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1 Introduction

Algorithms in computational geometry often use the real-RAM model of computation. In particular,
this model assumes that exact real numbers can be stored in and retreived from memory in constant
O(1) time, and that field operations (+, —, *, /) and certain other operations (like square root,
sine, and cosine) are also “exact,” and can be applied in constant time.

This assumption makes theoretical computational geometry algorithms—even well-understood
algorithms like plane-sweep for polygon union [PS] difficult to implement and numerically unstable.
These algorithms obtain good combinatorial complexity bounds by exploiting ordering properties
of the edges, vertices, and intersections. Floating point implementations are subject to numerical
problems; for example, the “symbolic” ordering properties and the “numerical” ordering properties
do not agree, and the algorithms fail. This is not a “mere engineering difficulty” —it prevents these
algorithms from being used in practice. One possible solution is to use rational arithmetic, which
is exact. For certain algorithms (eg plane-sweep), one can show that in a careful implementation,
the “size” (number of bits) of the rational numbers at most doubles. Hence, on the face of it, it
would seem that rational arithmetic helps solve our problem.!

However, many applications from scientific computation and artificial intelligence require that
these algorithms be mixed, or interveaved, with operations that destroy the exactness of the rational
representation. One such operation is rotation, which is the primary concern of this paper. For
example, suppose we have two sets of polygons, A and B that model rigid objects in a 2D world.
Suppose we rotate A by 6 radians (in the plane), to obtain A(0); ie, for each vertex (z,y) of A we
compute a new one (z’,y’) by the familiar transformation:

zl

y

z-cos @ —y-sin 6
z-sinf@+y-cosé

(1)

/!

1

This models a physical rotation of the object modeled by A with respect to B, but here a problem
arises. For almost all #, one of 8, sinf, or cosf@ is irrational (in fact, transcendental, by the
Gelfand-Schneider theorem). Furthermore, for almost all 6, one of 6, sin 70, or cos 78 is irrational.
Similarly, for almost all @, one of sin @ or cos @ is irrational. The last is obvious, because almost all
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real numbers are irrational. Of course, arbitrary irrationals cannot be represented in computing
machines. We will have to approximate somewhere, but where?

One idea is simply to approximate the irrational sines and cosines in (1) with “nearby” rationals.
However the resulting transformation is typically no longer orthonormal — no longer a rotation,
-but, instead, a rotation and scaling. In our example, instead of A(#) we obtain (1 +4,) - A(8 + 60),
where §p and 6, are small constants. This has two distinguishable effects. First, the rotated versions
of A are not rotated exactly the desired amount. We regard this as a good kind of approximation
because it still models a nearby configuration of A and B in the world. Second, the rotated
polygons of A have changed size with respect to those of B. This is a bad approximation in that
it is inconsistent with A and B as models of rigid objects.

Hence the thrust of this paper is to find approximate rotation coefficients that do not introduce
unwanted scaling. We give efficient algorithms to accomplish this. More precisely, for given angle
0 and tolerance €y, our final algorithm returns a rational S with the following properties:

1. |sin~!S 0] < €
2. The corresponding cosine, V1 — S2, is also rational.
3. S has at most one bit more than the shortest rational satisfying 1. and 2.

For our purposes, the length of a rational is the magnitude of its denominator. Thus rational P
is shorter (resp. longer) than rational Q if P’s denominator has smaller (resp. greater) magnitude.
The number of bits of a rational is the number of bits in its denominator not counting leading zeros.

Shortness of sines is vital for applications, as in general, the number of bits in the rotation
coefficients is added to the bits in each point in obtaining the rotated points.

Our algorithms are iterative and terminate in O(n) iterations where n = log(1/eg). Each
iteration requires O(M(n)) time where M(n) is the time to multiply two rationals of n bits. With
Schonhage-Strassen multiplication, this yields overall complexity of O(n?log nloglogn). Though it
is practical to implement the algorithm entirely with rational arithmetic and thus achieve arbitrary
precision, we concentrate on simple codes that use double precision floating point arithmetic to
compute error terms. These perform well for ¢, > 1010 and thus may be regarded as constant
time operations. In practice, they run in a few milliseconds.

A secondary result of this paper concerns the variant of Euclid’s algorithm often used to approx-
imate arbitrary numbers with nearby rationals to within given €. An example is the rationalize
function of Common Lisp implementations (where ¢ is the machine floating point precision). We
show this algorithm does not always return the shortest possible rational and give a fixup so it
does.

1.1 Application: Configuration Space Obstacles

The primary advantage of the rational method is that it is distance-preserving (i.e., pure rotations
are isometries), and it has an inverse of the same complexity. To further illustrate why this is im-
portant, we now discuss a fundamental algorithm in robot motion planning where scale-preserving
rotations are essential. Suppose we wish to compute the configuration space obstacle CO 4(B) for
a moving polygon A due to a stationary polygon B (see [LoP]). CO4(B) can be characterized
using the Minkowski sum BO A= {b—a|a € A,b € B}. [LoP] provides a linear time (optimal)
algorithm for the case where A and B are convex, and this algorithm has been generalized by
Guibas to the non-convex case. In practice, a non-convex A (or B) is often represented as a set of
(possibly overlapping) convex polygons; these convex polygons are then pairwise convolved to find



a set of configuration space polygons whose union is CO 4(B). This union is often computed using
sweep-line techniques. Suppose now that we wish to rotate A by 6 and then compute CO 4(9)(B).
B A(0) is exactly a set in which rotated and non-rotated edges must be simultaneously processed.
Using rational rotations, the effect on the motion plan would be that the robot rotates to some
¢’ (the output of our algorithm) within a tolerance € of # instead. Finally, the computation of
CO 4(¢')(B) is exact, whereas, for most §, CO 4(g)(B) cannot be exactly computed or represented
using rational arithmetic.

2 Outline

The final algorithm is short and simple, belying the rich structure of the problem it solves the
assortment of techniques available to attack it. As such, we chronicle various approaches that lead
to the final results. In section 3, we couch the problem in convenient terms. In section 4, we describe
a brute force approach that yields a few rational sines. Section 5 gives our first iterative algorithm,
with encouraging insights. Section 6 applies well-known results on Diophantine equations to show
that finding sines is equivalent to finding rational approximations to arbitrary numbers. Section
7 shows a variant of Euclid’s algorithm to perform this approximation. Section 8 analyzes the
Diophantine technique and Euclid and finishes with the algorithm that satisfies the claims above.
Section 10 has some notes to place this work in context, and suggests extensions.

3 Setting Up the Problem

Let s = sin# and ¢ = cos @, then we are interested in rational solutions to:
s4+ct=1 (2)

Picking such a rational solution is clearly equivalent to picking 8 such that sin § and cos @ are both
rational, but, as mentioned above, such @ values are often irrational, so we have not the freedom
to compute them directly; we must be more subtle.

Define a rational sine to be any rational solution for s in (2). An alternate definition will also
be helpful: Let (z) = v1 — z2. Then a rational sine is any rational number S such that Q(S) is
also rational.2 What is wanted is an algorithm with this specification:

Specification: Rational sine

Inputs: Angle 0, tolerance €g.

Output: Rational sine S such that:
(a) |sin~1S - 0| < €

(b) S is as short as possible.

4 Simple-minded Search

Our first attempt is purely pragmatic. In implementing planners for paths of robots that rotate,
one approach is to consider only a finite, uniformly spaced set of rotation angles in [0,27). The first
job of the planner is then to compute configuration space obstacles for this set of angles as described

20f course 0(S) is also a rational sine, as Q(Q2(S)) = S.



0-0 10 - 92/533 | 20 — 51/149 | 30 — 451/901 | 40 - 88/137
1-115/6613 | 11 - 93/485 | 21 — 135/377 | 31 — 180/349 | 41 — 48/73

2 - 57/1625 | 12 - 76/365 | 22 - 372/997 | 32 - 28/53 | 42 - 65/97
3-39/761 | 13 - 156/685 | 23 — 348/877 | 33 — 432/793 | 43 — 429/629
4-29/421 | 14 -205/853 | 24 — 231/569 | 34 — 161/289 | 44 — 555/797
5-23/265 | 15-69/269 | 25-36/85 | 35— 228/397 | 45 — 697/985
6-19/181 | 16 -7/25 26 — 39/89 | 36 — 504/865

7-32/257 | 17 - 120/409 | 27 — 300/661 | 37 - 3/5

8-129/929 | 18- 57/185 | 28 - 8/17 38 — 580/941

9 -100/629 | 19-12/37 | 29 - 189/389 | 39 - 341/541

Figure 1: Short rational sines for 0 to 45 degrees.

above in sec. 1.1. For this purpose, it appears natural to see if there are enough short rational
sines to fill a table with reasonable density, perhaps one per degree. Considering the equation

B+ (@1~ wve ()

it is not hard to see that we are looking for all pairs of integers (a,b) such that a? — b? is a perfect
square. The pragmatic approach is to search exhaustively for all of these with fewer than some
small number of digits. It is surprising to find 159 pairs where 0 < b < a < 1000 and a/b < v/2/2,
corresponding to sines for angles between 0 and 7 /4. Moreover, they are distributed evenly enough
so that for most integral degrees, a sine is available within 0.3 degrees, and usually much closer.
The exceptions are angles within 2 degrees of 90 - k for integer k, where no 3 digit sines exist.
Searching for 4 digit sines is feasible, especially to fill the empty spaces at 1 and 2 degrees, and this
yields many more pairs. However, this is about the practical limit of brute force search. We have
compromised on (a) of the specification to ensure (b). The result is given in Figure 1.

5 Inspired Iteration

We next seek a way to iteratively refine the entries of the table to achieve arbitrarily precise
results, satisfying (a) of the specification. The result is is given in Figure 5. The following is a
brief description of the non-obvious steps. Step 5 is apparently based on the sum of sines identity
sin(a+ () = sin acos B + cos asin § and the fact that for small k, sink = k. The job of Step 4
then is to find a small k related to 60 that ensures convergence and has (k) rational so that Step 5
always yields a rational number. This it does. The algorithm returns reasonably short sines, about
twice the optimal number of bits, very quickly, but we have yielded on (b) of the specification to
get (a). It remains to show that we can come quite close to achieving both at the same time.

6 Invoking Diophantus...

The thing to notice about the algorithm of Figure 5 is that finding a suitable k, an approximation
of the sine of a correction angle, is much the same as our overall requirement. If the formula in
Step 4 had the power to generate all possible corrections k such that (k) is rational, it would also



1. Retrieve S, the closest rational sine to sin 6 from a pre-
calculated table.

2. If |sin~1S — 0| < ¢, return S.
3. Compute a correction angle §0 = sin~1 S — 4.

4. Compute a correction factor

2c-1
k= m where ¢ = L1/60J

5. Set S := SQ(k) £ kS, where the sign depends on the
sign of 60 in the obvious way. Go to Step 2.

Figure 2: The first algorithm

be able to generate all possible rational sines by iterating over all integers c. It is not clear what
can be said about the sine-generating powers of the formula in Step 4 — it was obtained ad hoc —
but we can derive a similar form which is close to optimal for our purposes.

All solutions to the Diophantine equation

.’E2+y2=22

with y even and z, y, and z relatively prime are of the form

z=m?—n? y=2mn z=m?+ n?

where m and n are integers. Rearranging, we have

)+ () -

Thus all z/2z and y/=z are rational sines. Picking y/z because the math is a bit simpler, we have

2mn 2 2
mi+n? D248 z4l/z

L.
z
where z is any rational number. Thus the expression 2/(z + 1/z) exactly characterizes all rational
sines.3 The outline of an algorithm immediately suggests itself:
Guess rational z such that S = 2/(z + 1/z), satisfies |sin~! § — 6| < e. Return S. 3)

Thus the problem is reduced to a search for z, but the search has a very specific goal. We can solve
the equation sin @ = 2/(z’ + 1/z’) for z’:

g’ =1/sinf+/1-1/sin?6 (4)

3The restriction of the Diophantine solutions to even y is of no concern. If some rational sine p/q has an odd
numerator, then the solution with y = 2p, z = 2¢ accounts for it.




€0, Po, 90, €1,P1, Q1 := 230,1,—17 1,0;
repeat

r:= |eo/e1];

€0, Po, 490, €1,P1,491 ‘= €1,P1,491,€0 — T€1,Po — TP1,40 — Tq1;
until |p1/q — 2| <€

Figure 3: Rational approximation algorithm

Then z’ is the exact value of £ we need, except that it is probably irrational. It remains to
approximate z’ with a nearby rational number. We initially did this using bisection between |z’|
and [z'], and this gave answers with one third fewer bits than the algorithm of Figure 5. However,
we can do better.

7 ...And Then Euclid

There exists an iterative algorithm to approximate any number z with a series of successively closer
rationals Ro, Ry, . ... It terminates, returning z in canonical reduced form, if and only if z is rational.
What makes it especially desirable for our needs is that the R; are significantly shorter than the
estimates we got by bisection; often they are the shortest possible. Figure 3 is the algorithm. The
assignment statements perform all assignment of right hand side expression results to respective
left hand side variables simultaneously. Variable z holds the number we are approximating. The
approximations R; are the values of p;/q; in successive iterations. Iteration stops when this value
is within € of z. The estute reader will see embedded in this algorithm Euclid’s method for finding
the GCD of two integers. In effect, it is finding the “GCD” of = and 1.

The existence of this algorithm should not surprise Common Lisp users! The library func-
tion rationalize commonly uses it to get a rational nearby to a floating point number; e.g.,
(rationalize .1111111111111111) returns 1/9 in many implementations.

Incorporating Figure 3 and the discussion of Section 6 yields a complete algorithm. Figure 4
shows Common Lisp code to compute rational sines in [0,7/4). Recall that do loops have simul-
taneous assignment semantics as the notation in Figure 4 above. The first line of the do evaluates
the right hand side of (4) in double precision arithmetic to obtain the “exact” value of z to be
approximated. Iteration proceeds as in Figure 3, with the stopping criterion from (3). The last
line computes the current most accurate value of the rational sine due to the current most accurate
rational approximation of z, namely p1/q1.

8 Analysis

How short are the answers of Figure 4?7 There are two things to consider. First, we developed this
algorithm on the intuition that if we find a short z, it will indeed yield a short value of 2/(z +1/z).
This intuition needs verification. Second, though Euclid’s algorthm is appealing, we do not know
if it really produces shortest answers for a given e. We deal with these matters in order.

To address the first point, suppose S* is the shortest rational sine for angles within €y of 6, i.e.
|sin=! 0 — S*| < €.



(defun ssine (ang &optional (eps 0.01))
(let ((s (sin ang)))
(if (< ang eps) O
(do ((e0 (+ (/ 1 8) (sqrt (- (/ 1 (* 8 8)) 1))) el)
(p0 0 p1)
(q0 1 q1)
(el -1 (- e0 (* rat el)))
(pt 1 (- pO (* rat p1)))
(q1 0 (- q0 (* rat q1)))
(rsin 1)
rat)
((< (abs (- ang (asin (coerce rsin ’double-float)))) eps) rsin)
(setq rat (truncate e0 el)
rsin (/ (* 2 p1 q1) (+ (* p1 p1) (* q1 q1))))))))

Figure 4: Code for the final algorithm

Claim: Let z be the shortest rational such that |sin~' 8 — S| < €g, where S = 2/(z + 1/z). Then
S is at most one bit longer than S*.

Lemma: Given p and q relatively prime, gcd(2pg, p* + ¢%) < 2.

Proof of lemma: If 2 divides p? + ¢2, then 2 is certainly a common divisor. Now suppose d > 1 is
another prime divisor. Then d divides 2pq, so it divides either p or ¢ but not both. Thus one of p?
or ¢? is congruent to zero (mod d) but the other is not. This implies p? + ¢? is not divisible by d,
a contradiction.

Proof of claim: If S = S*, then we are done. Otherwise S is longer than S*, and we must determine
how much longer it might be.

Let z = p/q. Then p and ¢ are relatively prime by the shortness of z. Next, note § =
(2pq)/(p? + ¢*). Similarly, we know S* = (2p'¢")/(»'* + ¢'?) for some relatively prime p’ and
¢ longer than p and g. By the lemma, this can only occur if ged(2p'¢’, p'* + ¢’%) = 2 and
ged(2pg, p? + ¢?) = 1. We conclude the denominator of S is less than two times that of S*, thence
S is at most one bit longer than S*. 0O

To summarize, we have shown that if we really do find the shortest z, then 2/(z +1/z) is either
the shortest sine, or another sine only a bit longer.

That leaves the second point: Does the algorithm of Figure 3 produce shortest answers? The
answer is no, but it is quite close to one that does. To see what’s going on, we need a simple
tool from number theory, Farey Sequences. The Farey Sequence of order N is just the ascending
sequence of canonically reduced fractions between zero and one with denominators not exceeding
N. There are two fundamental theorems concerning them:

Theorem 1. Every reduced positive rational less then one appears in a Farey sequence.
Theorem 2. Every element of the Farey sequence of order N + 1 that is not in the sequence of
order N is an N-mediant.

An N-mediant is a number (a +b)/(c+d), where a/c and b/d are adjacent elements of the order
N sequence. Noting these theorems, we claim there is an obvious algorithm to find the sequence of
fractions that approximate any z, 0 < z < 1 in ascending order of length. We start with the order



p01q0vplaql’a’b:= 0,1,1,1,0,1;
loop

a,b:=po+p1,9+ q;

if z < a/b then

Pi,q1 = a, b

if p1/q1 is close enough to z, return p;/qy
else

Po,qo := a,b;

if po/qo is close enough to z, return po/qo

Figure 5: Farey approximations to z

Dos90,P1,q1 = 0: 13 13 1;
loop
r = |(p1 — q12)/(goz — po))
p1/q1 = (rpo+p1)/(rgo+ ¢1)
if p1/q1 is close enough to z, return py/q;
r = (290 — po)/(P1 — q12)]
po/q0 = (r'p1 + po)/(T'q1 + q0)
if po/qo is close enough to z, return po/qo

Figure 6: Speedy Farey approximations to z

1 sequence 0/1,1/1 and add the mediants closest to z in succession. Refining this idea a little,
we obtain the algorithm of Figure 5. Why have we bothered with Euclid’s algorithm at all when
this is clearly correct and optimal in the length of results? Unfortunately, Figure 5 requires O(d)
iterations, where d is the denominator of the returned value. Our version of Euclid’s algorithm
requires only O(logd) iterations.

Thus we cannot use Figure 5 directly, but we can use it for insight into Euclid’s algorithm in
Figure 3. Consider sequences of adjacent iterations of the loop in Figure 5 where the “if” condition
tests true (resp. false). Call these T (resp. F) sequences. Then it it not hard to see that the effect
of a T sequence is to add 7(po/qo) to p1/¢:1 where r = |T|. Respectively, F sequences add r'(p;/q;)
to po/go where ' = |F|. This suggests that we can speed up Figure 5 by calculating r and 7 for
adjacent T and F sequence pairs, replacing all iterations for a T, F' pair by exactly one. We have
done this in Figure 6.

The result of all this is the following: Figure 6 transforms (by tedious algebraic manipulation
not given here) to the algorithm of Figure 3! Thus Euclid’s algorithm effectively simulates the
successively tighter bracketing by Farey mediants of Figure 6, but does it much faster.

Yet we cannot jump to a conclusion that Figures 3 and 6 give shortest answers. Why? Precisely
because entire T and F sequences are replaced by single iterations in Figure 6. Iterations of Figure 5
increase the length of the answer, and the first approximation close enough to z to satisfy the



stopping criterion may be generated in the middle of a T or F sequence. Figure 6 applies the
stopping criterion only at the ends of T and F sequences.

Thus we have at once characterized exactly when Euclid’s algorithm produces non-shortest
answers and suggested how to solve the problem. We need to ensure that the calculation of r and
' in Figure 6 (resp. r in Figure 3) does not go too far, producing a too big value that steps past
the shortest mediant. Incorporating this idea, Figure 7 is the final code with separate functions
to approximate numbers and give rational sines. The sine function gives answers one to three bits
shorter that Figure 4 about a third of the time. Interestingly, about one in twenty returns is a bit
longer than Figure 4. This occurs when a non-shortest z generated by Figure 3 happens to yield
a one bit shorter sine than the shortest z. This possibility is allowed by our earlier Claim, and we
are thus assured that it occurs in fact.

;33 Find the smallest rational between x0 and x1.
(defun rat (x0 xi)
(let ((i (ceiling x0)) (i0 (floor x0)) (i1 (ceiling x1)))
(if O=x11i) i
(do ((p0 i0 (+ p1 (* r po0)))
(q0 1 (+ q1 (* r q0)))
(p1 i1 po)
(q1 1 q0)
(e0 (- i1 x0) elp)
(e1 (- x0 i0) (- eOp (* r eip)))
(e0p (- i1 x1) el)
(eip (- x1 i0) (- €0 (* r e1))) 1) -
((<= x0 (coerce (/ p0 q0) ’double-float) x1) (/ p0 q0))
(setq r (min (floor e0 e1) (ceiling eOp eip)))))))

;i3 Return a small rational sine for an angle in [a0,ail]
;33 with a0O<al and both in [0..pi/4].
(defun rat-sin (a0 ail)
(if (zerop a0) 0
(let* ((s0 (sin a0)) (s1 (sin a1))
(x (rat (+ (/ s1) (sqrt (1- (/ (* s1 s1)))))
(+ (/ s0) (sqrt (1~ (/ (* 80 s0))))))))
(/2 (+x (/2N

Figure 7: Shortest rational approximations and short sines

Though this implementation is sufficient for many applications, it is worth noting that all
the double precision calculations can be replaced by rational approximations to achieve arbitrary
precision. Eg, we can use the well-known factorial series expansion of the sine and Newton iteration
for the square root calculations.

We now discuss the overall complexity of the rational method. The size of the integers/rationals
in Euclid is growing linearly. Their final size is n = log(1/¢€) bits. Assuming Schénhage-Strassen*
multiply, doing arithmetic on them takes O(nlognloglogn) time. There are O(n) iterations,
which means O(n2lognloglogn) time. Of course, there are faster GCD algorithms that are very

*MIT SCHEME and Kyoto COMMONLISP use this method, so we will assume it.



well known;® these algorithms are O(nlog? nloglogn). However, the analysis with Farey sequences
does not extend in a trivial manner to the faster GCD algorithms, so if we bring them in, we lose
size optimality unless we can extend the proof and algorithms.

One remaining detail is the complexity of computing rational approximations to the sine and
square root to initialize the iteration. We merely note that Newton’s method converges quadrati-
cally and the sine series linearly (as our algorithm). Since there is also no problem with excessively
long intermediate operands, these calculations do not change the stated complexity.

9 Applications

We now consider two applications in which our method is practical but not the most efficient
solution known. We present them because some algorithms in computational geometry require
“rotation” of geometric ob jects—eg, to remove degeneracies, or to simplify intersection calculations.
Some of these requirements are subtle: eg, a statement like “Assume the direction of sweep is
parallel to the z axis” may actually mask a prescription for rotation. The development of robust
geometric algorithms analyzed in the bit-complexity model demands that such prescriptions be
made precise. Hence, we would rather see this “rotation” phrased as “Construct the rotation
matrix for . Approximate the entries with rationals using Euclid’s algorithm. Apply the resulting
transformation to the environment...” or, “Use the rational method to a choose a rational rotation
within € of 6 ...” Short of this precision, we provide the examples below to show how geometries
can be exactly rotated, using the rational method, as prescribed by the algorithms. Hence, these
examples in a sense demonstrate the correctness of Real-RAM algorithms that prescribe rotation
or perturbation of the input, even when implemented using rational arithmetic. Furthermore, they
demonstrate that the resulting rational implementations have the same complexity bounds as the
Real-RAM idealizations, when analyzed in the bit-complexity model. It is our belief that these
examples elaborate a significant lacuna in robust geometric algorithms.

Both these examples involve “rotating” the environment as a pre-process to an algorithm, and
then “unrotating” the output of the algorithm. The first example is a line-sweep in an arbitrary
direction. The second is a “perturbation” of the environment to remove vertical degeneracies. Both
arise frequently in geometric algorithms. The rational method is not optimal for these problems,
since it suffices to rotate/perturb the environment by an affine rational matrix that is the con-
catenation of a rotation and a scaling. Such a matrix can be obtained by simply approximating
each entry in the (initial) rotation matrix using Euclid’s method (or our optimal version). The
topology of the transformed environment is not different, and hence this approximation method
would suffice. Nevertheless, we feel it is interesting to see that these operations (problem rotation
and perturbation) can be done using pure rational rotation matrices, and that is why we include
these examples.®

%See, eg, [Aho, Hopcroft, and Ullman] Thm 8.20.

%A third example involves shortest paths. Suppose we compute the visibility graph G of a set of polygons A U B.
Denote by E4 the (set of) edges of A. Note that as a graph, E4 C G. Now, compute the visibility graph G(8) of
A(6) U B. Define E4(0) to be edges of A(8), so E4(8) C G(#). Unless an exact rational rotation method is used,
the lengths of the edges in E4 will be different from the edges in E4(8). Most disturbing! This application arises in
motion planning under rotations.

10



Sweep Line L. .
Sweep Line

Figure 8: Rotating a projection problem.

9.1 Rotating Line Sweep Problem Instances

To employ the Canny-Donald” line sweep projection algorithm in a multistep compliant motion
(robot) planner with uncertainty in sensing and control, it is sufficient to compute projections for
a finite set of robot velocity angles. For each, we rotate the environment and robot so that the
velocity vector points along the negative z axis as shown in Figure 8.

The sweep line then moves in the positive z direction and computation of intersections and
distances is greatly simplified.3 We can use the rational rotation method presented here to do this
rotation of the environment.

9.2 Tweaking Line Sweep Problem Instances

The characterizz ticn of rational sines by 2/(z + 1/z), = rational, has another possible application.
Many line sweep algcrithms in the computational geometry literature are oblivious to the direction
of the sweep line. Arother common feature is that segments parallel to the sweep line must often
be treated as special cases. It might be much simpler and even more efficient to get rid of these
cases by rotating tLe problem so there are no such segments. We can use our new understanding
of rational sines to compute short rotation coefficients for this purpose: Generate the canonically
reduced rationals 0 < z < 1 in ascending order of length and pick the first one such that 2/(z+1/z)
is the sine for a rotation angle with the desired effect. One approach to generating the z values is
to consider the stream of N-mediants of Farey sequences in increasing order of N. Details of an
efficient algorithm are left as an exercise. ©

10 ... About Algebraic Geometry

Finally, we note we are looking for rational solutions of eq. (2). Since this is a genus 0 curve,
its solutions can be parameterized in terms of one variable (see Shaferavitch, first section of first

See [Don; D2; Lat]. For readers unfamiliar with this algorithm, the same issues arise in any sweep-line algorithm,

eg, [PS).

$This is rotating the mountain to Mohammed, if you will.

11



chapter). This parameterization immediately gives you 2z/(z? + 1). It follows that it should be
possible to use these methods to produce short rational hyperbolic sines and cosines as well.

Finally, this technique generalizes and shows why we can’t succeed if we want to use it on
elliptic functions.
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