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The present document reports on three separate research efforts which aim to

marry, in novel ways, existing techniques from experimental and computational

mechanics, inverse problems, and Bayesian statistical inference, in order to as-

sess the condition of structural systems.

The first chapter offers a quantitative and objective means for assessing the

reserve capacity in bridges damaged by over-height truck strikes. Terrestrial

laser scanning systems are employed to record the damaged geometry of the

bridge and image-processing techniques are used to create corresponding solid

models. These solid models are then integrated into finite element models of

the damaged bridge, which are analyzed in order to quantify the effects of the

damage. Results are promising within the context of accurately characterizing

the damaged geometry, but it was found that further development of the former

two technologies would be required before this could be considered a viable

bridge assessment technique.

The second chapter offers a means of inferring initial, “denting” imperfec-

tion fields within cylindrical shell structures, employing sparse displacement

measurements observed at service-loading conditions. The inverse problem

posed by the adoption of a model-updating scheme is solved using a genetic

algorithm. This genetic algorithm is extended to include a divide-and-conquer

approach which subdivides the problem, effectively providing an incremental



solution. Results are promising in that target imperfections are reliably inferred

from simulated experimental data. These imperfection fields are then employed

to make reasonably accurate predictions of the ultimate strengths of the imper-

fect shell structures.

The final chapter offers an outline of a health monitoring scheme for appli-

cation to naval hull structural systems. A model-updating scheme is adopted

and the resulting inverse problem is solved using: a functional optimization ap-

proach (employing a genetic algorithm) and a Bayesian statistical inference ap-

proach (employing a sequential Monte Carlo algorithm). As a proof-of-concept,

two distinct problems are proposed and solved: detecting corrosion within the

side-shells of a hull and detecting internal blast damage, affecting the internal

framing of a hull. Reliable predictions of both damage scenarios are made using

each approach, with the Bayesian approach providing quantification of uncer-

tainty within these predictions.



BIOGRAPHICAL SKETCH

Christopher Stull was born on November 12, 1980 in the town of Vincennes,

Indiana, to parents David and Debra Stull. He began his academic career at

St. John Lutheran School, after which time he was enrolled in Rivet Middle /

High School where he graduated in 1999, sharing the honor of salutatorian with

a fellow classmate. The following semester, Christopher entered the engineer-

ing program at Purdue University in West Lafayette, Indiana, and subsequently

chose to major in civil engineering. In addition to his coursework, Christopher

participated in various co-ops / internships, and in the Fall of 2004, he earned

a bachelor’s degree, with distinction. Christopher then moved, with his wife

(of negative two months), Caroline, to Pittsburgh, Pennsylvania to pursue a

master’s degree at the University of Pittsburgh, working with Dr. Christopher

Earls. In the Summer of 2006, after earning this degree, Christopher and Caro-

line moved to Ithaca, New York, where Christopher enrolled in Cornell Univer-

sity to continue working with Dr. Earls, in pursuit of a doctoral degree.

iii



For my wife.

iv



ACKNOWLEDGEMENTS

To my wife, Caroline: Thank you for your undying support during my (our)

pursuit of both my doctoral and master’s degrees. I don’t think either of us ex-

pected that we would celebrate our fifth wedding anniversary before I finished.

To Mom and Dad: Thank you both for always encouraging me to work hard

and keep my head up throughout my nearly 25 year long academic career. I’m

out of degrees now.

To Dr. Earls: Words cannot express the gratitude I have for the support and

wisdom I have received as your advisee. I am both honored and proud to have

worked with you during my graduate career.

To my doctoral committee members, Dr. Phaedon-Stelios (a.k.a. “Steve”)

Koutsourelakis and Dr. Charles Van Loan: Thank you very much for your time

and your effort expended on my behalf.

I would also like to acknowledge the agencies from whom I received funding

to pursue both my doctoral and master’s degrees: the Pennsylvania Department

of Transportation and the Office of Naval Research. Also, a special thanks to Dr.

Paul Hess for his guidance during the latter two-thirds of my graduate career.

Finally, I would be remiss if I did not also thank my brother, Nicholas Stull,

as well as Emily Leigh, Tom Howell, and John Brigham for their friendship and

support throughout my graduate career.

v



TABLE OF CONTENTS

Biographical Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 A rapid assessment methodology for bridges damaged by truck strikes 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Description of bridge assessment methodology . . . . . . . . . . . 3

1.2.1 Terrestrial laser scanning . . . . . . . . . . . . . . . . . . . 4
1.2.2 Image processing . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.3 Computational mechanics . . . . . . . . . . . . . . . . . . . 12

1.3 Field test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.1 Description of subject bridge . . . . . . . . . . . . . . . . . 13
1.3.2 Description of finite element model . . . . . . . . . . . . . 16
1.3.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . 17

1.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 A posteriori initial imperfection identification in shell buckling prob-
lems 24
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.2 Paper organization . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.1 Forward problem . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.2 Inverse problem . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Model problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.1 Forward modeling . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.2 Inverse solution . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 Model-based structural health monitoring of naval ship hulls 54
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.1.2 Paper organization . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.1 Forward problem . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2.2 Inverse problem . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2.3 Parameterization of damage . . . . . . . . . . . . . . . . . 66

3.3 Example problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

vi



3.3.1 Example Problem 1 . . . . . . . . . . . . . . . . . . . . . . . 73
3.3.2 Example Problem 2 . . . . . . . . . . . . . . . . . . . . . . . 75
3.3.3 Stochastic search approaches . . . . . . . . . . . . . . . . . 76

3.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.4.1 Example Problem 1 . . . . . . . . . . . . . . . . . . . . . . . 86
3.4.2 Example Problem 2 . . . . . . . . . . . . . . . . . . . . . . . 90

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Bibliography 97

vii



LIST OF FIGURES

1.1 Example of catastrophic bridge damage due to a vehicular impact. 2
1.2 Schematic of time–of–flight TLS system metrology. . . . . . . . . 6
1.3 Schematic of continuous wave TLS system metrology. . . . . . . 6
1.4 Schematic of TLS system at a small stand-off distance. . . . . . . 8
1.5 Example of point cloud data registration of a region of the subject

bridge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Example of “wrapped” surface created in Geomagic. . . . . . . . 11
1.7 Example of boundaries around tessellated surface created in Ge-

omagic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.8 Structural steel framing plan for subject bridge. . . . . . . . . . . 14
1.9 Example of point cloud from damaged region of subject bridge. . 16
1.10 (a) End span; and (b) Three span uniform deck pressure load

configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.11 λ–displacement plot of midspan of Span 1 for end span load con-

figuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.12 λ–displacement plot of midspan of Span 2 for end span load con-

figuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.13 Percent difference in top–of–steel deformation between dam-

aged and undamaged models for end span load configuration. . 20
1.14 λ–displacement plot of midspan of Span 1 for three span load

configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.15 λ–displacement plot of midspan of Span 2 for three span load

configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.16 Percent difference in top–of–steel deformation between dam-

aged and undamaged models for three span load configuration. 22
1.17 Initial and final deformed configurations of the web for three-

span load configuration (not to scale). . . . . . . . . . . . . . . . . 22

2.1 Configurations for forward and inverse problems. . . . . . . . . . 30
2.2 Edge loaded barrel vault shell example structure. . . . . . . . . . 36
2.3 Representative dent imperfection (magnified 1000×). . . . . . . . 37
2.4 Summary of mesh convergence study results. . . . . . . . . . . . 38
2.5 Truncated Gaussian PDF used to mutate RBF centers away from

vertices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.6 Schematic depiction of stochastic search approach. . . . . . . . . 44
2.7 Actual initial configurations with associated RBF parameters:

single dent on left; double dent on right. . . . . . . . . . . . . . . 47
2.8 Representative single dent solutions using one (left) and four

(center) RBFs in inverse solution; actual imperfection on right. . 48
2.9 Representative double dent solution using four RBFs in inverse

solution: approximate imperfection on left; actual imperfection
on right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

viii



3.1 Transformation of hull side shells into a two-dimensional repre-
sentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2 Gross dimensions of idealized ship structural system . . . . . . . 73
3.3 Schematic of finite element mesh for Example Problem 1 display-

ing data sampling configuration (white triangles) . . . . . . . . . 74
3.4 Schematic of finite element mesh for Example Problem 2 display-

ing data sampling configuration (white triangles) . . . . . . . . . 76
3.5 Features of the genetic algorithm employed for the paper . . . . 78
3.6 Schematic of parents undergoing single-point crossover; the

dashed line represents the random point at which parameters are
swapped . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.7 Schematic of divide-and-conquer solution scheme . . . . . . . . . 81
3.8 Example Problem 1 - Test Case A (a) target damage configura-

tion; (b) representative solution from the GA; (c) maximum like-
lihood solution from the SMC (gray lines indicate locations of
transverse bulkheads) . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.9 Example Problem 1, Test Case A - Posterior mean and posterior
quantiles of thickness variation along lines at (a) î−Coord. = 3270
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CHAPTER 1

A RAPID ASSESSMENT METHODOLOGY FOR BRIDGES DAMAGED

BY TRUCK STRIKES1

Abstract

The present research aims to develop a methodology to rapidly assess bridges

with damage to the superstructure, caused by overheight trucks or lower–than–

average overhead clearance. Terrestrial laser scanning and image processing

techniques are combined with the finite element method to arrive at an ana-

lytical model which is more accurate, with respect to the complex geometrical

aspects of the bridge in its damaged configuration. “Virtual load testing” may

subsequently be carried out on this analytical model to determine the reserve

capacity of the structure in an objective manner.

1.1 Introduction

The Federal Highway Administration reports that approximately forty–two

percent of the bridges in the United States are of the type “Stringer / Multi–

Beam or Girder,” [1] with many of these being highway under– or overpasses.

Unfortunately, it is not uncommon for these structures to undergo damage due

to vehicular impacts arising from scenarios such as: (1) an over–height vehicle

encountering a bridge with a particularly low overhead clearance; (2) a vehicle

encountering a bridge for which the overhead clearance is non–conservatively

1C.J. STULL AND C.J. EARLS. A RAPID ASSESSMENT METHODOLOGY FOR BRIDGES
DAMAGE BY TRUCK STRIKES. STEEL AND COMPOSITE STRUCTURES, 9(3):223-37, 2009.
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mislabeled, as a result of re–surfacing of the underlying roadway; or (3) an out–

of–control vehicle impacting a bridge pier / abutment [33]. Indeed, it was found

in the State of Maryland alone that there was an eighty–one percent increase in

collisions arising from scenarios (1) or (2) from the period of 1995–2000 [40]; this

study also shows that sixty–two percent of states consider this to be a significant

concern.

With respect to scenarios (1) and (2) above, the ensuing damage to the un-

derside of the bridge may be catastrophic in nature (Figure 1.1). However, it

is more common that the bridge will sustain minor to moderate damage, while

remaining intact. While such damage varies dramatically, depending upon the

nature of the impact, there are common characteristics accompanying these ve-

hicular impacts. These may include: (1) inelastic deformation and / or rupture

of the longitudinal steel girders; (2) buckling of the transverse members; and

/ or (3) a reduction and / or loss of the composite action at the steel girder /

concrete deck interface.

Figure 1.1: Example of catastrophic bridge damage due to a vehicular impact.

Design office procedures used to evaluate the reserve capacity of such post–

2



event structures typically rely heavily on “engineering judgment” and greatly

simplified calculations. As a result, quantitative objectivity is difficult to ensure.

The present research offers a more quantitative and arguably more objective

means for assessing the reserve capacity in damaged bridges.

The present discussion is organized as follows: Section 1.2 furnishes an

overview and discussion of the techniques used to support the bridge assess-

ment methodology introduced in this research; Section 1.3 describes a field de-

ployment of the proposed methodology; and Section 1.4 provides conclusions

that may be drawn from the present research.

1.2 Description of bridge assessment methodology

The proposed bridge assessment methodology employs three primary technolo-

gies: (1) terrestrial laser scanning (TLS), (2) image processing, and (3) compu-

tational mechanics, by way of finite element analysis (FEA). The goal of the

present research is not to develop or improve upon these existing technolo-

gies, but rather to link them in order to provide a novel approach for assess-

ing bridges with damage due to vehicular impacts. A brief background of the

former two technologies, as well as their relation to the present research, fol-

lows. The commercially available, nonlinear FEA software package, ADINA

Version 8.4.1 [56], is employed in the present research; however, the techniques

described are general, in that a similarly capable FEA software package may be

implemented as an alternative to ADINA.
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1.2.1 Terrestrial laser scanning

Terrestrial laser scanning (TLS) describes an automated process that has been

successfully employed within the context of historical preservation and archi-

tectural study. TLS systems have also been employed in the civil engineering

community for a number of years, primarily playing a supporting role in vari-

ous surveying tasks typical to construction sites. Improved computational tech-

nologies and data management strategies, however, have expanded the appli-

cability of TLS systems to additional fields. Goedert et al. proposed a technique

that employed a TLS system and rapid prototyping technologies to significantly

increase the efficiency of developing construction models for architectural firms

[45]. Fuchs et al. employed a TLS system as a tool for the nondestructive eval-

uation of various highway bridge components [41, 42]. Su et al. implemented

a TLS system as a tool to monitor excavation progress on construction sites, as

well as ground movements associated with these excavations for use in geotech-

nical analyses [94].

Role in bridge assessment methodology

Within the context of the present research, TLS is the process of obtaining point

cloud data containing the precise location of points on an object as follows: (1) a

TLS system emits laser radiation, in the form of a beam, directed toward an ob-

ject (or a portion of an object) of interest; (2) the laser radiation is scattered and

some returns to the TLS system; and (3) an onboard computer calculates the ob-

ject’s standoff distance based upon data related to this reflected laser radiation.

The standoff distance, together with an angular position, is then mapped onto

a three–dimensional coordinate system. The process is repeated throughout the

4



field–of–view of the TLS system at a particular instrument location, resulting in

a three–dimensional point cloud data set of the object (or a portion of the ob-

ject). If only a portion of the object is captured, multiple TLS system set–ups are

required; for each instrument location, a local, instrument–centered coordinate

system is inherited by each resulting point cloud data set.

Several different TLS system technologies are commercially available for ap-

plications such as those mentioned above. For the present research, the authors

considered two of these: time–of–flight and continuous wave, or phase–based

systems. The primary differences between these two TLS systems lie in how

the beam is emitted from the laser diode, and the method of treating the return

signal. In a time–of–flight system, the laser diode emits a pulsed beam, that

is subsequently scattered by the target surface, and partially reflected back to

the TLS system. The difference in time between emission and reception of this

pulse is then used to compute the standoff distance between the instrument lo-

cation and the target surface (Figure 1.2). The continuous wave system, as the

name implies, operates with a continuously emitted beam. Determination of

the standoff distance is subsequently obtained by measuring the phase–shift be-

tween the emitted and received waves (Figure 1.3). It is noted that the TLS sys-

tems employed for the present research are the CYRAX 2500 time–of–flight sys-

tem, manufactured by Cyra Technologies Inc., and the Zoller + Fröhlich (Z+F)

Imager 5003 continuous wave system.

A comparison of these two TLS systems revealed that the data acquisition

time required by the Z+F system is approximately one–half that of CYRAX sys-

tem. To put this into context, the time required by the latter system to obtain

raw point cloud data of the subject bridge chosen for the present research (de-

5



Figure 1.2: Schematic of time–of–flight TLS system metrology.

Figure 1.3: Schematic of continuous wave TLS system metrology.

scribed in the sequel) is between 8 and 12 hours. However, despite the savings

in data acquisition time exhibited by the Z+F system, the point cloud data was

observed to be of insufficient accuracy to develop the parasolid model required

for the bridge assessment methodology subsequently described. Thus, all work

presented herein is based upon point cloud data obtained via the CYRAX 2500

time–of–flight system. The previously mentioned time requirement of 8 to 12

hours is significantly reduced when point cloud data of only a portion of the

6



bridge is required; justification for this reduced requirement will be provided in

the sequel.

Practical considerations

Lichti et al. provides a thorough discussion of the various intrinsic errors as-

sociated with TLS systems [65]; for the purposes of this paper, such intrinsic

errors are characterized as “noise,” and will be addressed subsequently. How-

ever, two operational characteristics of TLS systems are of particular importance

with respect to the research reported upon herein, both of which stem from the

occlusion of certain data.

First, it is important to note the nature of the acquired data as it relates to the

adopted finite element modeling strategy. In the present research, shell finite

elements are employed to represent the longitudinal steel girders; these shells

are defined along the mid–plane of the constituent cross–sectional plate com-

ponents. Therefore, data obtained about the shape of an object, as a volume,

must then be reinterpreted to represent the shape of the object’s middle surface.

While this does not pose a problem for planar surfaces, in which a simple offset

of the scanned surface is required, a non–planar surface, such as that encoun-

tered when dealing with significantly damaged super–structural elements, can

provide some difficulty when making the transition between raw point cloud

data and a parasolid model suitable for use with finite element software.

A second problematic characteristic emanates from obstructions that prevent

the laser beam from reaching a structural member of interest, thus resulting

in an incomplete point cloud data set, with respect to the entire bridge. The

7



compact spacing of girders characteristic to highway under– and overpasses

often results in such a situation in which one or more girders, located in the

background, with respect to the orientation of the TLS system, are occluded

from view by those in the foreground. Additionally, lateral bracing as well as

any non-structural components (e.g. storm drainage pipes) will also result in an

occlusion of data.

While a plausible solution to the above is to institute multiple TLS sys-

tem set–ups, in which data are obtained at smaller stand–off distances from

the girder(s) of interest, such a solution violates the imperative of proposing a

rapid bridge assessment methodology (i.e. the time requirements and computa-

tional demand imposed by additional scans and subsequent image processing

increase significantly). Two additional issues are also encountered as stand–off

distances are decreased: (1) the angle of incidence with respect to the web in-

creases, resulting in poor accuracy of the associated point cloud data [65]; and

(2) the bottom flange of the girder becomes a new obstruction for the bottom of

the web (Figure 1.4).

Figure 1.4: Schematic of TLS system at a small stand-off distance.
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Taking into account the above issues, it is recommended that point cloud

data from only the damaged girder(s), versus the entire bridge, are required for

this bridge assessment methodology; the ensuing parasolid models would then

replace the corresponding portions within a preexisting, as–built, finite element

model of the same bridge. While this may still require point cloud data from

interior girders, damage scenarios to which this bridge assessment methodol-

ogy apply are typically localized to the fascia girder, a location for which data

has exhibited a reasonably high level of accuracy. This decision also supports

the research imperative of proposing a rapid bridge assessment methodology,

in that girders that do not exhibit damage do not need to be scanned.

1.2.2 Image processing

In this work, image processing consists of all the steps necessary to arrive at the

required parasolid model for implementation into ADINA. This may be broken

up into the following two steps: (1) registration of the point cloud data sets; and

(2) approximation of the damaged region by way of a parasolid model, based

upon a point cloud “template.”

Point cloud registration is the process of merging multiple point clouds (each

in local, instrument–centered coordinate systems), emanating from the requisite

TLS system set–ups, into a point cloud data set that represents the entire assem-

bly (within a single, global reference frame). While all point cloud registration

for the present research is achieved by way of the registration tools in Geomagic

Studio 9 [58], the basic steps present in most registration algorithms are as fol-

lows: (1) choose a reference point cloud, to which an unregistered point cloud(s)
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will be registered; (2) detect / match coincident features of the reference / un-

registered point clouds (e.g. bolts); and (3) rotate / translate the unregistered

point cloud(s) to align with the reference point cloud. These steps may be man-

ual and / or automatic (e.g. Geomagic allows the choice of reference / unreg-

istered point clouds and targets), but fine–tuning of the resulting point cloud

is performed automatically. As an example, consider Figure 1.5, in which three

point cloud data sets of a region of a subject bridge are registered; to result in a

single point cloud data set of this region.

Figure 1.5: Example of point cloud data registration of a region of the subject
bridge.

Additional functions in Geomagic allow this newly registered point cloud

to be “wrapped” by a surface consisting of triangular polygons. This wrapping

function is essentially a best–fit tessellation of the point cloud representing the

surface, and also accounts for the inherent “noise” mentioned previously. The

labeling of this surface as a point cloud “template,” comes from the following:

as seen in the upper left corner of Figure 1.6, the cross–section of point cloud

data only represents the exterior face of the girder, and the resulting wrapped

surface approximates this exterior face. Furthermore, incomplete point cloud

data results in gaps in the wrapped surface (Figure 1.6), and such gaps in sur-

face data may not exist in the completed parasolid model; these gaps as they

cause failure within the automated routines typically employed by finite ele-
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ment software systems. Therefore, while the wrapped surface may not serve as

the parasolid model, it may serve as a template for construction of this parasolid

model.

Figure 1.6: Example of “wrapped” surface created in Geomagic.

The parasolid model is then derived from this template using a two–part

process: borders of the constituent cross–sectional plate components are drawn

in AutoCAD 2006 [57] and the shapes that represent these plate components

are then filled–in in SolidWorks Office 2007 [19]; an example of the bordering is

given in Figure 1.7. It is pointed out that this process can likely be performed

entirely within SolidWorks; however, in the interest of expediency AutoCAD is

also employed. It is also pointed out that ADINA permits the importation of

solid geometry within the parasolid format; neither Geomagic nor AutoCAD

currently have the capability to output to this file format, but SolidWorks does.
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Figure 1.7: Example of boundaries around tessellated surface created in Geo-
magic.

1.2.3 Computational mechanics

The purpose of the computational mechanics portion of the bridge assessment

methodology is to provide insight in to the extent to which the complex dam-

aged geometry affects the behavioral characteristics of the structure, as com-

pared with the undamaged structure. Therefore, only practical considerations

for the modeling of such damaged regions are discussed herein. One obvious

concern is with regard to maintaining geometric continuity at locations where

the damaged parasolid model is inserted. As previously discussed, only a small

portion of the structure is being modeled by way of point cloud data; thus, it

is crucial that this damaged section fit within the undamaged finite element

model, seamlessly. For the present research, this continuity is achieved by in-

cluding a portion of the undamaged section of the fascia girder on each end

of the inserted parasolid model. If the dimensions employed in generating the

parasolid model in SolidWorks are identical to those considered in generating

the finite element model in ADINA, there is no difference in the resulting finite

element mesh.
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The strength of the described methodology is the ability to relatively quickly

map the complex post–event structural geometry and subsequently construct

a nonlinear finite element model for use in “virtual load testing.” The method

outlined in the foregoing does not explicitly account for changes in material

response, fracture, changes in composite action, or the presence of residual

stresses. These effects can be considered in the subsequent finite element mod-

els, but such inclusion will necessarily be less objective than the model geom-

etry. Compared with current techniques, these shortcomings of the present

methodology may not be critical.

1.3 Field test results

As a means for demonstrating the application of the previously described tech-

niques, a damaged slab–on–steel I–girder bridge is considered.

1.3.1 Description of subject bridge

Structural configuration

The subject bridge consists of a three–span continuous steel I–girder super–

structure with a 30◦ longitudinally configured skew angle oriented from north-

west to southeast (Figure 1.8); it is noted that interior piers are parallel to

this skew angle as well. The primary components of the super–structure are

W610×113 steel I–girders, with top flanges embedded in a 190 mm concrete

deck. As a result of this embedment, it is assumed that the steel girders and
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deck enjoy full composite action. The lengths of the three spans are 8230 mm,

15240 mm, and 8230 mm, respectively (these are designated as Span 1, Span 2,

and Span 3, respectively).

Figure 1.8: Structural steel framing plan for subject bridge.

Transverse diaphragms consist of two typical sections: W410×53 and

C380×50.4. The locations of these members are depicted in Figure 1.8. Other im-

portant structural features include the presence of three sets of top and bottom

flange cover plates, located on each longitudinal steel girder; the thicknesses of

all cover plates are 17 mm. One set, indicated by the bold lines in Figure 1.8, con-

sists of 7925 mm cover plates, positioned over the longitudinal centerline of the

bridge. Each of the other two sets, indicated by the dashed lines in Figure 1.8,

consist of 6095 mm cover plates, located at a 1525 mm outward offset from each

pier (away from the center of the bridge). Finally, each of the six girders also has

two splice locations that are offset 2285 mm inward from each pier (toward the
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center of the bridge); these are indicated by black circles in Figure 1.8.

Bearing conditions consist of genuine pinned connections at the west end

of the bridge, (Abutment 1) and rocker–type bearings at each of the two piers

and the east end abutment (Pier 1, Pier 2, and Abutment 2, respectively). Typical

concrete abutment details, as well as hammerhead–style concrete piers, describe

the exposed components of the sub–structure. As it is the steel super–structure

that constitutes the primary focus of the research discussed herein, these com-

ponents from the sub–structure are of little significance, and thus will not be dis-

cussed further. The design drawings provided for the subject bridge are dated

in the late 1950’s, which subsequently motivates the following material specifi-

cations. ASTM A7 steel (minimum yield strength of 206.9 MPa) is specified for

all structural steel, and the deck concrete is specified by the drawings to have a

minimum design compressive strength of 20.7 MPa.

Damage

The most extreme damage to the subject bridge is located approximately 6 m

east of Pier 1 (Figure 1.8), on the fascia girder, referred to from this point for-

ward as Girder 1. Due to the nature of the impact(s) from over–height vehicles

traveling southbound, the bottom flange of the Girder 1 is deformed toward the

interior of the structure; a sample of point cloud data from the damage section

is provided in Figure 1.9. Furthermore, the westernmost lateral bracing within

Span 2 of Girder 1 provided some resistance at the time of the impact(s), thus

resulting in the formation of a bulge (Figure 1.6).

While point cloud data of the damaged region of the bridge are accurate,
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Figure 1.9: Example of point cloud from damaged region of subject bridge.

with respect to the shape of the actual damage, the authors shifted this damaged

region to coincide more closely with the midspan of Span 2 of Girder 1. This is

done in order to facilitate model construction, in that this shift eliminated inter-

ference with transverse diaphragm connections thereby reducing the associated

time requirements; such a shift would not typically be employed in the actual

application of this bridge assessment methodology.

1.3.2 Description of finite element model

The longitudinal steel girders are composed of MITC4 shell finite elements de-

fined along the mid–plane of each of the constituent cross–sectional plate com-

ponents. The MITC (“mixed interpolation of tensorial components”) formu-

lation employs a mixed interpolation to account for transverse shear strains

in such a way as to eliminate the shear–locking phenomenon present in thin,

displacement–based shell element formulations [4]. Transverse members are

composed of 2–node Hermitian beam elements [80]. These members are rigidly

attached to MITC4 shell finite element connector plates, which are subsequently

connected to the webs of the longitudinal members. The rigid attachment is
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achieved by way of rigid links, which impose a constraint on the applicable

degrees of freedom of a “slave” node, such that this node behaves in a kinemat-

ically appropriate manner in relation to the displacements of a “master” node.

The material models employed for steel cross–sections within this finite element

model are as follows: (1) multi–linear inelastic, with properties coinciding with

ASTM A7 steel, for all MITC4 shell finite elements; and (2) linear–elastic for all

transverse members.

The concrete deck model also employs MITC4 shell finite elements that are

offset from the longitudinal steel girders 95 mm (one–half of the concrete deck

depth) and connected by way of the node–to–node rigid links. This offset, as

imposed by the rigid links, sets these elements in the correct vertical position

(i.e. section properties of the composite section are preserved). A multi–linear

inelastic material model with an ultimate stress of 20.7 MPa and ultimate strain

of 0.003, is employed for the concrete deck, with the addition of a “crack” at the

interior pier lines (i.e. element connectivity is eliminated along the line coinci-

dent with interior piers). The material model is intended to limit the concrete

compressive capacity while the “crack” is intended to account for cracking of

the concrete deck in negative moment regions.

1.3.3 Results and discussion

In order to assess the effect of damage on the post–event structure, its response

is compared with the baseline case of the undamaged structure. For this por-

tion of the present research, two load configurations are chosen: a uniform deck

pressure over the end span, and a uniform deck pressure over each of the three
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spans (depicted in Figures 1.10a and 1.10b, respectively). The end span load

configuration is employed to develop compression in the bottom flange of the

fascia girder. This, in turn, may contribute to a state of lateral instability, which

is then exacerbated by the damage (acting as an initial imperfection). The three–

span load configuration is employed to develop tension in the bottom flange of

the fascia girder, while also engaging the entire structure. While it is expected

that this tension will “stretch out” the damaged region, the impact of the dam-

age in the earlier stages of loading is also of interest.

Figure 1.10: (a) End span; and (b) Three span uniform deck pressure load con-
figurations.

The parameter, λ, depicted in Figures 1.10a and 1.10b is termed the “load–

proportionality factor” and acts as a scalar multiplier of a reference pressure,

p. This parameter, together with various displacement measures, is used as a

means for comparison of the response of the damaged subject bridge to its un-

damaged counterpart. Justification for this follows from the verification study

of the finite element modeling technique employed for the bridge in its undam-

aged configuration, as conducted by Stull [92].
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End span load configuration

Figures 1.11 and 1.12 provide λ–displacement curves from two points on Girder

1: the midspan location of the loaded end span (Span 1) and the center span

(Span 2), respectively. It is expected (and confirmed by Figure 1.13) that Girder

1 will be the location for which the damage has the most significant effect; there-

fore, corresponding plots of the remaining five undamaged girders will not be

necessary. Figure 1.13 provides a contour plot of the difference in vertical dis-

placements at the top–of–steel between the damaged and undamaged bridge,

at the final load increment considered for the present research; this provides an

indication of the system–wide impact the damage has on the structure. These

values are based upon a linear interpolation between the deflections of the top

flange–web junction of each girder.

Figure 1.11: λ–displacement plot of midspan of Span 1 for end span load con-
figuration.

Figure 1.11 indicates that the damage to the fascia girder, located within Span

2, has a negligible impact on the midspan deflection of Span 1. When consid-

ering Span 2, Figures 1.12 and 1.13 demonstrate some difference in behavior

between the damaged and undamaged models.
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Figure 1.12: λ–displacement plot of midspan of Span 2 for end span load con-
figuration.

Figure 1.13: Percent difference in top–of–steel deformation between damaged
and undamaged models for end span load configuration.

Three span load configuration

Plots corresponding to those provided for the end span load configuration are

also provided for the three–span load configuration (see Figure 1.10b). At the

initial stages of loading, there is a significant difference between the behaviors

exhibited by the damaged and undamaged models, which becomes most ex-
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treme at the transition between the two “linear” portions of the plots (Figures

1.14, 1.15, 1.16). As loading progresses, the differences between the two models

diminish to the point where the behaviors coincide. This results from the fact

that the load configuration places the damaged region in tension, which in turn

“stretches out” the damage to a point where its effect is negligible (Figure 1.17).

Figure 1.14: λ–displacement plot of midspan of Span 1 for three span load con-
figuration.

Figure 1.15: λ–displacement plot of midspan of Span 2 for three span load con-
figuration.
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Figure 1.16: Percent difference in top–of–steel deformation between damaged
and undamaged models for three span load configuration.

Figure 1.17: Initial and final deformed configurations of the web for three-span
load configuration (not to scale).

1.4 Conclusions

The results from a research program, aimed at the development of a rapid as-

sessment methodology for bridge structures damaged by truck strikes, have

been presented. This research was motivated by the fact that the analysis pro-

cedures used in current practice often provide results that may be somewhat

subjective. As a result, analyses regarding reserve capacity in damaged bridges

may vary significantly between engineering offices.
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The approach discussed herein provides a robust and useful technique for

assessing both the response characteristics of a damaged structure, as well as

its associated reserve capacity. Currently, this technique is not able to be im-

plemented in a truly automated fashion; significant expertise on the part of the

analyst is required. While the challenges imposed by the issues discussed in

Section 1.2 are significantly lessened by parsing out the damaged region of the

bridge, many of these challenges will still present themselves within application

contexts. This research program seems to show promise as means for rapidly

assessing damaged bridge structures. However, it has been shown herein that

a considerable effort on the part of knowledgeable engineers, possessing back-

ground in surveying, laser scanning, image processing, and computational me-

chanics, is required.
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CHAPTER 2

A POSTERIORI INITIAL IMPERFECTION IDENTIFICATION IN SHELL

BUCKLING PROBLEMS1

Abstract

The current research seeks to demonstrate that an inverse solution approach,

leveraging nonlinear finite element analysis with a divide and conquer type

stochastic search algorithm, can identify the presence of localized denting im-

perfections in cylindrical shell structures. This imperfection field identification

is achieved using rather sparse displacement measurements taken at safe, ser-

vice loading conditions. Both the existence and nature of the imperfection field

present in a given shell structure instance are determined. These inferred im-

perfections are subsequently used to make reasonably accurate predictions re-

garding the actual shell structure strength at ultimate loading.

2.1 Introduction

A recent and comprehensive survey of research developments during the pe-

riod 1996 to 2006 [31] highlights the fact that understanding the nature and ef-

fects of imperfections in shell structures continues to be a fertile line of inquiry

to this day. Since the publication of Koiter’s seminal dissertation in 1945, it has

become well known that initial imperfections in shell structures may lead to

1CHRISTOPHER J. STULL, CHRISTOPHER J. EARLS, WILKINS AQUINO. A POSTERI-
ORI INITIAL IMPERFECTION IDENTIFICATION IN SHELL BUCKLING PROBLEMS. COM-
PUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 198(2):260-8, 2008.
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dramatic erosions in ultimate strength [11, 37, 90]. However, the jump from this

notional understanding, to the realization of a practically useful means for pre-

dicting the actual strength of in–service imperfect shell structures, is formidable.

It is virtually impossible to rationally guess the precise imperfection field that

may be manifest in a given structure; and thus it is problematic to know the

buckling strength of this same structure.

The current research aims to address this issue through the development of a

method that leverages stochastic search algorithms and nonlinear finite element

analysis, in order that relatively sparse sensor telemetry, related to structural re-

sponse measures (e.g. displacement and load intensity), may be used in the

solution of an inverse problem that characterizes the initial imperfection field.

This a posteriori determination of the shell initial imperfection field is made un-

der the safe condition of service loading, but it enables the assessment of the

ultimate strength in a given shell structure.

2.1.1 Background

It is well known that experimentally observed buckling loads (or critical loads)

for shell structures exhibit considerable scatter, when compared with theoret-

ical predictions [11, 89, 90, 31]. It is commonly assumed that the presence of

initial displacement fields, causing deviations from the perfect shell geometry,

are the primary cause of this scatter. Contributions from other sources of imper-

fection, related to boundary conditions, material properties, and shell thickness,

are also important to consider [76, 77]. However, given the pronounced effect

that initial displacement fields have on the critical load (or buckling load) of
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shell structures [89, 90], the present discussion will be restricted in scope to this

type of shell structure imperfection.

As it is that there is no completely general shell buckling theory [11] that

can be readily applied without considerable specialization for a particular case

[27], the nonlinear finite element method enjoys a position of prominence in

shell buckling analysis. A frequently adopted strategy for including the effects

of geometrical imperfections in shell finite element analyses is to seed the fi-

nite element mesh with some scaled approximation to the first buckling mode

of the given shell structure [31, 37, 55]. Indeed, most user manuals for commer-

cial software suggest this approach when analyzing such structures. Within this

context, a linearized eigenvalue buckling analysis [43] is initially carried out to

arrive at an approximation to the first buckling mode [53]. This approximate

mode is then scaled using design rules of thumb in order to furnish an asymp-

totic response that is considered to be representative of the actual, imperfect

shell structure under consideration.

Unfortunately, the formerly described approach is neither robust nor reliably

accurate. The buckling formulation used, as well as the underlying numerical

implementation, can have a very important effect on the nature of the predicted

first mode [54, 30]. In addition, there is considerable evidence to show that for

many shell structures, it is not the first mode that controls the post–buckling

response at unloading [31, 37, 55]. While the error in applying this approach is

very problem specific, Featherston [37] has observed errors approaching fifteen

percent (either conservative or unconservative errors are possible) in the case of

curved shell panels under combined compression and shear.

While there are guidelines and predictive capacity equations for the de-
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sign of new shell structures promulgated by various organizations and entities

around the world (e.g. the German DIN 18800, Eurocode 3, Part 1.6, etc.), appli-

cation of such provisions to analysis problems are fraught with problems and

pitfalls as a result of the considerable use of approximation and semi–empirical

underpinnings in these methods [79]. More careful approaches to the design

problem have become possible through the compilation of measured imperfec-

tion fields in the laboratory (as well as in the field) into an International Imperfec-

tions Data Bank [3]. This repository of shell imperfection data has proven useful

in enabling more sophisticated approaches to design. For instance, an artificial

neural network (ANN) has been trained using results from 33 of the experi-

ments contained within the data bank. These experiments pertained strictly to

cylindrical shells, but the ANN’s favorable predictive ability (i.e. an average er-

ror of 1.6 percent and a maximum observed error of 5.2 percent) indicates the

promise of the approach [100].

For the purposes of design, consideration of shell structure imperfection sen-

sitivity within a stochastic framework, leveraging the data bank [3] has shown

great promise [76, 77, 13]. Bielewicz and Gorski [13] have applied standard

Monte Carlo methods to generate imperfection fields that are consistent with

experimentally measured results [3]. Nonlinear finite element analysis is subse-

quently applied by these authors, as the means for ascertaining the shell struc-

tural response to the given imperfection field. Reliability estimates may then

be made using loading statistics in combination with numerically obtained re-

sponse statistics.

A more sophisticated approach to the stochastic consideration of shell im-

perfections is provided by Papadopoulos and Papadrakakis [76, 77]. In their
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work, a stochastic finite element approach, based on a spectral description of the

random fields and a stochastic stiffness matrix, is used to compute a histogram

of the critical buckling load of cylindrical shell panels. In these earlier stud-

ies [76, 77], the notion of an imperfection encompasses initial displacements, as

well as material and thickness variations. Related, and complementary work

pertaining to cylindrical shells with cutouts can be found in [86], where the ef-

fects of random geometric imperfections on the critical load are studied.

The work of El Damatty and Nassef [32] takes a different approach to the

treatment of the design problem. In their work, El Damatty and Nassef apply

Genetic Algorithms (GA), in conjunction with nonlinear finite element analysis

techniques, in order to arrive at the worst case imperfection fields for various

conical shell structure geometries. The fitness function of the GA takes the criti-

cal load as the parameter to be solved for, and thus a hypothetical design space

is searched for the imperfection field that minimizes the critical load of the shell

structures under consideration.

The present work is concerned with the development of a method that em-

ploys sparse sensor telemetry, acquired during a safe service loading condi-

tion, for use in the solution of an inverse problem that characterizes the ac-

tual, and previously unknown, imperfection field in a shell structure. This a

posteriori determination of the shell initial imperfection field is then used to

make strength predictions regarding the shell structure in question. The method

utilizes geometrically nonlinear finite element forward models, in conjunction

with stochastic search methods employing Genetic Algorithms to solve the sys-

tem identification inverse problem related to the initial imperfection field. This

identified field is subsequently used in the forward model to make strength
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prognoses regarding the structure.

2.1.2 Paper organization

A discussion of issues concerning the forward and inverse problem formula-

tions related to the current research is given in Section 2.2 of the current paper;

while Section 2.3 discusses salient features regarding the solution of a particu-

lar forward and inverse problem associated with edge supported barrel vault

shells. Section 2.4 presents results from the inverse solutions, and provides con-

text in the form of a discussion, in order that conclusions may be drawn in Sec-

tion 2.5.

2.2 Problem formulation

2.2.1 Forward problem

In developing the forward and inverse problem formulations, three domains

will be defined coincident with three distinct configurations (Figure 2.1): Ωo

representing the perfect body; Ω′ resulting from the imposition of an initial im-

perfection field, ũo; and the final configuration assumed by the imperfect body

upon application of external loading, Ω. The respective boundaries of these

three domains are denoted by ∂Ωo, ∂Ω′, and ∂Ω. The forward problem consists

of finding the displacement field ũ′ given: the domain Ωo; the initial imper-

fection field, ũo; a material constitutive model; and an adequate set of bound-

ary conditions. The boundary value problem describing this forward problem
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is given in Box (2.1) (assuming static loading and no mass transfer across the

boundary.)

Figure 2.1: Configurations for forward and inverse problems.
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∇ · σ = 0̃ in Ω

S = CIV : E

S =| F | F−1σF−T

σñ = τ̃ on ∂ΩN

ũ = ˜̂u on ∂ΩE

Ω′ = {x̃′ : x̃′ = X̃o + ũo}

σ Cauchy stress tensor

S Second Piola–Kirchhoff stress tensor

E Green–Lagrange strain tensor (2.1)

F deformation gradient going from Ω′ to Ω

CIV fourth order elasticity tensor

ñ unit vector normal to the boundary ∂ΩN

τ̃ traction vector

∂ΩN portion of boundary where Neumann (i.e. natural) conditions

are prescribed

∂ΩE portion of boundary where Dirichlet (i.e. essential) conditions

are prescribed

In this work, vectors will be denoted with a tilde on top, tensors will be rep-

resented with bold letters, column matrices will be denoted with curly braces,

and all other matrices will be presented with square brackets.

A general updated Lagrangian finite element formulation of the boundary
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value problem provided in Box (2.1) is presented in Box (2.2). For more details

on this formulation see [12].

V
(
Ω′

)
= {w̃

(
x̃′
)

: w̃ ∈ H1 (
Ω′

)
, w̃ = 0 on ∂Ω′E}

U
(
Ω′

)
= {ũ′

(
x̃′
)

: ũ′ ∈ H1 (
Ω′

)
, ũ′ = ˜̂u′

(
x̃′
)

on ∂Ω′E}

Weak form:

0 =

∫
∂ΩN

w̃ · τ̃da −
∫

Ω

∇w̃ : σdv

Finite element–discretized weak form:

{0} = {I} − {Pext}

{I} =
∑

elements

∫
Ωe

[B]T {σ}dve (2.2)

{Pext} =
∑

elements

∫
∂Ωe

N

[N]T {τ}dae

V
(
Ω′

)
space of test functions

U
(
Ω′

)
space of trial functions

H1 (
Ω′

)
Sobolev space

[N] matrix containing element shape functions

[B] matrix containing derivatives of shape functions

Ωe element domain
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2.2.2 Inverse problem

In the inverse problems formulated in the current work, the primary unknown

is the initial imperfection field, ũo. It will be assumed that the perfect configura-

tion, Ωo, is known, and partial information about the deformed current config-

uration, Ω, has been observed (i.e. measured).

Consider a collection of observations, or measurements, in the current con-

figuration denoted by

Uobs = {ũ′obs
(
x̃′
)

: x̃′ ∈ Ω′} (2.3)

and a set of predictions computed through the solution of the forward problem

shown in Box (2.1), and defined as

UM (ũo) = {ũ′M
(
x̃′, ũo

)
: x̃′ ∈ Ω′} (2.4)

The inverse problem is subsequently cast as an optimization problem whose

objective functional has the form:

J (ũo) =‖ Uobs − UM (ũo) ‖ (2.5)

where ‖ · ‖ is an adequate metric that quantifies the distance between given sets.

The subsequent optimization problem appears as

min
ũo(X̃o)∈H1(Ω′)

J (ũo) (2.6)

Notice that the foregoing optimization problem deals with an infinite dimen-

sional space since the main unknown is ũo (x̃′). In this work, a finite dimen-

sional representation of the initial imperfection field is proposed. This finite

dimensional representation is made with the intention to treat localized geo-

metric imperfections within the problem domain (i.e. the presence of denting).
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Such localized effects may arise in aircraft fuselage structures as a result of inad-

vertent contact during servicing (e.g. dropping a tool), within the hulls of ships

damaged by collision, etc. The point here being that a common problem seems

to be in determining what damage may have been done; and what effect will it

have on future performance.

A natural approach for simulating a dent involves the use of Gaussian Ra-

dial Basis Functions (RBFs) [48]. The use of RBFs allows for a convenient pa-

rameterization of the initial imperfection field; subsequently facilitating the use

of stochastic search algorithms (e.g. Genetic Algorithms, Simulated Annealing,

etc.) for the solution of the inverse problem. A parameterized initial imperfec-

tion field is given as:

ũo ≈

N∑
i=1

{ω}iΨi

(
X̃o

)
(2.7)

where

Ψi

(
X̃o

)
= e

−

(
‖c̃i−X̃o‖`2√

2σi

)2

(2.8)

is a Gaussian RBF in which c̃i represent the radial basis centers and σi are their

standard deviations, and {ω}i are the Fourier coefficients of the initial imperfec-

tion approximation. These variable will be treated as the primary unknowns

in the inverse problem. Introducing a column matrix that gathers all the un-

knowns as

{α} =



c̃1

{ω}1

σ1

...

c̃n

{ω}n

σn



(2.9)

34



the inverse problem becomes a parametric optimization problem, expressed as

min
{α}∈<q

J ({α}) (2.10)

Here the dimension of the column matrix, {α} is q = n × (2 × nsd + 1), where nsd

is the number of spatial dimensions, and n is the number of basis functions used

in the approximation of the imperfection field.

2.3 Model problem

The foregoing formulations may be specialized for application to a model prob-

lem. Thus, the discussion now turns to describing the approaches taken in the

forward solution of a model problem, in order to obtain simulated experimen-

tal results that are used to glean a set of so–called observed data from a problem

with a known initial imperfection. These data are subsequently compared with

forward modeling results emanating from imperfect shell geometries obtained

using a stochastic search algorithm. Stochastic search algorithms prove use-

ful in the model problems considered herein; each of which displays complex,

non–convex objective functions (as surmised from the examination of objective

function evaluations carried out at multiple random points within the problem

domain). Stochastic search methods have proven useful in finding the global

minimum in such spaces [68, 46, 49].

The model problem geometry considered in the current work is displayed

in Figure 2.2. This model problem is the basis for all results presented in the se-

quel. The selection of a portion of a cylindrical shell, with the associated pinned

boundaries, was made in order to enhance imperfection sensitivity [31]. The

present research intends to demonstrate a means for inferring the presence of an
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initial imperfection field within the shell domain, to characterize it in a quantifi-

able way using service loading response, and then to subsequently make prog-

noses regarding the overall shell buckling strength. In light of these aims, it is

important to address the type of imperfections being considered in this work.

Figure 2.2: Edge loaded barrel vault shell example structure.

As dents are the focus of the current work, Gaussian Radial Basis Functions

(RBFs) [48] are employed as a convenient means for parameterization of the

initial imperfection field; subsequently facilitating the use of stochastic search

algorithms for the solution of an inverse problem aimed at identifying the ap-

proximate form of the initial imperfection field within the model problem do-

main.

A representative form of a Gaussian RBF is given in Equation (2.8). A sub-
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sequent approximation to the initial imperfection field, ũo

(
X̃o

)
, may be given

using Fourier coefficients, ωi [82]:

uo

(
X̃o

)
≈

N∑
i=1

ωiΨi

(
X̃o

)
(2.11)

where an ωi of unity corresponds to an RBF with a height of 25.4mm, for the

model problem described in Figure 2.2. A depiction of a single Gaussian RBF,

superimposed on the model shell problem, is displayed in Figure 2.3. Within

the model problems, each particular dent will correspond with its own RBF

(i.e. in the case of two dents, each will be represented by its own, single RBF).

These model problems will serve as the observed case (i.e. a surrogate for an

experimentally observed instantiation of the shell).

Figure 2.3: Representative dent imperfection (magnified 1000×).
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2.3.1 Forward modeling

The forward modeling of the shell structure depicted in Figure 2.2 is carried out

within the context of the nonlinear finite element method (geometric nonlinear-

ity only). Specifically, the four node, assumed strain, shell finite element given

by Bathe and co–workers (i.e. MITC4 Shell) [29, 6, 7] is employed in conjunction

with the classical Newton–Raphson solution approach [62] . A detailed mesh

convergence study carried out for collapse of the model problem (see Figure 2.4

for a summary of these results) reveals that a MITC4 mesh with approximately

200,000 degrees of freedom represents a very accurate mesh; suitable for use

as the observed case within the context of the current inverse problem solution.

A much less dense mesh (having approximately 50,000 degrees of freedom) is

thought to represent a reasonable compromise between modeling accuracy and

computational expedience; and thus this mesh is used in conjunction with the

stochastic search algorithm (as the measured case).

Figure 2.4: Summary of mesh convergence study results.

The large number of analyses that are required for the solution of this type

of inverse problem (i.e. potentially thousands of runs of the forward model)

justifies the tradeoff in accuracy for solution speed. It is pointed out that while

the standard Newton–Raphson nonlinear solution algorithm is used in the so-
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lution of the inverse problems, a hybrid solution algorithm, combining a mod-

ified spherical arc length method and the constant increment of external work

method [5], is used in the collapse analyses associated with the mesh conver-

gence study. It is further noted that imperfect meshes were used in the conduct

of the above mentioned convergence study; as per [78]. An approximation to

the first global buckling mode, as obtained from a linearized eigenvalue buck-

ling analysis, was employed as a means for perturbing the mesh geometry used

during the nonlinear collapse analyses.

2.3.2 Inverse solution

A grid of sixteen uniformly spaced sampling points is superimposed on the

shell surface of the model problem. Displacements along the direction of the

normal to the undeformed shell surface are stored after the application of a

service load, that is approximately seventy percent of the critical load. In the

case of the fine mesh model (i.e. the mesh with approximately 200,000 degrees

of freedom), these data become the observed case response. The same sixteen

sample point locations are also applied to the coarser meshes (i.e those with

approximately 50,000 degrees of freedom) in order to capture a comparable dis-

placement field in the shell normal direction. In this latter case, different initial

imperfection fields are identified by the stochastic search algorithm, and their

agreement with the observed case is subsequently determined using the objective

function given in Equation (2.12):

J ({α}) =
1

‖ {u′obs} ‖`∞

16∑
n=1

|
(
u′obs

)
n −

(
u′M

)
n | (2.12)
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where
(
u′obs

)
n

are the normal components of the displacement vectors, with re-

spect to configuration Ω′, in the observed case; taken at sixteen uniformly spaced

sampling locations within the mesh. Similarly,
(
u′M

)
n

are the analogous displace-

ments obtained from the models prescribed by the stochastic search algorithm;

the so–called measured case.

Genetic algorithm

As mentioned previously, a stochastic search algorithm is applied in this re-

search because the more computationally efficient gradient–based approaches

cannot adequately address the occurrence of multiple minima that accompany

the complex objective functions associated with the current problem types.

Specifically a Genetic Algorithm (GA) is the stochastic search method adopted

in this work. GAs have proven useful, as an alternative to gradient–based op-

timization algorithms, in instances where objective functions are non–convex

[46, 49].

GAs emulate aspects of biological evolution, in their reliance on three fun-

damental principles: heredity; mutation; and natural selection [23, 47]. In the

natural world, individuals with favorable traits for survival persist long enough

to transmit those traits to the next generation through the process of repro-

duction. Random mutation occurs slowly and sporadically, as a mechanism

whereby new traits are introduced into a population. Traits that are favorable,

from the standpoint of survivability, are retained; since they enable the indi-

viduals so endowed to succeed against survival pressures and reproduce. The

converse is also a very powerful agency in the process [23].
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In the case of GAs, the objective function (i.e. Equation (2.12)) provides the

selection pressure to judge fitness; while cross–over and elitism furnish the mech-

anisms for reproduction. Spurious genetic variations are introduced into the

GA through the mechanism of mutation. Many different general approaches for

the implementation of the foregoing GA components are discussed in the liter-

ature [46, 49, 68]. The discussion now shifts to the particulars associated with

the form of the GA used in the current work.

While it has already been mentioned that the objective function presented

in Equation (2.12) furnishes the selection pressure, the details of reproduction

and mutation require elucidation. In this work, the individual RBF parameters

are represented by the genes comprising the chromosome of each individual.

Instances of a given chromosome essentially describe a particular individual to

be be sent to the forward model, and subsequently assessed in term of fitness

using Equation (2.12).

Depending on the number of dents and RBFs, the number of individuals

in a particular generation can range from 22 (for single dent with 1 RBF in a

single quadrant) to 128 (for double dent with 4 RBFs searching over all four

quadrants); as a result of the need to search over the four parameters associated

with each particular RBF used in the imperfection field approximation. After

all runs of the forward solver have been carried out on the individuals making

up a particular generation, the top two are retained, unaltered, and projected

into the next generation (i.e. this is the notion of elitism). The top eighty percent

of the remaining individuals are permitted to reproduce through the mecha-

nism of single point cross–over. In this way, a single point in the chromosomes of

two randomly selected individuals (i.e. selected with stochastic uniform sam-
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pling), from within the cross–over population, are identified. These two indi-

viduals trade chromosome segments, as delineated by the randomly selected

cross–over marker; all the while preserving the original chromosome length. In

addition, the least fit individuals in the given population (i.e. those not permit-

ted to reproduce) are selected to experience a random mutation of individual

genes in their chromosome. Such mutation has a probability of occurrence of

0.10; the subsequently mutated individuals from this population are projected

forward into the next generation to compete for survival once again. It is the

aspects of reproduction in general, and mutation in particular, that facilitate the

treatment of the complex, non–convex objective functions that accompany our

model problem.

Indeed, the objective functions prove so complex that conventional ap-

proaches to GA searching do not always perform satisfactorily with regard to

reasonable wall clock times for the solution of the inverse problem. As a re-

sult of this complexity, a divide and conquer like approach is employed in the

GA methods used herein. This approach is essentially heuristic, in that it pro-

ceeds in a seemingly natural way, given the projection of the model problem

onto <2 describes a rectangular domain. Specifically, the problem domain of

the shell, depicted in Figure 2.2, is separated into four quadrants. Within each

quadrant, the vertex that coincides with a vertex in the actual global problem

domain (subsequently referred to as simply the vertex) serves as a point of ref-

erence for guiding the stochastic search over the RBF centers, c̄i (see Equation

(2.8)). A truncated Gaussian probability density function (PDF), centered on the

vertex, favors searching in the vicinity of the vertex by controlling the proba-

bility associated with the position of the RBF center in the mutated individuals,

relative to the quadrant vertex (see Figure 2.5). In this way, early instances of
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mutations in the positions of RBF centers emphasize locations that are close to

the vertices; while in later solution times, the radius of emphasis is expanded

to encompass the entire model problem domain (i.e. all four quadrants). In

other words, as the solution time grows, the variance of the truncated Gaus-

sian PDF is increased; thus permitting more of the domain to be accessed by

the RBF centers. It is pointed out that the truncated Gaussian PDF is used to

guide the search over the RBF centers, only. The variation over the other RBF

parameters in Equation (2.8) (i.e. σi and ωi) follows a standard uniform distribu-

tion, summed with the mid–point of the interval associated with the individual

variable ranges.

Figure 2.5: Truncated Gaussian PDF used to mutate RBF centers away from
vertices.

The final populations from the individual searches over all four quadrants

are subsequently combined into a single population for a final search over the

entire problem domain (with no further emphasis on the vertices). The shell im-

perfection instantiation emerging from this final search, with the smallest value

of Equation (2.12), is identified as the solution of the inverse problem. Figure 2.6

provides a schematic depiction of the foregoing divide and conquer stochastic
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search approach.

Figure 2.6: Schematic depiction of stochastic search approach.

The salient features of the individual GAs used in the current work are pro-

vided in the following listings.

Single RBF case:

(analyses emphasizing single quadrants)

• 30 generations of 22 individuals

• 2 elite individuals are employed
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• single point cross–over, using eighty percent of the non–elite individuals

• mutation rate for each gene in a chromosome is 10 percent, in remaining

20 percent of non–elite individuals

• A truncated Gaussian PDF guides mutation of genes coinciding with RBF

centers, while all other RBF parameters employ a uniform PDF.

(final analysis over all four quadrants, using best individuals from single quadrant

cases)

• 30 generations of 32 individuals: with initial population comprised of the

top 8 individuals from searches of each of the quadrants

• 2 elite individuals are employed

• single point cross–over, using eighty percent of the non–elite individuals

• mutation rate for each gene in a chromosome is 10 percent, in remaining

20 percent of non–elite individuals

• a uniform probability of gene mutation is employed over all RBF parame-

ters

Four RBF case:

(analyses emphasizing single quadrants)

• 30 generations of 88 individuals

• 2 elite individuals are employed

• single point cross–over, using eighty percent of the non–elite individuals

• mutation rate for each gene in a chromosome is 10 percent, in remaining

20 percent of non–elite individuals
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• A truncated Gaussian PDF guides mutation of genes coinciding with RBF

centers, while all other RBF parameters employ a uniform PDF.

(final analysis over all four quadrants, using best individuals from single quadrant

cases)

• 30 generations of 128 individuals: with initial population comprised of the

top 32 individuals from searches of each of the quadrants

• 2 elite individuals are employed

• single point cross–over, using eighty percent of the non–elite individuals

• mutation rate for each gene in a chromosome is 10 percent, in remaining

20 percent of non–elite individuals

• a uniform probability of gene mutation is employed over all RBF parame-

ters

It is pointed out that while simulated noise in experimental displacement

measurements is not explicitly included in the results from the observed case, ro-

bustness of the inverse solution method is nonetheless tested in this work. Since

the mesh associated with the observed case is approximately four times more

dense than the meshes considered in the forward models used in the stochastic

search, critical differences between these solutions exist in a theoretical sense.

These differences rest in the fact that that the theoretical continuous forward

modeling solution is being projected onto subspaces with dimensionality of ap-

proximately 200,000 and 50,000, respectively, for the observed and measured cases.

The solution differences associated with the variations in solution projection are

thought to be sufficient to avoid committing an inverse crime.
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2.4 Results and discussion

As the current paper focuses on identification of initial geometric imperfection

fields that are consistent with denting, two scenarios are considered: the case of

a single dent located in the middle of the shell (Figure 2.7, left); and the case of

two dents located in opposing corners of the shell (Figure 2.7, right). In the case

of the double dent configurations, it is pointed out that the dent in the upper

right corner has a considerably smaller amplitude, as compared with the dent

in the lower left corner (i.e. 0.0508 mm versus 0.0127 mm). This difference will

be useful to recall in the subsequent discussion on this case.

Figure 2.7: Actual initial configurations with associated RBF parameters: single
dent on left; double dent on right.

The simplest case to consider is that in which the stochastic search algorithm

searches the four dimensional RBF parameter space for the observed solution as-

sociated with the actual single dent initial imperfection field. As the inverse so-

lution algorithm adopted in this work employs a stochastic search methodology,

five distinct solutions are attempted with the single RBF dent representation.

A representative inverse problem solution for this case appears in Figure 2.8,

while a comparison in agreement, between all five cases and the observed case,
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is furnished in Table 2.1, using the following discrete norm generated metric:

‖ {δuo} ‖`2=
1
n

 n∑
i=1

(
(uo)obs,i − (uo)M,i

)2


1
2

(2.13)

where the variables, uo, refer to the normal component of the displacement vec-

tors, measured with respect to the initial configuration Ωo, and taken at locations

coinciding with the nodal coordinates from the 50,000 degree of freedom model

(i.e. n = 9, 801). In this way a quantitative comparison between the observed and

predicted imperfections fields is possible.

Figure 2.8: Representative single dent solutions using one (left) and four (center)
RBFs in inverse solution; actual imperfection on right.

Table 2.1: Comparison of results for representations of single dent with one RBF

Run ‖ {δuo} ‖`2

1 1.806E-5 mm
2 1.826E-5 mm
3 2.061E-5 mm
4 1.806E-5 mm
5 1.816E-5 mm
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It might be expected [61, 82] that increasing the dimensionality of the ap-

proximate solution space being searched should not result in any erosion of

the inverse solution quality. Indeed, the consideration of the single dent case

with its space of possible imperfection fields spanned by four RBFs furnished

very similar results to the single RBF case. A representative depiction of the

deformed geometry obtained for the four RBF case is displayed in Figure 2.8;

while the accompanying norms, ‖ {δuo} ‖`2 appear in Table 2.2.

Table 2.2: Comparison of results for representations of single dent with four
RBFs

Run ‖ {δuo} ‖`2

1 1.888E-5 mm
2 2.000E-5 mm
3 2.183E-5 mm
4 2.081E-5 mm
5 2.306E-5 mm

In the case where four RBFs were used to represent a single dent in the in-

verse problem solution, a general observation can be made: one, or more, of the

RBFs tend to migrate to the location of the dent, while those that do not, dis-

play amplitudes approaching zero. In the case of the migrating RBFs, the sum

tended to approach that of the target dent imperfection amplitude. This is, of

course, entirely as expected.

In the case of the second example of local imperfections considered (i.e. the

double dent case), a four RBF representation of the initial imperfection field

is considered. Once again, a reasonable agreement is observed between the

results from the inverse problem solution, and the results from the observed case.

Figure 2.9 displays a representative solution of the inverse problem for this case,

while Table 2.3 provides a quantitative comparison with the results from the

observed case, once again employing the norm from Equation (2.13).
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Figure 2.9: Representative double dent solution using four RBFs in inverse so-
lution: approximate imperfection on left; actual imperfection on right.

Table 2.3: Comparison of results for representations of double dent with four
RBFs

Run ‖ {δuo} ‖`2

1 6.840E-6 mm
2 3.880E-6 mm
3 1.326E-5 mm
4 1.684E-5 mm
5 1.330E-6 mm

It is difficult to draw specific conclusions regarding the nature of the inverse

problem results presented in Tables 2.1 through 2.3, as a result of the realities

associated with implementation of stochastic searches. Specifically, since it is

that considerably more information is present in the four RBF case, as compared

with the single RBF case, significantly more solution steps are required in order

to permit the space of all admissible solution parameters to be explored. While

this general observation is logical to consider, it is not possible to know exactly

how many iterations would be needed to permit the precise comparison in the
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rates of convergence, to the exact solution, between the cases of one and four

RBFs.

Another useful means for comparison of the foregoing results involves the

very practical matter of how well the buckling loads from the models incorpo-

rating the inversely identified imperfection fields predict the critical loads from

the observed cases. Tables 4 and 5 furnish such comparison results for the cases of

single and double dent imperfections, respectively. In these tables, the relative

error is computed as:

e1 =

∣∣∣∣∣ (LPFcr)obs − (LPFcr)M

(LPFcr)obs
× 100

∣∣∣∣∣ (2.14)

where LPFcr is the load proportionality factor being applied to a constant refer-

ence load vector imposing a total reaction of 71.6 kN along the loaded edge of

the model shell problem. Thus the critical loading resultant, for any particular

imperfection case, is given as (LPFcr) x (71.6kN). As a result of the inclusion

of initial imperfections, the critical load corresponds with the first limit point,

rather than a point of bifurcation in the equilibrium path (as would accompany

the response of the case with perfect geometry). This critical limit load level is

taken to correspond with the last converged equilibrium configuration in the

incremental nonlinear finite element analysis, previous to the first increment

leading to a non–positive definite system stiffness. Based on the agreement in

predictions that are presented in Tables 2.4 and 2.5, it would appear that this

approach may have practical value.

It is worth pointing out that in spite of the fact that the objective function

from Equation (2.12) exhibited a significantly smaller sensitivity to the presence

of the smaller of the two local imperfections (i.e. the dent in the upper right cor-

ner), the inverse model solutions nearly always predicted the presence of this
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Table 2.4: Comparison of single dent buckling results (LPFcr)obs = 1.869

1 RBF 4 RBFs
Run LPFcr e1 Run LPFcr e1

1 1.874 0.261 1 1.873 0.236
2 1.874 0.266 2 1.873 0.226
3 1.875 0.300 3 1.872 0.183
4 1.874 0.264 4 1.872 0.190
5 1.874 0.265 5 1.873 0.194

Table 2.5: Comparison of double dent buckling results (LPFcr)obs = 1.875

4 RBFs
Run LPFcr e1

1 1.872 0.169
2 1.872 0.173
3 1.874 0.040
4 1.871 0.204
5 1.873 0.109

less pronounced feature within the overall imperfection field (it was predicted

in four out of the five times the inverse solution was obtained for this particular

case). This ability of detecting subtler features within the initial imperfection

field is another useful observation to make in support of inverse solution ro-

bustness. Additionally, it is interesting to note that the favorable predictions

regarding shell ultimate capacity where gleaned from single points in the load–

deformation space of the problems considered.

2.5 Conclusions

Many diverse types of shell structures fall under the classification of being im-

perfection sensitive: meaning that the presence of even slight initial geometric im-

perfections result in significant erosions of predicted buckling strengths. This
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behavior has important practical implications, as shell structures are applied

widely in fields such as aerospace engineering, as well as naval and civil archi-

tecture. The ability to know the actual ultimate strength of a given shell structure

has considerable value to the designer. Non–destructive means for determining

this capacity is an ideal context for such assessment. / The present research has

demonstrated that an inverse solution approach, employing nonlinear finite ele-

ment analysis and using a divide and conquer type stochastic search algorithm,

can identify the presence of localized denting imperfections in pinned barrel

vault type shell structures. The predictions are made using sparse displacement

measurements taken at safe, service loading conditions, in order to infer the ex-

istence and nature of the imperfection field present in a given shell structure

instance. These inferred imperfections are subsequently used to make reason-

ably accurate predictions of actual shell structure strength at ultimate loading.

While the results presented herein are promising, it is not clear that the pro-

posed method will yield similar accuracy across all shell structures, and across

all imperfection types. This current work is merely a point of departure, from

which additional studies may be made.
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CHAPTER 3

MODEL-BASED STRUCTURAL HEALTH MONITORING OF NAVAL

SHIP HULLS1

Abstract

The present paper reports on results from an ongoing research program at

Cornell University aimed at employing model-based structural health moni-

toring techniques within new and existing naval hull structures. The tech-

niques discussed involve the solution of inverse problems, formulated using

both optimization-based and Bayesian approaches. The forward modeling ca-

pability is handled using a specially developed hull structural analysis tool,

CU-BEN, while the solution of the inverse problem is handled using stochas-

tic search methods that are part of a dedicated inverse solution algorithm “tool-

box,” CU-PSST. Results from the application of these tools to problems of detect-

ing section loss in hull plating due to corrosion, and isolating damaged framing

due to an internal blast, are discussed.

3.1 Introduction

A recent survey of active-duty United States Naval warships (Table 3.1) reveals

two potential areas of concern within the U.S. Naval fleet: the average age of the

fleet is between 15 and 20 years old, and the cost to replace any one ship within

1CHRISTOPHER J. STULL, CHRISTOPHER J. EARLS, PHAEDON-STELIOS KOUTSOURE-
LAKIS. MODEL-BASED STRUCTURAL HEALTH MONITORING OF NAVAL SHIP HULLS.
SUBMITTED TO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING ON
MARCH 3, 2010
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the fleet is considerable.

Table 3.1: Data from active duty naval warships [18]

Type Aircraft Cruiser Destroyer Frigate
Carrier

Class Nimitz Ticonderoga Burke Oliver Hazard
Burke Perry

# In-Service 10 22 53 30
Average Age (yr) 19 19 10 25
Approx. Cost (M) $2430 $430 $390 $150

An additional, more pressing concern emanates from the ever-evolving con-

ditions within which the fleet operates: these ship designs were conceived of

some 20 to 30 years ago, and are being employed in the arena of modern-day

naval warfare. Given the expected service lives of these vessels, such an out-

come was not unforeseen, but the capabilities of these aged ship designs to meet

new mission imperatives remains uncertain. In contrast to this concern, there

also exists a certain level of apprehension within the naval community regard-

ing the capabilities of new ship designs (e.g. the Freedom- and Independence-

class littoral combat ships). While these radically new designs reflect signifi-

cant advances in our understanding of naval hull technologies, they lack the

assurances which accompany the “tried and true” design methodologies of the

twentieth century.

Analogies may be drawn between these concerns, and those felt within the

civil and aerospace engineering communities during the late 1970s and early

1980s. Such concerns subsequently gave rise to the field of structural health

monitoring (SHM), and since that time, SHM has received much attention in

the research community, especially during the past decade [36, 91]. While it is

that Lindemann, Odland, and Strengehagen published work in 1978 related to
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implementing a general hull monitoring system [66], the technology necessary

for such an application was still in its infancy. Moving forward thirty years,

advances in computational and sensing technologies have made more feasible,

research efforts focused on hull structural health monitoring (HSHM), thus allow-

ing for the vision of those early researchers to be realized. Following is a brief

background of this earlier related work.

3.1.1 Background

Farrar, Doebling, and Nix [34] describe SHM by way of a “statistical pattern

recognition paradigm,” the final step of which may be broken down into four

levels [84], progressively increasing in the depth of information required:

• Step 1: Operational Evaluation;

• Step 2: Data Acquisition, Normalization and Cleansing;

• Step 3: Feature Selection and Information Condensation;

• Step 4: Statistical Model Development for Feature Discrimination:

– Level 1: Detection;

– Level 2: Localization;

– Level 3: Characterization;

– Level 4: Prediction.

This is indeed the paradigm adopted by many within the HSHM community,

and for the purposes of this paper, attention is focused on a breakdown of Step 4,

as it relates to ship structural systems. However, despite focusing on only one
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step of this paradigm, the problem of HSHM remains a difficult one to solve:

Farrar et al. [35] point toward the size and complexity of ship structural systems

as a major hindrance. As a result of this difficulty, much of the early research

related to HSHM has focused on critical components of ship structural systems

rather than on the system as a whole.

Zubaydi, Haddara, and Swamidas [103], for example, employed autocorre-

lation functions to examine the response of stiffened plates, intended to simulate

the “side shells” of ship hulls. Good agreement was shown between both the

experimentally and analytically derived autocorrelation functions, demonstrat-

ing the potential promise for this method to detect, but not locate, crack damage

in ship hulls. In 2002, these same authors employed neural networks, together

with the finite element models developed in [103], to not only detect the pres-

ence of, but also the location and extent of various crack damage scenarios [104].

Similarly, Budipriyanto, Swamidas, and Haddara [15] developed experimental

and analytical models of cross-stiffened plate structures (typical to the hulls of

oil tankers) in order to determine the optimal sensor layout for measuring the

dynamic response of structures, having undergone various crack damage sce-

narios. Using this knowledge, the authors developed a damage indicator based

on the root mean square of the dynamic response amplitude. This damage indi-

cator was capable of locating and assessing crack damage within the structure,

and was subsequently built upon by the same authors in [14].

Non-traditional ship-building materials (e.g. composites or aluminum) have

also received attention within the HSHM literature. Herszberg et al. [51], for ex-

ample, embedded fibre Bragg grating (FBG) [96] sensors within the T-joints of

glass-fibre reinforced polymer (GFRP) composite ship hulls to monitor changes
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in local strain distributions (regarded as an indication of damage). Addition-

ally, the vibrational response of these joints was examined. While both response

measures (i.e. strains and vibrations) showed promise in the detection of dam-

age, the authors stated that the assessment of this damage was “far from trivial

and will require considerable research effort.” Building on this work, Li et al.

[64] implemented a HSHM system capable of both detecting and assessing dam-

age within T-joints of GFRP ship hulls. In addition to embedded FBG sensors, a

statistical outlier analysis of the resulting sensor data was implemented in order

to distinguish states of damage within T-joints. More recently, Silva-Muñoz and

Lopez-Anido [88] proposed a method of detecting crack propagation in com-

posite joints by correlating it with changes in local strain distributions obtained

using embedded FBG sensors.

As mentioned previously, the complexity associated with ship structural

systems has been the primary hurdle in the development of full-scale HSHM

systems. Indeed, until recently, the literature related to full-scale HSHM sys-

tems has primarily involved a system developed by the Norwegian Defense

Research Establishment [97]2. Similar to [51, 64, 88], the primary components of

the HSHM system are FBG sensors embedded within the composite hull. How-

ever, in addition to monitoring “locations critical to the ship design,” the sensor

layout was constructed such that the structural health of the overall system could

also be monitored. Preliminary results of this ongoing work (primarily based on

sea-trials) have shown promise, and implementation of the system in additional

ships is currently underway. More recently, full-scale HSHM research efforts

have focused on the all-aluminum hulls of littoral combat ships [85, 70], with

2This system is a culmination of the work related to the “Composite Hull Embedded Sensor
System” (CHESS) project initiated in 1996 as a joint research effort between the United States
Naval Research Laboratory and Norwegian Defense Research Establishment (see [98], and ref-
erences contained therein).
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the latter reference focusing more on the instrumentation aspect of the problem.

Now, despite the stochastic nature of the environments in which naval

vessels typically operate, efforts at addressing the inherent uncertainty within

HSHM predictions are somewhat lacking in the literature. At a recent confer-

ence session on SHM for ship structures, Nichols et al. [74] introduced the use

of Bayesian statistical inference, by way of a Markov Chain Monte Carlo algo-

rithm, as a means of inferring damage from experimental data. However, while

research efforts in the civil engineering community have adopted similar strate-

gies to address this concern (see e.g. [102, 17, 75]), to the authors’ knowledge,

efforts at applying such strategies directly to ship structural systems remains

unseen.

Taking this as a point of departure, the present paper is aimed at the develop-

ment and application of SHM techniques to full-scale ship structural systems. In

contrast to the above references (sans [74]), a model-based paradigm is adopted,

employing two distinct approaches to solve the resulting HSHM problem: a

classical approach and, to more formally address the issue of uncertainty in the

predictions, a probabilistic approach which adopts a Bayesian framework. As

a means of testing these approaches, two representative damage scenarios are

proposed and solved within the confines of a hypothetical, idealized hull struc-

tural system.

3.1.2 Paper organization

Formulations of the forward and inverse problems associated with this research

are provided in Section 3.2. Section 3.3 provides a description of the two demon-
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stration problems examined in this work, as well as details on the stochastic

search algorithms employed to solve these problems. Results are presented

in Section 3.4, with a discussion of the relevant details included; conclusions

drawn from these results are then provided in Section 3.5.

3.2 Formulation

The present research adopts a model-based paradigm in its approach to HSHM.

The goals of model-based HSHM are no different from those of the examples

presented in Section 3.1.1 (i.e. to detect, locate, and characterize damage within

ship structural systems); the difference arises from the approach to the problem.

Whereas traditional SHM methods pursue these goals by comparing observed

response data against previously established statistical models, in an attempt

to detect statistical anomalies (i.e. damage), the goal of model-based SHM is

to infer an analytical model directly from the observed response data. This is

traditionally posed as the following inverse problem [39]: “Given some ob-

served response from a potentially damaged structural system, due to some

external action, determine an analytical model of the structural system which

accurately captures this observed response.” The successful discovery of this

analytical model then provides direct insight into the physical condition of the

system, effectively completing Levels 1 through 3 (from Step 4 of the statistical

pattern recognition paradigm outlined previously). Moving forward, this ana-

lytical model may also be employed to examine myriad “virtual proof testing

scenarios,” extending the approach to meet a new objective: prognosis.

Model-based SHM approaches are often broken into two parts: the forward
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problem and the inverse problem: with the results of the latter depending upon

the former. Formal descriptions of each, within the context of the present paper,

are presented in the following two sections.

3.2.1 Forward problem

In its most general form, the forward problem comprises a linear system, de-

scribed by the following partial differential equation (PDE):

A ( f (x;Θ)) u (x) − b (x) = 0 : x ∈ Ω ⊂ R3, f (x;Θ) ∈ F (3.1)

where the above terms are defined as follows:

A ( f (x;Θ)) is a linear differential operator describing the system,

characterized by f (x;Θ),

x is a spatial coordinate within the domain of the system, Ω,

which is itself a subset of R3,

Θ is a set of parameters which describe the damage (see Section

3.2.3),

F is the collection of all possible damaged characterizations of the

system, and

u (x) is the response of the system, due to some external action, b (x).

Employing the finite element method, the PDE given in Equation (3.1) may be

discretized into a linear system of equations as, Au = b (note that the depen-

dency of A on f (x;Θ) has been removed to simplify the notation). Obtaining

the response vector, u, is thus achieved by pre-multiplying the load vector, b, by

the inverse of the system matrix, A.
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As it is that inverse solution strategies typically require numerous calls to

the forward solver, the time necessary to arrive at the solution to a given inverse

problem is almost entirely driven by the time required of the forward solutions.

It is therefore important, when developing such inverse solution strategies that

the efficiency of the forward solver be a concern. It is for this reason that ef-

forts were focused by the authors on the development of a fully nonlinear fi-

nite element code, CU-BEN (it is noted that for the present paper, the example

problems are executed in the linear-elastic regime). Written in ANSI C99 and

employing the MPI standard, the current version of CU-BEN employs an up-

dated Lagrangian reference frame with three structural element formulations:

a 6-degree-of-freedom (DOF) truss [4], a 14-DOF frame [72], and an 18-DOF

triangular shell [10, 8, 9]. While these elements have been shown to effectively

predict geometrically nonlinear behavior, they were primarily chosen due to the

efficient treatment of material nonlinearity through a force-space plasticity ap-

proach [72, 21, 22], which precludes the need for expensive integrations through

the elements’ cross-sections. With the additional ability to incorporate member

end offsets and / or releases into the frame elements, models developed us-

ing CU-BEN are capable of accurately capturing many of the salient features

present in ship structural systems, while still serving as an efficient forward

solver in support of the inverse solution.

3.2.2 Inverse problem

We begin our discussion of the inverse problem in a general context, by first

assuming the presence of a sparse, distributed sensor array which measures the

response of the ship structural system under assumed service conditions. This
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collection of observed responses is given as:

Uobs = {uobs (x) : x ∈ Ω ⊂ R3} (3.2)

The solution of the forward problem discussed in the previous section produces

an analogous collection of model responses, given as:

UFE ( f (x;Θ)) = {uFE (x; f (x,Θ)) : x ∈ Ω ⊂ R3, f (x;Θ) ∈ F} (3.3)

Having defined these quantities, the solution of the inverse problem is aimed

at obtaining information about the parametric representation of the ship struc-

tural system, f (x;Θ), as it relates to the observed data, Uobs. The commonly

adopted, or so-called “classical approach” to solving such problems is to cast

them in the form of a functional optimization as:

min
Θ

J ( f (x;Θ)) (3.4)

where J ( f (x;Θ)) is an objective functional, given as:

J ( f (x;Θ)) =‖ Uobs − UFE ( f (x;Θ)) ‖ (3.5)

and ‖ · ‖ represents any appropriate norm, comparing Uobs and UFE ( f (x;Θ)).

The subsequent solution of Equation (3.4) provides the desired analytical model,

characterized by f (x;Θ), which most closely produces the observed responses.

This is indeed one of the approaches adopted for the research reported upon

herein; specific details related to this classical approach are presented in Sec-

tion 3.3.3. The other adopted approach employs techniques from Bayesian in-

ference to cast the above within a probabilistic context. A brief background

concerning this latter approach is provided in the following section, prior to the

introduction of the example problems in Section 3.3.
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Bayesian formulation

Bayesian formulations represent a stochastic counterpart of classical (i.e.

optimization-based) solution methods. Adopting this approach, the unknown

model parameters, Θ, are considered to be random variables, with the infer-

ence process aimed at obtaining posterior probability distributions on these un-

knowns. Such distributions then allow the analyst to quantify the relative plau-

sibilities of various values of the model parameters, Θ. Bayesian formulations

offer several advantages to the analyst, as they provide a unified framework

for dealing with the uncertainty introduced by incomplete and noisy measure-

ments, as well as quantitatively assessing the resulting inferential uncertainties.

Significant successes using this approach have been noted in applications such

as medical tomography [101], geological tomography [44, 2], hydrology [63],

petroleum engineering [50, 20], as well as a host of other physical, biological,

and social systems [59, 87, 99, 67].

One of the basic elements of Bayesian models is the likelihood function,

L (Θ) = p (Uobs | f (x;Θ)). L (Θ) is a conditional probability distribution which

gives a relative measure of the propensity of observing data, Uobs, for a given

model configuration specified by f (x;Θ). The likelihood function is also en-

countered in frequentist formulations where the unknown model parameters

are determined by maximizing L (Θ). The second component of Bayesian mod-

els is the prior distribution, p (Θ), which encapsulates in a probabilistic manner,

any knowledge / information / insight that is available to the analyst prior

to observing the data. The combination of the likelihood function and the prior

distribution, based on Bayes’ rule, yields the posterior distribution, π (Θ), which

probabilistically summarizes the information extracted from the data, with re-
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gard to the unknown model parameters:

π (Θ)︸︷︷︸
posterior

= p (Θ | Uobs) ∝ p (Uobs | f (x;Θ))︸                ︷︷                ︸
likelihood

p (Θ)︸︷︷︸
prior

(3.6)

Although the prior is a point of frequent criticism due to its inherently sub-

jective nature, it can prove extremely useful in engineering contexts, as it pro-

vides a mathematically consistent vehicle for injecting the analyst’s insight and

physical understanding into the inference process. More importantly perhaps,

it can readily be shown that regularization terms (e.g. Tikhonov regularization

[95]) that are frequently used in classical formulations amount to the adoption

of specific priors. For example, the absence of a regularization term in Equa-

tion (3.5) corresponds to a uniform prior. In this study, hierarchical prior models

are adopted. These prior models, described in Section 3.2.3, both subdue the

effects of prior specifications in the final inference results and promote sparsity

in the solution.

Representations of the parametric fields in existing approaches artificially

impose a minimum length scale of variability, usually determined by the dis-

cretization size of the governing PDEs [63]. Furthermore, these fields are

typically associated with a very large vector of unknowns. Inference in

high-dimensional spaces using standard Markov Chain Monte Carlo (MCMC)

schemes, which for years have served as the workhorses of Bayesian computa-

tion, is generally impractical as it requires an exuberant number of calls to the

forward solver in order to achieve convergence. Care must be taken, therefore,

in choosing an appropriate scheme to arrive at the solutions of the posterior

distributions given in Equation (3.6). Details of the techniques employed for the

present research are provided in Section 3.3.3.
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3.2.3 Parameterization of damage

Having provided general descriptions of the forward and inverse problems, it is

now appropriate to focus attention on the definition of f (x;Θ) which provides

the mechanism by which damage may be inserted into the system. Consider, for

example, an explicit representation of shell element thicknesses, in which the

original shell element thicknesses are potentially reduced to model the effects

of corrosion:

f (x;Θ) = ti ≤ (to)i (3.7)

where i = 1, 2, . . . ,number of elements in a hull model.

While this represents a valid means of inserting damage into the system,

such an approach presents difficulties with respect to the solution of the inverse

problem, as the solution would depend on a parameter set of size equal to the

number of elements within the finite element model (see Section 3.2.2). In this

spirit, f is characterized by a set of parameters, Θ, where the intent of these

parameters is to incorporate a priori knowledge about the damage being con-

sidered, using a reduced basis. For the above example, it would be realistic to,

instead of considering individual elements, consider sets of elements, thereby

reducing the dimensionality (i.e. number of sets vs. number of elements), while

maintaining a realistic representation of the damage (i.e. that corrosion occurs

within reasonably sized regions).

Specific to the example problems considered in the present paper, a physi-

cally meaningful way to model damage is through a reduction of section proper-

ties. This translates to: a reduction in shell thicknesses for the corrosion problem

and a reduction in the frame member depths for the framing damage problem

(which in turn, affects related section properties). Taking into account that both
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of these damage types are typically confined to specific regions within the hull, a

convenient and natural means of parameterizing the damage is to employ Gaus-

sian radial basis functions (RBFs) [48] as follows. We first denote the collection

of section properties of interest (e.g. shell thicknesses) by Γ, with an analogous

collection of initial, undamaged section properties denoted by Γo. Reduction of

these section properties may now be achieved by applying the following equa-

tion:

Γ ≈ Γo −

N∑
i=1

ωiΨi (x) (3.8)

where N is the number of Gaussian RBFs used in the approximation of the dam-

aged configuration and ωi are Fourier coefficients representing the maximum

reduction in the section properties. Ψi (x) then represents a Gaussian RBF given

by:

Ψi (x) = exp
− (
‖ ci − x ‖`2
√

2τi

)2 (3.9)

where ci are the two-dimensional RBF centers and τi are their standard deviations.

The reduction in the dimensional representation of the RBF centers is achieved

through a previous transformation of the hull side shells in which a hypothet-

ical and highly idealized V-shaped hull is effectively “fileted” by rotating the

hull side shells, about the longitudinal keel line, until they lie in a coincident

coordinate plane (see Figure 3.1).

Θ may now be given as the following collection of damage model parame-

ters:

Θ =

[
ω1 c1 τ1 · · · ωN cN τN

]T
(3.10)

where, as above, N is the number of Gaussian RBFs used in the approxima-

tion of the damaged configuration. Additionally, while N may be fixed at a

single value, the authors chose to leave it as an unknown. It is therefore im-

portant to note that N is also regarded as a model parameter when considering
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Figure 3.1: Transformation of hull side shells into a two-dimensional represen-
tation

the stochastic search approaches and example problems presented herein. This

parameterized damage model, while providing a reduced basis from which the

solution may be drawn, also affords a certain amount of flexibility, as the num-

ber of RBFs employed essentially dictates the resolution to which the actual

damage may be approximated. For example, fewer RBFs may be unable to ef-

fectively capture the fine-scale details of more complex damage scenarios, but

could quickly provide a coarse approximation of the damage, by searching over

a reduced number of parameters. The converse is also true: many RBFs, with

a correspondingly large number of parameters, while able to capture fine-scale

details, would in turn increase the time required to arrive at a solution. Such

flexibility naturally lends itself to a multi-scale approach to the solution of the

inverse problem, a problem which the authors hope to address in future re-

search efforts.
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Prior and likelihood specification

The most critical component in constructing Bayesian models involves the prior

specification for the unknown material properties, represented by f (x;Θ). In ex-

isting Bayesian [99] as well as classical formulations, f (x) is discretized accord-

ing to the spatial resolution of the forward solver. For example, in cases where fi-

nite elements are used, the property of interest is assumed to be constant within

each element, and therefore the vector of unknowns is of dimension equal to

the number of elements. This offers obvious implementation advantages but

also poses some difficulties since the scale of variability of material properties

is implicitly selected by the solver rather than the data. This is problematic in

several ways. On one hand, if the scale of variability is larger than the grid, a

waste of resources takes place, at both the solver level, which has to be run at

unnecessarily fine resolutions, and at the level of the inference process, which

is impeded by the unnecessarily large dimension of the vector of unknowns.

Furthermore, as the number of unknowns is much larger by comparison to the

amount of data, it can lead to over-fitting. This will produce erroneous values for

the unknowns that may nevertheless fit the data perfectly. Such solutions will

have negligible predictive ability and would thus be useless in decision-making

processes. On the other hand, if the scale of variability is smaller than the grid,

the unknown material properties cannot be identified, even if the solver pro-

vides sufficient information for discovering this possibility.

An important addition to the vector of model parameters given in Equa-

tion (3.10), is the number of terms, N, in the expansion of Equation (3.8). Hence

the cardinality of the model (i.e. the number of RBFs) is the key unknown that

must be determined so as to provide a good interpretation of the observables.
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Independently of the form of the kernel adopted, the important, common char-

acteristic of all such approximations is that the field representation does not

depend on the resolution of the forward model. The latter affects inference only

through the “black-box” functions given in Equation (3.3). A summarized ver-

sion of the prior models adopted in this work is provided below. A detailed

justification can be found in [60].

• N: the number of kernel functions. We employ a Poisson distribution,

p (N | λ) = λN

N! exp (−λ), with an exponential hyperprior for the hyperpa-

rameter, λ.

• {ωi}
N
i=1: the coefficients of the expansion in Equation (3.8). A multivariate

normal, N
(
0, σ2

a I
)
, is used and a Gamma hyperprior for the hyperparam-

eter, σ2
a ∼ Gamma (a0, b0).

• {τ−1
i }

k
i=1: the precision parameters of each kernel which pertain to the scale

of the unknown field(s). We employ independent Gamma priors:

p
(
{τ−1

i }
N
i=1 | N, aτ, bτ

)
=

N∏
i=1

baτ
τ

Γ (aτ)
τ−aτ+1

i exp
(
−

bτ
τi

)
(3.11)

In order to automatically determine the mean of the Gamma prior, we

express bτ = µiaτ, where µi is a location parameter for which an exponential

hyperprior is used with a hyperparameter, aµ.

• {ci}
N
i=1: the locations of the kernels which are points in Ω for which a uni-

form distribution in Ω is used.

The observed output, uobs (x), at n locations within x ∈ Ω is assumed to be

related to the model predictions, uFE (x; f (x;Θ)), as follows:

uobs (x) = uFE (x; f (x;Θ)) + e (x) (3.12)
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where e (x) quantify the deviation between model predictions and data. The

probabilistic model for e (x) in Equation (3.12) gives rise to the likelihood func-

tion, L (Θ). In the simplest case, where e (x) are assumed independent, normal

variates with zero mean and variance, σ2
e (note that the functional dependencies

have been removed from uobs and uFE to simplify the following notation):

p (uobs | Θ, σe) ∝
1
σe

exp
(
−

1
2

(uobs − uFE)2

σ2
e

)
(3.13)

and

L (Θ) = p (Uobs | Θ, σe)

=
1
σn

e
exp

− 1
2σ2

e

∑
x

(uobs − uFE)2

 (3.14)

More complex models which can account for the spatial dependence of the er-

ror variance or the detection of events associated with sensor malfunctions at

certain locations, can readily be formulated. In general, the variances, σ2
e , are

unknown (particularly, the component that pertains to model error) and should

be inferred from the data. When a conjugate, Gamma(a, b) prior is adopted for

σ−2
e , the error variances can be integrated out from Equation (3.13), further sim-

plifying the likelihood:

L (Θ) ∝
Γ (a + n/2)(

b + 1
2

∑
x (uobs − uFE)2

)a+n/2 (3.15)

where Γ (z) =
∫ +∞

0
tz−1 e−t dt is the Gamma function.

The complete model is now summarized as follows. Let ΘN =

{{ωi}
N
i=1, {τ

−1
i }

N
i=1, {ci}

N
i=1} denote the vector containing all the unknown parameters

and Θ = (N,ΘN). Since N is also assumed unknown and allowed to vary, the

dimension of ΘN is variable as well. In two-dimensional problems for example

the dimension of ΘN is (N + 1) + N + 2N = 2 + 4N. Based on the aforementioned
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equations, the complete prior model is given by:

p
(
Θ | s, aτ, aµ, a0, b0

)
=

1
(s + 1)N+1

×

N∏
j=1

Γ (aτ + 1)
Γ (aτ)

aaτ
τ

τ−(aτ−1)
i

1
aµ

1(
aτ
τi

+ a−1
µ

)(aτ+1)

×
1

(2π)N/2

Γ
(
a0 + N

2

)
(
b0 + 1

2

∑N
j=1 a2

j

)a0+N/2 ×
1
| Ω |N

(3.16)

3.3 Example problems

Two example problems are presented to demonstrate the techniques outlined in

Section 3.2. The first problem, “Example Problem 1,” examines the issue of de-

tecting corrosion within a hypothetical ship structural system, while the second

problem,“Example Problem 2,” examines the issue of detecting internal blast

damage within frame members which act to stiffen the side shells of a hypo-

thetical hull. Each of these problems is solved employing both the functional

optimization framework outlined in Section 3.2.2, and through the Bayesian in-

ference framework outlined in Section 3.2.2.

As is it that the use of actual, or even representative, hull geometries is a

sensitive issue when considering survivability and post-event performance of

naval vessels, the current discussion centers on a highly idealized hypotheti-

cal hull geometry (see Figure 3.2). While the selected lines and scantlings (i.e.

overall geometry and member dimensions) are in no way representative of a

practical design, they are in fact consistent with a common class of naval ves-

sels in use throughout the world’s navies.

The overall dimensions of the hypothetical hull structure are: length from
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Figure 3.2: Gross dimensions of idealized ship structural system

bow to stern of 152.39 m (500’), beam (i.e. width at “top deck” from port to star-

board) of 18.29 m (60’), and height from keel to “top deck” of 18.29 m (60’). There

also exist nine transverse bulkheads, located at 15.24 m (50’) intervals through-

out the ship, resulting in 8 compartments (the bow and stern sections are 22.86

m (75’) and 7.62 m (25’) long, respectively). All components of the hull are mod-

eled using triangular shells [10, 8, 9] with nodal spacing at approximately 1.52

m (5’) intervals. To model the case of a ship moored at port, pinned boundary

conditions are applied along the keel with vertical rollers imposed along all top,

exterior edges composing the “top deck.” Hydrostatic loading conditions are

applied to all nodes which fall below the waterline, where the the draft of this

hypothetical ship is approximated 9.14 m (30’) (see Figure 3.2). While the above

description holds for both problems examined in the current work, two distinct

finite element models are employed for each problem.

3.3.1 Example Problem 1

The extreme environments in which ocean going vessels operate, together with

their typically long service lives, result in a situation where the potential for a

reduction in hull plating due to corrosion is a significant concern. The exterior
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hull side shell thicknesses are one focus of the present research, and a finite

element model, built in CU-BEN, is employed to model this case. The model in-

corporates 20.32 cm (8”) thick exterior plating with 2.54 cm (1”) thick transverse

bulkheads (see Figure 3.3). The reduction in thickness of the hull side shells is

subsequently modeled on an element-by-element basis, where the x employed

in Equations (3.8) and (3.9), are the centroids of the triangular shells.

Figure 3.3: Schematic of finite element mesh for Example Problem 1 displaying
data sampling configuration (white triangles)

Also given in Figure 3.3 is the data sampling configuration employed for

this problem; an analogous configuration is also present on the starboard side.

A sensitivity study, in which parameters of the damage model were varied over

their respective ranges, yielded points clustered around the white “criss-cross”

patterns, as those exhibiting the greatest variance between observed regions.

Subsequently, a criss-cross pattern was proposed for each of the eight compart-

ments, resulting in 144 total data points. While this pattern is intuitive, with

respect to the hydrostatic loading conditions present within the model, and

proved capable of capturing the desired response, such a data sampling con-

figuration is far less capable of detecting damage above the waterline; this is an

acceptable result, given that corrosion is less likely to occur above the waterline.
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3.3.2 Example Problem 2

Internal blast damage in the ship structural system is defined as a reduction

in the cross-sectional characteristics of the frame members that stiffen the side

shells of the hull. Such damage may arise from weapon system malfunctions,

resulting in internal explosions within the ship. Identification of this type of

damage highlights the potential of the HSHM system to provide prognoses of

future performance: a very real concern for naval vessels damaged at sea. Fi-

nally, it is noted that internal explosions which cause a breach of the exterior

hull plating are not being considered in the present study.

Figure 3.4 presents a schematic of the structural framing, modeled through

multiple lattices of rectangular frame elements within each compartment, where

the shell finite element mesh is omitted for clarity. Both the exterior hull plating

thickness and the transverse bulkheads are set at 2.54 cm (1”). As in Example

Problem 1, Equations (3.8) and (3.9) are employed to reduce the depths of the

frame elements (initially set at 60.96 cm (24”)), and x are the centroids of these

frame elements; cross-sectional characteristics are then computed using these

reduced depths.

The procedure employed to arrive at the data sampling configuration given

in Figure 3.4 is identical to that outlined for Example Problem 1. In this case,

however, it was discovered that intersections of the frame elements proved to

be most sensitive to the varying of the damage model parameters, resulting in

a total of 192 data points. As observed formerly, the restriction regarding the

detection of damage above the waterline is present in this problem.
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Figure 3.4: Schematic of finite element mesh for Example Problem 2 displaying
data sampling configuration (white triangles)

3.3.3 Stochastic search approaches

Section 3.2 outlines two formulations of the model-based HSHM problem: one

adopting a functional optimization framework and one adopting a Bayesian

statistical inference framework. While the overarching goal of these two for-

mulations is to gain insight into the health of ship structural systems, both the

solutions and the methodologies employed to arrive at these solutions, differ

significantly.

Genetic algorithm for functional optimization

The functional optimization algorithm chosen for the present work is a genetic

algorithm (GA) [46, 73, 68, 49]. GAs adopt a “survival-of-the-fittest” approach

to the problem of functional optimization, wherein individuals composing a

population “compete” for survival according to their fitness level. Individuals

with desirable traits, reflected through their fitness, are carried forward from

one generation to the next, while those with less desirable traits are removed
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from the population through various selection pressures. Within the context of

the present paper, an individual is regarded as a configuration of the ship struc-

tural system, represented by the model parameters given in Equation (3.10). In

addition to adopting a rather intuitive solution scheme, GAs are also well-suited

to problems which exhibit complicated objective functional(s): a common issue

when dealing with model-based SHM formulations [93]. Such objective func-

tionals are often of a non-convex nature [68], thus eliminating the more efficient

gradient-based solvers from consideration, due to their inability to negotiate

solution spaces containing multiple local minima [16, 81].

While numerous variants of the GA have been proposed and successfully

demonstrated on a variety of problems (see e.g. [68]), most GAs involve, in one

capacity or another, computational models of the following evolutionary pro-

cesses: elitism, selection, crossover, and mutation3. Indeed, the present research

adopts these basic aspects of a GA, as given by the flowchart in Figure 3.5. A

discussion of the details associated with each step is now presented.

Following the random initialization of the first generation, individuals

within the population are evaluated through executions of the forward solver

(see Section 3.2.1). This forward solution includes calculation of the objective

functional value for each individual, given as the sum of the `2 and `∞ norms as:

J ( f (x;Θ)) = ‖ Uobs − UFE ( f (x;Θ)) ‖`2 + ‖ Uobs − UFE ( f (x;Θ)) ‖`∞

where the components of Uobs and UFE ( f (x;Θ)) are displacements normal to the

side shell of the hull taken at 144 points, in the case of Example Problem 1, or

192 points, in the case of Example Problem 2 (see Figures 3.3 and 3.4). As the

3A discussion of the various methods employed to model these evolutionary processes is
beyond the scope of this document. The reader is directed to [46, 73, 68, 49] for more thorough
discussions of methods to model these, and other such evolutionary processes.
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Figure 3.5: Features of the genetic algorithm employed for the paper

present examples employ analytical models of idealized ship structural systems,

Uobs constitutes simulated experimental data, and is thus derived from a forward

solution of the analytical model incorporating the target damage scenario, with

the addition of Gaussian noise at a signal-to-noise ratio of 1000. It is noted

that the definitions of Uobs and UFE ( f (x;Θ)), as well as the noise imposed on

Uobs, hold for both the functional optimization approach as well as the Bayesian

statistical inference approach treated in the sequel.

Having completed the forward evaluations, the individuals are ranked, and

the individual exhibiting the minimum objective functional value is deemed the
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“most fit” within the population (this individual is automatically propagated to

the next generation as a result of “elitism”). With evaluation and ranking com-

plete, so-called “parent” individuals are selected through a k = 8-tournament-

based selection function. This function randomly selects k individuals from the

population to compete in a tournament; the most fit individual from the sub-

group wins the tournament and is selected as a parent, with the process repeat-

ing until the required number of parents is reached. Parents are then paired up

and undergo the process of crossover, with a success rate of 85%; a single-point

crossover function is employed in the present work (see Figure 3.6), yielding a

pair of so-called “children” for each pair of parents.

Figure 3.6: Schematic of parents undergoing single-point crossover; the dashed
line represents the random point at which parameters are swapped

Following crossover, all parameters composing each of these children un-

dergo mutation (a success rate of 0.75% is employed) through a Gaussian mu-

tation function. This function is designed to mutate parameters in a Gaussian
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fashion with a variance which monotonically decreases as the number of GA

generations increase throughout the solution. These potentially mutated chil-

dren then compose the next generation within the GA, and the process is re-

peated until the stopping criteria (i.e. a maximum number of generations) is

met.

The capability of GAs to negotiate non-convex objective functionals, while

advantageous, should not be overestimated, and thus efforts at improving ro-

bustness should be carefully considered. In this spirit, a “divide-and-conquer”

scheme [93] is also adopted in the present work; a schematic of this process is

given in Figure 3.7. The first step of this approach divides the global solution

space into local solution spaces, with respect to the spatial parameters, ci. For

this step, the eight compartments formed by the transverse bulkheads are em-

ployed as bounds of the local solution spaces. Employing these spatial bounds,

the GA described previously is executed eight times (once for each of the eight

local solution spaces), and the resulting optimal solutions are recorded. These

solutions are then employed in the construction of the initial population for a

final GA execution, searching over the global solution space (i.e. the entire hull).

In this manner, the solution is arrived at in an incremental fashion, by first solv-

ing local problems of reduced difficulty, and then employing these solutions to

inform the more difficult global solution.

A summary of the above solution process is now presented, where the only

difference between the example problems lies in the number of individuals com-

posing a population; differing values for Example Problem 2 are given in paren-

theses. It is noted that due to the stochastic nature inherent in GAs, the solution

process presented below was executed five times in order to obtain an average
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Figure 3.7: Schematic of divide-and-conquer solution scheme

“optimal” solution.

Sequential Monte Carlo inference to determine the posterior

Shifting our focus to the Bayesian formulation of the problem, we take as our

point of departure the fact that the posterior defined in Equation (3.6) is analyt-

ically intractable. For that reason, Monte Carlo methods are relied upon in the

present work, as they are essentially the only accurate way to carry out the in-

ference task. Traditionally (and more specifically), Markov Chain Monte Carlo

techniques have been employed [52, 38]. These techniques are based on build-

ing a Markov chain that asymptotically converges to the target density (in this

case, the posterior, π (Θ)) by appropriately defining a transition kernel. While

convergence can be assured under weak conditions [69], the rate of convergence

can be extremely slow and require a large number of likelihood evaluations and

calls to the forward solver. Particularly, in cases where the target posterior can
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Table 3.2: Summary of the divide-and-conquer GA employed

Divide-and-Conquer GA:

• 8 Local Searches (spatially varying parameters are restricted to the
eight compartments, respectively):

– 250 generations of 80 (160) individuals (Generation 0 is randomly
initialized);

– 1 elite individual is retained for next generation;

– k = 8-tournament selection selects 80 (160) parents for crossover

– 80 (160) parents undergo single-point crossover with a success
rate of 85%

– 79 (159) children (one child is discarded) undergo Gaussian mu-
tation with a success rate of 0.75%.

• 1 Global Search (spatially varying parameters are unrestricted):

– 250 generations of 80 (160) individuals (Generation 0 is composed
of best individuals from eight local searches);

– 1 elite individual is retained for next generation;

– k = 8-tournament selection selects 80 (160) parents for crossover

– 80 (160) parents undergo single-point crossover with a success
rate of 85%

– 79 (159) children (one child is discarded) undergo Gaussian mu-
tation with a success rate of 0.75%.

have multiple modes, very large mixing times might be required which may

sometimes render the method impractical or infeasible. Furthermore, in MCMC

techniques, it can be difficult to design a good proposal distribution when op-

erating in high dimensional spaces. These problems are amplified if the poste-

rior distribution is multi-modal (i.e. several significantly different scenarios are

likely, given the available data).

In this paper, we propose the use of Sequential Monte Carlo (SMC) techniques.
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These techniques represent a set of flexible, parallelizable, simulation-based

methods for sampling from a sequence of probability distributions [71, 28, 60]

(as with MCMC methods, the target distribution(s) need only be known up to a

constant). SMC techniques utilize a set of random samples (commonly referred

to as particles), which are propagated using a combination of importance sam-

pling, resampling, and MCMC-based rejuvenation mechanisms [26, 25]. Each of

these particles corresponds to a different value of the model parameters and is

associated with an importance weight which is proportional to the the posterior

value of the respective particle. These weights are updated sequentially along

with the particle locations. Hence, if {Θ(m), w(m)}Mm=1 represent M such particles

and associated weights for the distribution π (Θ), then:

π (Θ) ≈
M∑

m=1

W (m) δΘ(m) (Θ) (3.17)

where W (m) = w(m)/
∑M

m=1 w(m) are the normalized weights and δΘ(m) (.) is the Dirac

function centered at Θ(m). Furthermore, for any function, h (Θ), which is π-

integrable, Equation (3.17) almost surely behaves as [24]:

M∑
m=1

W (m) h
(
Θ(m)

)
→

∫
h (Θ) π(Θ) dΘ (3.18)

In order to facilitate sampling, we define a sequence of densities, πγ, indexed

by the parameter γ ∈ [0, 1] as follows:

πγ (Θ) = Lγ (Θ) p (Θ) (3.19)

where γ plays the role of reciprocal temperature in simulated annealing [83]. Triv-

ially, for γ = 0 we recover the prior p (Θ) and for γ = 1, the posterior (i.e. Equa-

tion (3.6)). For small γ, the impact of the data is subdued and πγ can be easily

sampled as it is close to the tractable prior. As γ increases, πγ approaches the
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target posterior. The role of these auxiliary distributions is therefore to bridge

the gap between the prior and posterior and provide a smooth transition path

where importance sampling can be efficiently applied. Starting with a partic-

ulate approximation of πγ=0 (which trivially involves drawing samples from

the prior with weights w(m) = 1), the goal is to gradually update the impor-

tance weights and particle locations in order to approximate the intermediate

bridging distributions. Naturally, as the number of intermediate distributions

increases, the transition path becomes smoother. At the same time however,

the computational cost is larger, since sampling from any of these distributions

implies likelihood evaluations and therefore calls to the (generally expensive)

forward solver. We have developed an adaptive SMC scheme (summarized in

Table 3.3 and explained in detail in [60]) where the necessary number of inter-

mediate distributions is determined automatically so as to retain a prescribed

level of accuracy in the particulate approximations.

3.4 Results and Discussion

Results from the two example problems discussed in the Sections 3.3.1 and 3.3.2

are now presented. Two test cases for each of these example problems are ex-

amined using the solution techniques outlined in Sections 3.3.3 and 3.3.3. As a

means of quantifying the success of the two approaches as well as the consis-

tency of the solution between the GA runs, the following metric is used:

e =
‖ Γtar − Γsol ‖`2

‖ Γtar ‖`2
(3.20)

where Γtar represents a collection of the target section properties employed to

simulate the observed response, Uobs, while Γsol represents a collection of section
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Table 3.3: Basic steps of the Adaptive SMC algorithm employed

Adaptive SMC algorithm:

1. Let γ j, j = 0, 1, 2, . . . be an increasing sequence of γ’s such that γ0 = 0

2. For j = 0, let {Θ(m)
0 , w(m)

0 }
N
m=1 be the initial particulate approximation to

πγ0 and ES S 0 the associated effective sample size [28]. Set j = 1.

3. Reweigh: If w(m)
j

(
γ j

)
= w(m)

j−1

πγ j

(
Θ

(m)
j−1

)
πγ j−1

(
Θ

(m)
j−1

) are the updated weights as a func-

tion of γ j then determine γ j so that the associated ES S j = ζES S j−1 (the
value ζ = 0.95 was used in all the examples). Calculate w(m)

j for this γ j.

4. Resample: If ES S j ≤ ES S min then resample (the value ES S min = M/2
was used in all the examples).

5. Rejuvenate: Use an MCMC kernel P j (., .) that leaves πγ j invariant to
perturb each particle Θ(m)

j−1 → Θ
(m)
j

6. The current population {Θ(m)
j ,w(m)

j }
N
m=1 provides a particulate approxi-

mation of πγs in the sense of Equations (3.17), (3.18).

7. If γ j < 1 then set j = j + 1 and goto to step 3. Otherwise stop.

properties emanating from the GA solution (i.e. the “optimal” solution) or the

SMC solution, which in all cases was based on a population of M = 500 particles.

The following values were used for the hyperparameters of the prior model in

Section 3.2.3, given by Equation (3.16):

• kmax = 100 and s = 0.1

• aτ = 1.0 and aµ = 0.0001

• a0 = 2.0 and b0 = 1 × 10−6

• a = 2.0 and b = 1 × 10−6 (Equation (3.15))
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3.4.1 Example Problem 1

Details of the two test cases examined for Example Problem 1 are given in Ta-

ble 3.4, where values under the heading “Location” represent the center(s) of the

damage, and negative numbers under the subsequent ĵ − Coord. sub-heading

indicate the port side of the ship. The first test case, “Test Case A,” provides a

rather straightforward problem, in that a single, large corrosion pattern is the

target damage scenario. Conversely, in the second test case, “Test Case B,” the

ability of the divide-and-conquer solution scheme to accommodate optimal so-

lutions from different local solution spaces is examined. Illustrations of these

target damage scenarios are given in Figures 3.8a and 3.11a.

Table 3.4: Test cases examined for Example Problem 1

Test Location Size Severity
Case (in) (in) (in)

î-Coord. ĵ-Coord. î-Dir. ĵ-Dir.
A 3270 -260 240 240 4
B 4445 -260 240 120 4

2095 260 240 120 4

With respect to Test Case A, an examination of Figure 3.8 reveals that the GA

solution (Figure 3.8b) clearly predicts damage in the correct location, with the

shape being slightly “thinner,” longitudinally, than the shape of the target dam-

age scenario (Figure 3.8a). It is possible that the upper bound on the number of

RBFs ( arbitrarily set at Nmax = 4) may be to blame for this a result, given that

all five of the GA runs produced similar results and employed the maximum

number of RBFs. However, while an increase of this upper bound would allow

for a better approximation, the resulting time required to converge to a solution

can increase dramatically, given that the number of parameters goes as 4 × N.
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The Bayesian formulation to the problem also leads to accurate identification

of the damage scenario as seen in Figure 3.8c. However, an advantage of the

proposed framework is that apart from single-point estimates as in Figure 3.8c,

the analysis can lead to quantification of the uncertainty due to noise in the

data. In Figure 3.9, for example, posterior statistics with regard to the thickness

variation are depicted. Furthermore, in Figure 3.10 the posterior density on the

standard deviation of the noise in the data is shown which is in good agreement

with the reference value. Finally, the metric values computed for each of the GA

runs and by averaging over the 500 particles generated in the SMC runs, given

in Table 3.5, provide evidence of the consistency between each run.

(a)

(b)

(c)

Figure 3.8: Example Problem 1 - Test Case A (a) target damage configuration;
(b) representative solution from the GA; (c) maximum likelihood solution from
the SMC (gray lines indicate locations of transverse bulkheads)

Considering now Test Case B, a similar examination of Figure 3.11 illustrates

the consistency between the GA solution (Figure 3.11b) and the target damage
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Figure 3.9: Example Problem 1, Test Case A - Posterior mean and posterior
quantiles of thickness variation along lines at (a) î − Coord. = 3270 and (b)
ĵ − Coord. = −260 obtained using the Bayesian inference scheme described in
Section 3.3.3

scenario (Figure 3.11a). As in Test Case A, the shape is at issue, and it is likely

that the above explanation applies to this test case as well. However, the results
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Figure 3.10: Example Problem 1, Test Case A - Posterior density of error stan-
dard deviation σe (Equation (3.13)) compared with the reference value σe,re f =

0.033 used in generating the data Uobs

from this test case reveal a significant conclusion: the divide-and-conquer so-

lution scheme can accommodate optimal solutions from different local solution

spaces. Indeed, an examination of early generations from the final GA execu-

tion, searching over the global solution space, revealed that a single corrosion

pattern was the optimal solution. However, after these early generations were

complete, the second corrosion pattern became part of the updated optimal so-

lution. This result almost certainly emanates from the two disparate solutions

exchanging their respective optimal traits through the crossover function. Fig-

ures 3.12 and 3.13 depict the estimated posterior statistics for the thickness vari-

ation and noise’s standard deviation, respectively. Again, it is evident from Ta-

ble 3.5 that the solutions are consistent for all five of the GA runs and the SMC

run.
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(a)

(b)

(c)

Figure 3.11: Example Problem 1 - Test Case B (a) target damage configuration;
(b) representative solution from the GA; (c) maximum likelihood solution from
the SMC (gray lines indicate locations of transverse bulkheads)

Table 3.5: Comparison metric values (Equation (3.20)) for Example Problem 1.
In the SMC columns the average ± st. deviation values are provided which were
estimated from the particles approximating the posterior.

Test Case A Test Case B
Run GA SMC GA SMC

1 1.143e-3 1.231e-3
2 1.196e-3 1.412e-3
3 1.221e-3 0.904e-3 1.391e-3 0.998e-3
4 1.086e-3 ± 0.185e-3 1.316e-3 ± 0.366e-3
5 1.012e-3 1.249e-3

3.4.2 Example Problem 2

Shifting attention to Example Problem 2, Table 3.4 presents the details of the

target damage scenarios examined in each of the two test cases. The shapes
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Figure 3.12: Example Problem 1, Test Case B - Posterior mean and posterior
quantiles of thickness variation along lines at (a) î − Coord. = 2095 and (b)
ĵ − Coord. = 260 obtained using the Bayesian inference scheme described in
Section 3.3.3

represented by these test cases are more like a “bullseye” than the rectangular

shapes examined in the previous example problem. This choice emanates from
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Figure 3.13: Example Problem 1, Test Case B - Posterior density of error standard
deviation σe (Equation (3.13)) compared with the reference value σe,re f = 0.033
used in generating the data Uobs

the fact that framing damage due to an internal explosion forms the focus of

this example problem. As in Example Problem 1, Test Case A provides a more

straightforward problem, whereas Test Case B provides somewhat more of a

challenge to the GA. However, in order to further examine the capabilities of

the divide-and-conquer strategy, Test Case A actually represents two internal

explosions which end up being linked through the less severely damaged re-

gions surrounding their respective centers. The question here relates to whether

two blasts from coincident compartments can be detected separately versus be-

ing lumped together as a single explosion representation. Illustrations of these

target damage scenarios are given in Figures 3.14a and 3.15a.

The answer to the above question is quickly answered upon inspection of re-

sults given in Figure 3.14. Indeed, solutions from all of the GA runs reproduced

the dual explosion as a single explosion. This result, however, is not terribly sur-
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Table 3.6: Test cases examined for Example Problem 2

Test Location Severity
Case (in) (in)

î-Coord. ĵ-Coord.
A 3420 -372 8

3180 -248 8
1740 -372 10

B 5280 -372 6
5400 -248 6

prising when considering the close proximity of the two explosions in addition

to the fact that they occur in different compartments. Recalling the restrictions

on the spatial parameters during local GA executions, it is seen that while a

single blast occurs in each of two coincident compartments, a more viable solu-

tion may instead straddle the compartments, thus capturing the overall effects

of the target damage scenario through a single explosion representation. In this

case, therefore, the divide-and-conquer strategy may actually have done more

harm than good. Nevertheless, damage predicted by the GA is clearly located

in the proximity of the target location, with the results between each of the GA

runs exhibiting consistency as given by the computed metric values given in

Table 3.7.

With respect to Test Case B, an examination of Figure 3.15 reveals some of

the same characteristics of the divide-and-conquer strategy as seen in previous

three test cases. First, the capability of the solution strategy to combine optimal

solutions from different local solution spaces is clearly demonstrated. However,

with respect to the explosion pattern at the aft end of the ship, it is again seen

that the overall effect of the damage is captured, but the shape of the GA solu-

tion (Figure 3.15b) differs from that of the target damage scenario (Figure 3.15a).
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(a)

(b)

(c)

Figure 3.14: Example Problem 2 - Test Case A (a) target damage configuration;
(b) representative solution from the GA; (c) maximum likelihood solution from
the SMC (gray lines indicate locations of transverse bulkheads)

Again, this is likely due to the upper bound on the number of RBFs (also arbi-

trarily set at Nmax = 4). Finally, the metric values for this test case are given in

Table 3.7, with the first four GA runs producing relatively consistent solutions,

and the fifth GA run producing a poor result. Upon further examination of this

run, it appears that the solution simply did not converge prior to the maximum

number of generations. While convergence of the solution did not appear to be

an issue during any of the other 19 runs executed for this paper, a more robust

stopping criteria is worth consideration for future research efforts.
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(a)

(b)

(c)

Figure 3.15: Example Problem 2 - Test Case B (a) target damage configuration;
(b) representative solution from the GA; (c) maximum likelihood solution from
the SMC (gray lines indicate locations of transverse bulkheads)

Table 3.7: Comparison metric values (Equation (3.20)) for Example Problem 2.
In the SMC columns the average ± st. deviation values are provided which were
estimated from the particles approximating the posterior.

Test Case A Test Case B
Run GA SMC GA SMC

1 7.366e-4 4.400e-4
2 5.254e-4 7.194e-4
3 4.885e-4 7.966e-4± 6.731e-4 58.057e-4±
4 5.518e-4 12.269e-4 4.687e-4 33.196e-4
5 5.637e-4 24.535e-4

3.5 Conclusions

The ever-changing conditions within which the naval fleets operate provide a

strong motivation for the need to treat health monitoring within the context of
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full-scale ship structural systems. The present paper aimed to treat the HSHM

problem within a model-based context, vis-à-vis two approaches: a classical or

optimization-based approach adopting a divide-and-conquer genetic algorithm

and a Bayesian statistical inference approach adopting a sequential Monte Carlo

algorithm.

The results presented herein demonstrate the promise of applying the

model-based approach to HSHM in full-scale ship structural systems. The clas-

sical approach consistently produced reasonable point estimates of the target

solutions, making it a viable choice for this application. However, given the

uncertainty typically associated with the operating conditions of ocean-going

vessels, it is the authors’ opinions that the Bayesian approach to the problem

demonstrates the most promise for future research efforts. The direct, quanti-

tative treatment of uncertainty within the inferred damage predictions, as pro-

vided by the Bayesian solution schemes, provides the framework necessary to

begin examining the final step in the SHM paradigm: damage prognosis.
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