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It is clear that a viable theory of computation
must deal realistically with the quantitative asrects
of computing and must develop a general theory which
studies the properties of possible measures of the
difficulty of computing functions. Such a thecry must
go beyond the classification of functions as comput-
able and noncomputable, or elementary and primitive
recursive, etc. It must concern itself with comput-
ational complexity measures which are defined for all
possible computations and which assign a complexity
to each computation which terminates. Furthermore,
this theory must eventually reflect some aspects of
real computing to justify its existence by contribut-
ing to the general development of computer science.

J. Hartmanis and J.E. Hopcroft

"An Overview of the Theory of Computational Complexity"”



1 Introduction

§1.1 Motivation

This thesis is an effort to contribute to the
Theory of Computation by investigation of a special class
of complexity measures, the Step-counting functions asso-
ciated with flowchart programs. It would perhaps bs fit-
ting to begin by describing the worthy contributiong £
all the others who have brought the theory to its present
state, yet the field has grown to a point where such a
review would far overshadow any new material we might
present. In the discussion which follows we therefore
attempt merely to outline the immediate context in which
this work was done. Apologies are offered to thosec whose
work may be relevant but whose work is not menticned because
it did not directly influence the thesis.

The work which did directly influence the thesis
falls roughly into three areas: Program Schemata; the LBA
Problem, NP=?P, and nondeterminism in general; Computational
Complexity. Although bordering on the first two areas, our
interest lies primarily in Computational Complexity.

An undesirable gap has been growing in Complexity
Theory between the concrete an the abstract. Early work,
beginning with Hartmanis and Stearns [14], dealt with com-
plexity measures defired in terms of very specific comput-
ing devices, mostly Turing machines. With the introduction

in 1967, by M. Blum [1]) of an axiomatic characterization



of "step-counting functions®, the theory took a turn toward
the abstract. Blum's axioms have been shown to have many
deep consequences and have served as the roots of a rapidly-
.growing fruitful theory. Nevertheless, they are not wholly
satisfactory in that they admit too many measures, some of
which are intuitively unacceptable (see §1.5). Since the
answers to a large number of questions one may ask about

a complexity measure are independent of the Blum axioms,

work hac continued in the specific models of computation
whera such questions are answerable. The problem is that we
freguently want to talk about measures that lie between these
two extremes: on the one side the specific measures with their
peculiar local properties, and on the other side the Blum
measures, so general as to render many questions meaningless.
The theory needs a notion of "natural®" complexity measure to
£ill this void, as Hartmanis points out in [10].

We can find a case in point, and one motivation for
the present work, in nondeterminism. Much attention has
been drawn of late to questions which amount, in essence, to
whether there is any computational power to be gained by al-
lowing nondeterminism in certain specific models of resource-
bounded computation [6,13,17]. Such questions are beyond the
scope of general Blum complexity theory, which does not recog-
nize a distinction between deterministic and nondeterministic
measures. Nonetheless, this distinction seems to be an

important abstract concept, transcending individual models.



Our first appfoach to more abstract nondeterminisw
(which resulted in theorems 4.1 and 4.2) made use of Turing
machines with recursive cracles. Although the measures
defined'by these machines are quite varied in tneir behav-
iour, owing to the oracles, they still have many of the
idiosyncracies of the Turing machine step measure and there-
fore are not exactly what we are looking for.

What we seek is either a narrower abstract definition
of complexity measure, or, failing that, a class of specific
measures which reflect a natural conception of computation
and in which we can discuss notions like nondeterminism, but
which are sufficiently general to allow us to overlook the
peculiarities of the individual measures. Hartmanis [10]
gives several good reasons why we are unlikely to sﬁcceed
by piling on more and more exclusionary additicns to the
Blum axioms, sugcesting that a bottom-up constructive app-
roach is more promising. With this in mind} we have deciced
to put off attempts to improve upon the Blum axioms until we
know more. In the mean time we hope to learn more by exam-
ining a class of specific natural Blum measures.

Research on reducibility and equivalence in program
schemata by Ianov, Paterson, and others [16,21,24) has shown
a way to view the structure of algorithms separate from the
obscuring details of computational systems. We apply this
same technique to complexity measures. A flowchart is a
program schema, defining a program for each interpretation

given to its operations. Likewise, a flowchart language



is a complexity measure schema, defining a complexity measure
for each (universal) interpretation given to its operations.
Whereas the research in program schemata has been primarily

. motivated by an interest in the problems of formal simplific-
ation and, more recently, in questions about the computation-
al generality of various program structures (as exemplified
by (3]), we are presently interested in how the complexity
classes defined by the step-counting functions are affected
by changes of interpretation, which we consider superficial

relative to the unchanging schematic framework.



§1.2 Outline of Thesis

In this chapter we intend to lay a basis in motiv-
ations aﬁd definitions for the results which we describe
later. The chapters following this one each cover a group
of properties of the flowchart step measures. Together,
they represent an attempt to place the class of flowchart
measures as a bridge between the specific natural measures
with which we are familiar and the full generality of the
Blum measures.

Chapter 2 deals with the problem of recursively
enumerating complexity classes. It exhibits two large
groups of bounds for which the flowchart complexity
classes are provably r.e.

Chapter 3 approaches the flowchart measures and
their associated G8del numberings as objects of translations.
The flowchart G.N.s are shown to be especially good targets
for translation from other G8del numberings. We show that
a "simplé" translation between flowchart interpretations
exists and that under some circumatances it produces
efficient programs.

Chapter 4 is concerned with how nondeterminism relates
to determinism in flowchart programs. Two examples of flow-
chart interpretations are given, for one of which NP#P, and
for the other of which NP=P. These are presented so as to
apply not only to the polynomial time bounds, but to any class

of time bounds which share certain properties with them.



It is thus shown that the answer to Cook's NP=?P [6) and
the answers to similar questions about nondeterminism and
other classes of time bounds must be strongly dependent on
the precise model of computation. Further results are
given which indicate that if there is a "rule" it is for
nondeterminism to allow greater computational speed than
determinism.

Chapter 5 gives two examples of the manner in
which well-known natural measures (Turing machine tape
and multitape T.M. time) can be "simulated" by flowchart
measures so as to make classes like the polynomially-
bounded computable functions the same.

Chapter 6 offers two additional properties which
we have observed in the flowchart and other natural
measures that perhaps whould be' considered requisite for
“naturalness". Examples are then given of "natural"
properties proposed by others which do not hold for all
flowchart measures. Finally, some ancillary properties
are presented which demonstrate how flexibly the flowchart
interpretation may be used to tailor the measure, so as to
uniformly speed up the flowchart "machine®, to selectively
reorxder the complexities of certain functions, or to limit
the computational advantage gained by having more than one

register.
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Chapter 7 concludes the thesis. The first section
summarizes the main results. The second section catalogues
some natural questions which we would like to answer but
have not answered as yet. The last section provoses a
tentative framework for an abstract axiomatization of step
measures which would explicitly relate the "step" as a

unit of cost to the step as part of a computation.



§1.3 Basic Notation and Definitions

We are forced to assume that the reader has prior
knowledge of the most fundamental terms and concepts of
Recursive Function Theory [25], Complexity Theory 2],
and Graph Theory [8]. However, some elementary defin-
itions are included below, because our versions are not
standard or because we wish to fix notation.

A. General

N denotes the set of non-negative integers,
{0,1,2,3, +.. }. A number means an element of N.

N is the same as ('l’ '0‘*)*, a regular subset of the
binary (bit-) strings, (0,1}*. Bit-strings are differ-
entiated from decimal numerals and from variables by
enclosure with "'"s. Thus, if n =5, *1%01'n'0"
represents the bit-string *11111011010*, which is 2010
in decimal notation. Zero is written e (the null string)
when treated as a bit-string. Multiplication (x-y) is
distinguished from co;catenation of bit-strings (xy).

Unless stated otherwise, a (partial) function
means a (partial) computable function from (a subset of)
N to N. R denotes the set of all total recursive functions.
£|S denotes the restriction of the (partial) function £
to the domain S. Two (partial) functions f and g are
equivalent (f = g) if for all x (such that f(x) or g(x)

is defined) f(x) = g(x). If for all x (such that £(x)



or g(x) is defined) £(x) < g(x) then we write f < qg.
If a relation holds everywhere but on a finite set we say

that it holds almost everywhere (a.e.); if it holds on

an infinite set we say it holds infinitely often (i.o.).
For example, f > g i.o. means that there are infiritely
many x such that £(x) > g(x). If £ > k a.e. for every k

in N then f is ultimately increasing. A function g is

said to be O(f) for some function f if there is a constant
¢ such that g < c-f.

A predicate is a function from N to {0,1}. If P
is a predicate then'ﬁ denotes the complement of P, the
function which is 0 when P is 1 and v.v.

To define functions we will frequently use an informal
LISP-like [22] notation, based on A. Church's (4] lambda
calculus (e.g., Ax,y((x>y)—> (x-y); (y-x)) for the
integer norm ). It follows standard conventions close-
ly enough that the reader should h#ve no difficulty in

understanding.
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G generally denotes an acceptable G8del numbering
of the partial recursive functions (e.g., a lexi-
cographic enumeration of the programs for a universal
binary single-tape Turing machine). G denotes a Blum
complexity measure on G (e.qg., the T.M. step count).

Gi denotes the ith

partial recursive function in this G.N.
and G; denotes its complexity or step-counting function.
For any recursive function t, R% (abbreviated Rt) is the
class of total recursive functions of complexity t or

less almost everywhere, i.e.,
Rgt- = {f:N+N | £2Gy, G;<t a.e., feR }
Similarly L% denotes the class of sets
{s: 6 accepts S, Gi<t a.e., feR }

A function 1 is a translation from G8del numbering G to

G.N. H if for every ieN .

G = Hr(i) *
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B. Flowcharts

We define here a specific type of program schema,
called a flowchart. Similar definitions of schenata are
found in (3,16,21,24).

A function name is a sequence of one or more "F"s
followed by one or more "'"s. A predicate name is a
sequence of one or more "P"s followed by one or more "'"s.
?{j) denotes "F...F'...'", with 1 "F"s and j "'"s, and
Fij) should be interpreted similarly.

A flowchart %anquage L is a pair (IP'IP) of sets of
nunbers defining a set *

F= M) gery)

i
of ng-ary predicate names and a set

= =(n;) .
F = {Fmil : leIF}

of nj-ary function names. Unless the contrary is stated,

P and F are assumed to be recursively enumerable and of
unary names. With few exceptions, the following definitions
and proofs apply to the general n-ary case, but the notation
required to carry this through will eventually be dropped,
since it becomes nearly unreadaﬁle.

An L-predicate-term is a predicate name Fé?i) fol-

i
lowed by n; positive integers, called register indices. An

L-function-term is a positive integer, also called a reg-

ister index, followed by a function name Féni) and n; reg-
i
ister indices.

* [Note: ((mi,ni)}i:1 is an enumeration of NxN. ]
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A nondeterministic L-flowchart is a labelled directed

graph with nodes labelled with L-predicate-terms and L-
function-terms and edges labelled with 0 and 1, the nodes
‘being indexed by an initial segment of the positive integers.
The node indexed with 1 is called the starting node. A
deterministic L-flowchart in addition satisfies the require-
ment that here be at most one edge from each function-term
node and at most one edge labelled 0 and at most one edge
labelled 1 from each predicate-term node. Ordinarily, a
flowchart is taken to mean a non-deterministic L-flowchart
for some flowchart language (FCL) L. All flowcharts are
assumed to be finite, although it does make sense to speak
-of infinite flowcharts.

In a flowchart, a terminal node is a node which has no
edges from it, or which is a predicate-term node and has no
0-edges or no l-edges from it.

Example of a flowchart:

1l: 2 1

. F
20 Phisi1c1
3: 2 °2 2
24 01;

Here we have substituted shorter auxiliary names for
the functions and predicates in order to enhance readability.
This practice will be continued in subsequent proofs and
examples. The canonical "FP'" notation is necessary only to

insure the existence of an enumeration of all flowcharts.
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If Ai is a flowchart, A denotes the node of Ai

i<i>
with index j, if such exists. Otherwise, Ai<j> is defined
to be the null set, §. A path in Ay is a sequence
Ai<j1>’ Ai<j2>' ... of nodes such that there is an edge
from each node to the next one, repetitions being permitted.
A cycle is a path which begins and ends with the same node.
A flowchart which is a tree is called a tree-flowchart.

When we talk about the complexity of computations
on flowcharts, we will need a simple canonical way of

encoding the flowcharts as integers. For this reason only,

the following detailed description is given.



flowchart ::= node*

node ::= $ term O-edges l-edges
term ::= index f-name index list
term ::= p-name index list
index ::= aoh*

0 ::= ‘00’

1 ::= ‘01"

p-name ::= 4 $ name

$ ::= ‘10’

$ ::= '

name ::= 1t gt

index list ::= s (3 13233)'

f-name ::= $ name

O-edges ::= s (& gggg)*

edge ::= 0 index

l-edges ::= $(4 edge)”

L]
Condensed slightly, the flowchart descriptions are:

($(index+ #)$ name $(# index)  $(2 edge)” $(# edge)”)” .

Note: In the description above the notation of regqular
expressions is used. X* denotes all strings of the form X
concatenated with each other in all possible ways, that is,
all sequences of strings of the form X, including the null +
string. When we wish to exclude the null string we write X .
X+Y denotes all strings of the form X or Y.
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As this clearly demonstrates, the valid flowchart
descriptions 3re a regular subset of ('1'('0'*))', which
we have identified with N. The way in which they may be
interpreted as describing flowcharts is suggested in part
by the names of the nonterminals in the preceding grammar,
and may be further explained as follows:

, A node describes a node. The index of the node it des-
cribes is the order of the node in the F.C. description.
An index is an encoded integer, possibly the index of a
register.

An edge is an encoéed integer, possibly preceded by a
'00'. It represents the index of the node it is in less
the index of the node to which it goes. A negative sign
is rep£esented by the initial '06' when it appears. If
the edge is to an index beyond the range of the flowchart
description it is interpreted as null (going nowhere).

An f-name is the name of a function and a p-name is the
name of a predicate. For n-ary operations there is a
final string of n '0's in the name. The n argument
register indices are taken to be the first n indices
encoded following the name. If there are too many, the
excess are ignored. If there are too few, the unspecified
register indices are assumed to be 1. If the result
register index of a function is missing, then it is also

assumed to be 1.

[Local note on ugderlining: Here an index is not an index,
but the nonterminal in the preceding grammar, or a string
generated from that nonterminal. Similarly for other words.)
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All invalid flowchart descriptions are defined to
represent the null flowchart (0 or e), so that every
element of N can be thought of as denoting a unigue flow-
‘chart, A . If we wish to enumerate some subset of the
flowcharts, say the deterministic flowcharts, D, we define

Dn= A if Aje D and D= A, (the null flowchart) if Anl D.
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C. Programs

An interpretation J is a pair (P,F) of a set

e pns), s g7
P (Pm;" eI }

of predicates and a set
F= '(g;,(i“i’: ierd )

of functions. Together these predicates and functions are
called the operations of J. Unless stated otherwise, P and F
are always r.e. sets and the predicates and functions are
always recursive. Lg denotes the language (Ig,Ig).

- J-flowchart is an abbreviation for LJ—flowchart.
A and D dencote the canonical lexicographic enumerations of
the (N,N) flowcharts (i.e., all the flowcharts) as described
above. These may be also interpreted as enumcrations of
the J-flowcharts by letting all flowcharts using names of
operations not in J represent the null flowchart.

A flowchart program Ag is a flowchart A, together with

an interpretation J such that Ai is an LJ-

S )
flowchart. Ai is called a J-program.



D. Computation

Each program Ai may be interpreted for each n as
defining a unique partial n-ary function Ag(xl....xn).

"We define this by first describing a more general action
of Ag on sets of sequences of numbers, which might be
called "instantaneous descriptions" (i.d.s). Let m be the
maximum register index appearing in Ai. The finite
sequences of one or more elements of N are denoted by N+,
and N; denotes the finite sets of these. For each set

+
S in NZ define Ai[s] =

{ (S',x]'_, cee X;n)= (s'xl' cee xn) is in s, nzm' Ai(s)*"

and

(1) If Ag g, is labelled By M)z then

i<s 1...zk

s J
(a) there is an edge labelled Pj(xzi‘..xzi from Ajcs>

to A and xi =% for i =1 tom, or

i<s'>
(b) there is no edge so labelled, s' = 0, and xi'- xg

for i =1 to m.

(2) Otherwise, A {s 1abelled zOFj(k)zl...zk, and

i<s>

(a) there is an edge from A;

i<s> to A

i<g'> and

X, = Fg(xz,...xz), x{ = x; for i=1¢tom, i 240
0 1 k

or

(b) there is no such edge, s' = 0, and x

J - -
x;°= Fj(xzi...xzi, x} =x; fori=1tom, i #~20'}

J
Ai[S]O S.

J J e J
Ajls], .= Ai[Ai[S]n_ll for n > 0.
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Aty oeeer )Ty = AJLU(LY  oeuyy)s 5k ==> y;=01] .

This is called the nth stage of the computation of
Ag(yl,...yk). The halting point is the first n>0 for
which the first, or node-, component of one eclement of

the nthstage of the computation is 0. If n is the halting

. J
point of Ai(yl""yk) and
. : J
{xy: (0,%),...%) is in [Ai(yl""yk)]n}
has a single element we say that this element is

J . .
Ai(yl,...yk) and that the computation ccnverges in n steps.

In this case n is called the running-time, complexity, cr

J : J
step count of Ai(y1'°"yk) and written as ﬁi(yl,...yk).
Otherwise, Ag(yl,...yk) and Eg(yl""yk) are undefined.

—————— e

Ai computes the (partial) function
AYpree ¥y ALY e eyy)) s

Ag strongly computes a partial function f(n) iff

Ag(xl,...xm) = f(xl,...xn)

for every XyreeoXp and xl,...xn, where m is the maximum
register index of A;, as before. (This means that the
function computed by Ag is independent of the initial value
of any but the input registers— that is, it does not
matter whether the other registers are zero or not.)

It follows directly from the definitions that Ag
defines a (partial) recursive function if Ai is finite

and J recursive. Unless it is stated to the contrary, we
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will speak only of this type of program, with finite flow-
chart and recursive interpretatioa.

For any flowchart intcrpretation J, under the stan-
dard conventions we have stated, the J-programs are r.e.
This follows directly from the J-flowcharts' peing r.e.

We denote the canonical enumerations of the nondetermin-

J

istic and deterministic J-programs by Ai, Ag, A3, cee

and Di, Dg, Dg, ..., respectively.
A program accepts a set S if it computes a total
function f such that
S = {x: f£(x)#0}.
We extend this definition to include partial functions,
saying that f (partial) accepts S iff
S = {x: £(x) defined & £(x)#0}.

Zero is thus interpreted as a "reject value; wheras all

other values are interpreted as "accept values”.
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BE. Universality

A flowchart interpretation J is universal iff, for
any G8del numbering of the partial recursive functions, G,

there is a recursive map, h, such that for each i

- ~J
Gi % Dpqiy -

Thus, equivalently, J is universal iff Di, Dg, ... is a G.N.,

and J is universal iff for every partial recursive G; there
g such that Gi H Dg. Say that J is nondeterministic-

ally universal (N-universal) iff Di, Dg, ... 18 a G.N.; we

is a D

conjecture that N-universality does not imply universality.*

A flowchart interpretation J is strongly universal

iff for every p.r. Gi there is a j such that Dg strongly
computes Gi' We can easily see that this kind of universality
is stronger than the first kind by looking at a universal
interpretation J, modified so that each of its functions and
predicates requires an additional argument which must be

zero unless the function is to return the value one. Unless
we are certain to always have a zero-valued register, this
interpretation cannot compute anything consistently by the
one-function, so it is not strongly universal; it is still

universal, however.

*[ As J. Simon has pointed out, there is a simple proof of
this when we restrict ourselves to single-register programs.]



If DJ_is a G8del numbering then QF is a Blum com=-

plexity measure on it, and similarly for the nondetermin-

J

istic programs. When D” is a Blum measure, it is a sub-

1 is a submeasure of g?,

1 and AF.

measure of &J. If I ¢J then D

and similarly with respect to A

J
If t is a recursive function, we denote by R%

the complexity class of functions .
{£:+N| £ 2], A] < ta.e., £feR}.
By R% we mean the same thing, but for deterministic pro-
grams only. We say that a set S of functions is r.e. iff
there is an r.e. set of numbers W such that
S = {£:N+N| £ = Gy, i e W},

where G is a G&del numbering.
J J

L% and L% are the corresponding complexity classes
of languages.

This notation is all extended to gets T of complex-
ity bounds in the obvious way, e.g.,

J J
R’%z:UR%.
teT

The superscript J is sometimes omitted when the meaning
is clear from the context.

A t-bounded J-program is a program Ag such that

J
A} <t a.e.
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P. Abbreviations and Svmbols

a.e, almost everywhere

G.N. G8del numbering

F.C. flowchart

iff if and only if

i.o. infinitely often

1ng(n) length of n as bit-string
min(S) least element of the set S
p.r. partial recursive

r.e. ’ recursively enumerable
recursive total recursive

s.t. such that

T.M. ) Turing machine

VeVe vice versa

w.r.t. with respect to

w.l.0.9. without loss of generality
A4 for all

a there exists

<= if and only if

= implies

e proper set inclusion

< set inclusion

€ is an element of

v set union

n set intersection

x Cartesian product

Is] cardinality of the set S
fls function f restricted to set S
. multiplication

LxJ greatest integer < x

[} least integer > x

€ the null string

Ag[sl the set of instantaneous des-

cripticns reachable in one step
from the set of instantaneous
descriptions S, by the program Ai
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th
A1<j> the J node of Ai
i.a. instantaneous description
i.d. function the identity function, Ax.x
‘0’ the bit (character) zero,
as opposed to the integer
. zero, 0
'l the bit one
Nt all the non-null sequences of
non-negative integers
Ny all the finite sets of non-
negative integers
Q.E.D. . end of proof

(quod erat demonstrandum)
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§1.4 How the Blum Axioms are Weak

We have claimed that the Blum axioms are too liberal.
Since the vigorous theory which has grown from them attests
to their strength [12], we would like to illustrate here how
they are weak.

The definition that Blum proposed in 1967 (1] was
essentially as follows: If Gl' Gy, 63, ... is an acceptable
G8del numbering of the partial recursive functions and
Gyr G5r G3s ... is a sequence of partial recursive functions
such that: '

(1) Gy(x) is defined iff G, (x) is defined.

(2) The function

{115 Gi(x) =m
M(i,x,m) =

0 otherwise
is total recursive,

then the Ei are step-counting functions (a complexity

measure) for G. What this means is, first, that the amount
of resource used by an algorithm is known precisely when the
algorithm defines a convergent computation and, second, that
it is always possible to determine whether an algorithm
exceeds any particular bound on its resource. One can see
how it would go contrary to the intuition to admit anything
as a complexity measure that failed either of these simple
requirements.

Nevertheless, because the ;xioms do not mention any-

thing about how the complexity of an algorithm is related to



the value computed, they allow us to construct some very
strange "complexity measures". Starting with an intuitively
acceptable measure G, the step-count for single-tape T.M.s,
one may distort the measure in countless ways.

Example 1.1 Let Gii Gié Gjs +.. be a subenumeration of the
G8del numbering G which includes only total functions. Such
a set of functions might include all the constant functions
or all the polynomially time-bounded functions. Let

G = Ax((is{il,iz,...})-—-+ 0; G;(x)) .

In this measure, an infinite number of nontrivial functions

are computable "for free".

Example 1.2 Let Gc be an arbitrary T.M. Let

G; = Ax((i#c and G;'s control structure is

isomorphic to Gc's as a finite
automaton)—> G; (x)!; G;(x)) .

Here, definitionally-equivalent algorithms may have exponen-

tially different “"step counts"”.

Example 1.3 Let f be a'function such that f is not the

identity and

fof ¢ Ry

for some nontrivial time bound t. Suppose Gj computes £.
Define

Gi = Ax((i=j)— 0; G;(x)) .

Thus f is "free" but we cannot apply it more than one time

to get fof for less than cost t.



26

To see that such an f does indeed exists and is total,
define one: Start with the assumption that f is going to be
monotonically increasing. Choose a total recursive t.
Suppose that f(x) is already defined for x = 1,2, ... N;.

Let r be a recursive function such that r = k i.o. for every

k in N. If

gr(i)(ni) < E(E(N;))+E(N;)
let f(f(Ni)) = min{y: y>£(N;), Y#Gr(i)(Ni)} '
let Ni+1 = f(f(Ni))+1,

and let f(x) = x+1 for all x s.t. x#f(Ni) and NifxiNi+1 .

Otherwise, let f(Ni+1) = Ni+2 and Niyp = Ni+2.

These examples demonstrate that, although functions
satisfying the Blum axioms must at least bear a remote
resemblance to what we would accept as step-counting
functions, they need not satisfy some of our basic ideas
about consistency and "fairness" in measuring computational
cost. One believes that changing the name of an algorithm
should not change the amount of computational resource it
uses. One also believes that one should be able to compose
the results of various computations without great additional
cost. We have seen how well the Blum axioms reflect such
beliefs. Doubtless, it is difficult to say exactly what
relations should hold between "cost" and value computed, but
it must be considered a weakness of the Blum axioms that

they do not in any way explicitly relate the two.
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A further exanmple, which we borrow from [12], shows
that there are Blum measures where the functions of complex-

ity zero are not r.e. This is widely held to be undesirable.

Example 1.4 Let {Gj }2:1 be an enumeration of the
% .

constant functions such that .
G, = Ax. .

)
Define
gi = Ax((j_:jl)_b
((G, W) <x)—> x; 0); x+1) .
Thus
Ry = {sza G( %) is not defined} .
If R, were r.e. then, since G, =¢,
0 j2
the set

{t: g @) is not defined}

would be r.e. This set is well known not to be r.e., a

contradiction.
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§1.5 Nondeterminism—Comments on Cefinitions

From §1.3, it should be evident that our definition of
acceptance, particularly nondeterministic acceptance, is
not standard. This is not by caprice, but is part of a
deliberate attempt to correct disparities in the traditional
definitions that prevent cecrtain notions we feel are related
from fitting into a unified definitional framework.

We are concerned that definitions dealing with the
notions of set recognition, function computation, determin-
ism, nondeterminism, and computational complexity should
satisfy the following principles:

(1) The class of nondeterministic algorithms (acceptors)
includes the deterministic algorithms (acceptorsj.
Consequently:

(a) All terms meaningful in the deterministic case
should have meaningful generalizations to the non-
deterministic case (e.g., rejecting should be
distinguishable from not halting).

(b) Definitions should consistently treat the deter-
ministic algorithms as a restricted case of the
nondeterministic algorithms, i.e., the set accepted
(or function computed) and the running time of a
deterministic algorithm should be independent of
whether it is viewed as a nondeterministic

algorithm or as a deterministic algorithm.
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(2) Recognizing a set amounts to computing a (partial)
function (of at least two values, by (la) aktove).
Consequently:

(a) Complexity measures for acceptors should satisfy
the Blum axioms, when the acceptor is viewed as
computing a (partial) function to

{accept, reject}.*

(b) The complexity of accepting a set should not be
greater than that of computing its characteristic
function.

(c) Recursive sets should be recognizable by algorithms
with total complexity functions.

In the interest of brevity, we omit the extensive philosoph-

ical justifications, based on "intuition" and specific

examples of "real" computation, that could be given for
these principles, trusting that the reader will join us

in accepting them as self-evident.

Every one of these principles is violated by what,
up to now, has passed for the "standard" definition of non-
deterministic acceptance [15, 17]. According to custom,

a nondeterministic algorithm "accepts" an input iff one of

the computations it defines accepts (by whatever definition

of acceptance is used in the deterministic case). The

"running time" is the running time of the shortest accept-

*[ In the nondeterministic case it might be desirable to
weaken the first Blum axiom to say that G, (x) is defined
only if G.(x) is defined. This may be juétified inform-
ally by séying that the computing device may "jam", due
to an inconsistency in the output.]
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ing computation.* This fails (la) becausé there is no way to
reject an input. It fails (1b) and (2a) because a determin-
istic algorithm may halt and reject, having finite running
time, wheras the "running time" of the same algorithm, viewed
as a nondeterministic algorithm, is undefined. (2b) and (2c)
are failed for the same reason.

We incorporate principle (2) into our definitions
very simply, saying that an algorithm accepts a set S if it
computes the (0-1) characteristic function of S, or by
extension, if it computes a (partial) function £ such that

s = {x: f(x) defined and #0}. -
Any Blum measure on the complexity of computing functions
is thus also a measure on the complexity of accepting sets.
It should be clear that this is close to the usual defin-
ition of acceptance for deterministic "natural” models of
computation, such as Turing machines, in the sense that an
accepting algorithm according to the usual definition may
be transformed recursively into an accepting algorithm
according to our definition without more than a constant
increase in the complexity. It remains for us to define
how a nondeterministic algorithm computes a function in
such a way that nondeterministic acceptance also has a

meaning close to the usual one.

*[ This definition is adequate for "real time" or other
fixed-bound computations, where the running time is always
defined and rejecting means halting without accepting.]
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Define a computation to be an initial value and a
sequence (possibly infinite) of functions, called operations.
Thus each computation defines a unique sequence of (intermed-
iate) values, starting from the initial value and applying the
successive operations of the computation. An algorithm is
a (partial) function which gives a set (possibly empty) of
operations for each value, thus defining a computation or
set of computations for each initial value. The algorithm is
deterministic if there is at most one permissible operation
for each value. A (nondeterministic) algorithm defines a
tree of computations for each initial value. If the algor-
ithm is deterministic then the tree is a simple sequence.
Let there be a (partial) function from the values to the
outputs, which gives the result of a computation from its
final value. Let there be another (1-1) function from the
inputs to the values, giving an initial value for each

input. The function computed by a deterministic algorithm

A on input x is the result of the computation defined by A
on the initial value for x if the computation is finite.

So far, we have merely fixed a terminology for
notions about which there is widespread agreement.
When we come to extend this notion of computing a function
to all (nondeterministic) algorithms, we run into uncertainty.
Clearly, a single nondeterministic algorithm and initial
value may define an infinite number of terminating comp-
utations. How do we define an output from the results of

all these computations? We start by making a choice:
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First, we may allow all terminating computations to con-
tribute to the output. We reject this because it implies
that the "output” and "running time" may be infinite (not
inherently a bad idea, but out of keeping with our desire
that the output be a (partial) recursive function of the
input). The alternative is to (explicitly or implicitly)
define a "cut-off time" by which a computation must have
terminated if it is to contribute to the output. Intuitively,
suppose we view the nondeterministic computing device as an
infinitely-expandable network of independent computing
devices, each one adding a copy of itself to the network
whenever it is faced with a choice and passing on its result
to a central output device when it terminates a computation.
Having a éut-off means that the output device listens
to all the results it gets up to a certain zoint, whereupon
it decides to put out something. Naturally,.all results of
computations terminating after that point cannot contribute
to the output, and we might just as well assume that all
computations are cut off at the time of output.

No matter how good a cut-off criterion we choose,
we must still occasionally face the problem of defining an
output when several computations terminate simultaneously
and produce inconsistent results. We call this problem
arbiguity. The simplest action we can take is to give up,
saying that the output is undefined unless all computations

terminating by the cut-off time produce the same result.



Because this is simplest, we believe it is preferable to
any ad hoc rule for resolving ambiguity,* assuming that an
unambiguous output is required*.

Having chosen to leave the output undefined when the
computations terminating by cutoff time are ambiguous, and
faced with a multiplicity of possible cut-off rules, two
extremes beckon to us.+ On the one hand, we could strengthen
the policy of exclusivity we have followed in ignoring
ambiguous results, letting the "cut-off" criterion be that
there be no unterminated computations remaining to cut off,
thereby minimizing the number of algorithm/input combinations
producing output. On the other hand, we could try to max-
.imize this number, cutting off all computations when first
some computation terminates. We choose the latter policy
because the definition of nondeterministic acceptance it
gives us is closest to the traditional one, even though we

believe the stronger policy surpasses it in elegance.

*[ For example, choosing the least of the results defined
by the terminating computations.]

¥[ Of course, it would be most natural to allow for ambig-
uous outpnt, interpreting the algorithms as defining set-
valued rather than integer=-valued functions. However, the
prospect of saying the deterministic algorithms define
(partial) functions from N to {{n}: neN} is not apgealing.
The partial recursive functions are traditionally from N
to N, and identifying n with {n} is inconsistent.]

+[ In certain cases, especially when the algorithms are
specified to have built-in "clocks", intermediate cut-off
policies may be preferable.]
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We have thus made three decisions which, tcgether with
the two principles we stated earlier, completely shape our
definitions:

(1) There will be a cut-off time for each algoritnm/input
combination that produces output.

(2) If any algorithm/input combination produces ambiguous
results no output will be defined.*

(3) An algorithm will be cut off for a particular initial
value when first one of igf computations terminates.

Although some compromise has been made in (2) and (3)

between elegance and'compatibility with previous work, we

feel that any framework in which we can simultaneously

discuss accepting sets and computing functions, deterministic-

ally and nondeterministically, along with the associated

complexities must be better than the jumble of disparate

notions we started with.

*[ This means the running time must also be undefined, by
Blum's first axiom, if we wish to satisfy the Blum axioms
fully.]



2 Enumerabilitv of Complexity Classes

§2.1 General

We have shown, in Example 1.4, that certain Blum meas-
‘ures have non-r.e. complexity classes. This property may be
deemed undesirable, since all complexity classes are r.e. in
the natural measures we traditionally use as examples. It
has long been known that non-r.e. complexity classes must be
low in the hierarchy of classes when they do exist. All
classes larger than the first class to include all finite
variants of some function must be r.e., as the following

lemma indicates.

34A
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lemma 2.1 In any Blum measure G on G8del numbering G, if
there are total recursive functions £ and ¢t such that for
every total recursive function g

g s f a.e. ==> ge¢ R,

then Rr is r.e. for .every recursive function r s.t.
I
Proof For each (i,j,k) in NxNxN let
£(x) if there is a y such that

Yy £ 3 and G, (y) > k

G (x) =
g(i,j.k) or j <y < xand G (y) >r(y)s

Gi(x) otherwise.

If Gi € Rr then there exist j and k such that

G = G .
g(i,9.,k) i

[§
Unless Gg(i,j,k) = £ a.e.,

Qi(y) £k for y<j and gi(y) <r(y) fory >3,

and so
Gg(i,j,k) € Rr .
Otherwise
Gg(i,j,k) € Rt < Rr .
Thus if

o0
enumerates NxNxN then Rr is enumérated by

S TERE IR ISR Q.E.D.
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Example 2.2 For any measure G on G there is a t such that
the identity function and its finite variants are all in Rt'
To see this, start with an encoding of the finite subsets
of NxN as integers,
k = AS((S=g)—> 'l1';
*11'0 (min(8))k (S-{min(S) 1),
g = Ax((x=e)—> €7
(x=y'0')—> 0O(y)'10';
(x=y'l')—> oa(y)'01' ),
<> = Ax,y(x'10¥1),
and use it to define aA enumeration of the finite variants
of the identity function,
GY(i) = Ax((i=x(S) & <x,y>€S)---> y; Xx),
in terms of which we define

X

i=l

)(x) ) .
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§2.2 Constant Bounds

Theorem 2.3 For any (finite) clowchart interpretation J the

constant complexity classes R%x k are r.e.

J
Proof If £ is a function in R%x k then there is a finite

tree-program Ag which computes f. Any change we may make in
J
A%

J

wnether the function computed by the program is in RQx.k’

which is more than k nodes away from the root cannot change

since it does not change whether any paths of length yreater
than k are followed infinitely often. Thus, starting with

a k-height tree-program, we may add on whatever suprograms

we wish to any of the nodes that are reached for only finitely
many inputs, and still have a program computing a function in
RXk.k' Conversely, any function in R%k.k may be cetiten by
adding finite tree-programs to a k-height tree-program in

the same rmanner. Therefore, the only problem we face in
enurerating R%i.k is knowing for each k-height J-program
which nodes may be reached only finitely often. We solve this
by observing that whether a node may be reached for infinitely
many inputs depends only on the sequence of function and
predicate steps on the path leading to it from the root.

There is only a finite number of these sequences; let the
(finite, although not necessarily r.e. w.r.t. k)

set of k-operation sequences that are followed for only
finitely many inputs be called E . Enumerating R

Ax.k
reduces to enumerating the permissible combinations of
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a k-height tree-program,

a finite set of paths with operation
sequences in Ek' and

and a finite set of tree-programs,

which is clearly recursive. Q.E.D.

Corollary 2.4 For any F.C. interpretatiqn J the (constant-
bounded) complexity classes R% are r,e., for t recursive
and bounded in magnitude by some constant k.

Proof As in Theorem 2.3, start with the set of tree-
programs that are bounded by t everywhere and add on other

tree-programs for paths in Ek. Q.E.D.
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Example 2.5

Ifk =3, J= ({z},{p, m}), z= Arx(x=0),
' P = Ax(x+l),
and m = Ax( x#0---> x-1; 0)

then the set of k-oberation sequences which can be followed
for only finitely many inputs, Ek' is
pmz, mpz, mmz, mzp, 2zpD, ZMD, 22D,

zmz

This means that the 3-height tree program

1: z1
T}""""'-‘)a }o
2: 1 g 1 3: 1m1 4: 1 m1
[] vo Yo
5: z1 6: z1 7: 1m1l

may have any finite tree-program added by a 0-edge from
node 5 or a l-edge from node 6 without changing the
complexity class, but any other addition at level 4 will

change it.

§2.3 Ultimately Increasing Bounds

We have just shown that the flowchart complexity classes
are r.e. for constant-bounded complexity bounds. It is also
possible to prove that they are r.e. for ultimately increas-

ing bounds.



é0

Theorem 2.6 If J is a universal fiowchart interpretation
and t is an ultimately increasing recursive function, then
the complexity class R% is r.e.

Proof Since t is ultimately increasing, we know that Rt
includes all the functions computed by finite tree-programs.
We modify each J-program to compute a function computed by
a finite tree-program if the time bound t is exceeded often

enouéh.

Take {(ji,ki)}i:1 to be an enumeration of NxN; define

J. s J
Al Al < A. <
Jéx) if _]iy) < ky or _jéy) < t(y)
Mi(x) = for every y < x;

AJ(x) otherwise, where
T(jlln)

n = max{ AY(z): AY(y) < k. or AS(y) < t(y) if y <z}
=j —]i -1 —)i - -

and A is the finite tree-program containing all.paths

T(j:n)
in Aj of length n or less (see Example 2.7). M; computes
Al if .

I35 3

Ad(x) >k, => AT(x) < t(x),

and computes a function of finite complexity otherwise.

J

If £ is in Rt then there is a j such that Aj computes £

and for some k

x>k => A{(x) < tlx).
Mi computes f when ji is j and

k; = max{ﬁg(x): x<k}.
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© T o
Thus {Hi}isl enumerates R . If J is universal this
enumeration may be translated recursively into a

subsequence of AJ. i Q.E.D.
Example 2.7
If A, is [ 1: 1F1

2: 161
3: %i —L+4: 1H1

then Ar(j,S) is
0 1: lﬁ‘l
0
2: 1F1 3 &1
10 0
4: 11 5: 161 6: Pl

. 7: 1§1 8: lél 9: %o 10: él 11: lhl
12: lgl 13: 1 ; 14: %i 15: %1 l6: 1%1 17: $l 18: lﬁl

The following theorem is a weaker version of Theorem
2.6, given because it uses Lemma 2.1 and because the
technique is illustrative of the kind of manipulation

possible on flowcharts.
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Theorem 2.8 If J is a universal flowchart interpretation
which includes the identity function, 1 = Ax.x, then the
complexity classes R%J are r.e. for all ultimately increasing
recursive t.

Proof By Lemma 2.1 we need only show that the identity
function and every finite variant of it are in R%&.k’ each
one for some constant k. Clearly the identity function is
in R%i.o. It will be enough to show that every function £
which is equivalent to the identity except at a single point
is in some R%x.k' sincé any finite variant of the identity
function is expressible as a finite composition of these.

‘We will describe two transformations on flowcharts,

6 and Tye which are recursive.

8 alters flowcharts so as to guarantee that, as
programs, they do not destroy the contents of the input
register until the final operation, yet still compute.the
same function. A flow?hart Ai is transformed by first
changing the result register index of every node with result
register index 1 to the index n, where n-1 is the highest
register index appearing in Ai. The edges leading from
these altered nodes are then connected to the correspond
ing next nodes in another copy of Ai in which all occur-
rences of 1 .as a register index have been replaced by n.

To each terminal node of the copy of Ai a link

is added to a new node , 1 1 n. The final flowchart, Ae(i)'

is functionally equivalent to Ai' but never alters the
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value of register 1 until the last step. All computation-
al paths are at most one step longer than in Ai.
(See Example 2.9.)

Ty transforms a flowchart into a tree of height k,
so that for all paths of length k or less the operations
are the same, and no paths of length greater than k
exist. (See Example 2.9.)

If Ai computes a p.r. function equivalent to the
identity except at one point, y, then Aj = Ai for
j = 1&i(y)+1(0(i)), and furthermore, gj(x) < ﬁi(y)+l

for all x. . " Q.E.D.

Example 2.9

A= —1: 2 101 Rg(qy= 1t 2 iol
2: 2-1+3: 161 2: 2=1+3: 3 G 1
[] 0
§: 2 %‘ 2 -—“——J 4: 2 g‘ 2
) 3
2.5 2 L2.5. 2
—6: 2 F 3
[']
7: 15 2-leg: 3G 3
£° ———J——
= 3 9 9 '
o
: 2F1 LL10: 2
£° XTO
2: 2—1+3: 3G 1 11: 1 { 3
ke ke
4: 2 F 2 9:2F 2
[ []
) é 2 10: éz—‘—n: 113
£0 %0
7: 2 F 1 6: 2F 3
0
8: £ 2 .
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Theorem 2.6 and Corollary 2.4 leave an obvious gap in
the classes of time bounds for which the flowchart complex-
ity classes are known to be r.e. So far as we know, it is
also an open question for Turing machine time whether the
complexity classes bounded by non-constant-bounded non-
ultimately-increasing functions are r.e. This is because
the T.M. is generally assumed to read its input, which
would require at least linear time. However, there is no
solid reason for this, since certain regular sets, such as
1.( 0 +1 )*, are acceptable in time < 1lng(x) for many inputs

Xe



3 Translations

§3.1 Between Flowchart Interpretations

Diverse as the‘flowchart interpretations may be, it
is always fairly simple to translate programs from one

interpretation to another.

Theorem 3.1 For any two flowchart interpretations I and J,
if J is universal and I finite, then there is a lng(lng(x))-
tape-bounded Turing machine which translates the I-programs
1-1 into equivalent J-programs in time O(lng(x)-1lng(lng(x))),
where x is the encoded I-program and lng is the bit-string
length function.

Note: A Turing machine as used in tape-bounded computation
has finite control, two-way read-only binary input tape,

and read-write work tape with finite alphabet. 1In the
present context we allow it to serve as a transducer by
optionally putting a '0' or a 'l1' out onto an output-tape
for each control-state transition.

Proof Intﬁitively, each node of an I-program is replaced
by a J-subprogram. Since J is universal, there is a J-
program for every function of I. Similarly, J must have a

nontrivial predicate Q such that Q(a)=0 and Q(b)=1 for some
J
i
which computes Ag(x)= a if P(x)=0 and Ag(x)s b otherwise.

a and b. For each predicate P of I there is a program A

The J-program represented by

45
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Jt
Q

created by adding the predicate-node k: Q 1 to the-

2 x: 14,
flowchart Ay in terminal position, is operationally equi-~
valent to the I-predicate P in the sense that the 0O-edge
will be followed iff P is 0 on the contents of register 1.
By suSstituting register indices not used anywhere in the
rest of the program for all the register indices local to
Ai' this program segment, or subprogram, may be modified
so as to have the same effect as P would when applied to
register j. We thus have a J-program which is operationally
equivalent for each function or predicate of I. These may
be inserted in a J-program, with certain modifications of
register index and the addition of entering and leaving
edges, so as to have the same effect as if the corresponding
I-operations were inserted.

We would like to.say, without loss of generality,
that these J-program counterparts to the operations of I
(called translation patterns) are well behaved in certain
ways: '
(1) They do not alter the contents of the input register
(which we shall still assume is 1) and they use some other
register as output register. (If the programs we have are not
already of this form, then they can be made so, without

changing their complexity, by a transformation similar to
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the & described in the proof of Theorem 2.8, omitting the
final transfer of the output back to register 1.)

(2) All register indices are of the form '10™', for
various n.

(3) The patterns all have the same number of nodes, this
being 2™ for some fixed m. (Add inaccessible and useless
nodes if necessary.)

With the flowcharts of the I-programs encoded as
binary strings (see Chapter 1 for encoding), a Turing
machine may translate them into flowcharts of equivalent
J-programs node by node. A well-formed‘flowchaft descrip-
tion is a sequence of node descriptions. Each node
description consists of a function or predicate term, with
register indices, followed by lists of the 0 and l-edges
from the node, given as displacements in the flowchart
description. Because the well-formed descriptions are a
regular set, a finite automaton may recognize the malformed
descriptions, which may be translated trivially as them-
selves, since each malformed description represents the
null flowchart. The transducer replaces each node of a
well-formed flowchart description by a sequence of nodes
generated from the appropriate pattern (which is stored in
its finite control). Modifying the indices of the input
register in the source node by suffixing a 'l', it substi-
tutes them for the indices of the input registers of the

pattern, wherever they occur. In the case of the function



nodes, it substitutes the similarly mcdified index of the
result register of the source node for the output register
index of the pattern. The other registers local to the
pattern are jiven unique indices, obtained by suffixing the
register indices of the pattern to the index of the source
node being translated (i.e., '10™' becomes k'10™' in the
th ’

translation of the

.

pattern nodes are suffixed with 0™ to allow for the

source node). The edges of the

expansion which has taken place.

In doing all this the Turing machine would be per-
forming nothing more than a finite-state transduction, were
it not for the problem of local registers (which disappears
if J is strongly universal— see following corollary).
Keeping local register indices unique makes us count the
number of nodes translated. This requires at most lng(lng(x))
tape for input x. To put this out, when we need to, as
part of a register index takes about lng(lng(x)) steps.
Although this happens &t most a constant number of times
per node, there may be about lng(x) nodes in the input, so
the running time is pushed up from O(lng(x)) to
0(lng(x)-lng(lng(x))) for input x.

As to the translation being 1-1, that should be clear;
if it is not, then it is simpler to make it clear by
encoding the original program in the form of an extra node
than by going over the translation process again in

detail. Q.E.D.
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Corollary 3.2 If I and J are two flowchart interpretations

such that J is universal and

(1) I is finite and, for every recursive t, R% < B%q, and

(2) each constant function Ax.k is included in R%‘ for
some other constant function %,

then there is a translation o, computable by a lng(lng(x))-

tape-bounded T.M. in time O(lng(x) -l1ng(lng(x))) (where x

is the input), and a constant c such that for every j

Ag(j) H A§ and ég(j) < c-5§ .
Proof From (1) we know that we can get translation
patterns for the functions of I which are of complexity
1 a.e. The predicates, however, do not compute functions
in themselves. Thus, in order to apply (1) to show that
the translation patterns for the predicates of I are also
of some bounded complexity, we use (2) to convert them into

programs which compute functions. For each I-predicate P

and some constants a and b, there is an I-program

1: Pl—ls(B)
[]
(A)

{where A and B compute the constant functions which are a
and b respectively, computing a when P is 0 on the input and
computing b otherwise. By (2), this program is bounded in
complexity by a constant dependent only on a and b. This
function must be computable by a J-program of lesser er

equal complexity a.e. Since there are a finite number of
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these programs for the various predicates of I and they are
all bounded in complexity by a constant a.e., we can remove
the a.e. condition and make the constant independent of the
predicate as well. The same thing can be done for the
function patterns.

Following the translation procedure of Theorem 3.1
we see that the complexity of the translated J-program is
bounded by a constant times the complexity of the original
I-program. Q.E.D.

If J were strongly universal we could require that
the pattern programs compute the same functions regardless
of the contents of the non-input registers which they use.
Thus the need for unique local register indices vanishes,
and with it the need for any nontrivial storage capacity.
The following stronger version of Corollary 3.2. then holds.
Corollary 3.3 For any flowchart interpretations I and J,
if J is strongly universal and conditions (1) and (2) of
Corollary 3.2 hold, then there is a translation g, comput-
able by two-way (read-only) finite-state transducer, and
a constant c¢ such that for every j

3 1 3 3
. . .y < “A. .
S TC I and B0 = 2y

Notes:
(1) A finite state transducer here is a finite automaton
that can optionally put out a '0' or a 'l' with each state-

transition. By two-way it is meant that the automaton may
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back up on its input (and thus is not operating in "real
time”).
(2) Having a zero-function implies that a flowchart in-

terpretation is also strongly universal.

Theorem 3.4 If I and J are two infinite flowchart inter-
pretations it is possible that there is no recursive trans-
lation taking I-programs to J-programs of lesser or equal
complexity, even if an equivalent J-program of the same
complexity exists for every I-program and I and J are
universal.

Proof We construct I and J to force such a t£anslation
to solve the halting problem. Let I and J have the same
functions and predicates, but let certain ones of them have
different names. Let both include the zero-function under

one name. Let I also include, for each i, a function

fi' Ax((g_i(l) > x)— 0; 1) .
Let J also include these functions, but named differently,
as

gy = Ax((i > x)—> 0; 1) .
It follows that if we can translate every program
1

into a l-step J-program (i.e., one of the g; or the zero-
function) then we can decide the halting §rob1em fro all
Gi ( on input 1 ), which is well known to be undecidable.

Q.E.D.
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Remark: If I and J are further restricted, allowing them to
have only successor, predecessor, and zero-test (or some
other "well-behaved" finite universal set of functions and
predicates) in additicn to the zero-function and the fis or
948, then one can say even more about the difficulty of
translations from I to J. If there were a translation which
were both recursive and took I-programs into equivalent J-
programs of complexities linearly related to the complexities

of the original I-programs then, the programs
1= 1 £, 1

would all be taken into J programs of some fixed-constant-
bounded complexity. It would then be possible to transform
them into finite tree-programs of constant height.

With a simple enough interpretation J, one should be
able to decide whether such a program ever computes a non-=
zero value by examining the finite number of possible
sequences of k operations allowed by the program. This is
possible for the interpretation we have given and many others.
It follows that for such interpretations there is no trans-
lation computable which does not slow down some algorithms

by more than a linear amount.
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§3.2 To Flowchart Interpretaticns

Theorem 3.5 For any G8del numbering G and universal flow-
chart interpretation J there is a 1-1 translation frem G

to DJ computable by a lng(lng(x))-tape-bounded T.M. in time
0(1lng(x) -1ng(lng(x))).

Proof Intuitively, an algorithm G; is translated into a
sequence of operations which encode i, followed by a uni-

versal program. Since J is universal there are J-programs

Dg B Dq , and Dq to compute the functions
i i
0 2 3
Ax((x#e)——> x'00'; €) ,
Ax((x#e)—> x'10'; €) , and

Ax((xfe) —> x'11'; €) .

There is élso a "universal" program Dg to compute the
partial function
Ax ((x=<i,j>)—> Gj(i)) ’

where <i,j> = 1'11'0(3j)
and .0 = Ax((x=g)—> ¢;

(x=y'l')—> o(y)'10';

(x=y'0')—— 0o(y)'00' ) .
If j'jljz"'jk (as a bit-string) let D:(j) be the composition
J

HRCH (oo D

J
. (DY) ..,
*37 (3 fo3)

which computes Gj by encoding <i,j> from input i and applying

J

D“. Producing D from j involves simply writing down a

t(3)
copy of D, followed by a copy of D; or D. for each bit of
13 12 o
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j and, finally, a copy of Du, making sure that the registers
of each subprogram have unique names. We may assume without
loss of generality:

(1) all the subprograms use the same register(s) for input
and output;

(2) each subprogram has a single terminal node with 0- and
l-edges to a (hypothetical) node following the last node

of the subprogram, which is treated as a null edge in the
absence of such a node:;

(3) the sets of register indices of the subprograms

Di3' D; » Dy, and D, are disjoint, except for the input-
output register(s);

(4) the register indices of Di2 and Di are of the form
'10™" for various n and the register indices of Di and D“
are of the form x'l' for various x.

If the flowcharts do not satisfy these conditions we can
change them so that they do, without changing the function
computed.

Translating j to T(j) would be even simpler than the
translation process of Theorem 3.1 (since we do not have to
back up to copy out register indices), were it not that the
various copies of Di and Diz might interfere with each other
(by leaving non-zero values) if they had any but input-output
registers in common. Keeping these unique, by counting bits
of j and substituting 2x for every register index x of

D ", requires lng(lng(j)) tape and boosts the time by a

1o(3p)
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factor of 1lng(lng(j)) over lng(j), the length of the input.
Because of the direct way in which j is encoded, it

is obvious that the translation is-1-1. Q.E.D.

Corollary 3.6 For any G8del numbering G and strongly
universal flowchart interpretation J there is a 1-1 trans-

J computable by (one-way) finite-state

lation from G to D

transducer.

Proof Knowing that J is strongly universal allows us to

require that the D, , D, , D. , and D_ be insensitive to
ig i, i, u

changes in the initial values of any but their input

registers. The assignment of unique register indices is

no longer necessary and the translation technique of

Theorem 3.5 gives the stronger result. Q.E.D.



§3.3 Between G8del Numberings

Loosely speaking, the preceding two results say that
the flowcharts make a good universal target language for
translations (supporting our assertion that they are a
natural class of G8cdel numkerings on which to base complex-
ity measures, and indeed worthy of study). The next theorem
shows .that many G8del numberings are worse-behaved as
targets than the flowchart G.N.s and that we cannot say
much good about any G8del numbering as a universal trans-
lation source. It is a weaker version of a theorem which

we prove in [11] about "optimal" G.N.s.

Theorem 3.7 For any G8del numbering G, complexity measure
G, and recursive function t, there is another Gddel number-
ing H such that any translation from G to H must be of
complexity greater than t.

Proof The desired H is defined as a recursive permutation
of G by an inductive diagonalization over the possible
translations G . Let (Gji}izl be an r.e. sequence of con-

stant functions such that for every 2

G, = Ax(2 and j, > % .
3y (2 3
We know that such an enumeration exists by the 52 theorem.
® . . G
Let (Gk }i=l be a recursive enumeration of Ry, where
i
t' > t and R%. includes all finite-variants of the zero-
function (see Lemma 2.1 that R%. is r.e.). By the ith

stage Hl,...HN' are assumed to have been defined. We define
i
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as follows: Compute Gk(je) for 2=Ni+1,Ni+2,...
it

H , el
Ni"l l“1+1

until one of the fcllowing cases holds:

4

(1] (Gki(ji) >My): Let n = {n: n>t, jn>Gki(ji))'

H . = G; ,
Gki(Jl) in

=G : and
=N G, (3)

for Ni< j <Ny, JF Gki(jl) and J # 3,
Hj = Gj .

HGki(jﬂ)- Gan Ax.n # Ax.2 = Gj£= Hj .

(2] (L > 2.N;): Let Ny, =17,
and Hj = Gj for Ni< £ Ny

- Then for some m and n < %, and such that m # n,

G, () = G, )

H .2 H .
Gki(jm) Gki(Jn)’
and so if Hg = G (as G.N.s) we have
ky
Ax.m = G = H . = H = Ax.n .
jm Gki (Jm) Gki (jn)

Clearly this halts, at the latest when % reaches 2-Ni+l,

and it always produces a contradiction from Hg = G. Q.E.D.
: K.
i
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Lemma 3.8 For any measure G cn G8del numbering G there is
a recursive £ such that for any recursive g and t,

-1
gth==$g € Rfot

where g'1 denotes

Ax(min{y: g(y) = x}).

Proof We proceed by a series of “claims" which are
"obviously" true, but some justification is sketched for
each.

claim 1 There is a recursive a such that R, includes the
identity function and all its finite variants. (This is
shown in Example 2.2.)

claim 2 There is a recursive y such that for every total
G,

i @

Gy (1,5 5=1 = Rg;
(Let {(mi,ni)}i:l enumerate NxN s.t. (m;,n;)=(k,2) i.o.
for every (k,%) in NxN. Define

GY(i,j) = kx((gmgy)ia(y) or gméy)gpi(y) for every y

such that n.<y < x)

J
e Gm;x); x) .
Thus Gy(i,j) computes a finite variant of the i.d. function

unless Gi is not total (in which case Gy(i,j) is a.e.
undefined), unless

Sn. < Gﬁ(i) a.e., where

J
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Gg(i) ™ Xx(max({a(x),ci(x)))) . )
claim 3 There is a recursive § such that
= ’ -l
Ss(n = 3
for every j.

(Define G“j) = Ax(min{y: Gj (y)= x}) )

We can now define

X

i
so that

Gj € RGi == Gc(j) € RfG e ) Q.E.D.
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Corollary 2.9 For any complexity measure G on Gbdel
numbering G and any recursive t there is a G.N. H such
that all isomorphisms from H to G must be of complexity
greater than t.
Proof Suppcse no such H exists, i.e., for every H
there is a t-bounded isomorphism from H to G. Applying
the preceding lerma we see that there'is a translation
from G to H of complexity f(t). This contradicts
Tﬂeorem 3.7. Q.E.D.
This is in contrast to:

Corollary 3.10 For any two universal F.C. interpretations

I J

I and J there is an isomorphism from A~ to A" computable
by a T.M. in at most O(2n) steps on input n.
Proof This follows immediately from a coarse analysis

of the time reguired to compute an isomorphism by the usual
"back and forth" method from the two l-1 translations

guaranteed by Theorem 3.1. ) Q.E.D.

Remark The time analysis here is verv coarse. We

conjecture that the actual bound should be polynomial.



4 Nondeterminisa

§4.1 Discussion

Questicns about the precise complexity relations between .
nondeterministic and deterministic models of computation have
bedeviled computer theorists for a long time. This family
of as-yet-unsolved ptoblems traces its origin back to the
question whether nondeterministic and deterministic linearly-
bounded aytomata accept the same family of languajes—a sub-
ject of conjecture since 1964, when Kuroda {[18] showed that
the family of languages accepted by the nondeterministic
lineariy-bounded automata is exactly the family Sf context-
sensitive languages. Hartmanis and Hunt [13] explain the
importance of this question and other problems related tc ic,
leading up to the more recent question whether the families
of lanjusges accepted by the nondeterministic and determir-
istic T.M.s in time polynomially bounced w.r.t. the length
oflthe input (frequently denoted by NP and P) are the sane.

As Cook‘[ﬁl and, later, Karp [17] have shown quite
well, there i; a large class of problems of practical inter-
est which are solvable by nondeterministic Turing Machine
in polynomially-bounded time. These problems include
satisfiability for Boolean formulae in conjunctive normal
form and several problems dealing with graphs, such as findirg
the chromatic number and detecting a Hamiltonian circuit.
The surprising thing is that these problems are all inter-

reducible by deterministic Turing machine in polynomial

61



62

time and can be shown to have deterministic polynomially=-

time-bounded solutions only if NP=P.

Questions such as these and others relating to nondet-
erminism have taken on a new interest with recent efforts
toward parallelism in computing hardware. Nondeterminism
in computation formally expresses a notion that can be v;ewed .
" intuitively as infinite parallelism. Although it is not
always true that what holds for the infinite must also hold
for the finite, there is at least a conceivable real mocdel
for such parallelism in an indefinitely-expanding network of
tape-equipped minicomputers. Even if there is not a precise
real-world counterpart to nondsterministic computation, it
might be wise to ask whether anything can be gained by non-
determinism before we ask the same about finite parallelism,
since theory often is more effective in dealing with the
infinite than with the finite.

The flowchart measures lend themselves well to dis-
cussion of nondeterminism, the distinction between deter-
ministic and nondeterministic programs being a simple
difference in the structure of the flowcharts, and thus
independent of the interpretation. 1In this context we
may generalize Cook's [6] question, NP=?P, to NDP=2DP,
where NDP and DP are the families of languages acceptable
nondeterministically and deterministically by computations

bounded polynomially with respect to the length of the input.
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As the following theorems show, there is a large class of
sets T of time-bound functions (including the set I of
polynomials applied to the input length) where whether

J DJ

A" _
T = Rg

R
is provably dependent on the flowchart interpretation J.
That is, there are some flowchart interpretations where
NDP#DP and there are others where NDP=DP. Interestingly
encugh, the latter interpretations are not recursively
enumerable as a class of sets of functions and predicates.
in fact, it is a coﬁsequence of Mehlhorn's work [23] that
the set of predicates {P: an interpretation possessing as
much computational speed as a single-tape T.M. may include
P and still have NDP=DP} is "meagre" in the space of
recursive functions.

Based on the observation that whether NDP=D? for
flowcharts is dependent on the interpretation, we remark
that an answer to this question for a specific natural
measure, such as Turing machine time, will have to rely
heavily on the peculiar local properties of the measure.
The fact that the class of interpretations where NDP=DP
is non-r.e. and "meagre"”, together with the work of Cook
[6]) and Karp [14], leads us to conjecture that for inter-

pretations of practical interest NDP#DP.
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§4.2 NDP and DP for Flcwchart Measures

The following theorems and corollaries cdeal with the
relations between nonceterministic and deterministic
complexity classes for flowchart measures. Theorems 4.1
land 4.2 begin by showing that, for large enough time-bound
classes T, it i§ depenéent on the flowchart interpretation
whether nondeterminism permits anything .to be computed that
is not also computable deterministically.

With regard to Cook's [6] NP=?P question, it should
be noted that the classes NP and P were defined in terms
of the traditional notions of acceptance, and in the
context of Turing machine and random access machine measures.
On the other hand, NDP and DP, our corresponding generalized
" classes of nondeterministic and deterministic polynomially-
acceptable languages, are defined in terms of our own
version of acceptance. Seemiﬁgly as if to obfuscate
relationships further for those interested in the NP=?P
question, some of the theorems are stated in terms of
complexity classes of functions, RT. The latter really
should present no difficulty, since the recognition
problem is a special case of computing a (characteristic)
function. However, the former confusion is more subtle
and might be misleading did not the ability of the Turing
machine and like models to adapt from one definition of
acceptance to another without more than polynomial change
in complexity permit us to treat NDP and DP as consistent

generalizations of NP and P.
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Theorem 4.1 For any flowchart interpretation J and any
r.e. class T= (tj: jeIT) of recursive complexity bounds

contairing a t; s.t.
[H1] for each jeI,, zti(X)>tj(x) a.e.,
[H2] there is a jeIT s.t. tj(x)>5-ti(x) a.e., and

[H3]) t; is a.e. increasing,

there is a flowchart interpretation J', gotten from J by
adding a finite number of unary predicates and functions,
for which , \

L%q 4 L%J )
Proof We will exhibit a set X that is accepted by a
nondeterministic T-bounded J'-program, but not by any
deterministic T-bounded J'-program. Intuitively, X is a
diagonal set over the sets accepte@ by deterministic
T-bounded J'-programs. We want to be able to accept X
with a nondeterministic T-bounded J'-program. Assuming
J' allows the necessary arithmetic operations, we know
that if we have a predicate e in J' we can use e on all
numbers less than or equal to 2ti(x) in approximately
t; (x) steps nondeterministically. We will define e so
that it tells us whether a given point is in X, but only
by examining e on all points in the interval
S = (Zti(x-l)+1,...2t1(X)} will we be able to get this

information, since e "hides" the point in this interval



66

where e ic 1 so well that no T-bounded deterministic J'~
program can find it.

More formally, define X to be the set

{n: Snn£=ﬂ, n>1}

where E is the set accepted by the predicate e, which we
shall define later. (The letter “E" is used for this
predicate-set since it might be thought of as an
exponential expansion of X.)

To be certain that we can write a nondeterministic
T-bounded J'-program to accept X, we let J' contain the
following functions and predicates, as well as any others

included in J:
zero = Ax.0;
adl = Ax(x+l);
suf0 = Ax(2 x);
codl = Ax((t; (x-1)42)'10%");

cod2 = Xx((x=y'loz' & y#O)-—*((ti(z)-ti(z—l))'102');
0);

ec = Ax((x=y'10%' & y#0)—>((y=-1)'10%'); 0);

Ax(x='10%" & zeN);

N
]

[

= a predicate to be defined later.

The following J'-program accepts X in 4-(ti(x)+l)

steps or less, and thus is T-bounded, by E2.



1: 1 codl 1
¥
s 2 zexo 2
+1
:2adl 2
¥
—=4: 1 dec 1
+1
s z1l +8: 1 cod2 1
‘o ‘1
—1—6: 2 suf0 2 9: 1 dec 1
¥ vi
L1_7: 2 adl 2 10: z 1l——1—13: 2 adl 2
To 1
1l11: 25uf02 14: 1 zero 1
‘1
‘12-2ad1 2 =1s: %2
1

16: 1 adl 1 .

In the program above a number with between,-ti(n'1)+2
and ti(n)+2 binary digits is nondeterministically generated
in register 2 (where n is the initial content of register 1).

(n-1)+2 and 2 i(n)+2 One

Such a number is between 2%
is added to the content of register 2 and the predicate e
is applied tb the result. This accepts X.

We now define the predicéte e by induction. Let

“{(p, ,t: )}.", be an enumeration of all pairs of a deter-
1k 3x k=1

ministic J'-flowchart and a function in T, each pair appear-

ing infinitely often. It is clear that such an enumeration

(c)+2

exists. Let e(x)=0 for x<2 i , where c is chosen such

that ti(x)>ti(x-1) for x>c. For n>c assume the first n-l-c
pairs have been looked at and e(x) is defined for all

x<2 i(n 1)+2 Let z -1 be the finite set of numbers

greater than 2t1(n l)+2 for which e has already been defined

to be zero. Naturally, zc is #. Now for the nth pair,
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(D,t), the following procedure is performed:

(1] If t(n)>2 1(n) let e(x)=0 for all xcs and let
znszn_l—sn_l.
[]
(2] Otherwise compute o7 () for up to t(n) steps, recording

ti(n=1)+2 o thich 0¥ uses the

all arguments x>2

predicate e(x). For all these x, e(x)=0. Let
= . pY' - ‘

2 =(z,_,v{x: D° (n) used e(x)N-S ;.

J' )

[a] If D" (n)>t(n) then let e(x)=0 for all xeS .

[b)] Otherwise
(i) 1£ 07 (n)#0 then let g(x)=0 for all xeS .
[ii]) Otherwise let e(x)=0 for all xeS  except
the least element not in 2, . e is 1 for

this element.

From Hl we know that t(n)<2t (n) a.e. Since the
enumeration of pairs is infinitely repetitive, the pair
(D,t) comes up for infinitely many n such that t(n)<2 i(n)
and [2]) is followed.

In [2bii) we know that the number of elements in zn

is less than or equal to

t (n)

n
z oi (k) < E £ (k)<z 2t ()¢ Z 2*

k=1 k k=1

which is less than 2t (n)+1 At any stage we have left in
S,-%, at least

2ti(n)+2_2ti(n-1)+2_2ti(n)+1 - 2ti(n-l). (2 t; (n)- t (n-1) ,,

elements, which is more than one, by H3.
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e is thus well-defined, and by construction the set X is
not acceptable by any T-bounded deterministic Jiprogram, as

was claimed. Q.E.D.
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Theorem 4.2 For any flowchart interpretation J and aay r.e.
class T=(tj: j € IT) of recursive complexity bounds such that
[H4) for each j ¢ IT'there is an i e I, such that

ti(x) > 2°tj(x) a.e.,

there is a flowchart interpretation J', gotten from J by

adding a finite number of unary functions and predicates,

for wHich
J* J!
A D
Rr=f -
Proof Intuitively, we add a "universal operation" which

"operates” on instantaneous descriptions of nondeterministic
proérams in a manner similar to the way the cperations of J'
operate on the registers of a deterministic J'-program.

Let h be a recursive 1-1 function from the finite sets
of finite seguences of non-negative integers (written N;)
to the non-negative integers (N) whose range is a recursive
set. It is clear that such an encoéing exists. Let J'

contain all the functions and predicates of J plus all of

the following: cod3, suf0, sufl, step, out, halt. Let

Al' Az, A3, ... be an enumeration of the J'-flowcharts.

such an enumeration. clearly exists. Define the new functions

and predicate as follows:
codd = Ax(r10nLEX N0,

suf0 = Ax(x'0');

sufl = Ax(x'l');
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: ' : + '
step = Ax(((x='10¥ 1031')&(x:N2)a(k=h(x))&(k'=h(A§ (X1)3)
> '10%10310 ; oy

. +
out = Ax(({x="10%1071") 6 (x=h(x)) s (x:N2))

—— minf{2,;: ‘(o,z,,z,,...mm)cx); 0);

+
halt = Ax((x='10%1031%) s (k=n(x)) & (xN2)s

(X includes a sequence starting with 0)).

explanations: cecd3, suf0, sufl ‘will be used to encode

'1ok1011'. step is the "universal operation" we mentioned,

performing one step of the program Ag' on the pa;tial
results encoded in k. halt is a convergence test. out
decodes the output from the encoded partial results.

We will now exhibit a program Dg;i) which.determin-
istically computes the same function as Ai: for each i.

Furthermore, this program will use
.
2] (x)+i+4

. L]
steps for input x, thus being T-bounded whenever Ai is,

by H4.

J'
Do(i) : 1: 1 cif3 1
2: 1 suf0 1
¥
i+l: 1 suf0 1
+
i+2: 1 sufl 1
¥y
i+43: 1 sufl 1
'8!
I;Ti+4 1l sten 1
A8
i+5: halt 1 —1— {+6: 1 out 1 .
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It should be pointed out that, although step is defined

recursively, it is always convergent. The case in doubt
.

would be when computing A; [X] involves computing steo(y)
for some y. In this case, y must be smaller than the x
which encodes X. For successive recursions each argument of
step must be smaller. Since the initial argument is finite,
J'
(¢}

step always converges. The program D (1) does what we

clained and so we are done. ' Q.E.D.

Janos Simon [26] observed that the constructions of
Theorems 4.1 and 4.2 allow us to prove the following

corollary.

COrbllarx 4.3 It is recursively undecidable whether

A oY

Ry = Rp

for arbitrary flowchart interpretations J, where T is
a class of complexity bounds satisfying H1-H4 of the
preceding two theorems.
Proof We combine the previous two constructions, so
that one is effective if a given Turing machine halts
and the other is effective if the Turing machine does not
halt.

Let J be a flowchart interpretation. Let Jp include
the functions and predicates of J plus the functions

zero, adl, suf0, codl, cod2, dec, cod3, sufl, steo, out

and predicates z, e, halt as in the proofs of theorems
4.1 and 4.2, except that g and step are to be defined

slightly differently.
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step is defined as before, but over the language of
Jp and with the modification that step computes Ag'[xl,
where J' denotes the interpretation identical to Jp except
that e is zero everywhere. steép thus fulfills its role
as "universal operation" for Jp only if e is identically
zero in Jp'

e is defined as before fcr arguments x such that
gp(O)Sx. For other argumentsl e(x)=0. Thus e serves its
role as expansion of a diagonal set only if GP(O) converges.

A

J
When GP(O) does converge, e gives us a set in RT P but

J
3 D . - " L 3
not in RT P, Otherwise, e30 and step wo;ks , making

R%Jp . R%"p ;
AJ DJo
Clearly a decision procedure for whether Rf P = R¥ s

would solve the halting problem, which is widely known to

be undecidable. Q.E.D.

Since the non-halting Turing machines are not r.e.,

we also get a stronger conseguence.

Corollary 4.4 The flowchart interpretations where

-2

i

are not r.e.
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The preceding results remain valid when the complex-
ity classes L% and L% of languages are interchanged with the

complexity classes R% and R% of functions. 1In fact,

I3 # L2 => RR # B3 ,
and contrapositively. Except for minor changes in encodings
and in the hypotheses Hl1-H4, the proofs ‘are also independent
of the precise model of flowchart coﬁputation. That is, it
does not matter: whether cross-register assignments
(i F j, i#j) are allowed; whether a nondeterministic algo-
rithm converges when the first computation terminates or
when the last one does; whether only one register, some
fixed number of registers, or arbitrarily many registers
are allowed.

Furthermore, although the flowchart programs defined
compute functions on N (the bit strings without leading
zeros), "acceptance" for general character strings may be
defined in terms of a simple isomorphic representation of
the character strings in N (e.g., w=—> 'l'w). It follows
that the statements made above about complexity classes of
functions and sets of integers might as well have been made
about complexity classes of functions and sets over the
character strings, specifically, the classes of languages

NDP and DP.
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K. Mehlhorn [23] has recently proposed interpreta-
tions in the domain of computable functions for some of the
elementary notions of general topology. Based on our ear-
lier formulation of Theorem 4.1 (in terms of T.M.s with
"oracles") he observed that the construction gives a set of
oracle functions which, by his definition, are "co-meagre”.
In terms of flowchart interpretations, this means that, for
sufficiently powerful interpretations J, the set oprred-

J
icates which J may include without causing R% # R% is

"meagre”. It implies that in some sense "most" flowchart

J J
interpretations J satisfy R% # R% . Since the construc-

tion is essentially the same as that for Theorem 4.1, we
give it here in brief form, along with the needed defini-
tions.

The following are Mehlhorn's definitions:
Let T be the set of (finite) functions from an initial
seégment of N to N. For s to extend t means domain(t)
is a subset. of domain(s) and s(x)=t(x) for all xcdomain(t).

Length(t)= max(domain(t)) for te¢T. The basic open neigh-

borhoods are the sets U= {f| teT, £fcR, f extends t}. A
set S of recursive functions is (effectively) nowhere dense

if there is a recursive verifying function v:T+T s.t.

(1) for all teT, v(t) extends t, and
(2) there is an neN s.t. for all teT,

length(t)>n = U nS=g .

v(t)
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A set M of recursive functions is (effectively)
meagre iff there is a sequence
Ty vy by
of nowhere dense sets with verifying functions vy such
that o
M= U M
gm
and

v = Xi,t(vi(t)) is total recursive.
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Theorem 4.5 If J is a flowchart interpretation such that
J
G 19)
Rp € Ry

then the set Q of recursive predicates which J may not in-

clude unless PAJ# REJ

T it

is meagre in R.

[As stated before, G denotes the Turing machine step-count-
ing measure for single-tape machines; Nl denotes the class of
functions p;= Xx(qi(lng(x))), where q; ranges over all the
polynomials with integer coefficients and lng is the length
function; R is the élass of total recursive functions.]
Proof Because of the great similarity 4o the proof of
Theorem 4.1, some details of the argument have been omitted,
but the construction is given in full.

Ing(n)=ly, ... 2tngt®)

The interval 2 is denoted by

sn' If e is a predicate the set X, is defined:

Xg= {n: Ix(xeS & e(x)=1)} .

Let ((Dm .pn.)}.

=1 be an enumeration of all pairs of a
i i 17

deterministic "J+e"-program and an element of T.

B; = {g[ Xq is accepted by (deterministic "J+e"-program)
n + L
DmJ €’ and < p. (everywhere)} ,

i i T M

D J+e

where "J+e" denotes J if J includes the predicate e and

denotes J augmented to include e otherwise.
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To satisfy the definition of meagre we must exhibit
a computable verifying function v:NxT+T such that Bi is
nowhere dense with verifying function v, = At(v(i,t)) for
"each i.
v; (t) is defined in a fashion similar to e of
Theorem 4.1: Let i
m = min{x: pnéx) < 2ng (-2 o o, length(t)} .
The domain of vi(t) is
{x: 1 <x< lrg(x)-ly
Cases: (A) (x<m): let vi(t)(x)s t(x).
(B) (x>m):
(1) (Em,-fm) >pni(m) or (I_),mjfm)gpnjfm) & Dmi(m)#o)):
let v; (t) (x)= 0.
(2) (Qm{m)ipn;m) and Dmfm)=0)=
let v, (t) (x)= 0 unless
x = min{y: yeS, and Dmém) does not use
e(y) in its computation} ;
otherwise, let vi(t)(x)= 1.
Clearly vi(t) extends t. To show that Bi is nowhere dense
with verifying function vy we need only show that for all

teT

t) n Bi =g .

Suppose the contrary, that there is an e in Bi which extends

length(t)>m => Uv(

vi(t) for some t such that length(t)>m. This means that the

"J+e"-program Dm accepts X, in Py steps, i.e.,

i i
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Since Qmim) < pn{m) we nave either

Dm(m)#o and g(x)=vi(t)(x)=0 for all x in Sp’ ©OF else we have
i . .

Dm(m)=0 and g(x)=vi(t)(x)=l for some x in Sm. In both cases
i
we have a contradiction.
J

It follows that B is meagre. Since Rg ES 3

’
R}T we
know X, is acceptable in linear ‘time with respect to the
length of the input by a nondeterministic "J+e"-program,

simply by "guessing" a number in S, and applying the

predicate e. If e is in Q we must have
L] " " 1]
A J+e D J+g' ‘
Rn' = Rnr ’
which means e is in B for some i. Thus Q=B and we are

done. Q.E.D.
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§4.3 Nondeterminism at Other Complexity Levels

It is natural to ask whether nondeterminism may gain
anything in simpler interpretations and for tighter time

bounds. It may.

Theorem 4.6 For any monotore non-decreasing recursive
function &£ ané any flowchart interpretation J which includes
the function “"+1" = Ax(x+l), there is a recursive

predicate P such that if J includes P then

J J
A D
Rg #Rg -

Progf Although the statement may appear similar to
Theorem 4.1, the method of proof is quite different. The
critical observation here is that a nondeterministic
program may loop without executing a test operation. The
predicate P is defined so as to allow a nondeterministic
program to make use of this advantage to diagonalize over

the deterministic programs of similar complexity.

Jy

Let (D1 i=1

be an enumeration of the J-programs

with infinite repetition; that is, for every i and j there

is a k>i such that Dg = Dg .

named P and that it is the same as the P defined as follows:

Suppose J includes a predicate

Stage 0: Ny= 0. P(0)= 0.
Stage i: Assume P(y) is defined for y<N;. Compute Dg(Ni+1)

for up to t(Ni+1) steps. Whenever a value for P(y) which is
not yet defined is needed in the computation of Dg(Ni+lL

assyme that it is zero and add y to the set Ui (which starts
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empty for each i). For each new argument added to L'i (after
the first one) a new function step must have been performed.
Adding the function steps needed to generate the arguments

together with the predicate steps needed to apply P, we get
J . -
Dy (N;+1) > 2¢]us|-1 .

If Di(Ni+l) doesn't converge within t(Ni+1) steps

then we give it up and go on to step i+l, letting

Hip1 = max(Uiu{Ni+1}) and
(0if yeUy ‘
P(y) = i ]
1 if y/Ui and Ni<yiNi+1 .

If, on the other hand, Dg(Ni+1) does converge within the

time bourtd t, then let
Ny, = max(Uu(D] (N+1) )+l and

0 if yeU; or y=Dq(N.+1) & Y>N,
P(y) = 7. oot t
1 if y/Uiu{Di(Ni+l)} & N;<ysN

i+l

The nondeterministic program

001: P 1
0
Ez: 1 "11" 1
computes the function
f= Ax(min({y: y>x & P(y)=1})
in 2+f(x)-x steps or less. If f(x)>x we know that x#Ni for

every i, since otherwise f(x)=x. Thus there is an i such

that N.+l < x < N, if £(x) > x.



82

In this case we also know

x € Uy or X = Dg(Ni+1) .

and lui[ < (cLN1+1)+1)/2 .
For every y between f£(x) and x, P(y) = 0 (including x but
not £(x)), so

£(x)=x < Iui|+1 < (N +1) /241

and 2+£(x)=x < t(Ni+l)/2+3 < t(x)/2+4

if t is nondecreasing. That is,
AJ
£ e Rix(t(x)/2+4) °
Since f was defined so that

J
f e R% ’
J J
we have R% # R% . Q.E.D.



5 Relaticns to Other Naturel Mszasuves

The flowchart measures are a natural cless of complex-
ity measures in the sense that thay dec count recognizable
“steps"” in a specific model of computacion. They do not
properly include all of the commonly accopred Natura&fmeas-
ures, which have come to mean the single and multitape
Turing machine time and tape measures and the var:ious ran-=
dom-access machine step measures. There is, however, a lim-
ited sense in which these can be "mimicked" by flowchart
peasures. If we consider a large enough class, such as the
polyncmially—time-béunded functions, it is the sarsz for sore
flowchart measures as it is for certain Natural measures.
Althcugh we show this only for Turing machine time and tape,
Xarp [17] has claimed that the classes NP and P are the sare
for all Natural time (as opposed to storage) measures. which
would rean that the flowchart measures extend all th= Nat-
ural time nmeasures, at least in so far as the polynomially-
time-bounded computations are concerned. Of course Karp
gives no proof of this, but our experience with the two

examples given leads us to believe it is true.

*[ Note distinction between "Natural" and "natural”.]

84
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§5.1 Turing Machine Time

Theorem 5.1 There is no flowchart interpretation J s.t.

J
RA

G
T = Re

for every recursive t, where R% is the class of t-bounded
functions with respect to the T.M. step measure.

Proof We show that the tape of the T.M. forces it to
compute things differently from the way a F.C. program
does.

Consider a function which forces the T.M. to move
its head along the entire length of the tape. Assuming
a T.M. starts with its head on the leftmost bit of an
input string, such a function would be:

£ o= AX(x=Xpeeox ) > xl...xn_1§n; ),
where we denote by §h a bit that is different from x .

£ is in RS but no function equivalent i.o. to £
Ax(1lng(x))

is in R% for any t < Ax(1lng(x)) i.o. Suppose there is
a flowchart program Ai which computes this function in

Ax(lng(x)) steps; we can show there is another program which

uses feQer steps and still computes the same function
infinitely often.

Ag may be altered to skip the first predicate step
(if there is any). This is done by making a tree-piogtam

of all the paths from the starting node of Ag which consist
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of only function nodes up to the final node, which is a
predicate or terminal node. A copy of Ai is then made.
For each predicate-node of the tree-progfam, consider the
predicate either it is 1 i.o0. or it is 0 i.o. First
suppose it is 1. If the l-edge from the corresponding
predicate-node in Ag is null, we simply delete the node.
If the edge is not null, we delete the predicate-node and
replace all edges leading to it by edges leading to the
node (in the copy of Ag) corresponding to the node

(in Ag) to which the l-link of the predicate-node goes.
If the predicate is not 1 i.o. then we perform a similar
procedure for the 0O-edge. The resulting program is called

J
As.
J
Since Ag computes a total function, every path

containing a loop must include a predicate-node. Thus,
unless éf is bounded by a constant, the modified program
we have described, Ag,,will use one fewer step , while
still performing the same sequence of function operations,
for an infinite number of inputs. It thus computes a

. . AJ . G
function in R—J but not in R- Q.E.D.

J °
Al A
-3 -
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Theorem 5.2 If T is an r.e. class of recursive complexity
bounds s.t.
"[HS) there is a t in T s.t. t > log’ a.e. and
[H6] for every t and t' in T and every polynomial P(x,y)
with coefficients in N there is a t" in T such that
t" > P(t,t') '

a.e., then there is a flowchart interpretation J such that

Bz =R
where G is the step-counting measure for (nondeterministic)
multitape Turing machines with binary alphabet.
~Proof The model of T.M. which we use has a binary alphabet
for input and computation, with an additional "blank"
character which can be read but not written. The portion
of the tape which is not occupied by input and which has
not yet been read is filled with tﬁis character, which is
found nowhere else. For consistency with our input-output
conventions for flowchart programs the input is assumed to
be only on the first tape and the output is the nonblank
portion of the input tape to the right of the head at
the time the machine halts. The operations for an %-tape
T.M. consist of an f-tuple of operations from the set:
print-0; print-l; print-0-move-right; print-l-move-right:;
print-0-move-left; print-l-move-left—— one operation per

tape.
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the current state as it appears in Ei. x is the work tape,
with head position p. 'y is the input tape, with head posi-~
tion q. If T.M. Gi halts or expands its work area,
gggg(<£i.s,p,x,q,y>) is the T.M.'s i.d. at the point where

it first expands its work area or halts. If Gi cycles, with-
out expanding its work area, then §ggg(<5i,s,p,x,q,y>) is

<€ /8,P/X,q,Y> -

(3) decoding function decode(<€i,s,p,x,q,y>) = xq...xn,
where x = XyeooXy (leading zeros assumed dropped).

(4) halting-state-test predicate leg(<£i,s.p,x,q,y>) =1
iff x is a halting state of Gi.

With these functions and this predicate we can write

a J-program

encode <Ei,0,0,0,0,y>j

1¥0
‘-_'-—-—>j1: ry step ry
vo .
Lo : R S .
j1+1 halt ry Jl+2. 3% decode ry
which computes Gj in Gi*2 + c; steps, if the encoding of
<Ei,0,0,0,0,y> is done in c; steps. In that case,

J G

Rx 2 Rg
by BH7 and HS8.
<Ei,s,p,x,q,y> is encoded so as to make the initial
encoding easy. The usual encoded form is

-1-so(ei)ca(s)to(x')éo(x")ta(y')oa(y") ,
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where o= Ax{(x=y'1')—> o(y)'11';
(x=y'0')—> a(y)'10'; 0) ,
# ="'00"', $="01, x'= XpeeXpo1 and x" = Xy Xne and
.y' and y" are defined similarly for the input tape, y. The
exception to this is when y has head position 1, as in

starting. Then the form is

‘1'#0(Ei)#o(s)ic(x')#o(x")Sy .

This allows us to encode <Ei,0,0,0,0,y> in a constant num-
ber of steps independent of y, using the encoding functions

prel = Ax('l'x) and

shift = Ax((x='l'y)=—> '10'y; 0) .

It remains to be shown that

i.e., that a T.M. can compute any function computed by a T-
bounded deterministic J-program without using more tape
squares than can be bounded by some function also in T. 1In
simulating a J-program, a T.M. will require many steps for
each operation of the J-program. We must merely assure our-
selves that each operation of the J-program which the T.M.
simulates will require at most a constant increase in the
size of the T.M.'s work area. Initially let the T.M. copy
the input onto its work tape in an expanded form, so as to
get the effect of a very large character set. Conceptually,

we view this as a five-track work tape,
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e.g., register contents: Tys Tps Ty eee T

n
working copy of register contents
delimiters of registers

working markers for comparisons, moves, etc.

U‘b‘WNH

counting space to detect cycliang

This initial encoding will require a linear increase in
work area over the size of the input, but it is only done one
time. The T.M. makes use of a few markers to help it siinulate
the various steps of the J-program on the encoded registers,
which are recorded in sequence on the first track of the tape.
When the program terminates, the T.M. decodes the output into
single-track form an& halts with its work head at the beginning
This again only happens once and in fact need not in-
crease the work area at all.

If the operations of J can be simulated in this envir-
onment, each costing at most a constant increase in work

space, we can conclude that

J G

R R

by H?7 and H8. Considering these operations by groups, we
see that the encoding functions, decoding functions, and
predicate can easily be computed within the constant-tape-
increase constraint. The only apparent difficulty is the
function step. Since we have encoded everything in a rather
simple fashion, there should be no difficulty in following
the steps of the T.M. computétion simulated by step. The
counting space in the fifth track enables us to halt the

simulation at a point where we can be certain it has begun
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to cycle. This is done by counting each step of the simu-
lation until the space is full. This takes Qz steps for a
fifth-track alphabet of size Q and track length 1. The

"lengths of the tapes plus the number of states of the T.M.

Gi simulated by steo must be less than the length of the

tapes of the T.M. simulating step, since the argument to
step encodes the cntire description Ei along with the tapes
of Gi' With read and write tapes of lengths n and m, and
g; states, Gi can go at most 2m~qi'n'm steps without cycling.
This is less than qu+n+m' which is less than Ql for Q
greater than 2. Since step was the only operation of J

that could not obviously be done without more than a const-

, ant amount of additional tape, we are done. Q.E.D.
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Proverness

A Blum measure G on G.N. G is proper iff for every i

G, € RE .
=i

This means intuitively that the running time of an algorithm
should be at least as easy to compute as it is to run the
algorithm. Although this seems a good idea, it may be a
little too strongly stated. We shall see that many flow-
chart measures come close to satisfying it without satis-

fying it precisely.

lemma 6.3 If flowchart interpretation J includes the
function Ax(x+l) then for every i
J
Al R%x(z.z_\f(x)) :

Prcof (trivial) Alter the program Ai by putting an
addition operation between every two steps, doing the
final addition into the output redister at termination.
The program counts the steps of A Q.E.D.

This i;iea can be taken a step further, expanding the
program to make all cycles of lengths divisible by k and
no cycle beginning closer than k nodes to the initial node.
The steps are counted by adding one for ;he first k steps,
adding k every k steps thereafter, and adding 1 up to
k times at termination. This yields a stonger version

of the lemma.



1101

Lemma 6.4 If J includes the functions . Ax(x+l) and
Ax,7(x+y) then for every i and k

aJ 2 g 1
2i0¢ TXx@g 0. (14 424k .

(Proof has been sketched above.)

This means that for reasonably powerful interpretations
there is a t arbitrarily close to each A; such that A; ¢ R
Now we look at a specific one of these interpretations to
see that we can do no better than this.

Let J = ({p,2},{plus, plusl, minusl}) where

minusl = Ax(x-1),

plusl = Ax (x+1),

o

lus = Ax,y (x+y),

Z= Ax (x=0),
P = Ax ( (x#y '10K ") —> 03
(N, 110K ) > 1
(x=Ni'1oki')--> 0;
(x=Nj_'10 (:(Ni)'3)/2 )___, 0; 1)’
g = ax(x'10°10%1"),
ki = min{k: (Ag(i)(Ni) does not use P(Ni'lok')
in the first C(Ni) steps,
J
Ar(i)(Ni)#3+2-k, and
k<(C(Ni)-3)/2 or k'(C(Ni)-B)IZ },
Nl = 1

N - Ni-ZC(Ni)+2, and

r recursive s.t. r(i)=k i.o. for every k in N.
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Let f(x) be the running time on input x of the following
program:

1l: 1 g%gg 1

)
2: 1 olusl 1

which is 3 for all inputs but N;, and which is 3+2-ki for
Ni' Suppose Ag is a program which computes f in f steps
a.e. Then j=r(i) and

T(N;) = 342+k; = AJ(N)) > AJ(N;) d.o.
To compute n values of Ni'lok' and apply P to .euch of them
requires at least n+(n-1) steps. Thus, since Ag(ni) must
use P(Ni'lok') for every k < (c(Ni)-3)/2 such that

A (N)) # 3420k

at least ;(Ni)-s steps are needed for this purpose. We

know that * J
Aj(N;) < iNg)

so there are only 6 steps left for the rest of Ag(xi)‘s
computatioa. If :(Ni) = Ni'1091091' is computed, then for
infinitely many i it must be computakle by some 6-step
process from Ni or from Ni'lok' for some k. It is not.

We have proved the following lemma.
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Lemma 6.5 There is a flowchart interpretation J such that
QJ is not proper but such that for every i and k there is

a recursive t such that

J A
t - A < + 2k
and
J
J A
& j € RE . ,

.We comment that the intent of the notion of properness,
that it should be no harder to compute the running time of
an algorithm‘than it is to run the algorithm, is honored by
measures such as those described in Lemmas 6.3 and 6.4.
Lemma 6.5 really only shows that "properness" should not

be stated in quite so strong a form. Perhaps

G, € R
=i L(Gi)

(where L is linear or “"close" in some sense to the identity)

is good enough.



§6.3 Further Dimensions of Flexibility

ThelieSults in chapters 4 and five show to some extent
the generality of the flowchart measures; demonstrating how
they may easily be tailored to possess certain properties
or not. The results which follow explore other dimensions of
flexibility exhibited by these measures.

Theorem 6.6 For any flowchart interpretation J there is

another interpretation J' such that, for every recursive t,

AJ J’
Rg = RIbgzt ‘
Proof J' will include encoding functions, a "universal"

function, a halting test, and a decoding function. cod3,
suf0, and sufl are defined as in the proof of Theorem 4.2,
1103 & (k=h(0)) & (xMD) &
i+6+3 ])

[X1)))

1037, 0

jump = Ax(((xs'lo 10

(k'=h(a] (2

— '1ok10i
: . +
out = Ax(((x='10¥10%103") & (k=h(x)) & (xeM2))

- min{llz (0,11,12,23,...£m)<x); 0)

: . +
halt = Ax((x='10510%107") & (k=h(x)) & (xe"2) &
(X includes a sequence starting with 0))

where AJ

(“)(x] denotes the result of iterating Ag
n times on the set X of i.d.s, and h is the encoding func-
tion of Theorem 4.2.

For each program Ag we have a program Az;i) which is

equivalent toit, but faster by a logarithm.
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i+l: 1 suf0 1l
Yo

i+2: 1 sufl 1l
‘e

-—+i+3: 1 suf0 1
Yo

i+4: 2 jump 1
0

0 i+5: halt 2 —21—p i46: 1 out 2

This program computes
((2h({(i,input)})+l+1)2i+1+1)2j

for successive j, starting with 1, applying jump and halt to
each, until Ag would have halted in i+6+3.j steps, at which
. point out decodes the output and the program halts. The

program uses i+2+3°¢j+1 steps to compute Ag(x) if

é.jr.(x) < gi+643:3
Thus, if .
&i(X) > 2i+6+3(3-1)
then
log (A] (x)) > i+6+3:3-3 = 1+43-3+3
and so
al e a“J J Q.E.D
LAy I'og A . <E.D.

=i

This says we can always make all computations easier by
making the interpretations more powerful, an obvious truth.
The log function used here is for convenience of proof only.
Other speed increases are provable. In effect, we can always

speed up the flowchart "machine".
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Every complexity measure defines an "order" relation

on the computable functions: f may be said to be no more
complex than g iff for each algorithm which computes g
there is an algorithm for £ which is of equal or lower
complexity, i.e.,

¥te R, g« Rt = f ¢ Rt
This relation is clearly reflexive and transitive. It
lacks the property of antisymmetry of being a partial
order, but '

f’\og@(VteR,gth@fcR )

t
is an equivalence relation. Looking at the functions,
modulo this relation, we have an alternative concept of
"complexity class"”, these equivalence classes being
partially ordered. It is natural to ask whether these
orderings have any properties in common and to what extent
the ordering may vary with the complexity measure. In

the case of the flowchart measures we make a start by

showing that the relation between two functions may be

quite dependent on the interpretation.
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Theorem 6.7 For any total recursive function t there exist
flowchart interpretations I and J and total recursive

functions f and g such that

I I I
A A A
£« Ry, and g ¢ Ryx.1 (g e R )
J J
but g € R%k.l and £ £ R% .

Proof I and J have a set of common»functions and predicates,
which may be chosen to make them universal. 1In addition,
each has one other function; I has £ and J has g. f and g
are defined by a double diagonalization so that g is not
computable by any t-bounded I-program and so that f is not
computable by any t-bounded J-program. (The details are

similar to previous diagonal constructions we have done.)

Theorem 6.8 For any universal flowchart interpretatibn J
and any recursive functions r and t there exists an exten=-
sion J', gotten by adding a recursive function g to J,
such that, for some recursive function f and some recur-

sive function s > r, if t >s ( > r ) then

I I I
A A A
f/REr fEREv glREr
J
g c‘R% y £ e R% .

Proof f is gotten by diagonalizing over all r-bounded I-
programs. s is any function greater than or equal to the
time needed to compute f by an I-program. g is gotten by
diagonalizing over all t-bounded I-programs. (Again the

details are similar to previous proofs.)
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Theorem 6.9 For any flowchart interpretation I there is
another flowchart interpretation J such that every I-prog-
ram has an equivalent J-program which uses a single reg-
ister and has complexity linearly related to the I-program.
Furthermore, for every J-program there is another J-prcg-
ram for which the same is true.

Proof It is shown that arbitrarily many registers may
be encoded into a single register and the functions of I
modified Eo work on the encoded registers withouﬁ more
than linear loss of time.

The functions and predicates of I are carried over
into J, but modified so as to treat their arguments as
encoding several "registers" plus information about which
'registeQ' is to be treated as argument and, in the case
of functions, which "register" is to receive the result.

To make the "furthermore” clause of the theorem true, J
must also include functions and predicates which bear the
same relation to the modified functions and predicates of
I just described as those do to the unmodified functions
and predicates of I. Since the number of these may be
infinite and we wish to keep J finite, we so this by means
of a universal function,Fé, and a universal predicate, Py -

The encoding and interpretation J are formally defined
as follows: Let Fl’ e Fm be the functions of I and
P

17 "'Pn be the predicates. Let <i,j,k,r > denote

2'...’:1

'l'#o(i)#c(j)#a(k)#o(rl)-..#c(rz)...Srl,
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where
o= Ax( x=y'0'—> o(y)'10*;
x=y'l'—> 0d(y)'ll'; 0),
#= '00', and
$ = ‘'01'..

This encodes the indices of the result and argument “reg-

isters", the operation code for the_univérsal operations,

and the "registers”.

F§(<i,j,k,rl,...r1>) = <0,0,0,r$,...r'>,

for Fp in I, where rn-O for n>%,
m=max({%,i}), r;=rn for n<i,#i,

ra=0 for n>%,#1i, and ri=Fp(rj).

P(<i, 3ok Tyaeeer>) = Po(rg)

for Pp in I and 22>j.

P§(<i,j.k,r1,...tl>) = PP(O)

for Pp in I and 2<j.

Frop(x) = sufl(x) = 2110gpx1+l, (encoding)
Frea(x) = shift(x) = sufl(x) - 21109,x1 (encoding)
’ Fé+3(<i,j.k,rl,...t1>) =r. (decoding)
Fé+4(<i,j,k,t£,...rl>) = o(rl)...ta(rz)SII. (clean-up)

F6(<i.j,k,tn,...r1>) = <o,0,o,r$,...ri>,

for k<m+4, where rnao for n>2,
m=max({2,i}), r5=rn for n<t,#i,

r;-o for n>L,#1i, and r{s?i(rj).
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P6(<i,j,k,rt,...r1>) = Pi(rj)

for k<n and 2>j.
P6(<1'j'k'rl""t1>).' Pi(o)

for k<n and 2<j.
For all cases not yet defined, the functions are defined
to yield the identity and the predicates to yield 1.
Thus in the last case given for'Pb the value will always
be 1, since 0 is not decodable into <i,j,k,r£,...rl>.

A simple inductive argument shows that F6 apd P6

are total, even though they are defined recursively:
If k#0 there is no problem. For k=0, the only-question
is whether Fa(rj) and Pé(rj) are defined. If'rj is not
decodab;e as <i',j',k',ri,...ri> then Fé(rj)frj and
Pé(rj)-l (by convention above). If rj can be decoded
then the question is reduced to one about Fé(ri.) and

Pb(r%.). By nature of the encoding, r3,< r.. Since rj

smaller than '1'###$ are clearly undecodabli, the initial
step of the induction must hold, and we are done.

Given an I-program A;, we can translate it to an
equivalent J-program as follows. For each node i Fk 3j
in Ap we substitute a sequence of nodes which compute
<i,j,0,r£,...rl> from every string of the form
<x,y,z,rl,...r1>, followed by a node 1 Fﬁ 1. (The sequence
which computes <i,j,0,r ,...r1> gses Fé+1{ F$+2, and Fé+4
and is dependent only.on i and j.) For each node

Pk j in Ap we similarly substitute a sequence which
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computés <0,j,o,rz,...r1> in register 1, followed by 26 1.
Initially, we add a sequence of nodes to compute <0,0,0,rl>
from Yy and. finally, we add a node 1 F&+3 1 following
each of the previous terminal nodes.

For a J-program what we do is analogous. Each node
i Fi j is expanded to a computation of <i,j,k,r1,...r1>
followed by a node 1 Fé 1 , and similarly for predicates.

"The complexity of the resulting program bears a
simple relationship to the complexity of the original
program. A constant number of steps are added at the
beginning and at the end. Additionally, each step of the
original program is expanded into an encoding sequence
and a “"computational" step. The length of the encoding
sequence is bounded by a constant for each program, since
the program and interpretation are finite. The complexity
of the resulting single-register program can thus be
bounded by S plus c, times the complexity of the original
program, where cl=10 and cy is dependent on the size of
the interpretation and the number of registers used in the
program. Q.E.D.

Although the Previous theorem is stated in terms of
l-argument interpretations, by the convention we made in
§1.3, it could also be proved for the n-ary interpretations

by more complex encoding.
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Others have defined notions of program which deal with
what are supposedly more general domains. The idea is that
for full generality one would like to be able to think of
the programs as operating on objects which might be any one
of the numerous data structure conceivable— arrays, stacks,
queues, lists, ... The "power" of a class of uninfcrpretcd
flowcharts as functionals may depend on the domain. In terms
of interpreted flowcharts, however, there is no reason why
the domain cannot be restricted to the integets.v It is well
known that all partial recursive functions can be computed
by programs with a single variable over the integers and a
proper finite interpetation. In effect, the one variable
becones Fhe entire data space of the computation. By suit-
able encodings the operations of the program may work on

various portions of it in any way that is desired.
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Remark The preceding theorem is particularly significant
in view of Ianov's work [16] on schemata. Despite the fact
that schematic equivalence (whether two schemata define the
same program under all interpretations) is undecidable for
schemata with more than one free variable [21], Ianov has
shown that equivalence is decidable for schemata with a sin-
gle free variable, and that for such schemata each may be
reduced to a simple canonical form. Since we cannot in-
crease the complexity of a program by more than a constant
factor in going to an interpretation where only a single
variable is necessary, we can translate any program (in
linear time if we have a zero-function) to a single-varia-
ble program, perform any sort of optimization we wish, using
Ianov's equivalence procedure, and translate it back to the
original interpretation, again without any more than a lin-
ear increase in complexity. Thus, if there is anything of
higher than linear order to be gained by optimization on

the schema level we can achieve it regardless of how many
free variableg we allow.

A further consequence of this theorem is that all
previous proofs of theorems about classes of complexity
bounds which are closed under multiplication by a constant
also hold for the same theorems if we restrict ourselves

to single-register programs.



7 Conclusion

§7.1 Sumrary of Results

We have shown tﬁat the flowchart complexity measures
form a diverse class, useful in demonstrating that certain
properties proposed.as requirements for "natural" measures
need not be true for all natural measures. Finite invariance
and properness are examples of such properties. We believe

that there are others.

We have shown that nondeterminism is meani;gful in a
very general framework, but that its effect on the complex-
ity of functions is dependent on the specific ﬁodel of
computation.

In general, we have taken a step toward'isolatinq some
of the ronessential properties of natural measures from the
more essen?ial ones. Two properties which seem essential,
at least so far, we have called "composition" and "finite
freedom”. A

We have shown that the flowchart measures are well-
behaved in two senses. Many of the complexity classes are
provably r.e. This is because we may perform certain
transformations on the flowcharts, knowing the effect they
will have on the programs without knowing exactly what the
programs do. These schematic manipulations also allow us
to do simple translations, which in some cases produce

translated programs that are reasonably efficient.

114
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§7.2 Possibilities for Further Research

A. Loose Ends

In the course of this research several questions
arose which were not answered. We have broken these into
two groups. The "loose ends" are simple questions which
represent gaps in our results. Those marked Lty , we believe
we see how to answer, although time has prevented us from
including the finished proofs here.
(1) Are the flowchart complexity classes r.e. for non-
ultimately-increasing and nonconstant time bounds?
(2) Can better bounds on translation cost for "worst case"
programs be found for translations:

(a) from one flowchart interpretation to another?

(b) from a G8del numbering to a flowchart G&del

numbering?
(c) yielding an isomorphism between flowchart
interpretations?

(3) Can the complexity of the resulting program be
simply bounded for translations between flowchart
interpretations with equivalent complexity measures
under weaker conditions than those of Corollary 3.2?
(4) Are the interpretations where DP=NDP r.e.?

(5) Are there a t' and a t such that

J J J J
D A A D
Rgr = Rg = Rg #Rg 2

That is, are there "gaps" in the nondeterministic classes

where there are none in the deterministic classes?
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(6), We know we can always make a function "easy" by adding
to the interpretation. Can we always change the interpreta-
tion to make a specific function harder to compute?

(7) Can some well-known "Natural" measure be simulated

more precisely by a flowchart measure than we have done?

That is, so that the complexity classes are the samé for

all bounds?

(8), Can we give examples of universal flowchart interpreta-
tions which give finitely-invariant or proper measures?

(9), Are there any other "natural" properties [10] which either
hold for all flowchart measures or are interpretation-
dependent (e.g., conformity, parallelism, downward diagon-
alization, denseness)?

(10), Can recursive oracles be found for which the deter-
minism-nondeterminism question for linearly-bounded

automata with oracles, NDL?=DL, may be answered "yes"?

(We know there are oracles for which the answer is "no".)
(11) May a flowchart interpretation be N-universal

without being universal? (See p. 20.)
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B. Open Areas
The remaining questions are much broader in scope,

and cannot be asked quite so simply.

(1) [General Nondeterminism] What kinds of functions can

be computed nondeterministically if we say that a nondeter-
ministic algorithm computes a set-valued function,

converging only when all computations havé terminated? How
much more powerful is this model than the one where all
computations are halted with the first to terminate? Are
there other interesting notions of nondeterministic algo-
rithm or of parallel computation with which to compare these?.
(2) [Complexity of Flowcharts] How does the complexity of a
flowchart as a graph relate to its complexity as an algorithm?
For example, are planar graphs less powerful as flowcharts
than nonplanar graphs? This area might border on work which
has been done in program schemata.

(3) [(General Step Measures] We regard the flowchart
measures as "true" step measures because there is a recog-
.nizable computational operation for each "step" counted in
the measure. Is there a nice abstract characterization of
measures which have this "property“? Can we go to an
abstract notion of "true" step measure without losing all of
the nice "natural" properties that we have not lost already

by accepting the flowchart measures as natural?

*[ We have some conjectures and preliminary results in this
area, hinted at in §1.5, which do not properly fall within
the range of this thesis.]
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§7.3 Step Measures

K. Weihrauch [27] has shown that anv Blum measure
may be realized as a submeasure of a flowchart measure.
This means, as Hartmanis [10] has explained, that we cannot
accept as an "improvement” on the Blum axiomatization any
set of properties which are transitive with respect to
submeasures. The example he gives of a property which may
hold for a measure withoutholding for all of its submeasures
is finite invariance, which we have shown to Be excessively
restrictive.

Although we have stated th properties which are
characteristic of flowchart measures, and natural at least
. in that sense, we do not believe that they are sufficient
to define a "ratural" measure. The naturalness of a
measure seems unavoidably connected to the existence of a
corresponding model of computation, with recognizable steps
and intermediate results related in some way to the results
of shorter computations. We believe that the existence of
a partialtresult (produced by a recognizable operation
from a previous result) for each "step" counted should
be a basic requirement for all step measures.. The flowcharts
do this, but have a good deél more structure than is needed.
It should be possible to define a structure more abstract
than the flowcharts which still has the properties we admire

in them.
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A possible start would be to hypothesize a single
data space (rcpresented by an inteqer variable, in the
manner of Ianov [16)), with a set of unit-cost operations
(a recursive, or finite, set of recursive functions), a
pair of input-output encoding-decoding functions, and
a set of algorithms (next-operation choice functions
dependent only on the result of the previous step). The
operations would determine a natural congruence relation
and a metric on the space of possible partial results
(the orbit of the range of the input encoding under the
action of the free group generated by the operations).
The space of partial results would admit a natural parti-
tion. under the obvious equivalence relation defined by
the algorithms. The equivalence classes so defined could
naturally be called "states". One might even go so far
as to require that the partial results decompose into.a
Cartesian product of the "states" and another ("data")
space, although this seems unnecessary. The axioms would
basically be closures on the set of algorithms, to assure
the possibility of "programming" in some natural manner.
It is hoped that a few such closures would be sufficient
to get some interesting properties about the step measures

(operation counts).
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