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We will describe a one-step “Gorensteinization” process for a Schubert vari-

ety by blowing-up along its boundary divisor. The local question involves

Kazhdan-Lusztig varieties which can be degenerated to affine toric schemes de-

fined using the Stanley-Reisner ideal of a subword complex. The blow-up along

the boundary in this toric case is in fact Gorenstein. We show that there exists a

degeneration of the blow-up of the Kazhdan-Lusztig variety to this Gorenstein

scheme, allowing us to extend this result to Schubert varieties in general. The

potential use of this one-step Gorensteinization to describe the non-Gorenstein

locus of Schubert varieties is discussed, as well as the relationship between

Gorensteinizations and the convergence of the Nash blow-up process in the

toric case.
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CHAPTER 1

INTRODUCTION

Gorenstein varieties provide useful representatives for birational equivalence

classes as their canonical (and anticanonical) bundles are invertible. It is there-

fore useful to find methods to achieve this marked improvement, a so called

Gorensteinization. Such a Gorensteinization can be difficult to describe, even for

toric varieties in general, except in the simplest cases. The fact that Schubert

varieties can be locally degenerated to these simple toric cases allows for the

existence of a simple Gorensteinization by blowing-up an explicit Weil divisor.

Schubert varieties are a well-studied class of schemes that have useful de-

scriptions which reduce many otherwise difficult operations to simple combi-

natorics. Let G be a simple complex Lie group, and fix a maximal torus T as

well as a Borel subgroup B containing T . By the Bruhat decomposition, B acts

on G/B with finitely many orbits indexed by W, where W = NG(T )/T is the Weyl

group of G. The closures of these orbits Xw := BwB/B are called Schubert vari-

eties.

We can define the boundary of Xw as

∂(Xw) =
⋃
vlw

Xv,

using v which are covered by w in strong Bruhat order. There is a Frobenius

splitting on Xw for which ∂(Xw) is compatibly split (see [6]). We can localize our

question and reduce to blowing-up a Kazhdan-Lusztig variety Xw ∩ Xo
v along its

boundary. Here ∂(Xw) ∩ Xo
v is an anticanonical divisor, and it is Cartier if and

only if blowing it up is an isomorphism. This makes it useful for detecting the

Gorenstein property.
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In [19], it was shown that there exists a degeneration from a Kazhdan-

Lusztig variety to a Stanley-Reisner scheme associated to a subword complex.

Subword complexes were introduced in [20] and provide a geometric way of

viewing subwords of a word written in elements of Coxeter group. Here in the

toric case, we can identify the boundary divisor as the topological boundary of

a convex region in the character lattice, and it is especially easy to visualize the

blow-up along this divisor.

Theorem 1.0.1. Let Y = Spec(k[x1, ..., xn]/I) where I is a square-free monomial ideal.

Then the blow-up along ∂Y is Gorenstein.

In fact, the blow-up of Y from Theorem 1.0.1 has an exceptional divisor

whose reduction is the natural candidate for the boundary divisor of Ỹ . We

make use of the Frobenius splitting on Y and Ỹ to determine what an anticanon-

ical divisor for a reducible scheme should be. In fact ∂Ỹ will be anticanonical

under this definition. We check that it is Cartier by observing that the blow-up

of Ỹ along its boundary is an isomorphism. Hence Ỹ is Gorenstein. Since being

Gorenstein is open in flat families (even with this generalized version – see Sec-

tion 5), the blow-up of the Kazhdan-Lusztig variety is also Gorenstein, proving

our main theorem.

Theorem 1.0.2. The blow-up of a Schubert variety Xw along ∂Xw is Gorenstein.

This last implication requires a degeneration of the total transform of the

Kazhdan-Lusztig variety to the total transform of the degeneration. Blow-ups

however do not in general commute with degenerations. We show that we

can choose a Gröbner degeneration of ˜Xw ∩ Xo
v that commutes with blowing-

up along the boundary divisor. This result is a more general tool that defines
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a monomial weighting on a blow-up algebra that degenerates to the blow-up

algebra of a given degeneration.

Theorem 1.0.3. Let >λ be a term order on S = k[x1, ..., xk] defined by an integral weight

function λ : Zk → Z. Let I = 〈g1, ..., gm〉 ⊂ J = 〈g1, ..., gm+n〉 be two ideals in S each

generated by a Gröbner basis (with respect to λ). Then there exists an integral weight

function λ̃ : Zn+m+k → Z defining a term order >λ̃ on the blow-up algebra of S/I along

J/I which degenerates to the blow-up algebra of S/init>λ(I) along init>λ(J)/init>λ(I).

In summary, we show that the blow-up of a Schubert variety along its

boundary is Gorenstein. This Gorensteinization will prove even more useful

if we can explicitly describe the total transform X̃w. On a local level, equations

for the blow-up algebra requires an understanding of syzygies. The boundary

divisor is the union of Schubert varieties, which are each defined using deter-

minantal polynomial equations. The union is therefore defined by the intersec-

tion of these conditions. This local question reduces to understanding what the

syzygies are between products of determinants. While the syzygies between the

k × k minors of a given matrix are well-understood (and defined in terms of de-

terminants – see [25]), it is not known whether the syzygies between products

of these minors are also determinantal in nature. It is more likely that finding

X̃w through other means is easier and would shed light on this syzygy problem.

It turns out that Bott-Samelson varieties provide a possible remedy.

Bott-Samelson varieties are commonly used as a desingularization for Schu-

bert varieties. Bott-Samelson maps are described in Section 2.5. They have com-

binatorial properties whose structure is well understood. Using the universal

property of blow-up maps, we show that there exists a surjective map from a

generalized Bott-Samelson variety BS Q to X̃w. A topic for future research is to
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determine to what extent X̃w is isomorphic to some piece of BS Q. The fact that

X̃w is weakly normal simplifies the problem considerably.

Proposition 1.0.4. A Kazhdan-Lusztig variety, its degeneration to a Stanley-Reisner

scheme, and the blow-ups along their respective boundaries are weakly normal.

This extension of Frobenius splittings to the total transform was studied

in [24] when considering blow-ups of smooth varieties along smooth centers.

Whether the Frobenius splitting extends in our case is not known, so the result

in the proposition uses a different method. The weakly normal property how-

ever allows for a critical simplification (using a Zariski’s main theorem type of

argument).

Theorem 1.0.5. There exists a surjective birational B-equivariant morphism ψQ :

BS Q → X̃w which is an isomorphism iff it is a bijection on T -fixed points.

Finally, let us justify why it is worth studying Gorensteinizations in general.

We offer two applications which are topics for future study.

Then Gorenstein Locus of Xw: In the GLn case, we can describe which Xw

are Gorenstein using pattern interval avoidance. The Gorenstein locus is only

conjecturally described in such a way (see [28]). Pattern avoidance conditions

for Xw other than type A are not known.

The singular locus of Xw on the other hand is well-understood. One ap-

proach is using the quasi-resolutions of Cortez in [7] and [8]. Here a family of

these quasi-resolutions πi : Yi → Xw are chosen, where each Yi is similar to the

Bott-Samelson construction. The singular locus of Xw can then be described as
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⋂
i

(πi(Sing(Yi)) ∪ Br(πi))

where Br(πi) is the branch locus of πi and Sing(Yi) is the singular locus of Yi.

Using this as motivation, we observe that in our case we have a Goren-

steinization π : X̃w → Xw for which we hope that the non-Gorenstein locus can

be described in terms of the non-Gorenstein locus of X̃w and the branch locus of

π. Of course the former is empty, so understanding the branch locus of π is key

(and difficult at this point).

We thank Alexander Woo and Alexander Yong for observing this connection.

Resolving singularities via Nash Blow-ups: Given an m-dimensional

quasiprojective variety X ⊂ Pn, we can define a Nash blow-up as the closure

of the graph of the Gauss map,

X → Gr(m + 1, n + 1)

taking a smooth point to its tangent space. The question is whether repeating

this process terminates after finitely many steps (in which case we have resolved

the singularities of X). The problem remains open for toric varieties, although

work has been done on this problem with all experimental results converging

in finite time (see [2]).

In the Gorensteinization process of Xw, we degenerate to the toric case and

consider the method of blowing-up boundary divisors until we have an isomor-

phism. While we don’t know whether this process would terminate for toric

varieties in general, we develop ideas towards this result in the sections that
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follow.

The interesting connection is that this Gorensteinization process is linked to

the Nash blow-up problem. We thank John Moody for the observation that the

Gorensteinization process converging to a smooth variety implies that the Nash

Blow-up process also converges. The convergence of this Gorensteinization pro-

cess corresponds to a torus equivariant sheaf of finite type that also contains a

sheaf which determines the convergence of the Nash blow-up process. These

are both subsheaves of the Grauert-Riemenschneider sheaf.

This exciting link between Gorensteinizations for toric varieties and resolv-

ing their singularities via Nash blowups is certainly worth pursuing in future

research.

6



CHAPTER 2

PRELIMINARIES

For us, a scheme will be separated of finite type over an algebraically closed

field k of characteristic 0, unless specified otherwise. A variety will be an inte-

gral scheme.

Let G be a simple complex Lie group, and fix a maximal torus T as well as

a Borel subgroup B containing T . By the Bruhat decomposition, B acts on G/B

with finitely many orbits indexed by W, where W = NG(T )/T is the Weyl group

of G, and

G/B =
⊔
w∈W

BwB/B .

For each w ∈ W, let Xw
o = BwB/B, called a Schubert cell. Then its Zariski

closure is the Schubert variety Xw (note the difference in the notation Xw used

by some other authors). The left T action on Xw has finitely many T -fixed points

ev := vB/B for v ≤ w. Every point in Xw is contained in the B-orbit of some ev.

We can define the boundary of Xw using v which cover w in strong Bruhat

order as

∂Xw =
⋃
vlw

Xv .

Example 2.0.1. In the G = GL4(C) case, it is not hard to see that the boundary of

X4231 has four components given by

7



∂X4231 = X4213 ∪ X4132 ∪ X3241 ∪ X2431

Recall that the dimension is computed by counting the number of inversions

in the permutation, so here

dim X4231 = 5 and dim ∂X4231 = 4.

�

Finally, we state a well-known result for reference.

Lemma 2.0.2. The Schubert variety Xw is Cohen-Macaulay and normal.

2.1 Kazhdan-Lusztig varieties

To get local equations for Xw, we resort to computing Kazhdan-Lusztig ideals

(see [28, §3]) using local coordinates for G/B. There is an isomorphism between

a neighborhood of any point in G/B with a neighborhood of a T -fixed point

(using the B-action on G/B). Let Xo
w := B−wB/B denote the opposite Schubert

cell. To find local equations for Xw at ev, it is enough to study Xw ∩ vXo
id, where

vXo
id is an affine neighborhood of ev.

Lemma 2.1.1 (Kazhdan-Lusztig Lemma). Xw ∩ vXo
id � (Xw ∩ Xo

v ) × Al(v).

Proof. See 3.2 in [28]. �

The Xw ∩ Xo
v are called Kazhdan-Lusztig varieties. We justify the notation Xw

instead of Xw because of the fact that Xw ∩ Xo
v , ∅ iff w ≥ v (and conventionally

posets are drawn with larger elements on the top).
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Since Xw is covered by open sets of the form Xw ∩ vXo
id, it will be enough to

study Xw∩Xo
v to deduce information about Xw. We will denote the defining ideal

for the Kazhdan-Lusztig variety Xw ∩ Xo
v by Iw,v. A simple topological computa-

tion is needed to restrict ∂Xw to the local case:

Lemma 2.1.2. ∂((Xw ∩ Xo
v ) × Al(v)) = (∂Xw ∩ Xo

v ) × Al(v).

We will later see that the divisor class [∂Xw∩Xo
v ] = [−KXw∩Xo

v ]. That is, ∂Xw∩Xo
v

is an anticanonical divisor for Xw ∩ Xo
v .

Proposition 2.1.3. The blow-up of Xw along ∂Xw is Gorenstein iff the blow-up of Xw ∩

Xo
v along ∂Xw ∩ Xo

v is Gorenstein for each v ∈ W.

Proof. Being Gorenstein is a local property, so the result can be checked on the

open sets Xw∩ vXo
id. By the Kazhdan-Lusztig Lemma, we can restrict to checking

(Xw ∩ Xo
v ) × Al(v). Since the blow-up of (Xw ∩ Xo

v ) × Al(v) along (∂Xw ∩ Xo
v ) × Al(v) is

just ˜(Xw ∩ Xo
v ) ×Al(v) (ie. the product of the total transform of Xw ∩ Xo

v with affine

space), X̃w is Gorenstein iff ˜(Xw ∩ Xo
v ) is Gorenstein, and the result follows. �

Example 2.1.4. Let us compute local equations for the variety X53241 at eid. To do

this we need to intersect the Schubert conditions from the permutation matrix



0 0 0 0 1

0 0 1 0 0

0 1 0 0 0

0 0 0 1 0

1 0 0 0 0


(which provide defining equations for π−1(X53241) where π : G → G/B) with the

coordinates from the open cell (which is isomorphic to A10)
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

1 0 0 0 0

z41 1 0 0 0

z31 z32 1 0 0

z21 z22 z23 1 0

z11 z12 z13 z14 1


The Schubert conditions say that the southwest-most 2 × 3 matrix has rank

< 2. Therefore the Kazhdan-Lusztig ideal is generated by the three 2× 2 minors:

Iw,v = 〈z11z22 − z12z21, z11z23 − z13z21, z12z23 − z13z22〉.

�

2.2 The Gorenstein property

The Gorenstein property is defined using the canonical bundle, so we must take

care in discussing this property for singular varieties. Let X be a normal variety

of dimension n and U its regular locus. We can define the sheaf of differential

forms of degree n on U without issues. This sheaf is invertible, and hence is

of the form OU(D) for some Cartier divisor D on U. Since codim(X \ U) ≥ 2,

by normality we can extend D to a Weil divisor on all of X which we call a

canonical divisor KX. A similar definition works for the anticanonical divisor.

These divisors are unique up to linear equivalence.

Definition 2.2.1. An normal algebraic variety X is Gorenstein if ωX is invertible. That

is, X is Gorenstein if KX is a Cartier divisor.

10



Since Schubert varieties are normal (see Lemma 2.0.2), Kazhdan-Lusztig va-

rieties are also normal, so this definition makes sense for our purposes.

Example 2.2.2. In the GLn(C) case we can detect which Xw are Gorenstein using

interval pattern avoidance (see [28]). For n ≤ 5, all Xw are Gorenstein except for

X53241, X35142, X42513, X52431.

�

Frobenius splittings will be heavily used in later arguments which is why

we work with anticanonical divisors instead of canonical ones. This still works

for the purposes of detecting the Gorenstein property. We thank Michel Brion

for the discussion regarding this topic.

Lemma 2.2.3. Let X be a normal algebraic variety such that the anticanonical divisor

−KX is Cartier. Then X is Gorenstein.

Proof. If −KX is Cartier, then there exists a collection {(Ui, fi)} where the open

subsets Ui cover X and −KX is the divisor of the rational function fi. Then KX is

the divisor associated to {(Ui,
1
fi
)} and is also Cartier. �

2.3 The subword complex

We will see in subsequent sections that a Kazhdan-Lusztig variety Xw ∩ Xo
v can

be degenerated to a Stanley-Reisner scheme associated to a subword complex.

Subword complexes were first introduced by Knutson and Miller in [21]. Given

an ordered list Q of simple reflections in a Coxeter group Π and a fixed element

11



π ∈ Π, one can ask about what structure can be placed on collection of subwords

Q that are also reduced expressions for π.

Definition 2.3.1. Given a word Q = (σ1, ..., σm) where σi a simple reflection in Π and

some fixed element π ∈ Π, we can define ∆(Q, π) to be the set of subwords Q \ P where

P is a subword that contains a subsequence which is a reduced expression for π.

The subword complex has some useful properties that are worth mention-

ing here (although we will only be concerned with the case where Π is a Weyl

group).

Proposition 2.3.2. ∆(Q, π) is a pure simplicial complex whose facets are the subwords

Q \ P such that P ⊂ Q represents π.

Proof. See Lemma 2.2 in [20]. �

Proposition 2.3.3. The subword complex ∆(Q, π) is either a ball or sphere. A face Q\P

is in the boundary of ∆(Q, π) iff P has Demazure product , π.

Proof. See Theorem 3.7 in [20]. �

Example 2.3.4. Let Π = S 4 and consider ∆(s3s2s3s2s3, 1432) where si is the simple

reflection swapping i and i + 1 and π = 1432 is a permutation. Here π has two

reduced expressions in terms of the si, namely s3s2s3 and s2s3s2. The facets will

correspond to subwords P of Q such that Q \ P is a reduced expression for π.

For example, the subsequence chosen as the first and second elements of Q is

denoted by s3s2 − −− in the diagram below. Its complement is − − s3s2s3 which

provides a reduced expression for π.

12



�

2.4 Frobenius splittings

As motivation for the definition below, consider a commutative ring R, and let

us observe that R is reduced if the map x → xn only sends 0 to 0 for n > 0. We

would like to write this condition as ker(x → xn) = 0, but we cannot because

the map is not linear in general. It does however make sense if we restrict to

the case that n is prime and R contains the field Fp, i.e. the map is the Frobenius

endomorphism. Then, R being reduced says that there exists a one-sided inverse

to the Frobenius map.
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A Frobenius splitting of an Fp-algebra R is a map ϕ : R→ R which satisfies:

(i) ϕ(a + b) = ϕ(a) + ϕ(b)

(ii) ϕ(apb) = aϕ(b)

(iii) ϕ(1) = 1

An ideal I ⊂ R is compatibly split if ϕ(I) ⊂ I. See [19] for a more detailed

exposition on the subject.

2.4.1 The trace map

Let R = Fp[x1, ..., xn]. A simple example of a splitting on R is the standard split-

ting defined on monomials m (and extended linearly). It is the pth root map

when m is a pth power and 0 otherwise. The ideals that are compatibly split by

the standard splitting are precisely the Stanley-Reisner ideals.

More generally define the trace map Tr(·) first on monomials m (and then

extend linearly):

Tr(m) =


p
√

m
∏

i xi∏
i xi

if m
∏

i xi is a pth power

0 otherwise

In general, given f ∈ R, ϕ(g) = Tr( f p−1g) defines a near splitting (taking

f =
∏

i xi gives the standard splitting). If in addition we have Tr( f p−1) = 1, then

we have a Frobenius splitting. For example, xyz always defines a splitting on

Fp[x, y, z] and x2y + z3 + y3 + w7 defines a splitting on F7[w, x, y, z].
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2.4.2 Frobenius splittings for schemes

More generally, let X be scheme (separated of finite type over an algebraically

closed field of characteristic p > 0). The absolute Frobenius morphism FX : X →

X is the identity on X and the pth power map on OX. We say that X is Frobenius

split if the OX-linear map F# : OX → F∗OX splits (i.e. there exists a map ϕ such

that ϕ ◦ F# is the identity map).

Lemma 2.4.1. Frobenius split schemes are reduced.

Proof. See Proposition 1.2.1 in [6]. �

Just as we used (p − 1)st powers of f ∈ R[x1, ..., xn] to define splittings on An,

we can define Frobenius splittings in general using (p − 1)st powers of sections

of the anticanonical bundle of X.

Following Section 1.3 of [6], suppose that X is smooth with dimension n. A

splittingσ : F∗OX → OX is a global section of the sheafHom(F∗OX,OX) = (F∗OX)∗.

Then

H0(X, (F∗OX)∗) = Hn(X, ωX ⊗ F∗OX)∗

= Hn(X, ωX ⊗ F∗F∗OX)∗

= Hn(X, F∗F∗ωX)∗

= Hn(X, ωp
X)∗

= H0(X, ω1−p
X )

For example, nonsingular projective irreducible curves of genus g ≥ 2 are

not split. See Sections 1.3 and 1.4 in [6] for more details regarding spitting using
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ω−1
X and refer to Section 1.6 for instruction on how to pass from characteristic p

statements to characteristic 0 results.

Proposition 2.4.2. There exists a Frobenius splitting of G/B which compatibly splits

all Schubert subvarieties Xw and and opposite Schubert subvarieties Xw.

Proof. See Section 2.3 in [6]. �

Corollary 2.4.3. There is a Frobenius splitting of the Kazhdan-Lusztig variety Xw∩Xo
v

which compatibly splits ∂Xw ∩ Xo
v .

Proof. The intersection and union of compatibly split subvarieties is again com-

patibly split, so the result follows by Proposition 2.4.2. �

2.5 Bott-Samelson resolutions

Let Q = (w1, ...,wk), where wi ∈ W. A generalized Bott-Samelson variety BS Q is

the quotient of Bw1B × ... × BwkB by the Bk action given by:

(b1, ..., bk) · (p1, ..., pk) := (p1b−1
1 , b1 p2b−1

2 , ..., bk−1 pkb−1
k ).

If we let ×B denote the quotient by the above action for the k = 2 case, we can

write BS Q as Bw1B ×B ... ×B BwkB/B.
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We can define Dem(Q) inductively as

Dem((Q,si)) =


Dem(Q)·si l(Dem(Q·si)) > l(Dem(Q))

Dem(Q) otherwise

where the Demazure product of the empty word is the identity. Then the B-

equivariant map

ϕQ : Bw1B ×B ... ×B BwkB/B→ G/B

defined by (p1, ..., pk)→ p1 · ... · pkB/B maps onto XDem(Q).

Sub Bott-Samelson varieties BS R ⊂ BS Q are naturally defined by taking R =

(v1, ..., vk) where vi ≤ wi.

Lemma 2.5.1. Let Q = (w1, ...,wk) where wi is a simple reflection ski ∈ W. Then BS Q is

smooth.

Proof. As seen in [10]: In this case, BwiB � Pki is a minimal parabolic subgroup

of G. Then BS Q is just an iterated P1-bundle and ϕQ defines a resolution of sin-

gularities for Xw. �

See [13] for an example of how to visualize the BS Q in Lemma 2.5.1 in the

context of flag varieties. Although BS Q is not smooth in general, it is Cohen-

Macaulay and normal.

Lemma 2.5.2. The Bott-Samelson variety BS Q is both Cohen-Macaulay and normal.

Proof. As seen in [10]: Using the projection map
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Bw1B ×B ... ×B BwkB/B→ Bw1B ×B ... ×B Bwk−1B/B

it is easy to see that BS Q is just an iterated Schubert variety bundle over Xw. It

is well known that Xw is both Cohen-Macaulay and normal. Since both of these

conditions are local, and since the bundle map above is locally trivial, it follows

by induction that BS Q also has these properties. �

Lemma 2.5.3. Let ϕQ be a Bott-Samelson map with Q = (w1, ...,wk). Then ϕQ is always

a proper map. Furthermore, ϕQ is birational if and only if Dem(Q) =
∏

wi (in which

case we say Q is reduced).

Proof. As seen in [10]: Since BS Q and Xw are projective, they are both proper over

C so ϕQ must be proper also. The second statement follows from the fact that

ϕQ is an isomorphism away from the sub Bott-Samelson varieties BS R where R

is not reduced. Then Q is reduced iff R , Q. �

2.6 Geometric vertex decomposition

Before we describe the degeneration of Xw ∩ Xo
v to the Stanley-Reisner scheme,

let us define the geometric vertex decomposition (see the work of Knutson in

[18] and [19]).

We start with an integral variety X ⊂ An. Let us write An = H × L, with H a

hyperplane and L a line. Consider the action of Gm on An by

z · (x, l) = (x, zl)

and let us define
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X′ = lim
t→0

t · X.

Here X′ is a limit scheme. That is, it is the zero fibre of

⋃
z∈Gm

z × (z · X) ⊂ A1 × (H × L).

There is a simple way to compute X′ set-theoretically. Let Π ⊂ H be the

closure of the image of the projection of X to H. We will denote the closure of X

in H × (L ∪ {∞}) by X̄. Finally, define Λ ⊂ H by Λ × {∞} = X̄ ∩ (H × {∞}) = X̄ \ X.

Lemma 2.6.1. The limit scheme X′ of the geometric vertex decomposition can be de-

scribed as a set by

X′ = (Π × {0}) ∪Λ×0 (Λ × L).

Example 2.6.2. Let us write A2 = H × L where H is the x-axis and L is the y-axis.

Consider the variety X defined by xy − 1 = 0. The closure of the projection of X onto H

is exactly H. Similarly, it is not hard to see that Λ × L is the y-axis, and by the Lemma,

X′ is the union of the two axes. �

This definition generalizes if we take H to be some general scheme, as long

as L remains A1.

The degeneration that appears in the next section can be shown inductively

by using geometric vertex decomposition applied to a Kazhdan-Lusztig variety

KL1 where H can be chosen so that Π = KL2 and Λ = KL3 are two other Kazhdan-

Lusztig varieties. More precisely, let Xw|v := Xw ∩ (vN−B+/B+) where vN−B+/B+ is

the permuted big cell (called a Schubert patch on Xw).
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Theorem 2.6.3 (Theorem 2, [18]). Let v,w be elements of W. If Xw|v , ∅, then v ≥ w

in the Bruhat order. Assume this hereafter.

If v = 1, then w = 1 and Xw|v = N−B+/B+. Otherwise, there exists a simple root α

such that vrα < v in the Bruhat order. Let X′ be the degeneration of Xw|v described above.

• If wrα > w, then X′ = Xw|v (the limiting process is trivial), and

Xw|v � Π × A1
−v·α , Xw|vrα � Π × A1

v·α

for the same Π.

• If wrα < w but w � vrα, then X′ = Xw|v (again, the limiting process is trivial), and

Xwrα |vrα � Xw|v × A
1
v·α.

• If wrα < w ≤ vrα, then X′ is reduced, and has two components:

X′ = (Π × 0) ∪Λ×{0} (Λ × A1
−v·α)

where Π × A1
v·α � Xwrα |vrα and Λ × A1

v·α � Xw|vrα .

Simply put, we can degenerate KL1 as:

KL1  KL2 ∪0×KL3 (A1 × KL3).

We want to emphasize that this limit is in fact reduced. This inductive version

of the degeneration can be found in greater detail in [18] and [19].
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CHAPTER 3

DEGENERATING TO THE TORIC CASE

We will now consider the degeneration of the Kazdhdan-Lusztig variety Xw∩

Xo
v to a Stanley-Reisner scheme. To give a picture of what will occur later in this

section, we provide a motivational example.

Example 3.0.1. In the GLn(C) case, consider X53241∩Xo
12345. Then by Example 2.1.4

we have

Iw,v = 〈z11z22 − z12z21, z11z23 − z13z21, z12z23 − z13z22〉

Consider the term order where z11 > z21 > ... > z12 > ... > z55. Then

init(Iw,v) = 〈z11z22, z11z23, z12z23〉

This is the Stanley-Reisner ideal of the subword complex ∆(Q, 12345) (the

vertex z13 is a cone vertex and has not been drawn below).
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Note: The fact that these “Woo-Yong” coordinates in [28] are equivalent to Bott-

Samelson coordinates in this case follows from [29]. �

Theorem 3.0.2. Given ϕQ : BS Q → G/B, consider ϕ−1
Q (Xw) ⊂ A|Q| and denote its ideal

by Iw. Then Jw := init(Iw) is a squarefree monomial ideal. Its prime components are

coordinate ideals CF where Q \ F is a reduced word for w.

Proof. See [19, §7.3]. �

This theorem is stated in terms of Xw∩Xv
o with Q a reduced word for v. Multi-

plying by the long Weyl group element w0 gives us our form of Kazhdan-Lusztig

variety introduced in Section 2.1. We therefore denote the simplicial complex as-

sociated to Iw,v by ∆(Q,w) where Q is reduced word for the permutation v. This

is the subword complex introduced in Section 2.3

Theorem 3.0.3. The subword complex ∆(Q,w) is homeomorphic to a ball and is

shellable. Its boundary sphere is

⋃
w′mw

∆(Q,w′).

We will denote its defining ideal by ∂Iw,v := ∩wmw′ Iw′,v.

Proof. See [20]. �

Corollary 3.0.4. Properties of Iw,v:

• Each Iw,v is Cohen-Macaulay.

• Each Iw,v is normal and ∂Iw,v defines an anitcanonical divisor.

• Iw,v = ∩w′mw,biGrassmannianIw′,v. The concatenation of Grobner bases for the maximal

biGrassmannians ≤ w provides a Grobner basis for Iw,v.
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• Consider the poset morphism m : 2Q → W given by F → Dem(Q \ F). Then

∆(Q,w) = m−1([w,w0]). That is, m defines a “Bruhat decomposition for ∆(Q,w)”.

Proof. A combination of results from [19] and [20]. �

3.1 Combinatorics

We wish to understand what happens when we blow-up the toric scheme (com-

ing from the degeneration) along its boundary.

First recall that a normal (irreducible) variety containing a torus T � (Gm)n as

an open subset, where the action of T on itself extends to an action of X is called

a toric variety. The boundary of X is then defined as ∂X = X \ T . Denote the

coordinate ring of X by R[X] = k[x1, ..., xn]/IX. To each affine toric variety X we

can associate a convex rational polyhedral cone σX contained in the character

lattice MR. This cone defines a saturated affine semigroup S σX such that X =

Spec(k[S σX ]) (we are using the notation in [9, §1]). The irreducible components

D1, ...,Dn of ∂X are defined as the vanishing of a primitive character in MR and

correspond to the facets of σX. Here ∂X is the anticanonical divisor (up to linear

equivalence). See [9] for more information about the correspondence between

X and a cone or polytope in the character lattice.

A blow-up of an affine X along a (reduced) torus invariant subvariety of ∂X

can be viewed in the character lattice as “planing off” the corresponding faces

of σX. That is, it can viewed by taking the convex hull of the lattice points that

remain after removing components of the boundary. For now we will consider

the combinatorics of such an operation and save the geometric questions for the
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next section.

We will be working with reducible toric schemes which can be associated

to convex polytopal complexes. A lattice polytopal complex ∆ is a union of

lattice polytopes such that the intersection of any two is also a lattice polytope

contained in ∆. The boundary ∂∆ of ∆ is the union of polytopes which form the

boundary of the convex region ∆. Affine toric schemes can then be associated to

the cone on ∆, denoted by Cone(∆) or C(∆).

Just as in the irreducible case, the blow-up of a lattice polytopal complex ∆

along a subcomplex ∆′ ⊂ ∂∆ is the polytopal complex ∆̃ resulting from taking

the convex hull of the lattice points in ∆ \ ∆′.

We need to show that this operation in the character lattice MR is indeed the

correct picture to visualize the Rees algebra R[It] =
⊕

k≥0 Iktk for the blow-up of

X along the reduced subscheme (∂X)′ (corresponding to ∆ and ∆′ respectively).

Lemma 3.1.1. Let X be an affine toric scheme associated to a polyhedral complex

∆ ⊂ MR (so that X = Spec(k[S C(∆)])). Then the blow-up of X along a torus invari-

ant subscheme (∂X)′ ⊂ ∂X is again a toric scheme that can be associated to the blow-up

of ∆ along ∆′.

Proof. Let I be the defining ideal for (∂X)′. The blow-up algebra R[It] is gener-

ated by I in degree one over R[X]. In the character lattice, R[X] can be viewed

as C(∆) and I as C(∆̃). We observe that the weights of Ik scaled by 1
k form

the same cone C(∆̃) in degree one (except using a denser lattice). Therefore it

suffices to compute X̃ using the weights in the blow-up of ∆ along ∆′. In fact

X̃ = Proj(k[S C̃(∆)]). �
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After the first blow-up, our scheme is no longer affine. To continue viewing

the blow-up as in Lemma 3.1.1, we just need to cover the total transform with

affine charts and patch together the results.

Example 3.1.2. The blow-up of C2 at the origin can viewed in the character lat-

tice as the first region in the figure below. The origin of C2 corresponds to the

origin of the first quadrant. After removing it and taking the convex hull of the

lattice points that remain, we are left with the first picture below corresponding

to I = 〈x, y〉. We can obtain the diagram for I2 by planing off the diagonal an

extra step inward (the second diagram below). This new diagram scaled by 1
2 is

the original one with a denser lattice.

�

Given the cone on ∆, let π1(C(∆)) = Conv(C(∆) \ ∂C(∆)). We can perform

the same operation on π1(C(∆)) by taking the convex hull after removing the

boundary, and we will denote this by π2(C(∆)). Continuing this process, we

have the following sequence:

...→ π3(C(∆))→ π2(C(∆))→ π1(C(∆))→ π0(C(∆)) = C(∆)

We will say that C(∆) is stable if there exists a k > 0 such that the toric scheme
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associated to πk(C(∆)) is isomorphic to the toric scheme associated to πk−1(C(∆)).

In this case we will simply say that πk(C(∆)) and πk−1(C(∆)) are equivalent.

The most basic simplicial complex, just a single standard simplex, stabilizes

very quickly, even if we only remove a portion of the boundary. This single

example is the only case we actually need to extend the result to Stanley-Reisner

complexes.

Lemma 3.1.3. Let ∆ be the standard simplex in An. Let ∆′ be some proper simplicial

subcomplex of ∆. Let ∆̃ = Conv(C(∆) \ C(∆′)) and let ∆̃′ ⊂ ∆̃ be the exceptional facets

(those facets in ∆̃ not originally in ∆). Then the blow-up of ∆̃ along ∆̃′ is equivalent to

∆̃.

Proof. First consider the case that ∆′ is just one face of ∆. We may assume by a

change of coordinates that it is defined by

{x1 = ... = xk = 0} ∩ ∆ for 1 < k < n

Taking the convex hull of C(∆) \C(∆′) is equivalent to intersecting C(∆) with

the half space H+
1 = {x1 + ... + xk ≥ 1} (since this has removed the portion where

{x1 = ... = xk = 0} leaving only lattice points where at least one xi > 0). The new

facet of the boundary ∆̃′ consists of the polytope C(∆) ∩ {x1 + ... + xk = 1}.

Blowing-up once more would result in a region given by intersecting C(∆)

with half space H+
2 = {x1 + ... + xk ≥ 2} and boundary defined by x1 + ... + xk = 2.

It is clear that both correspond to isomorphic copies (using a Veronese map

giving different embeddings) of the blow-up of An along {x1 = ... = xk = 0},

hence we have stability.

The case for general ∆′ easily follows. �
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The simplicial complexes we will be concerned with are those that come

from Stanley-Reisner ideals. A Stanley-Reisner complex is a simplicial com-

plex whose face ideal is generated by square-free monomials. The advantage to

working with such complexes is that their simplices are stable.

Lemma 3.1.4. Let I ⊂ k[x1, ..., xn] be an ideal generated by square-free monomials.

Then the affine semigroup S C(∆I ) in the character lattice MR associated to the reducible

affine toric scheme

X = Spec(k[x1, ..., xn]/I)

is the cone on the Stanley-Reisner complex ∆I . Furthermore, each simplicial cone in

C(∆I) is isomorphic to the cone on a standard simplex.

Proof. Since I is a square free monomial ideal, each component of I corresponds

to a coordinate subspace ofAn. It is an easy exercise to check that the cones in MR

corresponding to each component are isomorphic to some orthant Ak, which is

the cone on some standard simplex in the appropriate coordinates. The gluing

of these simplices must occur along faces which are not in the face ideal I.

�

Example 3.1.5. Consider C[w, x, y, z]/〈wz〉. There are two components in this

affine scheme defined by w = 0 and z = 0. The w = 0 component is given

by Spec(C[x, y, z]) which corresponds to the orthant C3
≥0 in the character lattice.

A similar statement holds for the z = 0 component. Since wz = 0, adding the

generator of the w-axis and the generator for the z-axis results in 0, a relation

demonstrated by the gluing of one facet from each simplex (corresponding to

the gluing along the xy-plane).
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Theorem 3.1.6. Let ∆I be as in Lemma 3.1.4. Then the blow-up of ∆I along ∂∆I is

stable. Even more, π2(C(∆I)) = π1(C(∆I)).

Proof. It suffices to show that each simplex σ ∈ ∆I blown up along σ ∩ ∂∆I is

stable. By Lemma 3.1.4, each simplex σ is isomorphic to the standard simplex.

Therefore the result holds by Lemma 3.1.3. �

Example 3.1.7. We observe that the subword complex from Example 3.0.1 is

stable. Removing the boundary and taking the convex hull would produce the

blue polytopal complex. It is clear that doing this process once more produces

an isomorphism.
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3.2 Boundary divisors and Gorenstein toric varieties

In Section 3.1, we showed that blowing-up a Stanley-Reisner scheme along the

boundary twice yields an isomorphism. Let us recall the following fact that

follows immediately from the universal property of blow-ups (see Section 6.0.2):

Lemma 3.2.1. The blow-up of a scheme X along some closed subscheme Y is an isomor-

phism iff Y is an effective Cartier divisor of X.

This means that the (reduced) boundary divisor is Cartier after the first blow-

up in the sequence described above.

Proposition 3.2.2. Let X be a Stanley-Reisner scheme, and consider the sequence
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X = X0
π0
← X1

π1
← X2

where πi is the blow-up of Xi along the reduction of the boundary ∂Xi and X1 and X2 are

the total transforms. Then ∂X1 is an effective Cartier divisor.

Proof. By Theorem 3.1.6, the polytopal complexes ∆1 and ∆2 associated to X1

and X2 are equivalent. Therefore X1 is isomorphic to X2. By Lemma 3.2.1, ∂X1 is

a Cartier divisor. �

Note that the process in Section 3.1 defines the boundary ∂X1 as the reduc-

tion of the exceptional divisor. The components of the exceptional divisor could

a priori have multiplicity > 1, which means that the blow-up along ∂X1 would

correspond to a weighted removal of the boundary followed by taking the con-

vex hull of what remains. While the exceptional divisor is Cartier, its reduction

might not be, and in general this might not produce an isomorphism like in

Proposition 3.2.2.

In the Stanley-Reisner case however, the reduced boundary divisor of the

total transform is Cartier, but it is not immediately clear that it is the boundary

divisor in the sense that we want it to be. That is, we do not know whether ∂X1

is anticanonical. We will use Frobenius splittings to guide our understanding

of anticanonical for reducible schemes. First note that irreducible normal toric

varieties are easy to Frobenius split.

Lemma 3.2.3. Let X be a toric variety (irreducible and normal). Let t1, ..., tn be the

coordinates on the torus T coming from Gm. Then
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σ =
dt1 ∧ ... ∧ dtn

t1...tn

is a rational section of ωX and σ1−p defines the unique T -invariant splitting of X that

compatibly splits ∂X.

Proof. See Exercise 1.3.6 in [6]. �

In fact weakly normal toric schemes (see Section 6.2) are also Frobenius split

by the standard splitting. Furthermore, the blow-up of a weakly normal scheme

along a weakly integrally closed ideal is again weakly normal. This is enough

to show that the total transform is again Frobenius split. A second proof is

provided below, one that is easier to visualize.

Proposition 3.2.4. Let X be a weakly normal affine toric scheme. Then the blow-up of

X along ∂X is also Frobenius split.

Proof. Weakly normal toric schemes are Frobenius split by the standard split-

ting. Since X is affine, there is a polyhedral complex ∆ such that Cone(∆) defines

an affine semigroup in the character lattice MR associated to X.

One can check that X is Frobenius split by the standard splitting iff the fol-

lowing condition holds:

(pa1, ..., pan) ∈ Cone(∆) ∩ Zn ⇒ (a1, ..., an) ∈ Cone(∆) ∩ Zn

In other words, the standard splitting acts as the multiplication by 1
p map on

lattice points.
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The blow-up of X along ∂X can be viewed in the character lattice by tak-

ing the convex hull of the lattice points in Cone(∆) \ Cone(∂(∆)) by Section 3.1.

Suppose the total transform was not Frobenius split by the standard splitting.

Then there would be a lattice points L = (pa1, ..., pan) ∈ ˜Cone(∆) such that

1
p L < ˜Cone(∆). Since 1

p L ∈ Cone(∆), we conclude that 1
p L ∈ Cone(∂(∆)). But then

L ∈ Cone(∂(∆)) (since it is a cone) which means that L couldn’t be in ˜Cone(∆), a

contradiction. �

Corollary 3.2.5. Let X be a Stanley-Reisner scheme. Then X is Frobenius split by the

standard splitting.

Proof. The components of X and the components of their intersections are coor-

dinate subspaces, so each component is normal and each split by the standard

splitting. �

In the (irreducible) toric variety case, the blow-up along the boundary is

Frobenius split by the standard splitting. By Section 2.4, the standard splitting

is defined using the unique toric invariant section of the anticanonical bundle,

which has to be the boundary divisor. In this way we know that the boundary

of the total transform is anticanonical.

We are dealing with reducible toric schemes however, so we need to take

greater care in how we show that the boundary divisor is anticanonical. We

have shown that the total transform of a Frobenius split toric variety is again

split. This Frobenius splitting however does not necessarily come from a section

of the anticanonical bundle as in Section 2.4. At this point we need to decide

how we want to define the anticanonical divisor for reducible schemes.

As motivation, recall that by Theorem 3.0.3 we know that the ∂Xw ∩ Xv
o de-
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generates to the boundary of a subword complex. We would like to say that

the anticanonical divisor ∂Xw ∩ Xv
o has degenerated to an anticanonical divi-

sor. Consider Example 3.1.5. In this case, we don’t want to include the interior

facet corresponding to the gluing of two orthants along the coordinate subspace

w = z = 0. Let us also adopt the philosophy that anticanonical sections should

tell us what is Frobenius split. We know that w = z = 0 is Frobenius split if

w = 0 and z = 0 are, further showing that interior components used for gluing

shouldn’t be included in our definition of anticanonical.

By Section 2.2, we know how to define the anticanonical bundle for normal

varieties. Given a reduced equidimensional algebraic variety X, let us denote its

normalization by ν : X̄ → X. In this normalization process, irreducible compo-

nents of X have become disjoint. Suppose also that the irreducible components

of X are normal. Then the ramification locus R ⊂ X̄ of ν is just the fibre over

the intersection of the components (in our previous example, w = z = 0). This

ramification locus together with the components coming from the boundary of

X should be anticanonical (in the usual sense) in X̄. This motivates the following

definition:

Definition 3.2.6. Let X be a reduced equidimensional scheme whose irreducible com-

ponents are normal. Let ν : X̄ → X be its normalization and R ⊂ X̄ the ramification

locus. A divisor D ⊂ X is called anticanonical if:

• (ν−1(D) ∪ R) ∩ X̄reg is anticanonical in X̄reg

• codim(ν−1(D) ∩ R) > 1.

The last condition ensures that invariant toric divisors in a toric scheme X are
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either part of the branch locus or part of the anticanonical divisor of X (indeed it

forces the branch locus to be a divisor). We get the following immediate results

from the definition:

Lemma 3.2.7. Let X be a reduced equidimensional toric scheme associated to the poly-

topal complex ∆. Suppose that ∆ is homeomorphic to a ball or sphere. Also assume that

the components of X are normal. Then ∂∆ is anticanonical.

Proof. Let ν : X̄ → X be the normalization map. Since the components of X are

normal, the ramification locus R of ν is just the fibre over facets of ∆ \ ∂∆. Then

R ∪ ν−1(∂∆) is just the union of the toric invariant divisors corresponding to the

boundary of each irreducible component, so is anticanonical in X̄ by 3.2.3.

Since ∆ is a ball or sphere, the intersection of the branch locus and D has

codimension > 1. �

Corollary 3.2.8. Let X be an affine toric scheme associated to the subword complex

∆ = ∆(Q,w). Then ∂X is anticanonical.

Proof. By Section 2.3, ∆ is a ball or sphere. �

Proposition 3.2.9. Let X be as in Lemma 3.2.8. Then the boundary divisor of the

blow-up of X along ∂X is an anticanonical divisor.

Proof. Each irreducible component in the total transform remains normal. In-

deed the affine semigroup S in the character lattice corresponding to each com-

ponent remains saturated. Seen another way, the blow-up of a normal scheme

along an integrally closed ideal is again normal. Each component was a coor-

dinate subspace, and their boundaries and intersections were again coordinate

subspaces.

34



It is clear that the blow-up of ∆ along ∂∆ remains a ball or sphere. �

Corollary 3.2.10. Let X be a Stanley-Reisner scheme. The blow-up of X along its

boundary ∂X is Gorenstein.

Proof. By Proposition 3.2.9, the boundary divisor of the blow-up is an anticanon-

ical divisor. By Proposition 3.2.2, it is also an effective Cartier divisor. By Lemma

2.2.3, the blow-up is Gorenstein. �

We have shown that the blow-up of the degeneration is Gorenstein. What

remains is to show that the blow-up of Xw∩Xo
v along ∂Xw∩Xo

v can be degenerated

to this Gorenstein variety. This is the content of the next section.
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CHAPTER 4

DEGENERATING BLOW-UP ALGEBRAS

To understand under what conditions the degeneration of the Rees algebra

is the Rees algebra of the degeneration, we utilize some well-known results

involving Gröbner bases and syzygies. Given a finite set of {p1, ..., pr} ⊂ S =

k[x1, ..., xk], we define

Syz({pi}) =
{∑

aiεi ∈ 〈ε1, ..., εr〉 ≤ S [ε1, ..., εr] :
∑

(aiεi)
∣∣∣
εi=pi

= 0
}
.

When dealing with syzygies, we usually require the coefficients ai ∈ S ,

which is why we talk about syzygy modules over S , viewing the relations as

the kernel of a map S r → S . In our case it is easier to deal with ideals, so we

allow the coefficients ai to be in S [ε1, ..., εr]. Note that Syz({pi}) is just the ideal

generated by the first syzygy equations (see Lemma 4.0.2).

The first lemma rewrites the Rees algebras we are concerned with in a con-

venient form to utilize results about syzygies.

Lemma 4.0.1. Let I = 〈g1, ..., gm〉 ⊂ J = 〈g1, ..., gm+n〉 be two ideals in S = k[x1, ..., xk].

Denote S/I and J/I by S̄ and J̄ respectively. Then

S̄ [tJ̄] � S [ε1, ..., εm+n]/(I + 〈ε1, ..., εm〉 + Syz({gi})).

Proof. Consider the map

ϕ : S [ε1, ..., εm+n]→ S̄ [tJ̄]

36



defined on generators by εi → tḡi (note that tI ≤ tJ). Let us compute ker(ϕ).

Given f ∈ S [ε1, ..., εm+n], we can write f = h0 + ... + hk using the standard

grading on S [ε1, ..., εm+n], generated in degree one by the εi. It then suffices to

show the result for f = f0 +
∑n

i=1 fiεi where fi ∈ S and extend to other degrees as

needed. Now

ϕ( f ) = f̄0 + t
m+n∑
i=1

f̄iḡi.

Then ϕ( f ) ∈ I iff f0 ∈ I and
∑n+m

i=m+1 figi ∈ I (the gi for i = 1, ...,m are already in

I).

Now
∑m+n

i=m+1 figi ∈ I means that there exists hi ∈ S such that
∑m+n

i=m+1 figi −∑m
j=1 h jg j = 0 in S . This relation is contained in Syz({gi}). Then

f = f0 +

m+n∑
i=m+1

fiεi −

m∑
j=1

h jε j +

m∑
j=1

( f j + h j)ε j ∈ I + 〈ε1, ..., εm〉 + Syz({gi}).

The reverse containment is easy to check. �

Writing the Rees algebra in this way allows us to work in S instead of S/I and

to then use standard results about computing syzygies using Gröbner bases. To

properly rewrite the Rees algebra in this form however, we needed to consider

the syzygies on the generators of both I and J instead of just J (which gives the

extra relations on generators of J that land in I). The phrasing of the next lemma

in using both I and J would otherwise seem a little strange without viewing it

in this context.

Lemma 4.0.2. Using the notation of Lemma 4.0.1, suppose that the generators for I

and J are also Gröbner bases with respect to some monomial ordering on S . Define
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σi j = m jiεi − mi jε j

τi j = m jiεi − mi jε j −
∑

u

f (i j)
u εu

where mi j = init(gi)/GCD(init(gi), init(g j)) ∈ S and the f (i j)
u come from the division algo-

rithm applied to m jigi −mi jg j . Then Syz({gi}) is generated by the τi j and Syz({init(gi)})

is generated by the σi j.

Proof. Note that since I ⊂ J, {g1, ..., gm, gm+1, ..., gm+n} is a Gröbner basis for J = I+J.

The result follows from Lemma 15.1, Theorem 15.8 (Buchberger’s Criterion),

and Theorem 15.10 (Schreyer’s theorem) in [12]. �

We now define the crucial ordering on the extra variables εi to introduce a

meaningful degeneration of the blow-up algebra.

Lemma 4.0.3. Let >λ be a term order on S = k[x1, ..., xk] defined by an integral weight

function λ : Zk → Z. Using the notation of Lemma 4.0.2, consider the integral weight-

ing λ̃ defined on generators by

λ̃(z) =


λ(init>λ(gi)) if z = εi,

λ(x j) if z = x j

Then, {g1, ..., gm, ε1, ..., εm} ∪ {τi j} is a Gröbner basis with respect to <λ̃ for I +

〈ε1, ..., εm〉 + Syz({gi}) and its initial ideal is

init>λ(I) + 〈ε1, ..., εm〉 + Syz({init>λ(gi)}).

Proof. This is a variation of the proof in Schreyer’s theorem (see Theorem 15.10

in [12]). Observe that
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init(τi j) = m jiεi − mi jε j

since m jiinit(gi) = mi jinit(g j) and because these terms are greater than any that

appear in the f (i j)
u εu as a result of the division algorithm.

First, we will show that the τi j don’t just generate Syz({gi}) but are a Gröbner

basis for it. Let τ =
∑

hvεv be a syzygy of {gi} (with terms that can be cancelled

already eliminated). For each index v, set nvεv = init(hvεv). Let q be the maximum

weight of a term in τ. Then letσ =
∑

nvεv such that λ̃(nvεv) = q. That is, init(τ) = σ.

Notice that since τ was a syzygy of the gi, σ must be a syzygy of the init(gi).

Indeed τ gives rise to the relation

∑
weight q

nvεv +
∑

u

auεu = 0

by separating the terms from the relation provided by σ with the remaining

terms. Then

∑
weight q

nvεv = −
∑

u

auεu.

If
∑

weight q nvεv , 0, then the left hand side would contain a term with weight

q. The right hand side necessarily has weight strictly less than q, a contradiction.

Thus σ is a syzygy of the init(gi) and therefore is in the ideal generated by

the σi j by Lemma 4.0.2. Since init(τi j) = σi j, we are done.

Next, let f ∈ I + 〈ε1, ..., εm〉 + Syz({gi}). The worry at this point should be that
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cancellation results in an init( f ) not in our target ideal. For example, perhaps

some element in I + 〈ε1, ..., εm〉 can be used to eliminate the m jiεi − mi jε j in some

τi j leaving only
∑

u f (i j)
u εu terms not found in Syz({init(gi)}).

Let m be a term in init( f ). Clearly if m was a leading term for an element in

I + 〈ε1, ..., εm〉, then m ∈ init(I) + 〈ε1, ..., εm〉. Otherwise, m is a leading term of some

combination involving a τi j, and there are 2 cases to consider. Fix (i, j) = (i0, j0).

If m is a multiple of a term in τi0 j0 where at least one εi0 and ε j0 are in

〈εm+1, ..., εm+n〉, we are done since no cancellation is possible to eliminate these

leading terms, so m ∈ init(I) + 〈ε1, ..., εm〉 + Syz({init(gi)})

If both εi0 and ε j0 are in 〈ε1, ..., εm〉, then the division algorithm applied to

(m j0i0εi0 −mi0 j0ε j0)|εi=gi ∈ I would have produced f (i0 j0)
u also contained in I since the

g1, ..., gm are a Gröbner basis for I, and such a decomposition for ideal contain-

ment is unique. Then m ∈ init(I) + 〈ε1, ..., εm〉, completing the proof.

�

Theorem 4.0.4. Let >λ be a term order on S = k[x1, ..., xk] defined by an integral

weight function λ : Zk → Z. Let I = 〈g1, ..., gm〉 ⊂ J = 〈g1, ..., gm+n〉 be two ideals in

S each generated by a Gröbner basis (with respect to λ). Then there exists an integral

weight function λ̃ : Zn+m+k → Z defining a term order >λ̃ on the blow-up algebra of

S/I along J/I which Gröbner degenerates to the blow-up algebra of S/init>λ(I) along

init>λ(J)/init>λ(I).

Proof. By Lemma 4.0.1, the blow-up algebra S̄ [tJ̄] is isomorphic to

S [ε1, ..., εm+n]/(I + 〈ε1, ..., εm〉 + Syz({gi}))
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We know that this degenerates to

S [ε1, ..., εm+n]/(init>λ(I) + 〈ε1, ..., εm〉 + Syz({init>λ(gi)}))

using the integral weighting λ̃ defined in Lemma 4.0.3.

On the other hand, S/I and J/I degenerate to S/init>λ(I) and init>λ(J)/init>λ(I).

By Lemma 4.0.1, the blow-up algebra of S/init>λ(I) along init>λ(J)/init>λ(I) is

S [ε1, ..., εm+n]/(init>λ(I) + 〈ε1, ..., εm〉 + Syz({init>λ(gi)}))

as required.

�

Corollary 4.0.5. The blow-up of a Kazhdan-Lusztig variety along its boundary com-

mutes with the degeneration in Section 3 using the integral weight function λ̃ in Theo-

rem 4.0.4.

Proof. Let I be the generating ideal for the Kazhdan-Lusztig variety and J the

generating ideal for its boundary. Choose an integral weight function λ that pro-

duces the lexicographic ordering for the equations in I and J (ie. the λ needed

for the degeneration in Section 3). The result follows. �
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CHAPTER 5

THE BLOW-UP OF XW ALONG ∂XW

We need to show that the general definition of Gorenstein presented in 3.2.6

is an uppersemicontinuous property. This means that it is an open condition

in flat families so that checking the Gorenstein property on the special fibre is

sufficient for showing it on the general fibre. To achieve this, we need to check

that the property of a sheaf being dualizing is open.

Let X be a proper scheme of dimension n over k. Recall that κ is said to be a

dualizing sheaf if:

• Hn(X, κ) � k

• For all coherent sheaves F , the following map is a perfect pairing:

Hi(X,F ) × Hn−i(X,F ∗ ⊗ κ)→ Hn(X, κ).

Suppose we are given a flat family M over A1 (where M is a proper scheme

of dimension n over k) such that Mt Gröbner degenerates to M0. Suppose we

also have a coherent sheaf κt over Mt that degenerates to κ0 over M0. Then the

pair (Mt, κt) has been Gröbner degenerated to (M0, κ0). We would like to know

whether κ0 being a dualizing sheaf implies that κt is dualizing as well.

The perfect pairing property from the definition is already an open condition

since it can be rephrased as a map into the dual space being an isomorphism.

The first condition however may not be open in general. In fact Hn(Mt, κt) can

jump in dimension on the special fibre. In particular, if Hn(M0, κ0) � k, then

42



Hn(Mt, κt) � k or 0. What is true however, is that

Hn−1(M0, κ0) = 0⇒ Hn(Mt, κt) � k

Indeed, Hn−1(M0, κ0) = 0 implies that no such jump in dimension occurred at the

special fibre, therefore Hn(Mt, κt) � k as required.

Proposition 5.0.1. Let (Mt, κt) Gröbner degenerate to (M0, κ0) as above. Suppose also

that Hn−1(M0, κ0) = 0. Then κt is a dualizing sheaf if κ0 is.

In the case that concerns us, we know that ˜Xw ∩ Xo
v Gröbner degenerates to

M0 = Proj(R[t(initJw,v)]) (the total transform of a Stanley-Reisner scheme), ex-

tending the degeneration from Section 3. In particular, the exceptional divisor

E in ˜Xw ∩ Xo
v must degenerate to the boundary divisor E0 = ∂M0 (which was the

exceptional divisor in the toric case).

We know that E0 is a Cartier anticanonical divisor (as defined in 3.2.6) which

we can use to define our prospective κ0. For each Mt in the degeneration above,

we have a reduced Cartier exceptional divisor Et such that −Et is also Cartier.

We can then define κt = O(−Et). Since κ1 is coherent, we can give it a finite

presentation, and take the Gröbner limit in the Quot scheme to define κ0.

We need only check that it is dualizing and that Hn−1(M0, κ0) = 0. In fact we

can deduce these cohomology conditions on M0 from its normalization.

We know that M0 is equidimensional and has normal components. We will

first show that κ0 is a dualizing sheaf when M0 has two components whose in-

tersection has codimension one and is also normal. Say M0 = X ∪ Y . Given a

coherent sheaf F on M0, we have the short exact sequence:
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0→ F → F |X ⊕ F |Y → F |X∩Y → 0

which gives rise to the long exact sequence in sheaf cohomology:

...→ Hi−1(F |X∩Y)→ Hi(F |X∪Y)→ Hi(F |XtY)→ ....

Let F = κ0. Since the normalization of M0 is just XtY (which is normal), and

since X ∩ Y has dimension n − 1 and is also normal, we have that

0 = Hn−2(X ∩ Y,F |X∩Y)→ Hn−1(X ∪ Y,F |X∪Y)→ Hn−1(X t Y,F |XtY) = 0

forcing Hn−1(X ∪ Y,F |X∪Y) = 0 as required.

The perfect pairing condition also follows from the normal cases X t Y and

X ∩ Y . We have a natural map πZ : Hi(Z,F |Z) → Hn−i(Z,F ∗|Z)∗ which is an iso-

morphism for Z = X t Y, X ∩ Y . We can draw the commuting diagram:

Hi−1(F |XtY) Hi(F |X∩Y) Hi(F |X∪Y) Hi(F |XtY) Hi+1(F |X∩Y)

Hn−i+1(F ∗|XtY)∗ Hn−i(F ∗|X∩Y)∗ Hn−i(F ∗|X∪Y)∗ Hn−i(F ∗|XtY)∗ Hn−i−1(F ∗|X∩Y)∗

By the five lemma, πX∪Y will also be an isomorphism.

We can now prove the result for a general union using the inductive version

of the degeneration of a Kazhdan-Lusztig variety KL1 to the Stanley-Reisner

scheme (see Section 2.6). Recall that KL1 can be degenerated as

KL1  KL2 ∪0×KL3 (A1 × KL3)
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as shown in [18].

We have proven the base case above. If we now assume that the result holds

for X = KL2,Y = KL3, then the same argument shows that the result holds for

KL1 too.

In the blow-up along the boundary divisor, the intersection of components

(corresponding to interior facets of the subword complex) satisfy the same con-

ditions as the Stanley-Reisner case. Therefore the sheaf associated to the Cartier

boundary divisor of the total transform is dualizing.

We are now ready to state our main result:

Theorem 5.0.2. Let Iw,v ≤ k[zi, j] be the defining ideal for Kazhdan-Lusztig variety

Xw ∩ Xo
v . The boundary divisor is defined by Jw,v = ∩ulwIu,v. Then the blow-up of

S = k[zi j]/Iw,v along Jw,v is Gorenstein.

Proof. By Theorem 3.0.2 and Corollary 3.0.4, there exists a degeneration of the

pair (S , Jw,v) to (R, init(Jw,v)) where R = k[zi j]/init(Iw,v). Here R is the coordinate

ring for a Stanley-Reisner scheme. In fact init(Iw,v) is the Stanley-Reisner ideal of

a subword complex ∆(Q,w). Viewing Spec(R) as a toric scheme, we can associate

to it an affine semigroup in the character lattice which can be viewed as the cone

on the polytope ∆(Q,w) (in appropriate coordinates). Here init(Jw,v) corresponds

to the boundary of this convex region.

By Corollary 3.2.10, the blow-up of R along init(Jw,v) is Gorenstein. Further-

more, by Corollary 4.0.5, there exists a degeneration of the blow-up algebra

S [tJw,v] to R[t(initJw,v)]. We have the following diagram:
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S [tJw,v] R[t(initJw,v)]

(S , Jw,v) (R, initJw,v)
lexinit

Finally, we need to determine whether being Gorenstein (in the more general

sense mentioned in Section 3) is open in flat families. The beginning of Section

5 shows the semicontinuity of the Gorenstein property.

�

Corollary 5.0.3. The blow-up of Xw along ∂Xw is Gorenstein.

Proof. See Proposition 2.1.3. �

Example 5.0.4. Consider X53241 ∩ Xo
12345 with

Iw,v = 〈z11z22 − z12z21, z11z23 − z13z21, z12z23 − z13z22〉

as in Example 3.0.1, defined by vanishing of all 2 × 2 minors of z21 z22 z23

z11 z12 z13


The blow-up along the boundary satisfies the following equations (with ε1, ε2

in degree one):

I = 〈z11z22 − z12z21, z11z23 − z13z21, z12z23 − z13z22,

ε1z11 − ε2z21, ε1z12 − ε2z22, ε1z13 − ε2z23〉

Those are the 2 × 2 minors of
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 z21 z22 z23 ε1

z11 z12 z13 ε2

 .
These equations look like the ones defining X643251 ∩ Xo

123456. A quick check of

the Gorenstein criteria for Schubert varieties shows that X643251 is not Gorenstein,

and indeed we need to account for ε1 and ε2 being in degree one. Therefore we

take the GIT quotient X643251 ∩ Xo
123456 //C

× where C× acts diagonally on (ε1, ε2).

Now we should check that the non-Gorenstein locus is contained in the sub-

variety where ε1 = ε2 = 0 (the subset quotiented out). For example X643251 is not

Gorenstein at e432165, but can be defined by the vanishing of all of the coordinates

in  z21 z22 z23 ε1

z11 z12 z13 ε2


and hence is not present in X643251 ∩ Xo

123456 //C
×. �

The other three n = 5 examples in type A are also of this form. While we

don’t expect X̃w to always be a GIT quotient of a Kazhdan-Lusztig variety, this

example serves as a good transition to the next important question - how can

we best interpret X̃w? Is it isomorphic to some well-known variety? Can we

determine the exceptional locus of the blow-up map? Does X̃w enjoy any other

useful properties?

The first approach is to study X̃w locally, through local equations for the

blow-up algebra using syzygies. This is the content found in the remainder

of this section. The second approach is a more global approach which deduces

information about X̃w using Bott-Samelson maps. This is the content of Section

6.

47



Focusing on the local question for now, we recall that the boundary of a

Kazhdan-Lusztig variety Xw ∩ Xo
v is defined by the ideal

⋂
ulw

Iu,v

By the work of Bertiger in [3], we know that ∩Iu,v is generated by certain

products of determinants. Understanding the equations for the blow-up is the

same as understanding the syzygies of this intersection. What are the syzygies

of ∩Iu,v? Are they determinantal?

We know that the equations in Iu,v can be written as the sum of similar ideals

where u is bigrassmanian. Recall that π is bigrassmannian if π and π−1 admit a

unique descent, and this is the same as Xπ being defined using one rank condi-

tion. Can we solve this simpler problem of understanding the syzygies of Iu,v if

u is bigrassmanian?

5.1 Syzygies of products of ideals

Let I1, ..., Ir ⊂ R be ideals of a Noetherian integral domain R. Suppose that Ik =

〈gk,1, ..., gk,nk〉 and consider the ring S = R[z1,1, ..., zr,nr ]/〈zi, j − zk,l〉 with one zi, j for

each generator of each ideal Ik and with equal generators identified. We will

denote the ideal of syzygies of {gk,i}
nk
i=1 by Syz(Ik). That is, Syz(Ik) ⊂ S will consist

of all expressions of the form

nk∑
i=1

aizk,i, where ai ∈ S such that
nk∑

i=1

(aizk,i)
∣∣∣
zi, j=gi, j

= 0
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Similarly,

Syz(
∏

Ik) ⊂ R[{z1,i1 · ... · zr,ir}]/〈zi, j − zk,l〉 ⊂ S

consists of the syzygies of the N =
∏r

i=1 ni products of the form g1,1, ..., gr,nr .

We would like to understand Syz(
∏

Ik) in terms of the Syz(Ik). Let I =

{(i1, ..., ir), 1 ≤ i j ≤ n j}. An element 0 , z ∈ Syz(
∏

Ik) has the form

∑
(i1,...,ir)∈I

a(i1,...,ir)z1,i1 · ... · zr,ir

By viewing this as an equation written in the {z1, j}
n1
j=1, we see that either all

the z1, j are equal so that we can factor them out, or at least 2 are distinct and

z ∈ Syz(I1). By next looking at the {z2, j}
n2
j=1, we see that either all of the z2, j are

equal so that we can factor them out or z ∈ Syz(I2).

Continuing in this way, we see that z is contained in the intersection of some

Syz(Ik) (it must be contained in at least one of these, otherwise all the z1,i1 · ... · zr,ir

were equal and z = 0).

Let us denote the ideal 〈zk,1, ..., zk,nk〉 by Īk. The above argument shows that

z ∈ Syz(I1) ∩ ... ∩ Syz(Ir) + Ī1(Syz(I2) ∩ ... ∩ Syz(Ir)) + ...

+Īr(Syz(I1) ∩ ... ∩ Syz(Ir−1)) + ... + Ī1 · ... · Ir−1Syz(Ir)

Put in a more compact form, we have shown that

Syz(
r∏

k=1

Ik) ⊂
∑

∅,M⊂{1,...,r}

(
∏
k∈Mc

Īk)(
⋂
k∈M

Syz(Ik))
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For the reverse containment, observe that for z ∈ Syz(Ik)∩Syz(I j) we can write

z in two ways

a1zk,1 + ... + ankzk,nk = b1z j,1 + ... + bn jz j,n j

We will assume that any cancellation on each side has already taken place.

This means that each am ∈ Ī j as a result. In particular both sides contain products

of the form zk,ikz j,i j . This shows that z ∈ Syz(I jIk). Generalizing this we get the

reverse containment, as required.

Theorem 5.1.1. Syz(
∏r

k=1 Ik) =
∑

∅,M⊂{1,...,r}

(
∏
k∈Mc

Īk)(
⋂
k∈M

Syz(Ik)).

5.2 Viewing syzygies of intersections in terms of products

Building on the ideas from the previous section, our goal is to ultimately under-

stand the syzygies of ∩Ik in terms of the syzygies of
∏

Ik which we studied in

the last section.

Let T = R[w1, ...,wn] (simplified from the zi, j coordinates used in the previous

section) and observe that

Syz(ΠIk) , Syz(∩Ik) ⊂ T

where wi is associated to gi ∈ R.

Consider z ∈ Syz(∩Ik). Then

z = a1y1 + ... + apyp
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where ai ∈ R and yi corresponds to a generator of ∩Ik (using [3] to fix generators).

Then zr involves products of r choices of yi which when restricted to g j must be

in
∏

Ik (indeed ∩Ik ⊂
∑

Ik). That is to say that zr ∈ Syz(
∏

Ik). Finally, since∏
Ik ⊂ ∩Ik, we have the same containment regarding syzygies.

We have thus shown

S yz(∩Ik) ⊂
√

Syz(ΠIk) ⊂
√

Syz(∩Ik)

The next lemma provides the last piece to proving the main result for this

section.

Lemma 5.2.1. If ∩Ik is reduced, then so is Syz(∩Ik).

Proof. Given an element z = a0 + a1w1 + ... + anwn of R[w1, ...,wn], suppose that

(a0 + a1w1 + ... + anwn)m ∈ Syz(∩Ik)

Then am
0 and (aiwi)m must be in ∩Ik after evaluating at wi = gi. Since ∩Ik is

reduced, the restriction of each aiwi must also be in ∩Ik. Therefore z ∈ Syz(∩Ik).

�

Using Frobenius splittings to show this result might also prove useful. Fi-

nally, we have:

Proposition 5.2.2.
√

S yz(
∏

Iw) = S yz(∩Iw).

This shows that understanding the syzygies of the product is the same as

understanding the syzygies of the intersection.
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5.3 Specializing to bigrassmannians

We know that a Schubert variety Xw can be decomposed as

Xw =
⋂
ν≥w,

w0ν bigrassmannian

Xν.

Bigrassmannians are especially easy to work with since they involve only one

rank condition.

In our problem, we are blowing-up along the ideal ∩Jσ where each Jσ is the

defining ideal for a component of the boundary divisor of Xw ∩ Xo
τ (which is

defined by I). Since the boundary has dimension 1 less than Xw ∩ Xo
τ , we can

write

Jσ = I + Iν

where ν is a bigrassmannian.

Since a bigrassmannian ν is defined by the vanishing of all k× k minors in an

m× n box, we can define a simple bigrassmannian νs as the case when m = k and

n = k + 1. Such simple bigrassmannians have a special property.

Lemma 5.3.1. The syzygy ideal of Iνs , with νs a simple bigrassmannian, is a determi-

nantal variety.

In fact the equations for Iνs can be found in the same was as Example 5.0.4

by adding an extra row and column to the matrix for νs. This corresponds to the

defining equations for a Kazdhan-Lusztig variety. When ν is a bigrassmannian,
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we know exactly what the generators are for the syzygy ideal of Iν thanks to

[25].

To make use of these facts, we notice that since

∑
∅,M⊂{1,...,r}

(
∏
k∈Mc

¯Jσk)(
⋂
k∈M

Syz(Jσk)) = Syz(
∏

Jσ) ⊂ Syz(∩Jσ)

there are a number of ideals for Kazhdan-Lusztig varieties corresponding to

simple bigrassmannians contained in this sum of ideals, some of which might be

interesting to consider. In particular, with some work we could make some mild

conjectures: perhaps the blow-up of a Kazhdan-Lusztig variety along its bound-

ary is contained in some product of Kazhdan-Lusztig varieties (with some GIT

quotient to account for certain variables in degree one). This would general-

ize the results we observed in low dimensions. However the containment at

this time doesn’t seem to be explicit enough to get a useful form for the total

transform. Extending the B-action to the total transform might identify it as a

B-invariant subvariety of this product.

The fact that a product of Kazhdan-Lusztig varieties is appearing in our lo-

cal computations suggests that perhaps globally we can describe the blowup

as some product of Schubert-like varieties. This is where generalized Bott-

Samelson varieties come into the picture, further described in the next section.
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CHAPTER 6

UNDERSTANDING THE TOTAL TRANSFORM

To get an explicit modular interpretation of blow-up of Xw along ∂Xw, we

seek a way to compare X̃w to other well-studied varieties. We will exploit Bott-

Samelson resolutions of Xw to get convenient maps from Bott-Samelson varieties

onto X̃w. To obtain this map, we first recall the universal property of blow-up

maps.

6.0.1 Universal property of blow-ups

The blow-up of a scheme X along some closed subscheme Y is a fibre diagram:

E BlY(X)

Y X

where E is an effective Cartier divisor, such that any other map to X with an

effective Cartier divisor as the fibre over Y factors through the diagram. The

only Cartier divisors considered in the sections that follow are effective.

Lemma 6.0.1. Let π : X̃w → Xw be the blow-up of Xw along ∂Xw. Suppose ϕQ : BS Q →

Xw is a generalized Bott-Samelson resolution such that ϕ−1
Q (∂Xw) is a Cartier divisor in

BS Q. Then there exists a surjective birational proper map ψQ : BS Q → X̃w such that

BS Q X̃w

Xw
ϕQ

ψQ

π
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Proof. By the universal property of blow-up maps, ϕQ factors through the blow-

up of Xw along ∂Xw. The map ψQ is birational since ϕQ and π are (see 2.5.3).

Similarly, ψQ is proper since ϕQ is proper and π is separated. Finally, since the

universal property uses fibre diagrams, π and ϕQ surjective implies that ψQ is

surjective as well. �

Corollary 6.0.2. Suppose ϕQ : BS Q → Xw is a generalized Bott-Samelson resolution

where BS Q is factorial. Then there exists surjective proper birational map ψQ : BS Q →

X̃w which factors through the blow-up of Xw along ∂Xw. In particular, choosing Q =

(w1, ...,wk) such that each wi is a simple reflection provides one such map.

Proof. By dimension considerations, ψ−1
Q (∂Xw) is a divisor in BS Q. Since Cartier

and Weil divisors are equivalent in factorial varieties, the result follows. Fur-

thermore, choosing Q so that the wi are simple reflections results in BS Q being

smooth (by Lemma 2.5.1) and hence factorial. �

Understanding when BS Q is factorial requires an understanding of the same

question for Schubert varieties. There is a pattern embedding description for

this in [28], at least in the GLn case. One key takeaway from Corollary 6.0.2

is that there exist many such maps ψQ when we choose Q appropriately. The

existence of these maps already provides us with new information regarding

the T -fixed points of X̃w.

Lemma 6.0.3. Let π : X̃w → Xw be the blow-up of Xw along ∂Xw. Then the B-action on

Xw extends to the total transform X̃w. Furthermore, ψQ is a B-equivariant map.

Proof. Since ∂Xw is B-invariant, the B-action extends to X̃w (see Proposition 3.9.1

of [22]). Furthermore, π is B-equivariant. Since ϕQ is also B-equivariant, then ψQ

is too. �
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Corollary 6.0.4. X̃w has finitely many T -fixed points.

Proof. By Lemma 6.0.3, T -fixed points must map onto T -fixed points. The result

follows from the fact that BS Q has finitely many T -fixed points. �

Our end goal is to show that understanding X̃w restricts to an understanding

of its T -fixed points. Since the T -fixed points of BS Q are easy to describe, the

hope is that ψQ can provide us with an explicit statement about the structure of

X̃w.

6.1 Extending the frobenius splitting

Our proof that X̃w is Gorenstein utilized the notion of Frobenius splittings and

their relation to sections of the anticanonical bundle. It is natural to ask whether

X̃w is also Frobenius split.

There do exist results about extending Frobenius splittings to the total

transform of a blow-up, such as in the work of Lakshmibai, Mehta, and

Parameswaran in [24]. This result however only works for the blow-up of a

smooth Frobenius split variety along a smooth center (under certain mild van-

ishing conditions). In Proposition 3.2.4, we extended the Frobenius splitting in

the toric case.

There are two natural approaches to extending the Frobenius splitting to the

total transform. One perspective is to directly define a Frobenius splitting on

the blow-up algebra
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S [ε1, ..., εm+n]/(I + 〈ε1, ..., εm〉 + Syz({gi}))

by defining a splitting map on monomials of the form

Cεa1
1 · ... · ε

am+n
m+n

A second approach is to observe that X̃w degenerates to a Frobenius split

variety. That is, there is a flat morphism F : Y → A1 where F−1(0) = Y0 is the

toric scheme found in Section 3, and F−1(t) = Yt is the general fibre which is

isomorphic to X̃w. But is being Frobenius split open in flat families?

One might hope that there is a Frobenius splitting of the whole family Y

which compatibly splits eachYt. However, there can only ever be finitely many

compatibly split subvarieties (see [23]). On the other hand, it might be possi-

ble to extend the splitting of Y0 to a splitting of Y where Yt is not necessarily

compatibly split. One could then view the general fibre Yt as a GIT quotient

of Y. Indeed, there is a Gm action on Y, and if Y is Frobenius split, then so is

Yt � Y//Gm (using a different splitting – see Theorem 7.1 in [26]). At present

however, we don’t know if X̃w is Frobenius split.

6.2 Weakly normal varieties

Recall that a variety X is normal if every finite birational map f : Y → X is an

isomorphism. We say that X is weakly normal if every finite birational bijective

map is an isomorphism. Bijective here means that the reduction of the fibre over

a point is again a point. In characteristic 0, the notions of weakly normal and

seminormal are equivalent (see [27] for more information).
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A convenient way to show that a variety is weakly normal is to show that it

is Frobenius split.

Lemma 6.2.1. Frobenius split varieties are weakly normal.

Proof. See Proposition 1.2.5 in [6]. �

We would like to know that X̃w is weakly normal in order to reduce questions

involving ψQ to information about the restricted map on T -fixed points. We

rely on the fact that X̃w degenerates to a weakly normal scheme, and that being

weakly normal is an open condition in flat families.

Proposition 6.2.2. Let Y be a flat family over A1 such that Y0, the special fibre over

the origin, is weakly normal. Then Yt is also weakly normal.

Proof. See [27]. �

Corollary 6.2.3. The blow-up of Xw along ∂Xw is weakly normal.

Proof. By Corollary 4.0.5, the total transform ˜Xw ∩ Xo
v Gröbner degenerates to a

toric scheme, which by Lemma 3.2.4 is Frobenius split. The result now holds by

Lemma 6.2.1 and Proposition 6.2.2, and using that being weakly normal can be

checked locally. �

We note that there is another proof of this result. Indeed the blow-up of Xw

(a normal variety) along an integrally closed boundary ideal is again normal,

and hence weakly normal. Therefore X̃w being weakly normal can be deduced

using the blow-up map, the degeneration, or Frobenius splittings.
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6.3 Reducing to T -fixed points

The next theorem will finally reduce understanding ψQ to a question of T -fixed

points. First we need a small lemma:

Lemma 6.3.1. Suppose that X ↪→ Pn is an equivariant inclusion with respect to a torus

action T . If dim X > 0 (and X , ∅), then |XT | > 1.

Proof. If X = XT , then the result is obvious. Otherwise, choose an x ∈ X \ XT . Let

Y = T · x and ν : Ỹ → Y be the normalization of Y . Then Ỹ is a projective toric

variety. Furthermore, since x is not a fixed point by assumption, dim Ỹ ≥ 1.

We wish to use the T -fixed points of Ỹ to show the existence of at least two

T -fixed points for Y . Let L be the pullback of the sheaf O(1) in the diagram:

L O(1)

Ỹ Yν

Since ν is a finite map, L is an ample line bundle over Ỹ . Then Ỹ is a toric variety

associated to a lattice polytope P (see [9, Thm 6.2.1]). In fact, P is the convex hull

of the weights of the action of T on the fibres L| f for f ∈ ỸT .

Note that the weight of the T -action on L| f is the same as the weight of T

acting on O(1)|ν( f ). Therefore, distinct T -fixed points of Ỹ correspond to distinct

weights for the T -action on the line bundles, which in turn corresponds to dis-

tinct T -fixed points for Y . It is enough then to show that |ỸT | > 1 to imply that

|YT | > 1.

By the orbit-cone correspondence [9, Thm 3.2.6], since dim Ỹ > 0, |ỸT | > 1 as

required. �
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Theorem 6.3.2. Let ψQ : BS Q → X̃w be as in Lemma 6.0.2. Then ψQ is an isomorphism

iff it is a bijection on T -fixed points.

Proof. One direction is obvious. For the other direction, observe that ψQ is bi-

rational by Lemma 6.0.2 and X̃w is weakly normal by Corollary 6.2.3, so it is

enough to show that ψQ is finite and bijective to conclude that it is an isomor-

phism. By assumption, ψQ is a bijection on T -fixed points, so by B-equivariance

we can use the B-action to show that it is bijective at all points. Since ψQ is also

proper, we only need that ψQ is quasi-finite for the result to hold.

Consider the fibre Zv = ψ−1
Q (ev), which is a projective subvariety of BS Q. The

embedding of Zv into projective space is equivariant with respect to the torus

action on Zv (since ψQ is B-equivariant). Under these conditions, dim(Zv) >

0 ⇒ |ZT
v | > 1 by Lemma 6.3.1. Since |ZT

v | = 1 by assumption, we conclude that

dim(Zv) = 0.

Since ψQ is B-equivariant, the fibre of a point in BevB/B is a B-translate of Zv.

These Bruhat cells cover Xw, so ψQ is quasi-finite. �

An understanding of when the Bott-Samelson resolution ϕQ is an isomor-

phism over the smooth locus might be useful in determining information about

ψQ. A discussion about these strict Bott-Samelson maps as well as examples on

how reducing to T -fixed points can be a powerful tool can be found in Appendix

A.

While these results suggest that X̃w is somewhere between a Bott-Samelson

variety and a Schubert variety, the hope is that X̃w is itself a Bott-Samelson vari-

ety or some simple quotient of one. This will be the topic of future research.
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APPENDIX A

STRICT BOTT-SAMELSON VARIETIES

In 1958, Bott and Samelson introduced certain spaces [5] that provided conve-

nient desingularizations of Schubert varieties (which were later generalized by

Hansen [16] and Demazure [11]). Around the same time, Hironaka published

his famous result on the resolution of singularities for algebraic varieties in char-

acteristic zero [17]. His result could of course be applied to Schubert varieties

to obtain a second, very different sort of desingularization. While Hironaka’s

method is a stronger result in general, the fact that Bott-Samelson resolutions

are the preferred desingularization method would speak to the combinatorial

conveniences they possess. What if we could get the best of both methods?

An important feature of a Hironaka desingularization (such as the algorithm

in [4]) is the fact that the desingularization map is an isomorphism over the

smooth locus. One calls such a desingularization a strict resolution of singular-

ities. In general, the Bott-Samelson resolution is not an isomorphism over the

smooth locus of a Schubert variety. Even more, while Hironaka’s method uti-

lizes blow-ups, a Bott-Samelson resolution is not in general a blow-up map (see

Section A.3). Nevertheless, the resolution has many combinatorial properties

that are natural for working with Schubert varieties. There is for example an

action of a torus T with isolated fixed points, and the map on T -fixed points is

especially easy to utilize.

Similar constructions to Bott-Samelson varieties can be considered for the

purpose of strict resolutions. For example, in [8], Cortez introduces quasi-

resolutions of Schubert varieties and studies their singularities in terms of in-

tersections of the exceptional loci. This approach extends the work in [7] where
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strict resolutions are provided for covexillary Schubert varieties. For the gen-

eral case however, these quasi-resolutions provide a partial desingularization

that may not necessarily be strict.

We will explore both desingularization algorithms in more detail, and sug-

gest a more general method for resolving singularities which is close to the Bott-

Samelson construction, and yet is a strict desingularization. We can do this by

taking advantage of a generalized Bott-Samelson resolution (see Section 2.5). In

Section A.4 we implement a computer program to verify which Schubert vari-

eties can be resolved strictly using this generalized method. We will verify the

following result:

Theorem A.0.1. Let Xw be a singular Schubert variety. If w ∈ S 5, then there

exists a strict Bott-Samelson resolution of singularities for Xw iff w , 45312. If

w ∈ S 6, then there exists a strict Bott-Samelson resolution of singularities for Xw if

w � 156423, 453126 or 632541.

Unfortunately the converse of the theorem for the n = 6 case does not hold

(see Example A.4.6). The longer list of exceptions in the n = 6 case mostly relate

to a pattern embedding of 45312, which suggested a recursive construction for

such a list in general. The conjecture for n > 4 in Section A.4 was formulated

based on these results. Since there are other reasonable interpretations of the

n = 5, 6 computer results, it seemed necessary to verify that the conjecture was

true at least for n = 7, 8 and indeed this is the case.

The curiosity of whether a Bott-Samelson resolution could be viewed as a

blow-up (bringing the technique closer to Hironaka’s version) led to the work

in Section A.3. While no general theorems are provided in this section, a new

viewpoint of the resolution is explored and some groundwork is provided for
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further research. The material in this appendix is the content presented in [10].

A.1 Schubert variety singularities

There is a well-known way to tell whether a Schubert variety is singular: Xw is

smooth iff it avoids the patterns 3412 and 4231. While this answers the question

about which Schubert varieties are singular, we need to know where they are

singular if we are going to talk about ϕQ being strict.

This question can be answered using interval pattern avoidance [28, §2].

Theorem 6.1 in the same article provides the necessary intervals for finding the

singular locus. Roughly put, given an interval [u, v] on the list from the theo-

rem (u ≤ v are both permutations), if v occurs as a pattern in w, then a similarly

embedded u provides a piece of the singular locus of Xw.

As an example, [2143, 4231] is on the list mentioned above. Since 4231 is

clearly a subpattern of itself, the singular locus of X4231 contains the Schubert

subvariety X2143. The only other applicable interval on that list is [1324, 3412],

and since 3412 is not a subpattern of 4231, then X2143 is in fact the entire singular

locus of X4231.

The details about interval pattern avoidance are not important for the pur-

pose of the sections that follow. These details were necessary for implementing

computer code which checked which Xw could be resolved using strict ϕQ.
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A.2 Hironaka’s desingularization

Given a variety X defined over an algebraically closed field of characteristic 0,

there exists a sequence of blow-ups

X = X0
σ1
← X1

σ2
← . . .

σk
← Xk

σk+1
← . . .

σt
← Xt

such that Xt is smooth (here X j+1 denotes the strict transform of X j) and each σ j+1

has smooth center C j ⊂ Sing(X j) (see [4]).

The statement of a Hironaka desingularization usually includes conditions

on the exceptional divisors (such as being simple normal crossings with the

strict transform). We will ignore these for now and instead focus on two main

features. First, the center C j is contained in the singular locus of X j. Second, the

desingularization map is a sequence of blow-up maps. The reader will proba-

bly notice that the Bott-Samelson resolution has neither of these properties, so

a comparison between each desingularization method might be difficult to ar-

range. Instead we will focus on finding a suitable subvariety of Xw to call the

center of ϕQ.

Let us consider a motivational example to observe the similarities between

each desingularization technique. Consider X4231, one of the two simplest sin-

gular Schubert varieties. The permutation 4231 can be written as the word

s1s2s3s2s1 in simple reflections. Let Q = (s1, s2s3s2s1). It is not hard to show

that
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ϕQ : Bs1B ×B Bs2s3s2s1B/B→ X4231

is a strict Bott-Samelson resolution. As we will see later in Section A.4, it is

enough to check that this is true at T -fixed points. In other words, we are exam-

ining the product map on Bruhat intervals

[e, s1] × [e, s2s3s2s1]→ [e, s1s2s3s2s1].

We observe that this map is 2-to-1 over {e, s1, s3, s1s3} (for example, (e, s3)

and (s1, s3s1) are the fibre over s3) and hence one-to-one everywhere else by

a cardinality check. By [28], X4231 is singular precisely at the T -fixed points

{e, s1, s3, s1s3}. Therefore ϕQ is a strict Bott-Samelson resolution of singularities

(notice that BS Q is smooth).

To observe what a Hironaka resolution would do (at least locally), we should

work in an affine neighborhood on the Schubert variety, and compute some

Kazhdan-Lusztig varieties. We can show that the Kazhdan-Lusztig ideal of X4231

near the identity is generated by z21z12 − z22z11 = 0 (see Section 2.1). The center of

blowing-up in a Hironaka resolution must then be the origin. It is also easy to

see that the strict transform is smooth.

How does this relate back to the Bott-Samelson construction? Observe that

the T -fixed points for which the map was not injective were {1, s1, s3, s1s3}. This

means that ϕQ is injective away from Xw for w ≤ 2143. We can compute the

Kazhdan-Lusztig ideal for the singular locus X2143 (in the same chart Xo
id) to ob-

serve that it is locally defined by z11 = z12 = z21 = z22 = 0, the origin. This

corresponds to the same center as a Hironaka desingularization algorithm!
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Although this local picture is encouraging, we have to remember that ϕQ is

not the same thing as the blow-up map at the origin. In fact, the preimage of the

singular locus in ϕQ is not even a divisor in BS Q!

This suggests that if we want to make the Bott-Samelson resolution look

more like a blow-up, we will have to also blow-up points where the map is

already one-to-one in order to get a higher dimensional fibre. If we can find a

subvariety Y in Xw which contains the singular locus such that the fibre of ϕQ

over Y is a divisor, then the Bott-Samelson resolution will be one step closer to

behaving like a blow-up.

A.3 Comparing Bott-Samelson resolutions to blow-ups

To make a fair comparison between the desingularization maps we are con-

sidering, we begin by asking what relationship a blow-up map has with the

Bott-Samelson resolution. A simple application of the universal property for

blow-ups gives us a starting point.

Lemma A.3.1. Let ϕ : X → Z be a proper birational map. Then there exists a Cartier

divisor D ⊂ X such that ϕ factors through a blow-up of Z along Y = ϕ(D).

Proof. Since ϕ is birational, it is generically one-to-one. Therefore there is a sub-

variety Xni ⊂ X such that ϕ is an isomorphism everywhere except on Xni. We can

find a Cartier divisor D containing Xni (the product of the local equations for Xni

provide a local defining equation for D). Since ϕ is proper, Y is a closed subva-

riety of Z. Now ϕ is an isomorphism on D \ Xni, and Xni is the full preimage of

its image; therefore ϕ−1(Y) = D. By the universal property of blow-ups, ϕ factors
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through the blow-up of Z along Y , as required. �

Proposition A.3.2. Let ϕQ : BS Q → Xw be a Bott-Samelson resolution of Xw where

Q is a reduced word for w. Then there exists a Cartier divisor D ⊂ BS Q such that

ϕQ factors through a blow-up of Xw along ϕQ(D). Furthermore, codim(ϕQ(D)) ≥ 2 iff

D = BS Q
ni.

Proof. The existence of D follows from Lemma 2.5.3 and Lemma A.3.1.

Suppose D = BS Q
ni. Notice that codim(ϕQ(BS R)) ≥ 2 if R is not reduced. Since

BS Q
ni is the union of such BS R, codim(ϕ(D)) ≥ 2.

Next suppose that codim(ϕQ(D)) ≥ 2. If D \ BS Q
ni , ∅, then ϕQ(D) has codimen-

sion one in Y since ϕQ is an isomorphism away from BS Q
ni (and BS Q and Xw have

the same dimension). This contradicts our assumption, hence D = BS Q
ni. �

Unfortunately, we cannot claim that ϕQ is itself the blow-up of Xw along Y

since ϕQ may not satisfy the universal property. One barrier to this is when D

from Proposition A.3.2 is not irreducible. In this case, it might be possible to

blow-down one of the irreducible components of D to get another map where

the inverse image of Y is a Cartier divisor. To put the mind of the reader at ease

as to whether such a situation occurs, the next proposition provides such an

example. Therefore, when D necessarily has more than one irreducible compo-

nent, it is not obvious under what conditions ϕQ is a blow-up. In the proposition

that follows, recall that Q = 132312 is a shorthand for Q = (s1, s3, s2, s3, s1, s2) (see

Section 2.5).

Proposition A.3.3. The Bott-Samelson resolution ϕQ for Q = 132312 is not a blow-up

map.
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Proof. It can be checked that BS Q
ni is a union of three codimension 1 sub Bott-

Samelson varieties, namely

BS 13−312, BS 132−12 and BS 1323−2.

Suppose that ϕQ is a blow-up of X4321 along some center C. Since any blow-

up is an isomorphism away from its center, C necessarily contains ϕQ(BS Q
ni).

Then ϕ−1
Q (C) is the union of the three BS R listed above and possibly some other

divisor E. Now consider the following commuting diagram

BS Q BS Q′

X4321

ψ

ϕQ
ϕQ′

where Q′ = (s1s3s2s3, s1, s2). It’s not hard to check that ϕ−1
Q′ (C) is the union

of two codimension 1 sub Bott-Samelson varieties, namely BS R′ for R′ =

(s1s3s2, s1, s2), (s1s3s2s3, e, s2), as well as ψ(E) (the map ψ has collapsed down the

BS 13−312 component of BS Q
ni). Note that both BS Q and BS Q′ are smooth, so all the

above divisors are automatically Cartier. By the universal property of blow-up

maps, there exists a fibre diagram:

BS Q′

ni ∪ ψ(E) BS Q′

BS Q
ni ∪ E BS Q

C Xw

π

ϕQ

Since BS Q and BS Q′ have the same dimension, the preimage of a divisor un-

der π must again be a divisor (it clearly cannot be all of BS Q′). Therefore, the
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preimage of each irreducible component of BS Q
ni must be a union of irreducible

components in BS Q′

ni . There are however 3 components in BS Q
ni and only 2 com-

ponents in BS Q′

ni , a contradiction.

�

Note that BS Q
ni ∪ E from the proposition is an example of a choice for D from

the beginning of the section. Interestingly enough, choosing another reduced

expression Q for 4321 will avoid many of the problems mentioned in Proposi-

tion A.3.2.

Since we cannot draw a similar factorization diagram for BS Q′ as we did

for BS Q, it might be true that ϕQ′ is a blow-up, and that choosing our Cartier

divisor D with more than one component is acceptable (although this is not

immediately clear).

Let us now consider those cases for which an irreducible D can be chosen. If

Y = ϕQ(D) is a Cartier divisor in Xw, the blow-up of Xw along Y is an isomorphism

and clearly won’t be the Bott-Samelson resolution (except in the rare instance

that ϕQ was already an isomorphism). The next example shows how obvious

choices of D can potentially lead to this problem.

Example A.3.4. In Section A.2, we saw that ϕQ for Q = (r1, r2r3r2r1) was a strict

Bott-Samelson resolution for X4231 (whose singular locus is X2143). The natural

choice for any D from Lemma A.3.1 is some combination of codimension 1 sub

Bott-Samelson varieties. These B-invariant divisors after all generate the effec-

tive cone of BS Q since Q is reduced (see [1] for commentary on divisor classes

of Bott-Samelson varieties). It is not hard to check however that R is reduced

for any codimension 1 BS R that contains the preimage of X2143. In other words,
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codim(BS Q
ni) > 1 and any choice of D will result in codim(ϕQ(D)) = 1 by Lemma

A.3.1. Since X4231 is not factorial, we must consider whether ϕQ(D) is a Cartier

divisor. One can verify that the image of any codimension 1 BS R is in fact not

Cartier. We have thus found an irreducible D containing BS Q
ni for which ϕQ(D) is

a viable center. �

On the other hand, if Y is not Cartier then the blow-up map is not trivial. By

the proposition, we have the following fibre diagram:

D BS Q

E BlY(Xw)

Y Xw

π

Then both D and E are irreducible Cartier divisors. Since ϕQ and the blow-

up map are proper and birational, π must also be proper and birational. If we

know that BlY(Xw) is normal (which is equivalent to I(Y)k being integrally closed

for all k > 0), then any finite birational map to it must be an isomorphism.

Under these conditions, the problem has been reduced to checking whether π is

quasi-finite to conclude that ϕQ is isomorphic to a blow-up. This boils down to

understanding the fibres of ϕQ and comparing that to the fibres of the blow-up.

Even this question proves difficult for all but the simplest cases. See [14] and

[15] for more information on the fibres of a Bott-Samelson resolution.

Let us conclude this section with a final thought. If D can be chosen to be

BS R where R is not reduced, then Y = ϕQ(D) is a Schubert subvariety since ϕQ is

B-equivariant and BS R is B-invariant. The question of blowing-up Xw along a B-

invariant subspace might provide extra information by extending the B-action
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to the total transform. This prompts the question, when is a Hironaka resolution

of Xw actually B-equivariant? Such an equivariant resolution of singularities

exists and is discussed in Proposition 3.9.1 of [22].

A.4 Finding strict Bott-Samelson resolutions

In this section we will drop our previous attempts to view ϕQ as a blow-up, and

instead focus on whether it is possible to resolve the singularities of Xw by a

sequence of strict ϕQ maps. Let us first show that it is enough to restrict our

attention to generalized BS Q maps for Q = (w1,w2).

Let R = (v1, v2, v3). We can view ϕR as ϕR′′ ◦ (ϕR′×̃idv3) where R′ = (v1, v2) and

R′′ = (v1 ∗ v2, v3) (each is surjective). The map ϕR′×̃idv3 takes [g1, g2, g3] to [g1g2, g3]

(the notation ×̃ is taken from the theory of affine Grassmannians which we will

not stop to define here). Then ϕR being strict implies that ϕR′ and ϕR′′ are also

strict. The same is true if R′ = (v2, v3) and R′′ = (v1, v2 ∗ v3). By induction we get

the following result:

Lemma A.4.1. Let Xw be a singular Schubert variety. Any strict Bott-Samelson reso-

lution of Xw by a sequence of ϕQk can be factored into a sequence of strict ϕRi maps where

each Ri = (vi
1, v

i
2).

In other words, it is enough to check strictness for ϕQ where Q is a 2-tuple.

Given a Schubert variety Xw, and given a reduced w = si1 si2 ...sip , we ask whether

we can we write w = w1 ∗ w2 where w1 = si1 ...siq and w2 = siq+1 ...sip such that

Bw1B ×B Bw2B/B→ Xw
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is strict? Each BwiB/B is a Schubert variety, and if it is not smooth we hope that

we can continue this process until we have a smooth Bott-Samelson variety.

Therefore, we wish to find

ϕQi : BS Qi → BwiB/B

for each i, where the product of these two maps provides a strict map onto

Bw1B ×B Bw2B/B. Notice however that the Qi might use a different reduced

form than that used in wi. This process is highly dependent on how we write

the word in simple reflections as only certain reduced words will provide strict

resolutions. For this reason finding a strict resolution of singularities is not just

about finding some Bw1B×B ...×B BwkB/B with the usual map onto Xw, but rather

some sequence of Bott-Samelson maps whose composition may not be the stan-

dard product map ϕQ.

Let us make one final reduction which will make it possible to use a com-

puter search to find strict ϕQ.

Lemma A.4.2. Let ϕQ be a Bott-Samelson resolution onto Xw with Q reduced. Then ϕQ

is an isomorphism iff it is a bijection on T -fixed points.

Proof. This is a variation of Theorem 6.3.2. �

It is therefore enough to check strictness on T -fixed points. The map

Bw1B ×B Bw2B/B→ Xw

will be strict iff the product map on Bruhat intervals is strict:
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[e,w1] × [e,w2]→ [e,w].

Example A.4.3. Let us try and strictly resolve X3412, the other singular Schu-

bert variety for the n = 4 case (the variety X4231 was discussed in Section

A.2). The word s2s1s3s2 is a reduced expression for this permutation. Taking

Q = (s2, s1s3s2), we want to know if ϕQ is strict. By Lemma A.4.2, it is enough to

check this on T -fixed points, so consider the product map

[e, s2] × [e, s1s3s2]→ [e, s2s1s3s2].

The map is obviously 2-to-1 over {e, s2}. Checking the cardinalities of the

intervals, it is not hard to see that the map is a bijection everywhere else. By

[28], X3412 is only singular on X1324, or {e, s2} in terms of reduced words for the

T -fixed points. Therefore X3412 can be resolved strictly. �

The problem of finding strict Bott-Samelson resolutions has its own difficul-

ties, and like the previous section, the answer is not very satisfying. We would

like to say that there always exists a Q = (w1,w2) such that ϕQ is strict. This is not

the case, however, since there are permutations for which any choice of Q will

not be strict (see below). This leads to a further complication. What if initially

there exists a Q = (w1,w2) such that ϕQ is strict, but then w2 is a reduced word

for one of these non-strict resolutions?

Another fundamental barrier to proving general results in this section is the

lack of tools for identifying the singularities of Xw based on a reduced word for

the permutation w. Indeed interval pattern embeddings for permutations don’t
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translate very well into criteria involving reduced words. Therefore, the verifi-

cation of which permutations possess a strict desingularization had to proceed

using a computer search.

A.4.1 The n = 5 case

Consider Xw for w ∈ S 5. There are certainly more cases to consider than the

two from n = 4. A computer check through all the possibilities (this poten-

tially means every division of every reduced word for w) reveals that the only

problematic Schubert variety is X45312. The permutation 45312 can be written in

simple reflections as s2s3s2s1s4s2s3s2, and no division will provide a strict reso-

lution. We can check that X45312 is smooth at X21345 and X12354 (in reduced words

this is s1 and s4 respectively).

Any division of s2s3s2s1s4s2s3s2 into two will produce a ϕQ with a fibre over

s4. This is simply because any choice of Q = (w1,w2) must satisfy s2 ≤ w1,w2.

Therefore, (s2, s4s2) or (s2s4, s2) will be a fibre over s4 (in addition to the obvious

(e, s2) or (s2, e)). A computer check shows that no other reduced word works. In

fact, it is not too hard to convince yourself of this by hand.

A priori, it is possible for some other permutation v to be divided in such a

way that the only resolution is

Bv1B ×B Bv2B/B→ Xv

where Bv1B/B = X45312 (and therefore no subsequent divisions are possible).

However, this would mean that some subword of v was a reduced word for

45312. That is, it would require v > v1 in the Bruhat order.
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Luckily, the only permutations above w in Bruhat order are 54312,

45321, 54321 which are all smooth already (and hence wouldn’t be subject to this

division process). We have thus shown:

Proposition A.4.4. Let Xw be a singular Schubert variety for w ∈ S 5. There exists a

strict Bott-Samelson resolution of singularities for Xw iff w , 45312.

A.4.2 The n = 6 case

This case is substantially harder than the last, and even a computer check can

take a long time to verify all possibilities. The list of Schubert varieties Xw for

which no division of any reduced word for w works in defining a strict ϕQ are

for

w = 156423, 453126, 456312, 465132, 465312, 546213, 546312,

564123, 564132, 564213, 564312, 632541, 653421.

Unlike the n = 5 case, there are indeed v ≥ w for which Xv is not smooth.

Hence if we started subdividing a word for v, we may eventually encounter a

w on the list that could not be strictly resolved. To avoid this complication, we

will only consider permutations which are not above any of the w on the list.

Because of this simplification, we can now reduce our list to

u = 156423, 453126, 632541

since any other w in the list above satisfies w ≥ u for some u. We therefore have

a weaker result than that for n = 5:
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Proposition A.4.5. Let Xw be a singular Schubert variety for w ∈ S 6.

There exists a strict Bott-Samelson resolution of singularities for Xw if w �

156423, 453126 or 632541.

A natural question to ask is whether the condition in the proposition is a

closed one. In other words, is it true that w ≥ 156423, 453126

or 632541 results in Xw not having a strict Bott-Samelson resolution? Unfortu-

nately this is not the case.

Example A.4.6. Consider the singular Schubert variety X456123. Even though

156423 ≤ 456123, X456123 still admits a strict Bott-Samelson resolution of singu-

larities starting with ϕQ for Q = (s3s4s5s2s3, s4s1s2s3).

While the second factor Bs4s1s2s3B/B of BS Q is smooth, the first is not, but

can be strictly resolved using ϕR with R = (s3, s4s5s2s3).

There are of course w > 156423, 453126 or 632541 for which Xw cannot be

strictly resolved. For example, the only strict Bott-Samelson map onto X256413

using ϕQ is with Q = (s1,w′) where w′ is some reduced expression for X156423

(which we know cannot be strictly resolved). �

As the feasibility of continuing this process diminishes with each increase of

n, it might be prudent to step back and try to find a pattern.

One observation is that 156423 and 453126 both have embedded versions of

45312. Indeed, given a permutation π in S m, we can define a new permutation

τ(k) ∈ S n (for n > m) by pattern embedding π into 123 · · · n starting at position

k and ending in position k + m. We will call this a translation of π in S n. For

example, if π = 45312, then τ(1) = 453126 and τ(2) = 156423. It is not a surprise
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that translations of problematic permutations are also a problem for higher n as

their reduced expressions in S n still possess the same division problems as they

did in S m.

In actuality, the only new permutation for n = 6 is 632541. This permuta-

tion could be formed by inverting the first and last value, the second and third

value, and the third-last and second-last values (of course this is just one inter-

pretation). In S n this can be written as πn = n324 · · · (n − 3)(n − 1)(n − 2)1 for n > 6

with π6 = 632541. Let us now define a list Γn of permutations we want to avoid.

We know Γ5 = {45312}. Then in general let

Γn = {πn} ∪ ΓT
n−1

where ΓT
n−1 are the translations of permutations in Γn−1. For example,

Γ7 = {1267534, 1564237, 1743652, 4531267, 6325417, 7324651}

It is worth noting that |Γn+4| =
n(n+1)

2 . Indeed, Γn+4 is just the union of the

translations of 45312 and π6 up to πn+4. There are n translations of 45312 and n +

5−k translations of πk. This gives a new interpretation of the triangular numbers.

Many thanks to the reviewer of this article for making this observation.

We can now formulate a conjecture to generalize our work so far

Conjecture A.4.7. The singular Schubert variety Xw for w ∈ S n with n > 4 can be

desingularized using a sequence of strict Bott-Samelson resolutions if w � v for v ∈ Γn.

Theorem A.4.8. The conjecture is true for 5 ≤ n ≤ 8.

77



Future work towards this problem includes developing techniques for ver-

ifying the conjecture without the need for a computer program. This would

mean a deeper understanding of how singularities can be more easily read from

a reduced word for the permutation.

The precise geometric description of the singular locus given in [8] might

prove useful in studying strict resolutions. In fact, strict resolutions for permu-

tations in Γn might exist using the constructions in [7] and [8]. It is also inter-

esting to note that some of the permutations in Γn appear in the interval pattern

embedding description of the singular locus in [28].

Furthermore, a better understanding of how Bott-Samelson resolutions com-

pare with a Hironaka resolution may provide a clearer path to creating hybrid

desingularization algorithms for similar combinatorial objects.

78



BIBLIOGRAPHY

[1] D. Anderson. Effective divisors on Bott-Samelson varieties.
arXiv:1501.00034, 2014.

[2] A. Atanasov, C. Lopez, A. Perry, N. Proudfoot, and M. Thaddeus. Resolv-
ing toric varieties with Nash blowups. Exp. Math., 20 (3):288–303, 2011.

[3] A. Bertiger. Generating the ideals defining unions of Schubert varieties.
Inter. Math. Research Notices, 2015 (21):10847–10858, 2015.

[4] E. Bierstone and P.D. Milman. Canonical desingularization in characteristic
zero by blowing up the maximum strata of a local invariant. Invent. Math.,
128:207–302, 1997.

[5] R. Bott and H. Samelson. Applications of the theory of Morse to symmetric
spaces. American Journal of Mathematics, 80:964–1029, 1958.

[6] M. Brion and S. Kumar. Frobenius Splitting Methods in Geometry and Repre-
sentation Theory. 2005.

[7] A. Cortez. Singularités génériques des variétés de Schubert covexillaires.
Ann. Inst. Fourier (Grenoble), 51 (2) :375–393, 2001.

[8] A. Cortez. Singularités génériques et quasi-résolutions des variétés de
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