-

NUMBER OF QUANTIFIERS IS BETTER
THAN NUMBER OF TAPE CELLS
by

Neil Immerman

TR 80-410

Department of Computer Science
Cornell University
Ithaca, New York 14853

February 1, 1980

Abstract

We introduce a new complexity measure, QN[£(n)], which clocks the
size of sentences from predicate calculus needed to express a given pro-
perty. Techniques from logic are used to prove sharp lower bounds in
the measure. These results demonstrate space requirements for computa-
tions and may provide techniques for separating Time and Space complex-
ity classes because we show that:

NSPACEL £(n)] < QNL£(n)2/10g(n)] S DSPACEL £(n)?1.

Introduction and Summary:

For the purpose of analyzing the time and space requirements of
computations, we introduce a mew complexity measure. Most measures
count how much of some computational resource (e.g. time or memory
space) is needed to check whether an input has a certain property, c.
Instead, we examine the number of quantifiers needed to express C in

first order predicate logic. -

The result is Quantifier Number (QN) a bonafide complexity measure
.wﬁich is not based on a machine model. It turns out that QN agrees
closely with space complexity, and yet it does not distinguish between
deterministic and nondeterministic space. Thus we have a model whose
lower bounds translate directly into lower bounds for space, and yet is
sufficiently different to allow new methods and ideas to be brought to
bear. In particular there are well established methods in 1logic to
decide what can and cannot be said in various languages. These tech-
niques provide lower bounds having nothing to do with complete sets or

diagonalization.

We hope to convince even the skeptical reader that it makes more
intuitive sense to try to prove a lower bound (by induction, say) on the
number of quantifiers needed to express a certain property, than on the
pumber of Turing machine tape cells needed to check if the property

holds for a given input. (Hence our title.)

-2 -

This paper grew out of work by Fagin (see [Fag74]). He proved the

following:

THEOREM (Fagin): A set, S, of structures is in NP if and only if there

exists a sentence, F, with the following properties:

10 F = (31’1)"'(aPk)H(Plg...,Pk) » Where Pl’oonppk
are predicates and H is a first order sentence.

2. Any structure, G, is in S iff G satisfies F.

Thus a property is in NP just if it is expressible by a second
order existential sentence. (3-colorability of graphs is .a good exam-

ple of such a property.)

It is difficult to show lower bounds for the expressiblity of
second order sentences. Instead we examine first order sentences which,
ve found, mimic computations much more closely. Considering graph prob-
lems, for example, the 1ength-of the shortest sentence which says, "G is
connected,” grows as the logarithm of the size of G. It is not a coin-
cidence that this is also the space needed by a Turing machine to test

‘'if G is connected.

To study this growth of sentences we introduce the complexity meas-
ure QN which will be defined in Section 1. Informally, a set, S, of
structures is in QN[f(n)] if membership in S for those structures of

size less than or equal to n can be expressed by a sentence with f(n)

quantifiers.

.The sentences mentioned above are written in the language of the
given structures. For example if we are dealing with graph problems
then the quantifiers range over the vertices and there is a single rela-
tion symbol, E(-,-), representing the edge relation. It seems that this
lanéuage suffices to describe “natural” problems on graphs, but to simu-
late an arbitrary Turing Machine computation we must give the language
access to an ordering of the universe. We let QNs[f(n)] be the family

of properties expressible with f(n) quantifiers in a language that

-3 -

jincludes Suc(-,-), a successor relation. We can now show that

NSPACE[£(n)] is contained in QN°L£(n)%/log(n)1.

We will say that C is in QN[f(n)] only if there is a upniform
sequence of sentences expressing C. The uniformity (in the sense of
Borodin, see [Bor77]) allows us to prove QN[G(n)] € DSPACE[G(n)log(n)],

and thus:
NSPACEL £(n)] € QuL£(n) Y/ log(n)] S DsPACEL £(n)?1.

Note that our lower bounds will not consider the uniformity; they may be
interpreted in the strongest possible sense. When we show that C is not
in QN[£f(n)] we mean that no sentence with n quantifiers expresses C for

structures of size n.

The quantifier rank of a sentence T is the depth of nesting of
quantifiers in T. Thus a sentence with n quantifiers has at most quan-
tifier rank n. In Section 2 we consider a two person game with which we
prove lower bounds for quantifier rank. An Ehrenfeucht game is played
on a pair of structures G,H of the same type. Player I chooses points
to show that G and H are different, while Player II matches these
points, trying to keep the structures looking the same. A theorem due
to Fraisse and Ehrenfeucht says that Player II has a winning strategy
for the n move game if and only if G and H agree on all sentences of
quantifier rank n. The original treatment of these games appears in

[Ehr61] and [Fra54].

Ehrenfeucht games provde a lower bound technique for QN as follows.
Given some property, C, we find structures G and H of size n such that G
satisfies C but H does not. We then show that Player II has a winning
strategy for the f(n) move game on G and H. It follows that G and H
agree on all sentences of quantifier rank f(n) and thus in particular no
sentence with f(n) quantifiers can express the property C. Thus we have

shown that C is not in QN[£(n)].

These combinatorial games provide very sharp lower bounds. We show
for example that while quantifier rank log(n) suffices to express the
graph property, "There is a path from point a to point b,” quantifier

rank log(n) -2 is insufficient!

-4 -

In Section 3 we present a more sophisticated Ehrenfeucht game argu-
ment. We show that without successor quantifier rank (log n) is insuf-
ficient to describe a set recognizable in polynom1a1 time. If our proof
went through for the language with successor we would have shown that
PTIME is not contained in (_j SPACE[(log n)] .

k=1

Maklng the above result go through with successor is a major techn-

ical problem which we have not (yet) solved. For one thing we show that

quantifier rank is no longer the right thing to check. Any property

whatsoever of graphs of size n can be expressed by a sentence with 2
quantifiers but quantifier rank only log(n) in a language with succes-

80T,

To make matters worse two ordered graphs G and H satisfy all of the
same formulas with 3(log n) quantifiers only if they are identical.
This is as expected because G and H are indistinguishable to all log
space Turing machines only if they are jdentical., The proof is the same
in both cases: the machine or the short sentence can check if vertex 3
is connected to vertex 17. G and H agree on all such tests only if they

are identical (i.e. the map from vertex i in G to vertex i in H is an

isomorphism.)

‘We leave this paper open ended by proposing a few possible tech-
niques for addlng successor to the above result and thus proving that
L_j QN [(log n)] The most hopeful one at present is a modifica-

tion of Ehrenfeucht games such that Player I wins the k move game if and
only if a given property is expressible with k quantifiers and Suc(=,-).

This new game is combinatorially much more complex than the Ehrenfeucht
game and so we are by no means proficient at playing it. And yet we
wanted to present, as a point of departure for future research, what may
become a viable technique for proving space lower bounds for problems

which are not complete for a certain amount of space.

-5-

SECTION 0: Review of some notions from logic.

A structure, S=<U.c?,....cE,PY.....Pg>. consists of a universe, U,
. . . U i
certain constants, c'lJ....,ck from U, and, certain relations, Pl""'Pn'

on U,

A similarity types, T=<CiseeesCpsPiacecsP > is a sequence of con-
stant symbols and relation symbols.

As an example let G be a directed graph with two specified points s
and d. Thus, G = <V.EG.sG.dG> is a structure of type Tg = <E,;5,d>,

where V is the set of vertices of G, and EG is G's edge relation.

If T is any type then L(T), the language of T, is the set of all
sentences built up from the symbols of T using &, or, s =>» =, variables

XsYsZsesoi and the quantifiers (3x) and (x).

A sentence, F, in L(T) is given meaning by a structure, S, of type
T as follows: The symbols from T are interpreted by the constants and

relations in S. The quantifiers in F range over the elements of the

universe of S.

For example, let A = (x)(x=d or (Jy)E(x,y)). A is in L(Tg)'
Furthermore, G satisfies A (in symbols, GFA) iff each vertex of G except

dG has an edge coming out of it. Henceforth we will omit the supér-

script G for the sake of readability.

The quantifier rank of sentence F, (qr[F]), is the depth of nesting

of quanitifiers in F. Inductively,

n

qr[B]+1
max(qr[Bl,qr[C]).

qrl (x)B] = qr[(3x)B]
_ qr[B&C] = qr[B or C]

For example, for A= (x)[((3y) P(x,y)) & ((z)(w)Qlx,2) or L(z,w))] ,
qr[A] = 3.

The number of elements in the universe of S is abbreviated |S].

For graphs |G| is the number of vertices of G.

-6 -

SECTION 1: The quantifier measure.

We are now ready to make our principal definiton. We say that a
set, C, of structures of type T is in QN[h(n)] if there exists a
sequence of sentences {Fili=1,2....} from L(T), and a constant, k, such

that:

a. For all structures, G, of type T, if |G| < n, then:
Gis in C <-> G an.

b. F_ has < k(h(n)) quantifiers.
¢. The map f:n—>Fn is generable by a DSPACE[h(n)] Turing machine.

Thus C is in QN[h(n)] if there is a uniform sequence of sentences
vhose nth member has O(h(n)) quantifiers and expresses the membership
property of C for structures of size n. Our condition (c) is analagous
to Borodin's notion of a problem's circuit depth inwhich he considers

uniform sequences of boolean circuits (see [Bor771).

As an example, let GAP be the set of directed graphs, G, with two
distinguished points, s and d, such that there is a path in G from s to
d. GAP is a set of structures of type Tg = <E(-,-),5,d>. Membership in

GAP is known to be complete for NSPACE[log(n)]. (See [Sav73].)

Theorem];: GAP is in QN[log(n)].

proof: We must assert that there is a path of length at most n from s
to d. We define by induction the sentences Pk(x.y). Pk(x.y) says that
there is a path of length at most k from x to y.

o Py(x,y) = (x=y) or E(x,y)
PZk(X.)') = (az)(Pk(xoz) & Pk(zn)'))

The sentence Pn has quantifier rank n and 2" existential quantif-
jers. Using a familiar trick, (see [FiRa74] or [sav70]), we can add

universal quantifiers and reduce the total number of quantifiers to

3(log(n)):

Al(XpY) = PI(X9Y)
(3z) (u)(v)[(u=x & v=z)or(u=z & v=y)] -> Ak(“'V),

A2k(x’y)

Thus, letting F_ = An(s.d). we have shown that GAP is in QN[log(n)]. O

Although the complete problem GAP is in QN[log(n)], it is not true
that NSPACE[log(n)] is contained in QN[log(n)]. As we show in Section
2, this fails in a rather spectacular way: the regular set, EVEN =

{G | G has an even number of vertices}, is not in QN[log(n)].

To allow them to simulate Turing machines it suffices to give the
_ sentences access to the numbering of the vertices which the machines
. already have. Thus we define below the measure QNs which studies pro-
perties expressible with an arbitrary successor relation, Suc(-,-).
Suc(x,y) means that y comes just after x in the numbering of the ele-

ments of the universe.

A similar Suc relation is discussed in [Sav73]. Savitch shows that
his pebble automata cannot accept GAP without Suc. However, Theorem 1

suggests that our sentences do not need Suc to express “natural” graph

problems.

Definition: We say that a set, C, of structures of type T is 1in

QNS[h(n)] if there exists a sequence of formulas {Fili=1.2,...} from

L(T U Suc), and a constant k such that:

a. For all structures, G, of type T, with |[Gl<n, and for all binmary
relations Suc(-,-), if Suc(-,-) is a valid successor relation on

the universe of G then:
(GEC) <-> <G9SUC("0')> F Fn .

b. F_has at most k(h(n)) quantifiers.
c. The map fin->F is generable by a DSPACE[h(n)] Turing machine.

Thus a property, C, is in QNs[h(n)] if there is a uniform sequence
of h(n) quantifier sentences from L(T U {Suc}) which give the same

answer for any successor relation and express C. In the author's thesis

-8 -

the gain in expressibility given by adding an arbitrary relation satis-
fying a certain condition is considered. Using this device for various

conditions we can capture PTIME and other classes.

The following theorem shows that with the addition of Suc(-,-)

Quantifier Number is closely related to SPACE:

Theorem 2: Let f£(n) be any function such that‘f(n) > log(n). Then:

) .
£ € popacr£(n)?] .

<
log(n)

NSPACEL £(n)] QNs[
proof: We sketch the proof of the first inclusion. The idea is that
each element of the universe has a number from 1 to n, and so may be
treated as log(n) bits. Thus a Turing machine instantaneous description
(id) may be coded in 0(f(n)/log(n)) variables. (A similar technique
appears in [Sto77].) It is not hard to prove by induction that O[log(n)]
quantifiers suffice to say, ~Digit i of element X is 0.” Thus with
o[log(n)] quantifiers we can say "ID2 follows from ID; in one step.
Note that the crucial use of Suc is in saying, “Now the Turing machine

moves its input head one space to the right.”

The length of a computation may be cf(n) so, as in the proof of

Theorem 1, we need O[£(n)] id's to state that such a path exists.

The second inclusion: We show that QN[g(n)] is contained in
DSPACE[g(n)log(n)] for any function g(n). Given G of size n we can gen-
erate F_ in SPACE[g(n)]. Check the truth of a g(n) quantifier sentence
in DSPACE[g(n)log(n)] as follows: Cycle through the sentence with all
possible values of the quantified variables. If F_ is of the form
(x)H(x) then we test the truth of H(vi) for each vertex v, of G. Each
variable requires log(n) bits and g(n) of them must be remembered at
once. When all the variables in Fn have been replaced by constants its

truth may be checked as we generate it with no additional space

required. [

SECTION 2: Ehrenfeucht Games.

In this section we will employ Ehrenfeucht games to obtain lower

bounds for the quantifier measure. These games are due to Fraisse and
Ehrenfeuct. (See [Fra54] or [Ehr61] for discussion and proof of Theorem
3.) Two persons play the game on a pair of structures. Player I tries

to demonstrate a difference between the two structures, while Player II
tries to keep them looking the same. An example appears below, but

first we give the definition and state the fundamental fact about these

games.

Given two structures, G and H, of the same finite type, T, we

define the n move game on G and H as follows:

Player I chooses an element of G or H and Player II chooses a
corresponding element from the other one. This is repeated n times. At

move i, 8; and hi’ elements of G and H respectively, are chosen.

We say that Player II wins if the map f which takes the constants
from G to the constants from H, and maps g; to hi’ is an isomorphism of
the induced substructures. (That is f preserves all of the symbols of

T. For example, if G and H are of type T=Tg. E(s.gl) holds in G just if
E(s,hl) holds in H.)

We say that two structures of type T are n-equivalent if they

satisfy all the sames sentences in L(T) of quantifier rank n. The funda-

mental fact about Ehrenfeucht games is:

Theorem 3(Fraisse,Ehrenfeucht): Player II has a winning strategy for
the n move game on A,B, iff A is n-equivalent to B.

As an example, consider the graphs G and H of Figure l. G has the
property that each of its vertices has an edge leading to it, but this
is not true of vertex a in H. Thus G and H disagree on the sentence,
s = (x)(3y)(E(y,x)). By Theorem 3, Player I has a winning strategy for
the game ofAlength 2. Indeed, on the first move Player I chooses a. II

must answer with a point from G, say d. Now I can pick f from G. 1I

- 10 -

will lose because there is no point in H with an edge to a.

FIGURE l:
G H
1. d a
2. £ -)

G H

d Q+. e * a

\‘\ 1/b
f Y

e C

‘Recall that in Theorem 1 we showed an upper bound of QN[log(n)] for
GAP. The following theorem proves that this is a lower bound as well.
Note that we can express GAP in quantifier rank exactly log(n), and so
the Ehrenfeucht game is a tool fine enough to decide expressibility up

to an additive constant!

Theorem 4: GAP is mnot expressible in quantifier rank log(n) -2.

proof: Fix n>4 and let m=[(n-4)/2]. We construct the graphs A ,B as
follows: Each graph consists of two lines of m+2 vertices as in Figure
2. In both graphs s is the top left vertex; but, d is the top right ver-
tex in AL and the bottom right vertex in B Thus Am is in GAP, but Bm

is not.

- 11 -

I S S
L ede3eperep R

B edededee>-e R
L .¢’9—.-}—.—->—.-,;-'+. d

We will now show that A is (log(n)-2)-equivalent to B . From this

it follows that no sentence of quantifier rank log(n)-2 can express the

property, ~There is a path from s to d.”

By Theorem 3 it suffices to show that Player II wins the log(m)

move game on Am’Bm‘ Indeed, the following is a winning strategy for II:

If Player I plays the ith vertex in some row of A (or B), Ii will
always answer with the ith vertex of one of the rows in B (or A). The
initial constraint is that the endpoints s,d,L,R are answered by the
similarly labelled endpoints. With k moves to go, if Player I chooses
vertex x within 2k steps of an endpoint (or previously chosen vertex,

ai). then II must answer with a vertex on the same row as the

corresponding endpoint (or bi)'

A proof by induction will show that if II follows the above stra-
tegy for log(m) moves, then a conflict (i.e. two points on different

rows, both within 2k steps) will never arise. Thus Player II wins the

log(n)-2 move game. [

Theorem & remains true for ordered graphs. The proof is similar,

but the graphs require three rows each so that d is not the last vertex

in B .
m

-12 -

It is interesting to note that in the above case our measure . does
not distinguish between deterministic and nondeterministic space. The
lower bound of O[log(n)] is shown for graphs with at most one edge leav-
ing any vertex. The gap problem for such graphs, (called GAPl and dis-
cussed in [HIM78] and [Jon75]), is in DSPACE[log(mn)].

As promised we now show that L(Té). the language of graphs without
Suc, is insufficient for describing all graph problems. Our counterex-
ample consists of a totally disconnected graph. The same example could
be built with connected graphs‘of unbounded degree. The idea is that

the edge relation is of no use and so we must name all the points

inorder to count them.

Proposition 5: EVEN, the set of graphs with an even number of vertices,
is in DSPACE[log n], (in fact it's in DSPACE[0]), but is mot in
QN[log(n)], (in fact it's mot in QN[h(n)] for anmy h(n) asympotically

less than n).

proof: We already know by Theorem 2 that EVEN is in_QNs[log(n)]. To
prove Proposition 5 let TDn be the totally disconnected graph with n
vertices. We show that TDn_1 is n-1 equivalent to TDn. It follows that

quéntifier rank n is needed to express EVEN,

We only need to show that Player II wins the n-1 move game on TDn—l
and TDn' Her" obvious winning strategy is to match a chosen vertex with
any vertex from the other side subject to the condition that a point
chosen twice will be answered with the same point both times. Since the
edge relation is always false in both structures, the resulting

sequences of points are isomorphic. 0

. The proposition above concerns itself with the difference between
QN and QNS' In the next section we will produce a more natural graph
problem in P-TIME, which is mnot in QN[log(n)k]. The graphs there are

connected and of bounded degree. We feel that the latter example

*Inorder to avoid the awkward comstruction “he/she” in complicated
game arguments we adopt the convention that Player I is male and
Player II is female.

-13-
concerns itself with time versus space.

SECTION 3: P-TIME and the QN measure.

Let an alternating graph be a directed acyclic graph whose vertices

are marked “&" or “or~. Suppose that a and b are vertices of alternat-

ing graph G, and a has edges to XyseeesX e We say that b is reachable

from a iff:

1., a =b; or,

2.. a is marked "&", n>l, and b is reachable from all the xi's; or,
"3. ais markgq “or” and b is reachable from some X,.

Note that if all vertices are marked “or then this is the usual

notion of reachability. (See Figure 3 where b is reachable from a, but

not from c.) Note that we could generalize this definition to include

infinite graphs or graphs with cycles by saying that “b reachable from

a" is the gsmallest relation satisfying 1-3. '

FIGURE 3: An Alternating Graph

Now define AGAP to be the set of alternating graphs inwhich d is

reachable from s.
Proposition 6: AGAP is complete for polynomial time.

proof: To see if G is in AGAP, we start at d, and proceeding backwards

mark all the points from which d is reachable.

- 14 -

A detailed proof of completeness is omitted; the idea is that AGAP
is complete in a natural way for alternating log space, which is known
to be equivalent to P-TIME. (See [chSt76] or [Koz76].) Boolean circuit
value problems which are very similar have pseviously been shown to be

complete for P. See for example [Go177]. O

We must now add the predicate A(x) meaning tﬁat vertex x is marked
“&"., Let T g-<E ,A,s,d>, be the type of alternating graphs. Our mnext
. theorem shows that in L(T g) the polynomial time property AGAP is not
expressible with quantlfler rank (log n)k If this went through with

the addition of successor then we would have shown that P 1s not con-

tained in SPACE[(log n)]

Theorem 1: Let £(n) be any function that is asymptotically less than
2\|log(n). Then AGAP is not in QN[£f(n)]. In particular, AGAP is not in
QN[logk(n)J for any k.

proof: For all sufficiently large m, we produce graphs-Gm and Hm with

the following properties:
- - log(m) .
1. IGml = IHmI = n, and n < m log(m). Thus log(n) <
log(m)(log(m)+1), and 2J log(n)+l o o,
2. G_is m-equivalent to H .
m m
3. G is in AGAP, but H_is not.
m m

When these conditions are met we will have shown that anything less

than quantifier rank z\llog(n) does not suffice to express the Alternat-

ing‘Graph Accessibility Problem without successor.

The first step is to introduce the building block out of which G,

and Hm will be constructed:

Lemma Ja: Let X be the alternating graph pictured in Figure 4, Then X

has automorﬁhisms f,g, and h, with the following properties:

- 15 -~

1. f switches 3 & 4 and 1 & 2, leaving 5 & 6 fixed.,

2. g switches 1 & 2 and 5 & 6, leaving 3 & 4 fixed.

3, h switches 3 & 4 and 5 & 6, leaving 1 & 2 fixed.

FIGURE 4:

or

and

proof:

Switch X

A
|

eb

F-X1

A

w
e

The idea is that when X is placed in our graphs each

pair, 1,2,

3,4, 5,6, will consist of one point which can reach d and one which can-

not. Think of points which can reach d as “true,” and those which can-

not as “false.” Then, in symbolic notation:

The proof

We will say that a pair u,v, is

If u is false and v is true then

"

of the lemma is an easy

aorb

cord

(3 & 5) or (4 & 6)
(3 & 6) or (4 & 5)

“off”

the pair is

computation. 0

if u is true and v is false.

“on.” Thus, X is a switch

vhose top pair is on just if exactly ome of its bottom pairs is on.

- 16 -

FIGURE 5: P_ (if s=A), Q, (if s=B)

AXE
¥ .
€ SFEN
X
B ¢ a .)
~ ¥ . : d
r
X
Row 1 2 3 2n
. 2m+]
Figure 5 shows 2 -1 copies of the switch X, arranged in a binary

tree. Let P be the graph pictured in Figure 5, with s=A. Let Qm be
the same graph, but with s=B. Thus Pm is in AGAP while Qm is not. How-

ever,
Lemma 7b: Pm is m-equivalent to Qm'

pxﬁgi: We will show that Player II wins the m length game on Pm and Qm.
One way to express the difference between Pm and Qm is to say that they
are the same except that the top pair in Qm is switched. Another way of
thinking of it is that in Q, one of the bottom pairs, for example y,z»
is switched. That is in Py is connected to d, but in Qm z is con-

pected to D. X has the property that switching one pair on the bottom

will result in the top pair being switched.

The idea behind Player II's winning strategy is that the difference
between P and Q, could be removed by switching any of the 22m pairs on
the bottom row. With only m moves, Player I cannot eliminate all of

these possiblities.

To simplify the proof let us first comsider a different game. Let
Tz be the binary tree of height 2m. This is a schematic version of P
and Qm where each point represents the sthch. X, and each 11ne

- 17 -

represents a pair of lines.

We play a modified Ehrenfeucht game‘on T2m. call it the on-off
game. On each move of this new game, Player I picks a point and Player
IT must answer “on” or "off”. Player II must also obey the rules that
the top vertex, if chosen, is on, and any chosen vertex on the bottom is
off. (Intuitively “off” corresponds to matching the top left vertex of
the chosen switch in P to the same vertex in Q 3 “on” means matching it
to the top right vertex.) We say that Player Il vins if for amy triple
of chosen points, L,M,N, such that M and N are the two offspring of L, L

is on iff exactly one of M and N is on. This rule captures the behavior

of the switch X.

Lemma Jc: Suppose that each vertex in row r of T is labelled on or
off. Then any 2k -1 points on or below row r+k may be labelled in any

self-consistént fashion and there will still be a labelling of the rest

of the graph which generates row r.

proof: By induction on k. If k=l then no matter which point is chosen
we are free to label its sibling as we please inorder to give the

desired label to its parent.

Inductively suppose that Zk -1 points are labelled on or below row
r+k. Let L be the set of left offspring in row r+l, R the set of right
offspring. Clearly at most omne of these sets, say L, has more than
Zk_l -1 of its descendants labelled. Label all of the vertices in L in
any consistent fashion. Now by induction we may label the points in R

as we choose. Thus we may label row r as desired. 0

It follows that Player II wins the 2m-move on-off game on sz. Her
strategy is to answer ~off” whenever possible. The lemma shows that she

th .
can never be forced to declare the n~ row on in an n-move game.

We can now play the original m-move Ehrenfeucht game as follows
(see Figure 5): When Player I chooses a point, for example ¢ in Pm' II
moves according to the strategy for the on-off game. If the point
corresponding to c's switch is declared “off", then II answers c, if

L d e

on”, then d, the opposite point in the pair. If a point inside a

- 18 -

gvitch is chosen then II may simulate the moves of the on-off game for

the switch's two descendants, and move accordingly. This proves Lemma

7. O

The final step of the proof is to introduce the graph D1°%6m(;§
replace the binary tree in the above construction. Dlog o has m 0%
vertices but still has the property that no point in block k can be
forced on before the kth move. We define Dk below, algebraically, but
please refer to Figures 6 and 7 which show D2 and the first three blocks

of D3. respectively.

VERTICES(D,) =
' {<x1.....xk.r> |r=b*k+p, p<k, b<2 »0<x.<b+l for 1<i<p & 0<x,<b for p<igk}

EDGES(D,) =
{ (<xl..u..xk.r>’ <x1.....xk r+1>) 'r<k*2 } U

{ (<x1.-o.lxkir>’ <x1!ooo’xp lpxp+lgoochk.r+1>) Ir—k*b + p }

Thus the vertices are k dimensional vectors and each row stretches
the range of one of these dimensions by one. These graphs have k

degrees of freedom, allowing us to prove:

Lemma 1d: Suppose that row r of Dk is entirely labelled. Then any
Zk -1 points on or below row r+k may be labelled in any self-consistent

fashion and there will still be a labelling of the rest of the graph

which generates row r.

proof: By induction on k. If k=1 then we must show that any one point

may be chosen in row r+l without affecting row r. This is true because

any "configuration in row r is generated by a configuration in row r+l

and by its complement.

Suppose we have our lemma for k-1 and consider any labelling of row
r in Dk For convenience assume that row r is the bottom row of the Jth
block. Thus the chosen 2 -1 points are on the bottom row of the J+1

block or below. Note that the subgraph of Dk with fixed first

EIGURE 6: D,

03\

! 1
0§ 70

l l\‘ \
0233ﬁ3}>¢ ' : 3=

o. 1? zi’%\j\!\\\o 4 = 282 + ©
NN NN NS 5

O\l\

TS S

‘\'\.\ N

NN, NN, NN,

..... NN\

06 10 20 .30 40 01 11 21 31 1 02 12 22 32 4 03 13 23 33 43

-— - — e o e e - - e e e -— e e o o= -

EIGURE I: Three Blocks of D3

odo

|\

00000

000 T100=<Q1Q |1

-
-
O
(=4
N o
.Z—A,:
(=]
- .
(=]
— rd)

i [7
1l

T i‘} 1l

o
-

oéo 00 OR,\

[
71/ ==

ﬂ/;/

v

IR

N7/

l//////f// Jli]

'/’ .
7 s .1
/LE EE

I/

v

7
i
i
/
y

L NIl 1

Il

Wil

.
[PUSGR—— .

p——y
=
=

7
*{é/'
éq
J

- 19 -~

coordinate i is a copy of Dk-l. Furthermore for at most one i, are there
Zk’l chosen vertices with first coordinate io. Label the io column of
the j+1st block in any consistent fashion. Now by induction since less
than Zk-l -1 vertices in any other column are chosen, we can set the
rest of row r+l as we please. Thus as in the case of D1 we have control
of j of the j+l points in each group. Thus we may generate row r as

desired. [

From Lemma 7d it follows that Player II wins the 2k move on-off

game on D Let Gm and Hm be the graphs arising from Dlog(2m) by

k.
replacing verglcgs by the switch X, just as Pm and Qm arose from sz.
As before we let s be the top left point of Gm and the top right point
of Hm. Thus Gm is in AGAP, Hm is not in AGAP, and Gm is m-equivalent to

H . This proves Theorem 7. [

Theorem 7 does not go through if we add "Suc”. In the log(n) move
game on numbered graphs if Player I chooses vertex i in A, then II must
respond with vertex i in B. If Player 11 answers differently, then in
the remaining moves Player I can keep cutting the successor path from
the initial point to vertex i in half, thus exposing that this path is
noﬁ the same length on the left as on the right., Clearly if G and H are
not identical graphs there must be a pair of indiced i, j such that there
is an edge from v, to vj in one of the graphs but not the other. Thus
Player I wins the log(n)+l move game on G and H., His strategy is to
play vertices A and vj of G on the first two moves. As we have seen
Player II is forced to answer with A and vj from H, but now she has

lost because the map between the first two elements is already not an

isomorphism.

Thus two numbered graphs of size n are (log(n)+l)-equivalent only
if they are identical. This is as expected because a pair of graphs G,H

is indistinguishable to all log space Turing machines only if G=H.

Sometime after proving Theorem 7 we discovered to our surprise that
vith Suc we can write a sentence of length 0(log m) which says that G
is in AGAP. This is done as follows: In a numbered graph a pair of ver-
tices is endowed with an orientation. Thus a numbered copy of switch X

is either right (orientation preserved) or wrong (orientation of the top

- 20 -

pair is switched). Thus given a numbered graph which is either Gm or Hm

we can tell which by adding up the number of wrong switches and seeing

if it is odd or even.

To alleviate this problem we can replace the switch X in the above
construction with a switch with m points. Thus to rember its orienta-

tion requires m bits rather than one. As above we can build graphs Gn'

and Hn' which are 2J log(n)—equivalent without successor. We conjecture

that even with Suc they are indistinguishable.

SECTION 4: Extending Results to QNS.

Proving lower bounds for QNS[f(n)] with f(n) > log(n) is much more
subtle than for QN[f(n)]. We show below that quantifier rank lower
bounds can no longer help us. By an ordered graph we mean a graph which
comes with a valid successor relation. The following proposition shows

that any broperty whatsoever of ordered graphs can be expressed in quan-

‘tifier rank log(n)+3.

PROPOSITION 8: Let C be any set of ordered graphs. Then for ‘all n
there exist sentences S of quantifier rank log(n)+3 such that for all
ordered graphs G of size < n,

G is in C <=> G E Sn o

proof: First we show that for any iOSn, we can write the formula

Ni (x), which means, ~x is vertex number io in the Suc ordering, in
0 .
quantifier rank log(n)+l. This is dome by inductively defining the for-

mulas Pi(x.y) to mean that there is a successor path of length exactly i

from x to y.

Pl(x.y) = Suc(x,y)
PZn_l(x.y) = (32)(Pn_l(X.z) & Pn(z.y))
P2n(X.y) = ()P (x,2) & P (z,y))

Now we identify the ith point by saying that there is a path of length i
from the first point to it: :
Ni(x) = (avl)[Pi-l(vl’x) & (y)(ﬂSuc(y.vl))]

- 21 -

Nn(x) has quantifier rank log(n)+l and can also be written with

O[log(n)] quantifiers using the abbreviation trick.

Now using Nk(x) we can completely describe any graph G as follows:

n
/\ B3O 80 & 0 & By

i.j=1

e

Here EX*J(x,y) = E(x,y), or ﬂE(X,Y) according as E(vi.yj) holds or does

not hold in G. Note that F, has quantifier rank log(n)+3. Let C =
{G | GEC & |Gl<n}. We define S as the disjunction over all G in C_ of

FG, ioe. »

Sa T \\// Fe

GeC
n

This is the desired complete description of_Cn. Although it may have

2
length 2", S, has quantifier rank omly log(n)+3. [

In spite of the above propostion there is still hope. Recall that

from the last section we have a pair of structures Gn' and Hn' which are

2.llog(n) equivalent but differ on the AGAP property. We conjecture
\Ilog(n):l

that AGAP is not in QNS[Z

Consider the set of all possible orderings of a graph G:

s(Gg) = {<G.Suci> | Suci is a successor relation on G.}

Thus S(Gn') and S(Hn') are families of ordered structures which we

Jlog(n) quantifiers.

To make the notion “separated” precise we give the following

suspect cannot be separated by a sentence with 2

Definition: Let M and N be families of structures of the same finite
type, T. We say that M and N are k-inseparable, (M~kN). if there is no

sentence, F, from L(T) with k quantifiers such that:

MEF and NE-F,

- 22 -

i.e. every structure in M satisfies F and no structure in N does. Oth-

erwise M and N are k-separable.

Clearly if we could show that S(G ') and S(H_') are log. Cn)- :
inseparable it would follow that AGAP is not in QN"[log (n)] The
notion, AGAP and AGAP are 0[f(n)] separable,” would be the same as
the condition. “AGAP is in QN [f(n)], if we had omitted the uniformity
requirement in the definition of QN . Thus the following generalization

of Theorem 2 holds: _ .
Proposition 9: Let C be any set of ordered graphs., Then:

~a. Suppose C is in NSPACET[log(n)] for some sparse oracle set T. Then

C, is O[log(n)]-separable from C , for every n.

b. Suppose C_ is o[log(n)]-separable from C , for every n. Then there
is a sparse oracle, T, such that C is in DSPACE [1og (n)].

proof: T is a sparse set if there are at most nk objects in T of length
n. The proof of this proposition is similar to that of Theorem 2. The
differences are: In case (a), we must code into F the nk elements of T
that the log(n) space Turing machine can look at. In part (b), we must

code the sentence F_ into () {wl lwl = 210g (n) }. Note that any sen-

tence with f(n) quant1f1ers and binary predicates is equivalent to some
2
sentence of length of (n). O
Proposition 9 is encouraging because it suggests that PTIME com-
plete properties may be o[log(n))]-inseparable from their complements.
We close this section with a modified version of Ehrenfeucht games which

test for separability:

Definition: Given families of structures, M and N, of the same finite
type, we define the k-move separability game om M and N as follows:

On each of the k moves Player I chooses a point from gach structure
on one side or the other. Player II then chooses a corresponding point
from each structure on the other side. II is allowed to make copies of

structures so that she may choose several different answers from the

- 23 -

‘game structure.

We say that Player Ll ﬂ;ng if there is a pa1r of structures and

sequences of moves, <G, .ml.....mk> and <H. .nl.....ni> one from each side
such that the map which sends constants from G to constants from HJ and

i
maps m_ to ng is an isomorphism of the induced substructures.

Theorem 10: Player II has a winning strategy for the k move game on M

and N iff M ~N. S o .

proof: By induction on k.

k=0. Here if Player II wins then there is a pair of structures GE M and
H € N whose constants are isomorphic. It follows that G and H satisfy
all the same quantifier free formulas and so M~CN' Conversely if there
is no such pair then the quantifier free formula, Fo. which is a dis-
junction of all the isomorphism types of constants from M. is satisfied

by all of M and none of N.

Inductively, assume that the r+l quantifier formula (X)P(x) is true in
M and false in N. Then Player I's first move will be to choose a point

1 from each G; E M in such a way that G, #P(m). No matter what II does,
no structure H € N will satisfy P(n) Thlnk of the language as now
having a new constant symbol c,. Thus <M,m, >#P(c) and <N.n; >k ﬂP(c)

so by induction Player I wins.

Conversely assume that M~r+1N and let Player I choose m; from each
G§}L Let Fl""’Fs be a list of all the r quantifier formulas such

that:
<M,m1> t: Fi(cl) i=1| eees S

Therefore, ME (ax)Fi(x) i=ly cees Se

Thus for each i there is some G, with Gik(ax)Fi(x). Player II can
play these s witnesses from the appropriate Gi's and forget about the
rest of N. Note that this is where the making of copies is needed in
case Gi=cj for i < j < s. Thus Playet II can preserve the condition

that M~ N and so by induction she will win. 0

- 24 -

Because we have not yet learned the tricks of the separability game
ve prefer to leave it here as a jumping off point for further research.
The game is studied in more detail in the author's thesis, [Imm80], and
we are (perhaps overly) optimistic about its Secoming a viable tool for
ascertaining some of the lower bounds which are “well believed™ but have

so far in the history of this young discipline escaped proof.

SECTION 5: Conclusions.

We have shown that quantifier number is another measure of space
complexity. Thus combinatorial techniques in the spirit of Ehrenfeucht

games seem likely tools for demonstrating lower bounds for space.

That the difficulty of expressibility is closely tied to computa-
tional complexity is no accident. The deep conmnections between logic
and complexity theory are inescapable. Just think, for example, of the
link alternation (fundamentally an attribute of quantifiers, not Turing
machines) gives in both directions between time and space. We believe
that the notion of a property Being expressible in some language is much
simpler to understand and to prove things about than its being checkable

by some Turing machine.

Finally, we expect further research in at least the following

directions:

1: Characterize the difference between QN and QNS. We know that for
some “natural” problems like comnectivity Suc(-,-) gives no gain in
expressibility, whereas for other problems, such as counting the
size of some set, there is an exponential gain. It would be very
useful if there were some criterion to determine whether or not

Suc(-,-) will help in a certain case.

23 R. Fagin and others have studied the notion of sentences probably
holding in finite structures. It seems to me that an average suc-
cessor relation would not help to séparate the graphs G and H (men-
tioned hbove) which differed on a PTIME property. Thus there is

hope of proving that the set of short sentences which hold for most

- 25 -

successors is the same for G as for H. A similar idea would be to
modify the notion of forcing in model theory (an adaption by Robin-

son of work of Cohen) to determine which short sentences are true

for a “generic” successor.

NSPACE[log(n)] can be simulated by an existential sentence of quan-
tifier rank log(n) and size 0(n), or by a sentence with 0(log(mn))
alternating quantifiers. This mirrors the simulation of NSPACE by
Parallel Time and by Alternating Time, respectively. In the first
case the number of quantifiers corresponds to the ﬁumber of proces-
sors in the parallel computation. This insight may lead to a mnew

technique for analyzing parallelism and the time versus number of

processor trade off.

The way we added Suc(-,-) is a bit strange. F expresses property P
in QNS if for all structures G of size n and for all binmary rela-
tions Suc(-,-) such that Suc(-,-) is a valid successor relation on
the universe of G, G is in P if and only if <G, Suc(-,-)> satisfies
F . We can consider adding relations with other properties besides
successor. One such property which we call a “marking~, captures
PTIME. It would be lovely to have a coherent theory of the
jncrease in expressibility gained by adding an arbitrary relation

with a given property.

An investigation of the classes QNs[f(n)]. for £(n) < log(mn), is
needed. An intriguing fact is that a regular set such as EVEN
requires log(n) quantifiers even with successor, and yet the set,
CLIQUE(k), of graphs which contain a k-clique only needs a constant

number of quantifiers. The latter class seems to require TIME[n J.

Acknowledgements: I would like to thank my advisor Juris Hartmanis for

his kind help and excellent advice. Thanks also to John Hopcroft,

Albert Meyer, and Michael Morley for helpful discussions.

- 26 -

REFERENCES

[Bor77]: Borodin,A., ~On Relating Time and Space to Size and Depth,”
SIAM J. on Computing, Vol. 6, No. 4, Dec. 1977, pp. 733-744.

[ChSt76]: Chandra,A., Stockmeyer,L., ~Alternation,” Proc. l7th FOCS,
1976, pp. 98-108.

[Ehr61]: Ehrenfeucht,A., ~An Application of Games to the Completeness
Problem for Formalized Theories,” Fund. Math, Vol. 49, 1961, pp.

129-141.

[End72]: Enderton,H.,A Mathematical Introduction to Logic,Academic
Press, 1972.

[Fag74): Fagin,R., “Generalized First-Order Spectra and Polynomial-Time
Recognizable Sets, in: Complexity of Computation, (ed. R.Karp),
SIAM-AMS Proc. 7, 1974, pp. 43-73.

[FiRa74]: Fischer,M., Rabin,M., “Super-Exponential Complexity of
Presburger Arithmetic,” in: Complexity of Computation, (ed.
RoKarP)g SIA}i-AMS Proc: 70 1974) pp‘ 27-410

[Fra54]): Fraisse,R., ~Sur les Classifications des Systems de Relations,

Publications Sc. de 1'Univexsite d'Alger, I, 1954.

[Gol77]: Goldschlager,L.,The Monotone and Plapnar Circuit Value Rroblems
are Log Space Complete for P, SIGACT News, Vol. 9, No. 2, 1977.

[HIM78]: Hartmanis,J., Immerman,N., Mahaney,S., ~One-Way Log Tape Reduc-
tions,” Proc. 19th FOCS, 1978, pp. 65-72.

[HPV77]: Hopcroft,J., Paul,W., Valiant,L., ~On Time Versus Space, JACM,
Vol. 24, No.2, 1977, pp. 332-337.

[Imm79]): Immerman,N., ~Length of Predicate Calculus Formulas as a New
Complexity Measure, RProc. 20th FOCS, 1979, pp. 337-347.

- [Iom80]: » Ph.D Thesis, Cornell University, 1980.

[Jon75]: Jones,N., “Space-Bounded Reducibility Among Combinatorial Prob-
lems, JCS, 11, 1975, pp. 68-75.

[Koz76]: Kozen,D., ~On Parallelism in Turing Machines, Proc. l17th FOCS,
1976, pp. 89-97.

[sav70]): Savitch,W., “Relationships Between Nondeterministic and Deter-
ministic Tape Complexities, J. Comp. System Sci. 4, 1970, pp.
177-192. .

[Sav73]): Savitch,W., “Maze Recognizing Automata and Nondeterministic
Tape Complexity,” J. Comp. System Sci. Z, 1973, pp. 389-403.

- 27 -
[SsaSt79]: Savitch,W., Stimson,M., “Time Bounded Random Access Machines

with Parallel Processing, JACM Vol. 26, No. 1, 1979, pp.103-118.

[Sto77]: Stockmeyer,L., ~The Polynomial-Time Hierafchy.“ Theoretical
Comp. Sci. 3, 1977, pp. 1-22,

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif

