
. BU-518-M 

A REPORT OH SOl>iE PROGRAMS FOR 

FOR THE ANALYSIS OF VARIANCE 

by E. J. Carneyir 

Biometrics Unit, Cornell University, Ithaca, N.Y. 

June, 1974 

1 Analysis of variance programs are among the most numerous written for 

statistical data processing. As an example of their quantity, the IMSL pack­

age [11] has twelve subroutines related to this application, the B~ID series [3] 

also has twelve, SAS [19] has five. There are also several large general pur-

pose programs for analysis of variance; examples are AARDVARK [9,10,17] and 

MANOVA [2]. Why so many programs for this one application? One reason is that 

there are many different cases of analysis of variance. Several ways of 

classifying them are given below: 

'by structure of data 

balanced complete 

balanced incomplete 
latin square 
BIB 
PBIB 
lattice 
etc. 

unbalanced, no missing cells 

unbalanced, missing cells 

hierarchical 

by model type 

fixed 

random 

mixed 
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by ty;pe of variable 

univariate 

multivariate 

covariance 

/ The above classifications fall short of exhausting the possibilities. Of 

course not every combination of the above classes requires a different algorithm. 

The Mfu~OVA program tries to do almost all of them. On the other hand, some­

times several different algorithms are possible for the same combination, and 

may give different results. This is certainly true for mixed models. 

The purpose of this report is to review some of the available analysis of 

variance programs (especially those in packages implemented at Cornell and 

easily accessible to CAG users). The two main classes of algorithms used for 

analysis of variance on the computer may be called sums of squares algorithms 

and general linear hypothesis algorithms. Sums of squares algorithms are 

applicable to 'balanced complete data structures, some balanced incomplete 

structures, and to a few other situations, including hierarchical structures 

and, perhaps, random effects models. A complete data structure is one in which 

every 11 possible11 combination of factor levels occurs, a combination being 

possible if, whenever it includes a level of a nested factor, it also includes 

the levels of all nesting factors which contain that level. A structure is 

balanced if equivalent occurring combinations of factor levels contain the 

same number of observations. 

The balanced complete case has definite theoretical and computational 

advantages but may be impractical for many investigations, for example when 

the number of o·bservations is not subject to experimental control, or when the 

number of treatment levels is larger than the number of homogeneous experimental 

units which can be obtained. Balanced complete structures typically result in 
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a unique analysis of variance in which the estimates of effects and their cor­

responding sum£ of squares are uncorrelated. This uniqueness and orthogonality 

make.computations easier, and the results may be interpreted with less 8.1libigu­

ity. A further computational advantage is that for ·balanced complete struc­

tures the same basic algorithm may 1'e used for fixed, random or mixed models. 

Sums cf squares algorithms are not generally applicable to ·balanced incom­

plete structures. General linear hypothesis algorithms may ·be used for these, 

but often programs for these will overlook special features of the analysis [1, 

7, 12] and will not provide all the output information which the user of a 

specialized balanced incomplete structure needs for interpretation of his 

results. More specialized programs are available for some incomplete struc­

tures, particularly lattice designs. 

For unbalanced data general linear hypothesis algorithms may ·be employed. 

The basis of these algorithms is usually solution of the least squares normal 

equations, as in a multiple linear regression problem. For analysis of vari­

ance however, there are some complications. One of these is that the usual 

analysis of variance model is over-parameterized and the set of equations must 

somehow be reduced if an algorithm for solution of a full rank system of equa­

tions is to be used. A second and related problem is that the analysis of 

variance is no longer unique for unbalanced data, nor.are the.resulting esti­

mates uncorrelated. The user of a general linear hypothesis program will have 

to determine which of several analyses of variance possible is the one he 

needs, how to specify that particular analysis and how it may be interpreted 

with the particular method in use ·by the program of reducing the model to full 

rank. 
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Programs for Balanced Complete Data 

BMDOlV 

This program performs the usual one-was analysis of variance. It allows 

as an option the printing of group means and standard deviations. Inspection 

of group standard deviation may give some indication of whether the homogeneity 

of variance assumption is met by the data and also can serve to reveal gross 

errors in data input. This feature is not always present in AOV package pro-

grams. The data input format requires that all the o"bservations for a single 

group be contiguous. FORTRAN type variable format cards are supplied by the 

user so that fields may be skipped. However, for analysis of variance on 

several variables this format may be awkward since a new data file will be 

required for each variable. No provision is made for planned or multiple com-

parison of group means with this program. The program BI~07V discussed later 

provides for these. 

The program may be applied to balanced or unbalanced data, fixed or random 

models. However, for random models no variance component estimates not expected 

mean squares are given. 

The program assumes the usual 1-way classification model 

y .. = 1J. +Ct. + e .. 
1J 1 1J 

a 
with i = 1,2, ••. ,a; j = 1,2, •.• ,n., and E Ct. = 0. Program output includes the 

1 i=l 1 

analysis of variance table: 

SUM OF SQUARES DF MEAN SQUARE F RATIO 

BETWEEN GROUPS SSB a-1 ~ MSB 
F = --

WITHIN GROUPS s~ N-a MSW MSW 

TOTAL SST N-1 
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For the fixed effects model the printed F ratio is appropriate for testing 

the hypothesis that the groups all have the same mean. 

For the random model the variance components may be estimated ·by 

-"2 MS 
aWITHIN = W 

-"2 
crBETWEEN = 

a-1 

L:n. -
~ 

These are the unbiased "Analysis of Variance" or "Henderson's Method I" 

estimates. For the random model the printed F-ratio may be used in testing 

the hypothesis that cr2 = o. 
BETWEEN 

The calculations should be accurate enough for any but pathological data 

sets. The among groups sums of squares are computed around the mean of the 

first group, which will prevent loss of significant digits in this computation 

unless the means of the groups are widely divergent. 

BMD07V 

BMDOJV performs a one-way analysis of variance, but also can be used as a 

multiple comparison test or for planned comparisons. The 1-way analysis of 

variance performed by the program is the same as for BMDOlV. 

In the case of multiple comparisons the program uses the Duncan [4] pro-

cedure unless the user supplies range cards for other procedures. Among 

choices of other methods available by specification of suitable range cards 

are Scheffe's S-method [15], Tukey's lviultiple Range test [14,15], the 

Student-Newman-Keuls [14] procedure, the LSD (least significant difference) 

method [14], and Bonferonni t-statistics [6,14]. The necessary ranges to be 

supplied for each of these methods are given below: 
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1) Scheffe' s S-method,. If the number of groups. ia- k the appropriate 

range value is [2(k-l)Fa k-l ]112 where Fa k-l is the F-table entry for J , ve , ,v 

significance level a with numerator degrees of freedom k-1 and denominator 
k 

degrees of freedom v = i~l ni - k, the degrees of freedom for the within 

groups mean square. This range remains constant for number of means 2, 3, ••• , k. 

2) Tukey's Multiple Range test. The appropriate 

upper a point of the studentized range for sample size 

entry is a •k , the -a, ,v 
k 

= k and v = l: n . - k • 
i=l ~ 

This entry remains the same for all numbers of means 2, 3, ••. , k. 

3) Newman-Keuls procedure. The appropriate entry is 

a point of the studentized range for sample size p and v = 

This entry varies with p = 2, 3, •.. , k. 

a , the -a;p,v . k 
!: n. 

i=l ~ 

upper 

- k • 

4) Least Significant Difference. The appropriate entry is a --a;2, v -

(ta/2,v)/2 where ~,2 ,v is the upper a point of the studentized range for a 

sample size of 2 and v = En. - k degrees of freedom for the estimate of a2 • 
l. 

This method presumes that the F test in the analysis of variance has been found 

significant, before the significance of particular comparisons is examined. 

5) Bonferonni t-statistics. This method presumes that a fixed number of 

com~arisons are of interest. In the case of comparing all pairs of k means 
. k{k~l) k 

the number would be m = 2 = ( 2 ) • The appropriate range entry for all 

groups is then ( ta/~~ v)/2 where ta/(2m}v is the upper a/(2rri) point of the student 

t-distribution with v = !:n. - k degrees of freedom. These entries needed will 
l. 

usually not ·be given in most published tables of the t-distribution unless 

a/(2m)happens to be .10, .05, .025, .01 or .005. Tables with entries for many 

values of mare found in [6,14]., This test has a probability error rate at 

least as good as the S-method but will often be more powerful (i.e., have higher 
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probability of f'inding real differences to be significant). This method does 

not depend upon equal sample size nor even upon uncorrelated means. 

The Blv.ID07V algorithm allows the m.u:nber of replications in a group to be 

unequal. However, the methods of Tukey and Newman-Keuls, above, and the 

Duncan method which is the default when no ranges are given use the values of 

the studentized range for the given a ("pro·bability error rate 11 , [14]) level, 

based upon the distribution of the range of identically and independently dis-

tributed normal variables. When group sizes differ the variances of the means 

are only approximately correct. Duncan [5] indicates by a geometric argument 

in the case of 3 means that the test will be conservative (i.e., the true a 

will be smaller; fewer differences between means will be judged significant 

than if the groups had been equally replicated). The extent of this conserva-

tism may be guessed at by examining the following empirical results for several 

patterns of unequal replication (all based upon 10,000 pseudo random observa­

tions from N(O,n~), i = 1,2, ••• 5, comparing 

I X.; X I f2rYij 
• - j \/ n;_+n; 

with 1 • q 05 •5 = 3.858 and computing the proportion of times (in 10,000) that 
• ' ,co 

at least one such weighted difference exceeds the table value 3.858). 

Empirical Probability Error Rate 

for 5 Means with Various Numbers 

of ReElications {Nominal a = .05~ 

nl n2 n3 n4 n5 observed a 95% conf. interval 

1 1 1 1 1 .0512 .. 0469 - .0555 

1 1 1 1 100 .0451 .0410 - .0492 

2 5 10 20 50 .0440 • 0400 - .0480 

1 1 50 50 50 .0366 .0329 - .0403 
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The above figures indicate the effect upon the probability error rate of 

unequal replications when means are compared 2 at a time, and thus are directly 

applica·ble to the Tukey procedure. The indicated conservatism also applied to 

the Duncan and Newman-Keuls procedures but in the case of these procedures the 

situation is further complicated 'by the fact that the means are tested in sets, 

starting with the set of all means. If a set is found to be homogeneous the 

means within the set are not tested in smaller sets. It is not completely 

clear how this procedural constraint affects the expected error rate of these 

procedures based upon the studentized range, but it would seem to have the 

effect of making them more conservative (and less powerful). 

BMD07V provides the option of coefficient cards for linear contrasts of 

the group means. The program computes the normalized contrasts, an estimate 

of their variance, the t-statistic for testing that an individual contrast is 

zero, and the cumulative probability of this t value. 

It should be noted that these t probabilities may be compared with a or 

1-a for a 1-sided test of the hypothesis that a given contrast is zero; for a 

two-sided test the printed probability should be compared with ~ or ~-~ • The 

program computes an approximation of the cross product matrix for the given 

contrasts (ignoring unequal replication) and also determines a "maximal orthog­

onal group'' of contrasts. This latter feature appears to have a bug since in 

one case the group given in the output consisted of only two of three orthog­

onal contrasts available to it. (The contrasts chosen for the maximum group 

were l,O,O,-l,O,O and 0,1,-l,o,o,o. The contrast o,o,o,o,l,-1 was also present 

but not included in the output of the maximum orthogonal group, although it is 

obviously orthogonal to the other two, and in fact the cross products in the 

printed cross product matrix were correctly computed as zero.) In other cases 
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the program found a maximum orthogonal group correctly. The program also pro­

vides "All homogeneous subsets among the orthogonal group for Duncan's new 

multiple range test". This computation does not allow other options as does 

the comparison of pairs of means. As in the case of multiple comparisons, this 

procedure is not universally accepted, and in the unequal number situation is, 

at best, approximate. In any event it is unlikely that the pairwise comparison 

of contrasts has any usefulness for analysis of most experiments. It is sug­

gested that this output be ignored. If a sDnultaneous test of the hypothesis 

that all of a given set of contrasts are zero is desired the studentized maxi­

mum modulus may be used [14,15]. 

SAS DUNCAN Procedure 

The SAS procedure DUNCAN performs Duncan's new multiple range test. [5] 

However the user's manual gives little information about what is actually done. 

Presumably the program follows the methodology described in the reference [21]. 

This procedure is somewhat less convenient to use than BMD07V because the error 

mean square and its degrees of freedom must be supplied as input to the pro­

gram. This feature requires that the analysis of variance ·be performed sepa­

rately, so that two computer runs are necessary. 

The program makes no provision for other comparisons than all pairs of 

means, nor other methods of comparison than Duncan's new multiple range test. 

BMD02V Analysis of variance for factorial design 

BMD02V performs analysis of variance on an n-way crossed design for up to 

8 factors using a sum of squares algorithm. The program can be used for struc­

tures with nesting by pooling the proper sums of squares as explained in an 

appendix of the program description in the manual. To determine which sums of 

squares are to be pooled the following symbolic method may be used. The 
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method is illustrated for a three factor example replicated twice (Snedecor 

3d ed p. 365). ·The factors are as follows: Ashing at two levels, plants at 

three levels, and leaves nested in plants at four levels. In the Bl~02V output 

these factors are treated as cross classification factors and identified by 

numbers 1,2,3, respectively. The analysis of variance table appears as 

follows: 

SOURCE OF DEGREES OF SUMS OF MEAN 
VARIATION FREEDOM SQUARES SQUARES 

1 1 0.07760 0.07760 

2 2 7. 70945 3-85472 

3 3 4.95461 1.65154 

12 2 0.03822 0.01911 

13 3 0.02459 0.00820 

23 6 1.02710 0.17118 

123 6 0.07624 0.01271 

WITHIN REPLICATES* 24 0.09883 0.00412 

TOTAL 47 14 .oo666 

*This labeling is poor ••. this line is the within cells or within 
subclass sums of squares. It is not within replicate. 

To obtain the terms for pooling to obtain sums of squares for nested 

factors the following scheme may be used. Let A,P,L denote the factors ashing, 

plants, leaves, respectively. Terms involving nested factors are L(P), 

leaves within plants, and AL(P), the interaction of leaves and ashing within 

plants. Write L(P) ~ L(P+l) = LP + L to indicate that the LP interaction and 

main effect for leaves are to be pooled. Thus the sum of squares for leaves 

within plants is the sum of the sums of squares labeled 23, and 3: 

1.02710 + 4.95461 = 5.98171. The degrees of freedom are also added: 6 + 3 = 9. 
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To obtain the sum of squares for the interaction of A and L within P the 

symbolic expression is AL(P+l) = ALP + AL indicating that the 13 and 123 

interactions are to ·be pooled, along with their degrees of freedom. 

The program will, optionally, print marginal means, or marginal means and 

cell means. However, since the program considers the model to be n-1fay crossed 

the means for nested factors will be incorrect. For example, in the above 

example the means for leaves are averaged over the four plants, but since 

leaves are nested in plants, averaging the responses for an arbitrarily 

selected leaf from each of several plants is not useful. To o·btain the leaf­

within-plant means one would need to obtain the cell means and average the 

appropriate ones. 

Data input for the BMD02V program is some,fhat awkward because single 

observations of the same cell must be separated in the data. Since data 

usually are not recorded in this way this arrangement will be inconvenient. 

There is no sequence checking with this program and therefore a careful check 

should be made that the data are in correct order. This will be facilitated 

if the factor levels are punched on the data cards. Although these cannot be 

read by the program they will aid in keeping and checking the proper sequence 

by hand or by using a sorter. The card fields containing the level indicators 

can be skipped by using the X format code on the varia.ble format card supplied 

with the input. 

BMD02V may, optionally, be used to obtain linear, quadratic and cubic 

components for selected factors. 

BMD08V Analysis of Variance 

BMDOBV performs analysis of variance on general balanced complete struc­

tures. Unlike BMD02V the analysis is performed for nested and/or crossed 
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factors and for fixed, random, mixed or finite population models. The nuniber 

of levels in the population for each factor is part of the input to the pro­

gram. If this number is left 'blank it is taken to be infinite and the factor 

is considered random. If the population number of levels equal_s the sample 

fiumber of levels the factor is considered to be a fixed factor. 

The Cornell Office of Computer Services has added a warning to the lli~08V 

output which indicates the cell means and/or mean squares from this program 

have been found to ·be in error in some cases. There were no errors noted in 

the test case run in this investigation. This error method applies to the 

July, 1969 version of the program. The latest version was revised in Fe'bruary, 

1971. 

The chief unusual feature of the BMD08V program is its capability for 

o'btaining the ana],.ysis of variance and expected mean squares for finite popu­

lation numbers of levels. I know of no other general use program with that 

capability. 

Output from lli~08V includes sums of squares and mean squares for each 

factor and interaction, F-test statistics (when there is a mean square having 

the same expected value under the null hypothesis), the coefficients of each 

variance component in the expected mean squares, estimates of the variance 

components (1971 version only) and, optionally, cell means and estimates of 

effects. 

SAS .PINOVA Procedure 

This program computes a general analysis of variance using a sums of squares 

algorithm. The procedure allows unequal numbers, ·but except for hierarchical 
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(i.e., completely nested) models, and, perhaps, random effects models~~, the 

analysis obtained can only be approximately correct [8]. Unfortunately the 

SAS manual description of this procedure does not make this very clear, although 

the output from this procedure when the data are unbalanced includes a warning 

message. 

Use of the procedure requires some general knowledge of the SAS system, 

but this is easily mastered. The program is easy to use, and may be combined 

with the SAS MEANS procedure if marginal or cell means are desired. The l~TS 

procedure produced (optionally) other statistics including standard deviations 

and extreme values which are useful as checks for errors in the data, outliers, 

etc. It may be necessary or desirable to use the SORT procedure in conjunction 

with the AN OVA program. 

Programs for Unbalanced Data 

BMDlOV (BMDX64) General Linear Hypothesis 

The BMDlOV General Linear Hypothesis program to some extent supplants the 

BMD05V program which had been the standard BMD general linear hypothesis pro-

gram. BMDlOV is more automatic than the BMD05V program in that it computes 

the values of dummy variables for the analysis, while these have to be supplied 

as input to BMD05V. This has the advantage of simplifying data preparation and 

input, but the disadvantage that the -vray dummy variables are computed, and hence 

the tests of hypotheses which can be easily made, are not completely controlled 

by the user. A further disadvantage is that BMDlOV may give incorrect answers 

if there are missing cells in the data. (These wrong answers are usually 

* No single method of estimation of variance components for un·balanced data 
can be viewed as correct. If one obtains the expected mean squares for the mean 
squares computed by ANOVA for his model, these can be set equal to the computed 
mean squares and (perhaps) solved for unbiased estimate of the variance 
components. 
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easily detected being accompanied ·by such anomalies as too many or too few 

degrees of freedom in the output.) 

As noted in the introduction more than one analysis of variance is possible 

with unbalanced data. BMDlOV automatically provides an F test for each model 

term by computing the difference in the sum of squares when the model has all 

terms included and when the single term is left out. In case of covariance a 

sum of squares is given for each covariate left out singly, and also for all 

left out of the model simultaneously. other tests of hypotheses can be speci-

fied by the user so long as they are stated in terms of the dummy variables 
I 

computed ·by the program. Theoretically any testable linear hypothesis can be 

stated in terms of the dummy variables computed by the program. However, if 

the model involves nested factors it may be difficult to determine how the 

hypothesis the user wishes to test should be stated in terms of the dummy 

variables computed by the program, and use of BMD05V or some other program 

would seem to be desirable. 

The description of the manufacture of dU!DlllY variables by Bl®lOV to be 

found in the manual was found by this reader to be incomprehensible. The 

following description is believed to be equivalent to the operations performed 

by the program. 

Dummy Variables for BMDX64 (BMDlOV) 

The dummy variables for BMDX64 are based upon a set of 11 design variables" 

for each subscript which vary in value as the subscripts vary. These design 

variables may be submitted as part of the program input, their values ·being 

supplied on a DESIGN card for each cell. If DESIGN cards are not submitted 

the design variables are manufactured by the program. If the model has p sub­

scripts, the kth subscript having ~·levels, each design card must specify the 
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n 
value of E (~-1) values, tkl,; k=l,2, ..• ,p, £=1,2, •.• ,~-l; in the order 

k=l 
t 11, t 12 , ••• , t 1 n _1, ••• , tp n _1• Consider, for example, the following 

1 p 
model: 

For each of the six cells a DESIGN card may be submitted with n1-l + n2-l 

= 2-1 + 3-1 = 3 values, t 11, t 21 , t 22 • As an instance, it might ·be desired to 

give the following values, indicating a contrast of a effects and linear and 

quadratic contrasts of b effects, averaged over the levels of a. 

cell tll t2l t22 

.L..J. 
l l l l 1 
1 2 1 0 -2 
1 3 l -1 1 
2 l -1 l 1 
2 2 -1 0 -2 
2 3 -1 -1 1 

If no design variables are submitted, they are constructed by the program as 

contrasts ·between each of the first nk-1 levels and the last level. For the 

above example the values would ·be as follows: 

cell 

L.j_ 

l l 
1 2 
1 3 
2 1 
2 2 
2 3 

1 
1 
l 

-1 
-1 
-1 

(tl2) 

l 
1 
1 
1 
1 
1 

l 
0 

-1 
1 
0 

-1 

0 
l 

-1 
0 
1 

-1 

1 
1 
1 
l 
l 
1 

The values tk = l are automatically produced whether or not the design 
nk 

variables are part of the input to the program. 

Each analysis of variance term (main effect, interaction) is described in 

the output by a DUMVAR card. This card, in addition to giving a name to the 
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term, indicates, for each subscript, the multiplier for the number of degrees 

of freedom for the term associated with that·subscript. In the case of non-

nested effects this multiplier is the.number of degrees of freedom for the main 

effect corresponding to that subscript. If a term is nested the multiplier for 

subscripts corresponding to nesting factors will be the number of levels of the 

factor; for sUbscripts associated with the term but not with nesters it will be 

the number of degrees of freedom for the corresponding main effect; for sub-

scripts not found in the description of a term the entry should be 0 (or left 

blank). For the simple nested example above the DUMVAR cards could appear as 

follows: 

DUMV'.LLR 
DUl-.1'/J.,:g, 
DUl..WAR 

MU 
A 
B 

1 
2 2 

If the same data were to be analyzed using a two-way crossed model with 

interaction these cards might be: 

Dm.f.JAR MU 
DUMVAR A 1 
DUl.fvAR B 2 
DUM"vAR AB 1 2 

Let dk be the entry for the kth subscript on a given DUMVAR card. For 

each such card there will be as I!lany dummy variables manufactured for the term 

as there are degrees of freedom; that is, a number equal to the product of the 

non-zero (non-·blank) entries on the card. These dummy variables (for a given 

model term, i.e., DUMV'AR card) may be represented by 

These dummy variables are taken to be in the order of the DUMVAR cards, and 

within a term, in lexographical order with earlier subscripts moving more 

rapidly. The value computed for each dummy variable, for each cell is computed 

as follows: 
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t 
p 

= 
p 

n vk t ' 
k=l k 

where vk ~ = tk ~ for .tk ~ 0, vk .tk = 1, for .tk = 0. Thus, for example, if 

a dummy variable u12012 were to arise for some five factor model, its value 

would be: t 11·t22 ·l·t41·t52 • Some examples are given below. 

Dummy Varia.bles for E(y .. k) ;:: 
1J 

~ + a. + b • i=l,2; j=l,2,3 
l ij' 

Model term: 

"name": 

"formula" : 

.Li 
1 1 
1 2 
1 3 
2 1 
2 2 
2 3 

Model term: 

"name": 

"formula": 

:L_j_ 

l 1 
l 2 
l 3 
2 1 
2 2 
2 3 

1 
1 
l 
l 
l 
l 

a 

ulO 

tll·l 

1 
1 
l 

-1 
-1 
-1 

ull 

tll.t21 

1 
0 

-1 
-1 
0 
l 

Dummy Variables for E(yijk) = 

a 

ulO UOl 

b 

u21 ul2 

tl2.t2l tll.t22 

1 0 
0 1 

-1 -1 
1 0 
0 -1 

-1 1 

~ + a . + b . + ( ab ) . . 
l J 1J 

b 

U02 ull 

tll'l l·t21 l·t22 tll.t21 

l 
l 
1 
l 
1 
1 

1 
1 
1 

-1 
-1 
-1 

1 
0 

-1 
1 
0 

-1 

0 1 
1 0 

-1 -1 
0 -1 
1 0 

-1 l 

u22 

tl2.t22 

0 
1 

-1 
0 
1 

-1 

ab 

u12 

tll.t22 

0 
1 

-1 
0 

-1 
1 

It may be noted that in the case of the two-way crossed classification 

model immediately above the dummy variables generated are those which would ·be 
I 

obtained by applying constraints of the form E a. = 0, and replacing ai by 
i=l l 

-a1-a2 ••• -a1_1 and treating the bj's similarly, etc. in the familiar manner. 

This is the case, generally, with crossed classification models, but nested 
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models are not treated in the usual way. With the two factor nested model 

above the usual device of setting a2 = -a1 and 'bi3 = -(bil + bi2), i = 1,2 

would give the following dummy varia'bles: 

IJ.* a.! 'b* 11 bf2 b~l b~2 

1 1 1 0 0 0 
1 1 0 1 0 0 
1 1 -1 -1 0 0 
1 -1 0 0 1 0 
1 -1 0 0 0 1 
1 -1 0 0 -1 -1 

There is no way of inducing the BMDX64 program to generate the aboye dummy 

variables for a two factor model.· The model could, however, 'be specified as a 

one-way classification, and then whatever contrasts it was desired to obtain 

could be specified using design variables and hypothesis cards. In data in 

which cells are missing it is also necessary, or at least convenient, to treat 

the data in this way. If the model has missing cells and is specified in the 

usual way using multiple DUMVAR cards the results from the program are likely 

to be incorrect. 

BMD05V General Linear Hypothesis Program 

This program requires that "design varia.bles 11 be supplied for each cell 

in the data. structure. However, the "design variables" for Bl'4D05V are the 

actual dummy variables for the analysis instead of the raw material from which 

they are manufactured as in the case of BMDlOV described above. The hypotheses 

to be tested must also be supplied as input. While working out dummy va.ria.bles 

may be inconvenient, there is the advantage that the dummy variables can be 

made to match the hypotheses it is desired be tested. There is the added advan-

ta.ge that the knowledge required to form the dummy variables and hypotheses may 

be related to that needed for correct interpretation of the data. In this 

latter regard it should be noted that supplying dummy varia'bles constitutes a 
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reparameterization of the model, and the hypotheses cards supplied to the pro­

gram allow one to compare models with these ~ parameters included or excluded. 

The F-tests supplied in the program output compare each hypothesis model with 

the full model, thus testing the contribution of the ~ parameters set to zero 

by that hypothesis card. The appropriateness of these tests depends upon 

1) the nature of the investigation which has lead to the data; 2) the manner 

in which the dummy variables were constructed. other tests may be obtained by 

comparing models other than the full model with each other, by subtracting the 

residual for the model having some parameters unequal to zero from a model in 

which these parameters are zero. 

An example may be instructive. Consider an experiment with two crossed 

factors each at two levels and a third factor nested within combinations of 

the other two, with nUllibers of observations as shown. 

nijk nijk 

c111 2 
c121 3 

c112 2 

c122 3 
c113 2 

c211 2 

c221 3 
c212 2 

c222 3 
c213 2 

This data is peculiar in that the number of levels of the C-factor varies 

over the B factor, while the number of observations for the A B 2 X 2 is con­

stant. The result is that sums of squares algorithms give correct results for 

this program even though it is only "accidentally" balanced. BMD05V also gives 

correct results of course, and would even if the number of observations in one 
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of t~e cells was changed. If these numbers were a.r·bi tra.ry the sums of squares 

programs would no longer give exact results (some "sum of squares" might ·be 

found to be negative, for example) and BMDlOV would also fail, for, with respect 

to its method of finding dummy variables, there is a missing cell. 

A linear model for this data. structure is 

Ea. = o, ~j = o, ~(~) .. = ~(~) .. = 0 
1 i 1J j 1J 

r.y. 'k = o, i = 1,2; j = 1,2. 
k l.J 

Specifying that the model terms obey the given linear constraints insures that 

they are uniquely defined. These constraints may be used to reparameterize 

the model as 

Y = IJ.* + CX! + t3j + (~)~j + Yfjk + eijk 

where IJ. = IJ.*, al =a!, a2_ = -af, t31 = t3!, t32 = -t3~, (0(3)11 = (~)fl' (~)12 

= -(at3)!1 = (Ot3)21' (~~22 = (Ot3)!1' Ylll = Y!ll' Yll2 = Yil2' 

yll3 * - Y* = -ylll 112' 
y - yi~ 

121 - i21' yl22 = -Y!21' y211 = Y211' y212 = y~l2' 

y213 -Y* Y* - * 'Y222 -v~~ . These relationships are all = - 212' 'Y221 - 'Y221' = 211 222 

obtained from the model constraints. The reparameterized model has only 10 

parameters, IJ.~"', a!, t3!, (Ct13)fl' Y~11 , 'fi12, ~2l' ~11 , ~12 , y~21 • This is 

exactly the same number as the number of cells having observations. The 

"design variables" (i.e., dummy variables) for the BMD05V design cards are as 

follows: 
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ijk 1-L* * f3t (a(3)rl ~11 Yt12 v* v~~ * * al 121 211 'V212 y221 

111 1 1 1 1 1 0 0 0 0 0 
112 1 1 1 1 0 1 0 0 0 0 
113 1 1 1 1 -1 -1 0 0 0 0 
121 1 1 -1 -1 0 0 1 0 0 0 
122 1 1 -1 -1 0 0 -1 0 0 0 
211 1 -1 1 -1 0 0 0 1 0 0 
212 1 -1 1 -1 0 0 0 0 1 0 
213 1 -1 1 -1 0 0 0 -1 -1 0 
221 1 ··1 -1 1 0 0 0 0 0 1 
222 1 -1 -1 1 0 0 0 0 0 -1 

The BMD05V program will generate three hypotheses automatically. For 

this model they will be written as 

1-L* a* l 
f3 ~~ 

1 
( 013 )"~ 

ll Yfll v!.* 112 '121 y~ll ~12 ~21 
1 0 0 0 0 0 0 0 0 0 0 
2 l l 1 l 1 l l l l l 

last 1 0 0 0 0 0 0 0 0 0 

The first of these corresponds to a model with all parameters equal to zero. 

The "residual" for this model will be the total sum of squares. The second 

hypothesis corresponds to the full (reparameterized) model and its residual 

will be the within subclasses cum of squares. The last hypothesis corresponds 

to a model with all parameters but the overall mean set to zero, and the dif-

ference between its residual and that for hypothesis 2 will be the "among sub-

classes" sum of squares for what is sometimes called [20] the "preliminary 

analysis of variance". 

Suppose, for our own reasons, we wished to test the hypothesis that the 

'V*'s were 0 after fitting 1-1*, and then that the two ·by two factorial (af, ~f, 

(a(3 )f1 ) parameters were 0 after fitting 1-1~~ and the Y*' s. If i9'e sup{lly·an addi­

tional hypothesis (number 3) 1 0 0 0 1 l 1 l 1 1, corresponding to a model with 

ai, ~r, (a~)!1 equal to zero we can obtain the desired analysis as follows: 
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Source Method of obtaining SS from 
BMD05V output 

y*' s after J.l~}.: Subtract the residual for hypothesis 
3 from that for the last (all zero 
'but JJ.*) hypothesis. 

Residual 

Subtract the residual for the full 
model (hypothesis 2) from the hypo­
thesis 3 residual. 

Residual from hypothesis 2. 

The degrees of freedom for these sums of squares may be obtained by subtracting 

the degrees of freedom for corresponding residuals given in the BMD05V output. 

They are, of course, equal to the number of par~eters found in one model 'but 

not in the other for the two residuals subtracted. In the present case there 

will ·be 6 degrees of freedom for Y*'s after JJ.* since there are 6 Y*'s, and 3 

degrees of freedom for the 2 X 2 factorial after JJ.* and Y*'s, corresponding to 

the three parameters af, ~i' (a~)f1 • Degrees of f~eedom for the full model 

will be given with the residual for hypothesis 2 and for the data described 

here will be 14. F-ratios for the tests described above would be formed by 

dividing the mean squares from each of the first two sources by that for the 

residual. (Assuming a fixed effect model, if some effects are random,the situ­

ation is more complicated [16,18]. 

The program output includes some F-ratios. In each case the numerators 

of these F ratios are obtained by subtracting the full model residual from that 

for the particular hypothesis and dividing by the number of parameters set to 

zero in that hypothesis. It is thus a test of the hypothesis that the para-

meters set to zero by that hypothesis are zero after fitting all other para-

meters. These tests may or may not be appropriate. 

It should be emphasized that all the hypotheses generated 'by or supplied 

to the program are stated in terms of the reparameterized model implied by the 
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"design variables" given to the program; and the interpretation of tests and 

estimates must reflect this fact. Testing that a certain group of parameters 

are equal in the reparameterized model, may or may not be equivalent to testing 

that a corresponding group of parameters in the original over-parameterized 

model are equal, depending upon the way in which the dummy variables are 

assigned [18]. 

SAS REGR Procedure 

In the SAS system the REGR procedure is used for general linear hypo­

thesis analysis of variance problems as well as for multiple linear regression 

problems. While any multiple linear regression program can be used to solve 

analysis of variance problems by including dummy variables for the classifica­

tion variables, this is not necessary with REGR, since the program will manu­

facture dummy variables for the classification varia-bles if these are identified 

by a CLASSES statement. The method used by SAS is similar to that used in the 

example in the description of BMD05V above of o"btaining the "design variables" 

for input to that program. It differs from the method employed by BMDlOV in 

the handling of nested factors, and seems more straight-forward. SAS REGR also 

differs from BMDlOV in that its treatment of missing cells is more sophisti­

cated. In BMDlOV missing cells are ignored and this may lead to incorrect out­

put. In the SAS program missing cells are detected and cause the elimination 

of some dummy variables from the model. This results in output which is cor­

rect, but which may be difficult to interpret. A warning message is generated. 

Two analysis of variance outputs are produced and printed by SAS REGR 

with sums of squares, F-ratios and F-tail probabilities for each. These are 

called the Sequential SS and the Partial SS. The partial SS are the same as 

those automatically produced by BMD05V and BMDlOV; that is they test the con­

tribution of each factor or interaction group of parameters (of the 
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reparameterized model) to the fit by computing the difference in the regres-

sion sums of squares when these particular terms are in and not in the model, 

and all other parameters are present. The sequential SS computes the incre­

ment in the regression sum of squares as each group of parameters (of the 

reparameterized model) is added to the model in ~ ~der in which the factors 

~ interactions ~ specified in the MODEL statement for the pro'blem. Several 

model statements may ·be used if needed. 

The input required for use of SAS REGR is fairly convenient and simple. 

For the example given above for BMD05V the following might be used: 

DATA TESTSET; 

INPUT A 1 B 2 C 3 Y 6-10; 

CARDS; 

111 13.41 
111 14.06 

222 7-92 

data cards 

PROC REGR; CLASSES A B C; 

MODEL Y = C(A B) A B A*B; 

The Sequential SS for this model will be: 

Y*' s after 1-l~~ 

ctf_ after ll*, Yi~' s 

~!after 1-l*, af, Y*'s 

(~)t1 after 1-l*, a!' ~!' Y*'s 

The Partial SS will be for: 

Y*' s after 1-l•~, a!, ~~' (o:~)~1 

a~ after 1-Li~, ~t' (o:t3 )rl' Y*' s 

~~ after 1-L-i!-, ar, (o:t3)~1' Y*' s 

(o:t3)11 after IJ.*, o:r, ~~' y*'s 
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I£ the data are balanced both of these analyses will produce the same 4 

numbers. If the data are not balanced the first three will 'be different for 

the two sets of output. 

Additional optional output may be obtained from REGR of particular inter­

est, a table showing confounding of factors will be produced if /CONF is added 

to the model statement before the semicolon. 
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