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Abstract

We show that an O(n®logn) algorithm can find optimal Power—of-Two Lot Size Policies for
Finite Production Rate Assembly Systems. This improves an O(n®) algorithm proposed in Atkins,
Queyranne and Sun’s paper [1] (1992).

In their paper “Lot Sizing Policies for Finite Production Rate Assembly Systems” [1] (1992), Atkins,
Queyranne and Sun provided an O(n®) algorithm to find optimal Power—of-Two Lot Size Policies for
Finite Production Rate Assembly Systems. In this article we show that an O(n>logn) algorithm can
solve the same problem. The organization of the paper is as follows. First, we rewrite the original
relaxation problem (RP) in Atkins, Queyranne and Sun [1] (1992) to an equivalent problem (RP;).
Then, we present a mapping from this model to the model presented in Roundy [3] (1990). By using
this mapping, we show an algorithm solving the original problem in O(n3logn). Finally, we give an

example to illustrate the mapping procedure.
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Refer to [1] (1992) for the notation, motivation, etc. We introduce the following equivalent formu-

lation to the original relaxation problem of Atkins, Queyranne and Sun.

Lemma 1 (Equivalent Formulation)

Problem (RP):

K;
mm f(Q) = mm Z [Q >7r0 + Z Hgfm(??;)Ql}

iEN j€(i,1)
st. @; 20 Vie N

is equivalent to problem (RPy):

Ci = mm f1(Q) = mln > [ A + > H:ﬁjqz‘j}

gii[ ™o

ieEN JE(i,1)
ot ;20 V(i.j) € B, (1a)
%ij < Gis(s) Y (i,s(4)) € R, (1b)
Qi > 4s(i),5 v (S(’l),]) € R, (]‘C)

where R is the set of all paths in G(N, A).

Proof. Suppose that Q@ = (Q1,---,Qn) is a feasible solution to (RP). Let

P
= ax Qy, V{i,j) € R. 2
max Qe V(i) (2)

Gij
Then inequalities (1a), (1b) and (1c) hold, that is., ¢ = (gi;|{7,7) € R) is also a feasible solution to
(RPy). Note also that ¢;; = Q;, V i € N. Therefore, filg) = f(Q), and CT < C™.

Now suppose that g is a feasible solution to (RP1). Let Q; = gii, Vie N.If£€ (i,j) € R, then
by (1c) @ij > Geqi); > - 2 e, and by (1b) gee < Qesey < -+ < gej- Therefore, Qe = que < Gij)
Ve (i,j),and m(ax Q¢ < g;j. Hence, f(Q) < fi(g), and C* < (7.

This implies C* = C¥, i.e., problem (RP) is equivalent to problem (RPy). d

The mapping is best described by defining three networks and by providing network-based re-

formulations of problem (RP;). The three networks are defined as follows.
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1. Network G(Ny, A;) corresponds directly to problem (RPy).
S () eRry,
(G, 5(5)), (6 3)) (i, s(3)) € RY U {((6, ), (s(2),3)) [(s() 7) € R}

For each node (i,j) in Ny, the setup cost and the holding cost are

Kimo, if =3,
0, if i
Hij = Hij

Ny

>

Ay
K j)

Note that problem (RP;) can now be re-stated as
- Ki.d) )
min == + Hy; 2\Gis
Problem (RP;): q (i,j)ze:Nl ( Qij o
st gij > gy 20, YV ({i,3), (¢, 57) € A1

2. Let D 2 max |(i¢,1)| be the length (the number of nodes in a route) of a longest leaf-route in
1€

G(N, A), where L is the set of all leaves. Let G(N', A’) be the series system with

4

N’ {0,1,2,---,D — 1}

A 2 {Gi-1li=1,2,---,D-1}

3. Let G(Ny, Az) be a graph defined by

N, & {(i,k)|ie N,k=0,1,2,---,D -1}
{(<27k>7<3(7’)7k>)lz € N\{l}vk = 071727"'3D" 1}

U{((i, k), (i,k—1))|i € N,k =1,2,---,D =1}

1124

A,

The network G(Nj, A2) can be viewed as the cross product of G(N', A’) and of G(N,A) (see
Figures 1, 2 and 3). G(N3, Az) has the structure that Roundy [3] requires. We embed G(N1, A1) into
G(N,, Ay) as follows.

node (i,7) € Ny +~— node (i,k) € No, with k = D — |{j,1)]-

Costs for G(N,, A2) are defined as follows.

I _ K5y if (i,7) € Nyv+— (1,k) € Ny, with & = D —|(j, 1)/,
(k) 0, otherwise

H. _ H(i,j)v if <i7j>€N1"“"'<i7k>€N23 Withk‘ZD——l(j,l)l,
(1.k) 0, otherwise
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We now define Problem (RP;) as

-1
Problem (RP;): n;l’n (NS (‘(1(—{;1)— - Hzi’j)q;j) 24;1H
st ¢l > g 20, V ({3, 4), (¥, 3") € Az

The costs for G(Ny, A;) are obviously selected to make problems (RPy) and (RP;) equivalent. Let
S ={{i,k) € Na:k<D-1-|(z 1)|}. Note that nodes in S have no corresponding nodes in Nj.
The setup costs and holding costs corresponding to these nodes are zero, and no arc in Ay goes from
anode in S to a node in N5\ S. Using these facts the equivalence between problems (RP}) and (RP,)
is easily verified.

The algorithm for solving (RP) can be summarized as follows.
1. Construct G(Na, Ap) as described above

9. Use the algorithm suggested by Roundy [3] to solve Problem (RP,) over network G( N2, Az) in the
time of O(|N2|Dlog|Na|). Note that |No| < n? and D < n, so O(|No|Dlog |N,|) < O(nlogn).
Let the solution to Problem (RFP;) be qzi»k) for every node (i,k) € Na.

3. In order to get the solution to the relaxation problem (RP) over the network G(N1, Ajq), we use
the inverse mapping from G(Ny, A2) to G(Ny, Ar):

if [, 1)|<D-1-k

. 9,
(i, k) € V2 { (i,j) € Ny, if (j,1) C (i,1) € G(N, A) such that [{(7,1)|=D — k

The solution to problem (RP;) over the network G(Ny, Ay) is:
G = Gy = Qigyr i (i) € Nav— (1,]) € M.
When carefully implemented, the run time for this step is O(|N2|) < O(n?).
4. Let Q; = gii, Vi € N. We have the solution to the original problem (RP).

5. Using the optimal rounding method in Roundy [2] (1983) to derive, in O(nlogn) time, an optimal
power—of-two lot size policy for the finite production rate assembly systems with effectiveness

at least 98%.

It is easy to see that the total time to solve the problem is bounded by the time to solve the

relaxation problem over network G(Ny, Az) in step 2, which is O(nlogn).
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[

The following example illustrates the mapping process.

Example. The following example of an assembly system G(N, A) in Figure 1 with 7 facilities
illustrates the embedding procedure. The length of the longest leaf-route, which corresponds to the
series network G(N’, A') in Figure 2, is four, i.e., D = 4. Graph G(N, A42) in Figure 3 is the network
corresponding to problem (RP;). It is the Cartesian product of graph G(N, A) and graph G(N’, 4').
The graph G(Ny, 4;) in Figure 4 is imbedded in graph G(N3, A3).

It is easy to verify the mapping from G(Ni, A1) to G(Na, Ajy). The following examples illustrate
the inverse mapping from G(Na, A3) to G(Ny, Ay):

If (i,k) = (7,3) € Np, then i = 7, k = 3 and D-k—-1=4-3-1=0<4=[{7,1)]=1[{(:1)],50
there is a corresponding node in G(N3, Az). Therefore, |G, )|=D-k=4-3=1landj=1, i.e.,
(7,3) € Ny — (7,1) € Ny.

If (i,k) = (7,0) € Np, then 1 =7, k = Qand D-k—-1=4-0-1=3<4=7,1)| = [{(i,1)]
Therefore, |(j,1)| =D -k=4-0=4and j =7, 1e, (7,0) € N2 — (7,7) € N1.

If (i,k) = (6,3) € Ny, theni=6k=3and D-k—-1=4-3-1=0<3=[(6,1)| = I(i, 1)].
Therefore, |(j,1)| =D —k=4-3=1and j=1,1ie, (6,3) € Ny — (6,1) € Nq.

If (i,k) = (6,0) € Ny, then i = 6, k = 0and D —k—1=4-0-1=3=[(6,1)] = [(i,1)].
Therefore, (6,0) € N — 0 € Ny.

The following table summarizes the mapping between G(Ny, A1) and G(Na, As).

[ (.)€ N1 = (1,k) E N | [ () eN <= (i,k)e Ny |
(7,1) {7,3) (5,5) (5,1)
(7,3) (7,2) (4,1) (4,3)
(7,5) (7,1) (4,2) (4,2)
{(7,7) (7,0) (4,4) (4,1)
(6,1) (6,3) (3,1) (3,3)
(6,3) (6,2) (3,3) (3,2)
(6,6) (6,1) (2,1) (2,3)
(5,1) (5,3) (2,2) (2,2)
(5,3) (5,2) (1,1) (1,3)
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Figure 1: Graph G(N, A)

Figure 2: Graph G(N', A’)
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Figure 3: Graph G(N2,Az) = G(N,A) x G(N',A’)
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Figure 4: Graph G(Ny, A;), which is embedded in graph G(Nj, Az)
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