
STOCHASTIC INVERSION FRAMEWORK FOR
MONITORING EVOLVING SURFACE SHIP MASS

PROPERTIES DURING ARCTIC OPERATION

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Yolanda Chia-Yi Lin

August 2018



c© 2018 Yolanda Chia-Yi Lin

ALL RIGHTS RESERVED



STOCHASTIC INVERSION FRAMEWORK FOR MONITORING EVOLVING

SURFACE SHIP MASS PROPERTIES DURING ARCTIC OPERATION

Yolanda Chia-Yi Lin, Ph.D.

Cornell University 2018

The presence of Arctic sea ice currently limits surface ship travel in the Arctic

for most of the year. However, due to rising temperatures from global climate

change, Arctic waters are becoming increasingly navigable for a greater percent-

age of the year. As interest in surface travel within the Arctic increases in the

coming years, the safety of a ship operating in this context must be considered.

Specifically, the possibility of ice accumulation on the topside of a ship is height-

ened due to environmental factors within the Arctic, including the presence of

sleet, snow, freezing rain, and freezing spray. This additional mass on exposed

topside surfaces, at the most extreme, could result in capsizing of a vessel.

The present research develops a framework to monitor evolving mass prop-

erties for a ship in Arctic operation, in order to ensure safe travel through the

Arctic. As with any real-world application, the data for this work are limited

and noisy, and the system is complex. When the real-world data are limited,

when the signals of interest are noisy, or when mechanistic models are unavail-

able, stochastic inference can enable informed decision making regarding the

natural and built worlds. Thus, this work leverages stochastic inference in or-

der to investigate the real-world problem of Arctic travel.

First, the dissertation presents a proof-of-concept for applying this frame-

work to identify a single mass parameter for the Research Vessel (R/V) Melville

with no icing and in quiescent seas, both at model-scale and full-scale. Sec-



ond, the framework is extended to consider multiple mass parameters of the

R/V Melville while undergoing potential ice build-up configurations. The third

component of the dissertation looks outwards to the sea, to gauge the near-field

wave forcing acting on the ship. In particular, the present work reports on a

validation experiment of an existing algorithm to determine scale and sea state

from an uncalibrated camera.

Taken together, the chapters prepare a foundation from which an ice moni-

toring system could be implemented. The chapters also provide insight to the

specific challenges that exist for the full realization of the proposed framework.

While the presence of ice is a focus of this work, the framework could easily be

translated to a ship operating in within a context in which any mass property is

evolving; those systems may require the monitoring of different mass parame-

ters, but the underlying framework and approach proposed here would remain

unchanged.
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CHAPTER 1

INTRODUCTION

The presence of Arctic sea ice currently limits surface ship travel in the Arctic

for most of the year. However, due to rising temperatures from global climate

change, Arctic waters are becoming increasingly navigable for a greater percent-

age of the year. As interest in surface travel within the Arctic increases in the

coming years, the safety of a ship operating in this context must be considered.

Specifically, the possibility of ice accumulation on the topside of a ship is height-

ened due to environmental factors within the Arctic, including the presence of

sleet, snow, freezing rain, and freezing spray. This additional mass on exposed

topside surfaces, at the most extreme, could result in capsizing of a vessel.

Given the possibility of ice accumulation while traveling within the Arctic,

one strategy for retaining favorable seakeeping capabilities could be the pre-

vention or removal of topside ice. Previous research has indicated that many

of these strategies, including hydrophobic surfaces and physical removal, are

financially infeasible, or physically ineffective beyond certain quantities of ac-

cumulation [59].

Thus, the present research is motivated by the the scenario in which ice has

already accumulated beyond the reasonable limits of effective ice removal. A

surface ship with significant topside ice accumulation will henceforth be re-

ferred to as an evolved ship configuration. In this context, a seakeeping predic-

tion under the evolved configuration of the ship is desirable, in order to make an

accurate assessment of seakeeping capabilities. Since direct measurement of an

evolving vessel is not possible during operation, there is a need to understand

current conditions of a vessel through indirect means.
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The present research develops a framework to monitor evolving mass prop-

erties for a ship in Arctic operation, in order to ensure safe travel through the

Arctic. As with any real-world application, the data for this work are limited

and noisy, and the system is complex. When the real-world data are limited,

when the signals of interest are noisy, or when mechanistic models are unavail-

able, stochastic inference can enable informed decision making regarding the

natural and built worlds. Thus, this work leverages stochastic inference in or-

der to investigate the real-world problem of Arctic travel.

1.1 Scope and Organization

The following is an overview of the remaining three chapters of this dissertation.

This dissertation is a collection of three papers, corresponding to Chapters Two

through Four. Each chapter is an autonomous unit with an introduction and a

conclusion. References for all chapters are collected at the end.

Taken together, the chapters prepare a foundation from which an ice moni-

toring system could be implemented. The chapters also provide insight to the

specific challenges that exist for the full realization of the proposed framework.

While the presence of ice is a focus of this work, the framework could easily be

translated to a ship operating within a context in which any mass property is

evolving; those systems may require the monitoring of different mass parame-

ters, but the underlying framework and approach proposed here would remain

unchanged.

Chapter Two: This study considers the problem of identifying a single mass pa-

rameter of a ship, one at 1:23 model-scale and one at full-scale [40]. The Research
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Vessel (R/V) Melville is used for demonstration purposes and data availability,

and the parameter of interest is the roll gyradius (kroll). The roll gyradius is of

primary interest because it is a quantity directly related to capsizing. This chap-

ter details the specifics of the inverse formulation, computational framework,

and input data that form the basis of the overarching method of this dissertation.

The method is demonstrated with an ice-free 1:23 model performed in quiescent

seas and zero velocity, as well as for the full-scale R/V Melville in following

seas (a best-approximation for quiescent seas and zero velocity). Accelerome-

ter data from the model-scale and IMU output from the full-scale are both used

to demonstrate the capability and flexibility of this method. The chapter con-

cludes with solutions from the Markov chain Monte Carlo simulations and a

discussion of the results and discrepancies between the model- and full-scale.

This work provides a proof of concept for the application of an inference frame-

work to identify current mass parameters of a ship, and demonstrates how the

method can leverage existing on-board instrumentation to accomplish this task.

Chapter Three: The third chapter builds upon the framework developed in

Chapter Two. The work investigates a similar problem of identifying mass

parameters of the R/V Melville [37]. However, this study extends the frame-

work from Chapter Two in two ways. First, this study considers the additional

presence of topside ice, whereas the first study considered only an un-iced ship

configuration. Second, this work aims to uncover two mass parameters (roll gy-

radius and vertical center of gravity), rather than a single mass parameter (roll

gyradius). The framework thus must be modified to handle the inversion for

multiple parameters. This chapter also focuses on investigating the relevance of

using particular Bayesian prior distributions. Discussion focuses on the trade-

offs between certain prior distributions and the practicality of employing those
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methods in a real-world setting.

Chapter Four: In a full implementation of the framework, the surrounding sea

state would be a necessary input to the forward model within the framework.

Chapters Two and Three focus on a ship in quiescent seas, at zero velocity, dis-

turbed initially by an impulse force such that its subsequent unforced motion

can be recorded. In contrast, Chapter Four examines an existing algorithm to

interpret the surrounding sea state in order to close the loop for the proposed

framework. That is, Chapters Two and Three focus inwards on the ship, while

Chapter Four looks outwards to the sea, to gauge the near-field wave forcing

acting on the ship. In particular, the chapter presents a validation experiment

of an existing method to determine scale and sea state [38]. The algorithm of

interest requires a single-perspective, uncalibrated video of the sea surface. The

original study [70] relied on synthetic sea surface videos to demonstrate the

method, and did not validate the method with real-world data. The present

work contributes a necessary suite of validation experiments for this image pro-

cessing method. Results, identified challenges, and future recommendations are

offered at the conclusion of this chapter.
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CHAPTER 2

STOCHASTIC INVERSION FOR THE ROLL GYRADIUS SECOND

MOMENT MASS PROPERTY IN SHIPS AT FULL-SCALE AND

MODEL-SCALE

2.1 Introduction

Ship stability considerations are typically treated during the initial design phase

of a vessel, using the so-called range of stability plot, which is the hydrostatic

restoring moment versus roll angle or righting arm versus roll angle in still wa-

ter (Righting Moment (RM) curve or the Righting Arm (GZ) curve, respectively)

[17] [77]. While this plot does not encompass all of the influences affecting the

stability of a ship at sea (e.g., viscous roll damping, etc.) [75] [15], experience

has shown that the consideration of this metric, along with the application of

safety factors prescribed within rules from classification societies and other in-

ternational standards, yields a design that performs satisfactorily in normal op-

erational contexts [34]. However, the expectation of satisfactory performance,

in this case, is largely experiential, and necessarily context dependent. A dam-

aged ship, a ship operating in extreme weather, or one experiencing significant

topside icing could not be expected to perform satisfactorily since then the ini-

tial design context would have been lost [34] [16] [33]. In such circumstances,

making a seakeeping prediction regarding the actual condition of the ship, as

well as a prognosis for the ship’s future seakeeping performance in its new con-

figuration, becomes desirable, especially in real-time (i.e., within a time interval

that is consistent with the characteristic time scale of interest).

Understanding the current stability limits for the rolling degree of freedom
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– the degree of freedom most important for predicting the propensity to capsize

– is one dimension of ship performance where such real-time mass property in-

formation will be of great value [75]. As a first step towards being able to ascer-

tain current ship roll properties within a seaway (i.e., excited by irregular seas)

in real-time, the present research effort focuses on inferring actual roll proper-

ties of a given ship, at an arbitrary point in time (i.e., with cargo, equipment,

topped-off fluids and fuel, etc.), through a consideration of its calm water roll

period. The current paper describes work wherein a stochastic inverse prob-

lem is formulated and solved, so as to furnish an inference regarding current

roll gyradius properties of the given ship at sea. An additional effort aimed at

subsequent model-scale validation is also reported herein.

In both of these contexts (i.e., full-scale and model-scale), uncertainty in the

roll gyradius inferences are quantified within a Bayesian context. This proposed

approach leverages the shipboard inertial measurement unit (IMU) telemetry

against motion predictions (made using seakeeping software, as part of the

stochastic inverse problem framework). The interaction of these components

leads to the quantification of uncertainty recording the actual second moment

mass properties (in the current paper, attention is restricted to roll gyradius, but

other mass properties could be similarly treated). Such second moment mass

properties are of great importance in understanding the dynamic behavior of a

vessel through the ship equation of motion.

Other researchers have studied a related inverse problems that aimed to use

the ship itself, as a kind of wave buoy, so as to make inferences regarding the

on-site wave spectrum of the irregular sea surrounding a given vessel [46] [45].

This previous work assumed that a linear transfer function (taking the wave
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spectrum into a ship response spectrum) was known. Within such a context,

shipboard IMU measured responses (e.g., heave, roll angle, and pitch angle)

could be used as part of the inversion for the desired wave spectrum.

The present work differs from this prior research: the current goal is to make

inferences regarding the actual roll gyradius (as opposed to inferring a wave

spectrum) of a given vessel through the use of shipboard IMU measurements

of the vessel calm water roll period. Ship motion predictions, obtained from

well understood seakeeping software, along with the IMU telemetry, are sub-

sequently incorporated into a likelihood function as part of a Bayesian setting for

the stochastic inversion leading to a roll gyradius inference. Figure 2.1 provides

a high level overview of how the Bayesian inference is implemented in this con-

text.
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2.1.1 Scope and organization

The current paper is organized as follows. Section 2.2 starts with an overview

of modeling, including the forward model, inverse model, and computational

framework that enables our method. Following that, Section 2.3 includes a de-

scription of three application test cases for the current framework. The first

application, in Section 2.3.1, tests the integrity of the framework with noise-

free simulated data. Second, the full-scale application (Section 2.3.2) covers the

details of the testing program and results for the full-scale application. Model-

scale validation follows the full-scale application (Section 2.3.3). The discus-

sion in Section 4.4 analyzes the utility of the method and furnishes subsequent

thoughts based on inversion results. Finally, conclusions emanating from the

current study are provided in Section 2.5.

2.2 Overview of modeling

The current paper reports on stochastic inversion efforts. A second moment

mass property for roll (i.e., the roll gyradius) is obtained from the considera-

tion of a noisy measurement of the natural, still water (or near equivalent) roll

period from a model-scale or full-scale vessel. This inversion is carried out in

conjunction with a seakeeping software tool, acting as a “black box” within a

Bayesian formulation of the problem.

For reference, the definition of the in-air natural roll period, Tn, as deter-

mined by pendulum theory is given by the following:
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Tn =
2πkroll√
gGMT

(2.1)

where kroll is the roll radius of gyration, or gyradius, g is the local acceleration

of gravity, and GMT is the transverse metacentric height. It is pointed out that

the proposed inversion strategy employs the different, but related response: the

calm-water roll period.

2.2.1 Forward modeling

In order to implement the stochastic inversion, a forward model is a necessary

component of the framework. A forward model takes inputs to determinis-

tically calculate an output of interest. In the forward model scheme, the roll

gyradius is an input and the output is the calm-water roll period.

The forward model in the current work is a well-known seakeeping software

tool: the U.S. Navy Standard Ship Motion Program (SMP) [11]. This tool was

originally intended to be a means to aid the incorporation of seakeeping consid-

erations in hull design early in the design process. Provided an input file with

the specifications of the vessel of interest, including the roll gyradius, SMP’s out-

put includes deterministic predictions of ship motion in regular waves, amongst

many other responses. One of these responses includes the calm water roll pe-

riod of the specified vessel. SMP is based on linearized strip theory [11]. For the

validity of this theory, assumptions require that the ship length be much greater

than the beam and draft. Also, ship motions are limited to small amplitudes,

such that the hull section and waterplane properties correspond to calm water

values. Known issues with the application of SMP include greater accuracy for
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computed pitch and heave motions than roll motions, as well as reduced accu-

racy for large amplitude motions where non-linear effects are no longer negli-

gible, such as when the wave heights are greater than the draft. The SMP was

validated in a previous version (SMP81, 1981) and, since the underlying theo-

ries remained intact, validation studies were not repeated for the current release

(SMP95) [11].

The SMP95 forward model takes a detailed input file that describes the ship,

including characteristics such as hull geometry and loading. In formulating

an input file to use for SMP95, data from experimental results are used when

available. In the absence of measured values, design values are used as a best

approximation. In particular, care is given to matching the ship displacement,

controlled by the draft line input, and the metacentric height (GM ), which is

affected by the ship displacement (which affects the metacenter, KM ) and load-

ing particulars, including the free surface correction (FSC) and the distance

between the keel and the center of gravity (KG). Specifically, GM is equal to

KM −KGout, where KGout is calculated in SMP95 as KGin + FSC.

2.2.2 Inverse modeling

An inverse modeling process is implemented in order to determine a posterior

distribution of an inertial mass property. In this case, the inertial mass property is

the roll gyradius (kroll). The known quantities include experimentally collected

values for calm water roll period ground truth (TGT ) and signal to noise ratio

(SNR). The latter of the two encapsulates measurement errors. In other words,

given some observed roll period, TGT , SMP95 models (instantiated with param-
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eters such as kroll) are applied to furnish plausible model instances that match

our observed response (i.e., TGT ).

The inverse model relies on basic probability principles. Bayes’ Theorem is

as follows:

p(A|B) =
p(B|A)p(A)

p(B)
(2.2)

where A and B are events, p(A|B) is the conditional probability density of ob-

serving A given that B is true (known as the posterior distribution), and p(A) and

p(B) are the independent probabilities of the occurrence of event A and event

B, respectively.

With Bayes’ Theorem in this application, kroll is event A and the calm-water

roll period TGT is event B. The equation can be re-written as:

p(kroll|TGT ) =
p(TGT |kroll)pprior(kroll)

p(TGT )
(2.3)

where pprior(kroll) is the prior distribution that encodes prior beliefs and practi-

cal limits on kroll, and p(TGT ) is a normalizing term such that the probability

density will integrate to 1. The quantity p(TGT |krolln ) is known as the likelihood

distribution.

Furthermore, TGT is taken to be noisy – uncertainty can stem from any num-

ber of sources, from sensor noise to experimental error. The noise is assumed to

be both stationary and Gaussian with some mean, µ, and standard deviation, σ,

as is consistent with sensor noise. In this case, TGT is taken as µ, and experimen-

tal standard deviation for TGT , denoted as σT , as σ (where µ and σ are standard
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nomenclature in the literature). The relationship between the observed ground

truth event’s value, or signal, and the noise, or uncertainty, can be captured in

the SNR value. The SNR used in this study is calculated as the ratio of the mean

divided by the standard deviation, or TGT/σT .

In the proposed inversion framework, the SMP forward model closes the

likelihood function (Equation 2.4):

p(TGT |kroll) =
1√

2πσ2
T

e
− 1

2σ2
T

(TGT−SMP (kroll))2

(2.4)

where p(TGT |kroll) is the probability of the ground truth associated with the

calm water roll period given a particular mass property (in this case, the roll gy-

radius) TGT is an experimentally collected ground truth calm water roll period

value, σT is the standard deviation of the experimentally determined TGT , and

SMP (kroll) is the output of the forward model, SMP95, for the calm water roll

period, given the input model parameter kroll.

Since the objective is to uncover the likely kroll value given an observed roll

period, one approach could be to maximize p(TGT |kroll) over all possible kroll

values in order to uncover the most probable kroll. This, however, does not

include the consideration of prior beliefs and experience concerning realistic

kroll values. Instead, a Bayesian approach is applied from Equation 2.3 in order

to reflect an understanding concerning the uncertainty regarding kroll. Using

Bayes’ Theorem, the probability distribution of kroll will always be conditioned

on our observed ground truth. The distribution for p(kroll|TGT ) is built by the

probability of the roll gyradius given the ground truth for the roll period from

a sampling scheme.
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In support of our subsequent Bayesian inference, a Markov chain Monte Carlo

(MCMC) sampling approach is implemented. This sampling scheme is cho-

sen in order to effectively vary the pertinent model parameters within rele-

vant model space. The result is a chain of values that provide an estimate for

p(kroll|TGT ). See Appendix A.1 for a detailed description of the method.

2.2.3 Computational framework

The computational framework adopted in the current work enables the imple-

mentation of an MCMC inversion with minimal dependencies on the specifics

of a particular forward model. This allows for the use of one forward model,

such as SMP95, but also builds in versatility for other ship motion predictive

tools, suitable for future applications. The computational framework is imple-

mented in the high-level computer language Python [55]. Python is chosen for

its built-in flexibility in scanning large text documents and for its ease in com-

munication with external programs to allow for a “plug and play” framework.

A schematic of the overall computational inversion framework implemented in

this work is presented in Figure 3.3. Mainly, the framework takes as input the

expected ground truth period, TGT , and its standard deviation, σT , denoted as

the user inputs in the figure, and produces a histogram representing the distri-

bution of kroll, represented by histogram icon in the bottom right corner of the

figure.

To begin the inversion, the inputs provided by the analyst are employed

to initialize the necessary parameters within the computational framework. Ex-

perimentally obtained ground truth and experimentally calculated standard de-
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Figure 2.2: Schematic of computational framework

viation represent a subset of such inputs. Measurement noise is assumed to be

largely due to electronic sensor noise. As such, to assume a Gaussian form for

noise is reasonable. This form of the measurement noise inspires a similar Gaus-

sian form for our likelihood.

After the user inputs are read in and stored appropriately, the overarching

function, <stoch solve>, is called. This function is described in detail in Ap-

pendix A.2: Algorithm 1, and briefly outlined in the subsequent discussion.

As inputs, <stoch solve> takes the burn-in number, sample number, parame-

ter prior support, variance, and expected ground truth values. This function

returns the main objective of the inversion: a vector of numbers, stored in a

Python list data structure with the name “data.” This vector may subsequently

be used in the generation of a histogram of the probable distribution of the pa-

rameter of interest, in this case, the inertial mass property roll gyradius. As a

reminder, the framework is general: other model parameters (or collections of

parameters) may be inverted for instead of just the roll gyradius.

14



As part of the stochastic inversion, <stoch solve> calls a function, <burn-

in> (Appendix A.2: Algorithm 2). The<burn-in> function makesNburn number

of moves in the chain of values for our parameter of interest, but these results are

not stored in the final sample chain. Instead, α is tuned and <burn-in> helps to

ensure that the chain begins sampling in a high probability region of the poste-

rior probability density function (PDF) for kroll. The α parameter is tuned to reach

a target 0.42 acceptance rate, as per Link [41].

To evaluate the plausibility of each instance of kroll, the burn-in phase, where

the function <gibbs> (described in Appendix A.2: Algorithm 4) is called. This

function is used to loop over multiple model parameters. In this study, though

only one parameter is being varied (i.e., kroll), the multi-parameter functionality

exists for completeness and future applications of the method.

Within <gibbs>, the Metropolis-Hastings function <MH> (Appendix A.2:

Algorithm 5) is called. This function is the heart of the MCMC inversion, and

the main contents of Figure A.1. <MH> begins by generating a candidate move

within the chain of responses at step n. It does this by taking the previous,

most recently accepted parametric candidate and imposing a small parametric

perturbation, based on α, as described in Appendix A.1. After the candidate is

generated, the candidate is categorized as admissible or inadmissible under the

prior lower- and upper- bounds. If it is not admissible, the previous response is

returned in place of a new candidate.

If the candidate krolln is within acceptable limits, based on the specified sup-

port of the prior, the forward model is called in order to generate a new response

value for natural roll period, Tn, given by Equation 2.1. The framework is de-

signed to be modular such that the specific motion predicting software can be
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replaced with minimal disruption to the rest of the MCMC inversion procedure,

allowing for flexibility and versatility of this general framework to meet future

needs. This modularity makes the forward model used here, i.e., SMP95, an

effective “black box.”

When SMP95 is called in the forward model evaluation phase, a Python

script modifies a SMP95 baseline input file for the ship (e.g., Melville.inp), so

as to reflect the current MCMC-updated roll gyradius value at step n. The func-

tion <formod> (Appendix A.2: Algorithm 6) then opens and reads the output

file from SMP95 in order to extract the calm water roll period (Tn, in seconds).

After this new response is extracted, it is stored in a vector and the output file is

closed. The new response is then returned to<MH> and used in the calculation

of the likelihood function ratio, rn.

Taking the inverse model discussion from Appendix A.1 and placing it into

a computational setting: the forward model returns to <MH> a value for Tn, or

the calm water roll period at step n. The likelihood function of this candidate

value, relative to the ground truth, is compared to the previous step, n−1, within

the ratio of the likelihood functions, rn. Though discussed in Appendix A.1, a

few additional details are of note. If rn is greater than or equal to 1, the candi-

date krolln is accepted and returned as the “previous” response. If rn is less than

one, then a biased “coin toss” is performed, where rn is compared to a uniform

random number from 0 to 1. If rn is greater than the generated number, krolln

is still accepted and returned as the “previous” response; if rn is less than the

generated number, krolln is rejected as a candidate value. In the case of rejection,

krolln is overwritten with krolln−1, and krolln−1 is instead returned in place of the failed

candidate krolln . Moving forward, krolln+1 will be calculated off of the value krolln
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= krolln−1. This seemingly unintuitive procedure is of vital technical importance,

ensuring detailed balance required for validity of the method [23].

The parameter value at step n is then passed back through <gibbs> to

<burn-in> where α is modified based on whether the candidate at n was

accepted or rejected in <MH>. n is incremented by one and iterated until

the number specified in <burn-in> is reached and the burn-in phase is com-

plete. At this point, the final α is passed back to function <stoch solve>, and

<stoch solve> calls on<sample> (Appendix A.2: Algorithm 3), which runs the

samples from which values will be collected and returned for use in building up

the posterior histogram. In the <sample> phase, α is a static value, and a roll

gyradius value is stored at every step n. Otherwise, both the <burn-in> phase

and the <sample> phase follow the same algorithmic flow, incorporating the

same family of functions, <gibbs>, <MH>, and <formod>.

After the total number of samples has been run (n = Nburn +Nsamp = Ntotal),

the final chain of parameter values is printed into a text document for the user.

At this point, one instance of the inversion is complete. The script can easily be

run in a batch mode.

2.3 Applications

The proposed method is applied to the Research Vessel (R/V) Melville, for

which full-scale and model-scale data are available, as a demonstration of the

method. The R/V Melville is a retired Navy vessel that was operated by Scripps

Institute of Oceanography, University of California. Overall, R/V Melville had

a four-decade long history of serving as a vessel of science and research for
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ocean interests [44]. In this study, data are available for both the existing full-

scale R/V Melville, at 85m long and weighing in at 3000 tonnes, as well as a 1:23

scale test-model scale version of R/V Melville. The model-scale testing was per-

formed in the Maneuvering and Seakeeping (MASK) basin at the Naval Surface

Warfare Center Carderock Division (NSWCCD) in West Bethesda, Maryland,

while the full-scale R/V Melville data reported on herein was taken during a

research campaign off the coast of California during September 2013. For refer-

ence, the full scale R/V Melville from model scale has a natural roll period of

10.49s, while the model-scale R/V Melville was measured to be 2.139 +/- 0.043s

(+/- 2.0%) [53].

2.3.1 Inversion using noise-free simulated data (“inverse-

crime”)

In order to build confidence in the inversion framework (i.e., to ensure correct-

ness of algorithms and implementation in computer code), results are first pre-

sented from the MCMC inversion consisting of simulated data with no added

noise as our ground truth; this is known as the “inverse crime” [21]. The simu-

lated ground truth results are obtained from the same forward model, SMP95,

as used when evaluating the likelihood function (Equation 2.4). The simulated

kroll result is fabricated with an assumed SNR value of 1,500,000 – high enough

to proxy an “infinite” SNR. The prior for roll gyradius is assumed to be uni-

form within the lower bound of 0.2 and upper bound of 0.55, where values are

normalized by the beam dimension of the ship and therefore unitless (standard

practice for SMP95 input files). The uniform prior is implemented in order to
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Type Variable Value
Forward model input kroll input 0.383B

Forward model output Calm water roll period 10.80 s
Inverse model input SNR 1,500,000

Inverse model output kroll distribution mean 0.383B
Inverse model output kroll distribution σ 0.0003

Table 2.1: Summary of model inputs and results for the simulated inver-
sion.

utilize a so-called uninformative prior, which allows the observed data to have

greater influence over the posterior. If the inverse model can recover exactly the

input that was used to run the forward model, then this builds confidence that

the framework is running as intended. Inputs and results for this inversion are

summarized in Table 2.1.

In Table 2.1, the distribution mean does indeed match the forward model

input: both are equal to 0.383B. With such a large SNR value, the σ is expected

to approach zero, but instead is equal to 0.0003B. The forward model outputs

the calm water roll period only up to 2 decimal places, and this results in a

0.0004B window of kroll inputs that can all result in the same T output. This

0.0004B range can be identified in Figure 2.3. Thus, due to this finite precision

of the SMP95 output, the inverse model posterior output contains some variance

in the distribution rather than the single spike that one would expect from an

“infinite” SNR value.

2.3.2 Full-scale demonstration

After building confidence in the correctness of algorithms and coding, as fur-

nished by results from Section 2.3.1, the framework can be applied to more
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Figure 2.3: “Inverse Crime” with SNR 1,500,000

real-world contexts.

Description of testing program

Full-scale testing on the R/V Melville was conducted in 2013. For a detailed

comparison study between model-scale and full-scale R/V Melville roll gyra-

dius properties, the full-scale ship would be required to be in calm waters and

subsequently excited to roll so as to replicate model-basin conditions. Since this

full-scale test was conducted in open waters, this was not a condition that could

be rigorously achieved. As a practical measure, the ship heading and speed

were adjusted to be in following seas, where vessel speed matched the prevail-

ing swell speed (i.e., so-called “wave riding”).

R/V Melville had no rudder, but instead had steerable propulsor pods. As

such, when the ship heading was oriented appropriately, the R/V Melville cap-
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Figure 2.4: Full scale Melville roll data and time derivative

tain had the roll stabilizers deactivated and brought the ship to a forced wet

roll period by modulating the propulsor angles at a rate that was consistent

with the design roll period of 10.49 seconds. During this forced roll maneuver

in following seas, R/V Melville achieved a peak roll angle of 12.31o from ver-

tical. Following the maneuver, R/V Melville was allowed to oscillate until at

rest, unforced. The first peak after the forcing ended was recorded at 9.16o. The

resulting time history is presented in Figure 2.4. The maneuver was executed

only once during the cruise.

Thirty seconds of data were collected from the on-board F150 IMU at a sam-

pling frequency of 5 Hz and delivered in raw binary form [51]. A suitable

Python script was written to generate a text file from these binary data in order

that a fast Fourier transform could be performed. The subsequent roll period

was found to be 10.4 seconds.

Roll precision for the IMU instrument is specified by the manufacturer as

σ = 0.025o, but the roll precision registered during calibration on the day of

testing was recorded as 0.053o. The signal to noise ratio for the full-scale test
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Method T̂ FS [s] σTFS [s] SNRFS

Interpolated Monte Carlo 10.32 0.0805 128.18

Table 2.2: Summary of results to calculate SNR from single full scale ex-
periment

was affected by the roll precision of the IMU, as well as the sampling rate at

which roll angles are being collected.

Full-scale roll gyradius forward model inputs

The SMP95 forward model input file was modified from the design values to

match the displacement on the day of the cruise. This displacement was ob-

served at 2,421 +/- 47.14 MT. For reference, the design value is 2,932.8 MT. Oth-

erwise, all other forward model inputs are consistent with documented design

values for the R/V Melville.

Full-scale roll gyradius inversion inputs

A mean value and SNR value for the full-scale test are needed to implement

the MCMC method in order to infer a probability distribution for the kroll. With

only one time series, calculating a sample standard deviation is not trivial. The

following is a discussion of the chosen method to calculate an effective SNR

value to use, referred to as the Interpolated Monte Carlo, along with the cor-

responding results for a value for kroll. Table 2.2 summarizes the subsequent

results from the application of this method.

The present approach for reckoning the effective measurement SNR from the

single time series data set, taken at full-scale, considers only the uncertainties
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inherent in the IMU data collection process. Additional uncertainties, including

damping and effects of changing the heading of the ship, are not considered due

to limitations in the nature of the measured data.

Two challenges to arriving at an effective SNR value are (1) dealing with

the IMU sampling rate of 5 Hz and (2) creating many plausible instances of the

single time series, such that the distribution of measured values are consistent

with instrument precision, and the needed statistics can be calculated from the

population of these instances.

The first challenge is the sampling rate. The instrument samples a roll angle

measurement every 0.2 seconds. Figure 2.5 is a schematic the unforced har-

monic roll response of R/V Melville, along with how the proposed method for

ascertaining reasonable SNR estimates is implemented. The true roll period, T

= t2 − t1, is shown in Figure 2.5. However, t2 and t1 fall between the instrument

sampling points, and must be solved for deterministically.

This can be calculated as:

t1 = ti −
ai∆t

ai+1 − ai
(2.5)

and similarly, for t2:

t2 = tj −
aj∆t

aj+1 − aj
(2.6)

Since T = t2 − t1, expressions from Equations 2.5 and 2.6 can be substituted to

solve for T, resulting in:

T = tj − ti +
ai∆t

ai+1 − ai
− aj∆t

aj+1 − aj
(2.7)
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Figure 2.5: Schematic for calculating a distribution around T using instru-
ment precision for amplitude of a measured motion – in this
case, the amplitude of roll

Returning, now, to the context of the existing experimental data, in order to

measure one roll period, a reasonable choice to measure one full cycle is to use

the peak-to-peak measurement of the experimental data (dashed line in Fig-

ure 2.4). Since the movement of the ship is sinusoidal, a linear interpolation

can be used to deterministically calculate a time only around the zero-crossing

in the data (i.e., the Taylor series expansion of the sine function is virtually lin-

ear within neighborhoods close to zero-crossings). This ability to interpolate a

zero-crossing, however, is in conflict with the desire to measure peak-to-peak

of the original data. Thus, rather than use the original data, the time derivative
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of the position data (i.e., velocity) is applied to evaluate peak-to-peak period

measurement. The numerical derivative is shown in Figure 2.4.

Now that sampling error due to time quantization has been accounted for,

the second challenge is in arriving at an effective SNR measurement: creating

many instances of the single time series in such a way that the instrument pre-

cision is preserved. Given a single experimental measurement – indicating a

single time series from which to measure T FS – each sampled point from the

IMU is assumed to represent the mean value, along with an experimentally

measured standard deviation, σo, of 0.053o. As instrument noise, each noise

instance is assumed to be independent and Gaussian (see 2.5).

Turning back to the schematic calculations, values at time ti, ti+1, tj , and tj+1

all have a calibrated distribution around each point, σo = 0.053o, representative

of the known instrument precision on test day. This distribution around each

recorded amplitude, at each time, can be combined with the deterministic linear

interpolation to furnish a distribution of t2, t1, and ultimately T . Rather than

the experimentally obtained amplitude values ai, ai+1, aj, and aj+1, Gaussian

distributions – N(ai, σ
o), N(ai+1, σ

o), N(aj, σ
o), and N(aj+1, σ

o) – provide many

instances of ai, ai+1, aj, and aj+1 from which a distribution for T is constructed.

Now the stochastic roll period, T , expression is:

T = tj − ti +
N(ai, σ

o)∆t

N(ai+1, σo)−N(ai, σo)
− N(aj, σ

o)∆t

N(aj+1, σo)−N(aj, σo)
(2.8)

Monte Carlo sampling is subsequently applied in order to generate a total of

10,000 instances of 2.8 roll periods. Relevant statistical values are calculated

from the output of this simulation.
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The resulting values from this simulation indicate a mean roll period value

T̂ FS = 10.32 seconds, with a standard deviation of 0.0805 seconds. These values

result in an SNR value of 128.18. Figures 2.6 and 2.7 indicate that a normal

distribution for T is a reasonable approximation for the majority of the values

in the simulated roll period distribution.
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Figure 2.6: Normal distribution vs simulated roll period distribution

Full-Scale Demonstration Inversion Results

With an input of SNR 128.18 and mean 10.32 seconds for the calm water roll

period ground truth, one representative posterior histogram for the full-scale

inversion is shown in Figure 2.8. Supporting results are in Table 2.3. Addi-
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Figure 2.7: Simulated roll period histogram plotted with normal distribu-
tion fit to the simulated roll period data

Trial TGT kroll Mean krollσ
Design – 0.39B –
Trial 1: Measured displacement 10.32 0.3654B 0.003443B
Trial 2: Measured displacement, lower bound 10.32 0.3696B 0.003475B
Trial 3: Measured displacement, upper bound 10.32 0.3608B 0.003437B

Table 2.3: Summary of full-scale MCMC inversion results

tional probability distributions from using displacements at the lower and up-

per bounds of the test day measurement can be found in the same figure, to

provide a visual reference relative to the mean. A 6.3% difference exists be-

tween the full-scale result and the full-scale design value for kroll when using

the measured displacement. The lower-bound displacement results in a 5.2%

difference, and the upper-bound displacement results in a difference of 7.4%

difference. The “best case” scenario for the three displacements is achieved at

the lower-bound of the displacement reading.
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Figure 2.8: Full-Scale Trials – assuming measured ship displacement (cen-
ter), lower bound ship displacement (on right), and upper
bound ship displacement (on left)

2.3.3 Model-scale validation

As indicated previously, R/V Melville was selected for consideration in this

work since both full-scale and model-scale roll data were available for this ves-

sel. The current discussion now shifts to the model-scale validation of the pro-

posed method.

Description of model testing

Model-scale experiment testing of the seakeeping performance for the R/V

Melville was conducted during a three week period in March 2012 [44]. The

testing was performed in the MASK basin at the NSWCCD.
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The scale-model in this experiment was Model 5720, a 1:23 scale model of

R/V Melville. The 1:23 configuration was chosen to allow for the testing of a

targeted range of sea states in the MASK basin. Simplifications in the design of

the model include: neglecting roll tanks, bow thrusters, topside superstructure

detail, and propeller geometry.

The model-scale experimental test was conducted with the primary objec-

tive of providing time-synchronized model ship motion and wave measure-

ment data for moderate speeds and unidirectional waves under both regular

and irregular conditions. These data are used to validate the current inversion

process and also aid in developing numerical ship motion prediction tools in

the future. Properties reported from the testing include mass, vertical center of

gravity, longitudinal center of gravity, transverse centers of gravity, moments of

inertia for roll and pitch, and transverse metacentric height [44]. The resulting

roll radius of gyration and calm water roll period values are of primary inter-

est for the purposes of this framework study. The model-scale roll angle was

measured in degrees and captured by a BF Goodrich vertical gyroscope (model

VG34-0809-1). This is a miniature dual-axis electro-mechanical spinning mass

gyroscope that provided the primary pitch and roll angle outputs.

To verify the load condition, an inclining test was performed with a Wyler

inclinometer placed at the stern and on the centerline to record the roll angle.

The Goodrich gryoscope was not used for this purpose because it provided in-

sufficient accuracy for this application (Table 2.4). The design value of kroll for

the ship is 0.3900B (normalized by the beam dimension, B). For the model, a

value of 0.3826B +/- 0.0069B (+/- 1.8%, σ = 0.00345B) for kroll was achieved

after ballasting.
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Sensor Range [degrees] Accuracy [degrees]
Wyler Zerotronic
Type 3/3DK-13-097 +/- 10 0.0055
Rosemount Goodrich
Vertical Gyroscope VG 34-0809-1 +/- 60 1

Table 2.4: Summary of instrument uncertainties from model-scale experi-
ment

Roll decay tests were performed at 0, 8, and 12 knots full-scale. For each

speed, the carriage towed the model up to speed. When at speed, the tow line

was slackened. The model was excited in roll by impulsively depressing either

the port or starboard deck near midship. The model was then allowed to roll

freely until the motion amplitude decayed to less than one degree. This process

was repeated once for each side at each speed condition. Though this test was

performed at three speeds, the current paper utilizes only the results from the

roll decay tests moving at 0 knots.

Model-scale forward model inputs

For the model-scale based forward model inputs, parameters from [53] and [44]

are used in place of design values where available. The free surface correction

and vertical center of gravity were adjusted such that the metacentric height

would match a height of 1.24m (modified from 1.09m). The hull lines were also

modified to match a reported displacement of 2924 MT, updated from 2933 MT.

Model-scale inverse model inputs

From the data from both the pre-test roll decay test (using the Wyler instrument)

and the in-test instrument (the Rosemount), the roll period was calculated along
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with uncertainty parameters. Uncertainty analysis used in this report is con-

ducted as per JCGM Guide to the Uncertainty in Measurement (GUM) [30]. The

calm water roll period was found to have a value of 2.229 +/- 0.016 seconds at

the model scale at 95% prediction limit (U95). The uncertainty value is calcu-

lated from the standard deviation of the roll decay test at 0 knots, as previously

described. To convert the model scale tests to an equivalent full scale value, the

roll period duration is divided by the value of 1√
scale

= 1√
23

. The U95 quantity is

defined as:

U95 =
t95S√
1 + 1

n

(2.9)

where U95 = uncertainty with 95% prediction limit, S is the sample standard

deviation, t95 is the inverse of the two-tailed student-t distribution with 95%

confidence for 14 samples, and n is the sample size, 14. The equivalent full scale

roll period is 10.69 +/- 0.0767 seconds. This results in σ equal to 0.03645s and

an SNR value of 293. The mean will be used as the ground truth 10.69. For

the inversion exercise, each MCMC chain is run such that the SNR is calculated

with a standard deviation, σ, corresponding to the measured U95 prediction

limit (i.e., U95 ≈ 2σ).

Model-scale roll gyradius inversion results

Three different MCMC sample chains corresponding to the single model-scale

ground truth roll period were collected. Each MCMC inversion consists of a

burn-in chain of 5,000 samples that are not retained as part of the final data set,

and 15,000 subsequent samples that are collected and stored as part of the pos-

terior distribution histogram construction. The noise standard deviation for the

roll period used to drive the stochasticity in the subsequent MCMC sampling
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Figure 2.9: Full-Scale from Model-Scale Trial 1

Experiment TGT kroll Mean krollσ
Full-scale design 10.32 0.39B –
Full-scale from model-scale 10.69 0.383B 0.0362

Trial TGT kroll Mean krollσ
Trial 1 10.69 0.378B 0.00158B
Trial 2 10.69 0.378B 0.00192B
Trial 3 10.69 0.378B 0.00200B

Table 2.5: Summary of full-scale from model-scale MCMC inversion re-
sults

is taken as the measured model-scale value of 0.03645 seconds. Trial 1’s result

from the MCMC inversion is shown in Figure 2.9. The uncovered mean roll

gyradius is 0.378B across all three sample chains, 1.3% error in comparison to

the measured value of 0.383B, though 0.383B is at least two standard deviations

away from the uncovered roll gyradius of any of the three inversion trials. At

closest, in Trial 3, the measured value is 2.5σtrial3 from the inverted result.
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2.4 Discussion

2.4.1 Full-scale discussion

This demonstration did not precisely uncover the design value kroll, as shown

in Figure 2.10. However, many of the influential SMP95 input values, capable of

affecting the inversion, including the free surface correction and vertical center

of gravity values, had to be approximated and assumed from design values as

a best estimate, which could easily account for the current difference in values.

Furthermore, since this is a full-scale demonstration, measurements for the true

kroll are unavailable for the day of the cruise, and the design value of 0.39B is

used as a proxy which may or may not reflect the true kroll value for the ship in

the conditions of that particular day. Furthermore, since this is a design value, a

representative distribution cannot be superimposed on the expected value since

there is no data to support a likely standard deviation or uncertainty limit in the

full-scale demonstration.

2.4.2 Model-scale discussion

When considering the carefully arrived at experimental uncertainty associated

with the model-scale experiment, the proposed inversion scheme did not un-

cover the ground truth value for roll gyradius within two standard deviations

for any of the three trials of the full-scale from model-scale inversions. The rea-

son that this is surprising is that the accuracy of the computational formulation

and implementation underpinning the stochastic inversion was verified by the

“inverse crime” analysis in Section 2.3.1. In spite of the verified computational
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Figure 2.10: The best-case full-scale inversion results (using lower-bound
displacement input parameters) compared to the design value
(dashed-red vertical line at 0.39B)

framework, the application of the method to the model-scale yields a kroll value

of 0.378B as compared with the measured, actual kroll value of 0.383B, where

0.383B is outside of two standard deviations of the kroll distribution. From this

perspective, the results appear unsatisfying.

However, from a different vantage point, the results begin to look reason-

able for this proof of concept. Figure 2.11 overlays the probability distribution

from the full-scale from model-scale inversion results with a Monte Carlo gen-

erated population with mean 0.383B (the experimental expected value for kroll)

and standard deviation of 0.00345B: the precision on the ground truth measure-

ment of kroll, as measured experimentally. The expected value is demarcated

by the vertical red dashed line at 0.383B. From this perspective, while the ex-

pected experimental value does not fall within two standard deviations of the

inversion result distribution (based on the precision of the TGT ), the inversion

result falls completely within the experimental distribution associated with the
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ground truth kroll.
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Figure 2.11: The full-scale from model-scale inversion results, in green,
compared to a numerically generated population based on the
the experimental full-scale from model-scale kroll uncertainty,
in black. The dashed-red vertical line at 0.383B is the experi-
mental expected value for kroll

2.5 Conclusions

The proposed stochastic inversion results from the MCMC framework de-

scribed herein are presented for a full-scale demonstration and a full-scale from

model-scale validation study. The MCMC results for the roll gyradius (kroll) are

consistently low relative to the design value in both the full- and model-scale

R/V Mellville measurements. The full-scale from model-scale ground truth

calm water roll period is 10.69s in comparison to the demonstration full-scale

value of 10.32s (σ = 0.0805) and a full-scale natural roll period design value of
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10.49s. Curiously, the experimental full-scale value is shorter than the in air nat-

ural roll period, though the experimental full-scale, in water, value is expected

to be longer. One contributing factor for this might be the difficulty in conduct-

ing full-scale field experiments, relative to the more controlled environment of

model-scale tests. Additional field experiments would enhance the estimation

of the full-scale roll period in order to provide the inversion scheme with a more

confident ground truth value.

The obtained roll gyradius inversions varied with the two inversion demon-

strations, as they are each furnished with different calm water roll period

ground truths and SNR values. The full-scale demonstration inversion result of

0.365B with σ = 0.0034B is compared to the design value of 0.39B, and the full-

scale from model-scale experiment inversion result of 0.378 with σ = 0.002 is

compared to the experimentally measured roll gyradius of 0.383B (σ = 0.0034).

Given the full-scale uncertainties and assumptions regarding important for-

ward modeling parameters, the results from this study appear promising as a

first-step to using a stochastic inverse problem framework in order to ascertain

current ship properties using existing equipment and data on-board a ship of

interest.
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CHAPTER 3

MULTI-PARAMETER STOCHASTIC INVERSION FOR FIRST AND

SECOND MOMENT MASS PROPERTIES OF MODEL-SCALE SHIP WITH

TOPSIDE ICE ACCUMULATION

3.1 Introduction

While the presence of Arctic ice cover previously hampered shipping during

most of the year, the increasingly navigable waters are becoming an active area

of interest. The retreat of Arctic ice cover for a greater number of months in the

year is projected to dramatically increase in the coming decades. For example,

the Northern Sea Route is projected to increase from a two-week open water

period in 2012 to a nine-week open water period in 2030 [19], with open water

defined as that which contains less than 10% of sea ice coverage. Additionally,

the Northwest Passage and Transpolar Route are both expected to change from

40% sea ice coverage year-round in 2012 to five-to-six weeks of open water by

2030 [19]. The increased navigability requires additional safeguards in order to

ensure safe maritime operations within the Arctic.

Maritime operations within the Arctic present specific challenges from the

point of view of seakeeping and stability. In the Arctic, the potential for ice

build-up on exposed topside surfaces is increased due to heightened and pro-

longed exposure to cold, extreme weather. The formation of ice on a ship at sea

is a phenomenon that has been studied extensively by Ryerson [58, 59]. There

are a number of physical processes that may result in the accumulation of ice on

a ship surface. The most prominent cause of ice accretion is the process of freez-

ing spray. When the bow plunges into waves and swells, water is lofted over the
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ship’s bow. Bow slamming can result in a spray-entrained wind that becomes a

cloud, and as the cloud is carried over the superstructure, freezing spray occurs

[61, 58, 60, 59]. All of the foregoing icing mechanisms are of concern during

Arctic maritime operations.

Given the possibility of ice accumulation while navigating through the Arc-

tic, one strategy for ensuring favorable seakeeping properties and ship stability

could be the prevention of ice from accumulating in a significant manner, thus

eliminating the need to assess its presence and severity. Additionally, previ-

ous researchers have investigated options for ice removal on ship surfaces [59].

Noteable approaches include the following: hydrophobic surfaces, physical re-

moval strategies, and use of instruments such as infrared emitters or lasers [59].

Many of these measures are financially infeasible, ineffective in reasonable time

and quantity, and/or dangerous to personnel [59]. The details of ice preven-

tion technologies are outside the scope of this present study. Instead, this work

focuses instead on a scenario where ice has already accumulated beyond the

reasonable limits of effective ice removal.

In spite of the unique environmental challenges within the Arctic, ship sta-

bility is typically considered in a nominal sense during the initial design phase

of a vessel. A range of stability plot, either the hydrostatic restoring moment

versus roll angle (righting moment, RM) or the righting arm versus roll angle in

still water (righting arm, GZ), is typically used to assess ship stability [17, 77].

Experience has shown that a plot of this variety, along with applicable safety

factors prescribed from classification societies and international standards, will

result in a satisfactory design for normal operational contexts [34].

However, a ship operating in extreme weather, or a ship experiencing signif-
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icant topside icing, can not be expected to perform to satisfaction since the initial

design context has been lost [34, 16, 33]. In this scenario, making a seakeeping

prediction under the actual condition of the ship in its new configuration (with

evolved geometry and mass properties, such as a ship experiencing significant

topside ice accumulation), becomes desirable. Since direct measurement of the

evolving vessel (i.e., experiencing topside icing) is not possible, there is a need

to understand the current condition of the vessel, during operations, using in-

direct means.

Other research has focused on a related inverse problem: in order to make

inferences about the on-site wave spectrum in irregular seas, the ship itself is

employed as a kind of wave buoy [46, 45]. The present work, in contrast, seeks

to make inferences regarding the ship’s evolving mass properties, rather than

the surrounding sea spectra. In pursuit of this goal, the proposed approach em-

ploys ship motion predictions and inertial measurement unit (IMU) telemetry

within a Bayesian setting for the stochastic inversion on a given mass parameter

of interest (e.g., roll gyradius and vertical center of gravity).

The current work illustrates and extends an existing framework [40] to si-

multaneously assess the impact of icing conditions on two mass properties: the

roll gyradius (kroll) and the vertical center of gravity (V CG). The framework

implemented in this study, previously verified and demonstrated in an initial

study [40], leverages the existing shipboard IMU telemetry against motion pre-

dictions from existing seakeeping software as part of a stochastic inverse solu-

tion. In another previous study, each property was investigated independently,

and each was quantified within a Bayesian context [39]. The current study, in

contrast with the two previous aforementioned studies [40, 39], seeks to ex-
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tend the work beyond independent single parameter inversions to now include

multi-variable inverse solutions, employing only the same type of ground truth

data available in the previous studies. Special attention is given to the prior

parametric form (uniform, Gaussian, etc.) and prior support (the range of a

random variable describing a mass property parameter) in order to determine

a joint posterior distribution on the two variables of interest, given a measured

vessel response from the IMU. We seek to determine an appropriate recommen-

dation for prior parametric form and prior support for future operational use of

the proposed framework.

3.1.1 Scope and organization

This paper first presents an overview of the methods used in mass property joint

parametric inversion, including an overview of the forward modeling, inverse

modeling, and computational framework implement in the study (Section 3.2).

The following section (Section 3.3) focuses on the application of interest. Sec-

tion 3.3.1 begins with an overview of the physical experiment (which utilizes

1:23 scale model of the R/V Melville) and resulting measurements. Section 3.3.2

describes the translation from model-scale experimental values to suitable in-

puts to the computational framework, in order to generate an inverse solution

for one variable at a time, demonstrated for two independent parameters. An ex-

tension of the framework to two mass parameters, inverted simultaneously, is

described in Section 3.3.3: integral to this discussion is the use of priors. Section

3.4 presents results from the multi-variable inversions, along with a discussion

of those results in Section 3.5. Finally, conclusions and recommendations are

offered in Section 3.6.
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3.2 Methods

This work exploits stochastic inversion methods in order to arrive at plausible

first- and second- moment mass properties of a surface ship, using only the

input of a noisy motion measurement from the vessel’s IMU. During the vali-

dation phase of the current work, the still-water roll period from a model-scale

ship serves as this noisy motion measurement. We implement the proposed

inversion framework to simultaneously invert for the roll gyradius (a second-

moment mass property) and the vertical center of gravity (a first-moment mass

property). The inverse solution is expressed as a joint posterior (within a

Bayesian context).

The inversion requires the repeated use of a seakeeping software tool, act-

ing as the forward model (Section 3.2.1) and generally treated as a “black box”

within a Bayesian formulation of this problem. The notional characterization

of the seakeeping software as a “black box” emanates from the application of

it as merely an input-output map, turning mass property parameters into pre-

dicted ship motions. Since the seakeeping prediction is treated abstractly, it en-

ables the framework to be “plug and play,” with the flexibility to accommodate

whatever seakeeping predictions are required. The resulting mass property in-

ference framework is represented in a simple schematic as shown in Figure 3.1,

and in more detail, with reference to computational implementation, in Figure

3.3. Originally developed in a previous study [40], the stochastic mass property

inversion framework is extended in the current work to uncover posterior dis-

tributions for two variables, rather than one. We examine in the current work a

first-moment property in conjunction with a second-moment property.
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3.2.1 Forward Modeling

The stochastic inversion framework requires the use of a “forward model,”

which, generally speaking, is a model that employs parametric inputs to de-

terministically calculate an output (or outputs) of interest (y). The forward

model formulation in this case proceeds as follows: the input is the first- and/or

second- moment mass property, and the output is the calm water roll period.

The forward model used in this work is the U.S. Navy Standard Ship Motion

Program (SMP95) [11]. The tool is primarily used as a design aid to incorporate

seakeeping considerations early in the hull design process. SMP95 requires an

input file with the geometric and weight specifications of a vessel of interest. As

an output, SMP furnishes deterministic predictions of ship motion in regular or

irregular wave fields. One of the ship motion responses provided by SMP is the

output of interest, the calm-water roll period (y = T ).

The underlying formulation that is at the heart of the forward model, SMP95,

is based on linearized strip theory [11]. Assumptions include: the ship length

must be much greater than the beam and draft, and ship motions are limited

to small amplitudes, such that the hull section and waterplane properties are

comparable to calm-water values. SMP95 furnishes greater accuracy for pitch

and heave motion predictions, as compared with roll motions [11]. Accuracy is

also compromised for large amplitude motions where non-linear effects are no

longer negligible, such as when wave heights exceed that of the draft. SMP was

validated in a previous version, SMP81 (in 1981) [11]. However, since the un-

derlying theories remain unchanged, validation studies have not been repeated

for its current release, SMP95.
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The input to SMP95, as mentioned above, requires preparation of a detailed

input file to sufficiently describe the ship. Data to populate such a file are taken

from experimental results when available; in the absence of physical model

measurements, assumed design values for the given vessel are employed.

3.2.2 Inverse Modeling

For simplicity, the present section describes the proposed stochastic inversion

framework in terms of scalar quantities. Vector quantities may be substituted

without disrupting the approach to solution; thus, the scalar quantity is used

without loss of generality.

In order to uncover the value (and associated uncertainty) of a mass property

parameter, annotated here as θ, a stochastic inverse solution is implemented. A

subsequent inverse solution is comprised of a mass property probability distri-

bution, built through a sequence of many forward model simulations, shown in

a simplified form in Figure 3.1.

SMP

θn

Tn

θ Distribution

Inference 
Framework

TGT

σGT

Figure 3.1: Simple inversion framework representation. The seakeeping
forward model is SMP, in black.
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The current inverse solution exploits Bayes’ Theorem:

p(θ|y) =
p(y|θ)p(θ)
p(y)

(3.1)

where p(θ|y) is the posterior mass property parameter distribution, θ represents

the mass property parameter of interest, y is the observed ship motion, p(y|θ)

is the conditional probability of observing the given ship motion at a particular

mass property parametric instance (also known as the likelihood distribution),

p(θ) is the prior distribution that encodes prior beliefs and physical limits on θ,

and p(y) is a normalizing term to ensure that the probability distribution will

integrate to 1. The observed ship motion y is obtained experimentally, either

within a sea way or a model basin, and assumed to be noisy. The noise is ap-

proximated as independent, identically distributed, Gaussian, white noise so as

to be consistent with electronic sensor noise within the IMU, with some mean, µ,

and standard deviation, σ. The signal can further be characterized by its signal-

to-noise ratio (SNR), which captures the relationship between µ and σ. SNR is

defined in this study as the ratio: µ/σ. For example, if the mean value is 10 and

the standard deviation is 0.05, the SNR value is equal to 200.

The proposed stochastic inverse solution scheme, where a probability distri-

bution function on θ is approximated, is an alternative to simply maximizing

p(y|θ) over all possible θ in an effort to uncover the single most probable θ (e.g.,

maximum likelihood estimate, MLE). The Bayesian inverse solution approach is

favored due to its ability to encode prior beliefs and to allow for expressiveness

of a probability distribution.

To perform the described stochastic inversion, two input values are needed:

1) an experimentally observed ground truth measurement representing the

ship’s motion, such as the observed calm-water roll period; and 2) an under-
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standing of the signal-to-noise ratio inherent in that measurement. Given these

two inputs, the inverse solution framework will instantiate SMP95 models with

proposed values for the mass property, θ. For a user-defined number of steps

in the sequence, the inverse solution framework will subsequently accept or re-

ject instances of θ, according to a specified acceptance criteria (here, the ratio of

likelihood function as defined in Equation (2)), and the resulting collection of

accepted values provide an estimate for p(θ|y) as a Markov chain of length O

[23]:

f(θn|θn−1, θn−2, ..., θn−O) = f(θn|θn−1, θn−2, ..., θn−O, θn−O−1, θn−O−2, ...) (3.2)

such that obtaining the current value at n is dependent only on the last O values,

and not values beyond. In this case, the chain only depends on step n-1.

The ratio of likelihood function, r, is as follows in Equation 3.3:

r(θn∗)|θn−1) =
p(θn∗|y)

p(θn−1|y)
(3.3)

where θn is the proposed parameter value at step n, θn−1 is the accepted value

from the previous step, p(θn∗|y) is the posterior probaability of θ∗n given observa-

tion, y, at step n, and p(θn−1|y) is the similar probability, but from the previous

step, n−1. By Bayes’ Theorem in conjunction with the forward model, the func-

tion, r, can be calculated as Equation 3.4, shown below with substitutions from

Equation 3.1.

r(θn∗|θn−1) =

p(y|θn∗ )pprior(θn∗ )
p(y)

p(y|θn−1)pprior(θn−1)

p(y)

(3.4)

Assuming that the distribution over y is stationary, the normalizing terms from

the denominator of Equation 3.1 can be eliminated. The simplified equation,

Equation 3.5, now reads:
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r(θn∗|θn−1) =
p(y|θn∗)pprior(θn∗)

p(y|θn−1)pprior(θn−1)
(3.5)

where p(y|θn∗), the likelihood function, can be calculated from the forward

model and ground truth values:

p(y|θn∗) =
1√

2πσ2
e−

1
2σ2

(y−yn∗ )2 (3.6)

where yn∗ is the response from the forward model instantiated on the proposed

candidate mass property parameter θn∗ , and σ is the standard deviation of the

observed ground truth corresponding to the model input SNR (i.e., σ is the in-

verse of the sensor precision characterizing the instrument employed in mea-

suring the ship motion). The probability distribution of p(y|θn−1) takes a sim-

ilar form, for the previously considered mass property instance at n − 1, in-

stead of n∗. In this way, the ratio of likelihood functions may be calculated for

each candidate parameter, θn∗ , and consequently accepted or rejected based on

the Metropolis-Hastings acceptance criteria [23]. According to the Metropolis-

Hastings acceptance criteria, if r is greater than 1, the candidate is accepted at

step n. If r is less than 1, then a “biased coin toss” is performed. Producing a

uniformly distributed random number between 0 and 1, Un[0, 1], r is compared

to this number: if r is greater than Un, then θn is accepted, even though it is not

“more likely” than the previous candidate; if r is less than Un, then we reject θn.

Now that it is known how to compute, and how to utilize, the ratio in likeli-

hood functions, the remaining component in the method hinges on generating

candidates to be included in the posterior sampling. As alluded to above, after

computing the ratio of the likelihood function and either accepting or reject-

ing the new value, we move forward by taking a small “step” away from the
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previously accepted value θn−1 to a new value, θn∗ .

θn∗ = θn−1 + α ∗ U [−1, 1] (3.7)

where U [−1, 1] is a uniformly distributed random number between -1 to 1.

The result of repeated application of the foregoing is a chain of mass prop-

erty parameter values that, when collected in bins, forms a histogram for p(θ|y).

If the candidate θn∗ is accepted, θn = θn∗ for this step in the sequence. If θn∗ is

not accepted, θn = θn−1 for this step in the sequence. This algorithm is described

in detail in Figure 3.2. For a full description of the MCMC algorithm, as applied

in this study, refer to Appendix A of [40].

SMP

yn

TGT

SNR

Generate candidate 
θn* = θn-1 + α U[-1,1] 

Calculate 
ratio of 

likelihood 
function, r

Reject new 
candidate
θn = θn-1 

Accept 
candidate 
θn = θn*  

Nburn Burn-in samples
Nsamp Collected samples
N = Nburn + Nsamp 

Repeat N times
If n < Nburn

Tune α
If n ≥ Nburn
Store θn in θ 

Chain θ
r > 1

r < 1
r > rand[0,1]

r < rand[0,1]

Figure 3.2: Schematic of applied Metropolis-Hastings algorithm

3.2.3 Computational framework

The described inverse solution approach is realized as a flexible computational

framework within the current work. For long-term feasibility and relevance,
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this computational framework needs “plug-and-play” capabilities. Here we fo-

cus on the flexibility of the framework in order to accommodate the needs of

“plug-and-play,” meaning that the framework could be implemented on dif-

ferent systems with minimal disruption, especially with respect to components

such as the forward model and ground truth input.

The framework is implemented in the high-level computer language Python

[55], chosen for its built-in capabilities in scanning large text files and for its ease

in interfacing with external, stand-alone programs. These capabilities allow the

framework to achieve the desired “plug-and-play” flexibilty. A schematic of the

overall computational inversion framework implemented in this work is pre-

sented in Figure 3.3. Each of the grey bars (and associated boxes) represent a

function within the framework, with nesting indicative of the computational

structure of how each function is implemented. Mainly, the framework takes

as input the expected ground truth period, TGT (the y described in the previous

subsection), and its associated measurement noise standard deviation, σT , de-

noted as the user inputs in the figure, and produces a posterior distribution of

the variables of interest, represented by the histogram icon in the bottom right

corner of the figure.

The computational framework adopted in the current work enables the imple-

mentation of an MCMC inversion with minimal dependencies on the specifics

of a particular forward model. As the schematic in Figure 3.3 suggests, the only

dependency on the seakeeping software used is within the function, “formod.”

This builds in versatility for the use of nearly any forward model for future ap-

plication. In other words, while we use SMP95 here, the framework can adopt

a different seakeeping forward model with ease.
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sample
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gibbs

formod

MH
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Return: 
data chain 
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Posterior Distribution

User Inputs

• Number of burn iterations 
• Number of iterations
• y variance
• y expected value
• Prior support 

Program Output

Figure 3.3: Schematic of the computational framework for the inverse
mass property solution

3.3 Application

We are interested in detecting changes in the mass properties of a surface ship,

particularly the roll gyradius (kroll) and vertical center of gravity (V CG), mea-

sured relative to the keel. To do so, we consider six different configurations

of ice build-up on the ship surface of the R/V Melville [54, 52, 59]. We collect

physical experimental data from a model-scale version of the R/V Melville, and

simulate the full-scale instance from that model-scale data of the R/V Melville

using the forward model, SMP95. By harnessing both the physical experimental

ground truth values and the simulated data from the forward model, the inver-

sion framework generates statistical inferences on the two mass property pa-

rameters of interest. This work also establishes necessary experimental model-

scale measurements and test configurations for use in formulating the prior dis-

tribution.
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3.3.1 Physical experiment

This study uses experimental results from R/V Melville, David Taylor Model

Basin (DTMB) Model 5748, a 1:23 scale physical model. Testing was conducted

June 29, 2016 to July 7, 2016 at the Naval Surface Warfare Center, Carderock

Division (NSWCCD) in Bethesda, Maryland. A previous model, R/V Melville,

DTMB Model 5720, also 1:23 scale of R/V Melville, is reported on extensively

for its ship particulars and seakeeping performance in [44, 53]. R/V Melville,

DTMB Model 5748 is cast from the same mold as DTMB Model 5720 (Figure

3.4). Therefore, some parameters are assumed to remain consistent between the

two models. Reporting on the physical experiment for R/V Melville, Model

5748 can be found in [54]. A summary of the experiment, along with relevant

results, is included below in Tables 3.1 – 3.5. Six configurations of R/V Melville,

Model DTMB 5748 are considered in this study. Here they are labeled Config-

uration 0, 1, 2, 3, 5, and 6. The different configurations are created by applying

specific weights at each of the locations A-K, as shown in Figure 3.5. Configu-

ration 0 represents the ship with no ice accumulation, shown in Figure 3.4, and

is analogous to the previous study in [40]. Configurations 1, 2, 3, and 5 are rep-

resentative of Overland Model icing scenarios as considered during the initial

design of the actual R/V Melville [54].

Configuration 1 is based on one day of moderate ice accumulation on the

starboard side only. Configuration 2 is based on two days of moderate icing

mostly towards the bow of the ship. Configuration 3, in contrast to Configu-

ration 2, is based on one day of moderate icing concentrated on the aft of the

ship. Configuration 4 simulates on two days of heavy and extreme ice condi-

tions, but the model was not tested due to its dangerously unstable properties.
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Figure 3.4: Model 5748 tested at the Naval Surface Warfare Center, Carde-
rock Division in June 2016 (Configuration 0, un-iced)

Figure 3.5: Locations of potential ice accumulation on Model 5748

Configuration 5 is generally symmetric with severe ice accumulation, and, like

Configuration 4, also based on two days of heavy and extreme ice conditions.
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Coordinates [m]
Position X Y Z

A 1.281 0.000 0.356
B 0.088 0.152 0.349
C 0.883 -0.152 0.349
D 0.505 0.159 0.425
E 0.505 -0.159 0.425
F 0.260 0.152 0.425
G 0.260 -0.152 0.425
H -0.715 0.158 0.311
I -0.715 -0.158 0.311
J -1.330 0.154 0.197

K -1.330 -0.154 0.197

Table 3.1: Locations of added weights on Model 5748 (see Figure 3.5)

Configuration 5 was adapted from its initial loading scenario due to testing fea-

sibility, mostly by reducing the total load. Configuration 6 was created as an in-

tentionally random distribution of ice mass, and based on the full-scale Melville

deck plan. The Overland Model defines moderate icing as 0.7-2.0 cm/hour, and

heavy/severe icing as 2.0 cm/hour or more [59].

The various topside icing scenarios considered were created by adding

weights at 11 locations, labeled A to K. An isometric view of the ship is shown

in Figure 3.5, with locations of positions A to K defined Table 3.1. The subse-

quent weight added at each location for each configuration is detailed in Table

3.2. Weight is added via 5 and 10 pound-force weights. Each weight, and all

accompanying hardware, are carefully accounted for.
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Added weight [lbf] for each configuration
Position 0 1 2 3 5 6

A - - 5.00 - 10.00 10.00
B - - 10.35 - 5.35 5.35
C - 5.34 10.34 - 5.34 5.34
D - - 15.37 - 10.38 -
E - 5.38 15.37 - 15.37 5.38
F - - 5.35 - 10.35 10.35
G - 5.34 5.38 - 10.38 5.38
H - - - 15.35 5.35 10.35
I - 5.33 - 15.34 5.34 10.34
J - - - 10.35 10.35 5.35

K - 10.36 - 10.36 10.36 15.35
Total 0 31.79 67.14 51.38 98.54 83.16

Table 3.2: Quantity of added weights on Model 5748 for each configura-
tion

For each icing configuration, the model is carefully weighed and ballasted

in order to achieve target ship particulars, recorded in Table 3.3 for the model

scale, and in Table 3.4 for full-scale from model-scale values. For full details on

the model ballasting process, refer to [44, 54].

Each icing configuration is tested at rest for roll, pitch, and heave periods in

still water. For each icing configuration, 30 roll periods, 5 pitch periods, and 5

heave periods are collected. Since this study utilizes only the roll results, the

specifics of the pitch and heave motions will not be discussed further. To record

calm-water roll period, the model is depressed about five degrees on the star-

board side, held steady, then released. Motion from the first three complete roll

periods is included in the subsequent analysis.

The ship’s pitch, roll, and heave motions are recorded with a Kearfott KN-

5050 inertial navigation system. The system includes a ring laser gyroscope and

is capable of using a position-based input, such as GPS. The Kearfott naviga-
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Ship Particulars Icing Configuration
Model-Scale 0 1 2 3 5 6
kroll [in] µ 9.28 9.27 9.11 9.39 8.87 9.13

(σ) (0.125) (0.125) (0.125) (0.125) (0.125) (0.125)
kpitch [in] µ 32.55 33.87 34.13 33.66 31.1 34.2

(σ) (0.125) (0.125) (0.125) (0.125) (0.125) (0.125)
VCG [in] µ 10.5 11.06 10.88 11.25 11.84 11.56

(σ) (0.25) (0.25) (0.25) (0.25) (0.25) (0.25)
Weight [lbf] µ 520 552 587 572 619 603

(σ) (0.15) (0.15) (0.15) (0.15) (0.15) (0.15)
T [s] µ 1.953 2.127 3.941 2.365 4.898 3.301

(σ) (0.01) (0.01) (0.012) (0.009) (0.263) (0.012)
T SNR 206 220 337 252 89 264

Table 3.3: R/V Melville (Model 5748) ship particulars by icing configura-
tion, model-scale

tion system is rigidly mounted near the longitudinal center of gravity (via a

mounting platform). The heading is accurate to 0.44 degrees, root mean square,

while the roll and pitch angle is accurate to 0.03 degrees, root mean square [54].

Results from the roll motion test are summarized in Table 3. Values for the un-

certainty measurement of the physical model-scale experiment are calculated

by the method outlined in [35].

3.3.2 Single-parameter inversions

In order to utilize the experimental results from the physical test, model-scale

values need to first be scaled up to full-scale for compatibility with SMP95 input

requirements. Full-scale from model-scale ship particulars are summarized in

Table 4.

As discussed previously, the user must define a roll period and signal-to-

noise ratio for this measurement in order to perform the proposed stochastic
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Ship Particulars Icing Configuration
Full-Scale 0 1 2 3 5 6
kroll [B] µ 0.384 0.384 0.377 0.389 0.367 0.378

(σ) (0.0052) (0.0052) (0.0052) (0.0052) (0.0052) (0.0052)
kpitch [L] µ 0.246 0.256 0.258 0.254 0.235 0.258

(σ) (9.45E-4) (9.45E-4) (9.45E-4) (9.45E-4) (9.45E-4) (9.45E-4)
V CG [m] µ 6.136 6.464 6.358 6.575 6.767 6.756

(σ) (0.146) (0.146 ) (0.146) (0.146) (0.146) (0.146)
Displacement µ 2890 3061 3262 3175 3437 3352

[MT*] (σ) (0.834) (0.834) (0.834) (0.834) (0.834) (0.834)
T [s] µ 9.366 10.201 18.901 11.344 15.832 23.49

(σ) (0.045) (0.046) (0.056) (0.045) (0.06 0) (0.263)
T SNR 206 219 337 252 264 89

* MT in salt water

Table 3.4: R/V Melville (Model 5748) ship particulars by icing configura-
tion, full-scale from model-scale

inversion. The user must also define a specified number of “burn-in” samples

and “stored” samples. The burn-in samples ensure that there is no dependence

on the initial state during the stochastic inversion. Second, this burn-in period

also tunes MCMC parameters that control the acceptance probability for θ [41].

For diagnostics purposes, the burn-in samples are saved within the computa-

tional framework, though they are not included when generating the posterior

distribution histogram of θ. Stored samples are collected, and the binned sam-

ples approximate the posterior distribution of θ.

In choosing the number of “burn-in” and “stored” samples, ensuring that the

MCMC sampling chain has sufficiently converged is critical, given the specific

framework and model. A convergence criterion (Appendix C, [8]) can guide the

choice of “burn-in” and “stored” sample values that the framework requires as

a user-input. This builds confidence in the results of the generated posterior for

a given mass parameter, θ.
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Two sets of inversions were performed during preliminary work as part of

the concurrent study. The first set inverts for the roll gyradius, kroll (θ = kroll).

The second set inverts for the vertical center of gravity (θ = V CG). Each set

is run independently; that is, when inverting for kroll, V CG is deterministically

assigned as the expectation (µV CG) of the experiment measurement, and vice

versa. Both sets of inversions employ the experimentally determined roll period

(µT ) and associated SNR as the ground truth observation. That is: y∗ = µT ,

SNR = µT
σT

= (mean of the experimental roll period measurements) / (standard

deviation of the experimental roll period measurement).

Results

A summary of all the inversion solutions from the preliminary study is pre-

sented in Table 3.5. For a fully detailed presentation of these results, please

refer to [39]. At present, a summary of the results and relevant implications of

the preliminary study are presented for context for the multi-variable inverse

solution, as well as for one of the prior supports described in Section 3.3.3.

From the preliminary results, it was observed that the roll gyradius alone is

insufficient in characterizing the evolving mass properties in a ship experienc-

ing ice accumulation. SMP95 assumes symmetry in the port-starboard (y-axis)

direction. As such, it is expected that the inverse solution from Configurations 1,

5, and 6 would be most affected by this assumption. From the inverse solution,

Configuration 1 seems to fare relatively well for both the posterior distributions

of kroll and V CG. This is likely due to its relatively minimal impact on achieved

asymmetry under its lighter icing condition.
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Configurations 5 and 6, however, appear greatly affected by this assump-

tion. While the posterior distribution of VCG for both configurations aligns

with expectations from the experimental uncertainty measurements, the roll

gyradius posterior distribution solutions are not well supported by the experi-

mental measurements, with relative errors of 78% and 28% for Configurations

5 and 6, respectively (as seen in Table 3.5). This can be explained by the rela-

tionship between kroll and roll period, which, in SMP95 is positive and linear. In

contrast, as V CG increases, the roll period increases quadratically, rather than

linearly. The quadratic relationship between V CG and roll period is shown in

Figure 3.6. The relationship shown is generated from the same base input file

for Configuration 0, but instead varies one variable at a time while holding all

else equal. V CG vs. roll period is plotted for µ + / − 3σ. The red dashed lines

represent the µ + / − 2σ (or U95) range for roll period given the µ, σ for the

experimental values of V CG. Especially as the roll period exceeds about 12 sec-

onds (or V CG exceeds 6.3 m), the effect of the quadratic V CG dominates over

the linear kroll. In comparison, the width of µ+ /− 2σ values of kroll results in a

roll period range of less than 0.5 seconds.

Each icing configuration is instantiated with deterministic, experimentally

obtained measurements for pertinent input values (that is, mass parameter val-

ues not inverted for in the inverse solution). There is, however, still some dis-

crepancy between 1) the forward model input file instantiated on some given

mass property parameters and the associated forward model output versus 2)

the experimentally obtained measurement for those same mass property inputs

and the corresponding experimentally collected measurements for the roll pe-

riod output. At a certain point, the disagreement between the experimental

measurement and SMP95’s output (e.g., forward modeling errors) for roll pe-
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Ship Particulars Icing Configuration
Full-Scale 0 1 2 3 5 6
kroll [B] µ 0.383 0.368 0.734 0.381 0.654 0.483

(σ) (0.0023) (0.002) (0.0023) (0.0018) (0.0079) (0.002)
% difference* 0.30% 4.40% 94.70% 2.10% 78.20% 27.80%

V CG [m] µ 5.639 5.893 6.809 6.073 6.935 6.628
(σ) (0.017) (0.013) (0.002) (0.009) (0.006) (0.004)

% difference* 8.10% 8.80% 7.10% 7.60% 2.40% 1.90%
* Difference between physical model measurements and posterior distribution µ

Table 3.5: Results of R/V Melville (Model 5748) ship particulars by icing
configuration, full-scale from model-scale

riod due to an unchanging V CG is too great for the roll gyradius to overcome,

thus driving the roll gyradius to extreme values.

Even without considering the difference in experimental results and simu-

lated results (model error), the range of roll periods that result from calculated

uncertainty bounds on the experimental V CG and kroll values are significant,

and can also explain the behavior of these results. The kroll U95 bound spans

0.43 seconds for the calm-water roll period. Meanwhile, in Figure 3.6, the V CG

U95 bound spans 2.87 seconds, over six times greater than its kroll counterpart.

Given the experimental results, the roll period output is more sensitive to vari-

ations in V CG, and can easily account for the extreme values of some of the

kroll posterior distributions. The point in sharing these preliminary results is

that interdependencies between desired mass property parameters influencing

some measured ship motion response cannot be overlooked during application

of the proposed framework. In such a case, the simultaneous, multi-parameter

inversion capability of the proposed framework should be employed.
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Figure 3.6: VCG relationship to roll period in SMP95 for Icing Configura-
tion 0

3.3.3 Multi-parameter inversions

Section 3.3.2 illustrates the necessity to invert for the two related variables, si-

multaneously. With only one ground truth value, this is challenging to imple-

ment. In order to understand how to best incorporate available information on

the ship, as well as the “evolved” topside ice distribution, this section focuses on

the use of different prior forms (and supporting values) to instantiate appropri-

ate prior distributions for use within the current Bayesian context (see Equation

3.5).

Prior forms

In previous studies [40, 39], the inverse solution was obtained using an unin-

formative prior on a single mass property parameter. The current work departs
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from previous work by investigating multiple mass parameters simultaneously,

while also exploring the use of informative priors in this context. We investigate

the application of informative priors on one or both of the mass parameters in

question through the consideration of different prior forms: (1) a relatively nar-

row uniform prior (µ,+/− 3σ, with all other values rejected) and (2) a Gaussian

prior (µ and σ in a Gaussian distribution). This makes for a total of four pos-

sibilities for use as prior distributions for our two-variable inversion: (1) U-U,

uniform prior for both variables; (2) G-G, Gaussian prior for both variables; (3)

Un-G, uninformative uniform prior (values rejected only outside those of phys-

ical or software limitation) for one variable, and a Gaussian prior for the other

(kroll and V CG, respectively); (4) G-Un, the same as (3) but in reverse (kroll and

V CG, respectively). These are depicted visually in Figure 3.7, where the prior

form of the first variable, kroll is in the left column, and the prior form of the

second variable, V CG, is in the right column. Values for µ and σ are discussed

in the following subsection.

Prior form kroll VCG

U-U
Uniform Uniform

G-G
Gaussian Gaussian

Un-G
Uninformative Gaussian

G-Un
Gaussian Uninformative

0.5 m 8 m

!(μ,	σ2)

!(μ,	σ2)

!(μ,	σ2)

!(μ,	σ2)

0.2 B 0.65 B

μ

3σ3σ

μ

3σ3σ

Figure 3.7: Summary of sets of prior forms used in this two-variable study
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Prior support

In addition to exploring various forms of prior probability density functions

to apply to the current multi-variable inversion, we also consider the available

values with which to apply as prior support (i.e., parametric range for which it

is non-zero). Four prior supports are considered. First, we consider the use of

mass property measurements taken from the un-iced model-scale experiment

(labeled as Un-Iced). Second, the experimentally measured mass property val-

ues from each individual icing configuration are considered as prior support (la-

beled as Experimental). Third, using the mass property statistics obtained from

the previous single-parameter study [39], we can apply these Single-Parameter

Inversion Informed values as prior support for the two-variable inversion (labeled

as SPII). Finally, we explore a hybrid of the single-inversion result for the expec-

tation with the measurement uncertainty of the associated icing configuration

experiment (labeled as Hybrid). A summary of the prior supports (1-4) for each

configuration is shown in Table 3.6 and visually in Figures 3.8 and 3.9.
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Figure 3.8: kroll prior support values by type and configuration, full-scale.
Mean values are plotted by the ’.’ marker and bars extend +/−
3σ
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Figure 3.9: VCG prior support values by type and configuration, full-scale.
Mean values are plotted by the ’.’ marker and bars extend +/−
3σ
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Mass Property Icing Configuration Prior Support Values
Parameter 0 1 2 3 5 6

1. Un-Iced Configuration (Design values for µ with Experimental σ)
kroll [B] µ 0.39

(σ) (0.0052)
VCG [m] µ 5.89

(σ) (0.146)
2. Experiment measurements (Model 5748)
kroll [B] µ 0.384 0.384 0.377 0.389 0.367 0.378

(σ) (0.0052) (0.0052) (0.0052) (0.0052) (0.0052) (0.0052)
VCG [m] µ 6.136 6.464 6.358 6.575 6.767 6.756

(σ) (0.146) (0.146) (0.146) (0.146) (0.146) (0.146)
3. SPII (SMP95/Model 5748)
kroll [B] µ 0.383 0.368 0.734 0.381 0.654 0.483

(σ) (0.0023) (0.0020) (0.0023) (0.0018) (0.0079) (0.0020)
VCG [m] µ 5.639 5.893 6.809 6.073 6.935 6.628

(σ) (0.017) (0.013) (0.002) (0.009) (0.006) (0.004)
4. Hybrid
kroll [B] µ 0.383 0.368 0.734 0.381 0.654 0.483

(σ) (0.0052) (0.0052) (0.0052) (0.0052) (0.0052) (0.0052)
VCG [m] µ 5.639 5.893 6.809 6.073 6.935 6.628

(σ) (0.146) (0.146) (0.146) (0.146) (0.146) (0.146)

Table 3.6: Prior support values by type and configuration, full-scale

Framework updates

The currently employed framework was updated from its original form, as ap-

peared in [40, 39], to allow for the simultaneous inversion of multiple parame-

ters. While most of the framework components remain the same, a few updates

have been included for this study. The Gibbs’ algorithm is now implemented

as Metropolis within Gibbs in order to handle the inversion for multiple mass

parameters. At each step of the chain, this algorithm holds one variable steady

63



while the other is slightly perturbed as if it would for a single variable [41]. The

user-input was also updated to accept selection of prior form and specification

of prior support, as needed.

3.4 Results

In total, 96 different icing mass property parameter inversions were considered,

covering the four prior forms, four different prior supports, and six ice config-

urations. Key results are summarized in Tables 3.7 – 3.9. Some schemes could

not be executed to completion, and are noted with a “–” in place of results.

Their failure modes are discussed below. The pertinent results are also plotted

in Figures 3.10 – 3.15, and remaining supporting tables and figures in Appendix

B.1, Appendix B.2, and Appendix B.3. In Figures 3.10 – 3.15, the experimental

µ values (full-scale from model-scale) for kroll and V CG with a blue “.”. Each

blue “.” is plotted within a grey rectangle, which indicates the +/ − 3σ experi-

mental values for each respective variable in each configuration. Figures 3.10 –

3.12 highlight the results of each form (Uniform-Uniform, Gaussian-Gaussian,

Uninformative-Gaussian, or Gaussian-Uninformative, as indicated in each sub-

plot title), considering all prior supports used with that specified form, with a

“o” for the data points which correspond to the form of interest. Note that for

each form, there should be four “o” data points. For example, for Icing Con-

figuration 1 (Figure 3.11), if the form of interest is Uninformative-Gaussian, the

“o” results will include the results using this form as applied to all four support

options – essentially, all of column three Table 3.8 will be denoted as “o” marks,

while the other three columns will be plotted with a “.” for this form of inter-

est, and so on for each of the subplots. Figures 3.13 – 3.15 highlight the results
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Prior Type
Prior Support Variable (1) U-U (2) G-G (3) Un-G (4) G-Un

Un-Iced kroll [B] µ 0.3866 0.3881 0.3598 0.3900
σ 0.0113 0.0048 0.0170 0.0049

VCG [m] µ 5.6176 5.6099 5.8155 5.5914
σ 0.0899 0.0406 0.1227 0.0419

Experiment kroll [B] µ 0.3770 0.3798 0.3251 0.3842
σ 0.0094 0.0047 0.0161 0.0054

VCG [m] µ 5.6927 5.6764 6.0492 5.6373
σ 0.0720 0.0381 0.1006 0.0455

SPII kroll [B] µ 0.3834 – – 0.3828
σ 0.0049 – – 0.0022

VCG [m] µ 5.6430 – – 5.6488
σ 0.0372 – – 0.0225

Hybrid kroll [B] µ 0.3840 0.3832 0.3873 0.3833
σ 0.0128 0.0050 0.0170 0.0053

VCG [m] µ 5.6363 5.6447 5.6108 5.6441
σ 0.1013 0.0413 0.1313 0.0443

Table 3.7: Summary of full-scale from model-scale MCMC inversion re-
sults for Icing Configuration 0

of each prior support (Un-Iced, Experiment, SPII, or Hybrid, as indicated in each

subplot title) with a “o” for the data points which correspond to the support of

interest, inclusive of all forms used with the specified support values.

Results for Icing Configuration 0, 1, and 5 are included in this section, as

being relevant to the discussion and conclusions. Additional results for the re-

maining icing configurations are included in Appendix B.1 (for results format-

ted in a table by configuration), Appendix B.2 (for results by prior form), and

Appendix B.3 (for results by prior support).
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Prior Type
Prior Support Variable (1) U-U (2) G-G (3) Un-G (4) G-Un

Un-Iced kroll [B] µ 0.3893 0.3900 0.3632 0.3897
σ 0.0131 0.0054 0.0189 0.0053

VCG [m] µ 5.8553 5.8519 6.0161 5.8551
σ 0.0859 0.0382 0.1127 0.0372

Experiment kroll [B] µ 0.3764 0.3794 0.2846 0.3845
σ 0.0065 0.0047 0.0304 0.0050

VCG [m] µ 5.9398 5.9248 6.4227 5.8881
σ 0.0399 0.0314 0.1421 0.0338

SPII kroll [B] µ 0.3746 – – 0.3680
σ 0.0011 – – 0.0020

VCG [m] µ 5.9364 – – 5.9903
σ 0.0072 – – 0.0172

Hybrid kroll [B] µ 0.3667 0.3693 0.3887 0.3681
σ 0.0124 0.0047 0.0199 0.0050

VCG [m] µ 5.9970 5.9813 5.8573 5.9899
σ 0.0761 0.0303 0.1273 0.0318

Table 3.8: Summary of full-scale from model-scale MCMC inversion re-
sults for Icing Configuration 1

Prior Type
Prior Support Variable (1) U-U (2) G-G (3) Un-G (4) G-Un

Un-Iced kroll [B] µ 0.4107 0.3936 0.5829 0.3899
σ 0.0002 0.0050 0.0341 0.0047

VCG [m] µ 6.4736 6.5797 5.9535 6.5905
σ 0.0004 0.0138 0.1349 0.0130

Experiment kroll [B] µ 0.3676 0.3672 0.4373 0.3677
σ 0.0122 0.0047 0.0282 0.0046

VCG [m] µ 6.6462 6.6475 6.4566 6.6462
σ 0.0303 0.0120 0.0835 0.0116

SPII kroll [B] µ – – – 0.6450
σ – – – 0.0041

VCG [m] µ – – – 5.6973
σ – – – 0.0214

Hybrid kroll [B] µ – 0.6449 0.3683 0.6470
σ – 0.0034 0.0587 0.0024

VCG [m] µ – 5.7055 6.6331 5.6887
σ – 0.0186 0.1522 0.0158

Table 3.9: Summary of full-scale from model-scale MCMC inversion re-
sults for Icing Configuration 5
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3.4.1 Prior forms

As expected, specifying the vertical center of gravity through a more “in-

formed” prior causes significant errors in the roll gyradius. For example, for

Configuration 0, from the Experiment prior support and Uninformative-Gauss

forms, the proposed stochastic inversion framework yields a V CG that is 6.05

(1.5% difference from the experimental ground truth, the closest value for the

V CG in Configuration 0); meanwhile, the roll gyradius for the same case is in-

ferred to be 0.3251, a 15% error relative to the experimental ground truth. Again,

for Configuration 0, the Un-Iced Gaussian-Uninformative combination recovered

the kroll exactly (0.39 for the expectation of both the prior support and the poste-

rior), with a 5% difference relative to the prior support value of 5.89m. Relative

to the experimental ground truth values, this was 1.5% difference in kroll and

an 8.9% difference for V CG. Results and errors are similar for Configuration 1,

based on one of day of moderate ice accumulation on the starboard side only.

In the other configurations, these trends are exaggerated. When kroll is

bounded by more informative prior forms (uniform or Gaussian), the V CG

tends to a larger value. Overall, this results in more accurate mass property

inversion results, as kroll is kept within a more plausible region of the param-

eter space and V CG has small-to-moderate errors. The obvious difference can

be spotted by comparing the Uninformative-Gaussian support case to any of the

other three support instances: relatively small errors of V CG are accompanied

by exaggerated kroll values, with kroll errors well over 15%.
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Symbol Meaning
Grey rectangle kroll and V CG ground truth values, range of +/− 3σ

(based on exerimental full-scale from model-scale values)
blue “.” µ for kroll and V CG ground truth values

(based on exerimental full-scale from model-scale values)
black “o” Inverse solutions of kroll and V CG for category of interest

(Category of interest listed in the plot title)
black “.” Inverse solution of kroll and V CG for all other categories

Table 3.10: Legend for Figures 3.10 – 3.15
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Figure 3.10: Icing Configuration 0 Results: By prior forms

3.4.2 Prior support

Overall, the Un-Iced and Experiment prior supports yielded more plausible re-

sults during stochastic inversion. The SPII values pushed the kroll values into

regions of the mass property parameter space where SMP95 was wont to fail,
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Figure 3.11: Icing Configuration 1 Results: By prior forms
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Figure 3.12: Icing Configuration 5 Results: By prior forms

given the limitations of its basis in strip theory. These difficulties are increas-

ingly obvious when the icing scenarios become more extreme (e.g., beyond Con-

figurations 0 and 1).
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Figure 3.13: Icing Configuration 0 Results: By prior support
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Figure 3.14: Icing Configuration 1 Results: By prior support

3.5 Discussion

Generally, the Uniform-Uniform prior forms and the Gaussian-Uninformative

prior forms were the most successful to employ during inversions, yielding

the most plausible stochastic inversion results with respect to the experimental
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Figure 3.15: Icing Configuration 5 Results: By prior support

ground truth measurements. The Gaussian-Gaussian and Uninformative-Gaussian

prior forms were more restrictive. In the case of using a Gaussian prior form for

the V CG, the same issues from the single-parameter inversion carried over; that

is, the imposition of a more informative prior on the V CG forces the roll gyra-

dius to assume implausible values, causing the inversion to fail.

The Un-iced and Experiment prior supports were most successful in yielding

plausible mass property inversion results for each of the icing configurations.

The SPII support was the most narrow, in terms of standard deviations, and at

times the proposed stochastic inversion framework simply could not converge

to a solution in a reasonable period of time.

The following discussion will thus include only the results of prior forms

U-U, G-G, and G-Un, with prior support from Un-Iced and Experiment.

Errors from the two-variable study are greatly improved, as compared to the

single parameter inversion [39]. The Experiment prior support is expected to re-
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sult in a more accurate posterior distribution for the respective mass property

parameter inversion results, relative to the Un-Iced support. This is true, par-

ticularly for the kroll values, but the difference between results of the two prior

supports at extreme icing (Icing Configuration 5) is moderate. For example, the

difference between the experimental prior result and the ground truth using the

G-Un form is 0.2% for kroll and 1.8% for V CG. With the Un-Iced prior sup-

port, the difference is 6.2% for kroll and 2.6% for V CG. This trend is generally

continued across prior types and configurations. A 2-D histogram of Icing Con-

figuration 0 comparing the results specifically between the Experimental prior

support values and of the Un-Iced prior support values (across the Gaussian-

Uninformative form) can be found in Figures 3.16 – 3.17, with additional results

outside of this form and either of these supports in Appendix B.4. The same

for Icing Configuration 5 can be found in Figures 3.18 – 3.19, with additional

results outside of this form and either of these supports in Appendix B.4. A

relative color-scale for all of these figures is included above Figure 3.16.

Having an experimental prior ahead of time for every ice configuration pos-

sible is an unlikely and unrealistic expectation. However, what we see here is

that the Un-Iced prior values can help provide sufficient informativeness to ob-

tain plausible posterior distributions for stochastic inversions on multiple mass

proprerty parameters. Furthermore, the less restrictive prior form (the Gaussian-

Uninformative form) provides comparable results to the more informed sup-

ports. This enforces the previously posited observation that the roll period, T , is

sensitive to changes in V CG. By keeping the roll gyradius in a more restricted

probability space, the differences in V CG will not “push” the roll gyradius into

extreme values, as was the case in the previous study [39].
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Figure 3.16: Icing Configuration 0, Gaussian-Uninformative Form, Exper-
iment Prior Support
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Figure 3.17: Icing Configuration 0, Gaussian-Uninformative Form, Un-
Iced Prior Support

73



0.40 0.45 0.50 0.55

Roll Gyradius [B]

4.5

5.0

5.5

6.0

6.5

V
C

G
[m

]

Figure 3.18: Icing Configuration 5, Gaussian-Uninformative Form, Exper-
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3.6 Conclusions and recommendations

The accumulation of topside ice on a ship is a growing, critical concern in the

Arctic, as waters become increasingly navigable and the risk of topside ice ac-

cumulation subsequently increases. This study extends an existing stochastic

inversion framework to invert for two mass property parameters (rather than

one), demonstrates the framework on four icing configurations in addition to an

“Un-Iced” configuration, and makes recommendations for experimental mea-

surements and real-world implementation of such a framework.

Improvement in results, as compared to the reported herein, could be made

through the use of more sophisticated seakeeping prediction tools, so as to avoid

the pitfalls accompanying the assumptions of linear strip theory. As stated in

Section 3.2.1, SMP95 has known limited accuracy in considering the roll period.

While the physical experiments also measured the pitch period and heave pe-

riod, these measurements could not be utilized in this study due to limitations

in SMP95. Furthermore, SMP95 is based on linear strip theory and also cannot

consider mass asymmetry in the bow/aft direction (critical to the definition of

realistic icing scenarios).

Working within these limitations in our available seakeeping forward

model, we observe useful general trends in our inversion results. The imple-

mentation of an informative prior is recommended when inverting for multi-

ple mass parameters of interest. Here, we show that a Gaussian prior form for

the roll gyradius and an uninformative form for the V CG shows promise for

these two parameter inversions. In practice, these findings suggest that future

researchers could focus their physical data collection efforts on a careful under-
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standing of the roll gyradius and associated uncertainty.

In the reality of balancing time, funding, precision, accuracy, and meaning-

ful analysis, the results of this study can help inform a researcher seeking to

prioritize these potentially competing factors. As for prior support values, an

Un-Iced configuration is a practical recommendation for future applications of

the proposed stochastic inversion framework (as in, a model-scale test of a ship

of interest without ice building is a procedure that could be implemented as part

of the protocol for this monitoring framework), while the availability of experi-

mental mass parameters for every possible icing configuration for a given ship

seems to be much less feasible. From an experimental perspective, the use of

the Un-Icedconfiguration as the prior support is the most feasible option; from

this study, we show that it is both feasible and reasonable. Though using the

Experiment values for support is most accurate, the Un-Iced values resulted in

posterior distributions for each variable that had errors only slightly larger than

that of the Experiment support.

This study supports the use of a Gaussian distribution form for the roll gyra-

dius, instantiated with values from an “Un-Iced” ship surface of a model-scale

test, and an Uninformative form for the V CG, bound only by physical limita-

tions. The implementation of a two-variable inversion has greatly improved

results in attempt to uncover the mass parameters in a surface ship experienc-

ing topside ice accretion.
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CHAPTER 4

VALIDATION EXPERIMENT OF A SINGLE-VIEW IMAGE SEQUENCE

ALGORITHM TO IDENTIFY SCALE AND SEA STATE

CHARACTERISTICS

4.1 Introduction

In applied science and engineering contexts, there is a frequent desire to char-

acterize the ocean free surface wave field. Motivation for such characterization

can be found in such diverse applications as: weather monitoring [9], rogue

wave warning [56], seakeeping predictions for surface ships [40], and even eva-

sion of a pirate attack [62]. Various monitoring mechanisms for characterizing

the ocean free surface have been developed, such as wave buoys [85, 36, 43, 6, 47,

29, 76, 12, 24], remote sensing instrumentation on satellites [36, 85, 22], Airborne

Light Detection and Ranging (LIDAR) [28, 29], X-band radar [73, 27, 83, 78, 47],

and various optics techniques [10, 66, 65, 63, 14, 72, 84, 69, 70].

The use of optics – specifically, the use of the visible wavelengths – in a

sea state monitoring system is attractive due to its high spatial resolution and

modest cost (i.e., employing off-the-shelf still cameras or video cameras). Addi-

tionally, with increasing computational capabilities, image processing and com-

puter vision methods for this application have surged in the past two decades

[65, 62, 3, 63, 70, 5]. However, due to the complications of obtaining well-

characterized real-world datasets on sea states, optical wave imaging algo-

rithms proposed within the literature are not always validated experimentally.

At times, researchers have instead relied on synthetic datasets to substitute for

well-characterized real-world data when assessing the performance of their al-
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gorithms.

The scientific community relies on the process of verification and validation

to build confidence in emerging scientific contributions [50, 48, 49, 57]. In or-

der to formally discuss these concepts throughout the remainder of the present

work, a few key terms are first defined to ensure consistency and clarity [49].

Code verification refers specifically to the process of determining the correctness

of the numerical algorithms implemented as a software application. This pro-

cess is intended to identify errors in the source code, but does not offer com-

parison between the real world and the simulated response. Source code verifi-

cation is typically executed with a simple, well-known, and well-characterized

test case, based on physical theory.

Validation is the process of determining the degree to which computational

simulation (based on verified source code) is an accurate representation of the

real world phenomena it is intended to represent. The comparison is quantified

through the use of validation metrics, which measure the agreement between the

computational and experimentally measured responses of interest. A validation

experiment is composed of a suite or ensemble of many individual experiments

in order to provide a critical evaluation of the predictive accuracy of a method.

The evaluation may be considered on behalf of (1) the actual system in oper-

ational conditions for the intended use of the system, (2) the actual system in

operational conditions that are less demanding than the anticipated use of the

system, and/or (3) subsystems or individual components of the actual system

[50, 48, 49, 57].

Finally, sensitivity analysis encompasses the process of determining how sim-

ulation results (i.e., responses of interest) depend on factors or parameters that
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instantiate the algorithm (i.e., inputs). Sensitivity analysis also looks at how

outputs depend on explicit and implicit assumptions in the algorithm [49].

4.1.1 Scope and organization

A validation experiment of a single-view image sequence algorithm to identify

scale and sea state characteristics is presented herein. This method, developed

by Spencer et al. [69, 70], is novel for its combination of an uncalibrated single-

view image sequence, rather than a stereo or multi-view image sequence, with

the well-known dispersive properties of water waves, in order to recover scale

and sea state. The algorithm can be applied using an inexpensive video camera

(eg., GoPro Hero 5), making it an economical and accessible option for sea state

observation. However, the algorithm has not been experimentally validated

with reliable ground-truth data regarding the quantities the method seeks to

recover, such as wavelength and dominant wave period.

The present paper first presents the algorithm of interest (Section 4.2), in-

cluding relevant background, assumptions, and definitions (Section 4.2.1), as

well as demonstrating the source code verification process in implementing the

algorithm (Section 4.2.3). Section 4.3.1 describes the experimentally collected

wave field videos for use in the present validation study. Section 4.3 also de-

scribes each of the validation exercises and accompanying results. Section 4.4

presents a discussion of the results from the overall validation experiment, and

closing recommendations and conclusions are offered in Section 4.5.
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Symbol Description Definition Units
λ wavelength horizontal distance (crest to crest) m
H wave height vertical distance (trough to crest) m
A wave amplitude vertical distance H/2 m
δ wave steepness H/λ m/m
T wave period time between crests s

passing a fixed spatial point
c wave speed λ/T m/s
fs spatial frequency 1/λ m−1

ft temporal frequency 1/T s−1

g gravity of earth 9.8 m/s2

k wavenumber 2π/λ m−1
d water depth vertical distance (mean free m

surface level to bottom)

Table 4.1: Symbols used in the ocean free surface wave field video analysis

4.2 Single-view image sequence algorithm

The wave imaging algorithm of interest [69, 70] uses a single view camera im-

age sequence, coupled with physics of deep water ocean waves, in order to

extract frequency content and image scale without camera calibration. This sec-

tion covers the background and assumptions of the imaging algorithm, and also

describes and demonstrates the algorithm itself.

4.2.1 Background, assumptions, and definitions

The wave imaging algorithm of Spencer et al. [69, 70] adopts the common as-

sumption that the ocean can be modeled as an ergodic, stationary random pro-

cess [31], allowing the observation of a stationary wave in time and equating it

to multiple realizations of a moving wave. Table 4.1 includes the relevant terms

and definitions employed within the algorithm formulation.
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There are a number of parameters that characterize individual waves. The

first value in the table, λ (meters), is defined as the wavelength, and can be mea-

sured as the horizontal distance from crest to crest. Wave Height, H , describes

the vertical distance from trough to crest. Analytically, the upper limit of wave

height can be derived as H < δλ, where δ ≈ 0.143 [31]. From experimental ob-

servations, the value for the upper limit of wave height has been recorded be-

tween 0.08 < δ < 0.1 [31]. Thus, if λ is known, H can be bounded by H < 0.1λ.

Amplitude is equal to half of the wave height (A = H/2).

Another value in the table is the wave speed, c. The wave speed is defined

as [68]:

c =

√
gλ

2π
tanh

(
2πd

λ

)
=

√
gλ

2π
tanh(kd) (4.1)

Assuming that the ocean scene being imaged is in deep water (that is, the

tanh(kd) term will approach 1 as the kd quantity goes to infinity). The deep

water condition can be approximately satisfied when kd ≥ 2. The equation can

then be simplified to:

c =

√
gλ

2π
. (4.2)

Thus, applying the deep water assumption, the definition for c in Equation 4.2

will then be used in the following equations.

The Wave Period, T , using the above derived Equation 4.2 combined with

the definition of c = λ/T , can be written as the following dispersion relation:

T =
λ

c
=

λ√
gλ
2π

. (4.3)

The wavelength quantity still needs to be defined. From Equation 4.3, by

squaring both sides, rearranging for λ, and substituting temporal frequency for

the period (T = 1/ft), an expression for λ can be arrived at:
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λ =
g

2π
T 2 =

g

2πf 2
t

. (4.4)

Process to determine scale

Spencer et al. [70] propose to determine scale with only an uncalibrated wave

field video sequence. Though the reference [70] offers a more complete de-

scription of their algorithm, the following summary is furnished to enhance the

stand-alone nature of the present paper. To begin, Spencer et al.’s definition of

a scale factor, β, is repeated here (Equation 4.5).

β =
λpixels
λmeters

(4.5)

Substituting in the dispersion relations from Equations 4.3 and 4.4, β can also

take the following form:

β =
λpixels
g
2π
T 2

=
2πλpixels
gT 2

(4.6)

where λpixels is defined as the number of pixels contained within the spatial di-

mension of one wavelength, as viewed from within a frame of the image capture

sequence. Let x refer to the frame number, in time, ranging from x = 1 for the

first frame and x = N for the final frame. For the first frame, the 2-D FFT is

computed for the spatial image (Figure 4.1) in order to find the the direction of

maximum energy, based on a search to maximize the average intensity over all

possible directions. The direction of maximum energy is determined from the

first frame only; that is, it is assumed that the direction of maximum energy does

not change during the duration of the wave field video sequence (Figure 4.1,
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red box around LSF1). The first row of images in Figure 4.1 depicts a schematic

of sequential spatial images, while the second row depends the corresponding

2D-FFT results of the spatial images. For each subsequent frame, the 2-D FFT is

computed and a slice of the 2-D Fast Fourier Transform (FFT) is extracted in the

identified direction of maximum energy (Figure 4.1, slices LSF2, LSF3, ... LSFN ).

The slices are then sequentially added to a spatial frequency temporal image, where

each slice in time occupies column x (Figure 4.1, bottom image). The resulting

compiled image has dimensions of L by N .

Spatial domain

…

…

1 2 3 N

Spatial frequency

LSF1 LSFNLSF2 LSF3

1 2 3 N…

2D 
FFT

Frame index, 1:N …

Spatial frequency 
temporal 

compiled image

column #

Figure 4.1: Schematic of algorithm to compile the spatial frequency tem-
poral image

The spatial frequency temporal image is then used to take the FFT of each
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row (Figure 4.2, moving from the left image to the image on the right), in order

to extract the temporal frequencies of waves with the wavelength λpixels = L/y.

The FFT of the spatial frequency temporal image is then used with the following

equations in order to determine image scale.

Figure 4.2: Schematic of algorithm to compute the FFT of spatial frequency
temporal image

For each row y, the magnitude at a specified x coordinate corresponds to the

energy of the wave with a given period, defined as:

T =
N/v

x
=
N

vx
(4.7)

where N is the number of frames in the sequence and v is the frame rate, in

frames per second. Combining Equations 4.6–4.7, the parabolic expression for y

in the energy image is as follows:

y = αx2 (4.8)
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where α is equal to 2πLv2

gN2β
. The value for α may be recovered through the opti-

mization of the following objective function:

α = arg max
α

∑
x

Energy(x, αx2) (4.9)

where Energy(x, αx2) is the pixel value at column x, row y of the 2-D FFT com-

piled image (i.e., the FFT amplitude value). Now, with a value for α, we can

solve for β (Equation 4.10).

β =
2πLv2

gN2α
(4.10)

Process to determine wave length

The second objective of the single-image sequence algorithm is to quantify the

sea state. Again, the method utilizes a compiled image similar to the one de-

scribed in the previous section. The same direction of maximum energy is used

here to extract a single slice per frame (i.e., in time) from the spatial image and

denoted as LSD. The resulting spatio-temporal compiled image is comprised of one

spatial slice of the grayscale image in the same dominant energy direction, LSD,

occupying column x, for a total of N columns. The y direction, again, has the

same length L. The composite image has dimensions of L by N , as depicted in

Figure 4.3.

Here, the focus is temporal frequencies, and so, the FFT of each row is com-

puted (see Figure 4.4). If this is represented in an image, the row (y) is still the

spatial location, but now the column x is the temporal frequency. Within this

scenario, the value at (x, y) represents the energy of a given temporal frequency

x at a given spatial location y.
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Spatial domain

…

1 2 3 NFrame index, 1:N …

LSD1 LSDNLSD2 LSD3

1 3 N2 …

Spatial-temporal image

Figure 4.3: Schematic of algorithm to compute the spatio-temporal image

Each column is then averaged so that there is one row vector, of size 1xN,

representing the average energy (i.e, average FFT amplitude) at each temporal

frequency in the image sequence (Figure 4.5).

At this point, the maximum value from the average energy plot may be cal-

culated and the accompanying x value can be identified as the dominant tem-

poral frequency. Alternatively, the data could also be fit to an appropriate ocean

model to identify the dominant temporal frequency. The present study uses

the first method to find the dominant temporal frequency, which immediately

leads to the dominant wave period, T , from Equation 4.3, and wavelength λ,

from Equation 4.4.
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FFT( ) Row 1

Row 2

Row 3

Row N

.

.

.

FFT( )
FFT( )

FFT( )

Spatial-temporal 
image

FFT of spatial-
temporal imageRow FFT

Figure 4.4: Schematic of algorithm to compute the row FFT of the spatio-
temporal image

FFT of spatial-
temporal image

En
er

gy

Temporal frequency

1 2 3 N…
column #

Mean 
amplitude per 

column

Average energy 
at each temporal 

frequency

Figure 4.5: Schematic of algorithm to compute the average energy at each
temporal frequency in the image sequence

4.2.2 Theoretical requirements and known limitations

The following discussion highlights some limitations that arise when applying

the scale and sea state algorithm of Spencer et al. [70].
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Spatial domain

According to the Nyquist–Shannon sampling theorem, the images must exhibit

a scale of at least 2 times the wavelengths of interest in order to avoid spatial

aliasing. For example, if a wavelength of 1m is of interest, there must be at least

2 pixels per one meter (β = 2).

Spencer et al. specify that there is no required field-of-view (FOV) to cover

a minimum number of specified wavelengths, since the analysis is executed

in the temporal domain. However, Spencer’s study [70] also found, through

consideration of synthetic data, that the algorithm was less reliable for scales

β > 40. The inaccuracy was attributed to two factors: (1) fewer wavelengths per

frame, and (2) the larger size of polygons generated in their synthetic model at

scales greater than 40.

Temporal domain

Once again, applying the Nyquist-Shannon sampling theorem leads to the con-

clusion that the temporal sampling rate must be at least double the highest wave

frequency within the wave field of interest in order to recover the frequency

spectrum and avoid temporal aliasing. For example, if the highest frequency of

interest is 1 Hz, then the sampling frequency (i.e., frame rate) must be at least

2 Hz. Also, for increased reliability, Spencer et al. suggest that at least 20 cy-

cles of the dominant period should be captured within the video used for the

algorithm [70]. Spencer et al. also tested the algorithm on synthetic sequences

with fewer than 20 cycles. At a video duration of two dominant-periods (i.e.,

4 seconds if the dominant period is 2 seconds), Spencer et al. determined that
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their algorithm recovered the ground truth dominant wave period within 16%.

4.2.3 Source code verification

The present section describes the approach taken to ensure that the computa-

tional implementation (i.e., source code) is an accurate representation of the al-

gorithm proposed by Spencer et al.

Synthetic wave video

In order to validate the two single-perspective, uncalibrated wave imaging video

algorithm, it is necessary to first verify the algorithm against “clean” synthetic

data. The WAFO toolbox (Version 2.1) is a MATLAB-based software package

for sea free surface modeling, including the simulation of linear and non-linear

Gaussian waves that can be saved in video format [80]. It is maintained by the

WAFO group at Lund University. The video used here is generated using the

routine seasim. It is referred to here as the synthetic WAFO sequence, and denoted

as “WAFO” in the subsequent tables. This video is generated from the JON-

SWAP spectrum, a popular ocean wave spectrum suitable for simulating deep

water waves [80]. The sea surface scene that is generated from the WAFO tool-

box for this verification exercise has a dominant wave period of 2 seconds, and

a significant wave height of 0.5 meters. The video is scaled at 6.70 pixels/meter.

Based on the Nyquist-Shannon theorem, the foregoing, prescribed sampling

frequency should be sufficient to capture the frequency content of this video.

In this case, the wave frequency is 0.5 Hz, and thus, the minimum sampling
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Figure 4.6: Simulated wave field used for the present verification exercise,
generated with the WAFO toolbox for MATLAB, with signifi-
cant wave height of 0.5m and a primary peak period of 2 sec-
onds

frequency is 1 Hz; this is far less than the 10 Hz sampling rate employed in this

verification work.

The video perspective is directly overhead, and thus does not require the

consideration of a perspective, or tilt, correction. Perspective correction is the

application of an affine or projective transformation in order to rectify any dis-

tortion in original image in order to yield a computed, equivalent overhead

view. The analyzed frame is 258 by 258 pixels, and 500 frames are considered

(50 seconds of video, and 25 wave cycles captured). Given the scale, β, of 6.7

pixels per meter, the wavelength of 6.22 meters, and the pixel dimensions of the

analyzed frame (258 pixels), it is expected that each slice L captures 6 spatial

wavelengths. Table 4.2 summarizes the specific characteristics of the synthetic

WAFO sequence employed in the source code verification.

Synthetic wave video results

Figures 4.7 – 4.11 show a demonstration of the single camera image sequence

method. The first frame of the sequence is shown in Figure 4.7(a). This 2-D
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Characteristic Value Units
λ 6.22 [m]
T 2 s [s]
ft 0.5 s [Hz]
β 6.7 [pix/m]
c 3.12 [m/s]

Analysis window 258 x 258 [pixels x pixels]
Frames N 500 [frames]

Temporal sampling frequency 10 [frames/s]

Table 4.2: Summary of synthetic WAFO sequence wave field video attributes
for code verification

FFT image (Figure 4.7(b)) is used to determine the maximum energy direction

through the slice L. The spatial coordinates of this slice, L, are used throughout

the remaining analysis, superimposed on all subsequent frames.

(a) (b)

Figure 4.7: (a) First frame of the synthetic WAFO sequence wave field; (b)
Direction of maximum energy superimposed on 2D FFT of first
scene of the synthetic WAFO sequene wave field

To solve for scale, the same slice, L, from the 2-D FFT image per frame is

compiled throughout time (left to right) to arrive at Figure 4.8(a). The FFT of

each row is then computed and compiled, resulting in Figure 4.8(b). Figure

4.8(b) is used in conjunction with Equations 4.8 – 4.10 in order to arrive at an

91



image scale, through maximizing the fit of a parabola in the final image (as

described in Equation 4.8 and shown in Figure 4.9).

 = 6.6098

(a) (b)

Figure 4.8: (a) 2-D FFT slice compiled image from the synthetic WAFO se-
quence; (b) row FFT computed from each row of (a) and com-
piled for each row, with resulting best-fit parabola
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Figure 4.9: Maximizing α in order to solve for scale, β, for synthetic

Figures 4.10 and 4.11 illustrate the steps of the algorithm to recover sea state

from a sea surface video. To determine the dominant wave frequency, the en-

ergy is averaged, by column, per frequency bin, of each row FFT (Figure 4.11).

From this averaged row FFT, the dominant wave frequency can be used to cal-

culate the dominant wave period. With those values, the wavelength can be

recovered, along with the wave velocity and maximum wave height.

Results are summarized in Table 4.3. The dominant wave period was re-

covered exactly, and the scale within 1.5% of the generated WAFO video scale
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(a) (b)

Figure 4.10: (a) Spatio-temporal image of synthetic WAFO sequence; (b) row
FFT computed from each row of spatio-temporal image (a)
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Figure 4.11: Averaged FFT (by column) of Figure 4.10b

(synthetic ground truth scale of 6.7 pixels/meter vs recovered scale of 6.6 pix-

els/meter). These results constitute an important verification result; thus, now,

the reporting moves on to the consideration of real experimental data.

Sequence λ [m] T [s] ft [Hz] β [pix/m] c [m/s] max H
[m] [s] [Hz] [pix/m] [m/s] [m]

synthetic WAFO sequence 6.22 2.00 0.50 6.6 3.12 0.62

Table 4.3: Summary of results for wave field in synthetic WAFO sequence
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4.3 Validation experiment

The present section explores the agreement between physical experiments and

the verified simulation source code, in order to more completely understand the

predictive power of the algorithm developed by Spencer et al.

4.3.1 Description of data

Wave fields were generated within one of the flumes in residence at the DeFrees

Hydraulics Laboratory at Cornell University in Ithaca, New York, in July 2017.

Due to the dimensions of the flume and specifications of the wave generator,

the flume could only be filled to a depth of 12 inches; thus, the wave heights

could not exceed 10mm, or a wave frequency of 1.25 Hz, so as to conform to the

assumed “deep water” dispersion relation in Equation 4.4. Table 4.4 outlines

the nature of the various wave videos collected from the assessed flume wave

fields. Each of the image sequences is labeled with a letter (E, F, G, H, M, and N).

In addition to adjusting wave height and frequency, camera grazing angle was

alternated between 15 and 30 degrees grazing angles (Figure 4.12), and scene

lighting adjusted between overhead lighting versus spotlight lighting (Figure

4.13), respectively. For example, Sequence M has a wave amplitude of 10 mm, a

wave frequency of 1.25 Hz, a 15 degree camera grazing angle, and is illuminated

by overhead (ambient) lighting, rather than spotlight lighting. Images were

collected using a GoPro Hero 5 [18] camera mounted over the top of the flume.

In order for the dispersion relationship (Equation 4.4) to hold, the approxi-

mation kd ≈ 2, where k is the wavenumber in Table 4.1 and d is the depth of the
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Camera grazing angle 15 degree 30 degree
Wave amplitude [mm] Hz Overhead Spotlight Overhead Spotlight

5 1.25 E F G H
10 1.25 M N

Table 4.4: Video collection schedule for small-scale image sequences E, F,
G, H, M, and N

Figure 4.12: The two grazing angles used to collect video data: on left, 15o

grazing angle; on right, 30o grazing angle

water (12 inches), is applied. This value is chosen such that tanh can be approx-

imated by 1 (Equations 4.1-4.2). The resulting kd value from a 1.25 Hz wave in

this wave flume is ≈ 2.0, which is accepted to satisfy the approximation [81].

The ground truth for scale, β, was measured by calculating distances be-

tween image points of known dimensions on the flume. For example, the cross

bars on the bottom of the flume are 16” apart, center to center. Using calm-

water images, the number of pixels is determined from one edge of the cross

bar to the next. This process is done manually by visual inspection for repeated

frames and reference points. The calculated mean, µ, and standard deviation, σ,
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Figure 4.13: The two lighting conditions used to collect video data: on left,
ambient overhead lighting; on right, spotlight lighting

for a sample size of 11 repeated image measurements, recorded in Table 4.5. For

the cases where there is no perspective correction applied, a standard deviation,

σ, is not listed. Instead, a range appears to indicate the approximated range

of scale present in the image; the real-world coordinates closer to the camera

(at the bottom of the camera frame) will have a larger pixels per meter value

in the camera coordinate system, and the real-world coordinates farther from

the camera (towards the top of the camera frame) will have a smaller pixels per

meter value in the camera coordinate system. Additionally, the perspective cor-

rection images result in a smaller scale than the uncorrected image due to the

transformation applied to the image.

To validate the wave frequencies and wave heights within the flume, a third

camera was placed on the side of the flume at water-level, and recorded simul-

taneously with the other two cameras. The wave period is confirmed as exactly

0.8s for all video sequences considered (sample size 20). The wave amplitude
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Camera grazing angle Perspective correction β, µ [pix/m] β, σ [pix/m]
15o none 172-290
15o overhead 147.6 1.4
30o none 128-315
30o overhead 139.4 1.4

Table 4.5: Summary of ground truth scale, β, values

for the nominally 5mm wave amplitude is calculated as an average µ = 5.6 mm

(σ = 0.12 mm), and the nominally 10 mm wave amplitude is calculated as an

average µ = 10.9 mm (σ = 0.58 mm).

Theoretical limitations

Videos are recorded at 30 or 60 frames per second (fps), well above the mini-

mum Nyquist-Shannon frequency of 2.5Hz required to recover a 1.25 Hz wave.

The wavelength of interest is 1m, and all considered video sequences meet the

subsequent required scale, β > 2. The standard sequence length is set to 20

cycles, or 480 frames, in accordance with Spencer et al.’s suggestion [70].

4.3.2 Experimental results

The present section outlines the results from application of Spencer et al.’s wave

imaging algorithm to the present flume data.

Raw image results

As a first pass, the algorithm is applied on the image sequence, E, without any

post-processing (i.e., image enhancement) for the image frame. Three sequences
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are analyzed, labeled E1, E2, and E3. The three sequences are recordings of

the same wave field condition obtained using the same camera settings; thus,

these are separate instances of the same image sequence. Figure 4.15 shows a

demonstration of the single camera image sequence method on an laboratory-

generated wave field video scene. The first frame of the sequence is shown in

Figure 4.14(a). The resulting 2-D FFT image is shown in Figure 4.14(b). The spa-

tial coordinates of slice, L, is the direction of maximum energy (superimposed

on Figure 4.14(b)).

(a) (b)

Figure 4.14: (a) First frame of E1 video; (b) Direction of maximum energy
superimposed on 2D FFT of first scene of E1 video

As described in the synthetic video code verification section above, the same

slice, L, from the 2-D FFT image is captured for every in the video sequence,

and subsequently compiled (left to right) into an image (Figure 4.15(a)). Ap-

plying a FFT for each row in Figure 4.15(a) results in the generation of Figure

4.15(b). Figure 4.15(b) is the final image employed to determine scale (i.e., using

Equation 4.9).

Figures 4.16 and 4.17 illustrate the steps of the algorithm to recover sea state
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 = 322.7458

(a) (b)

Figure 4.15: (a) Sequence E1 accumulated 2-D FFT slice composition; (b)
row FFT computed from (a) and compiled for each row, with
resulting best-fit parabola for Sequence E1. Both images have
dimensions of L rows and N columns

from a flume wave field video. To determine the dominant wave frequency,

the energy is averaged, by column, per frequency bin, of each row FFT within

Figure 4.15(b) to produce Figure 4.17). From this averaged row FFT, the domi-

nant wave frequency can be used to calculate the dominant wave period. The

wavelength can be subsequently recovered, along with the wave velocity, and

maximum wave height.

(a) (b)

Figure 4.16: (a) Sequence E1 spatio-temporal slice composition image at 30
fps; (b) row FFT computed from (a), computed and compiled
for all rows. Both images have dimensions of L rows and N
columns

Results are summarized in Table 4.6. The dominant wave period was recov-
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Figure 4.17: Averaged row FFT of Figure 4.16b

ered exactly, but the scale showed fluctuation between the three videos. The

ground truth scale for the raw camera perspective is between 172-290 for this

video sequence; the results range from 86.1 to 208.2 for the analyzed sequences

E1 – E3. The term “raw” in Table 4.6, refers to the fact that no image post-

processing enhancement has been applied. The average value listed in the same

table is used henceforth as a comparison value for the subsequent wave field

analysis.

Sequence λ T ft β c max H
[m] [s] [Hz] [pix/m] [m/s] [m]

E1, raw 1.00 0.80 1.25 208.2 1.25 0.10
E2, raw 1.00 0.80 1.25 86.1 1.25 0.10
E3, raw 1.00 0.80 1.25 111.3 1.25 0.10

E, raw, average 1.00 0.80 1.25 135.2 1.25 0.10

Table 4.6: Summary of results for E1–E3, raw. The average value for E,
raw, is used henceforth as the baseline comparison value for this
wave field

4.3.3 Experimental parameters

Three experimental design parameters were adjusted at the time of video col-

lection: sampling frequency (fps, or frame rate, v), camera grazing angle, and
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lighting condition.

As shown in Figure 4.13, wave field videos were taken under two differ-

ent lighting conditions. The results for the “spotlight lighting” condition, com-

prised of Sequences F and H, are presented in Table 4.7. Sequence F is a spotlight

sequence recorded at a 15o grazing angle, while Sequence H is recorded at a 30o

grazing angle.

As shown in Figure 4.12, wave field videos were also recorded at two differ-

ent grazing angle conditions. The results for the videos taken from 30o grazing

angle (Sequences G and H) are presented in Table 4.7 under the “30o grazing an-

gle” condition. Sequence G is a video sequence recorded at a 30o grazing angle

with ambient, overhead lighting, while Sequence H is recorded at a 30o grazing

angle using a spotlight for lighting.

Two frame rates are also considered: 30 frames per second and 60 frames per

second. The standard, baseline run from Section 4.3.2 is collected at 30 fps. The

60 fps sequences are presented in Table 4.7 under the “60 fps” condition.

Notably, the recovered sea state characteristics for λ, T , ft, c, and max H are

all consistent with the baseline (i.e., data set E, “raw”) and ground truth (GT)

values.

4.3.4 Image processing parameters

Five image processing parameters were considered as part of a post-processing

phase for the image enhancement of the recorded video sequences: perspective

correction, histogram balancing, linear contrasting, and image smoothing.
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Condition Sequence λ T ft β c max H
[m] [s] [Hz] [pix/m] [m/s] [m]

F1 1.00 0.80 1.25 430.3 1.25 0.10
F2 1.00 0.80 1.25 430.3 1.25 0.10

Spotlight F3 1.00 0.80 1.25 461.1 1.25 0.10
lighting H1 1.00 0.80 1.25 99.0 1.25 0.10

H2 1.00 0.80 1.25 520.6 1.25 0.10
H3 1.00 0.80 1.25 581.5 1.25 0.10
G1 1.00 0.80 1.25 75.9 1.25 0.10
G2 1.00 0.80 1.25 74.2 1.25 0.10

30o grazing G3 1.00 0.80 1.25 50.4 1.25 0.10
angle H1 1.00 0.80 1.25 99.0 1.25 0.10

H2 1.00 0.80 1.25 520.6 1.25 0.10
H3 1.00 0.80 1.25 581.5 1.25 0.10
E1 1.00 0.80 1.25 75.1 1.25 0.10

60 fps E2 1.00 0.80 1.25 18.8 1.25 0.10
E3 1.00 0.80 1.25 55.2 1.25 0.10

Raw E, average 1.00 0.80 1.25 135.2 1.25 0.10
Ground truth E 1.00 0.80 1.25 173-289 1.25 0.10

Table 4.7: Summary of results for varying experimental design parameters

Perspective introduces potential complications for the image analysis, since

multiple scales in the image could be present if the perspective is not cor-

rected. The current study considers a a grazing angle of 15o. To correct for

this, a geometric transformation can be applied to the image to recover a ge-

ometry representative of an overhead perspective. This can be applied as an

affine (shear) transformation, projective transformation, and/or a Euclidean (ro-

tational) transformation. Correctly applied, this transformation should create

images that have a uniform scale throughout the image [1]. The perspective-

corrected images are labeled as the “Overhead” condition in Table 4.8.

Additionally, two contrast enhancing image processing options are imple-

mented in this study. Both of these affect the intensity of pixels in the resulting

post-processed video images. Generally, contrast enhancing can improve image
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feature identification by optimizing, or modifying, the image grey scale inten-

sity to better distribute intensity values. The first contrast enhancing option con-

sidered is histogram equalization (“Histeq” in Table 4.8). This correction, applied

in MATLAB using function histeq, transforms the intensity of a given image such

that the distribution of pixels in each intensity bin are evenly distributed. This

is not a linear intensity transformation. The second contrast enhancing option

considered is a linear intensity transformation that saturates the top 1% and bot-

tom 1% of all pixel values, thereby increasing the contrast of the output image

(“linear contrast” in Table 4.8). This is applied in MATLAB through the function

imadjust.

Image smoothing can help to alleviate any unnecessary image noise, espe-

cially at higher frequencies. The specified video frames subjected to smoothing

have been filtered with a 2-D Gaussian kernel with a standard deviation of 0.5

pixels, chosen to provide desired filtering properties while maintaining image

features. The results are included in Table 4.8, under the “Smoothing” condi-

tion.

4.3.5 Algorithm input parameters

Three input parameters were adjusted in the implementation of the algorithm:

the direction of maximum energy, image window size (pixels by pixels), and

length of sequence (N).
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Condition Sequence λ T ft β c max H
[m] [s] [Hz] [pix/m] [m/s] [m]

E1 1.00 0.80 1.25 23.1 1.25 0.10
Overhead E2 1.00 0.80 1.25 82.3 1.25 0.10

E3 1.00 0.80 1.25 28.3 1.25 0.10
E1 1.00 0.80 1.25 169.9 1.25 0.10

Histeq E2 1.00 0.80 1.25 169.9 1.25 0.10
E3 1.00 0.80 1.25 54.7 1.25 0.10
E1 1.00 0.80 1.25 88.8 1.25 0.10

Overhead histeq E2 1.00 0.80 1.25 62.0 1.25 0.10
E3 1.00 0.80 1.25 38.1 1.25 0.10
E1 1.00 0.80 1.25 169.9 1.25 0.10

Linear contrast E2 1.00 0.80 1.25 195.6 1.25 0.10
E3 1.00 0.80 1.25 87.2 1.25 0.10
E1 1.00 0.80 1.25 107.6 1.25 0.10

Smoothing E2 1.00 0.80 1.25 75.1 1.25 0.10
E3 1.00 0.80 1.25 23.1 1.25 0.10

Raw E, average 1.00 0.80 1.25 135.2 1.25 0.10
Raw GT E 1.00 0.80 1.25 173-289 1.25 0.10

Overhead GT E 1.00 0.80 1.25 147.6 1.25 0.10

Table 4.8: Summary of results for video perspective correction, with and
without image enhancement

Direction of maximum energy

In order to consider the sensitivity of results to the selection of the maximum en-

ergy direction (DME) from which the slice L is taken, Table 4.9 summarizes the

results of considering eight different maximum energy direction slices consid-

ered as perturbations from the calculated DME, ranging from from −1.78o to

+1.78o off of DME.

Window size

Two additional window sizes are considered, in additional to the original 256

pixel by 256 pixel window: a 64 pixel by 64 pixel window and a 128 by 128 pixel
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Condition Sequence λ T ft β c max H
[m] [s] [Hz] [pix/m] [m/s] [m]

−1.78o E1 1.00 0.80 1.25 107.6 1.25 0.10
−1.33o E1 1.00 0.80 1.25 208.2 1.25 0.10
−0.88o E1 1.00 0.80 1.25 38.9 1.25 0.10
−0.44o E1 1.00 0.80 1.25 208.2 1.25 0.10
DME E1 1.00 0.80 1.25 208.2 1.25 0.10
+0.44o E1 1.00 0.80 1.25 222.6 1.25 0.10
+0.88o E1 1.00 0.80 1.25 146.7 1.25 0.10
+1.33o E1 1.00 0.80 1.25 230.5 1.25 0.10
+1.78o E1 1.00 0.80 1.25 215.2 1.25 0.10
Raw E, average 1.00 0.80 1.25 135.2 1.25 0.10

Raw GT E 1.00 0.80 1.25 173-289 1.25 0.10

Table 4.9: Summary of sensitivity results for video E1 at incremental devi-
ations from DME for slice L

window. The method does not appear to have large sensitivities between the

original window size and the medium window size, but the small window size

does not appear stable (ranging from 133.4 to 640.5 in scale).

Condition Sequence λ T ft β c max H
[m] [s] [Hz] [pix/m] [m/s] [m]

E1 1.00 0.80 1.25 133.4 1.25 0.10
64 x 64 E2 1.00 0.80 1.25 640.5 1.25 0.10

E3 1.00 0.80 1.25 133.4 1.25 0.10
E1 1.00 0.80 1.25 106.7 1.25 0.10

128 x 128 E2 1.00 0.80 1.25 200.2 1.25 0.10
E3 1.00 0.80 1.25 133.4 1.25 0.10

Raw E, average 1.00 0.80 1.25 135.2 1.25 0.10
Raw GT E 1.00 0.80 1.25 173-289 1.25 0.10

Table 4.10: Summary of results for video sequence E, varying window size

Length of sequence

The Spencer et al. suggest that the wave imaging algorithm requires at least

20 cycles of the wave period captured in a video sequence for reliable accuracy
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[70]. The current subsection explores the veracity of the suggestion by using a

single cycle, two cycles, five cycles, and ten cycles as comparison values (Table

4.11).

Condition Sequence λ T ft β c max H
[m] [s] [Hz] [pix/m] [m/s] [m]

1 E1 1.00 0.80 1.25 2347.2 1.25 0.10
E1 1.00 0.80 1.25 179.3 1.25 0.10

2 E2 1.00 0.80 1.25 134.5 1.25 0.10
E3 1.00 0.80 1.25 269.0 1.25 0.10
E1 1.00 0.80 1.25 163.9 1.25 0.10

5 E2 1.00 0.80 1.25 169.3 1.25 0.10
E3 1.00 0.80 1.25 161.4 1.25 0.10
E1 1.00 0.80 1.25 198.6 1.25 0.10

10 E2 1.00 0.80 1.25 112.3 1.25 0.10
E3 1.00 0.80 1.25 143.4 1.25 0.10

Raw E, average 1.00 0.80 1.25 135.2 1.25 0.10
Raw GT E 1.00 0.80 1.25 173-289 1.25 0.10

Table 4.11: Summary of results for video sequence E, ranging from 1 ob-
served cycle to 10 observed cycles. The raw video sequence
observed 20 cycles

4.3.6 Y-aware parameter selection

The previous set of prescribed image capture parameters (e.g., L, N , v) were

chosen based on recommendations from Spencer [70], combined with physical

limitations of the available experimental facility. Using these prescribed param-

eters, it was possible to accurately extract the frequency content from the wave

field video, regardless of camera graze angle or any of the foregoing image pro-

cessing methods employed. Though the scale was accurately recovered for the

synthetic data set, the scale recovery for the validation experiment (carried out

in the flume) has, thus far, shown less consistency.
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Though Spencer et al. recommends parameters for the number of cycles

captured, window sizes considered for analysis, and spatial or temporal fre-

quencies required for reliable analysis, the interplay between these factors in

producing a stable β solution is not carefully examined [70]. For the case of non-

synthetic data – in this case, real world data – the parabola of interest (Equation

4.10) is more susceptible to noise, and the value for α can be difficult to extract

from the FFT of the spatial frequency temporal image (as depicted in Figure 4.2).

Beyond the empirically observed sensitivity of β to measurement noise, the

value of β is also proportional to the inverse value of α (Equation 4.10). This

means that, as α approaches zero, the value of β approaches infinity (i.e., the

formula for β is ill-conditioned on α). Taking a closer look at Equation 4.10, the

coefficient of the 1/α term is dependent on parametric values chosen by the

analyst. For example, frame rate, v, the length of the sequence,N , and the length

of slice, L, are all within control of the analyst implementing the algorithm, and

special attention must be given to the relationship between these values. For

ease, a new coefficient, Y , is defined as the following:

β =
2πLv2

gN2

1

α
=
Y

α
(4.11)

With the original parameters, L = 258, N = 480, v = 30, the coefficient of

the 1/α term, Y , is 0.643 (including the constant terms). Given that the ground

truth for E, raw, is approximately β = 230, the accompanying α term must equal

0.0028, and any small perturbation in α at that relatively small magnitude can

result in a large difference to β. A longer video sequence can introduce large

computational errors when solving for the α term, since the length of the se-

quence N is squared and in the denominator. Alternatively, more frames per
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second, or a larger pixel window, can alleviate the need for α to be very small.

This can help explain why the method appears to be more accurate for β values

that are relatively small.

Due to the sensitivities and effects of the parameters L,N , and v on the value

of α, the authors propose a modified selection process of these parameters. In

addition to prescribing the number of wave cycles captured per video duration,

or wavelengths present per slice L, the authors suggest that the Y coefficient

in Equation 4.11 should be selected in order to satisfy a minimum value. This

minimum value should be chosen such that it allows α to remain within a region

where there is still reasonable variation, but without introducing unwanted ill-

conditioning on β. For example, the difference in β between 1/1000 (where

α = 1000) and 1/1001 (where α = 1001) is insignificant and would require a

search over a large range of α values, whereas the resulting change between

1/0.00001 and 1/0.000011 could have a huge effect on β. Thus, the current study

recommends the parameters L, N , and v be modified to L = 258, N = 120,

v = 30. The Y value for the raw video is now equal to 10.3 (for perspective

corrected videos, the coefficient Y is now 7.24). The α value required to recover

a scale of 230 is now 0.045, rather than 0.0028. This requires an estimate on the

order of magnitude that is expected in the scale of the video, but in general, the

larger the coefficient value, the better for fitting an appropriate α value.

To explore the proposed, new parameter selection, based on the Y coeffi-

cient, a majority of the previous set of analyses is repeated with the new param-

eters applied. Previous experiments related to parameters L, N , and v are not

repeated, as these are now fixed by virtue of a prescribed Y coefficient. Specifi-

cally, the following set includes results for conditions of lighting, camera angle,
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perspective correction, contrast through histogram equalizing, contrast through

linear adjustment, image smoothing, and direction of maximum energy. Since

the results for all sea state characteristics are recovered successfully, only α and

β are presented in the following results.

Y-aware Sequence E

The new “raw” values for the same Sequence E, now analyzed under the Y -

aware selection parameters, show an improvement in consistency of scaling re-

sults, as well as improved accuracy when compared to the ground truth. Table

4.12 summarizes the results from this image sequence, E, without any image

post-processing and using the Y -aware parameter selections. The α value is the

optimized α value from Equation 4.9, and the β value is calculated from Equa-

tion 4.10, furnished with the indicated α value.

Sequence α β [pix/m]
E1 Raw, Y -aware 0.0628 164.5
E2 Raw, Y -aware 0.0613 168.5
E3 Raw, Y -aware 0.0643 160.6
Baseline average 0.0628 164.5

Table 4.12: Summary of results for video E1, E2, and E3, with Y -aware
parameter selection

Experimental parameters

Experimental design parameters of lighting and camera grazing angle are also

now re-considered. Overall, the Y -aware sequences show an improvement in

the stability of the scale solutions amongst available videos.
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Condition Sequence α β [pix/m]
F1 0.0452 228.5
F2 0.0999 103.4

Spotlight F3 0.0733 140.9
lighting, H1 0.0412 250.7
Y -aware H2 0.0677 152.6

H3 0.1182 87.4
G1 0.1759 58.7
G2 0.0418 247.1

30o grazing G3 0.1252 82.5
angle, H1 0.0412 250.7
Y -aware H2 0.0677 152.6

H3 0.1182 87.4
Raw, Y -aware E, average 0.0628 164.5

Table 4.13: Summary of results for Experimental parameters, Y -aware
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4.3.7 Image processing parameters, Y -aware

The imaging processing selections considered in this subsection include per-

spective correction, contrast through histogram equalizing, contrast through

linear adjustment, and image smoothing. Results from consideration of these

image processing selections are summarized in Table 4.14.

The perspective corrected sequences (“Overhead” condition in Table 4.14)

show an improvement in the accuracy of the scale solutions. Previously the β

value ranged from 23 to 82, and with the Y -aware parameters, range from 54 to

107. Taking a closer look at the 54 value, the α search is shown in Figure 4.18.

All three sequences have a peak around 0.07, and all three sequences have a

few local maxima, but in the third (bottom) sequence, the global maximum is

inconsistent with the global maximum value of the other two sequences. This

results in a different value of α chosen to use in the calculation of β.

It is subsequently pointed out that in some instances, it may be appropri-

ate to choose the first, local maximum within the parabola energy versus α plot,

especially in situations where the global and local maxima are somewhat equiv-

alent in magnitude (such as in the case of Figure 4.18).
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Figure 4.18: α search for Sequence E1 (top), E2 (middle), and E3 (bottom)
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Condition Sequence α β [pix/m]
E1 0.0693 105.1

Overhead E2 0.0681 107.0
E3 0.1345 54.2
E1 0.0504 204.9

Histeq E2 0.0594 173.9
E3 0.0603 171.3
E1 0.0859 84.8

Overhead histeq E2 0.0703 103.6
E3 0.0663 109.9
E1 0.0504 204.9

Linear contrast E2 0.0525 196.7
E3 0.0653 158.2
E1 0.0487 212.1

Smoothing E2 0.0664 155.5
E3 0.0656 157.4

Raw E, average 0.0628 164.5

Table 4.14: Summary of results for video perspective correction, along
with image enhancement through post-processing, for Y -
aware parameter selection
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Direction of maximum energy

The directional study now shows less sensitivity to the direction of maximum

energy (DME) than before, though the solution still shows a range of results.

Directions from −1.78o to +1.78o relative to the actual direction of maximum

energy are varied under the Y -aware parameter selection analyses. Results are

summarized in Table 4.15.

Condition Sequence α β [pix/m]
−1.78o E1 0.0521 198.2
−1.33o E1 0.0878 117.6
−0.88o E1 0.0615 167.9
−0.44o E1 0.0499 207.0
DME E1 0.0878 117.6
+0.44o E1 0.0350 295.1
+0.88o E1 0.0502 205.7
+1.33o E1 0.0502 205.7
+1.78o E1 0.0487 212.1
Raw E, average 0.0628 164.5

Table 4.15: Summary of results for video E1 at varying directions for slice
L, labeled as difference in degrees from true direction of maxi-
mum energy (DME), for the Y -aware parameter selection

4.3.8 Sequence M

The Y -aware selection process is demonstrated again on a different sequence

(M , rather than E), with different parameters selected for N , v, and L, but with

the same resulting Y coefficient. Sequence M also contains waves of twice the

previous wave height, nominally 20mm rather than 10mm. A subset of the

previous validation, considering only the image processing parameters and im-

plementing the Y -aware selection criteria at the expense of the number cycles
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captured in the video, is presented in this section. This set again features waves

with a frequency of 1.25Hz and the same sea state characteristics and image

scales as before. However, the video is recorded at 60 fps, and again only five

cycles are captured (total of 240 frames). Again, since sea state characteristics

are accurately recovered, only values for α and β are presented in the following

tables.

M baseline

Results for the M baseline are summarized in Table 4.16. The Y -aware criteria

for parameter selection did not perform as accurately or consistently as it had

on the previous dataset (i.e., data set E), which has the same Y value, but dif-

fered in frames per second and in number of frames. Taking a closer look at

the α values, the α search is shown in Figure 4.19. All three sequences have a

peak around 0.09, and all three sequences have a few local maxima, but in the

third (bottom) sequence, the largest peak is not the first peak. This results in a

different value of α chosen to use in the calculation of β. This further supports

the previous finding: on occasions where the magnitude of the local and global

maxima are close, it may be desirable to select the first such local maximum

with which to compute β.

Sequence α β [pix/m]
M1 raw 0.0916 112.7
M2 raw 0.1941 53.2
M3 raw 0.1025 100.8

Table 4.16: Summary of results for Sequence M, Y -aware
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Figure 4.19: Alpha search for Sequence M1 (top), M2 (middle), and M3
(bottom)

4.3.9 Image processing parameters, Sequence M

The following results for Sequence M (Table 4.17) are provided for complete-

ness, but all of them exhibit a similar trend to the baseline analysis. Though the

general shapes are consistent for finding the desired scale value, there is sub-

stantial noise in the search for the best-fit α from which to calculate the scale, β.
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Condition Sequence α β [pix/m]
M1 0.0833 73.0

Overhead M2 0.1795 33.9
M3 0.0812 74.9
M1 0.0802 128.8

Histeq M2 0.0784 131.7
M3 0.0571 180.9
M1 0.1165 52.2

Overhead histeq M2 0.1130 53.8
M3 0.0190 320.2
M1 0.0831 124.3

Linear contrast M2 0.0792 130.4
M3 0.1819 56.8
M1 0.3173 32.5

Image smoothing M2 0.1975 52.3
M3 0.0985 104.9

Table 4.17: Summary of results image processing parameters, Y -aware

4.4 Discussion

Despite altering camera positioning, lighting conditions, and image processing

implemented, all the videos reliably recovered the accurate frequency content

of the water videos. This meant that the associated dominant wave period,

wavelength, maximum wave height, and wave velocity could also be recovered

from the wave video.

The original algorithm, as prescribed by Spencer et al. [70] calls attention to

the choice of parameters of video length and window size, as well as sampling

frequency and spatial frequency. However, Spencer et al. [70] did not discuss

the implications of balancing choices between the number of frames, N , frames

per second v, and slice length L (related to window size).

The present work suggests that these parameters should be chosen specifi-

cally, with attention to the Y coefficient, to ensure that α can remain above an
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identified value, so as to ensure accuracy and consistency in estimation of the

spatial scale factor, β (i.e., to avoid numerical ill-conditional). While it is tempt-

ing to presume that more data (i.e., longer video sequences) will lead to higher

accuracy, the ensuing ill-conditions may increase the computational demand in

the calculation of β.

The experimental dataset itself has shortcomings that require future atten-

tion. The first is that a flume was used to generate water waves. As shown

in Figures 4.12 and 4.13, the bottom of the flume is visible in the images of the

water (i.e., in the open sea). This likely contributes to the horizontal lines in the

2D-FFT of the still frame image, used to determine the direction of maximum

energy. Additionally, the water waves are not representative of how they would

appear in the conditions of interest. This may be improved through the use of

some sort of dye or suspension in the water, such that the bottom of the flume

would not be visible. Unfortunately, due to the specifications of the flume and

wave maker, the maximum water depth is prescribed to be no greater than 12

inches. The wavelengths and wave heights are inherently limited by the wa-

ter depth, if the dispersion relationship (Equation 4.3) is to remain valid. Thus,

a full demonstration of waves of a real-world size could not be investigated

within the scope of this study. It also meant that the study could only assess

a single wave frequency, as the requirements were near the very edge of the

experimental facility’s capabilities.

In the FFT of the spatial-temporal image, periodic vertical lines are visible

(see Figure 4.15). An additional step of processing had been applied to explore

whether these lines impact the results of the study. This noise was removed

by taking the 2D-FFT of the image (Figure 4.15), masking the portion of the
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image that corresponded to the lines, and then taking the inverse 2D-FFT of

the masked image (Figure 4.20). This alternate pre-processing method was then

re-run with four random trials above. The results did not change significantly,

with β changing less than 10% for each individual sequence per condition. For

comparison, this variation is less than the variation within sequences. Thus, this

was not pursued further in the current study.

Figure 4.20: The FFT of the spatial-temporal image (Figure 4.15), filtered
to minimize vertical lines via masking the 2-D FFT

4.5 Conclusion

The originally proposed algorithm of Spencer et al. [70] seeks to recover both

sea-state and image scale in pixels per meter from a single-perspective, uncali-

brated video scene of water. Spencer et al. [70] verify the algorithm extensively
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through the use of synthetic wave videos. In order to further understand how

this method translates from synthetic data to the real-world, the present work

seeks to validate the algorithm through a suite of experimentally collected video

sequences. Prior to presenting the validation experiment, an overview of the

original method, and a demonstration of the code verification, is provided to

build confidence in the implementation of the intended algorithm.

The application of an uncalibrated wave video to identify scale and sea state

is promising though somewhat limiting due to visibility in low-light (night),

or obstructed visibility (such as fog). The logistics of directionality would also

have to be considered in order to obtain a panoramic view. However, it pro-

vides an economical alternative to monitoring of sea states. Additionally, since

it requires only a single camera, the typical concerns of calibrating for camera

extrinsics, relative to one another, can be entirely eliminated. In this way, the

method promises an aspect of enhanced robustness as opposed to some stereo

camera methods requiring careful hardware calibration and image registration.
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APPENDIX A

CHAPTER 1 OF APPENDIX

A.1 Markov chain Monte Carlo

The following details the theory and specifics of a Markov chain Monte Carlo

inversion applied in this study, specifically using the Metropolis-Hastings algo-

rithm.

The inversion seeks to “build” a chain of values to provide an estimate

for p(kroll|TGT ) in the form of a first order Markov chain, which is written as

f(krolln |krolln−1). Any current value at n is conditional on only the past value,

n − 1. The Metropolis-Hastings algorithm is applied to accept or reject pro-

posed moves from a random walk through the parameter space (e.g., kroll) in

order to build this chain for krolln , where n has values from 1 to a user-prescribed

N . Hastings outlines this approach in detail in [23]. The algorithm requires that

the Markov chain be stationary, symmetric, and that each of the values in the

sequence are sampled from the same distribution, p(kroll), for detailed balance.

The Metropolis-Hastings algorithm is implemented to compute, at any step

n, a trial value of the roll gyradius, called krolln . From krolln in a forward model,

Tn is attained. Tn is analogous to the value earlier denoted as SMP (kroll), now

specifically Tn = SMP (krolln ). The trial Tn can then be compared with the pre-

vious Tn−1, and assessment of whether krolln is a value that should be included

in the chain is made. After this comparison, krolln is then either included in the

chain or over-written by krolln−1, such that krolln = krolln−1. A small “step” is taken

away from value krolln to a new value, krolln+1, and repeat the process. This is con-
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tinued this for a user-prescribed number of trials until we have a chain of values

that satisfies the condition that, for a Markov chain of length O:

f(krolln |krolln−1, k
roll
n−2, ..., k

roll
n−O) = f(krolln |krolln−1, k

roll
n−2, ..., k

roll
n−O, k

roll
n−O−1, k

roll
n−O−2, ...)

such that obtaining the current value at n is dependent only on the last O values,

and not values beyond. In this case, the chain only depends on step n-1.

SMP

Tn

TGT

SNR

Generate candidate 
Kn = Kn-1 + α[-1,1] 

Calculate 
ratio of 

likelihood 
function, r

Reject new 
candidate
Kn = Kn-1

Accept 
candidate Kn 

Nburn Burn-in samples
Nsamp Collected samples
N = Nburn + Nsamp 

Repeat N times
If n < Nburn

Tune α
If n ≥ Nburn

Store Kn 

Krollr > 1

r < 1
r > rand[0,1]

r < rand[0,1]

Figure A.1: Inverse model – building the Markov chain

To actually compare the trial value at step n with the value at n− 1, the ratio

of likelihood functions must be computed. The ratio of the likelihood functions

for this purpose takes the form:

r(krolln |krolln−1) =
p(krolln |TGT )

p(krolln−1|TGT )
(A.1)

as described below.

An immediate way to compute either p(kn|TGT ) or p(kn−1|TGT ) is not avail-

able. However, from Bayes’ Theorem (recall Equation 2.3), the following form

results:

r(krolln |krolln−1) =
p(TGT |krolln )pprior(k

roll)/p(TGT )

p(TGT |krolln−1)pprior(k
roll)/p(TGT )

(A.2)
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Terms that appear in both the numerator and denominator (symmetric and sta-

tionary PDF pprior(k
roll) and p(TGT )) can be eliminated. The following is pro-

duced:

r(krolln |krolln−1) =
p(TGT |krolln )

p(TGT |krolln−1)
(A.3)

and all the resources are available to obtain a value for r(krolln |krolln−1), denoted also

simply as r. Substituting appropriately from Equation 2.4 produces the result:

r(krolln |krolln−1) =

1√
2πσ2

T

e
− 1

2σ2
T

(TGT−Tn)2

1√
2πσ2

T

e
− 1

2σ2
T

(TGT−Tn−1)2
(A.4)

which can reduce further to

r(krolln |krolln−1) = e
− 1

2σ2
T

[Qn−Qn−1]
(A.5)

where Qn = (TGT − Tn)2 and Qn−1 = (TGT − Tn−1)2.

If r is greater than 1, the candidate is accepted at step n. If r is less than

1, then a “biased coin toss” is performed. Producing a uniformly distributed

random number between 0 and 1, Un[0, 1], r is compared to this number: if r is

greater than Un, then krolln is accepted, even though it is not “more likely” than

the previous candidate; if r is less than Un, then we reject krolln .

Now that it is known how to compute and how to utilize the ratio in likeli-

hood functions, the remaining component in the method hinges on generating

candidates to be included in the random walk.

As alluded to above, after computing the ratio of the likelihood function and

either accepting or rejecting the new value, we move forward by taking a small

“step” away from value krolln to a new value, krolln+1.

krolln+1 = krolln + α ∗ Un[−1, 1] (A.6)
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where Un[−1, 1] is a uniformly distributed random number between -1 to 1.

The next question that has yet to be answered is: how is a value for α ob-

tained? To address this, the inversion will now be specified as two stages: a

“burn-in” stage and a “sampling” stage.

During the “burn-in” stage, sample collection is started with reasonable di-

versity within the support of the prior distribution. At this time, discarded sam-

ples are used to tune the α parameter such that reasonable rates of acceptance

are achieved while maintaining reasonably small auto correlations within the

sampling chain when the actual chain sampling is carried out, after the “burn-

in” phase. As one means of achieving these outcomes, we adopt the approach

of Link [41].

If rn ≥ Un[0, 1], while n < Nburn,

αn = αn−1 ∗ [a− (a− 1)
n

Nburn

] (A.7)

Else, if rn < Un[0, 1], while n < Nburn,

αn = αn−1
1− Pac[a− (a− 1) n

Nburn
]

1− Pac
(A.8)

The parameters Pac (the target acceptance rate) and a (tuning parameter) are set

to equal 0.42 and 1.01, respectively, as recommended by Link when searching

over a single parameter. Roll gyradius values from the “burn-in” stage are not

stored or included in the final estimation of p(kroll). Now with the inverse model

background, the description of the computational framework can be developed

to implement such a model (A.2).
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A.2 Algorithms

Algorithm 1: MCMC Stochastic Solver

1: procedure STOCH SOLVE(Nburn, Nsamp, prior support, σT , TGT )

2: [alpha opt, data, TNburn] = burnin(Nburn, prior, σT , TGT )

. Returns burned-in data chain, tuned

alpha, and TNburn
3: data = sample(Nsamp, prior, alpha opt, σT ,TGT , TNburn ,

Nburn, data) . data sampling

4: return(data)

5: end procedure
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Algorithm 2: Burn-in chain and tuning of alpha

1: procedure BURNIN(Nburn, prior, σT , TGT )

Initialize prev resp, linkset, data, and alpha structures

2: linkset = mean(prior) . Mean of uniform prior

3: alpha = 0.1 . Starting alpha value

4: Pac = 0.42 . Target acceptance rate

5: a = 1.01 . Target convergence target

6: for n = 1:Nburn do

7: [linkset, conv, prev resp] = Gibbs(prior, alpha, σT , TGT , prev resp,

linkset) . Use Gibbs to handle multiple param-

eters if needed
8: if rn is accepted then . conv is equal to 1 if rn is accepted

9: alpha= alpha * a− (a− 1) i
Nburn

10: else

11: alpha = alpha / 1−Pac
1−Pac

(
a−(a−1) i

Nburn

)
12: end if

13: end for

14: alpha opt = alpha

15: return(alpha opt, data, prev resp)

16: end procedure
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Algorithm 3: Sampling MCMC for storage

1: procedure SAMPLE(Nsamp, prior, alpha opt, σT , TGT , prev resp, Nburn, data)

2: linkset = data[Nburn]

3: alpha = alpha opt

4: for i in range(Nburn, (Nburn+Nsamp),1) do

5: [linkset, conv, prev resp] = Gibbs(prior, alpha, σT , TGT , prev resp,

linkset)

6: Append linkset to data

7: end for

8: return(data)

9: end procedure

Algorithm 4: Allow for capability to vary multiple parameters through
Gibbs sampling

1: procedure GIBBS(k, alpha, σT , TGT , prev resp, linkset)

2: conv = [0] * length(linkset) . zero-out conv

3: for i = 1:length(linkset) do

4: param min i = params[2*i] . set minimum from prior

5: param max i = params[2*i+1] . set maximum from prior

6: [link, conv flag, prev resp] = MH(param min i, param max i,

alpha, σT , TGT , prev resp, linkset, paramnum)

7: linkset[i] = link

8: conv[i] = conv flag

9: end for

10: return(linkset, conv, prev resp)

11: end procedure
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Algorithm 5: Performs Metropolis-Hastings move on given link in chain

1: procedure MH(param min i, param max i, alpha, σT , TGT , prev resp,

linkset, paramnum)

. Generate a candidate move

2: candidate = linkset[paramnum] + alpha[paramnum] * rand(-1,1)

. Test to see if candidate is admissible under prior, return if not

3: if ( thencandidate >param max i or candidate <param min i):

4: link = linkset[paramnum]

5: conv flag = 0

6: return link, conv flag, prev resp

7: end if

. Call forward model to compute the response of candidates that are accept-

able under the prior

8: new resp = formod(linkset, paramnum, candidate, prev resp)

. Initialize temporary data structures p and q

9: p = [0]*len(prev resp)

10: q = [0]*len(prev resp)

. evaluate likelihood ratio

11: for i in range(len(prev resp)):

12: p[i] = expt[i] - prev resp[i]

13: q[i] = expt[i] - new resp[i]

14: Q prev = sum(p*p for p,p in zip(p,p))

15: Q = sum(q*q for q,q in zip(q,q))

16: r = e
−0.5
σT

Q−Q prev
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17: if r >rand(0,1) then . perform biased coin toss
18: link = candidate
19: prev resp = new resp
20: conv flag = 1 . flag r as accepted
21: else
22: link = linkset[paramnum]
23: conv flag = 0 . flag r as rejected
24: return(return link, conv flag, prev resp)
25: end if
26: end procedure

Algorithm 6: Running the forward model

1: procedure FORMOD(linkset, paramnum, candidate, prev resp)

2: Initialize the parameter data structure

3: Initialize the new response data structure

4: Identify and open the ’base’ file name containing the input file for the

forward model

5: Identify and open the current file name containing the input file for the

forward model at step n

6: Modify the ’base’ file such that the kroll input value equals krolln and save

as the current file name

7: Close all files

8: Run SMP with the current file

9: Save the output

10: Extract roll period Tn in seconds and save as new response

11: return(new response)

12: end procedure
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APPENDIX B

CHAPTER 2 OF APPENDIX

B.1 Additional tables for icing configuration results

Prior Type
Prior Support Variable (1) U-U (2) G-G (3) Un-G (4) G-Un

Un-Iced kroll [B] µ 0.4107 0.3934 0.6383 0.3865
σ 0.0001 0.0059 0.0083 0.0050

VCG [m] µ 6.4737 6.7789 6.1830 6.7922
σ 0.0002 0.0113 0.0257 0.0094

Experiment kroll [B] µ 0.3745 0.3764 0.5724 0.3774
σ 0.0105 0.0055 0.0278 0.0052

VCG [m] µ 6.8132 6.8100 6.3711 6.8082
σ 0.0185 0.0100 0.0750 0.0096

SPII kroll [B] µ – – – –
σ – – – –

VCG [m] µ – – – –
σ – – – –

Hybrid kroll [B] µ – – 0.5559 –
σ – – 0.0232 –

VCG [m] µ – – 6.4155 –
σ – – 0.0609 –

Table B.1: Summary of full-scale from model-scale MCMC inversion re-
sults for Icing Configuration 2
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Prior Type
Prior Support Variable (1) U-U (2) G-G (3) Un-G (4) G-Un

Un-Iced kroll [B] µ 0.3927 0.3917 0.4170 0.3913
σ 0.0116 0.0051 0.0303 0.0047

VCG [m] µ 6.0509 6.0564 5.9153 6.0588
σ 0.0605 0.0279 0.1648 0.0257

Experiment kroll [B] µ 0.3909 0.3856 0.2892 0.3897
σ 0.0087 0.0055 0.0176 0.0049

VCG [m] µ 6.0614 6.0907 6.5104 6.0675
σ 0.0439 0.0300 0.0665 0.0265

SPII kroll [B] µ 0.3848 – – 0.3811
σ 0.0023 – – 0.0018

VCG [m] µ 6.0905 – – 6.1115
σ 0.0118 – – 0.0126

Hybrid kroll [B] µ 0.3775 – 0.4040 0.3817
σ 0.0115 – 0.0167 0.0050

VCG [m] µ 6.1289 – 5.9911 6.1080
σ 0.0583 – 0.0885 0.0261

Table B.2: Summary of full-scale from model-scale MCMC inversion re-
sults for Icing Configuration 3

Prior Type
Prior Support Variable (1) U-U (2) G-G (3) Un-G (4) G-Un

Un-Iced kroll [B] µ 0.4106 0.3930 – –
σ 0.0002 0.0051 – –

VCG [m] µ 6.3933 6.5887 – –
σ 0.0007 0.0143 – –

Experiment kroll [B] µ – – – –
σ – – – –

VCG [m] µ – – – –
σ – – – –

SPII kroll [B] µ 0.4905 – – –
σ 0.0005 – – –

VCG [m] µ 6.6429 – – –
σ 0.0011 – – –

Hybrid kroll [B] µ – 0.4557 – –
σ – 0.0046 – –

VCG [m] µ – 4.9573 – –
σ – 0.0474 – –

Table B.3: Summary of full-scale from model-scale MCMC inversion re-
sults for Icing Configuration 6
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B.2 Additional icing configuration results, by prior forms

Symbol Meaning
Grey rectangle kroll and V CG ground truth values, range of +/− 2σ

(based on exerimental full-scale from model-scale values)
blue “.” µ for kroll and V CG ground truth values

(based on exerimental full-scale from model-scale values)
black “o” Inverse solution of kroll and V CG for category of interest

(Category of interest listed in the plot title)
black “.” Inverse solution of kroll and V CG for all other categories

Table B.4: Legend for Figures 3.10 – 3.13
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B.3 Additional icing configuration results, by prior support
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Figure B.5: Icing Configuration 3 Results: By prior support
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Figure B.6: Icing Configuration 6 Results: By prior support
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B.4 Additional 2-D icing configuration results
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Figure B.10: Icing Configuration 0, Uniform-Uniform Form, Un-Iced Prior
Support
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Prior Support
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Figure B.12: Icing Configuration 5, Gaussian-Gaussian Form, Un-Iced
Prior Support
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APPENDIX C

CHAPTER 3 OF APPENDIX

C.1 Convergence criterion

In choosing the number of “burn-in” and “stored” samples, ensuring that the

MCMC sampling chain has sufficiently converged is critical, given the specific

framework and model. A convergence criterion can guide the choice of “burn-

in” and “stored” sample values that the framework requires as a user-input.

This builds confidence in the results of the generated posterior for a given mass

parameter, θ.

To monitor convergence within the MCMC sample population, a gen-

eral convergence diagnostic method by Brooks and Gelman is implemented

(Brooks:1998). This method is favorable because it does not require the assump-

tion of any particular distribution (Gaussian or otherwise), and is easily applied

to computational models. The method is as follows: start with M chains of

length N. For a given chain m (where m is one of the M chains), the empirical

100(1-α)% is initially calculated. The empirical 100(1- α)% (e.g., the (α/2)% to

100(1-α)% interval) is used in order to calculate a “within-chain” interval esti-

mate for each of the 1 to M chains. Using the end points of the within-chain in-

terval for individual chain m, the combined observations from all 1 to M chains

is summed to calculate the percentage of observations from all 1 to M chains

that lie in the within-chain interval from a single chain m. This quantity is de-

noted here as WCPm (for within-chain percentage for chain m). This is then

repeated for all chains, 1 to M . The average of the calculated WCPm for all

m (m = 1 to M ) is then recorded. As N (the number of observations in chain
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m) increases, the average WCP1 : M should approach 100(1-α)%, which is the

indication of convergence.

In this study, M is chosen as 10 chains, while length N is varied. The result

of this study indicates that it is sufficient to use 1,000 burn-in and 5,000 stored

samples to ensure a converged chain. The results of this study are plotted in

Figure C.1 for up to 15,000 “stored” samples under five different convergence

targets (α = 10, 5, 2, 1, 0.5). All chains are visibly approach the expected value

by 5,000 stored samples, thus indicating that this combination of burn-in and

stored sample numbers is appropriate for this model and application.

Figure C.1: Convergence of MCMC chain of 1,000 burn-in samples and
15,000 stored samples
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APPENDIX D

CHAPTER 4 OF APPENDIX

The following is a literature review to provide broader context for existing ocean

wave observation and monitoring research activity. This appendix chapter is a

supporting companion to Chapter 4.

D.1 Background

Characterizing open ocean waters builds upon decades of research, motivated

by a wide range of interests, such as weather monitoring [9], rogue wave notifi-

cation [56], and even evasion of a pirate attack [62]. Various monitoring mech-

anisms have been employed, from remote sensing instrumentation on satellites

to stereophotogrametry, and more recently, computer vision methods integrated

in existing data collection methods. This literature review covers the following:

(1) use-cases and motivation for monitoring ocean waves, (2) instrumentation

used in monitoring waves, and (3) algorithms developed to harness data from

instrumentation.

D.2 Use-cases and motivation for monitoring ocean waves

In the current paper, we require a wave monitoring system that could be imple-

mented within the scope of the Arctic ice monitoring framework. Such a system

would instantiate a fluid-structures interaction model that could then be used

to make predictions on certain mass parameters, and therefore seakeeping abil-
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ities, of a ship in operation. While this exact motivation appears to be unique

amongst existing literature, there are a number of related research interests that

could lend itself to this goal.

Ocean monitoring systems are a way to understand the increased frequency

of extreme weather and coastal storms, threats to critical infrastructure, and

ecosystems [82]. In essence, monitoring the ocean is a means to monitor both life

in the ocean, and how the ocean can impact human lives both in the sea and on

land. Specifically, there are a number of applications that have motivated much

of the ocean monitoring research, some of which extends as far back as 1939 [64].

Some of the research does not explicitly state an application-based motivation,

but implies that the research is generally motivated by marine operations [10,

72].

Most similar to the application that motivates this current work, research

from Kos [32] and Gunther [20] specifically cite the desire to integrate wave

monitoring systems into navigational and decision support during marine op-

erations. Other relevant researchers have specifically cited a desire to identify

single rogue wave events [56] or wave groups [13]. The latter research varies

in focus from coastal waves [26], deep water waves [70], shoaling waves [14],

and/or short gravity waves [2, 65].

Outside of monitoring waves, much previous research has investigated

methods for identifying rigid objects in a maritime scene. This generally in-

volves separating an image into two components: the water scene and the rest

of the scene. This can be done by successfully characterizing the water scene

through image processing techniques, such that it can be removed. Rigid ob-

ject detection can be useful as an early warning system for possible collisions
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[79, 67], and, perhaps more exciting, to evade a possible attack [62].

Another key player that motivates ocean monitoring research is weather

forecasting, as the ocean is a valuable indicator of winds and daily weather [9].

This work typically relies on remote sensing from satellites, and is updated on

about a daily time scale and may require calibration to compare across differing

platforms [85].

Though much of the research focuses on monitoring ocean waves in order to

gain knowledge about a scientific or operational concern, some work has been

motivated by the desire to generate more realistic waves in a computer graphics

setting, for example, in movies, games, or other visual simulation [42, 74, 76].

With the various motivating factors behind studying and monitoring ocean

waves, there are numerous dimensions of information to extract about those

waves. Much of the research in this field has focused on extracting specifically

the directional spectrum of waves [10, 7, 72, 26, 66] or the wavenumber spectra

[2]. More recent research has focused on 3-D reconstruction of waves [28, 29],

with additional emphasis on extracting significant wave height, wave speed

and direction, wind speed and direction, and an understanding of individual

waves in time [25, 78, 56, 24]. Other end-forms of data include: wave phase

speed [71], slope fields [84], wave climate [85], and wind data [85].

D.3 Ocean wave monitoring instrumentation

A wide range of instrumentation has been used to monitor ocean waves. From

1-D instruments submerged in water (wave buoys) to satellite-borne remote
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sensing instruments, this is a field of study that has been studied both from

direct contact with water, farther away from a satellite in orbit, and nearly any

distance in-between.

Wave buoys are standard ground-truth comparisons for all other methods.

They are installed throughout the world’s oceans, but because they measure one

quantity (water surface height) and are installed at specific spatial locations,

the data available from this method are inherently limited in number. Thus,

there is a tradeoff between spatial resolution and accuracy of information when

relying on wave buoy data versus another type of instrumentation. Hence, this

is a favored ground-truth method, though not a way to reconstruct the ocean

surface with reasonable spatial resolution. Wave buoys have been applied as

the ground-truth comparison value for several studies in this overview [85, 36,

43, 47, 29, 76, 12, 24].

There is also ample work on radar systems installed on stable platforms or

on aircraft. Researchers have had a growing interest in detecting the spatial and

temporal locations of wave groups for safety of offshore platforms, breakwaters,

and ships. Through a combination of synthetic aperture radar (SAR) and typical

on-board x-band (wavelength ∼ 3.2 cm) monitoring, research suggests that it is

possible to identify large, extreme wave groups [12]. The use of numerical wave

models can be used in conjunction with satellite synthetic aperture radar algo-

rithms and/or radar altimetry to improve the performance of the identification

of sea states in extreme situations [36].

Airborne Light Detection and Ranging (LIDAR) is an effective means to ob-

tain an accurate 3-D surface topography of the ocean; however, the cost of flight

and data collection does not make it a sustainable or constant means of ocean
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surface data collection [28, 29]. Satellite-borne remote sensing, such as SAR and

radar altimeters, have also been used to infer the sea state [36, 85, 22]. Both sig-

nificant wave height and wind speed at 10km above the sea surface are standard

products that are available for over twenty years of altimeter data. Analysis of

this breadth of data suggest that the significant wave height exhibited greater

accuracy than the wind speed over the seven missions and time frame analyzed

[85]. The repeat cycle for these missions (ERS-1, ERS-2, Envisat, Geosat, GFO,

Jason-1, TOPEX) ranged from 3 days to 168 days. Resolution is relatively low,

in the kilometers range in deep ocean rather than the meters range. The legacy

of altimetry data for significant wave height and concurrent missions makes

this technology appealing for wave monitoring applications. With the availabil-

ity of multiple altimeter platforms (European Remote sensing 1, 2; the envisat,

geosat, GFO, Jason-1, and TOPEX), there is a desire to consolidate and compare

information across remote sensing datasets of wind speed and wave height. Al-

timeter data requires offsets to compare across platforms, and such offsets may

not be static in time (i.e., the offset for the 1985 to 2008 data may differ from a

different set) [85].

In general, very high frequency (VHF) radars are better for wave fields of

small heights than high frequency (HF) radars (25-30MHz), and VHF (specif-

ically 47.8 MHz) is recommended for shore, estuarine, and lagoon small scale

studies [7]. HF remote sensing of sea state via radar is also common, though

these instruments are typically mounted onshore [7]. These systems can reach

over ten kilometers offshore and provide high temporal frequency; they are sta-

tionary and cannot track waves beyond a specified distance from the shore. This

coverage is insufficient for the ships traveling in the Arctic in the proposed ap-

plication, but its contributions to the general field are worth mentioning here as
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part of general background.

Research has also been ongoing in using a marine navigation radar (X-band,

around 10 GHz [27]) to measure wave height [83, 78, 47]. Earlier research fo-

cused on linear waves with a “relatively simple wave spectra” [83]. Since then,

the types of waves and spectra considered have grown in complexity. An avail-

able commercial addition, the Wave Monitoring System (WaMoS) connects to

existing X-band radar instruments on-board the ship. Resolution for this system

has been cited as fine as 5 meters. Though earlier systems were recommended

only for lakes or shallow water [78, 47], this system has been been deployed on

ships traveling in deeper waters [27], such as the full-scale R/V Melville. Us-

ing its on-board X-Band radar, and its IMU, a validation study was conducted

in a real sea-state took place near the shore of San Diego, California. This ex-

periment was conducted during a nine-day period in 2013 through an effort by

the Office of Naval Research [73]. The comparison of results between the X-

band system and airborne LIDAR (considered the ground truth) is reported as

having approximately 71% correlation between the LIDAR and X-band wave

method in the along- and across- directions of the waves [43]. While this shows

promise for future application, alternate options for improved correlation are

still needed.

The use of optics in a remote sensing application – specifically, the use of the

visible wavelengths – is favorable due to the relatively high spatial resolution,

and in a less-remote application, it is also relatively inexpensive (i.e., cameras or

video cameras). For example, through the combination of high-quality camera,

accurate mapping, fine sampling, long dwell, and large sub-patches, the the-

oretical dispersion surface could be fit to the observed surface using a simple
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algorithm and retrieve the depths when considering only gravity waves [14]. A

few variations on the use of optics include polarimetric (filtered optical) tech-

niques, video sequences, and stereophotogrammetry. The holographic method

can be used to look at the process of wave generation for specifically deep water,

and is relatively easier to process the data than many of its other contemporary

methods (stereophotogrammetry, for example) [72]. A study by Zappa in 2008

proves the feasibility of and validates the polarimetric slope sensing technique,

such that 2-d slope field of short gravity waves can be accurately recovered

without inferring fluid dynamic properties of air or water, and that the recov-

ered water surface still appears realistic [84]. For video application, Stockdon

(2000) found large errors associated with wave heights greater than 1m, but in-

troduces the method as an inexpensive, straightforward way to estimate wave

phase speed in near shore applications [71]. Another study exampled the feasi-

bility of determining the scale and sea state from a single view, standard video,

independent of calibration [69, 70]. This method relies on computer vision tech-

niques, along with prior knowledge of wave dynamics and physics, to infer

the wave heights and velocities without any formal calibration stage, making

this unique from most other techniques. Resolution is in the correct scale, with

the studies ranging from 0.1-0.7 meters per pixel. In another example, as men-

tioned above, work has been done in analyzing video sequences to separate

a marine water scene from rigid objects in the frame, within known size con-

straints [79, 62, 67]. This is done through pixel-based statistical algorithms.The

use of optics is promising though somewhat limiting due to visibility in low-

light (night), or obstructed visibility (such as fog). The logistics of directionality

would also have to be considered in order to obtain a panoramic view.

Stereophotogrammetry is the use of a stereo image (two or more images
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taken from different positions) in order to estimate the three-dimensional co-

ordinates of points. It requires the identification of common points in each,

and most methods rely on a few assumptions about the search path for such

common points. The beginnings of stereo pair photographs for analysis of wa-

ter scenery can be traced as far as 1939 [64], though its more prominent use in

determining detailed spectral sea properties begins around 1957 [10]. Count-

ing waves through stereophotogrammetry by hand was commonly used before

more major technological advances [26]. Many studies reiterate the labor inten-

sive nature of using stereophotography [66]. In the same study [66], to add to

the process, two-dimensions high-pass filtering had to be performed in order

to obtain useful information about the short waves; the errors were within 5%.

Insensitivity of short wave spectra to wind direction was determined by Banner

in 1989 [2]. While one had to be a certified photogrammetrist to work on stereo

images (from the Certified Photogrammetrist Program), the start of some man-

ual labor being replaced by digital techniques begins in the early 1990s [65]. By

2004, digital image matching emerged as a way to reduce the intensive labor

that is required of manually matching, measuring, and recording stereopho-

togrammetry [63].

Each sensing instrument type plays to a particular strength; from surveying

the literature, it appears that polarimetry is best at capturing short (0.001 – 1m)

gravity-capillary and gravity waves, while stereo imaging is favored to capture

short- to mid- wavelengths (0.2 – 50m), and X-band radar is most reliable when

looking at mid- to long-waves (>10m).
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D.4 Ocean wave monitoring algorithms and/or post-processing

Existing data on ocean wind vectors has been used to validate wave height re-

sults from video recordings of the ocean [69, 70]. Ocean wind vectors are a pa-

rameter closely tied to sea state (a modern version of the Beaufort scale), relating

wind speeds to form and height of waves, along with a qualitative description

of the sea state. Comparisons to the Beaufort scale have also been made through

measurements taken by scatterometers such as RapidScat and its predecessor,

QuickSCAT [9].

The use of spectral methods have been proposed by early researchers, but it

has not been until relatively recently that the full richness of this method could

be exploited due to computational availability [7]. The use of fast fourier tranfer

methods by Broche in 1987 [7], for example, was limited to 256 points due to

computational limitations. Even as recent as the 2000s, choices for how much

data to include in the fast Fourier Transfer (FFT) influence the scope on which

this method can be applied. For example, in Spencer [69, 70], a single slice of

the video frame is retrieved for analysis due to computational frugality. FFT

analysis has also been used to separate water scenery from rigid objects, such as

in work interested in identifying approaching hazards to a ship [42, 62].

In more recent years, applications of both image processing, machine learn-

ing, and their related sibling computer vision has given rise to a whole new

generation of methods that can harness the data from existing instrumentation

and collection methods. Of most relevance, the Waves Acquisition Stereo Sys-

tem (WASS) uses a stereo matched image sequence to extrapolate topographic

information about a sea surface [3]. This extension of previous work looks into
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the feasibility and certainty of the WASS system on a moving system, such as

onboard a ship [4]. Currently, the stable-camera algorithm is available as an

implemented, freely available open-source pipeline [5].
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