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The first chapter of the thesis contains a mitochondrial cytochrome oxidase I 

(mtCOI) phylogeny of shallow-water species in the genus Ciona.  The mtCOI 

sequences of Northeast Pacific/Mediterranean (Type A) and Northwest Atlantic (Type 

B) Ciona intestinalis differ by ~12% and Ciona roulei is nested within Type B.  Ciona 

savignyi differs from all other haplotypes by 13-16%.  A previously undescribed but 

morphologically distinct Ciona sp. found at the Banyuls-sur-Mer site was > 10% 

divergent from all other haplotypes.         

 The second chapter builds upon the mtCOI phylogeny and includes six nuclear 

genealogies for the genus Ciona.  From these genealogies, I conclude that Type A and 

Type B are well-supported monophyletic groups.  In spite of their morphological 

similarity, Type A vs. Type B divergences range from 0.035 to 0.124.  In contrast, the 

morphologically distinct C. roulei is embedded within Type B in all genealogies, and 

Ciona sp. appears to be associated with Type B/C. roulei to the exclusion of Type A.   

In the third chapter, I investigated the distribution of Type A and B in areas of 

potential sympatry to determine whether these two types occur together and if so, 

whether they show evidence of hybridization and introgression.  Then I combine my 

data with other studies to investigate general patterns of reproductive isolation vs. 

divergence in marine broadcast spawners.  Type A and B do occur sympatrically and 

their genomes show low levels of introgression.  Type A and B may be near the upper 



 

 

limit of the range of divergence values where introgression is still possible.  However, 

introgression at divergence levels similar to those found in Ciona does occur, 

prompting questions about the strength of postmating prezygotic reproductive barriers 

in marine broadcast spawners.   

In the fourth chapter, I identified three candidate sperm GRPs and used these 

to test whether reinforcement is occurring in this system by testing whether positive 

selection (as a proxy for prezygotic isolation) is stronger in sympatry than allopatry.  

While little evidence for reinforcement was found in these three candidate GRPs, tests 

such as those performed here may provide important insights into the process of 

speciation in marine broadcast spawners.       
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CHAPTER 1 

GENEALOGICAL RELATIONSHIPS WITHIN AND AMONG SHALLOW-

WATER CIONA SPECIES (ASCIDIACEA) 

 

Abstract 

  

In spite of historical and current interest in Ciona intestinalis and its 

congeners, little is known about evolutionary relationships among the members of the 

genus Ciona.  Here 744-bp sequences of the mitochondrial cytochrome c oxidase 

subunit I (COI) gene are used to examine phylogenetic relationships among three 

described species (C. intestinalis, Ciona roulei, C. savignyi) sampled from multiple 

coastal sites in the Northeast Pacific (California USA), Northwest Atlantic (from New 

Hampshire to Connecticut, USA), Northeast Atlantic (Sweden and The Netherlands), 

and Mediterranean (Banyuls-sur-Mer, France).  The samples were collected in June-

October 2005.  The COI sequences of Northeast Pacific/Mediterranean (Type A) and 

Northwest Atlantic (Type B) C. intestinalis differ by ~12% and C. roulei is nested 

within Type B C. intestinalis.  C. savignyi differs from all other haplotypes by 13-

16%.  A previously undescribed but morphologically distinct Ciona sp. found at the 

Banyuls-sur-Mer site was > 10% divergent from all other haplotypes.  Although these 

data arise from a single gene study, they indicate that further elucidation of species 

relationships within the genus and of the species’ distributions will be needed if 

continuing invasions and potential reproductive isolation are to be investigated.   

 

Introduction 

   

The ascidian Ciona intestinalis has served as a developmental model species 
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for over a century (Minganti 1948; Morgan 1904; Sordino 2000).  Both C. intestinalis 

and its congener C. savignyi have invaded benthic communities throughout the 

temperate zone, necessitating expensive eradication programs (Lambert 2001; 

Lambert & Lambert 2003).  Recently, the genome sequences of C. intestinalis and C. 

savignyi have become available (Dehal et al. 2002; Vinson et al. 2005), providing 

tools for comparative genomics and insights into vertebrate evolution (Boffelli et al. 

2004; Johnson et al. 2004; Missal et al. 2005).  Comparisons of the mitochondrial 

genomes of C. intestinalis, C. savignyi, and other tunicate species also have answered 

questions about chordate evolution (Gissi & Pesole 2003; Yokobori et al. 2003; 

Yokobori et al. 2005).  Despite the historical and current interest in C. intestinalis and 

its congeners, we know very little about genealogical and phylogenetic relationships 

within and among members of this genus.   

 The genus Ciona comprises 12 known species, four found in shallow water 

and eight found exclusively in deep water (Harant & Vernieres 1933; Van Name 1945; 

Monniot & Monniot 1977; Monniot & Monniot 1983; Hoshino & Nishikawa 1985; 

Monniot & Monniot 1989; Monniot & Monniot 1990; Sanamyan 1998).  Many of the 

deep water species have been described from only one specimen and most are difficult 

to collect.  Here we focus on relationships among the common shallow-water species.  

Ciona intestinalis is thought to be endemic to Northeast Atlantic waters, where it was 

described (Linne 1767).  It is widely distributed in the temperate zone presumably 

through transport in ballast water and on ship bottoms and now has a range that 

includes the Pacific Coasts of Japan and North America, New Zealand, Australia, and 

Chile, the Atlantic Coasts of North America, Europe, and South Africa, the Black Sea 

and the Mediterranean Sea (Kott 1952; Van Name 1945).  Ciona savignyi (Herdman, 

1882) is endemic to Japan, but has spread to the Pacific Coast of North America and 

the Atlantic Coast of Argentina (Hoshino & Nishikawa 1985).  Ciona roulei (Lahille 
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1887) is found only in the Mediterranean Sea, where it has only been described from 

five sites along the coasts of France and Spain (Harant & Vernieres 1933).  The fourth 

shallow water species, C. edwardsi (Roule, 1886), is rare and was not included in this 

study.  Although the morphology of several Ciona species has been compared 

(Hoshino & Nishikawa 1985), no study thus far has examined phylogenetic 

relationships among these species.       

 Within C. intestinalis, two ―types‖ have been recognized (Suzuki et al. 2005).  

Type A inhabits the Pacific Ocean and the Mediterranean Sea, while Type B inhabits 

the Atlantic Ocean.  Type A and Type B are working names agreed upon by the 

community of Ciona biologists.  The two types of C. intestinalis are partially 

reproductively isolated.  Crosses using British Type B C. intestinalis eggs and 

Japanese Type A C. intestinalis sperm result in normal rates of fertilization, but the 

reciprocal cross yields many fewer fertilized eggs (Suzuki et al. 2005).  While C. 

roulei and C. intestinalis are clearly distinct on morphological grounds (Harant & 

Vernieres 1933), crosses between these two species are also known to produce viable 

offspring.  In particular, Mediterranean Type A C. intestinalis sperm x C. roulei eggs 

produced viable F1 tadpole larvae.  However, fertilization fails in the reciprocal cross 

(Lambert et al. 1990).  C. intestinalis and C. savignyi are completely reproductively 

isolated (Byrd & Lambert 2000).   

 Here we use mitochondrial DNA (mtDNA) sequence data to investigate the 

genealogical and phylogenetic relationships within and among Ciona species.  In 

particular, we focus on the relationships and amounts of divergence between Type A 

and B C. intestinalis, and among C. roulei, C. savignyi, and C. intestinalis.  
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Materials and Methods             

 

Sampling 

Individuals from three described species (C. intestinalis, C. roulei and C. 

savignyi) and one unknown species (Ciona sp.) were collected by SCUBA or from 

docks (Table 1.1).  C. intestinalis individuals were collected from five sites on the 

California Coast of North America, 12 sites on the Atlantic Coast of North America, 

and one site in the Northwestern Mediterranean (Banyuls-sur-mer, France).  

Additional individuals were obtained from two sites in the Northeast Atlantic 

(Fiskebäckskil, Sweden and Breskens Harbor, The Netherlands).  C. roulei 

individuals were sampled from one site in the Northwestern Mediterranean (Banyuls-

sur-mer, France).  Individuals of a previously unidentified species (Ciona sp.) were 

also collected in the harbor at Banyuls-sur-mer.  C. savignyi individuals were sampled 

from four sites on the California Coast of North America.  Specimens of C. roulei and 

C. sp were deposited at the American Museum of Natural History.  A sequence from 

Halocynthia roretzi (GenBank Accession No. NC_002177; (Yokobori et al. 1999) was 

used as the outgroup.  Sequence data were obtained from 106 of the collected 

individuals, and the data set contained 107 sequences including the outgroup.    

 

DNA extraction, amplification and sequencing  

Ovaries were dissected from freshly-collected individuals, cut into several 

pieces, immediately preserved in DMSO (dimethyl sulfoxide), and ultimately (within 

12 d) stored at -80°C until needed.  We used ovaries because they are easily removed 

from the body and yield high-quality DNA.  Samples from Sweden and The 

Netherlands were preserved and shipped in ethanol soon after collection.  Upon 

arrival, the ovaries from these individuals were dissected and preserved in DMSO.  
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Table 1.1 Collection sites for Ciona species for which COI sequences were 

determined. 

 

 

Species Region/State or Country Site 

# of 

Individuals  

Ciona 

intestinalis  Northeast Pacific/CA Newport Harbor 6 

Type A   Alamitos Bay 2 

    

Santa Barbara 

Harbor 4 

    Half Moon Bay  7 

    Sausalito 1 

  Mediterranean/France Banyuls-sur-Mer 7 

Type B Northwest Atlantic/NH to CT Newcastle 2 

    Gloucester 2 

    Salem 2 

    Beverly 3 

    Winthrop 2 

    Quincy 3 

    Sandwich  1 

    Buzzards Bay 3 

    Woods Hole 4 

    Westport Point  3 

    

Newport 

Shipyard  2 

    Mystic 3 

  Northeast Atlantic/Sweden Fiskebäckskil 8 

  

Northeast Atlantic/The 

Netherlands Breskens  15 

Ciona roulei  Mediterranean/France Banyuls-sur-Mer  6 

Ciona 

savignyi Northeast Pacific/CA San Diego Bay 8 

    Newport Harbor 1 

    

Santa Barbara 

Harbor 3 

    Sausalito 6 

Ciona sp. Mediterranean/France Banyuls-sur-Mer 2 
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Total DNA was extracted from the ovaries using the Qiagen DNeasy
®

 Tissue 

Kit (Qiagen).  Primers to amplify 856 bp of the mitochondrial cytochrome c oxidase  

subunit I (CO1) gene were developed from the consensus sequence of the published C. 

savignyi and C. intestinalis mitochondrial genomes (Consensus F: 

5’GAGTAAGAACTGGRTGRACAGTTTAYCCTCC 3’, Consensus R: 

5’ATTAAAACTTAATCTAGTAAAAAGAGGRRATCAATGG 3’).  PCR 

amplification was performed in a 20-μl total reaction volume with 2 mM MgCl2, 0.2 

mM dNTPs, 2 μl of 10x buffer, 0.2 μM of each primer, 0.8 U of Taq Polymerase 

(Gibco-BRL) and 2 μl of template DNA.  The PCR protocol was as follows: 35 cycles 

(95ºC for 50 s, 48ºC for 1 min and 72 ºC for 1 min) and a final extension step at 72 ºC 

for 7 min, on an OmniGene (Hybaid) thermal cycler.  PCR products (diluted up to 

1:20 depending on the intensity of the PCR band on an agarose gel) were incubated 

with 1μl each of Exonuclease I and Antarctic Phosphatase at 37C for 30 min, 

followed by 90C for 10 min.  The products were purified on Sephadex
®
 columns 

(Sigma-Aldrich).  The purified product was sequenced with a Big Dye Terminator 

Cycle sequencing kit and an ABI-3700 automated sequencer (Applied Biosystems) 

using the primers listed above.  All unique haplotypes (56 sequences) have been 

submitted to GenBank (Accession Numbers EF209056-EF209110).   

 

Alignment 

Sequences were edited and trimmed to 744 bp with SeqMan (DNASTAR) and 

aligned using the Clustal-W algorithm in MEGA 3.1 (Kumar et al. 2004).  Alignments 

were confirmed visually, and no gaps were present in the final alignment.  There is no 

evidence for nuclear pseudogenes in our dataset.  Direct sequencing of PCR products 

yielded clean sequence and no stop codons were found in the inferred amino acid 

sequence. 



 
 

7 

 

Phylogenetic Analysis   

Phylogenetic trees were constructed using Maximum Parsimony (MP), 

Maximum Likelihood (ML), and Neighbor Joining (NJ) methods.  Analyses were 

performed using a data set comprised only of the unique haplotypes (56 sequences).       

 Parsimony analyses were performed using PAUP* 4.0 (Swofford 2003).  Tree 

space was explored using a heuristic search, with 1000 replicates of random stepwise 

addition and TBR branch swapping.  A strict consensus was obtained from this 

heuristic search.  Support was assessed using bootstrap analysis (1000 replicates) with 

10 replicates of random sequence addition for each of the bootstrap replicates.   

 The best-fit model of nucleotide substitution, determined by the hierarchical 

Likelihood Ratio Test in Modeltest 3.7 (Posada & Crandall 1998), was TIM+G.  The 

TIM+G model was used to generate a Maximum Likelihood tree in PAUP* 4.0 

(Swofford 2003).  Bootstrap support was determined with 250 replicates of a heuristic 

search strategy, with an as-is addition sequence and TBR branch swapping.   

 PAUP* 4.0 (Swofford 2003) was also used to perform Neighbor Joining 

analyses.  Distances based on the TIM+G model were used in the analysis, and 

confidence in the tree was assessed using 1000 bootstrap replicates.     

 

Genetic Diversity 

Average p-distances (total number of differences between two sequences 

divided by total length of sequence compared) within and between sites were 

calculated using PAUP* 4.0 (Swofford 2003).  In addition, distances were estimated 

based on the TIM+G model.  The number of haplotypes and haplotype diversity for 

each site were determined using DnaSP 4.10.4 (Rozas et al. 1999). 
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Population Structure 

We characterized population structure within Ciona species and sites using an 

analysis of molecular variance (AMOVA) in Arlequin 3.0 (Schneider et al. 2000).  

Pairwise ΦST values between sites were calculated by AMOVA and p-values were 

obtained by a 110-replicate permutation test.   

  

Results 

  

With the exception of Mediterranean Type A, for which all individuals had the 

same haplotype, haplotype diversities within collection sites of C. intestinalis were 

high, ranging from 0.916 to 0.956 (Table 1.2).  Haplotype diversity was similarly high 

in C. roulei (0.933), and only slightly lower in C. savignyi (0.752).  Analyses based on 

AMOVA suggest that most variation was within sites, and that there was relatively 

little differentiation among sites within a region (Table 1.3; Northeast Pacific Type A 

C. intestinalis ST = -0.073 (p > 0.05), Northwest Atlantic Type B C. intestinalis ST 

= 0.103 (p > 0.05), C. savignyi ST = -0.099 (p > 0.05)).  But within both Type A and 

Type B C. intestinalis, differentiation existed between regions (Table 1.3; Type B ST 

= 0.226 (p < 0.0001), Type A ST = 0.476, (p < 0.002)).    

 In contrast to the limited variation among sites of the same species/type, there 

was substantial differentiation between Type A and B C. intestinalis and between C. 

intestinalis and C. savignyi.  Within C. intestinalis, Type A and B differed in mtDNA 

sequence by ~12%.  C. savignyi exhibited 13.5-16.2% mtDNA sequence divergence 

from either of the other Ciona species (Table 1.4).      

 Maximum Parsimony and Maximum Likelihood methods produced bootstrap 

majority-rule consensus trees with identical topologies.  Both the 50% majority rule  
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Table 1.2 Ciona spp. haplotype diversity (calculated in DnaSP 4.10.4 [Rozas and 

Rozas 1999]) and number of haplotypes in each species or region within species 
 

Species Region 
Haplotype Diversity (± 
SD) 

Number of 
Haplotypes 

C. 

intestinalis  Mediterranean 0 1 
Type A Northeast Pacific 0.916 ± 0.041 11 
Type B Northeast Atlantic  0.937 ± 0.033 14 

  
Northwest 
Atlantic  0.956 ± 0.026 21 

C. roulei   0.933 ± 0.122 5 
C. savignyi   0.752 ± 0.075 5 
Ciona sp.   0 1 
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Table 1.3 Distribution of variation within and among sites and among regions 

resulting from AMOVA tests performed in Arlequin 3.0 (Schneider 2000).                

Regions and sites as in Table 1.1. 

 
Type A C. intestinalis % variation 

  Among regions 45.49 
  Among sites within regions 2.13 
  Within sites 52.38 
      
  Northeast Pacific Type A C. intestinalis % variation 
  Among sites -7.27 
  Within sites 107.27 
      
  Type B C. intestinalis  % variation 
  Among regions 5.37 
  Among sites within regions 17.24 
  Within sites 77.39 
      
  Northwest Atlantic Type B C. intestinalis % variation 
  Among sites 10.27 
  Within sites 89.73 
      
  C. savignyi % variation 
  Among sites -9.91 
  Within sites 109.91 
      
  *Negative covariances can result from an absence of genetic 

structure. 
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Table 1.4 Sequence divergence within and between Ciona species/regions within 

species.  Above the diagonal: divergences corrected using the TIM+G model.  Below 

the diagonal: uncorrected p-distances. 

 

 

Species Region Mediterranean Northeast Pacific Northeast Atlantic Northwest Atlantic C. roulei C. savignyi Ciona sp.

Type A Type A Type B Type B
 C. intestinalis Mediterranean 0.000 0.005 0.199 0.200 0.208 0.267 0.185
Type A Northeast Pacific 0.005 0.005 0.201 0.201 0.210 0.267 0.190
Type B Northeast Atlantic 0.122 0.123 0.006 0.007 0.010 0.324 0.216

Northwest Atlantic  0.123 0.123 0.007 0.007 0.011 0.324 0.214
C. roulei 0.125 0.126 0.010 0.008 0.004 0.328 0.217
C. savignyi 0.136 0.135 0.161 0.161 0.162 0.002 0.276
Ciona sp. 0.108 0.109 0.127 0.125 0.126 0.140 0.000
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Figure 1.1 Bootstrap majority rule Maximum Parsimony tree generated from the 56 

unique  haplotypes found in 107 individuals (106 ingroup sequences and 1 outgroup 

sequence, listed in Materials and Methods).  Numbers along branches indicate 

bootstrap percentages.  Nodes with bootstrap percentages < 50% have been collapsed.  

Numbers in parentheses beside each site refer to the number of individuals sequenced 

from each site.       
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bootstrap MP tree (1000 replicates; Figure 1.1) and the 50% majority rule bootstrap 

ML tree (250 replicates; not shown) support the monophyly of C. savignyi and place it 

sister to a C. intestinalis/C. roulei clade.  The C. intestinalis/C. roulei clade is divided 

into two well-supported sub-clades in both trees (Figure 1.1).  One sub-clade, with 

100% bootstrap support, defines Type A C. intestinalis and includes haplotypes from 

both the Northeast Pacific and the Mediterranean.  A second sub-clade, also with 

100% bootstrap support, includes Type B C. intestinalis from the Northeast and 

Northwest Atlantic, together with C. roulei.  Thus Type B C. intestinalis is 

paraphyletic with respect to C. roulei.  The NJ tree defines the same major clades 

revealed by the MP and ML analyses, and clearly shows that interspecific (or inter-

type) differences dwarf intraspecific differences (Figure 1.2). 

 

Ciona sp. 

Three individuals from Banyuls-sur-Mer Harbor, France, had haplotypes that 

were distinctive from those seen in all other individuals (Table 1.4, Figures 1.1 and 

1.2).  Sequence divergences between these haplotypes and haplotypes found in C. 

intestinalis and C. savignyi ranged from 10.8-14.0% (Table 1.4).  These individuals 

(hereafter referred to as Ciona sp.) were also morphologically distinct from C. 

intestinalis and C. roulei found in Banyuls-sur-mer.  Furthermore, they did not match 

morphological or ecological descriptions of C. edwardsi (the fourth shallow-water 

species) from the region (Copello 1981; Fiala-Medioni 1974).  The tunics of these 

individuals were reddish-orange and opaque, and the body clear.  In contrast, the C. 

roulei individuals had clear tunics and deep red bodies, while C. intestinalis 

individuals (from this region) had clear tunics and milky-white, opaque bodies.  The 

tunics of Ciona sp. were very thin, well-attached, and difficult to remove, in contrast 

to the tunics of C. intestinalis and C. roulei.  The three individuals assigned to Ciona  
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Figure 1.2 Neighbor Joining phylogram generated from the 56 unique haplotypes 

found in 107 individuals (106 ingroup sequences and 1 outgroup sequence, listed in 

Materials and Methods).  Numbers along each branch indicate the number of changes 

along that branch and (in parentheses) the bootstrap percentages.  Bootstrap 

percentages < 50% not shown.  Numbers in parentheses beside each site refer to the 

number of individuals sequenced from each site. 
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sp. were three to four centimeters long fully extended with tunic intact, which was 

considerably smaller than C. intestinalis and C. roulei from this region.  The buccal 

and atrial siphons were proportionally longer compared to those of C. intestinalis and 

C. roulei, and extended half the length of the body.  The atrial siphon had six red 

pigment dots, and the buccal siphon had at least six.  Photos of Ciona sp. have been 

placed on the Dutch Ascidians website: http://www.ascidians.com.              

 

Discussion 

  

Mitochondrial DNA sequence data confirm that C. intestinalis and C. savignyi 

exhibit substantial genetic divergence.  The mtDNA phylogeny also shows C. roulei 

haplotypes to be embedded within and not clearly distinct from haplotypes found in 

Type B C. intestinalis.  Furthermore, Type A and Type B C. intestinalis are exclusive 

groups (Figures 1.1 and 1.2), with sequence divergence that suggests a most recent 

common ancestor in the Pliocene, assuming a molecular clock rate of about 3%
/my

 

(estimated from mitochondrial DNA clocks in three echinoderm genera: (Lessios et al. 

2001; Lessios et al. 1999; McCartney et al. 2000). 

 Suzuki et al. 2005 compared 120 kb of cosmid sequence from British Type B 

C. intestinalis with the whole genome sequence from a Northeast Pacific Type A C. 

intestinalis.  This revealed a broad range of sequence divergence, with predicted 

coding regions showing the least divergence.  Twenty four randomly chosen ESTs 

from British Type B C. intestinalis showed 95.2% average sequence identity to 

orthologues found in the Japanese Type A C. intestinalis cDNA database (Suzuki et 

al. 2005).  Unfortunately, the selection of genomic regions in these analyses does not 

allow comparisons with patterns of divergence in other marine invertebrate taxa, 

because of the difficulty in identifying homologous gene regions.  However, 
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mitochondrial COI data allow us to compare distances between Type A and B C. 

intestinalis to distances between other closely related marine taxa.   

 We searched the literature for studies that estimated amounts of interspecific 

and intraspecific mtDNA COI sequence divergence between congeneric marine 

invertebrate species.  These comparisons used a variety of distance corrections, 

depending on what authors judged to be the most appropriate model of molecular 

evolution.  Only a very few studies provided uncorrected sequence divergence.  We 

calculated an average distance, regardless of correction method.  Based on 464 

comparisons of 101 nominal species of cnidarians, annelids, arthropods, bivalves, and 

echinoderms, the average interspecific divergence is 0.159 ± 0.002 (data from (Arndt 

et al. 1996; Biermann et al. 2003; Bucklin et al. 1999; Hart et al. 1997; Hellberg 1998; 

Hill et al. 2001; Hurtado et al. 2002; Landry et al. 2003; Lessios et al. 1999; 

McCartney et al. 2000; Metz 1998; O'Foighil et al. 1998; Zigler & Lessios 2004; 

Zigler et al. 2003).  The average intraspecific difference is 0.109 ± 0.01, based on 80 

comparisons of 45 nominal species of cnidarians, arthropods, annelids, bivalves, 

echinoderms and urochordates (Ganz & Burton 1995; Edmands et al. 1996; Glover et 

al. 2005; Hart et al. 1997; Hill et al. 2001; Hoeh et al. 1996; Hurtado et al. 2004; Jolly 

et al. 2005; King et al. 1999; Lee 2000; Lessios et al. 1999; Medina et al. 1999; 

O'Foighil et al. 1998; Palumbi et al. 1997; Tarjuelo et al. 2001; Tarjuelo et al. 2004; 

van Syoc 1994).  The average TIM+G corrected distance between Type A and B C. 

intestinalis (0.2, Table 1.4) is twice as high as the average corrected intraspecific 

distance for marine invertebrates, and is even higher than the average corrected 

interspecific distance.  Although the intraspecific comparisons from the literature may 

be biased towards species with substantial differentiation between sites, correcting 

such a bias would only increase the disparity between C. intestinalis and other marine 

invertebrates.  These data highlight the substantial differentiation between Type A and 
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B C. intestinalis compared with intraspecific differentiation in other marine 

invertebrates.       

 Several other lines of evidence also point to substantial differentiation between 

Type A and B C. intestinalis.  Hoshino and Nishikawa (1985) recognized differences 

between C. intestinalis from Naples and Japan (Type A) and the Northeast Atlantic 

(Type B) in the rate of change with growth of the number of inner longitudinal 

vessels.  In addition, British Type B C. intestinalis and Japanese Type A C. intestinalis 

are partially reproductively isolated.  Although crosses between British Type B C. 

intestinalis eggs and Japanese Type A C. intestinalis showed normal fertilization rates 

(as estimated by the frequency of ―normal two-cell stage embryos‖), the reciprocal 

cross yielded many fewer fertilized eggs (Suzuki et al. 2005).   

 Given this genetic, morphological and reproductive evidence, we tentatively 

advocate the separation of C. intestinalis into two species according to the 

phylogenetic species concept.  This cryptic speciation in C. intestinalis is consistent 

with recent studies of other marine taxa in which molecular data uncover cryptic 

species previously hidden by anthropogenic transport or morphological similarity 

(Dawson & Jacobs 2001; Holland et al., 2004).      

 Ciona roulei is not a monophyletic group with respect to mtDNA haplotypes; 

some C. roulei haplotypes are more closely related to Type B C. intestinalis 

haplotypes than to other C. roulei haplotypes.  Crosses between C. roulei and 

Mediterranean Type A C. intestinalis are successful in one direction (Lambert et al. 

1990), leading the authors to suggest that C. roulei and C. intestinalis diverged more 

recently than C. intestinalis and C. savignyi (between which hybrids have not been 

produced).  This distinctness of C. savignyi is strongly supported by the mitochondrial 

COI data.  The position of C. roulei nested within the larger Type B C. intestinalis 

clade suggests that C. roulei was recently derived from Type B C. intestinalis.  
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Phylogenetic analyses lend support to a hypothesis that Northeast Atlantic Type B C. 

intestinalis individuals moved into the Mediterranean Sea, where they diverged from 

the ancestral Type B C. intestinalis, giving rise to C. roulei. Reproductive 

compatibility between C. roulei and Type B C. intestinalis has not been investigated; 

successful crosses between C. roulei and Type B C. intestinalis would reinforce the 

Northeast Atlantic origin of C. roulei’s ancestors.  

 The substantial intraspecific divergence in C. intestinalis, the placement of C. 

roulei within the Type B C. intestinalis clade, and the phylogenetically distinct Ciona 

sp. highlight the evolutionary and taxonomic ambiguities within the genus Ciona.  

Type A and B C. intestinalis are 12% divergent at the mitochondrial COI locus, and 

yet they exhibit partial reproductive compatibility.  These two types are sympatric in 

southern England, and exhibit pre-zygotic reproductive isolation at this site (P. 

Sordino, personal communication).  Similarly, mtDNA COI sequences differ by 

12.5% between the sympatric C. roulei and Mediterranean Type A C. intestinalis, but 

viable F1 hybrids are produced from one of the two reciprocal crosses.  Although they 

occur along the same coastline, this pair of species may be ecologically isolated.  

Nothing is known about reproductive isolation between C. roulei and Type B C. 

intestinalis.  Differences in compatibility between individuals from allopatric and 

sympatric sites of these two species will help clarify the evolutionary processes 

generating reproductive isolation in Ciona.  

 While successful crosses between other pairs of ascidian species have been 

well documented in the laboratory (Jeffery & Swalla 1990; Lambert et al. 1981), 

hybrids between species have never been identified in nature.  This lack of natural 

hybridization suggests that pre-zygotic isolating mechanisms may have a large role in 

the maintenance of reproductive isolation in ascidians.  Even so, genetically distinct 

ascidian species such as C. intestinalis and C. savignyi have been confused historically 
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(Hoshino & Nishikawa 1985), raising the possibility that hybrids could be 

morphologically cryptic as well.  These uncertainties necessitate further study of 

species level relationships within Ciona in the context of improved understanding of 

intrinsic barriers to gene exchange.   
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CHAPTER 2 

 

POLYMORPHISM AND DIVERGENCE WITHIN THE ASCIDIAN GENUS 

CIONA 

Abstract 

The genus Ciona, a widely distributed group of solitary ascidians, has long 

been an important model in embryology and developmental biology.  Ciona has also 

recently attracted the attention of evolutionary biologists because of the remarkably 

high levels of heterozygosity found within single individuals.  Surprisingly, 

genealogical relationships in Ciona have received little attention.  Here, we expand 

our knowledge of relationships among the members of the Ciona genus and estimate 

levels of polymorphism in natural populations. 

 Previous studies have documented the outgroup status of Ciona savignyi 

among the shallow water Ciona and revealed the existence of two distinct forms 

(Types A and B) of the widespread C. intestinalis. Here, using gene genealogies of six 

nuclear gene loci, we show Type A and B to be well-supported monophyletic groups.  

In spite of their morphological similarity, Type A vs. Type B divergences range from 

0.035 to 0.124.  In contrast, the morphologically distinct C. roulei is embedded within 

Type B in all genealogies, and a new species, Ciona sp., appears to be associated with 

Type B/C. roulei to the exclusion of Type A.  Levels of polymorphism in natural 

populations are similar to levels reported in other organisms that are considered to be 

highly polymorphic.   

    

Introduction 

 The genus Ciona, a widely distributed group of solitary ascidians, has been of 
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interest to biologists for over a century, largely because two of its members, Ciona 

intestinalis (Linne 1767) and Ciona savignyi (Herdman 1882) are model organisms in 

developmental biology and embryology.  Recently published genome sequences of 

both species (Dehal et al. 2002; Vinson et al. 2005) have increased the utility of these 

species as models in developmental biology and have also attracted the attention of 

population geneticists because of the remarkably high levels of heterozygosity found 

within the single individuals for which whole genome sequences have been produced.  

Allelic polymorphism across the entire genome in C. intestinalis is 1.2% (including 

both Single Nucleotide Polymorphisms (SNPs) and insertion/deletions) (Dehal et al. 

2002).  This level of polymorphism is fifteen times that of Homo sapiens (Dehal et al. 

2002) and three times that of the Japanese puffer fish, Fugu rubripes, which has been 

described as having a high level of polymorphism (Aparicio et al. 2002; Dehal et al. 

2002).  The average genome-wide SNP heterozygosity in C. savignyi, again based on 

a single individual, is 4.5% (Small et al. 2007).   

 Surprisingly, given the prominence and utility of these ascidians as models, 

genealogical and phylogenetic relationships within and among Ciona species have 

received little attention.  As we uncover the evolutionary history of these species, our 

understanding of the complexity of this group continues to increase. 

 For example, it is now evident that C. intestinalis comprises two distinct, 

highly divergent entities (Suzuki et al. 2005; Caputi et al. 2007; Nydam & Harrison 

2007).  Type A C. intestinalis (the type for which the genome sequence is available), 

is thought to be native to the Northwest Pacific Ocean and is now found throughout 

the Pacific Ocean, the Mediterranean Sea, the Atlantic coast of South Africa, and the 

Black Sea (Van Name 1945; Kott 1952).  Type B C. intestinalis, originally described 

by Linnaeus from the North Atlantic Ocean (Linne 1767), is found in the Western 

Atlantic Ocean (Nydam & Harrison 2007).  The two types are ~12% divergent at the 



 
 

31 

mitochondrial COI gene (cytochrome oxidase I, uncorrected p-distance, (Nydam & 

Harrison, 2007)).   

 A third taxon, Ciona roulei (Lahille 1887), is endemic to the Northwestern 

Mediterranean Sea, having been found at five locations along the French coast, near 

the Spanish border (Harant & Vernieres 1933; Fiala-Medioni 1974).  This species is 

morphologically distinct from all other Ciona species (Harant & Vernieres, 1933).  In 

a mtCOI tree, C. roulei is embedded within Type B, i.e. Type B is paraphyletic with 

respect to C. roulei (Nydam & Harrison 2007). 

 In a previous study (Nydam & Harrison 2007), three morphologically distinct 

individuals (Ciona sp.) were collected from a depth of <5 meters in Banyuls harbor, 

southern France.  These individuals were determined to be genetically distinct from all 

other Ciona species based on mtCOI sequence data (10.9 and 12.6% uncorrected p-

distance from Type A and Type B, respectively) (Nydam & Harrison 2007).  

However, the phylogenetic placement of Ciona sp. within the Ciona genus remained 

unresolved using this single marker. 

 A fourth species among the shallow-water Ciona species is C. savignyi, which 

was first described from the Western Pacific Ocean (Herdman 1882) and subsequently 

invaded the Eastern Pacific Ocean (Hoshino & Nishikawa, 1985).  Based on mtCOI 

sequencing, C. savignyi is a well supported monophyletic group that occupies a basal 

position in the phylogeny as a sister group to the C. intestinalis/C. roulei/C. sp clade 

(Nydam & Harrison 2007).   

 While the relationships in the mtCOI tree are well supported, inferences of 

phylogenetic relationships from a single marker should not be considered definitive.  

A genealogy from a single locus reflects the particular evolutionary history of that 

locus, which may not be the evolutionary history of the genome as a whole (Maddison 

1997; Nichols 2001).  Therefore, multiple markers need to be examined to construct a 
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species phylogeny with more confidence.   

 In the present study, we examine patterns of genetic variation within and 

among the shallow water members of the genus Ciona. Gene genealogies based on six 

nuclear loci allow us to determine whether patterns revealed by mtCOI are consistent 

across the nuclear genome; we focus on the distinctness of the two types of C. 

intestinalis, the paraphyly of Type B with respect to C. roulei, and the uncertain 

relationship between Ciona sp. and its congeners.  We also estimate polymorphism in 

population samples of Type A and B C. intestinalis and in C. roulei for each of the six 

nuclear loci and compare these with estimates for Ciona from whole genome 

sequences and with levels of heterozygosity in natural populations of other taxa. 

 

Materials and Methods 

 

DNA extraction, amplification and sequencing  

 Ovaries were dissected from freshly-collected individuals, cut into several 

pieces, immediately preserved in DMSO (dimethyl sulfoxide), and ultimately (within 

12 d) stored at -80°C until needed.  We use ovaries as they are accessible by simple 

dissection and ovary tissue is easily lysed for DNA extraction.  Samples from Sweden 

and The Netherlands were preserved and shipped in ethanol soon after collection.  

Upon arrival, the ovaries from these individuals were dissected and preserved in 

DMSO.  Total DNA was extracted from the ovaries using the Qiagen DNeasy
®

 Tissue 

Kit (Qiagen Corporation, Santa Clarita, CA).   

 To provide a mitochondrial COI tree that reflects a better sample of the 

geographic range of the Ciona species, we sequenced thirteen C. intestinalis (from 

Japan and the English Channel) and 7 C. savignyi individuals (from Japan) and added 

these sequences to the mitochondrial COI data matrix used previously (Nydam & 
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Harrison 2007).  The nuclear gene genealogies each included a 22-individual subset of 

the individuals present in the mtCOI tree plus 10 additional C. intestinalis samples 

from the southern UK, northern France and Japan (Table 2.1).  A C. savignyi 

individual from the Eastern Pacific Ocean served as the outgroup individual for each 

nuclear genealogy.   

 Approximately 1 kilobase from each of six nuclear genes was amplified using 

primers developed from the published Type A genome sequence.  The genes are: 

Vesicular acetylcholine transporter (vAChTP), Cellulose synthase (CiCesA), 

Fibroblast Growth Factor orthologous to vertebrate Fibroblast Growth Factor 4/5/6 

(Ci-Fgf4/5/6), Forkhead (Ci-fkh) (5’ regulatory region), Jade (jade) and Patched (Ci-

Patched).  Loci were selected to represent a range of polymorphism, based on aligning 

whole genome shotgun reads from the Type A genome.  This was done so that the six 

loci could be used for genealogical analyses, as well as for analyses of levels of 

polymorphism.  Four of the loci were considered to have ―low‖ levels of 

polymorphism: (vAChTP, CiCesA, Ci-fkh, and Ci-Patched), and two were considered 

to have ―high‖ levels of polymorphism (Ci-Fgf4/5/6 and jade).  For Ci-Fgf4/5/6 and 

jade, primers developed from Type A individuals did not consistently amplify Type B 

individuals; Type B individuals were amplified and sequenced using specific primers 

developed from preliminary sequences of several Type B individuals.  Ciona sp. and 

C. savignyi-specific primers were also developed for several loci.   Sequences from 

three of the loci (vAChTP, CiCesA, jade) include both coding and noncoding regions, 

whereas sequences from Ci-Fgf4/5/6, Ci-fkh, Ci-Patched are entirely noncoding 

(Table 2.2). Primer sequences and thermocycling conditions for the six nuclear loci 

are available from the authors.  Primers and PCR amplification conditions for the  
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Table 2.1 Collection sites for Ciona species  
 

Species Region/State or Country Site 
# of 
Individuals  

Ciona 

intestinalis  Northwest Pacific/Japan Morotsu 1 
Type A   Nishiura 1 
    Onagawa 1 
    Shikoku Island 1 
    Yokohama 1 
  Northeast Pacific/CA Newport Harbor 1 
    Alamitos Bay 1 

    
Santa Barbara 
Harbor 1 

    Half Moon Bay  1 
    Sausalito 1 

  
English Channel/United 
Kingdom Falmouth 1 

    Plymouth 1 
  Mediterranean/France Banyuls-sur-Mer 2 
Type B Northwest Atlantic/NH to CT Newcastle 1 

 
  Gloucester 1 

    Winthrop 1 
    Mystic 1 
  Northeast Atlantic/Sweden Fiskebäckskil 3 

  
Northeast Atlantic/The 
Netherlands Breskens  3 

  
English Channel/United 
Kingdom Falmouth 1 

    Plymouth 1 
  English Channel/France Granville 1 
Ciona roulei  Mediterranean/France Banyuls-sur-Mer  3 
Ciona sp. Mediterranean/France Banyuls-sur-Mer 2 
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Table 2.2: Percent of noncoding sequence for each gene 
       

  
vAChT

P 

CiCes

A 

Ci-

Fgf4/5/6 

Ci-

fkh 

jad

e 

Ci-

Patched 

Type A C. intestinalis 19 31 100 100 77 100 
Type B C. intestinalis/Ciona 

roulei 19 52 100 100 91 100 
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mtCOI sequences have been published previously (Nydam & Harrison 2007).   

 PCR amplification of nuclear genes was performed in a 10-μl total reaction  

volume with 2 mM MgCl2, 0.2 mM dNTPs, 1 μl of 10x buffer (50mM KCl, 20mM 

Tris (pH 8.4)), 0.2 μM of each primer, 0.08 U of Taq Polymerase (Gibco-BRL) and 1 

μl of template DNA.  To obtain clean sequence data, cloning of PCR products was 

necessary for the Ci-Fgf4/5/6 and jade loci and for certain individuals at the other 

nuclear loci. Cloning was performed using a pGEM
®
-T kit (Promega Corporation, 

Madison, WI).  PCR products (obtained directly from DNA or from clones) were 

incubated with 0.25μl each of Exonuclease I and Shrimp Antarctic Phosphatase at 

37C for 30 min, followed by 90C for 10 min.  The products were purified on 

Sephadex
®
 columns (Sigma-Aldrich).  The purified product was sequenced with a Big 

Dye Terminator Cycle sequencing kit and an Automated 3730 DNA Analyzer 

(Applied Biosystems) using the primers listed above.  All unique haplotypes have 

been submitted to GenBank (Accession Numbers XXX-XXX).  Sequences were 

edited, trimmed and aligned with Aligner (CodonCode Corporation, Dedham, MA).     

 

Analyses 

 We examined each locus for evidence of intragenic recombination, calculating 

the minimum number of recombination events (Rm) in DnaSP 5.0 (Rozas et al. 2003).  

For each locus, we used 1,000 replicate coalescent simulations in DnaSP 5.0 to obtain 

a confidence interval for the Rm value and a probability that the true Rm is less than or 

equal to the observed Rm.    

 For each locus which showed evidence of intragenic recombination we created 

recombination networks in the program SplitsTree4 (Huson & Bryant 2006).  

Phylogenetic trees were constructed using Maximum Likelihood (ML) and Bayesian 

inference, for each locus alone, and for all loci concatenated.  Analyses for each locus 
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were performed using a data set composed only of the unique haplotypes.  While we 

are aware that ML and Bayesian methods may not be entirely appropriate for loci 

showing evidence of intragenic recombination, it is only by using these methods that 

we can assess confidence in the topologies.    

 The best-scoring ML tree for each locus/concatenated loci and bootstrap 

support for each node on this tree were obtained using the program RAxML v. 7.0.0 

on the CIPRES web portal (Stamatakis et al. 2008).  The GTR+G likelihood model of 

nucleotide substitution was used in all analyses (General Time Reversible + Gamma 

Rate Distribution, RAxML only supports GTR-based models of nucleotide 

substitution).  The concatenated data set was partitioned by locus, so α-shape 

parameters, GTR-rates, and base frequencies were estimated separately for each locus.  

All nodes with less than <50% support were then collapsed using TreeView 1.6.6 

(Page 1996). 

 Bayesian analyses were performed with MrBayes 3.1.2 (Ronquist & 

Huelsenbeck 2003).  The GTR+G model of nucleotide substitution was applied to all 

data sets (Nset = 6) so that Bayesian trees could be compared to ML trees.  In the 

concatenated data set, data were partitioned and the parameters for each locus (α-

shape, GTR-rates, and base frequencies) were determined independently.  Each 

analysis was run for 10 million generations, with sampling every 1000 generations.  

The first 2,000 trees were eliminated as burn-in and a 50% majority-rule consensus 

tree was created from the remaining 8,000 trees using PAUP*4.0
 
(Swofford 2003).  

The MrBayes runs were carried out using the resources of the Computational Biology 

Service Unit at Cornell University which is partially funded by the Microsoft 

Corporation.   

 P-distances (the proportion of nucleotide sites that differ between two 

sequences) were calculated for every Type A vs. Type B combination; average p-
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distance between the two types was then calculated in MEGA 4.0 (Tamura et al. 

2007).  Both uncorrected p-distances and p-distances corrected for the locus-specific 

best likelihood model of nucleotide substitution (as determined by AIC (Akaike 

Information Criterion) in Modeltest 3.7 (Posada & Crandall 1998) were calculated.  

Additionally, the number of net nucleotide substitutions per site between Type A and 

B (Da) was calculated for each locus in DnaSP 5.0 (Rozas et al. 2003) in order to 

correct for within-type variation (Nei 1987). 

 We tested the position of C. roulei within the Type B clade by obtaining two 

best-scoring ML trees in RAxML using the GTR+G model for each gene (Stamatakis 

et al. 2008).  One tree was constrained by Type B monophyly, the other by C. roulei 

monophyly.  The likelihood of each constraint tree was compared to the unconstrained 

ML tree using the Shimodaira-Hasegawa (S-H) test in PAUP*4.0 (Swofford 2003) 

with 10,000 resampling estimated log-likelihood (RELL) bootstrap replicates under a 

GTR+G model.  These tests could not be performed for vAChTP because Type B and 

C. roulei individuals shared haplotypes, and for Ci-Fgf4/5/6 in the case of C. roulei 

monophyly because only 1 C. roulei individual was sequenced for Ci-Fgf4/5/6.    

 Similar methodology was used to investigate the placement of Ciona sp. within 

each genealogy, with a best-scoring ML tree produced under the constraint that Type 

B/C. roulei and Ciona sp. formed a monophyletic group, to the exclusion of Type A.  

 We calculated two measures of nucleotide polymorphism within Type A, Type 

B and C. roulei: nucleotide diversity (π) and theta (4Neμ) estimated from segregating 

sites (θw) using DnaSP 5.0 (Rozas et al. 2003). 

 

Results 

  

Significant levels of intragenic recombination were detected at five of the six  
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Table 2.3: Intragenic recombination, measured as Rm (minimum # of         

recombination events) 

 
  vAChTP CiCesA Ci-Fgf4/5/6 Ci-fkh jade Ci-Patched 

Type A   0 0 4 2 7 5 
Type B   0 6 19 18 21 18 
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Figure 2.1 Recombination networks for CiCesA, Ci-Fgf4/5/6 and jade.  The scale bar 

in upper left hand corner of each network is proportional to the amount of molecular 

difference between the groups.    
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loci (Table 2.3), with Type B showing more recombination than Type A for all loci.  

The average minimum number of recombination events (Rm) across all six loci was 3 

for Type A and 13.67 for Type B.  Recombination networks created in SplitsTree4 

(Huson & Bryant 2006) revealed Types A and B within C. intestinalis to be very 

distinct, with C. roulei embedded within Type B (Figure 2.1).  Because SplitsTree4 

(Huson & Bryant 2006) was unable to create recombination networks when all 

variable sites were included for Ci-fkh and Ci-Patched and when no recombination 

events were detected in vAChTP, only recombination networks for CiCesA, Ci-

Fgf4/5/6 and jade are shown in Figure 2.1.       

 The published mtCOI genealogy for the genus Ciona revealed Type A and 

Type B individuals as members of two distinct and well-supported clades (100% 

bootstrap support for each) (Nydam & Harrison 2007).  This result, including the 

100% bootstrap support for these clades, also holds in the updated mtCOI tree, which 

includes 13 new C. intestinalis individuals from Japan and the English Channel (tree 

not shown).  The reciprocal monophyly of Type A and B is also evident when we use 

ML or Bayesian approaches to construct nuclear gene trees: either the Type A clade, 

the Type B clade, or both the Type A and B clades are well supported although we 

acknowledge Bayesian posterior probabilities are often high (Figure 2.2).  There are 

no instances in which a Type A individual is found in a Type B clade, or vice versa 

(Figure 2.1 and 2.2).          

 Among the nuclear gene loci, divergence estimates between the Type A and 

Type B groups varied by locus, from 0.035 for vAChTP to 0.116 for Ci-Fgf4/5/6 

(Table 2.4, uncorrected p-distances).  Corrected p-distances ranged from 0.039 for 
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Figure 2.2 50% majority-rule consensus trees created in PAUP*4.0 from trees 

obtained by MrBayes 3.1.2.  Values on the branches are Bayesian posterior 

probabilities.  Nodes with a posterior probability value less than 50 were collapsed.  

The outgroup is Ciona savignyi. 
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Table 2.4 Uncorrected and corrected p-distances and Da between each C. intestinalis 

type and between each C. intestinalis type and Ciona sp. Uncorrected p-distance is the 

proportion of nucleotide sites that differ between two sequences, and corrected p-

distance is adjusted by taking the locus-specific best likelihood model of nucleotide 

substitution into account.  Da is the number of net nucleotide substitutions per site 

between species. 

 

 

Species vAChTP CiCesA Ci-Fgf4/5/6 Ci-fkh jade Ci-Patched mtCOI

Type A vs. Type B Uncorrected p-distance 0.035 0.077 0.116 0.051 0.113 0.077 0.124
Corrected p-distance 0.039 0.092 0.151 0.055 0.139 0.081 0.156
Da 0.035 0.072 0.09 0.029 0.08 0.051 0.102

Type A C. intestinalis vs. Ciona  sp. Uncorrected p-distance 0.191 0.079 0.019 0.184 0.125 0.241 0.109
Corrected p-distance 0.413 0.104 0.024 0.307 0.161 0.388 0.187
Da 0.193 0.085 0.015 0.193 0.129 0.229 0.099

Type B C. intestinalis/C. roulei vs. Ciona sp. Uncorrected p-distance 0.177 0.014 0.115 0.176 0.069 0.229 0.125
Corrected p-distance 0.35 0.015 0.094 0.286 0.081 0.358 0.232
Da 0.184 0.007 0.097 0.176 0.03 0.207 0.121
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vAChTP to 0.151 for Ci-Fgf4/5/6; Da varied from 0.029 for Ci-fkh to 0.09 for Ci-

Fgf4/5/6 (Table 2.4).  In all trees and networks, Type B is consistently paraphyletic 

with respect to C. roulei, a pattern which was evident in the original mtCOI tree 

(Nydam & Harrison 2007).  Where multiple C. roulei individuals are included (all 

trees or networks except those for Ci-Fgf4/5/6), these individuals never form a 

monophyletic group within the Type B clade (Figure 2.1).  The S-H tests found no 

statistical differences for any of the genes between the unconstrained tree and the tree 

constrained by Type B monophyly (p > 0.05), (CiCesA: p = 0.1828, Ci-Fgf4/5/6: p = 

0.4595, Ci-fkh: p = 0.4393, jade: p = 0.4989, mtCOI: p = 0.4636, Ci-Patched: p = 

0.4675).  The S-H test also found no statistical differences between the unconstrained 

tree and the tree constrained by C. roulei monophyly for three genes (p > 0.05), (Ci-

fkh: p = 0.1333, mtCOI: p = 0.4944, Ci-Patched: p = 0.3529).  However, two of the 

genes showed a significantly better likelihood score for the unconstrained tree than the 

tree constrained by C. roulei monophyly (p > 0.05), (CiCesA: p = 0.0309, jade: p = < 

0.001).    

 Using only the mtCOI marker, the relationship of Ciona sp. to its congeners is 

not clearly defined; MP and ML methods are unable to resolve the relationships 

among Ciona sp., Type A and Type B/C. roulei, whereas NJ methods placed Ciona 

sp. as sister to the C. intestinalis clade (Nydam & Harrison 2007).  In the nuclear gene 

trees, where Ciona sp. individuals can be associated with one type or the other, they 

are always associated with Type B, except the Ci-Fgf4/5/6 tree where Ciona sp. is in 

the Type A clade (Figure 2.1; ML trees are not shown).  Divergence estimates are 

smaller for Type B vs. Ciona sp. than for Type A vs. Ciona sp. for all loci except Ci-

Fgf4/5/6 and mtCOI (Table 2.4). 

 In order to assess support for defined topologies with respect to placement of 

Ciona sp., we compared the unconstrained best-scoring ML tree for each locus to the 
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best-scoring tree constrained by Type B/C. roulei/Ciona sp. monophyly.  For four of 

the loci, the unconstrained tree was not significantly different from the constrained 

tree (p > 0.05), (vAChTP: p = 0.3167, CiCesA: p = 0.1323, Ci-Fgf4/5/6: p = 0.2684, 

Ci-fkh: p = 0.4369).  For the remaining three loci (jade, mtCOI, Ci-Patched), the 

unconstrained tree was significantly better supported than the constrained tree (p < 

0.05), (jade: p = 0.0304, mtCOI: p = 0.000, Ci-Patched: p = 0.0411). 

 The concatenated data set gave a different result (with respect to the placement 

of Ciona sp.) using ML and Bayesian algorithms.  In ML analysis Ciona sp. is a clade 

distinct from the well-supported Type A and Type B/C. roulei clades; but 

relationships among these clades cannot be resolved (Figure 2.3a).  However, in the 

Bayesian analysis, Type B/C. roulei/Ciona sp. form a well-supported monophyletic 

group, as does Type A (Figure 2.3b).  Each of the loci used in the concatenated data 

set have a substantial number of phylogenetically informative sites, so we view these 

concatenated trees as the product of information assembled from across the genome, 

rather than from one or two dominant loci.   

 The π values averaged across all six nuclear loci are 0.0094 (Type A), 0.0361 

(Type B), and 0.0324 (C. roulei).  The θw values are 0.0104 (Type A), 0.0388 (Type 

B), and 0.03 (C. roulei).  Levels of polymorphism were highly variable across the six 

nuclear loci (Table 2.5).  The two loci determined to have high level of heterozygosity 

in the Type A genome (Ci-Fgf/4/5/6 and jade) had the highest π and θw values for 

nearly all loci and species.   

 

Discussion 

 

Relationships within Ciona: molecules and morphology 

 Our data suggest that levels of morphological and molecular differentiation are  
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Figure 2.3 Trees obtained from concatenating the seven loci into one data set.  The 

outgroup is Ciona savignyi.  a) Maximum Likelihood: The best-scoring ML tree was 

obtained using the program RAxML v. 7.0.0.  Values on the branches are bootstrap 

values.  All nodes with less than <50% support collapsed.  b) Bayesian: 50% majority-

rule consensus trees created in PAUP*4.0 from trees obtained by MrBayes 3.1.2.  

Values on the branches are Bayesian posterior probabilities.  Those nodes with a 

posterior probability value less than 50 were collapsed.
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Table 2.5: Polymorphism within each species.  Polymorphism is measured by π, 

nucleotide diversity, calculated as the weighted average of the proportion of 

nucleotide differences among all sequences in the population, and Θw, (4Neμ) 

calculated from the number of segregating sites. 

 

Species Measure vAChTP CiCesA 

Ci-

Fgf4/5/6 Ci-fkh jade 

Ci-

Patched 

Type A π   0.0027 0.0024 0.0097 0.0070 0.0225 0.0130 

  Θw 0.0023 0.0029 0.0117 0.0094 0.0220 0.0164 
Type B π   0.0006 0.0340 0.0460 0.0382 0.0616 0.0363 

  Θw 0.0009 0.0488 0.0446 0.0473 0.0529 0.0382 
C. roulei π   0.0009 0.0190 NA* 0.0343 0.0811 0.0266 

  Θw 0.0009 0.0185 NA* 0.0343 0.0699 0.0266 

 

* Only one C. roulei individual was sequenced for Ci-Fgf4/5/6 
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not correlated within the shallow-water Ciona species.  Morphologically similar 

entities (Type A and Type B) are highly differentiated at all loci examined, whereas 

morphologically distinct "species" (C. roulei and Type B) cannot be distinguished 

based on the seven loci we surveyed.  Indeed, C. roulei is always embedded within 

Type B and never forms a monophyletic group within the Type B clade for any of the 

loci used. 

 Previous workers have always considered C. roulei morphologically distinct 

from C. intestinalis (Lahille 1890; Harant & Vernieres 1933; Fiala-Medioni 1974; 

Lambert et al. 1990).  Harant & Vernieres (1933) and Lahille (1890) compared C. 

roulei to sympatric C. intestinalis (Type A) using multiple individuals from several 

populations of each species; these studies remain the only detailed morphological 

descriptions of C. roulei (Lahille 1890; Harant & Vernieres 1933).  Although several 

of these distinguishing traits are variable within C. intestinalis, these variations do not 

overlap with C. roulei’s phenotype.  For instance, C. pulchella, (subsequently 

synonymized with C. intestinalis (Hoshino & Nishikawa 1985)), from Devon, 

Cornwall and Guernsey (English Channel coast) was described as a new species 

distinct from C. intestinalis owing in part to its coloration (reddish, pale yellow or 

hyaline white) (Alder & Hancock 1907).  The coloration of this morph is distinct from 

C. roulei, however (personal observation; Lahille 1890; Harant & Vernieres 1933).  A 

orange morph of Type B was also described by Millar (Millar 1953), but this morph 

has little or no pigment in the transverse bars of the branchial sac (Millar 1953), 

whereas the reddish coloration of C. roulei is due to pigment in the peribranchial and 

transverse vessels of the branchial sac (Lahille 1890). Likewise, the tunic of C. 

intestinalis has been described as both ―smooth and soft‖ (Alder & Hancock 1907) and 

―wrinkled‖ (Harant & Vernieres 1933); the tunic morphology of C. intestinalis varies 

with location, habitat and depth (personal observation).  But C. roulei’s tunic is 
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consistently smooth (personal observation; Lahille 1890; Harant & Vernieres 1933).   

 Although these morphological differences were based on comparisons with 

Type A, the two types of C. intestinalis are extremely similar morphologically.  In 

fact, they were not distinguished at all before molecular data became available, despite 

a thorough anatomical study of two populations of each type (Hoshino & Nishikawa 

1985).  Furthermore, the few traits by which they may differ are not the same traits 

that differentiate C. roulei and Type A (Caputi et al. 2007).  Therefore, the 

morphological traits that separate Type A and C. roulei must also separate Type B and 

C. roulei.   

 Because Ciona roulei and Type B are genetically inseparable yet 

morphologically distinct, genetic and morphological data conflict with regard to 

whether C. roulei should be considered a species separate from Type B.  According to 

the Biological Species Concept, the inability of two taxa to interbreed confers species 

status on both taxa, regardless of genetic similarity (Mayr 1995).  Therefore, the 

presence of reproductive incompatibilities would enable us to label C. roulei as a 

species distinct from Type B.  While we know that sympatric C. roulei and Type A are 

incompatible in one direction (Lambert et al. 1990), compatibility between the 

allopatric C. roulei and Type B has not been determined as C. roulei is now difficult to 

obtain. Without data on reproductive isolation between these two types, we have no 

clear evidence supporting species status for C. roulei.   

 The only evidence for the distinctness of C. roulei and Type B lies in their 

morphological differences, as several genetic observations fail to discriminate these 

two taxa.  First, for all the loci for which multiple C. roulei individuals were 

sequenced, haplotypes found in C. roulei are interspersed in the Type B clade (i.e. 

some haplotypes of C. roulei are more similar to Type B haplotypes than to other C. 

roulei haplotypes).  At one locus, vaChTP, Type B and C. roulei even share 
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haplotypes.  Second, at two of five loci tested, an unconstrained tree had a statistically 

better likelihood than a tree constrained by C. roulei monophyly.  Therefore, it is 

likely that C. roulei is recently derived from Type B individuals that invaded the 

Mediterranean Sea. It is possible that the observed morphological differences might 

reflect the new environmental conditions encountered in the Mediterranean Sea.  

Without additional data, we cannot distinguish between scenarios in which these 

differences represent genetic changes in response to a new selection regime and 

scenarios that involve direct responses to the environment (phenotypic plasticity).   

 Ciona sp., which is found in the Mediterranean Sea, appears to be more closely 

related to Type B than Type A.  However, while six loci result in trees in which Ciona 

sp. is associated with Type B rather than Type A, the S-H tests show that only four 

loci provide significant support for an association of Ciona sp. with Type B/C. roulei 

rather than as sister to a C. intestinalis/C. roulei clade. Trees based on the 

concatenated data give different results depending on which tree-building algorithm is 

used.  Therefore, our results lead us to support an association of Ciona sp. with Type 

B/C. roulei to the exclusion of Type A. However, analyses that include additional 

Ciona sp. individuals and additional loci are necessary to resolve these relationships.     

 The morphology of Ciona sp. is distinct from that of Ciona located in this 

region (for a description see (Nydam & Harrison 2007), including Ciona edwardsi 

(Roule, 1886), a species which is extremely rare (Copello 1981), and for which 

specimens could not be obtained.  In the case of Ciona sp., genetic and morphological 

data agree that this species is distinct from other Ciona, although no data are available 

on reproductive compatibilities between this species and other Ciona species.    

 

Levels of polymorphism 

 Based on whole-genome annotation and analyses from single individuals, both 
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Ciona intestinalis and C. savignyi have previously been shown to have very high 

levels of single-nucleotide polymorphisms, but levels of heterozygosity vary widely 

across the genome (Dehal et al. 2002; Small et al. 2007).  Indeed, it was argued (Small 

et al. 2007) that C. savignyi harbors the highest levels of SNP variation in a multi-

cellular organism.  In Ciona, high levels of variation have been attributed to large 

effective population size.  This explanation has been proposed not only for sea squirts 

but also for the Pacific oyster, Crassostrea gigas, (Sauvage et al. 2007) and the 

nematode Caenorhabditis remanei (Cutter et al. 2006). 

 For the loci Ci-Fgf4/5/6, Ci-fkh and Ci-Patched, the sequences we obtained are 

entirely noncoding, so we can compare π for these three loci to π for noncoding sites 

in the oyster and nematode loci.  Average π values across loci are 0.038 in oysters 

(Sauvage et al. 2007) and 0.051 in nematodes (Cutter et al. 2006), whereas averages 

for Type A, Type B, and C. roulei are 0.01, 0.04 and 0.03.  θw values are also similar 

between nematodes and Ciona for noncoding sites (not calculated for oysters).  

 The variability in amounts of population-level polymorphism for all three 

Ciona "species" among the six nuclear loci examined in this paper confirms the pattern 

seen in the single Type A individual from which genome sequence was obtained. Not 

only is this variability also present in populations of Type B and C. roulei, but levels 

of diversity in these taxa are substantially higher than in Type A at all six loci.   

 We cannot currently explain the difference in polymorphism between Type A 

and B C. intestinalis.  Available evidence does not support the notion that differences 

in current effective population size can explain the remarkable amount of variation 

found in Ciona intestinalis.  Type A, as a cosmopolitan species, likely has a larger 

effective population size than the geographically restricted Type B.  And although a 

larger number of Type A than Type B populations are invasive and may have 

experienced a reduction of genetic diversity, the analysis of Boffelli et al. shows both 
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native and invasive Type B populations with much higher heterozygosity than either 

invasive or native Type A populations (2004).     

 Levels of polymorphism in C. roulei are similar to those in Type B, even 

though the C. roulei estimates were obtained from only 2-3 individuals, whereas Type 

B estimates were obtained from 11-13 individuals.  Given the paraphyly of Type B 

with respect to C. roulei, we previously proposed a scenario in which Type B 

individuals invaded the Mediterranean Sea from the North Atlantic Ocean (Nydam & 

Harrison 2007).  This invasion must have occurred relatively recently, given that C. 

roulei haplotypes are embedded within Type B haplotypes.  Although the signature of 

a bottleneck may be obscured by population expansion, the current diversity of C. 

roulei does not support the idea that the ancestors of this species suffered a substantial 

reduction in genetic diversity due to a bottleneck effect when entering the 

Mediterranean Sea. 

The genus Ciona provides an excellent system for investigating the evolution 

of molecules and morphology.  Ciona species pairs represent the entire range of 

possible combinations of morphological and genetic divergence.  Type A and B are 

cryptic species: divergent at the DNA sequence level but morphologically nearly 

identical.  Discovery of cryptic species in the marine environment is accelerating with 

the widespread use of molecular tools; examining the biology of existing cryptic 

species will allow us to understand how and why substantial molecular divergence has 

evolved without concomitant morphological change.  In contrast, Type B and C. 

roulei are genetically indistinguishable but morphologically divergent.  This species 

pair provides an opportunity to address questions in evolutionary ecology related to 

local adaptation and phenotypic plasticity.  Finally, Ciona sp. is both morphologically 

and molecularly distinct from all other Ciona spp.  The discovery of a previously 

unknown and morphologically distinct Ciona species in a harbor immediately adjacent 
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to a marine laboratory highlights how little is known about a genus that includes 

important model organisms.  Surely a continued effort to understand diversity within 

the genus Ciona will increase the utility of C. intestinalis and C. savignyi as models 

for diverse biological processes.  Levels of polymorphism in natural populations are 

similar to levels reported in other organisms that are considered to be highly 

polymorphic (nematodes and oysters).  This study provides the first estimate of 

population-level heterozygosity in Ciona and provides a critical first step in 

elucidating the origin and maintenance of these extraordinary high levels of 

polymorphism. 
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CHAPTER 3 

 

INTROGRESSION DESPITE SUBSTANTIAL DIVERGENCE IN A BROADCAST 

SPAWNING MARINE INVERTEBRATE 

 

Abstract 

 

Understanding the relationship between reproductive isolation and time since 

divergence is critical to our understanding of speciation.  One group for which we 

know little about the relationship between hybridization/introgression and time since 

divergence is the marine broadcast spawners.  Here, we investigate the distribution of 

closely related cryptic species of marine broadcast spawners (Type A and B Ciona 

intestinalis) in areas of potential sympatry to determine whether these two types occur 

together and if so, whether they show evidence of hybridization and introgression.  

Then we combine our data with other studies to investigate general patterns of 

reproductive isolation vs. divergence in marine broadcast spawners.     

 We found that Type A and B C. intestinalis occurred sympatrically in 2007, 

and that 21 individuals show evidence of introgression in sympatry (out of ~500 

sympatric individuals).  Type A and B C. intestinalis are 12.4% divergent at 

mitochondrial COI (mtCOI) and between 3.5-11.6% divergent at six nuclear loci, and 

in comparison with other marine broadcast spawning species at mtCOI, these two 

types may be near the upper limit of the range of divergence values where 

introgression is still possible.  However, introgression at divergence levels similar to 

those found in Ciona does occur, prompting questions about the strength of 

postmating prezygotic reproductive barriers in marine broadcast spawners.   
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Introduction 

 

Understanding the relationship between reproductive isolation and time since 

divergence is critical to our understanding of speciation.  Therefore, examining 

hybridization and introgression between species pairs with different times since 

divergence has been an active area of research since the 1970s.  The first studies, by 

Wilson and colleagues (Wilson et al. 1974; Prager & Wilson 1975) used 

immunological distances between albumin proteins as a proxy for time since 

divergence in pairs of mammal, bird and frog species pairs.  Subsequent studies, in 

groups as diverse as amphibians, angiosperms, fish, insects and sea urchins use 

distances based on allozyme or DNA sequence data to estimate time since divergence 

(Coyne & Orr 1989; Coyne & Orr 1997; Mendelson 2003; Moyle et al. 2004; Price & 

Bouvier 2002; Sasa et al. 1998; Zigler et al. 2005).  These studies have shown that 

rates of hybridization and introgression generally decline with increasing time since 

divergence (Edmands 2002).  However, this decline varies across taxa, with certain 

groups showing evidence of hybridization and introgression despite substantial time 

since divergence (Lamb & Avise 1986; Freyhof et al. 2005; Koblmuller et al. 2007).   

 One group for which we know very little about the relationship between 

hybridization/introgression and time since divergence is the marine broadcast 

spawners.  Broadcast spawners release sperm and egg into the water column, where 

fertilization occurs.  Therefore, behavioral and mechanical barriers are absent in 

broadcast spawning organisms.  Temporal isolation can be an important premating 

barrier to fertilization between marine species (Levitan et al. 2004), but if two 

broadcast spawning species are not temporally isolated, postmating prezygotic barriers 

(involving gamete recognition) are often the only barriers preventing interspecific 

fertilization.  In some taxa, hybridization and introgression have been observed despite 
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the existence of these prezygotic barriers (Levitan 2002; Harper & Hart 2005).  

Because broadcast spawning species possess fewer and possibly less efficient 

prezygotic barriers to hybridization and introgression, gene flow might be expected to 

persist even after long intervals of separation.  Thus, broadcast spawning species are 

an interesting group in which to examine the relationship between 

hybridization/introgression and time since divergence.   

 The widespread and invasive broadcast spawning ascidian Ciona intestinalis 

has been shown to comprise two distinct, highly divergent entities not distinguished 

until recently (Suzuki et al. 2005; Caputi et al. 2007; Nydam & Harrison 2007).  

Although morphologically cryptic (Caputi et al. 2007), these two types, hereafter 

referred to as Type A and B, are ~12% divergent at the mtCOI locus (Nydam & 

Harrison 2007).  Type A (the type for which a genome has been sequenced) is thought 

to be native to the Northwestern Pacific Ocean and has invaded the Eastern Pacific 

Ocean, the Mediterranean Sea, the Atlantic coast of South Africa, and the Black Sea 

(Van Name 1945; Kott 1952).  Type B, thought to be native to the Northern Atlantic 

Ocean (Linne 1767; Monniot & Monniot 1994), has invaded the Western Atlantic 

Ocean (Nydam & Harrison 2007).  If Type A has invaded the native range of Type B, 

these two types potentially overlap along the Atlantic coast of France and the English 

Channel coasts of France and England.   

 A recent study combined fertilization data with microsatellite and sequence 

data from several populations to conclude that these two types should be considered 

different species (Caputi et al. 2007).  In the laboratory, both prezygotic (Suzuki et al. 

2005) and postzygotic barriers (Caputi et al. 2007) occur between Type A and B 

individuals from allopatric populations.  Genetic data from Caputi et al. (2007) 

confirmed previous observations (Suzuki et al. 2005; Nydam & Harrison 2007) that 

the two types were both distinct and genetically divergent from one another.  
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However, only two locations in the area of potential overlap were sampled.  Therefore, 

the extent of hybridization or introgression (if any) between these two highly 

divergent mitochondrial types is unknown. 

 Here, we investigate the distribution of Type A and B in areas of potential 

sympatry to determine whether these two types occur together and if so, whether they 

show evidence of hybridization and introgression.  Then we combine our data with 

other studies to investigate general patterns of reproductive isolation vs. divergence in 

marine broadcast spawners.  We focus on introgression throughout our study and in 

comparisons with other studies.  Most studies examine the relationship of 

hybridization to time since divergence because hybridization is often easier to quantify 

than introgression.  We feel, however, that introgression is more informative for our 

understanding of the speciation process, as only introgression provides definitive 

evidence of gene flow.   

    

Materials and Methods 

 

Sampling 

In the summer of 2007, approximately 20 individuals were collected from each 

of 19 sampling locations, from La Rochelle to Granville (France) and Falmouth to 

Ramsgate (United Kingdom).  No C. intestinalis were found in Arcachon, France (the 

southernmost site in the study).  In the summer of 2009, approximately 50 individuals 

were collected from each of the 2007 locations that were found to contain both types 

and/or individuals of mixed ancestry.  One marina was sampled at each location, with 

the exception of Plymouth, United Kingdom, where two marinas (Queen Anne’s 

Battery and Sutton Harbour) and one laboratory (seawater system of the Marine 

Biological Laboratory) were sampled.  Color of the spermiduct and the spermiduct 



 

62 

papillae were noted for each individual, as these features are potential characters for 

type discrimination (Caputi et al. 2007).     

  

Type Determination 

Because morphological features do not allow reliable discrimination of Types 

A and B, we identified type-specific SNPs for each of seven loci, based on data for 

individuals from allopatric populations.  The loci are: Vesicular acetylcholine 

transporter (vAChTP), Cellulose synthase (CiCesA), Fibroblast Growth Factor 

orthologous to vertebrate Fibroblast Growth Factor 4/5/6 (Ci-Fgf4/5/6), Forkhead (Ci-

fkh) (5’ regulatory region), Jade (jade), mtCOI, and Patched (Ci-Patched).  For each 

locus, a restriction enzyme was chosen that would cut a Type A sequence but not a 

Type B sequence (or vice versa) based on the sequence difference between the types at 

the SNP site.  All seven gene regions were amplified in all individuals collected in the 

zone of sympatry (primers and thermocycling conditions available from the authors).  

Each PCR product was then cut with the appropriate restriction enzyme and run on an 

agarose gel.  The type of each individual was determined from the bands displayed, 

with individuals of known type serving as controls.  Where the banding pattern could 

not be unambiguously assigned to a type, the PCR product for that locus was 

sequenced to determine the type.  The Ci-fkh locus gave erratic banding patterns with 

several different SNP/enzyme combinations and thus digests of this locus were not 

involved in type determination. 

 

Sequencing of Individuals possessing both Type A and Type B alleles 

For those individuals for which type appeared inconsistent across loci, the PCR 

product for each locus was cloned using the pGEM
®
-T kit and up to eight clones were 

sequenced.  Additionally, new primers were developed for each locus (in slightly 
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different locations from the primers used to create the genealogies and type the 

sympatric zone individuals).  For each locus in each individual of putative mixed 

ancestry, PCR products from these new primers were cloned and sequenced to 

circumvent any possible PCR bias of the original primer for one of the two alleles.  

PCR products were incubated with 0.25μl each of Exonuclease I and Shrimp Antarctic 

Phosphatase at 37C for 30 min, followed by 90C for 10 min.  The products were 

purified using CleanSeq beads (Agencourt).  The purified product was sequenced with 

a Big Dye Terminator Cycle sequencing kit and an Automated 3730 DNA Analyzer 

(Applied Biosystems).  All unique haplotypes have been submitted to GenBank 

(Accession Numbers XXX-XXX).  Sequences were edited, trimmed and aligned with 

Aligner (CodonCode Corporation, Dedham, MA).     

 

Calculation of Hardy-Weinberg Equilibrium       

 For each locus, we calculated Hardy-Weinberg Equilibrium for each 

population where both Type A and B individuals were found.  Calculations were done 

using a web tool (Rodriguez et al. 2009).     

 

Principal Components Analysis of Individuals with mixed ancestry 

The genotype of each individual (A/A, A/B, or B/B) at each of the 7 loci was 

determined from sequence data.  No distinction between different Type A or B alleles 

at a particular locus was made for this analysis.  The statistical package ade4 (Dray & 

Dufour 2007) in R 2.10.0 was then used to perform a principal components analysis 

on the genotypes of the 21 individuals of mixed ancestry.   
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Results 

 

In 2007, Type A and B individuals were found to coexist in six locations: two 

on the Atlantic coast of France (Concarneau and Camaret-sur-mer), one on the English 

Channel coast of France (Perros-Guirec) and three on the English Channel coast of the 

United Kingdom (Falmouth, Plymouth (both marinas), and Torquay) (Figure 3.1a).  In 

two of the sympatric locations (Concarneau, France and Plymouth, UK), Type A 

individuals represented the majority, in Perros-Guirec, France the two types were 

present in equal numbers and in the remaining three sites (Camaret-sur-mer, France, 

Falmouth/Torquay, UK) Type B individuals outnumbered Type A individuals (Figure 

3.1a).  Although we found Type A individuals in many locations, no locations 

contained only Type A individuals.  In 2009, when only these six sympatric locations 

were re-sampled, we found that pure Type A had completely disappeared from all 

locations, except for one individual in Camaret-sur-mer (Figure 3.1b).  Many locations 

contained only Type B individuals; every individual from these locations was 

homozygous for the B allele (i.e. a single band was seen on the restriction digest gel).  

 799 individuals were surveyed across the 2 years.  55 individuals were pure 

Type A, 723 individuals were pure Type B, and 21 individuals carried alleles 

characteristic of both Type A and B (Table 3.1).  The individuals with both Type A 

and B alleles came from six locations (Camaret-sur-mer, Perros-Guirec and Granville, 

France, and Falmouth, Plymouth, and Torquay, UK).  Two C. intestinalis individuals 

of mixed ancestry were collected from Granville; it is therefore likely that Granville is 

or was a sympatric location even though no pure Type A individuals were found there. 

  All loci that we examined have both Type A and B alleles (Table 3.1).  A 

majority Type A individual has Type A alleles at 4 or more of the 7 loci we 

sequenced.  A majority Type B individual has Type B alleles at 4 or more of the 7 loci  
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Figure 3.1 (a): Distribution of Type A and B in the sympatric zone (2007) 

Type A: Yellow, Introgressed: Green, Type B: Blue  1: La Rochelle 2: Pornic 3: 

Concarneau 4: Camaret-sur-mer 5: Brest 6: Perros-Guirec 7: Lezardrieux 8: Saint-

Servan 9: Granville 10: Falmouth 11: Plymouth Marinas 12: Plymouth MBA 

seawater system 13: Torquay 14: Poole 15: Hamble 16: Gosport 17: Portsmouth 18: 

Brighton 19: Dover (b): Distribution of Type A and B in the sympatric zone (2009) 

Type A: Yellow, Introgressed: Green, Type B: Blue 1: Concarneau 2: Camaret-sur-

mer 3: Perros-Guirec 4: Granville 5: Falmouth 6: Plymouth 7: Torquay  
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Table 3.1 Introgressed individuals and genotype at each locus organized by 

introgressed loci (last column).  Type A homozygotes are shown in blue, Type B 

homozygotes in red, and Type A/B heterozygotes in purple.  The number after each 

Type A or B designation refers to a haplotype (e.g. vaChTP has four Type A 

haplotypes and two Type B haplotypes). 

 

 

Individual Location vAChTP CiCesA Ci-Fgf4/5/6 Ci-fkh jade Ci-Patched mtCOI Majority Type (# of loci) Minority Type (# of loci)
CiCSM37 Camaret, FR A2/A2 A4/A4 A4/A4 A2/A2 A4/B7 A3/A3 A1 A (6) A/B (1)
CiCSM51 Camaret, FR A1/A1 A3/A3 A5/A5 A4/A4 A5/B8 A4/A4 A1 A (6) A/B (1)
CiCSM57 Camaret, FR A4/B1 A2/B7 A13/B10 A9/B10 B19/B19 A6/B10 A2 A/B (5) A (1), B/B (1)
CiFM1 Falmouth, UK B1/B1 B5/B5 B5/B5 B5/B5 B14/B14 B5/B5 A1 B (6) A (1)
CiFM2 Falmouth, UK A1/B2 A1/A1 A1/A1 A1/A1 A1/A1 A1/A1 A1 A (6) A/B (1)
CiGr8 Granville, FR A3/B1 A1/A1 A12/B9 A2/A2 A13/A13 A6/B9 A1 A (4) A/B (3)
CiPG33 Perros-Guirec, FR A1/A1 A3/A3 A2/A2 A2/A2 A2/B5 A2/A2 A1 A (6) A/B (1)
CiPG36 Perros-Guirec, FR A1/A1 A1/A1 A3/A3 A3/A3 A3/B6 A2/A2 A1 A (6) A/B (1)
CiQAB21 Plymouth, UK A1/A1 A3/A3 A6/A6 A5/A5 A6/B9 A5/A5 A1 A (6) A/B (1)
CiQAB26 Plymouth, UK A1/A1 A3/A3 A7/A7 A6/A6 A7/B10 A2/A2 A1 A (6) A/B (1)
CiQAB28 Plymouth, UK A1/A1 A3/A3 A8/A8 A7/A7 A8/B11 A6/A6 A1 A (6) A/B (1)
CiQAB43 Plymouth, UK A1/A1 A1/A1 A9/A9 A8/A8 A9/B12 A7/A7 A1 A (6) A/B (1)
CiQAB45 Plymouth, UK A1/A1 A3/A3 A10/A10 A7/A7 A10/B13 A6/A6 A1 A (6) A/B (1)
CiTQ38 Torquay, UK A1/A1 A4/A4 A11/A11 B7/B7 A11/B16 A8/A8 A1 A (5) B/B (1), A/B (1)
CiCSM58 Camaret, FR B1/B1 A2/B2 B2/B2 B2/B2 B2/B2 B2/B2 B2 B (6) A/B (1)
CiCSM60 Camaret, FR B1/B1 A1/B3 B3/B3 B3/B3 B3/B3 B3/B3 B3 B (6) A/B (1)
CiGr10 Granville, FR A3/B1 B6/B6 B8/B8 B9/B9 B18/B18 A6/B8 B5 B (5) A/B (2)
CiQAB3 Plymouth, UK A1/B1 A5/A5 B6/B6 B6/B6 B15/B15 B6/B6 B2 B (5) A/A (1), A/B (1)
CiQAB12 Plymouth, UK B1/B1 A3/B4 B4/B4 B4/B4 B4/B4 B4/B4 B4 B (6) A/B (1)
CiQAB46 Plymouth, UK B1/B1 A3/A3 B7/B7 B8/B8 A12/B17 B7/B7 B3 B (5) A/A (1), A/B (1)
CiSHM11 Plymouth, UK A1/B1 B1/B1 B1/B1 B1/B1 B1/B1 B1/B1 B1 B (6) A/B (1)
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Figure 3.2 Scatterplot of the two largest principal components of the data.  Rectangles 

represent individuals that are Type A at ≥ 4 loci, circles represent individuals that  

are Type B at ≥ 4 loci.  The star represents the single individual that was heterozygous 

at ≥ 4 loci.  The arrows correspond to the seven markers (six nuclear and mtCOI) used 

to perform the principal components analysis (e.g. the individuals represented by the 

two circles closest to the CiCesA label differ from other majority Type B individuals 

because they are Type A at CiCesA).
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we sequenced.  Of the individuals with both Type A and Type B alleles, 12 are 

majority Type A, 8 are majority Type B, and one is heterozygous at a majority of the 

loci.  A principal components analysis (Figure 3.2) illustrates this result: the majority 

Type A individuals group together, as do the majority Type B individuals, while the 

majority heterozygous individual (CiCSM57) is located between these two groups.     

Although Type A and B alleles are present for each locus, the seven loci 

appear to exhibit different rates of introgression between Type A and B genomes.  

Among the individuals of mixed ancestry, the jade locus was Type A in a Type B 

background (or vice versa) in 11/21 individuals, vAChTP and CiCesA loci in 5/21 

individuals, and the remaining four loci in only 1 or 2 individuals (Table 3.1).  The 

direction of introgression is, in some instances, asymmetric; for the jade locus in 

particular, alleles from Type B are often present in individuals with Type A genetic 

background, but Type A jade alleles are rarely found in a Type B background.  This 

locus is therefore located in a region of the Type B genome that is likely to introgress 

into a Type A background.  The opposite pattern is seen in the CiCesA locus – the 

Type A allele is always found in a Type B background.  When vAChTP introgresses, 

alleles move in both directions: alleles of Type A are found in the Type B background 

and vice versa.      

For each of the loci that introgressed in 5 or more individuals (vAChTP, 

CiCesA, and jade), multiple alleles were involved in the introgression events (Table 

3.1).  Regarding the two vAChTP individuals that are majority Type A, two different 

Type B alleles introgressed.  For the three vAChTP individuals that are majority Type 

B, two different Type A alleles introgressed.  In the five CiCesA individuals that are 

majority Type B, four different Type A alleles introgressed.  And finally for jade, each 

individual has a unique jade Type A and/or Type B allele, so again multiple alleles 

were involved in the introgression events.  These data provide evidence that 
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individuals of mixed ancestry derive from multiple hybridization events. 

As only one pure Type A individual was found in the 2009 sampling, Hardy-

Weinberg Equilibrium was calculated for the 2007 data only.  All populations violated 

Hardy-Weinberg Equilibrium for all loci, with the exception of Granville, France, 

which was in Hardy-Weinberg Equilibrium for three loci (Table 3.2).  In all cases, 

Hardy-Weinberg Equilibrium is violated owing to a deficit of heterozygotes. 

 Four morphological classes of C. intestinalis were found in the North Atlantic 

and English Channel, three of which were discussed previously (Caputi et al. 2007): 

WW (uncolored spermiducts and white-pigmented or absent spermiduct papillae), WO 

(uncolored spermiducts and orange-pigmented spermiduct papillae), OW (orange-

pigmented spermiducts and white-pigmented or absent spermiduct papillae), and OO 

(orange-pigmented spermiducts and orange-pigmented spermiduct papillae).  Of the 

individuals collected for this study, 98% of WW individuals (297/303), 98% of OW 

individuals (65/66) and 95% of OO individuals (20/21) were pure or majority Type B.  

23% of individuals with the WO phenotype were pure or majority Type A individuals 

(49/209).  The majority of the individuals of mixed ancestry for which phenotype 

could be scored were WO (84%, 16/19), 11% were WW (2/19) and 5% were OW 

(1/19). 

 

Discussion 

 

Formation of the current zone of sympatry 

The 2007 distribution of Type A and B as determined from this study provides 

some insight into the establishment of an area of sympatry in the Northeast Atlantic 

Ocean. Because Type B was first described as Ciona intestinalis in the Northeast 

Atlantic Ocean (Linne 1767), Type B is considered native to the locations sampled in  
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Table 3.2 Hardy-Weinberg Equilibria.  Numbers of individuals in each genotypic class 

for each sympatric population at each locus, and the p-value associated with the chi-

squared value with one degree of freedom.  Only 2007 data are represented, as pure 

Type A individuals were not present in 2009 samples. 

 

 

 

vAChTP AA AB BB Result p-value
Concarneau 16 0 4 HWE violated <0.001
Camaret 3 0 17 HWE violated <0.001
Perros-Guirec 10 0 10 HWE violated <0.001
Granville 0 2 18 HWE observed >0.05
Sutton Harbour Plymouth 16 1 3 HWE violated <0.001
Queen Anne's Plymouth 6 1 13 HWE violated <0.001
Falmouth 4 1 15 HWE violated <0.001
Torquay 1 0 19 HWE violated <0.001

CiCesA AA AB BB
Concarneau 16 0 4 HWE violated <0.001
Camaret 3 0 17 HWE violated <0.001
Perros-Guirec 10 0 10 HWE violated <0.001
Granville 1 0 19 HWE violated <0.001
Sutton Harbour Plymouth 16 0 4 HWE violated <0.001
Queen Anne's Plymouth 7 1 12 HWE violated <0.001
Falmouth 5 0 15 HWE violated <0.001
Torquay 1 0 19 HWE violated <0.001

Ci-Fgf4/5/6 AA AB BB
Concarneau 16 0 4 HWE violated <0.001
Camaret 3 0 17 HWE violated <0.001
Perros-Guirec 10 0 10 HWE violated <0.001
Granville 0 1 19 HWE observed >0.05
Sutton Harbour Plymouth 16 0 4 HWE violated <0.001
Queen Anne's Plymouth 6 0 14 HWE violated <0.001
Falmouth 5 0 15 HWE violated <0.001
Torquay 1 0 19 HWE violated <0.001

Ci-fkh AA AB BB
Concarneau 16 0 4 HWE violated <0.001
Camaret 3 0 17 HWE violated <0.001
Perros-Guirec 10 0 10 HWE violated <0.001
Granville 1 0 19 HWE violated <0.001
Sutton Harbour Plymouth 16 0 4 HWE violated <0.001
Queen Anne's Plymouth 6 0 14 HWE violated <0.001
Falmouth 5 0 15 HWE violated <0.001
Torquay 1 0 19 HWE violated <0.001

jade AA AB BB
Concarneau 16 0 4 HWE violated <0.001
Camaret 3 0 17 HWE violated <0.001
Perros-Guirec 10 0 10 HWE violated <0.001
Granville 1 0 19 HWE violated <0.001
Sutton Harbour Plymouth 16 0 4 HWE violated <0.001
Queen Anne's Plymouth 6 0 14 HWE violated <0.001
Falmouth 5 0 15 HWE violated <0.001
Torquay 1 0 19 HWE violated <0.001

Ci-Patched AA AB BB
Concarneau 16 0 4 HWE violated <0.001
Camaret 3 0 17 HWE violated <0.001
Perros-Guirec 10 0 10 HWE violated <0.001
Granville 0 2 18 HWE observed >0.05
Sutton Harbour Plymouth 16 0 4 HWE violated <0.001
Queen Anne's Plymouth 6 0 14 HWE violated <0.001
Falmouth 5 0 15 HWE violated <0.001
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this study.  Type A, however, is cosmopolitan, having invaded a large portion of the 

temperate oceans through anthropogenic transport (Lambert & Lambert 1998), which 

is likely how it reached the English Channel.   

Although Type A is abundant in the Mediterranean Sea (Kott 1990; Caputi et  

 al. 2007), its absence in the locations along the Atlantic coast of France sampled in 

2007 argues against the Mediterranean as a source of dispersal into the Northern 

Atlantic.   In a similar hybrid zone, Mytilus galloprovincialis occurs from the 

Mediterranean up the Atlantic coast of the Iberian Peninsula into the Atlantic coast of 

France and the English Channel, where it hybridizes with M. edulis (Daguin et al. 

2001; Bierne et al. 2003).  However, the M. galloprovincialis on the Iberian Peninsula 

are genetically distinct from Mediterranean M. galloprovincialis and it is the former 

that are thought to be the source for the hybridizing individuals along the Atlantic 

coast of France (Daguin et al. 2001).  Because Type A was restricted to the 

westernmost sites in the southern UK (Falmouth, Plymouth and Torquay), and to the 

four westernmost sites in France (Concarneau, Camaret-sur-mer, Perros-Guirec (this 

study, 2007), and Brest (previously reported by Caputi et al. 2007)), we suggest that 

Type A was introduced directly to the western English Channel.       

The two most plausible mechanisms for Type A introduction into this area are 

by ship (as larvae that metamorphose into juveniles in the ballast tank or ship’s sea 

chest) or by attachment to shellfish transported to the area for aquaculture.  The oyster 

Crassostrea gigas was introduced to the Atlantic and Bretagne coasts of France from 

Japan beginning in the late 1960s and later from the Pacific Coast of the United States 

and Canada (Gruet et al. 1976; Grizel & Héral 1991).  Both of these source areas 

contain Type A populations, which could easily have attached to the imported oyster 

shells.   

 Type A would have had many opportunities to spread in the English Channel 
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after arriving in the Northern Atlantic.  Ports with international shipping traffic (such 

as Plymouth and Brest) can serve as excellent starting places for transport within a 

region (Wasson et al. 2001).  Ships making short trips in and around the Northern 

Atlantic (including extensive ferry traffic in the English Channel) could transport eggs 

and larvae in their ballast water and adults settled on their hulls.  

 The presumed ease of intra-Channel transport is not consistent with the 2007 

distribution of Type A, which is restricted to the coast of Bretagne and the Western 

English Channel.  Genetic data from this study support a scenario whereby Type A 

and B have been hybridizing for several generations (see below), so it is unlikely that 

the absence of Type A C. intestinalis from locations east of Torquay is due to a very 

recent arrival in the English Channel with little time to spread eastward.  A plausible 

explanation for the restricted distribution of Type A in 2007 relates to temperature 

within the English Channel and Northern Atlantic around the coast of Bretagne.  

Winter mean sea surface temperatures are 4°C colder in the eastern Channel than in 

the western Channel (Hayward & Ryland 1995).  Type A individuals are less tolerant 

of the colder temperatures encountered in the eastern English Channel than are the 

native Type B.  The lower limit of temperature tolerance for Type A in the Gulf of 

Naples is 8°C, while Type B individuals on the West coast of Norway and Sweden can 

survive at 1°C (Dybern 1965).    

 It is possible that individuals of Type A are able to survive the colder winter 

temperatures in the eastern English Channel but that their growth and/or fitness are 

compromised, providing a competitive advantage to Type B individuals.  The positive 

correlation between water temperature and aspects of fitness in Type A has been well 

documented (Sentz-Braconnot 1966; Yamaguchi 1975; Cirino et al. 2002).  

 When the sites that contained both types and/or individuals of mixed ancestry 

were re-sampled in 2009, pure Type A individuals were not found except for one 
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individual in Camaret-sur-mer, France.  Sampling was limited to harbors, so Type A 

may still be present in deeper refugia, but the shift in the observed distribution was 

nevertheless dramatic.  This shift is surprising, given that 35% of the C. intestinalis at 

these sites in 2007 was Type A (with a maximum of 80% Type A at Concarneau).  

Whether the Type A individuals declined due to environmental factors or were 

outcompeted by the Type B individuals is not known.  While Type A is broadly 

invasive throughout the temperate oceans, this species has been known to decline after 

invasion, although no studies have addressed the causes of these declines.  Type A 

records exist from all Australian ports (Kott 1990), but as of 1997 Type A could only 

be found in Port Phillip Bay, Victoria (Kott 1997) and subsequently in a single 

location in southwestern Australia (McDonald 2004). Type A was found in the Eastern 

Pacific as early as 1915 (Ritter & Forsyth 1917), but C. savignyi now occupies more 

sites in Southern California than Type A, despite having been first recorded in the area 

in 1985 (Lambert & Lambert 1998, 2003). 

 The fitness advantage of Type B over Type A is particularly noticeable at the 

jade gene, as 10 of the 12 majority Type A individuals have a B allele at jade.  

Although a large portion of the sequenced used was non-coding (77% in Type A, 91% 

in Type B, see Chapter 2, Table 2.2), the sequence we used is presumably closely 

linked to the adjacent coding regions.  Homologues of the Ciona jade protein have 

been identified in mouse, human, zebrafish and a puffer fish (Fugu rubripes); the high 

degree of conservation throughout these lineages implies a critical function for this 

protein (Tzouanacou et al. 2003, Figure 6).  This protein contains PHD zinc finger 

domains, which are found in proteins involved in chromatin-mediated transcriptional 

regulation (Aasland et al. 1995).  Jade has been implicated in the development of the 

anterior-posterior axis in the mouse embryo (Tzouanacou et al. 2003), as well as the 

suppression of renal cancer in humans (Zhou et al. 2005).   
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 Although Type A and B existed in sympatry in several English Channel 

locations in 2007, we acknowledge that this zone of sympatry may not be stable given 

the near-absence of Type A in 2009.  However, our sampling was limited to harbors; 

we did not sample individuals from deeper benthic populations.  Dramatic seasonal or 

annual fluctuations in abundances of harbor populations of C. intestinalis and other 

ascidians have been reported; harbor populations are often re-colonized from deeper 

water benthic populations (Lambert & Lambert 1998; Svane & Havenhand 1993).  

Future sampling of this area, including deeper water populations, is necessary to 

determine whether Type A continues to persist in this area.  

 

Hybridization and Introgression vs. Ancestral polymorphism 

The observation that 21 C. intestinalis individuals have Type A alleles in a 

Type B genetic background, or vice versa, almost certainly reflects recent 

introgression rather than incomplete lineage sorting of ancestral polymorphism.  First, 

all but one of the individuals with both Type A and B alleles were found at sites where 

the two types were sympatric as recently as 2007.  If incomplete lineage sorting of 

ancestral polymorphism explains patterns of variation, individuals with both Type A 

and B alleles should be found across the distribution of Type A and B, not restricted to 

areas of sympatry (Hare & Avise 1998; Masta et al. 2002; McGuire et al. 2008).  

Second, if sharing of Type A and B alleles results from persistence of ancestral 

polymorphisms, it is unlikely that single individuals would carry both Type A and B 

alleles at more than one locus.  One would not expect 2-3 unlinked loci to show the 

same pattern of lineage sorting between two highly divergent lineages, given that 

lineage sorting is a random process.  Third, the high divergence values between Type 

A and B (12.4% at mtCOI) make incomplete lineage sorting of ancestral 

polymorphism unlikely; assuming neutral evolution, the loss of polymorphism and the 
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fixation of type-specific alleles are a functional of the time since divergence 

(Maddison 1997; Wendel & Doyle 1998).  Thus while introgression seems the 

likeliest explanation for the patterns we see, it is also possible that our allopatric 

individuals sampled thus far do not represent the total genetic variation within each 

type.     

 The pattern of introgression, whereby mixed-type individuals seem to be the 

product of multiple generations of backcrossing to either pure Type A or B 

individuals, suggests that these two types have been hybridizing for several years 

(Plymouth populations have 2 generations/yr, 3 if summer water temperatures are 

warmer than average (Dybern 1965)).  The presence of only advanced generation 

backcross hybrids could result from two scenarios: 1) A relatively old hybrid zone 

with no ongoing hybridization between Type A and B or 2) A hybrid zone of at least 

several generations in duration with recent hybridization between Type A and B.  

Although we cannot rule out the possibility that previous gene flow has ceased to 

occur, introgression largely confined to locations of sympatry provides evidence for 

current gene flow (Coyne & Orr 2004).   

 Many hybrid populations in other taxa consist of few or no F1 individuals and 

numerous backcrossed individuals (Harrison & Bogdanowicz 1997; Bierne et al. 

2003; Kronforst et al. 2006).  The widely acknowledged explanation for this pattern is 

that pre or postzygotic isolating barriers between the parental species limit the 

production of F1 offspring.  But once formed, F1 individuals will likely backcross to 

parental types; backcrossing may occur more readily than initial hybridization, 

because the interacting gametes share more of their genome than do gametes derived 

from the two parental types (Arnold 1997).  Mallet (2005) acknowledges that there are 

few empirical data to support or refute this explanation for the paucity of F1s relative 

to backcrossed individuals, but he cites studies in butterflies that show F1 offspring 
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are more difficult to produce than backcrossed individuals (Mallet et al. 1998; Naisbit 

et al. 2003). 

 Because C. intestinalis is a model laboratory organism in developmental 

biology and a genome sequence is available for Type A, discrimination of the two 

genetically divergent types in the field has been an important goal since these two 

types were recognized.  This discrimination becomes especially critical in sympatric 

populations from the Bretagne region of France, from which many European 

laboratories collect experimental animals.  We have found that white pigmentation of 

the spermiduct, when coupled with white pigmentation of the spermiduct 

papillae/absence of spermiduct papillae, indicates a Type B individual 98% of the 

time, but coupled with orange pigmentation of the spermiduct papillae could indicate 

an individual of either type (23% Type A, 77% Type B).  Orange pigmentation of the 

spermiduct, regardless of the presence or pigmentation of the spermiduct papillae, 

indicates a Type B individual 98% of the time.  White pigmentation of spermiduct 

papillae/absence of the papillae, regardless of the color of the spermiduct, indicates a 

Type B individual 89% of the time.  In contrast, orange pigmentation of spermiduct 

papillae, when coupled with white pigmentation of the spermiduct, could indicate an 

individual of either type (23% Type A, 77% Type B), but when coupled with orange 

pigmentation of the spermiduct, indicates a Type B individual 95% of the time 

(however, these OO individuals are extremely rare: only 21 total).  To summarize: the 

vast majority of Type A individuals sampled have white pigmentation of the 

spermiduct coupled with orange pigmented papillae (WO), whereas Type B 

individuals fall into all morphological classes.  From a morphological perspective, the 

vast majority of WW, OW and OO individuals is Type B, whereas 23% of WO 

individuals is Type A and 77% are Type B.        

 Previous morphological analyses found that Type A individuals always had 
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orange-pigmented spermiduct papillae except those sampled in the southern UK 

(Plymouth) (Caputi et al. 2007).  The results presented here support this observation: 

the vast majority of Type A individuals had orange-pigmented papillae; those that did 

not were from populations on both sides of the English Channel.  The same published 

analysis found that Type A individuals always had an uncolored spermiduct; we found 

this to be true (with only two exceptions).  Our results also agree with the observation 

(Caputi et al. 2007) that the spermiducts of Type B individuals can be orange or 

uncolored, but don’t agree with the finding that the spermiduct papillae of this type are 

never orange-colored. 

 

Reproductive isolation vs. divergence in marine broadcast spawners 

Our data provide evidence for introgression between two deeply divergent 

forms within C. intestinalis, a broadcast spawning marine invertebrate.  As in many 

other externally fertilizing marine invertebrates (Swanson & Vacquier 1997; Hellberg 

& Vacquier 1999), reproductive isolation between Ciona species can be attributed to 

species specific gamete interactions (Byrd & Lambert 2000).  But hybridization and 

introgression can occur in spite of these barriers (Gardner 1997; Levitan 2002; Harper 

& Hart 2005), providing support for the idea that broadcast spawning may lead to 

frequent hybridization and introgression (Gardner 1997).  Is C. intestinalis a special 

case, or do other marine broadcast spawning species pairs show evidence for 

introgression despite deep divergences?   

 To investigate the relationship between divergence and introgression in marine 

broadcast spawners, we compiled mtCOI divergence data for 39 pairs of taxa from the 

literature for which the presence/absence of introgression has been assessed or was 

considered likely/unlikely.  All sequence data were taken from Genbank and all  
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Figure 3.3 Uncorrected mitochondrial COI p-distance vs. introgression in 36 pairs of 

marine broadcast spawning invertebrates. 
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Table 3.3 All p-distances and introgression information used in Figure 3.2 

 

 
 

Phylum (Class) Species 1 Species 2 Uncorrected p-distance Introgression
Cnidaria (Anthozoa) Acropora cervicornis Acropora palmata 0 Yes

Montastrea annularis Montastrea faveolata 0 Unlikely
Montastrea annularis Montastrea franksi 0 Unlikely
Montastrea faveolata Montastrea franksi 0 No evidence 
Platygyra daedalea Platygyra lamellina 0 Likely
Platygyra daedalea Platygyra pini 0 Likely
Platygyra lamellina Platygyra pini 0 Likely

Echinodermata (Asteroidea) Asterias forbesi Asterias rubens 0.107 Yes
Echinodermata (Echinodea) Diadema savignyi Diadema setosum 0.138 Yes

Diadema savignyi Diadema paucispinum 0.035 Yes
Diadema setosum Diadema paucispinum 0.128 Yes
Echinometra sp. A E. sp. B (mathaei) 0.032 Unlikely
Echinometra sp. A Echinometra sp. D (oblonga ) 0.035 No evidence 
Echinometra. sp. B (mathaei) Echinometra sp. D (oblonga ) 0.026 No evidence 
Echinometra. sp. B (mathaei) Echinometra sp. C 0.038 No evidence 
Echinometra lucunter Echinometra viridis 0.045 No evidence 
Heliocidaris erythrogramma Heliocidaris tuberculata 0.135 No evidence 
Meridiastra calcar Parvulastra exigua 0.186 Unlikely
Meridiastra gunnii Parvulastra exigua 0.179 Unlikely
Pseudechinus albocinctus Pseudechinus huttoni 0.046 Likely
Pseudechinus albocinctus Pseudechinus novaezealandiae 0.184 Unlikely
Pseudechinus huttoni Pseudechinus novaezealandiae 0.185 Unlikely
Stronglyocentrotus droebachiensis Stronglyocentrotus pallidus 0.039 Yes
Stronglyocentrotus droebachiensis Strongylocentrotus franciscanus 0.105 Unlikely
Stronglyocentrotus droebachiensis Stronglyocentrotus droebachiensis0.064 Unlikely
Strongylocentrotus franciscanus Stronglyocentrotus droebachiensis0.114 Unlikely

Mollusca (Bivalvia) Crassostrea angulata Crassostrea virginica 0.211 Unlikely
Crassostrea ariakensis Crassostrea virginica 0.235 Unlikely
Crassostrea gigas Crassostrea angulata 0.024 Yes
Crassostrea gigas Crassostrea ariakensis 0.145 No evidence 
Crassostrea gigas Crassostrea sikamea  0.093 No evidence 
Crassostrea gigas Crassostrea virginica 0.214 Unlikely
Crassostrea sikamea  Crassostrea ariakensis 0.15 No evidence 
Haliotis laevigata Haliotis rubra 0.104 Yes
Macoma balthica (Baltic Sea) Macoma balthica (North Sea) 0.059 Yes

Chordata (Ascidiacea) Type A Ciona intestinalis Type B Ciona intestinalis 0.124 Yes
Type A Ciona intestinalis Ciona savignyi 0.136 No evidence 



 

80 

distances were uncorrected p-distance as calculated in MEGA 4.0 (Tamura et al. 

2007).  Among the introgressing species pairs, Type A/Type B C. intestinalis has one 

of the highest divergence levels (Figure 3.3), but there are sea urchin species pairs that 

introgress despite having higher divergence levels than Type A/Type B C. intestinalis 

(Table 3.3).  There are no introgressing species pairs beyond the 13.8% divergence 

level, even though divergences continue up to 23.5%.  This trend suggests that Type 

A/Type B C. intestinalis may be near the upper limit of the range of divergence values 

where introgression is still possible.  Several studies have suggested that tunicates 

such as C. intestinalis have a faster rate of molecular evolution than other organisms 

(Winchell et al. 2002; Yokobori et al. 2005; Delsuc et al. 2006).  Therefore, the time 

since divergence between Type A and Type B may be shorter for a given mtCOI 

divergence than for other marine broadcast spawners.  However, the lack of an 

adequate fossil record for ascidians prevents us from addressing this possibility.  But 

the fact that Type A and B and other broadcast spawning marine invertebrates show 

evidence of introgression despite substantial divergence is consistent with the idea that 

these organisms may have fewer or weaker interspecific prezygotic barriers. 

 Although mtCOI is a useful proxy for time since divergence between species 

pairs, this gene does not have any direct relationship to the reproductive barriers that 

contribute to speciation.  In fact, a lack of correlation between mtCOI divergence and 

prezygotic reproductive isolation has been noted in sea urchins (Zigler et al. 2005) and 

between divergence at other non-reproductive markers and prezygotic reproductive 

isolation in sea urchins and oysters (Lessios 1984; Lessios & Cunningham 1990; 

Gaffney & Allen 1993).  In contrast, there is a negative correlation between 

divergence in the nonsynonymous sites of the bindin gene, which encodes a protein 

involved in the binding of the sperm to the egg, and gamete compatibility (an 

important measure of postmating prezygotic isolation) in sea urchins (Zigler et al. 
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2005).  Species in the sea urchin genus Echinometra (a large component of the Zigler 

et al. 2005 study), show gamete incompatibility, thought to be a result of positive 

selection on bindin, despite low levels of genetic divergence (Geyer & Palumbi 2003).  

The positive selection acting on bindin, leading to postmating prezygotic isolation 

despite very little genetic divergence, may be a byproduct of evolution in sympatry 

(Geyer & Palumbi 2003) as this pattern is not seen in allopatric sea urchin taxa (Metz 

1998; Zigler & Lessios 2003; Zigler & Lessios 2004).  Further characterization of 

interspecific divergence in bindin and other reproductive proteins will lead to a more 

complete understanding of the evolution of reproductive isolation in these organisms. 

 In conclusion, examination of Type A and B populations in the zone of 

potential sympatry found these types co-existing in six locations and evidence of gene 

flow in three locations.  Not only are Type A and B cryptic species, they show 

evidence of recent introgressive hybridization despite substantial divergence.  

Examining the relationship of mtCOI divergence to introgressive hybridization in 

other marine broadcast spawning species pairs reveals that introgression at divergence 

levels similar to those found in Type A and B C. intestinalis does occur, prompting 

questions about the strength of postmating prezygotic reproductive barriers in this 

group.  
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CHAPTER 4 

 

REPRODUCTIVE PROTEIN EVOLUTION IN TYPE A AND B C. INTESTINALIS 

 

Abstract 

  

Rapid evolution, and in many cases positive selection, has become a well-

known feature of gamete recognition proteins (GRPs) in marine broadcast spawners.  

But in most cases the evolutionary process or processes responsible for this pattern 

remain elusive.  One of the mechanisms often cited as a potential driver of rapid 

evolution of GRPs in marine broadcast spawners is reinforcement, a strengthening of 

prezygotic isolation caused by postzygotic isolation when two species come into 

secondary contact after diverging in allopatry.  The clearest way to test whether 

reinforcement is occurring is to test whether prezygotic isolation is stronger in 

sympatry than allopatry. 

  Candidate GRPs from two lineages of C. intestinalis (Type A and B) are 

evolving more rapidly than control proteins, consistent with patterns seen in insects 

and mammals.  dn/ds ratios are higher in sympatric than allopatric populations in two 

of the three candidate GRPs tested, although this result may be driven by ds rather than 

dn.  None of the polymorphism statistics showed significant differences between 

sympatric and allopatric populations.  While little evidence for reinforcement was 

found in these three candidate GRPs, tests such as those performed here may provide 

important insights into the process of speciation in marine broadcast spawners.       
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Introduction 

  

While a substantial number of studies have found evidence for positive 

selection on gamete-recognition proteins (GRPs) in marine broadcast spawners, the 

underlying evolutionary forces responsible for these patterns remain elusive.  Potential 

processes include assortative mating, microbial resistance, reinforcement, sexual 

selection and sexual conflict (reviewed in Swanson & Vacquier 2002), and 

distinguishing between these possibilities presents a considerable challenge.  In 

marine invertebrates, gamete-recognition proteins are often major players in 

reproductive isolation between species or incipient species (e.g. Geyer & Palumbi 

2003; Springer & Crespi 2007).  Therefore, an investigation into the processes that 

lead to rapid evolution of these proteins will provide critical insights into speciation in 

the marine environment.      

 One of the mechanisms often cited as a potential driver of rapid evolution of 

GRPs in marine broadcast spawners is reinforcement; and some of the most prominent 

cases of reinforcement occur in marine broadcast spawners (Coyne & Orr 2004). 

Reinforcement, as originally envisioned by Dobzhansky, is defined as a strengthening 

of prezygotic isolation caused by postzygotic isolation when two species come into 

secondary contact after diverging in allopatry (Dobzhansky 1937).  Offspring of 

heterospecific matings are somehow unfit, so natural selection favors those individuals 

that mate with conspecifics.  Butlin made an important distinction between two 

scenarios: one in which the hybrids between the two species are completely sterile or 

inviable (and therefore no gene flow occurs between the two species) and the other in 

which the hybrids are not completely sterile or inviable (and gene flow can occur) 

(Butlin 1987).  In the first scenario, the two species are already completely 

reproductively isolated; he suggested this scenario should therefore be termed 
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―reproductive character displacement‖, not reinforcement (Butlin 1987).            

 The clearest way to test whether reinforcement is occurring is to test whether 

prezygotic isolation is stronger in sympatry than allopatry (Coyne & Orr 2003).  

Reinforcement does not occur in allopatry, as hybrids cannot be produced.  While this 

test has been applied to many different taxa (e.g. Coyne & Orr 1989,1997; Matute 

2010; Saetre et al. 1997; Wullschleger et al. 2002), reinforcement has never been 

tested in this way in marine broadcast spawners.  Evidence for reinforcement in these 

taxa is indirect; explicit comparisons of prezygotic isolation between two species in 

sympatry vs. allopatry have not been performed.  

 New information has allowed us to use the ascidian Ciona intestinalis, a 

longtime developmental model, to ask questions about processes that lead to the rapid 

evolution of GRPs.  First, C. intestinalis actually comprises two distinct and divergent 

lineages, now termed Type A and Type B (Nydam & Harrison 2007, 2010b; Caputi et 

al. 2007).  Type A is thought to be native to the Northwestern Pacific Ocean and has 

invaded the Eastern Pacific Ocean, the Mediterranean Sea, the Atlantic coast of South 

Africa, and the Black Sea (Van Name 1945; Kott 1952).  Type B, thought to be native 

to the Northern Atlantic Ocean (Linne 1767; Monniot & Monniot 1994), has invaded 

the Western Atlantic Ocean (Nydam & Harrison 2007).  Second, the ranges of Type A 

and B overlap in the English Channel and the Atlantic coast of France; a small amount 

of introgression occurs between Type A and B individuals from these sympatric 

populations (Nydam & Harrison 2010a).  Although hybrid individuals from allopatric 

populations are sterile or inviable in the laboratory (Caputi et al. 2007), the evidence 

for introgression in nature shows these two lineages are not completely reproductively 

isolated.  Nothing is known about pre or postzygotic barriers in sympatry.    

 Here, we identified a set of candidate GRPs from C. intestinalis sperm using 

proteomic and bioinformatic techniques.  We then tested whether these proteins 
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evolve more rapidly than control proteins.  We then choose a subset of these proteins 

that show evidence of positive selection, and directly test a reinforcement scenario by 

comparing divergence and polymorphism statistics in sympatric and allopatric 

populations of Type A and B C. intestinalis to ask whether signatures of positive 

selection are stronger in sympatric than allopatric populations.  We caution that this 

system does not provide an ideal test of reinforcement, as we do not have evidence 

that these candidate GRPs are involved in prezygotic isolation, and Type A and B may 

have come into secondary contact very recently.  However, we believe that this study 

could catalyze similar tests in other systems, to increase our knowledge of the 

evolutionary forces behind the widespread pattern of positive selection in the GRPs of 

marine broadcast spawners.  

 

Materials and Methods 

 

Identification of candidate GRPs from sperm: proteomics experiment  

 Sperm was collected from Type A individuals living in Santa Barbara, CA, 

filtered through a 70 µm nylon cell strainer (BD Biosciences) by centrifuging for 3 

minutes at 3,000 rpm, and stored dry at -80C.  Sperm samples from several different 

individuals were later pooled and diluted 5-fold in phosphate buffer; the concentration 

of this dilution was determined to be 915 µg/ml.  500 µl of this diluted sperm was 

shipped to the University of Victoria Genome BC Proteomics Centre for the 

experiments described below.        

 9.5 M urea, 50 mM NH4HCO3 and 0.2% SDS were added to the sample, which 

was then sonicated.  The proteins then underwent disulphide reduction and sulphydryl 

alkylation (200 mM DTT and 200 mM iodoacetamide) and were digested overnight at 

37C with 20mg trypsin (Promega).  Samples were subsequently cleaned with a cation 
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exchange Cartridge Kit for cICAT (Applied Biosystems).  

 Strong cation exchange chromatography: 10 mM KH2PO4 (pH 2.7), 25% 

ACN buffer was added to the sample, which was then injected onto a Polysulphoethyl 

A strong cation exchange chromatography (SCX) column (PolyLC, Columbia, MD). 

The flow rate was set to 0.5 ml min
-1

.  After equilibration, a 0–35% gradient of 10 mM 

KH2PO4, 25% ACN, 0.5 M KCl was added for 30 min. Each SCX fraction was 

reduced and transferred to autosampler vials (Dionex/LC Packings, Amsterdam). 

 One-dimensional reversed-phase chromatography with online mass 

spectrometry: Liquid chromatography-mass spectrometry/mass spectrometry (LC-

MS/MS) analyses of the SCX fractions were performed in a Hybrid Quadruple-TOF 

LC–MS/MS mass spectrometer (QStar Pulsar I, MDS Sciex), with a nanoelectrospray 

ionization source (Proxeon, Odense, Denmark) fitted with a 10 mm fused-silica 

emitter tip (New Objective, Woburn, MA). A C18AQ Nano LC and a Zorbax C18 

guard column (Agilent Technologies) performed the chromatographic separation.  The 

ANALYST QS v. 1.1 software service pack (ABI MDS SCIEX, Concord, Canada) 

gathered the data.  

Mass spectrometry data analyses: the information dependent acquisition file 

was viewed using ANALYST v. 1.1 software, and the peak lists were assembled with 

a built-in MASCOT script (1.6b16 ABI—Matrix Science Limited).  Spectra with less 

than 10 peaks were discarded.  MASCOT v. 2.0 (Matrix Science Limited) was used to 

analyzed the data.  Spectrometry data were searched against a database of amino acid 

sequences from the CIPRO (Ciona intestinalis Protein) database 

(http://cipro.ibio.jp/new/).      

 

Comparison of dn/ds values between candidate GRPs and control proteins  

 Of proteins identified by proteomic analysis, we selected 39 proteins (30 

http://cipro.ibio.jp/new/
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candidate GRPs and 9 control proteins) for further analysis using proteomic and 

bioinformatic approaches (see Results section).  Genomic sequences for the genes 

encoding the 39 proteins were located by performing tblastn searches to the Ciona 

intestinalis Ensembl genome server 

(http://uswest.ensembl.org/Ciona_intestinalis/Info/Index).  Primers were developed in 

coding regions, and the coding regions of all 39 proteins were sequenced from cDNA 

of two Type A and two Type B individuals, all from allopatric populations.  Testis 

tissue from these four individuals was collected in 2008 and immediately placed in 

RNAlater (Ambion).  The tissue/RNAlater was frozen at -80C within seven days of 

collection.           

 Total RNA was extracted from testis tissue with the RNAdvance Kit 

(Agencourt) and was used to synthesize single-stranded cDNA using SuperScript III 

reverse transcriptase (Invitrogen) and an oligo (dT) primer.  A 5-fold dilution of the 

single-stranded cDNA was then PCR-amplified with TRsa and TS-PCR primers.  The 

resulting PCR product was diluted 50-fold and used as the template for amplification 

of the coding regions for the 30 candidate GRPs proteins and 9 control proteins.  The 

amplified coding regions were incubated with 0.25μl each of Exonuclease I and 

Shrimp Antarctic Phosphatase at 37C for 30 min, followed by 90C for 10 min.  The 

products were purified using CleanSeq beads (Agencourt), and the purified products 

were sequenced with a Big Dye Terminator Cycle sequencing kit and an Automated 

3730 DNA Analyzer (Applied Biosystems).  Sequences were edited, trimmed and 

aligned with Aligner (CodonCode Corporation, Dedham, MA).    Primers and cycling 

conditions are available from the authors.   

 Once the sequences were obtained, the codeml program in PAML 4.4 (Yang 

2007) was used to obtain pairwise dn/ds values for each Type A vs. Type B 

combination (Type A Individual #1 vs. Type B Individual #1, Type A Individual #1 

http://uswest.ensembl.org/Ciona_intestinalis/Info/Index
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vs. Type B Individual #2, Type A Individual #2 vs. Type B Individual #1, Type A 

Individual #2 vs. Type B Individual #2).  The average dn/ds value for all four 

combinations was calculated for each gene, and the dn/ds values of the putative GRPs 

and control proteins were found to be distributed non-normally using the Shapiro-

Wilk test in R (version 2.10.1).  The Shapiro-Wilk test is the most robust test of non-

normality for small to medium sample sizes (Conover 1999, Shapiro & Wilk 1965).  

The dn/ds values of the candidate GRPs and control proteins were therefore compared 

using a one-tailed Mann-Whitney U test in R (version 2.10.1).  

 

Sympatric vs. allopatric divergence analyses 

 Samples were collected in 2005-2009 from allopatric and sympatric 

populations of Type A and Type B.  The allopatric population of Type A was located 

in Half Moon Bay, CA while sympatric populations of Type A were located in Perros-

Guirec, France and Concarneau, France.  Allopatric populations of Type B were 

located in Woods Hole, MA and Gosport, England.   

 Ovaries were dissected from freshly-collected individuals, cut into several 

pieces, immediately preserved in DMSO (dimethyl sulfoxide), and ultimately (within 

10 d) stored at -80°C until needed.  Total DNA was extracted from the ovaries using 

the Qiagen DNeasy
®

 Tissue Kit (Qiagen Corporation, Santa Clarita, CA).       

 At least 10 individuals from each of 4 populations (allopatric Type A and B, 

sympatric Type A and B) were sequenced for the genes encoding three candidate 

GRPs: CIPRO37.40.1, CIPRO60.5.1, CIPRO100.7.1.  The criteria for selecting these 

three candidate GRPs for the sympatric/allopatric comparison, from the 30 candidate 

GRPs used in the comparison of dn/ds values between GRPs and control proteins, is 

available in the Results section.           

 The same individuals were also sequenced for two control proteins: 
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CIPRO53.35.1 and mitochondrial cytochrome oxidase I (mtCOI).  A signature of 

enhanced selection in sympatry vs. allopatry could be due to selective processes or 

demographic processes (e.g. recent population growth).  But demographic processes 

would affect all genes, not just candidate GRPs.  So proteins not involved in the 

fertilization process (control proteins) were also subjected to divergence analyses.   

CIPRO53.35.1 was selected as a control protein because it contains a domain similar 

to a ribosomal L32 protein domain and is expressed in many different tissues; whereas 

mtCOI is an enzyme in the electron transport chain of the mitochondria.    For all 

nuclear genes the PCR product for each locus was cloned using the pGEM
®

-T kit and 

up to eight clones were PCR-amplified and sequenced as described above.  For all 

loci, both alleles were identified for each individual.   

 Each sympatric Type A allele was randomly assigned to a sympatric Type B 

allele and each allopatric Type A allele to an allopatric Type B allele.  The codeml 

program in PAML 4.4 (Yang 2007) was then used to obtain pairwise dn/ds values for 

these sympatric Type A vs. sympatric Type B and allopatric Type A vs. allopatric 

Type B pairs.  The same process was completed using a different set of randomly 

assigned pairs, to ensure that results were independent of the allele pairings.  The two 

randomizations will be referred to as Randomization 1 and 2.  For each gene and each 

randomization, a Shapiro-Wilk test was used to test the normality of the pairwise dn/ds 

values.  Where the Shapiro-Wilk test found evidence for non-normality, non-

parametric one-tailed Mann-Whitney U tests were performed in R (version 2.10.1).  

Where the Shapiro-Wilk test did not find evidence for non-normality for pairwise dn/ds 

values, one-tailed t-tests were performed in R.  But because normality can be difficult 

to assess in small sample sizes (Dytham 2003), we also conducted non-parametric 

one-tailed Mann-Whitney U tests in R for these randomizations where the Shapiro-

Wilk test did not find evidence for non-normality.   
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Sympatric vs. allopatric polymorphism analyses 

 Both alleles of at least 10 individuals from each of four populations (allopatric 

Type A and B, sympatric Type A and B) were sequenced for three candidate gamete 

recognition genes and two control genes as described in the ―Sympatric vs. allopatric 

divergence analyses‖ section.   

 For each population and each gene, the summary statistics θ and π were 

calculated in DnaSP 5.10.1 (Rozas et al. 2003).  We also employed the following tests: 

McDonald-Kreitman (McDonald & Kreitman 1991), Tajima's D (Tajima 1989), Fu 

and Li's D* and F*, and Fay and Wu's H (Fay & Wu 2000) in DnaSP.  Statistical 

significance of D, D*, F* and H were determined using 1,000 coalescent simulations 

in DnaSP.  Estimates of per gene recombination for each population were made in 

DnaSP and were then imported into the simulations.  95% confidence intervals for D, 

D*, F* and H statistics were also recorded; sympatric and allopatric populations were 

determined to be significantly different for each statistics if the confidence intervals 

were non-overlapping.     

 

Results 

 

Identification of candidate GRPs from sperm: proteomics 

161 proteins were found in the sperm; each of these proteins was subsequently 

identified using one or more of the following sections of CIPRO: the descriptive 

summary available for many proteins, the Pfam Domain search, and the BlastP search, 

or the GO (Gene Ontology) program. 144 of these proteins were determined unlikely 

to be GRPs; they are likely involved in the movement or metabolism of the sperm 
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(e.g. actin, dynein, myosin, tektin, α-tubulin, ATP-synthase, creatine kinase, enolase, 

malate dehydrogenase).  The identities of these 144 proteins are available from the 

authors.  Of the remaining 17 proteins, seven were likely GRPs, and 10 could not be 

identified as similar to any known proteins.  Of these 17 proteins, four could not be 

analyzed because the corresponding gene could not be amplified or successfully 

sequenced from Type B individuals, and one could not be analyzed because the 

corresponding gene did not have significant tblastn hits to the genome (and therefore 

no primers could be designed).  We selected the remaining 12 proteins for further 

analysis.   

 

Identification of candidate GRPs proteins from sperm: bioinformatics  

 We also used a bioinformatic approach to identify potential GRPs.  First, we 

accessed the functional classifications of Type A testis ESTs sequenced by Inaba et al. 

(2002) and selected 25 ESTs that could code for GRPs.  We then located the genes 

corresponding to these ESTs with the KOG (EuKaryotic Orthologous Groups) tool 

provided on JGI’s C. intestinalis genome browser (http://genome.jgi-

psf.org/Cioin2/Cioin2.home.html).   These genes were then searched against the 

CIPRO database using blastx to identify resulting protein matches.  19 of these 

proteins were determined to be GRP candidates, but 10 failed to amplify and/or 

sequence in Type B individuals; the remaining nine were selected for further study.  

 Second, we located every protein in the CIPRO database that was identified as 

being expressed only in the testis tissue.  We chose a subset of 10 of these proteins 

that were likely GRPs, and further investigated the nine proteins that amplified Type B 

cDNA.  In total, we selected 12 candidate GRPs identified proteomically and 18 

identified bioinformatically.  We also selected 9 control proteins (not involved in the 

fertilization process) from the proteomics experiments to compare with the putative 

http://genome.jgi-psf.org/Cioin2/Cioin2.home.html
http://genome.jgi-psf.org/Cioin2/Cioin2.home.html
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GRPs.     

 

Comparison of dn/ds values between candidate GRPs and control proteins  

 The dn/ds values for candidate GRPs are significantly higher than the dn/ds 

values for control proteins (Figure 4.1, p = 0.004891 using a one-tailed Mann-Whitney 

U Test).   

 However, PAML analyses assume that ds  values are constant across a 

sequence.   If some sites across the sequence have unusually low ds  values, a dn/ds 

value greater than 0.5 could be inferred in the absence of positive selection (Pond and 

Muse 2005).  Similarly, significantly higher dn/ds values for candidate gametic 

recognition genes than control genes could be the result of either higher dn or lower ds  

values in the candidate recognition genes, and only higher dn values provide evidence 

of positive selection.           

 To address this issue, we performed two-tailed Mann-Whitney U test in R (the 

Shapiro-Wilk test found evidence for non-normality), comparing dn values in 

candidate gamete recognition vs. control genes, and ds values in candidate gamete 

recognition vs. control genes.  dn values were significantly different between candidate 

gamete recognition and control genes (p = 0.002), whereas ds values were not (p = 

0.269).  These tests are consistent with the assumption that dn, rather than ds, is driving 

this pattern.             

 Figure 4.1 also shows that two proteins have a dn /ds ratio greater than 0.5, 

which is the value above which we consider positive selection to likely be occurring 

when conservative pairwise dn /ds  comparisons are used.  A study by Swanson et al. 

across many different taxa showed that if a pairwise comparison yielded a dn/ds of 

greater than 0.5, the value was often greater than 1 when more sensitive site-specific 

tests were used (Swanson et al. 2004).  CIPRO37.40.1 was identified from the CIPRO 
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database as having testis-only expression, and contains domains similar to ricin-type 

beta-trefoil lectin domains (dn/ds = 0.618, dn = 0.054, ds = 0.087).  CIPRO100.7.1 was  

 
 

 

Figure 4.1 Pairwise dn/ds values (Type A vs. Type B C. intestinalis) for 30 candidate 

GRPs and 9 control proteins.  The line is dn/ds = 0.5. 
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identified proteomically, and its function is unknown.  CIPRO100.7.1 is a large  

protein (1,225 amino acids), and was therefore divided into three sections for 

sequencing.  Sections 2, 3, and all 3 sections analyzed together had dn/ds values less 

than 0.5, so only Section 1 was analyzed in subsequent sympatric vs. allopatric 

comparisons.  Section 1 of CIPRO100.7.1 had a dn/ds equal to 0.531, a dn equal to 

0.050, and a ds equal to 0.095.  One protein, CIPRO60.5.1, has a dn/ds ratio lower than 

0.5, but was identified in the CIPRO database as a metalloproteinase and has a GO 

biological function of ―sperm binding to zona pellucida‖ (dn/ds = 0.366, dn = 0.052, ds 

= 0.142).  We chose these three proteins for the subsequent sympatric vs. allopatric 

comparisons because they showed evidence of positive selection (in the case of 

CIPRO37.40.1 and CIPRO100.7.1), or because their putative function was so clearly 

related to gamete recognition (in the case of CIPRO60.5.1).    

 

Sympatric vs. allopatric divergence analyses  

The results of the divergence analyses are shown in Table 4.1.  For the 

candidate GRPs CIPRO37.40.1 and CIPRO60.5.1, dn/ds values were significantly 

higher in sympatric than allopatric populations using both parametric and non-

parametric tests for both randomizations.  For CIPRO37.40.1, Randomization 1: p = 

0.004 (one-tailed t test) and p = 0.008 (one-tailed Mann Whitney U test), 

Randomization 2: p = 0.002 (one-tailed t test) and p = 0.008 (one-tailed Mann 

Whitney U test).  For CIPRO60.5.1, Randomization 1: p = 0.020 (one-tailed t test) and 

p = 0.018 (one-tailed Mann Whitney U test), Randomization 2: p = 0.018 (one-tailed 

Mann Whitney U test).  Sympatric and allopatric dn/ds values were not significantly 

different for the candidate GRP CIPRO100.7.1 for either randomization 

(Randomization 1: p = 0.92, one-tailed Mann Whitney U Test, Randomization 2: p = 

0.806 , one=tailed Mann Whitney U Test).  For the control proteins, dn/ds values
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Table 4.1  Sympatric vs. allopatric comparisons of dn/ds values for Randomization 

1 and 2.  dn/ds values for each test are averages of all the pairwise comparisons 

made for each test. 

   
Candidate GRPs 
(Randomization 1) 

dn/ds 
Sympatri

c 

dn/ds 
Allopatri

c 
Statistical 

Result 

P-value (t-test, 
Mann-Whitney U 

test) 

CIPRO37.40.1 0.498 0.405 
Sympatric > 
Allopatric (0.004, 0.008) 

CIPRO60.5.1 0.468 0.441 
Sympatric > 
Allopatric (0.020,0.018) 

CIPRO100.7.1 0.510 0.548 
No 

difference (NA, 0.920) 

     

Candidate GRPs 
(Randomization 2) 

dn/ds 
Sympatri

c 

dn/ds 
Allopatri

c 
Statistical 

Result 

P-value (t-test, 
Mann-Whitney U 

test) 

CIPRO37.40.1 0.498 0.413 
Sympatric > 
Allopatric (0.002, 0.008) 

CIPRO60.5.1 0.471 0.438 
Sympatric > 
Allopatric (NA,0.018) 

CIPRO100.7.1 0.520 0.543 
No 

difference (NA, 0.806) 
          

Control Proteins 
(Randomization 1) 

dn/ds 
Sympatri

c 

dn/ds 
Allopatri

c 
Statistical 

Result 

P-value (t-test, 
Mann-Whitney U 

test) 

CIPRO53.35.1 0.053 0.096 
No 

difference (NA, 0.998) 

mtCOI 0.003 0.003 
No 

difference (NA, 0.436) 

     

Control Proteins 
(Randomization 2) 

dn/ds 
Sympatri

c 

dn/ds 
Allopatri

c 
Statistical 

Result 

P-value (t-test, 
Mann-Whitney U 

test) 

CIPRO53.35.1 0.042 0.098 
No 

difference (NA, 1) 

mtCOI 0.003 0.003 
No 

difference (NA, 0.676) 
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were not significantly different between sympatry and allopatry for either 

randomization as determined by Mann Whitney U tests: (CIPRO53.35.1- 

Randomization 1: p = 0.998, Randomization 2: p = 1, mtCOI – Randomization 1: p = 

0.436, Randomization 2: p = 0.676).        

 As discussed above, significantly higher dn/ds values in sympatry than allopatry 

could be the result of either higher dn or lower ds values in sympatry, and only higher 

dn values provide evidence of positive selection.   

 To determine whether nonsynonymous or synonymous substitutions are 

responsible for this result, we performed two-tailed t-tests in R (the Shapiro-Wilk test 

did not find evidence for non-normality), comparing dn values in sympatry vs. 

allopatry, and ds values in sympatry vs. allopatry for two randomizations.  For 

CIPRO37.40.1, dn is not significantly different between sympatry and allopatry for 

either randomization (p values = 0.907, 0.369), but ds is significantly different 

between sympatry and allopatry for both randomizations (p values = 0.021, 0.002).  

For CIPRO60.5.1, dn is not significantly different between sympatry and allopatry for 

either randomization (p values = 0.636, 0.6), but ds is significantly different between 

sympatry and allopatry for one randomization (p values = 0.045, 0.074).  It is possible, 

therefore, that ds, rather than dn, is driving the pattern we see at these loci.  

 

Sympatric vs. allopatric polymorphism analyses 

 The summary statistics are shown in Table 4.2.  No consistent differences 

between sympatric and allopatric Type A or between sympatric and allopatric Type B 

can be discerned for any of these statistics for any of these candidate genes.  Table 4.3 

presents the results of the McDonald-Kreitman tests.  Fixed nonsynonymous 

substitutions are not more common in sympatric than allopatric comparisons; these 

tests provide no evidence for positive selection on the genes encoding these three  
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Table 4.2 Summary Statistics.  n is the number of alleles sequenced from each 

population. 

 

 

Candidate GRP genes Population n θ π (total) π (synonymous sites) π (nonsynonymous sites)
CIPRO37.40.1 Sympatric Type A 28 0.026 0.022 0.042 0.016

Allopatric Type A 24 0.013 0.012 0.013 0.010
Sympatric Type B 16 0.019 0.016 0.041 0.008
Allopatric Type B 8 0.043 0.050 0.109 0.032

CIPRO60.5.1 Sympatric Type A 20 0.002 0.002 0.000 0.003
Allopatric Type A 22 0.024 0.018 0.030 0.015
Sympatric Type B 24 0.035 0.034 0.057 0.025
Allopatric Type B 20 0.021 0.026 0.042 0.019

CIPRO100.7.1 Sympatric Type A 24 0.011 0.009 0.017 0.005
Allopatric Type A 26 0.007 0.007 0.012 0.004
Sympatric Type B 22 0.018 0.020 0.031 0.015
Allopatric Type B 8 0.017 0.022 0.030 0.017

Control genes
CIPRO53.35.1 Sympatric Type A 22 0.008 0.006 0.027 0.001

Allopatric Type A 32 0.006 0.005 0.020 0.000
Sympatric Type B 32 0.013 0.011 0.043 0.002
Allopatric Type B 28 0.016 0.015 0.042 0.007

mtCOI Sympatric Type A 10 0.000 0.000 0.000 0.000
Allopatric Type A 12 0.006 0.004 0.021 0.000
Sympatric Type B 9 0.005 0.005 0.023 0.000
Allopatric Type B 11 0.005 0.005 0.021 0.001



 

106 

Table 4.3 Results of the McDonald Kreitman Tests for all genes.  FS = Fixed 

Synonymous.  PS = Polymorphic Synonymous.  FN = Fixed Nonsynonymous.  PN = 

Polymorphic Nonsynonymous. 
 
Candidate GRP genes Test FS PS FN PN P value (Fisher's Exact Two Tailed Test)
CIPRO37.40.1 Sympatric Type A vs. Sympatric Type B 0 35 0 36 NA

Allopatric Type A vs. Allopatric Type B 9 38 15 48 0.644214
CIPRO60.5.1 Sympatric Type A vs. Sympatric Type B 6 27 7 22 0.755749

Allopatric Type A vs. Allopatric Type B 3 16 6 19 0.709518
CIPRO100.7.1 Sympatric Type A vs. Sympatric Type B 9 25 12 30 1

Allopatric Type A vs. Allopatric Type B 5 12 8 17 1

Control genes Test FS PS FN PN P value (Fisher's Exact Two Tailed Test)
CIPRO53.35.1 Sympatric Type A vs. Sympatric Type B 0 18 0 7 NA

Allopatric Type A vs. Allopatric Type B 4 17 1 11 0.630145
mtCOI Sympatric Type A vs. Sympatric Type B 76 9 3 1 0.384631

Allopatric Type A vs. Allopatric Type B 70 21 3 2 0.590441
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candidate GRPs in sympatry.  None of the statistics for which significance was 

determined by coalescent simulation (D, D*, F*, H) showed significant differences 

between sympatry and allopatry for any of the genes examined, as all of the 

confidence intervals overlapped (Table 4.4 for Tajima's D, Table 4.5 for D* and F*, 

Table 4.6 for H). 
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Table 4.4 Tajima’s D statistics for all genes 

 

Candidate GRP genes Population D statistic P-value 95% confidence interval
CIPRO37.40.1 Sympatric Type A -0.078 0.281 "-1.68841 to 1.69923"

Allopatric Type A -0.004 0.157 "-1.20834 to 1.17"
Sympatric Type B -0.132 0.290 "-1.77 to 1.611"
Allopatric Type B 0.006 0.092 "-0.99686 to 0.94395"

CIPRO60.5.1 Sympatric Type A -0.018 0.541 "-1.51 to 1.66"
Allopatric Type A -0.087 0.561 "-1.69367 to 1.76737"
Sympatric Type B -0.058 0.528 "-1.45443 to 1.32636"
Allopatric Type B 0.006 0.519 "-1.54796 to 1.72153"

CIPRO100.7.1 Sympatric Type A -0.018 0.503 "-1.46162 to 1.35414"
Allopatric Type A 0.009 0.510 "-1.3292 to 1.48969"
Sympatric Type B -0.014 0.515 "-0.92013 to 0.96708"
Allopatric Type B -0.042 0.526 "-1.35751 to 1.17643"

Control genes
CIPRO53.35.1 Sympatric Type A -0.057 0.544 "-1.68808 to 1.83296"

Allopatric Type A -0.002 0.511 "-1.37399 to 1.4227"
Sympatric Type B -0.027 0.524 "-1.42163 to 1.46487"
Allopatric Type B -0.061 0.545 "-1.31043 to 1.28035"

mtCOI Sympatric Type A -0.002 0.127 "-1.11173 to 1.43863"
Allopatric Type A -0.065 0.185 "-1.83094 to 1.77946" 
Sympatric Type B -0.064 0.203 "-1.67754 to 1.75974"
Allopatric Type B -0.063 0.186 "-1.75914 to 1.8452"
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Table 4.5 Fu and Li's D* and F* statistics for all genes 

 

 
 

Candidate GRP genes Population D* P-value 95% confidence interval F* P-value 95% confidence interval
CIPRO37.40.1 Sympatric Type A -0.157 0.517 "-2.59 to 1.25985" -0.111 0.496 "-2.498 to 1.52763"

Allopatric Type A -0.028 0.670 "-1.52677 to 1.239" -0.063 0.589 "-1.58919 to 1.21221"
Sympatric Type B -0.034 0.578 "-2.24738 to 1.28647" -0.090 0.540 "-2.66286 to 1.49659"
Allopatric Type B -0.024 0.734 "-1.00 to 0.87955" 0.007 0.612 "-1.03183 to 1.04566"

CIPRO60.5.1 Sympatric Type A 0.032 0.458 "-1.96617 to 1.25359" -0.028 0.492 "-2.16055 to 1.477"
Allopatric Type A -0.040 0.432 "-2.464 to 1.25307" -0.086 0.469 "-2.56615 to 1.49075"
Sympatric Type B -0.026 0.452 "-1.83617 to 1.17832" -0.076 0.491 "-2.08 to 1.29"
Allopatric Type B -0.087 0.466 "-2.08275 to 1.17893" -0.071 0.471 "-2.18321 to 1.38673"

CIPRO100.7.1 Sympatric Type A -0.018 0.467 "-1.83829 to 1.22556" -0.024 0.472 "-1.86692 to 1.35458"
Allopatric Type A -0.056 0.497 "-1.87585 to 1.23" -0.070 0.506 "-2.09829 to 1.46478"
Sympatric Type B 0.020 0.471 "-1.1613 to 0.99970" -0.037 0.512 "-1.23262 to 1.02296" 
Allopatric Type B -0.014 0.481 "-1.33924 to 1.16179" -0.076 0.542 "-1.57039 to 1.29433"

Control genes
CIPRO53.35.1 Sympatric Type A -0.024 0.472 "-1.86692 to 1.35458" 0.013 0.456 "-2.20751 to 1.64394"

Allopatric Type A -0.070 0.506 "-2.09829 to 1.46478" -0.012 0.501 "-1.68033 to 1.45582"
Sympatric Type B -0.037 0.512 "-1.23262 to 1.02296" -0.057 0.504 "-1.91043 to 1.46351"
Allopatric Type B -0.076 0.542 "-1.57039 to 1.29433" -0.004 0.474 "-1.88842 to 1.46422"

mtCOI Sympatric Type A 0.008 0.762 "-1.24341 to 1.02623" -0.039 0.786 "-1.34668 to 1.06879"
Allopatric Type A -0.006 0.440 "-2.229 to 1.40344" -0.102 0.487 "-2.39875 to 1.54664"
Sympatric Type B -0.048 0.463 "-1.92508 to 1.43324" -0.092 0.486 "-2.10684 to 1.58013"
Allopatric Type B -0.093 0.489 "-2.07471 to 1.42077" -0.065 0.469 "-2.30147 to 1.50465"
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Table 4.6 Fay and Wu's H test for all genes 

 

 

Candidate GRP genes Population H statistic P-value 95% confidence interval
CIPRO37.40.1 Sympatric Type A -0.166 0.348 "-21.476 to 7.34392"

Allopatric Type A -0.040 0.434 "-6.39 to 4.01449"
Sympatric Type B 0.114 0.333 "-16.6833 to 6.3"
Allopatric Type B 0.233 0.430 "-16.64 to 11.64"

CIPRO60.5.1 Sympatric Type A 0.006 0.351 "-2.37427 to 1.222"
Allopatric Type A -0.216 0.338 "-20.5 to 7.41126"
Sympatric Type B -0.144 0.394 "-18.956 to 9.159"
Allopatric Type B -0.161 0.392 "-13.53684 to 5.69474"

CIPRO100.7.1 Sympatric Type A 0.080 0.387 "-6.28261 to 3.78261"
Allopatric Type A 0.014 0.401 "-4.61538 to 2.75692"
Sympatric Type B 0.174 0.436 "-8.8658 to 6.02597"
Allopatric Type B -0.055 0.425 "-11.00 to 6.07143"

Control genes
CIPRO53.35.1 Sympatric Type A -0.061 0.347 "-5.36797 to 2.07792"

Allopatric Type A 0.003 0.413 "-2.61694 to 1.54839"
Sympatric Type B 0.017 0.420 "-4.03226 to 2.54839"
Allopatric Type B -0.027 0.406 "-6.68783 to 3.35979"

mtCOI Sympatric Type A -0.001 0.718 "-1.06667 to 0.4444"
Allopatric Type A 0.024 0.312 "-6.72727 to 2.4242"
Sympatric Type B -0.044 0.344 "-6.47222 to 2.58333"
Allopatric Type B -0.119 0.315 "-8.69091 to 2.7272"
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Discussion 

Comparison of dn/ds values between candidate GRPs and control proteins 

 Candidate GRPs in C. intestinalis are evolving more rapidly than control 

proteins, and this pattern is likely driven by substitutions at nonsynonymous sites.  

Rapid evolution has been documented at specific GRPs (i.e. lysin, VERL and bindin) 

in marine broadcast spawners, and dn/ds values are lower for mtCOI than the GRPs 

lysin and VERL for green and pink abalone (Clark et al. 2009).  The pattern we see in 

C. intestinalis has also been documented in insects and mammals (e.g. butterflies: 

Walters & Harrison 2010; field crickets: Andres et al. 2008; mouse and human: 

Torgerson et al. 2002; primates: Wyckoff et al. 2000).  This study suggests that a 

pattern of faster evolution in reproductive proteins than control proteins may apply to 

a wider group of organisms than previously imagined (i.e. external as well as internal 

fertilizers).   

 

Evolution of candidate GRPs in Ciona intestinalis – no evidence for reinforcement 

 While dn/ds values were higher in sympatry than allopatry for CIPRO37.40.1 

and CIPRO60.5.1, it appears that this result may be driven by differences in ds.  We 

therefore have no evidence that positive selection is enhanced in sympatry, and if 

these candidate GRPs are involved in prezygotic isolation, we have no evidence for 

enhanced prezygotic isolation.  The polymorphism statistics likewise give no 

indication that reinforcement is driving the rapid evolution of these three proteins. 

 We cannot conclude from lack of evidence for reinforcement on 

CIPRO37.40.1, CIPRO60.5.1 and CIPRO100.7.1 that reinforcement is not occurring 

in this system. If reinforcement is indeed driving prezygotic isolation between Type A 

and B, there are several reasons why we might not have detected it in this study.  First, 

primers for candidate GRPs were developed from the Type A genomic sequence and 
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were used to amplify and sequence both Type A and B individuals (the Type B 

genome has not been sequenced).  But Type A and B are substantially divergent (p-

distances: 0.124 at mtCOI, 0.035 to 0.116 for six nuclear loci; Nydam and Harrison 

2010a), which could explain why 15 genes encoding GRP candidates could not be 

successfully amplified and/or sequenced in Type B individuals.  It is possible that the 

genes that could not be amplified and/or sequenced (and were therefore excluded from 

the analyses) encode proteins that are evolving more rapidly between Type A and B 

than those that were included in the analyses.  If this is the case, we may have missed 

proteins whose dn/ds values were greater than 0.5, proteins that would have been 

included in the sympatric vs. allopatric tests of reinforcement.     

 A second reason why reinforcement is possible in C. intestinalis despite lack 

of evidence from three rapidly evolving candidate GRPs is that these are not the 

proteins that are involved in prezygotic isolation.  While components of the 

fertilization process in solitary ascidians such as C. intestinalis are well-characterized 

(Satoh 1994; Sawada et al. 2000), the genes and corresponding proteins responsible 

for species-specificity have not been identified as in other marine broadcast spawners.   

Two sperm proteins that interact directly with the egg have been identified in 

C. intestinalis, but it is not known whether these proteins are involved in gamete 

recognition.  The first protein is α L-fucosidase, which binds to the vitelline coat of the 

egg (Hoshi et al. 1985).  Five of our candidate GRPs (CIPRO187.4.1, CIPRO19.75.1, 

CIPRO33.15.1, CIPRO552.7.1, and CIPRO58.12.1) had domains also found in α L-

fucosidases, but none of these proteins were expressed in testis tissue, based on 

expression data in CIPRO.  CIPRO187.4.1 could not be amplified from Type B, and 

the other four genes did not have dn/ds ratios > 0.5.  A second protein is a 

chymotrypsin-like enzyme that may dissolve the vitelline coat of the egg (Marino et 

al. 1992).  However, the amino acid sequence for this protein is not available and we 
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identified dozens of chymotrypsin-like proteins in the genome. 

Alternatively, reinforcement may be driving enhanced prezygotic isolation, but 

before mating occurs, rather than at the fertilization step.  We do not know whether 

Type A and B release gametes at the same time of day or in the same season in the 

English Channel.  Since some gene flow has occurred (Nydam & Harrison 2010b), 

spawning must at least partially overlap.  But if there is standing variation in the time 

and/or season of spawning, selection may be favoring those Type A individuals that 

spawn when the majority of Type B individuals do not.    

  It is also possible that reinforcement is not driving the evolution of prezygotic 

isolation in C. intestinalis.  The process of reinforcement does not begin immediately 

after secondary contact, and a recent initiation of secondary contact in the English 

Channel could mean that there has not been enough time for the effects of 

reinforcement to be evident.  Type B is native to Northern Europe and presumably a 

long-time resident of the English Channel.  We do not know when Type A invaded the 

English Channel.  The first published record of Type A in this area was in 2007 

(Nydam and Harrison 2010b), but as Type A and B were only recognized in 2005 

(Suzuki et al. 2005), Type A living in this area prior to 2005 would not have been 

distinguished from the native Type B.  However, the introduction of Type A was 

likely human-mediated (Nydam & Harrison 2010b), a recent invasion on an 

evolutionary timescale.  So the secondary contact between Type A and B might be too 

recent for reinforcement.  However, evidence for reinforcement has been found in 

several instances where secondary contact is on the same time scale as that of Type A 

and B.  For instance, in British Columbian sticklebacks, populations are so recent that 

phylogenetic relationships between them cannot be determined (Rundle & Schluter 

1998).  Similarly, the secondary contact between Mus musculus musculus and Mus 

musculus domesticus has only been in existence since sometime after the Neolithic 
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(9500 BCE) (Boursot et al. 1993).      

 

Evolution of candidate GRPs in Ciona intestinalis – alternatives to reinforcement 

 Other explanations for this pattern of faster evolution of candidate sperm GRPs 

in Type A and B should be addressed, whether or not reinforcement is involved.  The 

first explanation is sperm competition, which occurs in Ciona as it does in internal 

fertilizers.  So selection could be acting on any proteins that determine how quickly 

sperm fertilize eggs: proteins involved in metabolism, motility, binding, penetration, 

etc.  However, as Figure 4.1 shows that candidate GRPs specifically are evolving 

more rapidly than sperm proteins that are not candidate GRPs (control proteins), 

proteins directly involved in sperm-egg interactions are more likely to be experiencing 

directional selection than those involved in helping the sperm reach the egg. 

 Another process that could be leading to rapid evolution of sperm GRPs is 

sexual conflict, which occurs when the optimal outcomes of fertilization are different 

for sperm and eggs.  For sperm, the optimal outcome is fertilization of an egg as 

quickly as possible.  But fertilization of eggs by multiple sperm (polyspermy) results 

in developmental defects in many taxa.  Therefore, the optimal outcome of 

fertilization for an egg may be slower fertilization, to avoid polyspermy.  Ascidians 

like C. intestinalis often live in close proximity to many conspecific individuals 

(Lambert et al. 1997).  Also, an individual usually sends sperm into the water column 

before eggs (ascidians are hermaphrodites).  So eggs are released into a vast amount of 

sperm just spawned from many neighbors, making the risk of polyspermy very high.  

Perhaps in response to this risk, ascidians have evolved two separate blocks to 

polyspermy, whereas many other marine broadcast spawners have a single block 

(Lambert et al. 1997).  Given these effective polyspermy blocks, sexual conflict 

resulting from polyspermy is not likely to be major driver of GRP evolution in 
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ascidians such as C. intestinalis. 

 Lastly, egg surface proteins could be changing rapidly to prevent pathogens 

from entering the egg.  If the same proteins involved in preventing microbial attack are 

involved in sperm/egg recognition, this could lead to the rapid evolution of sperm 

proteins to keep up with the ever-changing egg proteins.       

  

Positive selection on GRPs in other marine broadcast spawners: reinforcement 

 Some of the most rapidly evolving proteins yet discovered are GRPs in marine 

broadcast spawners (e.g. bindin in sea urchins, lysin in abalone and mussels).  In sea 

urchins, the bindin protein facilitates sperm attachment to the egg and fusion of sperm 

and egg (Vacquier & Moy 1977).  In three genera of sea urchin that contain sympatric 

species (Echinometra, Heliocidaris, and Strongylocentrotus), regions of bindin show 

evidence of positive selection (Lessios 2007 and references therein).  In Arbacia, 

Lytechinus and Tripneustes, genera that do not contain sympatric species, bindin 

shows no evidence of positive selection (Lessios 2007 and references therein).  This 

pattern is consistent with a reinforcement hypothesis (Lessios 2007; Palumbi 2009).  

However, if reinforcement is driving the evolution of GRPs between sympatric 

species, we would expect more nonsynonymous substitutions between species than 

within species (Zigler & Lessios 2003).  This pattern is evident in Heliocidaris (Zigler 

et al. 2003), but not in Echinometra (Metz & Palumbi 1996) or Stronglyocentrotus 

(Debenham et al. 2000). 

Stronger evidence for reinforcement comes from a study of Echinometra 

oblonga, which has populations that are sympatric and allopatric with Echinometra 

species C (Geyer & Palumbi 2003).  Substantial divergence in bindin alleles between 

E. oblonga and E. sp. C. occurs where the two species are sympatric, but not where 

they are allopatric (Geyer & Palumbi 2003). 
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In abalone and mussels, sperm proteins known as lysins are involved in 

dissolution of the egg vitelline envelope, enabling the sperm to enter the egg.  The 

best-characterized lysins are in the abalone genus Haliotis.  An early study of 20 

Haliotis species (19 sympatric and 1 allopatric species) found many pairwise 

comparisons with dn/ds values > 1 (Lee et al. 1995).  A later study of 25 species 

corroborate the pairwise results of Lee et al. 1995 and also used maximum likelihood 

models of codon substitution to identify lineage and site-specific evidence of positive 

selection (Yang et al. 2000).  Lineages containing sympatric or closely related species 

usually had dn/ds values > 1, whereas lineages with distantly related allopatric species 

always had dn/ds values < 1, a pattern consistent with reinforcement (Yang et al. 

2000).  The authors also note a dn/ds value > 1 for the two branches separating a group 

of Japanese species from two groups of Californian species; this speciation event was 

likely allopatric.  So while a comprehensive study of Haliotis lysin presents a pattern 

that supports reinforcement, one should not conclude the action of reinforcement 

without explicitly testing whether dn/ds values are higher in sympatry than allopatry.               

In the mussel Mytilus galloprovincialis, two divergent clades of Lysin-M7 

have been found: G and GD (Springer and Crespi 2007).   Evidence of positive 

selection is seen between G and GD, and within GD (Springer & Crespi 2007).  The 

divergence between the two clades is the result of rapid evolution in the GD clade, and 

GD alleles are found at higher levels in sympatric populations of M. galloprovincialis 

(where it hybridizes with Mytilus edulis) than in allopatric populations (Springer & 

Crespi 2007).  Thus, secondary contact and subsequent gene flow between M. 

galloprovincialis and M. edulis may have resulted in the divergence of GD (Springer & 

Crespi 2007).  This pattern is consistent with a reinforcement scenario, as M. 

galloprovincialis/M. edulis hybrids are less fit than parentals (Bierne et al. 2006).  

However, the authors urge caution as the connection between Lysin-M7 GD 
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divergence and prezygotic isolation has not been shown; many other evolutionary 

forces could lead to divergence in sympatry (Springer & Crespi 2007).  

 

Differentiating between processes that lead to rapid evolution in marine GRPs   

 Rapid evolution, and in many cases positive selection, has become a well-

known feature of GRPs in marine broadcast spawners.  But in most cases the 

evolutionary process or processes responsible for this pattern remain elusive. 

 The process of reinforcement can easily be tested in an explicit manner (by 

comparing prezygotic isolation in sympatry vs. allopatry).  One example of such a test 

exists in marine broadcast spawners: gametic compatibility (as measured by the 

concentration of sperm needed to fertilize 20% of the eggs) was compared between 

sympatric and allopatric populations of Mytilus edulis and Mytilus trossulus (Slaughter 

et al. 2008).  But given the importance of GRPs in speciation in marine broadcast 

spawners (Palumbi 1992), this test should also be applied to GRPs directly.   

The work discussed here provides the first explicit test of the reinforcement 

hypothesis (by comparing prezygotic isolation in sympatry vs. allopatry) where 

candidate GRPs are viewed as the source of the prezygotic isolation.  Data from lysin 

in abalone and mussels, and from bindin in sea urchins, are compatible with a 

reinforcement hypothesis; this hypothesis can be tested in species pairs or groups that 

have both sympatric and allopatric populations.  Such tests are particular in these taxa, 

as lysin and bindin have been shown to be directly involved in prezygotic isolation 

(not the case for the three candidate GRPs used in this study).  Specific tests of the 

evolutionary processes behind the patterns of positive selection may provide important 

insights into the process of speciation in marine broadcast spawners.         
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