Nuprl as a Generic Theorem Prover

Roderick Moten

Abstract

Logical Frameworks are one way to provide generic theorem provers.
This paper describes another method using loose semantics. In the paper,
we explain loose semantics, describes its use in building a programming
calculus in the style of Back’s refinement calculus, and relates the idea to
Logical Framework or General Logic. Viewing Nuprl as a generic theorem
prover using loose semantics can be used to describe the inference engine
of Nuprl 4. This is the first attempt to explain the system design of Nuprl
and relate it to the code.

1 Introduction

A generic theorem prover may be considered as a work bench for constructing
mechanized reasoners for logics. Suppose that a generic theorem prover had
logic independent devices that supported proof development such as an editor
for manipulating proofs, a repository for storing objects, a facility for pretty
printing terms, and a language for writing scripts to automate reasoning. A
mechanized reasoner for a logic could be produced by encoding it into a generic
theorem prover and inheriting the devices of the prover.

Generally, generic theorem provers are implementations of logical frame-
works, such as Isabelle [19] and ELF [5]. In these provers, a type theory is given
as the prover’s logic. The type theory is hard coded into the inference mech-
anism of the prover. The object logics are encoded into the the type theory.
Proofs in the object logic are constructed within the type theory.

Another approach to implementing a generic theorem prover is with loose
semantics. That is, the inference mechanism of the prover is independent of
any logic. It is parameterized by the axioms and inference rules of the object
logic. The prover has a representation language for encoding object logics into
the prover. Proofs are carried out directly in the object logic using the devices
of the generic theorem prover to assist proof construction.

Designing routines for performing multiple steps of inference using heuristics,
such as tactics, for an object logic are easier to design in a generic theorem
prover with loose semantics than with one implementing a logical framework.
In a generic theorem prover with loose semantics, these routines make choices
based on knowledge of the object logic and the inference strategy. However, in a

logical framework theorem prover, these routines also require knowledge of the
logical framework.

The Nuprl theorem proving system can be exploited as a logical framework
or a generic theorem prover with loose semantics. Constable and Howe depicted
Nuprl as a logical framework using constructive type theory [9, 4]. They used
Nuprl 3, the premier version of Nuprl [8]. The three primary components of
Nuprl 3 were a repository for storing objects, an editor for manipulating proofs,
and an inference mechanism. They are referred to as the library, the proof
editor, and the refiner, respectively. The typing rules and the evaluation rules
of constructive type theory where hard coded into the refiner.

Nuprl 4, the latest version of Nuprl [16], is implemented using loose seman-
tics. The architecture of Nuprl 4 resembles the architecture of Nuprl 3, but
inference rules of all logics including constructive type theory must be passed
as parameters to the Nuprl 4 refiner. The Standard ML implementation of the
Nuprl 4 refiner also allows the user to supply evaluation rules for non-canonical
terms of an object logic. This feature is not available in the Nuprl 4 refiner
implemented in Lisp.

In this paper, we demonstrate that Nuprl 4 uses loose semantics by showing
that the refiner is a generic goal directed reasoner. In Section 2, we give an
overview of the refiner, and in Section 3 we give its mathematical description.
In Section 4, we use the refiner to encode the refinement calculus to demonstrate
its capability as a generic goal directed reasoner.

1.1 Math Preliminaries

We will be using set theory to describe the refiner. The set of sequences of
elements of a set A is denoted by A*. The elements of A* are represented as

(a1,.-.,ay,) for a; € A. The empty sequence is represented as (). The set of
non-empty sequences of A, A%, is the set A* — {()}. Given sets A1, As,... Ay,
Ay X Ay x -+ x A, is a set with elements (a1,a2,...,a,) where a; € A;. If
A=A =Ay=-.- = A, then we write 4; x Ay x --- x A,, as A™.

2 Overview of the Refiner

The refiner consists of the term module, the rule interpreter, and the proof man-
ager. The term module defines the term language and computation over terms.
The term language is the core of Nuprl’s representation language. Most data,
such as inference rules, ML code and rewrite rules, are represented as terms.
The rule interpreter is responsible for performing primitive inference based on
inference rules supplied by the user. Proof construction using tactics is handled
by the proof manager. In addition, the proof manager can synthesize from a
proof an object representing a solution to a problem based on the semantics of
a particular object logic.

The refiner performs inference using goal directed reasoning. Goal directed
reasoning is the process of finding a solution to a problem by decomposing the
problem into more tractable subproblems. After the subproblems have been
solved their solutions are used to compose a solution for the original problem
[20]. LCF employed goal directed reasoning to develop the tactic method of
problem solving (See [11] page 57). In LCF, a problem is called a goal. A
tactic is a function that decomposes a goal into subproblems or subgoals and
produces a function called a validation. A validation constructs a solution from
the solutions of the subgoals. Finding the proof of a conjecture and finding
an inhabitant of a type are the most common problems solved using the LCF
approach [10, 14]. For these problems the solutions are proofs and terms of type
theory, respectively.

The refiner performs inference similar to LCF’s methodology to problem
solving. Conjectures of an object logic are represented in the refiner as goals.
Goals are decomposed using inference rules of the object logic. An inference
rule in the refiner can be perceived as a schematic specification of an LCF
tactic. In other words, an inference rule specifies for a class of goals a means
of decomposing a goal into subgoals and constructing a solution for the goal
from the solutions of the subgoals using pattern matching and substitution.
Applying an inference rule also produces a partial solution. The process known
as extraction composes partial solutions into a single solution for a goal. The
refiner and LCF differ in the method in which tactics are used to perform
multiple inferences. From a tactic, the refiner generates an object representing a
derivation of several inference rule applications. However, as mentioned above,
in LCF a tactic produces subgoals and a validation.

3 Mathematical Description of the Refiner

The mathematical description of the refiner stems from the formal account of
the Nuprl term and proof structure provided by the reflected Nuprl type theory
[2, 3, 7]. The description of the refiner serves as documentation for the Lisp
implementation of the refiner and as a design specification of the refiner in
Standard ML.

3.1 Nuprl Terms

We represent Nuprl terms as a subset of a set of second order terms 7. The terms
T are a modified and simplified version of the second order terms presented using
the lambda calculus by Huet and Lang [15]. The abstraction terms of Huet and
Lang’s language help explain bound terms in Nuprl. Our language, unlike Huet
and Lang’s, is untyped.

To begin, we assume that we have a countable infinite set of identifiers 7

and modifiers' M. Elements of 7 are written in teletype font, for example joy.
There are several classes of modifiers, for example variable symbols and natural
numbers. Each class of modifiers has associated with it a unique identifier. We
write a modifier z in the class with tag t as = : t. The tags for variable symbols
and natural numbers are v and n, respectively. An operator is an identifier
paired with a possibly empty sequence of modifiers. Operators are written as
f{p1,...,pn} where f € I and each p;, € M, for example love{z : v,3:n}. We
let Op be the set of operators.
We define the set of terms 7 inductively as follows.

1. Ifa € Op, thena € 7.
2. fx €7 and t € 7, then z.t € 7 called a bound term.
3. Ift1,...,t, € 7 and a € Op then a(ty;...;tn) € 7.

We abbreviate nested bound terms of the form ¢t = zy.- - - .x,.t a8 1, T2,. .., Tn.t.

The first order variables of 7 are the terms of the form variable{z:v}. We
abbreviate variables to their variable symbol, that is variable{z:v} is written
as . We fix V to be the set of first order variables of 7. Terms of the form
variable{a:v}(t1; ...; t,) where eacht; is not a bound term are second order
variables instances.

The free variables of a term ¢ is the set of variables F'V (). More specifically,
ift € Vthen FV(t) = {t}. If t = a(ts;...;tn), then FV({) = FV(t;)U--- U
FV(ty) If t = z.t', then FV(t) = FV(¢') — {z}. As usual, ¢ and t' are alpha
equal, t =, t/, if they are equal up to bound variable renaming.

Given t,s € T and z € V, we denote t[s/z] as capture avoiding first order
substitution of free occurrences of z with s in . A substitution pair is a pair
(z,t), where z € V and t € 7. We call z the target and ¢ the replacement. A
substitution is a finite set o of substitution pairs where for every t € 7, ot € T
obtained inductively as follows.

1. If t € Op and 3(t,t') € o, then ot = ¢'; otherwise ot = t.
2. If t = a(t1;...;tn), then
ot = t[oti/z1,...,0tn/TH],

if ¢ is a second order variable instance and (a, ;... z,.t') € o; otherwise

ot = a(oty;...;0t,).
3. Ift==x4,...,z,.t then ot = z1,...,2,.0't", where ¢’ is ¢ with all pairs
(zs, s) for some i € {1,...,n} removed if s is not a bound term.

ITraditionally, modifiers are called parameters. Referring to parameters as modifiers comes
from Jason Hickey.

Note that ot is second order substitution as long as bound variables in ¢ and
the free variables of replacements of o are distinct so that capture is prohibited.
Huet and Lang use types in their definition of substitution to ensure substitution
is second order and not higher order. We rely directly on the structure of the
terms.

The terms of Nuprl, 7, are the terms of 7 that only contain bound terms
as proper subterms. Given a substitution o and term ¢ € 7,,, we desire ot to be
in 7,. The following theorem presents the conditions that ensures ot € 7,,.

Theorem 3.1 Let ¢ be a substitution and ¢ € 7,,. Then ot € 7, if the following
criteria hold.

1. fteV and (t,t') € o thent' € T,.

2. For any subterm of ¢ that is a second order variable instance, say a(¢1;- .. ;tn),
if (a,21,...,2,.t') isino thent' € T,.

We generalize term computation defined in Nuprl 3 (See Appendix C in [8]).
Term computation in Nuprl 3 was defined with respect to the non—canonical
terms of Nuprl type theory. Term computation was performed by using rewrite
rules generated from theorems (term_of terms) and the reduction rules for the
non—canonical terms. In this presentation, term computation is defined with
respect to a set of rewrite rules and reduction rules.

Let A be a set of rewrite rules and © be a set of reduction rules. To distin-
guish between rewrite rules and reduction rules, we write rewrite rules as t=-¢'
and reduction rules as t—t'. A computation rule is a triple

(s,(a1y---san), (r1—cC1,-..,Te—ck)) € T, x V* x OF (1)

with the constraint {a;...,a,} C FV(s). We use (1) intuitively to compute
on t € 7, as follows. Suppose os = t. Obtain ¢’ from ¢ by computing on some
of the subterms of ¢, namely the subterms that are paired with ay,...,a, in o.
If ¢ matches a redex from one of the reduction rules, say ¢ = o'r;, then the
result of the computing with the computation rule is o’c;. More formally, given
t,t' € T,, t computes to ¢’ in at most m steps, t{,,t', for m > 0, if one of the
following holds.

1. m=0and t =, t'.

2. There is a rewrite rule s=s’ € A and a substitution ¢ such that ¢ = s,
t' =0s',and m > 1.

3. There is a computation rule (s, (a1,...,an), (r1—c1,...,7r—cg)) and sub-
stitution o such that ¢t = 0's, a1y, t1s. .., anlm tn, wherem > 370 | m;.
In addition, for some j, 1 < j < k, there exists a substitution ¢’ such that
o'r; = o(sti/a1,...tn/axs]) and ¢t = o’c;, where o’ is obtained from o
by removing all substitution pairs that contain a; as a target.

3.2 Rule Interpreter

In this section we describe the rule interpreter, the component of the refiner
which carries out primitive inference with respect to goal directed reasoning.
A goal is a sequence of declarations (z1 : Hi,...,z, : Hy) paired with a
Nuprl term C where for each i, z; € V, H; € T,,, FV(H;) C {z1,...,zi—1} for
i€{l,...,n}and FV(C) C {z1,...,2,}. We write the goal as

£B1:H1,...,$HZHTL|_C.

Contrary to the definition of a goal in [4], the Nuprl 4 refiner assigns no semantics
to a goal. A goal is a purely syntactic object. A goal is used to represent
problems for a particular problem domain. Usually, the sequence of declarations
represents a context in which to solve the conclusion.

Goals are decomposed into subgoals using decomposition rules. The decom-
position rules are encodings of the inference rules of an object logic. The refiner
provides a specification language for users to specify decomposition rules. The
specification language was designed by Rich Eaton while generalizing the syn-
tax of the rules of the Nuprl type theory. The language is capable of expressing
decomposition rules that are schemata as well as those that are decision proce-
dures. In this paper, we only describe the specification and application of rules
which can be specified as schemata.

The goals in decomposition rules are represented as schemes. That is, scheme
variables can occur in place of a sequence of declarations and variables. For
example, in the &-introduction decomposition rule below, H, A, B,a and b are
scheme variables.

HF A & B ext pair(a;b)
by AndIntro
HE A ext a
HE B exthb

We refer to goals in decomposition rules as goal schemes. The top goal scheme
is the main goal scheme, and the others are subgoal schemes. For the &-
introduction decomposition rule, the main goal scheme is H - A & B, and H
F Aand H F B are the subgoal schemes.

A scheme substitution is a set of substitution pairs whose targets are scheme
variables and whose replacements are either terms, variables, or sequences of
declaration. All scheme variables occur free in a term. Scheme substitution
combines substitution as defined in Section 3.1 with textual replacement. For
instance, instantiating the scheme H + t[s/z] with scheme substitution 7 is
7H b (1t)[rs/7z] instead of o H + 7(t[s/z]). For clarity, we use 7,7, 71,7{,...
to range over scheme substitutions.

The rule interpreter decomposes a goal using decomposition rules as follows.
Consider again the decomposition rule for &-introduction, and the goal

X : Prop,Y : Proptk X=Y&X=Y. (2)

The rule interpreter matches (2) against the main goal scheme of the decomposi-
tion rule, producing a scheme substitution with pairs (H, (X : Prop,Y : Prop)),
(A, X), and (B,Y). The rule interpreter uses this substitution to instantiate the
subgoal schemes of &-introduction to generate the goals

X : Prop(i),Y : Prop(i)F X=Y (3)
and
X : Prop(i),Y : Prop(i) F Y=X. (4)

In addition to specifying goal decomposition, decomposition rules also spec-
ify construction of solutions of goals. Suppose that the solution for (3) is s;
and the solution for (4) is sy. Then according to the &-introduction decom-
position rule, the solution of (2) is pair(si;s2). In a decomposition rule, the
term following ext is called the extract. A solution is generated for a goal from
the extract adjacent to the main goal scheme that the goal matches. The in-
clusion of the extracts of the subgoal schemes in the extract of the main goal
scheme stipulates that the solution of a goal matching the main goal scheme is
constructed from the solutions of its subgoals.

The general form of an decomposition rule is given below.

HEFEC extt
by r a1 ... am
Hi F Ci ext t;

H, F C, ext t,
with fi - fi

We abbreviate it as
gexttbyray ...am g1 ext t1 -+ g, ext t, with f1 -+ f,

where g is H + C, and ¢; is H; F C; for each g;. The name of the decom-
position rule is r, and a; ...an, are its argument schemes. Argument schemes
are designed to match arguments to decomposition rules which can be terms,
natural numbers for referring to a specific declaration, or other entities. Side
conditions are checked by evaluating the partial functions fi,..., f, on substi-
tutions. Moreover, these functions can invoke procedures that generate terms
which can be instantiated in the subgoal schemes and the main goal scheme’s
extract. In order to generate solutions correctly, we require that decomposition
rules be well formed. More specifically an decomposition rule

gexttbyra ...am g1 ext t; -+ gn ext &, with f1, --- fi

is well-formed if each ¢; is a distinct variable or is a closed term. For the rest
of the paper, we assume that all decomposition rules are well-formed.

Given a set of decomposition rules I', we define a justification based on T as
T a ...a,, if there exists an decomposition rule

qext tby r a; ...am q1 ext &1 -+ qn ext t, with f1 --- fi

in T" and a substitution scheme 7 such that 7a; = a} for each a;. We write the
justification as r7. Given a goal g, r7 decomposes g into subgoals ¢1,..., g, and
partial solution ¢(e), written as g == ((g1,---,9n),€(e)) , where the following
hold.

1. g=1q.
2. 7' = fi(fo-1(-+ (fr7)-+0))-
For each g;, g; = 7'q;.

-~ W

If ¢; is a variable, then there is a variable z € F'V(e) such that z = ¢,.

5. The partial solution £(e) is a function from 7, to 7,,, such that (e)(s1,-- ., $n)
is the term obtained by substituting ¢; with s; if ¢; € F'V (e).

If n = 0, then we say 77 achieves g. For a given set of decomposition rules, T',
we denote all the justifications based on I' as I.

A solution of a goal g with respect to a set of decomposition rules I' is
constructed inductively as follows. If for some 7 € T, g = ((),£(e)), then £(e)()
is the solution of g with respect to I'. If for some r € ', g = ((g1,- . ,9n),(e))
and si,... s, are the solutions of ¢1,..., g, with respect to I', respectively, then
g(e)(s1,- .. 8n) is the solution of g with respect to I'. A goal g is solvable with
respect to I' if g has a solution with respect to T.

3.3 Proof Manager

The proof manager is the component of the refiner which carries out tactic
applications and combines partial solutions to generate solutions. In describing
the proof manager, we implicitly refer to a fixed set of decomposition rules.

A goal decomposition tree? is a tree whose nodes are either goals or triples
containing a goal, justification, and a partial solution. The interior nodes
of a goal decomposition are always triples, while a leaf can be a triple or a
goal. A leaf is open if it is a goal. In addition, for any interior node {g,r,e€),
9= {(g1,---,9n),€), and the i—th child is either g; or (g;,7;,e;) for some justi-
fication r; and partial solution e;.

2Traditionally, known as the primitive refinement tree.

Given a goal decomposition tree G with n open leaves, n > 0, and ¢ a node in
G, we define extz(q) as a function from sequences of terms to terms as follows.
If ¢ is a the i-th open leaf encountered during left-to-right depth first traversal
of GG, then

erta(q) = A(S1y.-.,8n) i

If ¢ = (g,r,€) with children q,...,qm, m > 0, then

exta(q) = As.e(exta(qr)(s),---,exta(gn)(s))-

If ¢ is the root of G, we write extg(q) as ext(G). Note if ¢ is the leaf (g,r,¢€),
then exta(g)() = e(), the solution of g. Therefore, we can establish by induction
that if none of the leaves of G are open that exzt(G)() is the solution to the goal
at the root of G. We state this as the following theorem.

Theorem 3.2 A goal g is solvable if and only if there exists a goal decomposition
tree G of g without any open leaves.

Corollary 3.3 If G is a goal decomposition tree of g without any open leaves,
then ext(G) is a solution of g.

3.4 Tactic Refinement

A proofis a finite tree whose nodes are either a goal or a triple containing a goal,
a partial solution, and a tactic. A tactic is a partial function from goals to goal
decomposition trees.®> A node labeled with a goal, partial solution, and a tactic
is complete; otherwise it is incomplete. A proof is finished if all its nodes are
complete; otherwise it is unfinished. A proof is raw if it contains one incomplete
node. The premises of a proof are its incomplete leaves. The frontier of a proof
is the premises of the proof. The main goal of a proof is the goal of the proof’s
root node. We let P be the set of proofs.

The purpose of a tactic is to perform multiple steps of inference in a single
step. Therefore, we desire only to retain part of the goal decomposition tree
returned by a tactic, namely the root and the open leaves. We define the tactic
refinement of proof P to a proof Q by the tactic ¢, P 1’, Q, as follows. Let g be
the main goal of P, and let t(g) = G. Let g1,...,9n, for n > 0, be the open
leaves of G where g; is the ¢-th open leaf encountered during left-to-right depth
first traversal of G. Let e = ext(G). If the goal at the root of G is g, then

i
P, O where the root of Q is labeled (g,t,€e) and its children in left to right
order are gi,...,0n-
Given P,QQ € P and tactic ¢, t refines P to Q, P = Q, if there exists a
. t
premise P’ of P, P'v. ' _and Q is P with P’ replaced with Q'. The tactic

3Tactics in Nuprl are actually partial functions from proofs to proofs which are directly or
indirectly composed of tactics from goals to goal decomposition trees.

refined proofs, Pr, are the proofs P such that P is raw, or there exists a tactic
and a proof Q € Pz such that Q L p.

We extend ezt() to extract partial solutions from tactic proofs. The exten-
sion requires no significant changes to the original definition of ezt(). Similar
to goal decomposition trees, we can determine whether the main goal of a proof
is solvable based on the structure of the proof.

Theorem 3.4 The main goal g of P € Pr is solvable if and only if P is finished.

Corollary 3.5 If P € Pz is finished then the solution of the main goal of P is
ext(P).

4 The Refiner as a Refinement Calculus Infer-
ence Engine

The refinement calculus is a methodology for deriving programs in Dijkstra’s
guarded command programming language from their specifications [6]. In the
refinement calculus, specifications and programs are combined into a single lan-
guage. The refinement calculus relates programs using the binary relation “re-
fines to”, written as C, over programs. Intuitively, if for two programs S and
S’ such that S C S’, then for any specification that S’ implements S also im-
plements. If S is a specification and S’ is a pure guarded command program,
then S’ is an implementation of S. In [17], the refinement calculus is presented
with several laws for refining specifications into concrete programs. Using the
refiner for mechanizing reasoning for the refinement calculus stems from the
presentation of the refinement calculus to exploit David Gries’ methodology for
program derivation in a goal directed fashion [18, 12].

The object language of the refinement calculus consists of first order logic
with natural numbers and programs. This language can be divided into three
syntactic categories, expressions, formulas, and programs. Expressions are nor-
mally called terms in most presentations of first order logic. We present expres-
sions as the following abstract syntax where e and e’ range over expressions.

e = z|nje +€'le x €'le — €'|le + ¢’

Above, x ranges over variable symbols, and n ranges over natural numbers.
The meta—variables ¢ and v range over formulas of the refinement calculus
in the following abstract syntax for formulas.

¢ u= e =c¢'le < €'|-Q|gAP|PVY =Y |Vz.¢|Fz.¢

We intend to only encode a subset of guarded command programs. The
abstract syntax for this subset including specifications is given below where P
and) range over programs.

P = z:=e|w: [¢,¢]|P; Q|if ¢ then P else Q fij[do § — P od

10

v(z:=e) = assign(z;v(e))
v(w:[¢,9]) = spec(frame(zs;...;2a);v(4);v(¥))
where w = {z1,...,2,}
v(P;Q) = seq(v(P)v(Q))
v(if ¢ then P else Q fi) = if(v(¢);v(P);v(Q))
v(do ¢ — P od) = do(v(¢);v(P))

Figure 1: Encoding programs as Nuprl terms.

The meta-variable w ranges over sets of variable symbols. Specifications are
represented as programs of the form w : [¢,7]. The set of variable symbols
w is called the frame. All the free variables of ¢ and ¢ are contained in w.
Specifications are not executable. A program is executable as long as none of
its subprograms are specifications or contains a formula with a quantifier.

To encode the object language of the refinement calculus, we use the mapping
v, which maps members of the syntactic categories of the object language to
Nuprl terms. We omit showing the encoding of expressions and formulas due
to space. Figure 1 depicts the encoding of programs into Nuprl terms.

Using the refinement calculus we want to solve the problem of deriving a pro-
gram that implements a specification. In other words, deriving an executable
program P for a specification w : [¢,], where w = {z1,...,2,} for n > 0, such
that w : [¢,%] C P. We encode specifications as conclusions of goals and exe-
cutable programs as terms in the refiner. For example, the above specification
is encoded as the goal

z1 :nil,... 2y, : nil - spec(frame(z1;...;2,); v(9); v (¢))
and is displayed as

Tl Tn B2, zn [V(0), v ()]

Since each z; occurs free in the conclusion, a corresponding declaration identifier
z; must be present in the declaration list, in order to be consist with the defini-
tion of goal. The term nil is insignificant and used only as a placed holder. If
the object language had types, then nil would be replaced with the type of ;.
In attempting to derive an executable program that refines a specification, cer-
tain formulas have to be proven true. Therefore, the conclusions to some goals
will be formulas. The solution to these goals will be first order logic proofs.
For brevity, we only give the laws of the refinement calculus that introduce
program statements and omit those for frame variables and formulas. The laws

11

Assignment :

2 08 (o = o)pg=ufe/al
Sequential Composition :
w: ¢, 9]
v w9 7
If :
w : [§, 9]
if § then w : [N, 7] else w : [pA—0,)] fi

Do

w : [pAY, ¢’ AY]
do § — w: [0AY, 7] od

—~OAY=>¢'

Figure 2: Refinement Calculus Laws

. S . . .
are written as 5 > and are interpreted as S C P. The laws are given in

Figure 2. The frame w,z in the Assignment law abbreviates w U {z}.

Figure 3 contains the encoding of the refinement calculus laws from Fig-
ure 2 as Nuprl decomposition rules. Given a law, we encode it as a Nuprl
decomposition rule as follows. The encoding of the specification above the bar
becomes the main goal scheme of the decomposition rule. The conclusion of
the subgoals are the side conditions of the laws and the specifications in the
program statements. If the conclusion of the goal scheme is obtained from a
specification, then the extract represents an executable program which refines
the specification. Therefore, it appears in the extract of the main goal scheme.
Extracts that are a single letter are variables. The extracts of goal schemes
whose conclusions are encodings of formulas are the term nil.

Figure 4 contains a tactic proof of the goal representing the specification

z,y, 2 : [true,z < zAy < 2A(z = 2Vy = 2)].

The tactic IfThenElseTac applies the inference rule IfThenElse to a goal and
performs boolean simplification on the subgoals. The Tactic AssignmentTac
applies inference rule Assignment to a goal and deduces the subgoals using
knowledge about first order logic and set theory. From the tactic proof in
Figure 4 we can extract the executable program if x>y then z:=x else z:=y
fi.

To determine whether the encoding is faithful we do the following. Let
g, S, and R be the specifications, executable programs, and the laws of the
refinement calculus, respectively. To determine faithfulness, we show that for
any specification s € G, there exists an executable program p € S such that

12

C I w:[pre,post] ext x := e
Assignment x e
C - pre = post[e/x] ext nil
CkF x € w ext nil

C F w:[pre,post] ext p;q
SequentialComposition mid
C w:[pre,mid] ext p
C F w:[mid,post] ext gq
C pre = mid ext nil

C I w:[pre,post] ext if b - p | =b — q
IfThenElse b
CF w:[b A pre,post] ext p
CF w:[-b A pre,post] ext q

C I w:[pre A inv,inv A post] ext do G — p od
Iteration G
CF w:[inv A G, inv] ext p
CF -G A inv = post ext nil

Figure 3: Encoding of Refinement Calculus laws in Nuprl

X,y,2 F x,y,2:[true, x<z A y<z A (x=2 V y=2)]
IfThenElseTac x>y
x,y,2 F x,y,z: [x>y, x5z A y<z A (x=z V y=2)]
AssignTac x z
x,y,z F x,y,2: [x<y, x5z A y<z A (x=z V y=2)]
AssignTac y z

Figure 4: Tactic Proof of z,y, z : [true,z < zAy < 2A(z = 2Vy = 2)]

13

s C p if and only if there is a goal decomposition tree G of v(s) with respect to
the encoding of R so that v(p) = ezt(G). In general, if we represent a logic as
(G,8,R,a) where a« C G x S, R is a finite set of partial functions from G x S
to (G x 8)*, and for r € R, p € a, and 7(p) = (p1,...,Pn) for n > 0 that each
pi € a. Let 7 represent the encoding of the logic in Nuprl. More specifically,
let g", 3, R be the encodings of G, §, and R in Nuprl, respectively. Then ~ is
a faithful encoding if for all g € G there exists an s € S such that (g, s) € a if

and only if there exists a decomposition tree G of § with respect to R such that
§ = ext(G).

5 Discussion

We conclude that the Nuprl refiner performs inference using loose semantics.
As a result Nuprl can be used as a workbench for building mechanized theorem
provers. By using Nuprl as a workbench, a tool can be constructed for devel-
oping imperative programs in a goal-directed fashion by using the encoding of
the refinement calculus in Section 4 and writing tactics to automate reasoning.
We believe this approach is less costly than developing a tool from scratch.
One could use a generic theorem prover implementing a logical framework as
a workbench to develop such a tool. However, in addition to automating rea-
soning for the refinement calculus, the tactics must accommodate for reasoning
within the logical framework. The degree of difficult this may cause depends
on the encoding of the refinement calculus into the general logic and the ex-
pressiveness of the general logic. Another approach is abstract refinement; the
concept defined by Timothy Griffin for constructing proof development systems
using loose semantics [13]. Tactics in abstract refinement and LCF have the
same definition. In abstract refinement, tactics are constructed to perform in-
ference in the object logic independently of any encoding of the object logic’s
inference rules. Tactics are ensured of mimicking inference in the object logic
by accepting only the outcomes of tactic applications obtainable by a deduction
in the object logic. Determining faithfulness is simple as long as verifying valid
deductions is decidable.

6 Future Work

In the future, we intend to redesign the refiner to execute tactics in parallel on
a multi-processor. As result, having the potential to implement concurrent tac-
tics. Our first step toward implementing concurrent tactics was the development
of a Standard ML runtime library that permits several Standard ML processes
to communicate via shared memory. In addition, we intend to further develop
the refinement calculus within Nuprl. Our goal is to provide high level tactics
similar to the tactics for automating the tedious aspects of hardware verifica-

14

tion in HOL and Nuprl [1]. Thereby, obtaining a tool for deriving imperative
programs from their specifications.

7

Acknowledgments

I would like to thank Stuart Allen, Rich Eaton, and Bob Constable for discussing
Nuprl’s system design with me. I specially appreciate Stuart Allen’s assistance
in fine tuning the mathematical description of the refiner. I also would like to
thank Chet Murthy for his advice on re-implementing the Nuprl 4 refiner.

References

[1]

2]

8]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

M. Aagaard, M. Leeser, and P. Windley. Toward a super duper hardware
tactic. In Higher Order Theorem Proving and its Applications. Lecture
Notes in Computer Science, 780, Springer-Verlag, 1993.

W. E. Aitken. Reflecting on Nuprl. PhD thesis, Cornell University, soon.

W. E. Aitken, R. L. Constable, et al. Reflecting on Nuprl lessons 1-4.
Lecture from graduate type theory course at Cornell University, Sept. 1992.

S. F. Allen. A Non-type-theoretic Semantics for a Type Theoretic Language.
PhD thesis, Cornell University, 1987.

A. Avron, F. Honsell, and I. Mason. Using typed lambda calculus to imple-
ment formal systems on a machine. Technical Report LFCS Report Series
ECS-LFCS-87-31, "Laboratory for the Foundations of Computer Sciene,
Edinburgh University”, 1987.

R. J. R. Back. A calculus of refinements for program derivations. Acta
Informatica, 25:593-624, 1988.

R. Constable, S. Allen, and D. Howe. Reflecting the open—ended computa-
tion system of constructive type theory. In F. Bauer, editor, Logic, Algebra
and Computation, pages 267—288. Springer-Verlag, 1991.

R. L. Constable et al. Implementing Mathematics with the Nuprl Proof
Development System. Prentice Hall, Englewood Cliffs, NJ, 1986.

R. L. Constable and D. J. Howe. Nuprl as a general logic. In Logic and
Computer Science, pages 77-90. Academic Press, 1990.

M. Gordon. Hol: A proof generating system for higher-order logic. In VLSI
Specification, Verification and Synthesis, pages 73-128. Kluwer Academic
Publishers, 1988.

15

[11] M. Gordon, A. Milner, and C. WadsWorth. Edinbugh LCF. Lecture Notes
in Computer Science 78. Springer-Verlag, London, 1979.

[12] D. Gries. Science Of Programming. Springer-Verlag, New York, 1981.

[13] T. G. Griffin. Notational Definition and Top-Down Refinement for Inter-
active Proof Development Systems. PhD thesis, Cornell University, 1989.

[14] G. Huet et al. The Coq Proof Assistant User’s Guide: Version 5.10. Un-
published, 1995.

[15] G. Huet and B. Lang. Proving and applying program transformations
expressed with second-order patterns. Acta Informatica, 11:31-55, 1978.

[16] P. Jackson. Enhancing the Nuprl Proof Development System and Applying
it to Computational Abstract Algebra. PhD thesis, Cornell University, 1995.

[17] C. Morgan and T. Vickers. Types and invaariants in the refinement cal-
culus. In C. Morgan and T. Vickers, editors, On the Refinement Calculus,
pages 127-154. Springer-Verlag, 1992.

[18] R. G. Nickson and L. J. Groves. Metavariables and conditional refinements
in the refinement calculus. In Sizth Refinement Workshop, pages 167-187.
Springer Verlag, 1994.

[19] L. C. Paulson. Isabelle: A Generic Theorem Prover. Lecture Notes in
Computer Science 828. Springer-Verlag, Berlin, 1994.

[20] E. Rich and K. Knight. Artificial Intelligence. McGraw Hill, New York,
1991.

16

