e), which are associated 

with abnormal chromosome condensation in metaphase (g-i) and segregation in 

anaphase (j). Quantitation of approximately 200 mitotic cells for each group showed 

centrosomal defects in about 60% of FAK-/- ECs compared to less than 10% of the 

control FAK+/+ ECs (Fig. 3.2B). Together, these results suggest that FAK plays a role 

in the regulation of mitotic spindle assembly, chromosome alignment and centrosome 

integrity during mitosis and that the deregulation of these functions caused by the 

deletion of FAK may be responsible for mitotic arrest in FAK-/- ECs.
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Figure 3.1. Mitotic defects of primary FAK-/- ECs

Isolated ECs from homozygous floxed FAK mice were infected with Ad-Cre (FAK-/-

ECs) or the control Ad-lacZ (FAK+/+ECs) and were analyzed after 3 days. (A) Cells 

were stained with propidium iodide for DNA content of cells by flow cytometry. Cell 

cycle profiles of FAK+/+ECs and FAK-/-ECs are shown. The experiments were 

performed three times in duplicate and the mean + standard error is shown as 

indicated (n=6 for each condition). Aliquots of lysates were analyzed by western 

blotting using anti-FAK and anti-vinculin (right panel). (B, C) FAK+/+ECs (a, f, k) 

and FAK-/-ECs (other panels) were immunostained with anti--tubulin antibody (B, 

a-e, red) for mitotic spindles, with anti--tubulin antibody (C, a-e, red) for 

centrosomes, or stained with Hoechst (B and C, f-j, blue) for chromosomes, as 

indicated. Approximately 200 mitotic cells in three independent experiments were 

analyzed each and representative metaphase (a-d, f-i, k-n) and anaphase cells (e, j, o) 

are shown. Unaligned chromosomes in metaphase and anaphase are indicated by 

arrow heads and arrows, respectively (i, n, j, o).
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2.  Ser732 phosphorylation of FAK is required for its regulation of centrosome 

function during mitosis in primary ECs 

To investigate the mechanisms of FAK regulation of centrosome function 

during mitosis, we generated recombinant adenoviruses encoding several FAK 

mutants and analyzed their ability to rescue the mitotic defects in ECs upon deletion 

of endogenous FAK. Primary ECs isolated from floxed FAK mice were infected by 

Ad-Cre to delete endogenous FAK followed by infection with recombinant 

adenoviruses encoding FAK (Ad-FAK), kinase-defective (Ad-KD), Y397 to F (Ad-

Y397F), P712 and P715 to A (Ad-P712/715A) or S732 to A (Ad-S732A) mutant. As 

expected, infection of Ad-Cre, but not Ad-LacZ, resulted in the deletion of FAK (see 

Fig. 3.1A right panel). Re-infection of FAK-/- ECs with recombinant adenoviruses 

encoding FAK or its mutants led to expression of exogenous FAK and mutants to 

comparable levels in these cells (Fig. 3.2A). As expected, restoration of FAK 

expression in FAK-/- ECs significantly rescued the centrosomal abnormalities caused 

by deletion of endogenous FAK (Fig. 3.2B). 

Consistent with previous studies on the critical roles of Y397 in FAK 

downstream signaling pathways initiated by autophosphorylation of this site, re-

expression of either FAK Y397F or KD mutants did not rescue the centrosomal 

defects (Fig. 3.2B). In contrast to well characterized tyrosine phosphorylation of FAK, 

the role of serine phosphorylation of FAK is relatively less investigated although 

several serine residues of FAK have also been shown to be phosphorylated (Ma et al. 

2001; Grigera et al. 2005). In particular, phosphorylation of S732 in FAK by Cdk5 

has been shown to play a role in nuclear translocation during neuronal migration

through regulation of microtubule networks (Xie et al. 2003). As centrosome-

associated microtubule structure, mitotic spindle, plays a crucial role during mitosis 
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in non-neuronal cells, we examined the potential role of S732 phosphorylation in 

FAK regulation of centrosome function by analysis of FAK S732A mutant in the 

rescue experiments. We found that re-expression of S732A mutant did not rescue 

centrosomal abnormalities in FAK-/- ECs (Fig. 3.2B). Analysis of another FAK 

mutant, P712/715A which is deficient in binding to p130Cas, rescued centrosomal 

defects in FAK-/- ECs to a comparable level as the wild-type FAK (Fig. 3.2B), 

suggesting that FAK signaling through p130Cas is not involved in the regulation of 

centrosome function. Together, these mutational analyses suggest a novel role of 

S732 phosphorylation in mediating FAK regulation of centrosome functions during 

mitosis.

3. Localization of S732-phosphorylated FAK in centrosomes during mitosis

FAK is localized in focal adhesions in adherent cells, which are disassembled 

during mitosis. Previous studies have shown an increase of serine phosphorylation of 

FAK concomitant with cell rounding up and disassembly of focal adhesions in mitotic 

cells (Yamakita et al. 1999).  It is not clear, however, whether serine phosphorylated 

FAK is evenly distributed in the cytoplasm or is localized to particular sub-cellular 

structures in mitotic cells. In light of the above observation suggesting a potential role 

of S732 phosphorylation of FAK in the integrity of centrosomes, we examined the 

possibility of a centrosomal localization of S732-phosphorylated FAK in mitotic ECs. 

Primary FAK+/+ ECs at various phases of mitosis were subjected to double label 

immunofluorescent staining with antibodies against phospho-S732 of FAK (PS732) 

and the centrosomal marker -tubulin. As shown in Fig. 3.3A, S732-phosphorylated 

FAK was detected in the centrosomes throughout mitosis. The lack of staining in 

FAK-/- ECs by anti-PS732 confirmed the specificity of the antibody against FAK 
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Figure 3.2. Analysis of various FAK mutants in the regulation of centrosome 

function during mitosis

Primary ECs isolated from floxed FAK mice were infected with Ad-Cre to delete 

endogenous FAK followed by infection of Ad-FAK, Ad-Y397F, Ad-KD, Ad-

P712/715A, Ad-S732A FAK, or the control Ad-GFP. (A) Lysates were analyzed 

directly by western blotting with anti-FAK, or anti-actin as indicated. (B) Infected 

cells were stained with Hoechst to reveal chromosomes and immunostained with anti-

-tubulin antibody for centrosomes. A total of 200 mitotic cells were counted for each 

group in three independent experiments. The mean + standard error is shown for 

mitotic cells with abnormal centrosomes in each group. *P <0.01, **P = 0.107, ***P

= 0.074 in comparison to value from Ad-LacZ and Ad-GFP infected control cells.
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Figure 3.3. S732-phosphorylated FAK is localized to the centrosomes

(A, B) Isolated ECs from floxed FAK mice were infected with Ad-lacZ (FAK+/+ECs, 

panel A) or Ad-Cre (FAK-/-ECs, panel B) and then co-stained with S732-phospho 

specific FAK antibody (green) and -tubulin antibody (red), as indicated. 

Representative images show the co-localization of S732-phosphorylated FAK with -

tubulin at centrosome in the different phases during mitosis in FAK+/+ECs (A), but 

not in FAK-/-ECs (B and data not shown). Chromosomes were revealed by Hoechst 

staining (blue). (C) MEF (top panels) and Cos-7 (bottom panels) cells were processed 

for immunofluorescence staining with S732-phospho specific FAK antibody (green) 

and -tubulin antibody (red) as described in A. (D) HeLa cells were co-stained with 

S732-phospho specific FAK antibody (green) and -tubulin antibody (red), as 

indicated. Representative metaphase cells were shown.
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PS732 (Fig. 3.3B). Furthermore, localization of S732- phosphorylated FAK in the 

centrosomes was also detected in several other cell types, including murine 

embryonic fibroblasts, COS7 cells (Fig. 3.3C) and HeLa cells (Fig. 3.3D). These 

results suggest that FAK may regulate centrosome functions through acting on some

components of centrosomes directly in a S732 phosphorylation-dependent manner 

during mitosis.

4. S732-phosphorylation dependent association of FAK with cytoplasmic dynein 

To explore potential FAK targets, we examined various proteins localized in 

centrosomes for their potential association with FAK in a S732-phosphorylation 

dependent manner. FAK-/- ECs were infected with Ad-FAK, Ad-S732A or Ad-GFP 

as a control and lysates from these cells were immunoprecipitated by anti-Myc for the 

Myc-tagged FAK and S732A mutant and their associated proteins. Analysis of the 

immunoprecipitates by anti - dynein showed that it was associated with wild-type 

FAK, but not with the S732A mutant (Fig. 3.4A). Previous studies suggested that 

S732 of FAK can be phosphorylated by Cdk5 and ROCK1 in different cells (Xie et al. 

2003; Le Boeuf et al. 2006). We therefore examined the effect of down-regulation of 

Cdk5 and ROCK1 on the association of FAK with cytoplasmic dynein. Lysates were 

prepared from 293T cells that had been transfected with vectors encoding Cdk5 

shRNA, ROCK1 shRNA, or the vector alone control. Fig. 3.4B shows that interaction 

of FAK with cytoplasmic dynein was reduced by knockdown of expression of Cdk5, 

but not ROCK1, when compared with cells treated with control shRNA. Lastly, 

colocalization of S732 phosphorylated FAK with dynein at centrosomes was also 

confirmed by double-label immunofluorescent staining of mitotic cells (Fig. 3.4C). 

Together, these results suggest that Cdk5 - dependent S732 phosphorylation of FAK 
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Figure 3.4. FAK association with cytoplasmic dynein in a S732-phosphorylation 

dependent manner

(A) Floxed FAK ECs were infected with Ad-Cre to delete endogenous FAK followed 

by infection with Ad-FAK, Ad-S732A FAK, or a control Ad-GFP, as indicated. Cell 

lysates were immunoprecipitated with anti-myc. The precipitates or aliquots of cell 

lysates (WCL) were analyzed by Western blotting with anti-dynein and anti-FAK.

The intensity of dynein bands in the precipitates were quantified by scanning 

densitometry and normalized to the intensity of the band in Ad-GFP infected 

precipitates (bottom panel). Three independent experiments were performed and the 

mean + standard error is shown. *P <0.05, **P = 0.187 in comparison to value from 

Ad-GFP infected FAK-/-ECs.  (B) 293T cells were transfected with cdk5 shRNA, 

Rock1 shRNA, or control shRNA as indicated. Lysates were immunoprecipitated by 

anti-FAK followed by Western blotting with anti-dynein. WCL were also analyzed by 

Western blotting as indicated. The intensity of dynein bands in the precipitates were 

quantified and normalized to the intensity of the control band (bottom panel). Three 

independent experiments were performed and the mean + standard error is shown as 

indicated. *P <0.05, **P = 0.205 in comparison to value from control shRNA 

transfected precipitates. (C) MEFs in metaphase were co-stained with S732-phospho 

specific FAK antibody (green) and -dynein antibody (red), as indicated. 
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and its binding to cytoplasmic dynein may play a role in the regulation of centrosome 

function during mitosis. 

5. S732 phosphorylation of FAK is required for cell proliferation and 

tubulogenesis in primary ECs

Our previous studies showed that inactivation of FAK in primary ECs caused 

increased apoptosis, reduced proliferation and migration, and reduced capillary 

formation on Matrigel, suggesting an essential function of FAK in the regulation of 

multiple EC activities (Shen et al. 2005). The inability of S732A mutant to rescue the 

centrosomal defects in FAK-/- ECs raised the possibility that this mutant will not be 

able to rescue the deficiency in proliferation of these cells, consistent with a role for 

S732 phosphorylation of FAK in the regulation of EC proliferation. To test such a 

possibility, FAK-/- ECs were infected with Ad-FAK or Ad-S732A, and the re-

expression of FAK and its mutant to comparable levels were verified in these cells 

(Fig. 3.5A). The cells were then subjected to analysis for proliferation by BrdU 

incorporation assays. As expected, re-expression of FAK in FAK-/- ECs rescued their 

deficiency in proliferation compared to those cells infected by Ad-GFP control virus. 

In contrast, however, re-expression of S732A mutant did not restore the reduced 

proliferation of FAK -/- ECs (Fig. 3.5B), suggesting a role of S732 phosphorylation for 

FAK regulation of cell cycle progression. 

We next examined whether S732 phosphorylation is required for FAK 

stimulation of EC migration and/or tubulogenesis by analysis of S732A mutant in 

FAK -/- ECs. As shown in Fig. 3.5C, re-expression of S732A mutant in FAK -/- ECs 

restored migration of these cells to a comparable level as wild-type FAK, suggesting 

that Ser732 phosphorylation of FAK is not necessary for regulation of EC migration 
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Figure 3.5. Requirement of S732 phosphorylation of FAK in EC proliferation 

and tubulogenesis 

Isolated ECs from floxed FAK mice were infected sequentially with Ad-Cre and Ad-

FAK, Ad-S732A, or the control Ad-GFP. Cell lysates were analyzed by western 

blotting using anti-FAK, or anti-vinculin antibody (A). Proliferation rates of the 

infected ECs were determined by BrdU incorporation assay (B). Cell migration in 

response to VEGF was measured by wound closure assay (C). The infected cells were 

cultured on Matrigel and the lengths of the tubules were quantified (D). Each bar 

represents the mean ± standard error of at least three independent experiments in 

duplicate (n=6~8). *P <0.05, **P = 0.458, ***P = 0.332 in comparison to value from 

Ad-GFP infected cells.
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by FAK. In contrast, re-expression of S732A in FAK -/- ECs was not able to rescue 

tubulogenesis deficiency of FAK-/- ECs (Fig. 3.5D). Together, these results 

demonstrate that S732-phosphorylation dependent functions of centrosomal-localized 

FAK in mitotic cells is important for FAK regulation of proliferation and 

tubulogenesis of primary ECs.

6. Role of FAK S732 phosphorylation in tumor angiogenesis 

Previous studies using EC-specific FAK knockout mice indicated a role for 

FAK in embryonic angiogenesis in vivo (Shen et al. 2005; Braren et al. 2006). 

However, the embryonic lethality of these mice prevented their usage for analysis of a 

role for FAK in angiogenesis in adult mice. A mouse model with inducible EC-

specific deletion of FAK in adult mice was generated very recently and used to 

demonstrate a role for FAK and its related kinase Pyk2 in angiogenesis using 

inhibitors for FAK and Pyk2 (Weis et al. 2008). Because of the compensatory up-

regulation of Pyk2 in these mice, this inducible EC-specific FAK-knockout mouse 

model could not be used to assess the specific role of FAK and its mutants. Therefore, 

in order to examine a potential role of S732 phosphorylation of FAK in angiogenesis 

in vivo, we developed a tumor angiogenesis assay using floxed FAK mice, in which 

Ad-Cre is included in Matrigel to induce Cre-mediated deletion of endogenous FAK 

in ECs migrating into the Matrigel plugs in response to angiogenic stimulation of 

Matrigel containing tumor cells. Floxed FAK mice were subcutaneously injected with 

Matrigels containing Ad-Cre or Ad-lacZ as a control as well as B16F10 melanoma 

cells to induce angiogenesis, as described in the Materials and Methods. Ten days 

later, the Matrigel plugs containing tumors were dissected and analyzed. As shown in 

Fig. 3.6A, Matrigel plugs from mice with Ad-Cre infection were smaller and 
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appeared less red when compared to those from mice infected by the Ad-LacZ control. 

Quantification of multiple samples showed a significant reduction in weight (Fig. 

3.6B) as well as size (data not shown) for the plugs containing Ad-Cre than those 

with Ad-LacZ control. The plugs were also sectioned and subjected to 

immunohistochemical analysis using anti-PECAM-1 antibody to detect blood vessels. 

Consistent with the reduced tumor growth, we found a significantly reduced density 

of blood vessels in the Matrigel plugs containing Ad-Cre than those with Ad-LacZ 

control (Fig. 3.6C). Together, these results suggest that Ad-Cre mediated deletion of 

the floxed FAK in ECs significantly reduced tumor angiogenesis and growth in vivo.

We then assessed the role of S732 phosphorylation of FAK in tumor 

angiogenesis by re-expression of FAK or S732A mutant in FAK-/- ECs using this 

floxed FAK mouse model. Ad-FAK or Ad-S732A was included in Matrigel 

containing Ad-Cre as well as B16F10 melanoma cells injected into floxed FAK mice. 

As shown in Fig. 3.6, re-expression of wild-type FAK restored tumor growth as well 

as angiogenesis in Matrigel, as expected. In contrast, re-expression of S732A mutant 

did not rescue the decreased tumor growth or angiogenesis caused by deletion of 

endogenous FAK in ECs. Therefore, consistent with results from in vitro analysis, 

S732 phosphorylation of FAK is required for angiogenesis in vivo due to its role in 

the regulation of centrosome functions and proliferation in ECs. 
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Figure 3.6. Role of FAK S732 phosphorylation in tumor angiogenesis 

Ad-lacZ and Ad-Cre were added to Matrigel with B16F10 melanoma cells and 

injected s.c. into floxed FAK mice. For rescue experiments, Ad-FAK, S732A FAK, 

or GFP was added to Ad-Cre containing Matrigel plug. After 10 days, Matrigel plugs 

were removed and evaluated by gross examination (A). Matrigel plug weights were 

determined (B) and sections were prepared for histochemical analysis. Quantitation of 

the vascularization in the Matrigel plug was performed by immunohistological 

examination using anti-PECAM-1 antibody (C). PECAM-1-positive vessels were 

evaluated in five different 10x fields in each Matrigel plug. The mean + standard 

error from three independent experiments is shown (n=8 in each group). *P <0.05, 

**P = 0.466, ***P =0.239 in comparison to value from Ad-lacZ infected cells.



114



115

E. Discussion

As the principal cytoplasmic tyrosine kinase located in focal adhesions, FAK 

is well established as a major mediator of signaling cascades triggered by clustering 

of integrins in these sites in the regulation of various cellular functions, including G1-

S transition in cell cycle (Parsons 2003; Schlaepfer and Mitra 2004). In this report, we 

present data suggesting a novel function for FAK in the regulation of centrosome 

integrity, spindle pole formation, and chromosome segregation during mitosis in 

primary ECs. Besides being required for G1-S transition, cell adhesion to ECM was 

known to control other phases of cell cycle such as cytokinesis (Orly and Sato 1979; 

Ben-Ze'ev and Raz 1981; Winklbauer 1986). Indeed, a recent study showed that 

inhibition of integrin function disrupted centrosome functions, spindle assembly, and 

cytokinesis in mitotic cells (Reverte et al. 2006). Thus, FAK may play a role in both 

focal adhesions and centrosomes during different phases of cell cycle progression. In 

this regard, it is interesting to note that several other focal adhesion proteins, 

including HEF1 (Pugacheva and Golemis 2005), paxillin (Herreros et al. 2000), zyxin 

(Hirota et al. 2000), and Integrin-linked kinase (Fielding et al. 2008) have been shown 

to localize and function in centrosomes. Given the known connections with FAK for 

at least some of these molecules (Schaller 2001; Parsons 2003; Schlaepfer and Mitra 

2004; Siesser and Hanks 2006), FAK may work together with these other focal 

adhesion proteins to provide a mechanistic link for the control of mitotic events in the 

nucleus by integrins localized on the plasma membrane. 

Centrosomes are composed of two paired centrioles surrounded by 

pericentriolar material (PCM), which comprised hundreds of structural and signaling 

proteins. They undergo structural modifications during cell cycle, including 

duplication, maturation, and separation, which are tightly coordinated with the 
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chromosome duplication and segregation (Meraldi and Nigg 2002). The abnormal 

centrosomal phenotype in FAK-/- ECs could result from deregulation of centrosomal 

duplication, incomplete centrosome separation, or loss of cohesion in mitotic 

centrosomes, resulting in premature splitting of mother and daughter centrioles. 

Centrosome number and splitting are regulated by protein kinases, including 

Cdk2/cyclinE, the Polo-like kinases, Aurora-A, and Nek2 (Hinchcliffe et al. 1999; 

Nigg 2001; Faragher and Fry 2003; Marumoto et al. 2005). Two focal adhesion-

associated proteins, HEF1 and ILK, may regulate centrosomal functions through 

Aurora-A, as previous studies showed that HEF1 associates with and activates 

Aurora-A  and that ILK regulates spindle organization by modulating Aurora 

A/TACC3/ch-TOG interaction (Pugacheva and Golemis 2005; Fielding et al. 2008). 

However, we found that deletion of FAK in primary ECs did not affect Aurora-A 

activation (data not shown), suggesting that FAK may use a different mechanism 

from HEF1 and/or ILK in its regulation of centrosome functions. 

Our results showed that centrosomal-localized FAK is phosphorylated on 

S732 and that S732 phosphorylation is required for FAK to rescue the centrosomal 

defects in FAK-/- ECs, suggesting that FAK phosphorylation at S732 is crucial for its 

distinct functions in G2/M phase of mitosis. Interestingly, S732 of FAK was 

identified as a physiological substrate for Cdk5, and its phosphorylation was shown to 

promote organization of microtubule structures in the post-mitotic neurons (Xie et al. 

2003; Xie and Tsai 2004). Centrosomes are the major microtubule-organizing center 

in mammalian cells, which regulate spindle bipolarity, spindle positioning, and 

cytokinesis (Meraldi and Nigg 2002). Therefore, S732-phosphorylated FAK may 

regulate these mitotic events through its functions in the microtubule organization in 

the proliferating primary ECs in a similar manner as its regulation of nuclear 
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translocation in the post-mitotic neurons. Indeed, our preliminary studies showed that 

treatment of ECs with roscovitine, a specific Cdk5 inhibitor, abolished S732 

phosphorylation of FAK and induced similar centrosomal abnormality as that in 

FAK-/- ECs (data not shown).Although the potential target proteins localized in 

centrosomes that mediate FAK regulation of centrosomal functions are not clarified, 

we have found an interaction of FAK with cytoplasmic dynein in a S732-

phosphorylation dependent manner. Interestingly, Nudel, a substrate for Cdk5, and its 

binding partner Lis1, form a complex with cytoplasmic dynein localized around the 

centrosomes and in the growth cones of neuronal cells (Niethammer et al. 2000). 

Perturbation of cytoplasmic dynein or Lis1 has been shown to cause various defects 

in chromosome alignment, spindle organization and centrosome separation (Busson et 

al. 1998; Faulkner et al. 2000; Yang et al. 2007). In addition, Nudel participates with 

Lis1 in the regulation of cytoplasmic dynein function via Cdk5 phosphorylation 

(Niethammer et al. 2000). Together with our findings of disruption of FAK 

interaction with cytoplasmic dynein upon down-regulation of Cdk5, these results 

raised the possibility that Cdk5-induced FAK phosphorylation at S732 could 

stimulate activation of cytoplasmic dynein and participate in cytoplasmic dynein 

function. Future studies will be necessary to determine how interaction of FAK with 

cytoplasmic dynein regulates cytoplasmic dynein function in mitosis and also to 

identify potentially other target proteins of FAK in centrosomes that mediate 

centrosome functions of FAK during mitosis. 

Consistent with a role of S732-phosphorylated FAK in centrosome functions, 

S732 phosphorylation of FAK was found to be required for its promotion of cell cycle 

progression and tubulogenesis of primary EC in vitro, as well as tumor angiogenesis 

in vivo. However, we found that S732 phosphorylation is dispensable for FAK 
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stimulation of migration in the primary ECs, although Le Boeuf et al. reported 

recently that S732 can be phosphorylated by ROCK and that S732A mutant was 

unable to stimulate migration of HUVEC and MEF as wild-type FAK (Le Boeuf et al. 

2006). It is not clear whether the use of different cells is responsible for the 

discrepancies. Nevertheless, our data suggest that a defective cell cycle progression, 

caused by deregulation of centrosome functions, rather than migration, contributes to 

the inability of S732A mutant to promote EC tubulogenesis in vitro and tumor 

angiogenesis in vivo.
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Conclusion and Prospects

FAK has been demonstrated as a major mediator of signal transduction by 

integrins and other cell surface receptors in a variety of cells. Phosphorylation of 

FAK and its interactions with other signaling molecules has been shown to trigger 

several signaling pathways that regulate cellular functions, including cell migration, 

cell cycle progression and cell survival (Parsons 2003; Schlaepfer and Mitra 2004). 

Phosphorylation of FAK on Tyr 397 and its binding to Src has been shown as a 

critical step to activate FAK itself and its downstream signaling molecules. Despite 

the well characterized tyrosine phosphorylations of FAK in the regulation of its 

cellular functions, the function and the specific mechanism of FAK mediated by 

serine phosphorylations is relatively undefined.

Several studies suggest the importance of both integrins and growth factor 

receptors in the regulation of angiogenesis and several cellular functions, including 

cell migration, proliferation and survival, are involved in the process of angiogenesis 

(Chapter1 in section B). Since FAK mediates signaling from integrins and growth 

factors and regulates those cellular functions, FAK has been implicated to play a role 

in angiogenesis. Indeed, several studies in vitro and in vivo have shown the important 

role of FAK in angiogenesis, in addition to the early observation in FAK knockout 

mice, which suggested a potential role of FAK in angiogenesis during embryogenesis 

(Ilic et al. 1995). Recent studies of EC-specific FAK conditional knockout mice 

revealed that FAK is required for the vascular development in angiogenesis (Shen et 

al. 2005; Braren et al. 2006). Further studies with FAK deficient ECs showed 

essential function of FAK in the regulation of EC activities, including EC migration, 

proliferation and survival may contribute to the regulation of angiogenesis (Chapter 

2). However, the specific mechanisms that link FAK to the regulation of angiogenesis 
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are still unclear. Given the multiple targets of FAK for different cellular functions, it

will be necessary to further clarify the roles of various FAK downstream signaling 

pathways in the regulation of various EC functions in vitro and angiogenesis and 

vascular development in vivo. A potentially powerful approach is to use various FAK 

mutants defective in interaction with specific targets to rescue the EC and embryonic 

phenotypes of CFKO. 

The embryonic lethality of EC-specific FAK knockout mice prevented the 

analysis of a role for FAK in angiogenesis in adult mice (Shen et al. 2005; Braren et 

al. 2006). In addition, a recent study with inducible EC-specific FAK knockout mice 

showed that such an approach could not be used to address the role of specific FAK 

downstream pathways in angiogenesis because of the compensatory upregulation of 

Pyk2 in these mice (Weis et al. 2008). Therefore, we developed a tumor angiogenesis 

assay using floxed FAK adult mice in which Ad-Cre is included in Matrigel to induce 

Cre-mediated deletion of FAK in ECs migrating into the Matrigel plugs in response 

to angiogenic stimulation of Matrigel-containing tumor cells (Chapter 3). We found 

that Ad-Cre mediated deletion of the floxed FAK in ECs significantly reduced tumor 

angiogenesis in vivo. To further investigate the mechanisms of FAK in the regulation 

of EC functions, we performed rescue experiments with several FAK mutants in FAK 

deficient ECs. In this dissertation, we revealed the role of Ser732 phosphorylation of 

FAK in the regulation of centrosome function during mitosis, which may contribute 

to EC proliferation and angiogenesis in vivo (Chapter 3). Future studies will be 

necessary to test more FAK mutants that are incapable of interacting with various 

targets of FAK, which contribute to cell proliferation, migration and survival. In 

addition, a recent study from our lab showed that FAK may enhance the ability of 

cancer cell to degrade ECM through its interaction and phosphorylation of endophilin 
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A2 leading to MT1-MMP accumulation on the cell surface (Wu et al. 2005). Since 

the ECM degradation plays an essential role in the process of angiogenesis as 

described in Chapter 1 (Section B1.1), it will be interesting to determine the role of 

FAK signaling through endophilin A2 in angiogenesis.  

FAK is well established as a key mediator of signaling pathways triggered by 

integrins in focal adhesions in the regulation of several cellular functions, including 

G1 to S transition during cell cycle. In this dissertation, we reveal a novel localization 

and function of FAK in centrosomes during mitosis (Chapter 3). Consistent with our 

results, a recent study showed that the inhibition of integrin disrupted centrosome 

functions, spindle assembly and cytokinesis in mitotic cells (Reverte et al. 2006). In 

addition, several other focal adhesion proteins, including HEF1 (Pugacheva and 

Golemis 2005), paxillin (Herreros et al. 2000), zyxin (Hirota et al. 2000), and ILK 

(Fielding et al. 2008) have been shown to function in centrosomes. Therefore, these 

studies suggest that focal adhesion proteins, including FAK may provide a 

mechanistic link for the control of events in the nucleus by integrins localized on the 

plasma membrane.  

Centrosome has been shown to play an essential role in the regulation of 

bipolar spindle formation through its microtubule organizing capability during 

mitosis and the structural modifications of centrosomes during centrosome cycle are 

tightly coordinated with the chromosome and cell cycle (Chapter1 in section C2). Our 

results in Chapter 3 showed that FAK plays a role in cell cycle progression through 

the regulation of centrosome integrity and functions, including bipolar spindle 

formation and chromosome segregation during mitosis, besides its known role in G1 

to S phases transition during cell cycle. The abnormal centrosomal phenotype in 

FAK-/- ECs could result from the disruption of centrosome function during 
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centrosome cycle, including deregulation of centrosomal duplication, incomplete 

centrosome separation, or loss of cohesion in mitotic centrosomes, resulting in 

premature splitting of mother and daughter centrioles. Although we found the 

interaction of FAK with cytoplasmic dynein, which has been shown to regulate 

centrosome separation as described in Chapter1 (Section C1), it will be necessary to 

study how interaction of FAK with cytoplasmic dynein regulates the cytoplasmic 

dynein function in centrosome during mitosis. In addition, further study should be 

carried out to identify other potential target proteins localized in centrosomes that 

mediate FAK regulation of centosome functions. Although much remains unclear 

about the functions of centrosomal proteins, several important kinases are well 

established as key regulators for centrosome functions, including cdk2-cyclinE/A, 

cdk1-cyclinB, Aurora-A, Polo-like kinase and Nek2 (Chapter 1 in section C2.2). 

Therefore, it will be interesting to examine whether FAK mediate centrosome 

functions through these kinases during mitosis.     
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The inactivation of FAK in ECs using a conditional KO approach showed that 

FAK expression is required for the vascular development in embryogenesis (Shen et 

al. 2005; Braren et al. 2006). Consistent with the phenotypes in vivo, deletion of FAK 

in ECs showed reduced tubulogenesis, proliferation, and migration in vitro (Chapter 

2). Given the multiple targets of FAK in the regulation of different cellular functions, 

it will be necessary to further investigate the roles of FAK downstream signaling 

pathways in the regulation of EC functions. A powerful approach will be to use 

various FAK mutants defective in interaction with specific FAK targets to rescue the 

EC and embryonic phenotypes of CFKO. 

Recombinant adenoviruses are replication-defective adenoviral vectors that 

have proven useful for gene transfer. Since high-titer preparations of adenoviruses 

can be prepared and used to get a high level of transgene expression in a broad 

spectrum of host cells and tissues, including non-dividing cells, recombinant 

adenoviruses are  appealing vectors for gene transfer both in vitro and in vivo (Luo et 

al. 2007). The most commonly used adenoviral vectors are derived from human 

adenovirus serotypes 2 and 5. The viral genome consists of 36-kb double-stranded 

linear DNA and the DNA length greater than 38 kb cannot be efficiently packaged 

into competent viral particles. Viral transcription units are conventionally referred to 

as early (E1, E2, E3, and E4), delayed early (proteins IX and Iva2) or late genes (L1-

L5). The early gene products are involved in viral gene transcription, DNA 

replication, host immune suppression and inhibition of host cell apoptosis, whereas 

the late gene products are required for viron assembly (Luo et al. 2007). The 

complexity of the viral transcription units causes problems for recombinant 

manipulation, which therefore is usually limited to specific regions not essential for 

viral production, including E1, E2A, E3 and E4. First-generation adenoviral vectors 
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replaced E1 genes with the desired transgene and these vectors could be propagated 

in cell lines that express E1 gene products, such as HEK-293 cells (Graham et al. 

1977). However, these vectors had relatively limited packaging capacity (Bett et al. 

1993). The second-generation adenoviral vectors accommodated larger transgenes, 

reduced the cytotoxic effects in host cells and reduced the ability to elicit host 

immune response. In the extreme case, the whole adenoviral genome (except inverted 

terminal repeat sequences and the packaging signal sequences) was replaced by 

exogenous sequences and the gene products required for viral replication and 

packaging were provided in trans. These adenoviral vectors accommodated up to 

35kb foreign DNA, showing significantly reduced host immune responses (Luo et al. 

2007).  The most widely used method to generate recombinant adenoviruses involves 

homologous recombination in mammalian cells or in microorganisms. This method 

needs a two-vector system, ‘shuttle’ and ‘backbone’ plasmids (Graham and Prevec 

1995). The shuttle vector usually contains the adenoviral genome, in which E1 and 

other non-essential genes are replaced with a transgene. This shuttle vector is 

subsequently recombined into the ‘backbone’ vector which provides adenovirus 

genome except genes essential for virus propagation in naturally occurring cells. 

Through recombination, a single DNA encoding all genes required for the virus 

production is produced in packaging cells. Since homologous recombination in 

mammalian cells showed low efficiency, yeast and bacterial systems have been 

explored for generating adenoviral vectors (Ketner et al. 1994; Chartier et al. 1996; 

Luo et al. 2007). In this dissertation, the AdEasy system, which exploits the high 

efficiency of homologous recombination in a specific bacterial strain, is used for 

generating recombinant adenoviruses encoding FAK and FAK mutants to investigate 
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the specific mechanisms of FAK in the regulation of angiogenesis both in primary 

ECs and in vivo model.  

The AdEasy system can be used with any of four shuttle vectors (Fig.A.1A). 

pAdTrack and pAdTrack-CMV allow convenient tracing of all step in viral 

production through an incorporated GFP reporter. The pShuttle is the basic vector 

with the greatest capacity for accommodating foreign genes that are used when 

particularly large transgenes must be expressed. Two adenoviral backbone vectors 

can be used for adenovirus production. The commonly used pAdEasy-1 (Fig. A.1B) 

is an E1 and E3 double-deletion vector. pAdEasy-1-derived recombinant 

adenoviruses can be propagated in E1-expressing packaging cells, such as HEK-293 

cells (E3 is not necessary for viral production). 

The overall strategy for the generation of recombinant adenoviruses is 

diagrammed in Fig.A.2 and it involves three steps. First, the gene of interest is cloned 

into a shuttle vector. In order to generate recombinant adenoviruses encoding FAK 

and FAK mutants, EcoRV-KpnI fragments from pBS (pBluescript)-FAK and pBS-

Y397F FAK, pBS-KD FAK, pBS-D395A FAK, pBS-P712/715A FAK, pBS-FRNK 

and pBS-S732A FAK are cloned into the pAdTrack-CMV through EcoRV and KpnI 

sites. Second, the resultant constructs are cleaved with a restriction endonuclease 

(PmeI) to linearize them and transformed into E.coli strain BJ5183, which contains 

the adenoviral backbone plasmid pAdEasy-1. Recombinants are selected with 

kanamycin and screened by restriction endonuclease digestion. Third, the 

recombinant adenoviral construct is cleaved with PacI to expose its inverted terminal 

repeats (FigA.3A) and transfected into a packaging cell line (HEK-293 cells). 

Transfections and viral productions can be monitored by GFP expression and comet-

like adenovirus-producing foci became apparent at 6-8 days (Fig.A.3.B). Presence of 
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the recombinant adenoviruses was confirmed by western blotting as shown in 

Fig.A.3C and Fig. 3.2A.
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Figure A.1. Vectors used in the AdEasy system

Shuttle vectors (A) and adenoviral backbone vector pAd-Easy-1 (B). Approximate 

locations of ∆E1 and/or ∆E3 are shown. Adapted from Luo et al. 2007. 
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Figure A.2. Schematic outline of the AdEasy system

The gene of interest is cloned into the shuttle vector, pAdTrack-CMV. The resultant 

plasmid is cleaved with a restriction endonuclease (PmeI) to linearize it and 

transformed into E.coli strain BJ5183, which contains the adenoviral backbone 

plasmid pAdEasy-1. Recombinants are selected with kanamycin and screened by 

restriction endonuclease digestion. Finally, the recombinant adenoviral construct is 

cleaved with PacI to expose its inverted terminal repeats and transfected into a 

packaging cell line (HEK-293 cells). Recombinant adenoviruses are typically 

generated within 7-10 days. The 'left arm' and 'right arm' represent the regions 

mediating homologous recombination between the shuttle vector and the adenoviral 

backbone vector. Alternative homologous recombination between two Ori sites is 

shown with dotted lines. PA: polyadenylation site; LITR: left-hand ITR and 

packaging signal; RITR: right-hand ITR. Adapted from Luo et al. 2007. 
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Figure A.3. Selection and characterization of recombinant adenovirus plasmids

(A) PacI restriction endoculease digestion of candidate recombinants encoding FAK. 

All of the six candidate clones were validated. Three of the six clones (#1,4 and 5) 

released a 4.5-kb fragment after PacI digestion, and the other three (#2,3 and 6) 

released a 3-kb fragment. (B) Adenovirus-producing foci after transfection of 293 

cells. Comet-like adenovirus-producing foci became apparent at 6-8 days. (C) 

Presence of the recombinant adenoviruses was confirmed by western blotting.
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