
EXPLORING AND EXPLOITING STRUCTURE IN

LARGE SCALE SIMULATION OPTIMIZATION

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Nanjing Jian

August 2017

c© 2017 Nanjing Jian

ALL RIGHTS RESERVED

EXPLORING AND EXPLOITING STRUCTURE IN LARGE SCALE

SIMULATION OPTIMIZATION

Nanjing Jian, Ph.D.

Cornell University 2017

The thesis explores how to solve simulation-based optimization problems more ef-

ficiently using information about the problem structure. Two primary ideas are

explored. The first idea involves developing numerical methods to detect the struc-

ture of convexity in the output function of a simulation. The second idea exploits

simulation traces to generate gradient-like information to guide optimization. The

goal of this thesis is to provide insights on solving practical large-scale simulation

optimization problems that defy solution by existing simulation-optimization al-

gorithms. In doing so, we hope to inspire algorithmic developments on sub-classes

of simulation optimization problems.

In the first part of this thesis, we give a asymptotically valid numerical proce-

dure to detect the convexity in the output function of a simulation model. Since

the simulated function could be expensive to evaluate, we adapt a Bayesian se-

quential sampling procedure, in which a set of new (noisy) samples is collected in

each iteration to update a posterior model of the function evaluations. Based on

that, the posterior probability that the underlying function is convex is estimated

using Monte Carlo simulation, for which we develop variance reduction methods

with significant improvement in the efficiency.

The second and third parts of this thesis are on exploiting gradient-like infor-

mation from the simulation to solve large-scale simulation optimization problems.

In the second part of the thesis, we give heuristics for optimizing the overnight

rebalancing of the bike-sharing system in New York City with 466 stations and

hence 932 decision variables. The heuristics use the number of failed trips in-

curred by each station to indicate approximate gradient directions, and show ef-

fective improvement given any starting solution. In the third part of the thesis

we further propose the idea of pseudo-gradient defined as an approximate gradient

estimated from the historical simulation traces without rerunning the simulation.

We prove that when the objective is strongly convex and the pseudo-gradient is

accurately approximated, a pseudo-gradient-search procedure will converge to the

near-optimal solution. We give examples of the pseudo-gradient in the cases of

rebalancing a bike-sharing system and scheduling and staffing agents in a multi-

skill call center. The resulting search procedures perform better than the existing

methods for the bike-sharing case and show comparable results to the state-of-art

cutting-plane method for the call center example. The results indicate the effec-

tiveness of pseudo-gradient search and its potential of replacing more sophisticated

methods.

BIOGRAPHICAL SKETCH

Nanjing Jian grew up in Shanghai, China. When she was born, her mother had just

completed her Ph.D. and began her tenure in Transportation Engineering, and her

father was finishing up his Ph.D. in Thermal Engineering in the same university.

After high school, Nanjing decided to leave her hometown and attend University of

Wisconsin - Madison in the School of Engineering under her parents’ influences. In

her sophomore year, she took an introductory optimization course. The art of math

modeling (and the professor’s jokes) led her into the world of Operations Research.

When she graduated with the highest distinction in Industrial Engineering, she

decided to join the School of Operations Research and Information Engineering at

Cornell University as a Ph.D. student.

Life as Ph.D. student was filled with hard-working days and rewarding mo-

ments, such as the times at the annual INFORMS and Winter Simulation Con-

ference. Apart from doing her research in Simulation Optimization, Nanjing also

enjoyed assisting in the teaching of many undergraduate and master level courses,

including optimization, simulation, probability and statistics, spreadsheet model-

ing, and design of manufacturing systems. In her spare time, she tried various

interesting courses offered by Cornell, including wine tasting, swing dancing, rock

climbing, large boat sailing, archery, and handgun safety, and received her brown

belt in Karate.

Upon graduating from Cornell, Nanjing will move to Seattle and join Amazon

as a research scientist, using her simulation skills to improve their supply chain.

iii

To my parents:

Xiaohong Chen and Ruimin Jian

iv

ACKNOWLEDGEMENTS

First and foremost, I would like to sincerely thank my advisor Shane Henderson

for his guidance and support over the years. I enjoyed our weekly meetings in which

he patiently listens me, provides me with brilliant ideas and academic resources,

and cheers me up with positive attitudes and kind offerings of chocolate in times

of frustration. He has taught me how to think critically and guided my growth as

a researcher, and his perspectives on combining theory and practice in the field of

simulation optimization motivated me to tackle real-world problems. I could not

imagine the completion of this thesis without his generous help.

Parts of this thesis are based on joint work with Susan Hunter of Purdue

University, Daniel Freund, and Holly Wiberg during her time at Cornell University,

to whom I owe my special appreciation. I also appreciate Damek Davis’s help with

the proof of Theorem 5.

I would like to thank Peter Frazier and Adrian Lewis for being members of my

special committee, and James Renegar for serving as a proxy during my A Exam.

They have provided many useful comments and the interesting courses they offered

have inspired pieces of this thesis. I would also like to thank the entire faculty at

the School of Operations Research and Information Engineering. Special thanks

to Kathryn Caggiano, Peter Jackson, and John Callister (and of course, Shane

Henderson) for enjoyable semesters of being a teaching assistant. Dating back

to my undergraduate years, I give extra special thanks to Jeff Linderoth, whose

enjoyable courses on optimization led me into the world of Operations Research.

Finally, I would like to thank my fellow graduate students and office mates Eric

Ni, Angela Gao, Jerry Guo, and Yixuan Zhao, who accompanied me through the

days and nights in Rhodes 288.

v

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . vi
List of Tables . viii
List of Figures . ix

1 Introduction 1
1.1 Motivation . 1
1.2 Convexity Detection in Noisy Function Evaluations 3
1.3 Using Gradient-like Information in Optimizing A Large-scale Bike-

sharing System . 5
1.4 Using Pseudo-Gradients in Large-Scale Simulation Optimization . . 6
1.5 Major Contributions . 8

2 Convexity Detection in Noisy Function Evaluations 9
2.1 Introduction . 9
2.2 Problem Statement and Assumptions 13
2.3 Sequential Algorithm . 14
2.4 Posterior Updates . 16

2.4.1 Conjugate Prior under Known Sampling Variance 16
2.4.2 Conjugate Prior under Unknown Sampling Variance 17

2.5 Convexity . 19
2.6 Asymptotic Validity of the Main Algorithm 20
2.7 Variance Reduction Methods . 27

2.7.1 Change of Measure . 27
2.7.2 Acceptance/Rejection . 34
2.7.3 Conditional Monte Carlo . 35

2.8 Numerical Results . 38
2.8.1 A Strictly Convex Function 40
2.8.2 A Non-Convex Function . 44
2.8.3 Linear Function . 45
2.8.4 Output of a Simulation . 46

2.9 Conclusion . 48

3 Using Gradient-like Information in Optimizing A Large-scale
Bike-sharing System 49
3.1 Introduction . 49
3.2 Preliminaries . 51

3.2.1 Problem Statement . 51
3.2.2 Input Data . 52
3.2.3 Discrete-Event Simulation Model 53

vi

3.2.4 Starting Solutions for the Simulation Optimization 55
3.3 Simulation Optimization . 58

3.3.1 Simulation Optimization Heuristics to Optimize Bike Allo-
cations . 59

3.3.2 Simulation Optimization Heuristics to Optimize Both Bike
and Dock Allocations . 65

3.4 Remarks . 68

4 Using Pseudo-gradient in Large-scale Simulation Optimization 70
4.1 Introduction . 70
4.2 Pseudo-gradient Search . 72
4.3 Convergence Results . 75
4.4 Citibike . 79

4.4.1 Introduction . 79
4.4.2 Problem Statement . 79
4.4.3 Generating Trial Solutions Using Pseudo-gradient 80
4.4.4 Numerical Results . 83

4.5 Multi-period Multi-skill Call Center 87
4.5.1 Introduction . 87
4.5.2 Problem Statement and Lagrangian Formulation 89
4.5.3 Search Framework for the Lagrangian Problem 92
4.5.4 Generating Trial Solution Using Pseudo-gradient 95
4.5.5 Numerical Results . 97

4.6 Remarks and Future Work . 105

A Appendix to Chapter 2 108
A.1 Characterizing Strictly Convex Vectors 108
A.2 Alternatives to the Posterior Updates 110

Bibliography 112

vii

LIST OF TABLES

4.1 Comparison of the starting and ending objective values in 95% con-
fidence intervals for Heuristic 7 and pseudo-gradient search started
from the solutions of equal allocation, CTMC, and fluid model. . . 84

4.2 Service rates µik of agent group i for call type k. 99
4.3 Arrival rates λk for call type k and cost ci for agent group i. 99
4.4 Results of the three-skill staffing problem over three different meth-

ods: our pseudo-gradient search, the local search based on SL ap-
proximation from [59], and their comparison to the cutting-plane
method from [12]. Note that our method is using a different sim-
ulation model with different seed, so the cost comparison is not
exact. 100

4.5 The results of pseudo-gradient search on the small call center with
different random seeds. 104

4.6 The results of pseudo-gradient search on the large call center with
different random seeds. 105

viii

LIST OF FIGURES

2.1 The solving time vs. testing function dimension for the two linear
programs in the conditional Monte Carlo method using Gurobi and
linprog. Gurobi is faster when the dimension exceeds 10, when
33 sample points are used. 40

2.2 Comparisons of the estimated probability of convexity, the iteration
time (in seconds), and the log (base 10) efficiency (left to right) of
vanilla Monte Carlo, change of measure, acceptance-rejection, and
conditional-Monte-Carlo (top to bottom) methods applied to a one-
dimensional strictly convex function. 41

2.3 The estimated probability of convexity, the iteration time (in sec-
onds), and the log (base 10) efficiency (left to right) of the vanilla
Monte Carlo, change of measure, and conditional Monte Carlo
methods (top to bottom) applied to a 30-dimensional strictly con-
vex function. 44

2.4 The estimated probability of convexity for the simple strictly non-
convex function in dimensions 3 and 5 and 10 (from left to right).
The estimates when the function is one-dimensional are not shown
because they were effectively identically 0. 45

2.5 The estimated probability of convexity for a 1-dimensional linear
function. The mean does not appear to converge. 45

2.6 The estimated probability of convexity for the mean response time
as a function of the base locations, when the number of bases is
one, two, and three. 47

3.1 The regression line is ln(observed) = 0.93 ln(google) + 0.53 + ε),
where ε is normally distributed with mean 0 and variance 0.066.
The R2 value of the fit is 0.806. Durations are measured in seconds. 54

3.2 The bike level in an 18-hour day for the fluid model. The blue
curve starts with 0 bikes, with lowest and highest levels of -45 and
54. The red curve starts with the “ideal” of 45 bikes and 99 docks. 56

3.3 The objective of running Heuristic 4 (optimize bikes only for morn-
ing rush) starting from the equal allocation and CTMC solutions.
The left one is the comparison of the two, and the right one is
CTMC only on a magnified scale. 61

3.4 The bike levels for the example stations from the lists statEA,
statEP, statFA, statFP, statBI, and statBD (ordered from left to
right in rows) over 10 replications. The x-axis is in time from 6-12am. 63

3.5 The objective of running Heuristic 5 (optimize bikes only for the
entire day) starting from the equal allocation and CTMC solutions.
The left plot is the comparison, and the right one is CTMC only
on a magnified scale. The scale is different from Figure 3.3 since
more failed trips are incurred over a 18-hour day. 65

ix

3.6 The objective of running Heuristic 6 (optimize bikes and docks
for the morning rush) starting from the equal allocation, the fluid
model, and CTMC solutions. The left plot is the comparison of all
three, and the right one is the comparison between the CTMC and
the fluid model solutions on a magnified scale. 67

3.7 The objective of running Heuristic 7 (optimize bikes and docks for
the entire day) starting from the equal allocation, the CTMC, and
the fluid model solutions. The left plot is the comparison of all
three, and the right one is the comparison between the CTMC and
the fluid model solutions on a magnified scale. 68

4.1 Combination of all starting solutions into one plot. 85
4.2 Comparison of objective value vs. number of simulated days be-

tween Heuristic 7 (“wsc Heuristic”) and pseudo-gradient search
(“Table Method”). The three plots are with starting solutions of
equal allocation, CTMC, and fluid model, respectively. 86

4.3 The arrival rates for the small call center. 103
4.4 The arrival rates for the large call center. 104

x

CHAPTER 1

INTRODUCTION

1.1 Motivation

Consider a call center where calls of different types arrive according to a random

process. The calls are handled by agents of different skill sets in random durations.

How does one determine the most cost-efficient way of hiring agents without in-

curring excessive wait time? Now consider a bike-sharing system with stations

all over a city, where customers arrive randomly at each station to check out a

bike, and return it to another station after the ride. What is the optimal capacity

of each station, so that there is enough space for the bike returns? And how to

redistribute the bike supplies across the system, so there is enough bike where the

demand is high? Many other problems can be found on SimOpt.org [57]. Due to

the complexity and stochastic nature of such decision problems, it is difficult to

establish reliable theory without oversimplifying the problem, but using simula-

tion can often capture the system realistically. Simulation optimization is a useful

tool for decision support under such conditions. It is the method of choosing deci-

sion variables to optimize some performance measures that can only be implicitly

evaluated by a simulation model. For an introductory tutorial on the subject and

references to the existing literature, see [44].

Simulation optimization problems are not easy to solve. The process usually

involves many runs of the simulation model, especially when the problem is large-

scale (has many decision variables), requiring considerable computational effort.

When the problem lacks certain “nice” structure like convexity, monotonicity, or

unimodality, or the decision variables are discrete with relatively large dimensions,

1

there is usually limited (or no) choice from traditional simulation optimization

methods. For example, for the (citi) bike-sharing system in New York City, there

are over 450 stations, creating 450 integer-valued decision variables if we just want

to optimize the bike level at each station, keeping the total number of bikes in

the system constant. Exhausting all solutions is impossible, making ranking and

selection infeasible for this problem. To use stochastic gradient search (see, e.g.

[23]), each step would require at least 450 runs of simulation to evaluate a gradient

using finite forward differences. A pure random search would randomly choose

two stations among 450 ∗ 449 pairs to move a bike between them, and hope for

an improvement. The same difficulty applies to the multi-skill multi-period call

center example, where the decision variable is the number of agents to hire in each

skill group and shift, and the dimension can easily scale to thousands of variables.

A state-of-the-art heuristic uses a cutting plane approach combined with Sample

Average Approximation, but each cut generation still requires gradient estimation

by finite forward differences [5].

The more recent approaches for general simulation optimization problems with

integer-valued decision variables include the Industrial Strength COMPASS (ISC)

and Retrospective Search Using Piecewise Linear Interpolation and Neighborhood

Search (R-SPLINE) (see [74] and [71]). The former is a three-stage random search

method that is based on genetic algorithm and ranking and selection, and the

latter linearly interpolates the objective between integer points and uses gradient

search to optimize the interpolated continuous function. Since R-SPLINE relies on

the gradient estimation similar to finite forward differences (on integer lattices),

and ISC incurs large overhead when the problem dimension exceeds 10, they may

not adapt efficiently to specific large problems like optimizing bike-sharing systems

or multi-skill multi-period call centers.

2

The purpose of this thesis is to provide insights on solving practical large-scale

simulation optimization problems (e.g. dimension of at least hundreds) that defy

solution by existing simulation-optimization algorithms. In doing so, we hope

to inspire algorithmic developments in simulation optimization on sub-classes of

simulation-optimization problems. Two primary ideas are discussed in this thesis.

The first idea (Chapter 2) involves exploring convexity in the output function of

a simulation model. The second idea (Chapters 3 and 4) exploits information

other than the final performance estimate from the simulation traces and use it to

generate approximate gradient to guide optimization. Both ideas aim at gaining

more understanding of the simulation model and treating it as a “white-box”

instead of the more traditional “black-box” approaches.

1.2 Convexity Detection in Noisy Function Evaluations

Convexity can be exploited in many ways, including providing global convergence

guarantee for gradient search procedures. Chapter 2 of this thesis provides a

method to explore convexity in functions that can only be evaluated with noise (e.g.

simulation output functions). More specifically, consider a real-valued function

that can only be observed with stochastic simulation noise at a finite set of points in

space. Given the observations, we wish to determine whether there exists a convex

function that goes through the true function value at those design points. This

discrete notion of convexity is useful when we can only afford to evaluate the true

function on a constrained set of points, or when there are finite number of points in

the feasible set (e.g. discrete decision variables constrained in a compact set). Our

method can be used as a first-stage structural analysis of a noisy function before

deploying any gradient-based or cutting plane methods that work most efficiently

3

on convex functions. Apart from checking global convexity, one can use it to detect

“basins of attraction” that contains local optimums. The method can also provide

qualitative insights into simulation applications where theoretical models cannot

be established without oversimplifying the reality.

Since each replication of the simulation is computationally costly, we use a

Bayesian sequential sampling procedure. In each iteration, we obtain a new set of

samples from the simulation and update a Bayesian conjugate prior model of the

true function values. Based on that, the posterior probability that the sampled

function is convex is estimated using Monte Carlo simulation. The asymptotic con-

vergence of the procedure is given under both cases when the sampling variance is

known and unknown. To improve the efficiency of the estimator, we provide three

variance reduction methods - change of measure, acceptance-rejection, and condi-

tional Monte Carlo. The former two methods depend on the likelihood ratios of

Gaussian or Student-t posterior densities and exhibit substantial variability in per-

formance. The recommended conditional Monte Carlo method achieves significant

variance reduction, giving the highest efficiency among three methods.

The contents of Chapter 2 are contained in [45] that has been submitted for

publication, where the initial ideas originate from [42]. The code is accessible from

an open-access repository [40].

4

1.3 Using Gradient-like Information in Optimizing A

Large-scale Bike-sharing System

Chapter 3 of this thesis takes an initial step in exploiting gradient-like information

in large-scale simulation optimization, under the specific case of optimizing Citi

Bike, the bike-sharing system in New York City. The Citi Bike system is a station-

based bike-system where customers can check out bikes from any station and return

to any other station. It has approximately 466 stations, 6074 bikes, and 15777

docks as of December 2015. The major use of the system is for daily commute,

which creates unbalanced flows from and to the public transportation hubs and

residential areas in the morning and afternoon rush-hour periods. To accommodate

for this, Citi Bike rebalances the system by moving bikes between stations every

night and relocate docks every month on a limited basis. We wish to find the

optimal bike and dock allocation for each station at the beginning of the day (the

decision variables), so that the expected number of customers having fail to find

a bike (“failed-start”) or a dock to return a bike to (“failed-end”) over a day is

minimized (the objective), keeping the total number of bikes and docks in the

system constant (the constraint).

Given a starting configuration of the number of bikes and docks at each station,

we use a discrete-event simulation to evaluate the objective. The model captures

the random arrivals of customers at each station, their destinations, and the trip

durations. The decision variables are integer-valued with simple constraints, so we

could use a search procedure based on the phantom gradient (the gradient of the

continuous function obtained by interpolating the objective, see [71]). However,

since the decision variable has over 900 dimensions, it would be computationally

infeasible to evaluate the phantom gradient directly via simulation using finite for-

5

ward differences. This motivates us to attempt to identify gradient-like information

from simulation traces, so that we can obtain useful search-direction information

at very little additional computational cost. For this specific problem, we use the

average number of failed-starts and failed-ends in the morning and afternoon rush-

hour periods of a station obtained as the indication of the potential benefit from

adding/removing a bike or a dock to/from this station. The resulting heuristics

successfully make local improvements that better solutions found using any other

techniques.

The idea of Chapter 3 originated from our tutorial [43], and some of the contents

are contained in the conference paper [44] that is joint work with Daniel Freund

and Holly M. Wiberg.

1.4 Using Pseudo-Gradients in Large-Scale Simulation Op-

timization

Building on Chapter 3, Chapter 4 of this thesis takes a further step in exploiting

gradient-like information in large-scale simulation optimization and proposes the

concept of pseudo-gradient. We propose the concept of pseudo-gradient as the

approximate gradient estimated from the historical simulation traces without re-

running the simulation. A pseudo-gradient is not uniquely defined, since it can be

any quantitative or directional approximation to the true gradient. One example

is to keep the sequence of events as is from the simulation traces, and calculate

pseudo-gradient as the change in the objective after a small increase in the decision

variables. This idea of “keeping the event list as is” is inspired by Perturbation

Analysis that studies the change in the simulation trajectory with regard to a

6

small change in the input parameters that may or may not affect the event list

(see, e.g. [38], [26], [22], [24]). To help explain the potential contribution of pseudo-

gradients, we prove the asymptotic convergence of gradient-search procedures to

approximate optimal points when the objective is strongly convex and the pseudo-

gradients are uniformly accurately approximated. Based on the pseudo-gradient,

heuristics for optimizing the bike-sharing system and multi-skill multi-period call

center are developed.

For the bike-sharing system described in the previous section, we record the se-

quence of attempted bike pick-ups and drop-offs from the simulation of the current

solution. Using the sequence, we calculate the change in the objective value after

adding one bike or dock to each station, giving the pseudo-gradient evaluated at

the current solution. The availability of pseudo-gradient gives us the flexibility of

making changes to many stations simultaneously, resulting in large steps towards

the local minimum. When applied to the 466-station example from Chapter 3, the

heuristic in Chapter 4 is shown to be more efficient, and converges to the same

local minimum when started from different solutions.

In a multi-skill multi-period call center, calls of different types arrive randomly

during the day, each requiring specific skills to be answered. Agents of different

skill groups are assigned to different shifts. We wish to determine the optimal

number of agents in each skill group and shift, so that the cost is minimized and

the proportion of calls that are picked up late is under control. In this problem,

we record the set of calls that are picked up late and the set of calls answered

by the “last” agent in each group. The former is used to calculate the forward

pseudo-gradient when one more agent is hired, and the latter is for the backward

pseudo-gradient when an agent is removed from each group and shift. When

7

applied to the largest instance we have seen in the literature, the pseudo-gradient

search shows comparable result and affordable computational time.

1.5 Major Contributions

We view this thesis as offering three primary contributions. First, we provide

an efficient method for numerically detecting convexity in a simulated function.

This grants one a new opportunity to examine the structure of a model before

developing a more insightful optimization method. Second, we propose new and

practical gradient-search-like simulation-optimization methods to the problems of

bike-sharing and multi-skill call center optimizations that can tackle the large-

scale instances seen in practice. Finally, we (strive to) increase the attention of

the simulation-optimization research community on large-scale practical problems

that defy solution by existing simulation-optimization algorithms. In doing so, we

hope to inspire algorithmic developments in simulation optimization on sub-classes

of simulation-optimization problems.

8

CHAPTER 2

CONVEXITY DETECTION IN NOISY FUNCTION EVALUATIONS

2.1 Introduction

Our goal in this chapter is to develop a method to determine whether a

real-valued function g : S ⊆ Rd → R, observed at a finite set of points

x1,x2, . . . ,xr in S with noise from a stochastic simulation model, is convex in

the sense that a convex function f exists that coincides with g at x1,x2, . . . ,xr.

That is, does there exist a convex function f that goes through the points

(x1, g(x1)), (x2, g(x2)), . . . , (xr, g(xr))? For example, g could be the expected

profit in an inventory problem where the demand ξ is random, the starting inven-

tory x of the day can take integer values S = {0, 1, . . . ,∞}, and we only observe

a simulation estimate of g at x. We might choose a few integer values in S to test

whether the expected profit is convex as a function of the starting inventory. Or g

might represent the (true) expected waiting time for an ambulance as a function

of base locations represented in latitude-longitude coordinates, where we observe

g with noise through a stochastic simulation model of ambulance operations. We

might then choose a finite set of base-location options in the city to test whether

the waiting time is convex with regard to the location of the ambulance bases.

Convexity is a key structural property that can be exploited in many ways. One

can use gradient-based methods (for smooth functions) or a cutting-plane based

method (for nonsmooth functions) to quickly find the optimum, or bounds on the

optimum, e.g., [54] and [28]. Even if a function is not globally convex, one might

use our test to identify regions around local minima in which the restriction of

the objective function is convex (“basins of attraction”). Such basins can provide

9

information on the stability of a solution [70]. Beyond optimization, convexity can

also provide insights into qualitative model behavior in simulation applications and

elsewhere. This is especially useful when we have a sequence of similar simulation

models with different inputs but the same structural property.

Most studies on convexity detection use a frequentist hypothesis-testing frame-

work, and can be categorized with regard to how the null hypothesis is defined.

The first category uses an infinite-dimensional functional approach. It defines the

null hypothesis as g ∈ C, where C is the cone of convex functions in an appropriate

function space, whereas the alternative hypothesis is g /∈ C. The representative

paper [47] models g as a Gaussian process assuming smoothness under the null

hypothesis, and uses the Lr distance between g and C as the test statistic.

The second category, which is closer to our framework, works with finite-

dimensional vectors. The null hypothesis is g ∈ C, where g is the restriction

of g to a finite set of points, and C is the set of convex functions restricted to the

same set of points. In this case, the noisy evaluations of g are modeled by a Gaus-

sian random vector. [68] use the distance between this Gaussian vector and C as

the test statistic, and show that this distance follows a chi-bar-square distribution,

the parameters of which can be evaluated using simulation.

The third category fits a regression model with Gaussian noise on the obser-

vations of g and tests the hypothesis of convexity through the estimated model

parameters. This approach is essentially testing whether there exists a convex

function that could have generated the observed finite set of function values. In

one dimension and under regularity conditions, [7] show that testing for the re-

gression parameter is equivalent to testing g ∈ C, when C is defined with regard

to nonnegative second order Vandermonde determinants. Their test is based on

10

the idea that if a one-dimensional function is convex, then the sample mean of the

function values in a partition should be lower than certain linear combinations of

the function values in neighboring partitions. Others fit cubic splines on the ob-

servations and use the second order derivatives at the knots to test for convexity,

e.g. [17], [72] and [52]. For higher dimensions, [1] work with small and localized sets

of data points and count all the possible convex and concave simplices to construct

a test statistic. [49] uses a second-order parametric model for the data points, and

is a good survey of early literature.

A closely related field to convexity tests is convex regression, where one fits

a regression model to observations under the constraint that the fitted model is

convex. Work in this direction includes [46], [2], [66], [35], [50], among which [66]

provides a review of past work.

In this chapter, we give a Bayesian sequential algorithm that iteratively collects

noisy evaluations of an unknown function g on a fixed and finite set of design

points x, and uses them to estimate the posterior probability that the function,

when restricted to the design points, is convex. Our approach differs from previous

research in two main ways. First, since the function estimates are obtained via

Monte Carlo simulation, we can only observe the function g on a finite set of points

x. Thus the best we can provide is a probabilistic guarantee that there exists a

convex function that coincides with the unknown function g at those points. Even

if there exists such a convex function, it does not imply that g itself is convex,

although nonexistence does imply nonconvexity of g. Second, we use a Bayesian

conjugate prior model that updates a posterior on the function values every time

we collect a set of new samples. Then the posterior probability of convexity is

estimated separately through Monte Carlo simulation. Instead of having a fixed

11

running time, as is the case with hypothesis testing, our algorithm can be stopped

at any stage to output an estimated probability of convexity. Indeed, the Bayesian

approach avoids the difficulty in frequentist hypothesis testing of multiple “looks”

at the data, for example to decide when to terminate the test.

Our overall approach is to successively update a posterior distribution on the

vector of (true) function values g. In doing so we assume that the noise in the

estimated function values is normally distributed and assume a conjugate prior so

that we can use standard posterior updates. In simulation the normality assump-

tion is common and reasonable, since one can batch multiple replications to obtain

approximate normality through the central limit theorem. For a given posterior

distribution, computing the probability of convexity for a sample from the pos-

terior appears to be difficult. We use Monte Carlo to estimate this probability,

providing three methods for reducing the variance of the Monte Carlo estimator

of the posterior probability of convexity. The change of measure and acceptance-

rejection methods reuse samples obtained in an earlier iteration to construct an

unbiased estimator for the current iteration. These two methods can be useful

in any sequential algorithm in a Bayesian framework, but need to be used with

caution due to heavy-tailed behavior of the likelihood ratio that is needed in these

methods. The conditional Monte Carlo method takes advantage of the spherical

property of Gaussian and t distributions. It can be applied to the more general

problem of estimating the probability that a Gaussian or t-distributed random

vector lies in a polyhedron, which might arise, e.g., in solving linear feasibility

problems described in [69].

This chapter is built upon [42], with the addition of new results, complete

proofs, new variance reduction methods, and more extensive numerical results.

12

Notation: We use upper case Latin letters for random variables or sets, and lower

case Latin letters for deterministic variables. Vectors are in bold, and matrices are

in upper case Greek letters. We use AT to denote the transpose of the matrix A.

For a set S, S◦ is its interior. We use⇒ for convergence in distribution, and 1 {B}

is the indicator function that takes the value 1 on the event B and 0 otherwise.

2.2 Problem Statement and Assumptions

Suppose we can obtain noisy evaluations of a real-valued function g : S → R over

a fixed and finite set of design points x = {x1,x2, . . . ,xr}, ∀i ∈ {1, 2, . . . , r} in

S ⊆ Rd. Ideally, we would like to know whether the function g is convex on S

or not. In the absence of any regularity assumptions on g, such as are assumed

in [47], it appears that this question cannot be addressed in finite time. The rest

of this chapter is focused on giving a probabilistic guarantee on the convexity of

the finite-dimensional vector obtained by restricting the function g to the r points

in x, i.e., we restrict attention to g = (g(x1), g(x2), . . . , g(xr)) ∈ Rr.

Definition 1. Given a finite set of points x, we define a vector g to be convex if

and only if there exists a convex function g whose values on x coincide with g, i.e.

g(x) = g.

Definition 2. Define C = C(x1,x2, . . . ,xr) ⊆ Rr to be the set of all convex vectors

on x = (x1,x2, . . . ,xr), so that g is convex if and only if g ∈ C.

The notion of vector convexity is weaker than (the usual) functional convexity,

since if a function g is convex then its restriction g on x is convex under our

definition. The converse is not true since we can arbitrarily extend g.

13

The set C is a convex cone. In Section 2.5, we will see that g ∈ C if and

only if a certain linear system is feasible, and the linear system is then a tool to

verify vector convexity. We will also show that g is strictly convex (in the sense

that a strictly convex function g exists that agrees with g on x) iff g ∈ C◦ in

Appendix A.1.

We use a Bayesian approach, regarding g as an unknown realization from the

prior distribution of a random vector f . Let (ξj : j = 1, 2, . . .) be an i.i.d. sequence

of r-dimensional Gaussian random vectors, each with mean vector 0 and covariance

matrix Γ, that is independent of f . Our jth observation is then Yj, where Yj =

f + ξj, j = 1, 2, We denote the ith component of the vector Yj by Yij, and

interpret it as the jth sampled function value at the point xi.

The covariance matrix Γ is not necessarily diagonal, i.e., we do not necessar-

ily constrain the observations to be (conditionally) independent between sampled

points, conditional on f . Thus, Common Random Numbers (CRN) can be em-

ployed within our framework. CRN induces positive correlation on the r dimen-

sions of the noise ξ, so that the structure of the underlying “true” function f can

be better preserved than would be possible with conditionally independent obser-

vations [14]. For simplicity, we assume throughout that the covariance matrix Γ is

positive definite.

2.3 Sequential Algorithm

In our algorithm, the information gained after n iterations of sampling is rep-

resented by a σ-field An. Initially, before any sampling, we fix the r points

xi, i = 1, . . . , r and the prior mean µ0 and covariance matrix Λ0 of the as-

14

sumed Gaussian prior distribution of f . At the beginning of the nth iteration

(n = 1, 2, . . .), we obtain a new observation Yn, and use that to update the pos-

terior distribution on the function values, as described in Section 2.4. The infor-

mation collected thus far is denoted An, which is the sigma field generated from

A0 and {Yj, j = 1, . . . , n}. Thus, {An}n=0,1,2,... is a filtration. Once the posterior

distribution has been updated, we separately estimate the posterior probability of

convexity, P (f ∈ C|An) as discussed in Section 2.5. At the end of each iteration,

we can choose either to stop, or to continue with the current posterior as the prior

of the next iteration. More precisely, the algorithm is as follows.

Algorithm 1 A sequential method for testing for convexity of the function

Input: The Gaussian prior P (f ∈ ·|A0), with hyperparameters {µ0,Λ0} of the
function values f .

1: Initialize n = 0.
2: repeat
3: Set n = n+ 1.
4: Obtain a new vector yn of r noisy function values at x1,x2, . . . ,xr.
5: Update the posterior distribution of f |An from the new samples yn using
f |An−1 as the prior, as in Section 2.4.

6: Estimate pn = P (f ∈ C|An) from the distribution of f |An using the
Monte Carlo method described in Section 2.5, obtaining a confidence interval
[p̂n − hn, p̂n + hn].

7: until stopped return A confidence interval [p̂n − hn, p̂n + hn] of p.

In Step 6, the posterior probability that f is convex is estimated using Monte

Carlo simulation. The samples are obtained from the posterior distribution f |An,

unlike the samples from f used to update the posterior in Step 5. This avoids

excessive sampling from the original f , which may be computationally expensive.

15

2.4 Posterior Updates

We use a conjugate prior to update our belief about f |An in each iteration n. Since

we assumed that Y − f ∼ N(0,Γ), this conjugate prior is normal-normal when Γ

is known, and normal-inverse-Wishart when Γ is unknown. In this section we give

the updating formula of the posterior distribution of f |An in Step 5 of Algorithm 1

under these two scenarios, given the prior f |An−1. The formulae given here are

standard; see, e.g., [16], [25], or [9].

2.4.1 Conjugate Prior under Known Sampling Variance

First, before any sampling we select a non-informative Gaussian prior with zero

mean and large variance, i.e. f |A0 ∼ N(µ0,Λ0) in which µ0 = 0 ∈ Rr and

Λ0 ∈ Rr×r is a diagonal matrix with diagonal values that are large relative to the

sampling variance (the diagonal of Γ). Alternative parameters for the Gaussian

prior could be used in the presence of more information, and would not change the

algorithm.

At iteration n > 1, the posterior from the last iteration f |An−1 ∼

N(µn−1,Λn−1) is used as the prior for the current iteration. We then obtain

s ≥ 1 new objective-function samples (yij, j = 1, 2, . . . , s) at each of the de-

sign points xi, i = 1, 2, . . . , r. The mean µn and covariance Λn of the posterior

f |An ∼ N(µn,Λn) are updated by

Λ−1
n = Λ−1

n−1 + sΓ−1

µn = Λn(Λ−1
n−1µn−1 + sΓ−1ȳ), (2.1)

where the i-th component of the r-dimensional vector ȳ is s−1
∑s

j=1 yij. One can

16

adaptively choose the sample size s in each iteration, but for simplicity we use

s = 1, meaning that only one new sample is obtained in each iteration.

The updating equation (2.1) involves matrix inversion. To reduce the computa-

tional effort, we use Cholesky factorization and the Sherman-Morrison-Woodbury

formula as detailed in Appendix A.2.

2.4.2 Conjugate Prior under Unknown Sampling Variance

When the sampling variance Γ is unknown, the inverse-Wishart distribution pro-

vides a conjugate prior. First, we use an uninformative Jeffrey’s prior, where the

prior joint distribution on f and Γ is proportional to |Γ|−(r+1)/2 [25] and |A| denotes

the determinant of the matrix A. To construct Jeffrey’s prior, an initial set of r-

dimensional samples yj = (yij, i = 1, 2, . . . , s), j = 1, 2, . . . , s0 are used to estimate

the parameters of the normal distribution for the mean f and the Inverse-Wishart

distribution (Inv-Wishart) for the variance Γ. The initial sample size s0 can be

any positive integer. For a prior that reflects the data without being too costly, we

choose s0 = r+ 1, where r is the number of design points. This choice also ensures

that the inverse-Wishart distribution is concentrated on covariance matrices that

are positive definite. More specifically [25],

Γ|A0,y ∼ Inv-Wishartυ0(Ξ
−1
0)

f |Γ,A0,y ∼ N(µ0,Γ/κ0),

(2.2)

where

µ0 =
1

s0

s0∑
j=1

yj = ȳ; κ0 = s0; υ0 = s0 − 1; Ξ0 =

(
s0∑
j=1

(yj − ȳ)(yj − ȳ)T

)−1

.

In iteration n ≥ 1, we obtain s samples yij on each of the points xi, i = 1, . . . , r

17

and update the posterior of

Γ|An ∼ Inv-Wishartυn(Ξ−1
n)

f |Γ,An ∼ N(µn,Γ/κn)

(2.3)

by [25]:

µn =
κn−1

κn−1 + s
µn−1 +

s

κn−1 + s
ȳ; κn = κn−1 + s; υn = υn−1 + s;

Ξn = Ξn−1 + S +
κn−1s

κn−1 + s
(ȳ − µn−1)(ȳ − µn−1)T ,

(2.4)

where the i-th component of the r dimensional vector ȳ is defined as ȳi =∑s
j=1 yij/s, i = 1, . . . , r, and the r × r matrix S is the sum of squared errors∑s
j=1(yj − ȳ)(yj − ȳ)T . For simplicity we again choose s = 1 when updating, so

that yj = ȳ and S = 0.

If a random r×r matrix Γ has the Inverse-Wishart distribution with parameters

υ and Ξ−1, whose density is proportional to |Ξ|υ/2|Γ|−(υ−r−1)/2 exp{−tr(ΞΓ−1)/2},

where tr(·) is the trace of a matrix, the inverse Γ−1 has the Wishart distribution

with parameters υ and Ξ. The Wishart distribution is a higher-dimensional gen-

eralization of the χ2 distribution, and thus can be expressed similarly as the sum

of squares of Gaussian random vectors. To generate a Wishartυ(Ξ) distributed

random matrix Γ, we generate υ > r independent, r-dimensional random vectors

Wi distributed as N(0,Ξ), and return Γ =
∑υ

i=1WiW
T
i .

With the posterior covariance distributed as Inverse-Wishart and the poste-

rior mean distributed as Gaussian conditioning on the covariance, the marginal

distribution of the posterior mean f |An is

f |An ∼ t(υn−r+1)(µn,Ξn/(κn(υn − r + 1))), (2.5)

where t(υn−r+1)(µn,Ξn/(κn(υn−r+1))) is a multivariate Student-t distribution with

(υn−r+1) degrees of freedom, location parameter µn, and scale matrix Ξn/(κn(υn−

18

r + 1)). The density function of f |An is thus proportional to |Ξn/(κn(υn − r +

1))|−1/2{1 + (f − µn)T [Ξn/(κn(υn − r + 1))]−1(f − µn)}−(υn+1)/2 [25].

2.5 Convexity

Recall that g = (g(x1), g(x2), . . . , g(xr)), and the vector g is defined to be convex

if and only if there exists a convex function that coincides with g on the set of

points x1, . . . ,xr. Equivalently, for each i = 1, . . . , r there exists a hyperplane

{aTi x+ bi : x ∈ Rd} that goes through (xi, g(xi)) and lies at or below all the other

points (xj, g(xj)), j 6= i ([53, p.539]; [4]). That is, g is convex if and only if there

exists feasible solutions ai ∈ Rd, i = 1, . . . , r and b ∈ Rr to the linear system

aTi xi + bi = g(xi), for all i ∈ {1, . . . , r}

aTi xj + bi ≤ g(xj), for all i ∈ {1, . . . , r} and j 6= i, j ∈ {1, . . . , r},
(LS)

with bi being the i-th component of b. Let the set of all g such that the corre-

sponding LS is feasible be C, which denotes the set of all convex vectors g with

regard to the r design points x1, . . . ,xr.

This large linear system can also be decomposed into r sub-systems, indexed

by i = 1, . . . , r:

aTi xi + bi = g(xi)

aTi xj + bi ≤ g(xj), for all j 6= i and j ∈ {1, . . . , r},
(LS(i))

each with the variables ai ∈ Rd and bi ∈ R.

Transforming the question of whether a vector is convex to the feasibility of r

linear systems allows us to use Monte Carlo simulation to estimate the posterior

probability of convexity at the end of each iteration n. We first simulate m random

19

samples from the posterior distribution of f |An. Then, for each generated sample,

we determine feasibility (or lack thereof) for the linear systems (LS(i), i = 1, . . . , r)

in sequence. If any linear system is infeasible then we stop (skip the rest of the

systems) and conclude that this generated sample is not convex, since one cannot

define an appropriate hyperplane. The probability P (f ∈ C|An) is then estimated

by the sample average of the indicators of convexity for each sample as described

more formally in Algorithm 2.

Algorithm 2 Subroutine used in Step 6 of Algorithm 1 to estimate P (f ∈ C|An).

Input: The posterior marginal density of f |An from (2.1) or (2.5).
1: Generate independent samples {y1

n,y
2
n, . . . ,y

m
n } from the posterior marginal

density of f |An.
2: for k from 1 to m do
3: Set 1

{
ykn ∈ C

}
= 1.

4: for i from 1 to r do
5: Set g(xi) as the i-th component of ykn, i = 1, . . . , r.
6: Solve for the feasibility of LS(i).
7: if LS(i) is infeasible then
8: Set 1

{
ykn ∈ C

}
= 0.

9: BREAK the inner loop and go to next k.
return The center p̂n =

∑m
k=1 1

{
ykn ∈ C

}
/m and half-width hn = 1.96sn/

√
m

of a 95% confidence interval for P (f ∈ C|An), where sn is the sample standard
deviation of 1

{
ykn ∈ C

}
, k = 1, . . . ,m.

2.6 Asymptotic Validity of the Main Algorithm

We now establish that the posterior probability of convexity converges to 1 or 0,

depending on whether g is convex or not, with one qualification. If g is convex but

not strictly convex then it lies on the boundary of C, and then certain arbitrarily

small perturbations of the function values g will yield points outside C. Since

we estimate the function values g using simulation, we cannot rule out such per-

turbations, and so we should not expect the posterior probability of convexity to

20

converge to 1 or 0. Accordingly, we only show that when f is strictly convex then

the posterior probability of convexity converges to 1, and when f is not convex

the posterior probability of convexity converges to 0. The remaining case where f

lies on the boundary of C has probability 0 under our prior, which has a density

with respect to Lebesgue measure.

Theorem 1. Let pn = P (f ∈ C|An) be the n-iteration posterior probability that

f is convex as in Algorithm 1. As the number of iterations n → ∞, pn − 1{f ∈

C} → 0 a.s.

Proof. [42] has a sketch of the proof in the known variance case. We provide a

complete proof that covers both the known and unknown variance cases here. First

suppose that Γ is known. Proposition 5.16 of [9] then establishes that

Λ−1/2
n (µn − f)⇒ N(0, I), as n→∞. (2.6)

Using the posterior updating equations (2.1) when Γ is known, we have Λ−1
n =

Λ−1
0 +nΓ−1. The square root operator is continuous over the set of positive definite

matrices, so it follows that Λ
−1/2
n = (Λ−1

0 +nΓ−1)1/2 ∼
√
n Γ−1/2. Slutsky’s theorem

applied to (2.6) then yields µn − f → 0 in probability as n→∞. (All norms are

Euclidean in this proof.)

Now, P (f ∈ ∂C) = 0, where ∂C denotes the boundary of C, since f has a

density and ∂C is a union of a finite number of lower-dimensional faces. Thus, it

is sufficient to consider the cases (i) f ∈ C◦, the interior of C, which corresponds

to the set of strictly convex vectors (see Appendix A.1), and (ii) f 6∈ C.

On the event f 6∈ C, we can strictly separate the point f from C by a hy-

perplane. Hence we can define a random variable Df > 0 such that on the event

21

f /∈ C, all points in C are at least a distance Df from f . (Arbitrarily define

Df = 1 on the event f ∈ C.) Let Z ∼ N(0, I) be a standard normal random

vector, defined on the same probability space as all other random variables, and

independent of all else. On the event f 6∈ C, and using the fact that f has a

normal posterior distribution with parameters µn and Λn,

pn − 1 {f ∈ C} = P (f ∈ C|An)− 0

= P (µn + Λ1/2
n Z ∈ C|An)

≤ P (‖µn + Λ1/2
n Z − f‖ ≥ Df |An)

≤ P (‖µn − f‖ ≥ Df/2|An) + P (‖Λ1/2
n Z‖ ≥ Df/2|An). (2.7)

Consider the first random variableRn = P (‖µn−f‖ ≥ Df/2|An) in (2.7). Then

Rn ≥ 0 and ERn = P (‖µn − f‖ ≥ Df/2). We will show that this expectation

converges to 0 as n→∞, and hence by Markov’s inequality, it immediately follows

that Rn → 0 in probability as n→∞.

To this end, since Df > 0, for any ε > 0 we can find δ > 0 such that P (Df ≤

δ) ≤ ε. Hence,

P (‖µn − f‖ ≥ Df/2) = P (‖µn − f‖ ≥ Df/2, Df ≤ δ) + P (‖µn − f‖ ≥ Df/2, Df > δ)

≤ P (Df ≤ δ) + P (‖µn − f‖ ≥ δ/2)

≤ ε+ P (‖µn − f‖ ≥ δ/2). (2.8)

But ‖µn− f‖ → 0 as n→∞ in probability, so the second term in (2.8) converges

to 0 as n→∞, and since ε > 0 was arbitrary, we see that ERn → 0 as n→∞.

A similar approach works for the second term, R′n = P (‖Λ1/2
n Z‖ ≥ Df/2|An).

Again, R′n is non-negative, so that if its expectation P (‖Λ1/2
n Z‖ ≥ Df/2) → 0 as

n → ∞, then R′n also converges to 0 in probability. As before, for any ε > 0 we

22

can find δ > 0 such that P (Df ≤ δ) ≤ ε. Hence, as in (2.8)

P (‖Λ1/2
n Z‖ ≥ Df/2) ≤ ε+ P (‖Λ1/2

n Z‖ ≥ δ/2).

By the Cauchy-Schwarz inequality,

P (‖Λ1/2
n Z‖ ≥ δ/2) ≤ P (‖Λ1/2

n ‖ ‖Z‖ ≥ δ/2)

= P (‖Z‖2 ≥ tn),

where

tn =
δ2

4

1

‖Λ1/2
n ‖2

≥ δ2

4‖Λn‖
.

Now, Λn ∼ Γ/n, hence Λ
1/2
n ∼ Γ1/2/

√
n, and so Markov’s inequality gives

P (‖Z‖2 ≥ tn) ≤ r

tn
=

4r‖Λ1/2
n ‖2

δ2
→ 0

as n→∞.

We thus conclude that (2.7) converges to 0 in probability as n → ∞. Since

(pn : n ≥ 0) is a uniformly integrable martingale, it converges almost surely [73],

and hence the almost sure limit is 1 {f ∈ C}.

On the other hand, on the event f ∈ C◦ we redefine Df to be the radius of a

ball, centered at f , that is wholly contained in C, and off this event we redefine

Df = 1. We then find that, on the event f ∈ C◦,

pn − 1 {f ∈ C} = P (f ∈ C|An)− 1

= P (µn + Λ1/2
n Z ∈ C|An)− 1

≥ P (‖µn + Λ1/2
n Z − f‖ ≤ Df |An)− 1

≥ P (‖µn − f‖ ≤ Df/2, ‖Λ1/2
n Z‖ ≤ Df/2|An)− 1

≥ −P (‖µn − f‖ ≥ Df/2|An)− P (‖Λ1/2
n Z‖ ≥ Df/2|An),

23

and the proof follows as in the case where f 6∈ C. This concludes the proof when

Γ is known.

Now consider the unknown variance case. From (2.5), f |An follows a multi-

variate t distribution with υn − r + 1 degrees of freedom, mean µn, and variance

Λn = υn−r+1
υn−r−1

Ξn/(κn(υn − r + 1)). From (2.4), Ξn is of order n, and both υn and

κn are of order n. Thus, Λn → 0 as n → ∞ a.s., where 0 is a matrix of zero

components.

By Proposition 5.14 of [9],

Λ−1/2
n (µn − f)⇒ N(0, I), as n→∞. (2.9)

Then this together with Λn → 0 a.s. yields µn−f → 0 in probability as n→∞

by Slutsky’s Theorem.

Again, it is sufficient to consider the cases f ∈ C◦, the interior of C, or f 6∈ C.

As before, on the event f 6∈ C, we can define a random variable Df > 0 such

that Df = 1 on the event f ∈ C, and such that on the event f /∈ C, all points in C

are at least a distance Df from f . Let Z ∼ N(0, I) be a standard normal random

vector, defined on the same probability space as all other random variables, and

independent of all else. On the event f 6∈ C, we use the fact that f |Γ has a

normal posterior distribution with parameters µn and Γ/κn and take Γ1/2 to be

24

the symmetric square root of Γ. Then

pn − 1 {f ∈ C} = P (f ∈ C|An)− 0

= E(P (f ∈ C|An,Γ)|An)

= E(P (µn + Γ1/2Z/
√
κn ∈ C|An,Γ)|An)

≤ E(P (‖µn + Γ1/2Z/
√
κn − f‖ ≥ Df |An,Γ)|An)

≤ E(P (‖µn − f‖ ≥ Df/2|An,Γ)|An)

+ E(P (‖Γ1/2Z/
√
κn‖ ≥ Df/2|An,Γ)|An)

= P (‖µn − f‖ ≥ Df/2|An) + E(P (‖Γ1/2Z/
√
κn‖ ≥ Df/2|An,Γ)|An).

(2.10)

The first term in (2.10) converges to 0 in probability exactly as before. The

second term, R′n say, is non-negative, so that if its expectation P (‖Γ1/2Z/
√
κn‖ ≥

Df/2) → 0 as n → ∞, then R′n also converges to 0 in probability. As before, for

any ε > 0 we can find δ > 0 such that P (Df ≤ δ) ≤ ε and hence

E(R′n) ≤ ε+ P (‖Γ1/2Z/
√
κn‖ ≥ δ/2). (2.11)

Denoting the second term in (2.11) by Qn, we see that

Qn ≤ P (‖Z‖‖Γ1/2‖ ≥ δ
√
κn/2) (2.12)

= P (‖Z‖2 ≥ δ2κn
4‖Γ1/2‖2

)

≤ E(
4r‖Γ1/2‖2

δ2κn
) (2.13)

=
4r

δ2κn
E(λmax(Γ)) (2.14)

≤ 4r

δ2κn
E(tr(Γ))

=
4r

δ2(n+ κ0)

r∑
i=1

E(Γii), , (2.15)

25

where λmax(Γ) denotes the maximum eigenvalue of Γ, and tr(Γ) denotes the trace

of Γ. The step (2.14) is by the definition of Euclidean norm of a real and symmet-

ric matrix with non-negative eigenvalues. In (2.12) we use the sub-multiplicative

property of the Euclidean norm [30], and (2.13) is by Markov’s inequality. By

the Jeffery’s prior of Γ|An in (2.2), conditioning on an initial sample set y,

Γ|A0,y ∼ Inv-Wishartυ0(Ξ
−1
0), with expectation E(Γ) = (υ0−κ0−1)−1Ξ−1

0 . Thus

the summation in (2.15) is finite, we conclude that ER
′
n → 0 in probability, and

further that pn−1 {f ∈ C} → 0 in probability by (2.10). Again, since (pn : n ≥ 0)

is a uniformly integrable martingale, it converges almost surely [73], and hence the

almost-sure limit is 1 {f ∈ C}.

On the other hand, in the case f ∈ C◦, pn − 1 {f ∈ C} ≥ −P (‖µn − f‖ ≥

Df/2|An) − E(P (‖Λ1/2
n Z‖ ≥ Df/2|An,Γ)|An) and the proof follows similarly as

above.

The result of Theorem 1 relates to the exact posterior probability of convexity,

which we estimate using Monte Carlo. We next show that the Monte Carlo esti-

mator from Section 2.5 of the exact probability converges to the same indicator

provided that the Monte Carlo sample sizes increase without bound, through a

uniform law of large numbers.

Corollary 2. Let pmn be the m-sample estimator of P (f ∈ C|An) from Algorithm

0. As n→∞ and m = m(n)→∞, pmn − 1 {f ∈ C} → 0 in probability.

Proof. We have |pmn − 1 {f ∈ C} | ≤ |pmn − pn| + |pn − 1 {f ∈ C} |, where pn =

P (f ∈ C|An) and pmn = 1
m

∑m
k=1 1{ykn ∈ C}. Let ε > 0 be arbitrary. For the first

26

term, Chebyshev’s inequality gives

P (|pmn − pn| > ε) = EP

(∣∣∣∣∣ 1

m

m∑
k=1

1{ykn ∈ C} − P (f ∈ C|An)

∣∣∣∣∣ > ε
∣∣∣An

)

≤ E

(
V ar(1{ykn ∈ C}|An)

mε2

)
≤ 1

4mε2
→ 0

as n → ∞ since m = m(n) → ∞ as n → ∞. This shows that pmn − pn → 0

in probability as n → ∞. Also Theorem 1 shows that |pn − 1 {f ∈ C} | → 0 in

probability as n→∞.

2.7 Variance Reduction Methods

In this section, we improve the vanilla Monte Carlo method through three variance-

reduction methods. The change of measure and acceptance-rejection methods are

likelihood-ratio-based methods that reuse samples generated in an earlier iteration,

and the conditional Monte Carlo method reduces the variance through smoothing.

2.7.1 Change of Measure

Algorithm 0 can be computationally costly due to the need to solve up to mr linear

feasibility problems LS(i), where m is the number of Monte Carlo samples and r

is the number of design points. We can reduce the computational effort by reusing

samples generated in a previous iteration through a change-of-measure method.

The resulting estimator is based on the same principle used in the score-function

method for simulation optimization [64], and that used in “green simulation” [18].

We will see that the resulting estimator is unbiased and has finite variance, but

does not perform as well as we might hope.

27

Recall that in iteration n, Algorithm 0 generates m i.i.d. samples {ykn : k =

1, 2, . . . ,m} from the posterior marginal distribution of f |An and produces m

indicators {1
{
ykn ∈ C

}
: k = 1, 2, . . . ,m} of convexity. To reuse these samples, in

iteration n+ `, we instead output

p̂n+` =
1

m

m∑
k=1

1
{
ykn ∈ C

}
Ln+`,n(ykn) (2.16)

as an estimate of pn+` = P (f ∈ C|An+`), where Ln+`,n(·) = φn+`(·)/φn(·) is the

likelihood ratio of the densities of f |An+` and f |An.

Theorem 3. The change of measure estimator p̂n+` = 1{Yn ∈ C}Ln+`,n(Yn) is

(conditionally) unbiased and has finite conditional variance, conditional on An+`

for any n and ` ≥ 1.

Proof. The proof for the known Γ case can be found in [42], and we provide a proof

for the unknown Γ case here.

First, similar to the known variance case, the distribution of f |An, being mul-

tivariate t, is absolutely continuous with respect to the distribution of f |An+`.

Thus E(p̂n+`|An+`) = pn+`, and p̂n+` is unbiased. It remains to show that

E(p̂2
n+`|An+`) < ∞, so that conditional on An+` the estimator has finite second

moment and hence variance.

When Γ is unknown, f |An is distributed as multivariate t centered at µn

with scale matrix Ξn/[κn(νn − r + 1)] and νn − r + 1 degrees of freedom. Since

E(p̂2
n+`|An+`) = E(1{Y ∈ C}L2

n+`,n(Y)|An+`), it suffices to show that L2
n+`,n(y)

is bounded in y for any n. We will do this by showing that the ratio of an upper

bound on the numerator to a lower bound of the denominator is bounded. More-

over, it suffices to obtain such a bound outside a compact set, since t densities

are bounded above, and are bounded below on any compact set. Hence, we need

28

only show a bound outside a compact set C that will be successively defined as we

proceed.

Let λmax be the largest eigenvalue of Λn+` = Ξn+`/κn+`. Then the squared

density of f |An+` evaluated at y is proportional to

{1 + (y − µn+`)Λ
−1
n+`(y − µn+`)/(νn+` − r + 1)}−(νn+`+1) (2.17)

≤ {1 + (λmax)−1||y − µn+`||2/(νn+` − r + 1)}−(νn+`+1)

≤
{

||y − µn+`||2

λmax(νn+` − r + 1)

}−(νn+`+1)

= c1||y − µn+`||−2(νn+`+1), (2.18)

where the constant c1 = {λ+
max(νn+` − r + 1)}(νn+`+1)

. This constant depends on n

but does not depend on y.

Likewise, let λmin be the smallest eigenvalue of Λn = Ξn/κn. Then the squared

density of f |An evaluated at y is proportional to

{1 + (y − µn)Λ−1
n (y − µn)/(νn − r + 1)}−(νn+1)

≥ {1 + λ−1
min||y − µn||2/(νn − r + 1)}−(νn+1)

≥
{

2||y − µn||2

λmin(νn − r + 1)

}−(νn+1)

(2.19)

= ||y − µn||−2(νn+1), (2.20)

where the constant c2 = {λmin(νn − r + 1)/2}(νn+1). The bound (2.19) applies for

y outside the compact set C = {y : ‖y − µn‖2 ≤ λmin(νn − r + 1)}.

29

Taking the ratio of (2.18) and (2.20), we have that for y /∈ C,

L2
n+`,n(y) ≤ c1||y − µn+`||−2(νn+`+1)

c2||y − µn||−2(νn+1)

=
c1

c2

· ||y − µn||
2(νn+1)

||y − µn+`||2(νn+`+1)

=
c1

c2

· ||y − µn+` + µn+` − µn||2(νn+1)

||y − µn+`||2(νn+`+1)

≤ c1

c2

· (||y − µn+`||+ ||µn+` − µn||)2(νn+1)

||y − µn+`||2(νn+`+1)

≤ c1

c2

· 22νn+1 ||y − µn+`||2(νn+1) + ||µn+` − µn||2(νn+1)

||y − µn+`||2(νn+`+1)

≤ c1

c2

· 22νn+1

{
||y − µn+`||2(νn−νn+`) +

||µn+` − µn||2(νn+1)

||y − µn+`||2(νn+`+1)

}
. (2.21)

The second to last step uses Jensen’s inequality f((a+ b)/2) ≤ (f(a) + f(b))/2 on

the convex function f(x) = x2(νn+1) where x > 0 and νn > 0.

Finally, for the bracketed term in (2.21), we enlarge the “exclusion compact

set” C if necessary so that ||y−µn+`||2 ≥ 1 for y /∈ C and then the first term is at

most 1 since νn < νn+`, and the second term is at most ||µn+` − µn||2(νn+1). Thus

the term is bounded above for any fixed n.

Given that the change of measure estimator is unbiased and has finite variance,

it is tempting to generate a single sample and re-use it for many iterations to

save computational effort. Unfortunately, such an estimator has poor empirical

performance. Figure 2.3 gives an example where the estimated probability of

convexity is greater than 1. This happens especially later in the run when all of

the linear systems are feasible, and the likelihood ratios Ln+`,n(ynk) occasionally

take very large values.

Occasional large values of the likelihood ratio Ln+`,n(y) might arise when the

sample y is generated within the tail of φn. Indeed, Proposition 1 below shows that

30

in at least one special case, Ln+`,n has a heavy tail given any sampling trajectory

An. At first sight, this may appear to contradict Theorem 3, which states that given

the posterior information An+` in iteration n+`, the change of measure estimator is

bounded. But notice that in Theorem 3 we are conditioning on more information

than in Proposition 1. In effect, Proposition 1 shows that given the posterior

information An in iteration n, the change of measure procedure in iteration n+ `

could have poor behavior, depending on the (random) samples that are used to

update f |An+` from f |An. Thus there is no contradiction between these two

results.

Proposition 1. When Γ is known and r = 1, given An, Cn = supy∈Rr Ln+1,n(y)

asymptotically (as n → ∞) has the same distribution as eχ
2
1, where χ2

1 is a non-

central chi-square random variable with 1 degree of freedom.

Proof. When r = 1, the density of f |An is φn ∼ N(µn, σ
2
n). Denote the true

sampling variance as γ2, and the precision γ−2 = λ. According to equation (2.1),

we have

σ−2
n+1 = σ−2

n + λ = σ−2
0 + (n+ 1)λ,

σ−2
n = σ−2

0 + nλ,

µn+1 = σ2
n+1(σ−2

n µn + λz̄),

31

where z̄ ∼ N(µ, γ2) for some constant µ. Then for any y ∈ R, lnLn+1,n(y) is

ln

(
φn+1(y)

φn(y)

)
= ln

(
σn
σn+1

)
− (y − µn+1)2

2σ2
n+1

+
(y − µn)2

2σ2
n

=
1

2
ln

(
σ−2

0 + (n+ 1)λ

σ−2
0 + nλ

)
− 1

2
(y − µn+1)2(σ−2

0 + (n+ 1)λ) +
1

2
(y − µn)2(σ−2

0 + nλ)

= qn +
1

2

[
(y − µn)2(σ−2

0 + nλ)− (y − µn + µn − µn+1)2(σ−2
0 + (n+ 1)λ)

]
= qn +

1

2

[
−λ(y − µn)2 − 2(µn − µn+1)(σ−2

0 + (n+ 1)λ)(y − µn)

+ (µn − µn+1)2(σ−2
0 + (n+ 1)λ)

]
= qn −

λ

2

{
y − µn +

1

λ

[
(µn − µn+1)(σ−2

0 + (n+ 1)λ)
]}2

− 1

2
(µn − µn+1)2

[
(σ−2

0 + (n+ 1)λ)− 1

λ
(σ−2

0 + (n+ 1)λ)2

]
,

where qn = 1
2

ln
(
σ−2
0 +(n+1)λ

σ−2
0 +nλ

)
is a constant. Maximizing over y gives

lnCn = sup
y

ln

(
φn+1(y)

φn(y)

)
= qn −

1

2
(µn − µn+1)2

[
(σ−2

0 + (n+ 1)λ)− 1

λ
(σ−2

0 + (n+ 1)λ)2

]
= qn −

1

2
(µn − µn+1)2

[
σ−2
n+1 −

1

λ
(σ−2

n+1)2

]
.

Here,

µn − µn+1 = µn − σ2
n+1(σ−2

n µn + λz̄)

= (1−
σ2
n+1

σ2
n

)µn − σ2
n+1λz̄

= µn

(
1− σ−2

0 + nλ

σ−2
0 + (n+ 1)λ

)
− σ2

n+1λz̄

= µn
λ

σ−2
0 + (n+ 1)λ

− σ2
n+1λz̄

= µn
λ

σ−2
n+1

− σ2
n+1λz̄

= λσ2
n+1(µn − z̄),

32

where z̄ is the average over the samples used to update the posterior. We have been

using just one sample for the update, so z̄ ∼ N(µ, σ2), where σ2 is the sampling

variance.

Substituting, we obtain

lnCn = qn −
1

2
(µn − µn+1)2

[
σ−2
n+1 −

1

λ
(σ−2

n+1)2

]
= qn −

1

2
λ2σ4

n+1(µn − z̄)2

[
σ−2
n+1 −

1

λ
(σ−2

n+1)2

]
= qn −

1

2
λ2(µn − z̄)2

[
σ2
n+1 −

1

λ

]
= qn −

1

2
λ2(µn − z̄)2

[
1

σ−2
n + λ

− 1

λ

]
.

Here µn − z̄ = µn − (µ − σN) = σN + µn − µ, where N is a standard normal

random variable, so (µn − z̄)2 = σ2(N + (µn − µ)/σ)2. Thus conditional on An,

lnCn = qn −
1

2
λ2σ2(N + (µn − µ)/σ)2

[
1

σ−2
n + λ

− 1

λ

]
∼ 1

2

(
N +

µn − µ
σ

)2

,

since λ = σ−2 and qn ∼ 0 as n→∞. Here N is a standard normal random variable,

so lnCn is distributed as a non-central chi-square with 1 degree of freedom and

non-central parameter (µn − µ)2/σ2; see, e.g., [27, p. 123].

In fact, the proof for Proposition 1 applies to when n is finite too. In that

case lnCn, conditional on An, is a non-central chi-square random variable scaled

by a constant of order O(1/n) and shifted by another constant of order O(1/n).

The conclusion of Proposition 1 can be generalized to r > 1 when Γ is known

and diagonal. Indeed, when Γ is diagonal the likelihood ratio decomposes into a

product, so that lnCn = ln(supy∈Rr Ln+1,n(y)) = supy∈Rr ln(
∏r

i=1 Ln+1,n(yi)) =∑r
i=1 supyi∈R lnLn+1,n(yi). Proposition 1 then allows us to conclude that, condi-

tional on An, this is asymptotically conditionally distributed as χ2
r/2, where χ2

r

33

is a non-central chi-square random variable with r degress of freedom. Since the

tail probability of χ2
r/2 at a given point increases in r, we expect this heavy tail

behavior to be more significant as r increases, i.e., as the number of design points

increases. We conjecture that the likelihood ratio is similarly heavy-tailed in the

cases where Γ is known but not necessarily diagonal and when Γ is unknown.

In summary, conditional on An+`, the estimator p̂n+` is unbiased and has finite

variance, but its distribution may be heavy tailed given An only, depending on the

samples obtained to update to f |An+`. Thus this estimator needs to be used with

caution. We suggest that if the method is to be used, then one should do so with

small `, e.g., ` < 5, based on simulation experiments described later.

2.7.2 Acceptance/Rejection

The change of measure estimator reuses all the samples obtained in an ear-

lier iteration by outputting a Monte Carlo estimator that scales each indica-

tor {Ikn = 1{Y k
n ∈ C} : k = 1, 2, . . . ,m} by a likelihood ratio Ln+`,n(Y k

n) =

φn+1(Y k
n)/φn(Y k

n), where φn is the posterior density. An alternative is to reuse a

subset of the samples from the previous iteration through acceptance-rejection.

Suppose that in iteration n, we have m i.i.d. Monte Carlo samples {ykn :

k = 1, 2, . . . ,m} from f |An, together with the indicators {Ikn = 1{ykn ∈ C} :

k = 1, 2, . . . ,m}. Then, at iteration n + 1, the k-th sample ynk will be accepted

(reused) with probability Ln+1,n(ynk)/c, where c ≥ sup{Ln+1,n(y) : y ∈ Rr}. If

the accepted indices are A ⊆ {1, 2, . . . ,m}, then m − |A| additional samples

can be generated from f |An+1 to ensure a total of m samples. The estima-

tor is then just the usual Monte Carlo estimator based on all m samples, i.e.,

34

p̂n+1 =
(∑

k∈A 1 {ynk ∈ C}+
∑m−|A|

k=1 1
{
yn+1
k ∈ C

})
/m.

When the sampling variance Γ is known, optimization shows that c is given by{
|Λn|
|Λn+1|

exp
[
(Λ−1

n+1µn+1 − Λ−1
n µn)TΓ(Λ−1

n+1µn+1 − Λ−1
n µn) + µTnΛ−1

n µn − µTn+1Λ−1
n+1µn+1

]}1/2

,

where the parameters µn,Λn, µn+1,Λn+1 are defined as in Section 2.3. When Γ is

unknown, c is the maximum of a ratio of polynomials and does not have a closed

form, so we calculate it numerically.

The acceptance-rejection estimator is simply an average of i.i.d. samples, like

the pure Monte Carlo estimator. The difference lies in how the samples are ob-

tained. The probability of accepting a sample generated in iteration n is 1/c, so

the efficiency of this method is related to the constant c. According to Proposition

1, the likelihood Ln+1,n(y) can take very large values, meaning that c can often

be large. When c is large, very few of the earlier samples might be reused, so the

majority of the m samples needed in the (n + 1)th iteration are new. This may

lower the efficiency of the acceptance-rejection method.

2.7.3 Conditional Monte Carlo

We can view a sample from the posterior distribution as consisting of both a

direction Z on the (r − 1)-sphere Sr−1 and a step size T along that direction.

We condition on the direction Z, and integrate the posterior over the interval of

step sizes [tmin, tmax] that yield points inside the convexity cone C. Averaging the

results over a number of uniformly generated directions gives an estimate of our

desired probability.

For convenience, let En(·) = E(·|An) and Pn(·) = P (·|An). If X ∼ N(0, I)

35

(known variance) or X ∼ tνn(0, I) (unknown variance), then

P (f ∈ C|An) = En
(
1
{

Λ1/2
n X + µn ∈ C

})
= En

(
1
{
TΛ1/2

n Z + µn ∈ C
})
, for Z uniform on Sr−1

= En
(
En
(
1
{
TΛ1/2

n Z + µn ∈ C
}
|Z
))

= En(Pn(T ∈ [tmin(Z), tmax(Z)] |Z))

= En(FT |Z(tmax(Z))− FT |Z(tmin(Z))).

Here FT |Z is the conditional distribution function of T given An and Z. Thus,

the posterior probability P (f ∈ C|An) can be estimated using FT |Z and a way to

calculate tmax(Z) and tmin(Z). Theorem 4 gives the former, and linear programs

LS(i) (below) give the latter.

Theorem 4 (Distribution of T |Z). When the sampling variance Γ is known,

FT |Z(t) = (1 + sign(t)Fχ2
r
(t2))/2, where Fχ2

r
(·) is the (cumulative) distribution

function of a χ2 r.v. with r degrees of freedom. When Γ is unknown, FT |Z(t) =

(1 + sign(t)FF (r,νn)(t
2/r))/2, where FF (r,νn) is the distribution function of the F

distribution with r and νn degrees of freedom.

Proof.

FT |Z(t) = Pn(T ≤ t|Z)

=


Pn(T ≤ 0|Z) + Pn(0 ≤ T ≤ t|Z), when t ≥ 0

Pn(T ≤ 0|Z)− Pn(0 ≤ T ≤ −t|Z), when t < 0

=1/2 + sign(t)P (||X||2 ≤ t2|Z)/2, for X = TZ

When Γ is known, X ∼ N(0, I), so ||X||2 ∼ χ2
r. When Γ is unknown, X ∼

tνn(0, I) = N/
√
Y/νn for independent N ∼ N(0, I) and Y ∼ χ2

νn . Therefore

||X||2 =
NTN

Y/νn

36

where NTN ∼ χ2
r, so ||X||2/r ∼ F (r, νn).

To find tmin(Z) and tmax(Z), we can solve linear programs with objectives mini-

mizing or maximizing t, with decision variables t ∈ R,a ∈ Rr×d, b ∈ Rd, and the

constraints (LS), replacing g(x) by µ+ (Λ1/2Z)t:

tmin = min t (tmax = max t)

s.t. aTx+ b = µ+ (Λ1/2Z)t

aTi xj + bi ≤ µj + (Λ1/2Z)jt, for all i ∈ {1, . . . , r} and j 6= i, j ∈ {1, . . . , r}
(LP)

The linear program LP can be decomposed into r smaller LP’s, with constraints

LS(i) and variables t ∈ R,ai ∈ Rr, bi ∈ R:

tmin(i) = min t (tmax(i) = max t)

s.t. aTi xi + bi = µ+ (Λ1/2Z)t

aTi xj + bi ≤ µj + (Λ1/2Z)jt, for all j 6= i, j ∈ {1, . . . , r},

(LP(i))

and then

tmin = max
i=1,2,...,r

tmin(i), and tmax = min
i=1,2,...,r

tmax(i).

This decomposition does not bring as much speed improvement as LS(i) does,

because all the decomposed linear programs must be solved.

Now we have all the pieces needed for the conditional Monte Carlo method.

37

Algorithm 3 A conditional Monte Carlo estimator p̃n for pn = P (f ∈ C|An).

Input: Posterior distribution of f |An obtained from Algorithm 1 with mean µn
and covariance Λn; Number of Monte Carlo samples m needed

1: for k = 1, . . . ,m do
2: Uniformly generate a vector zk on the surface of a unit sphere (by generating

a standard Gaussian and normalizing it to a unit vector).
3: Determine integration boundaries tmin(zk) and tmax(zk).

4: Set P̃n(k) = FT |Z(tmax(zk))− FT |Z(tmin(zk)).

5: Calculate the mean pmn and standard deviation smn of (P̃n(k) : k = 1, 2, . . . ,m).
return p̃n = pmn as an estimator of P (f ∈ C|An), along with the half-width
h̃n = 1.96smn /

√
m of a 95% confidence interval.

Relative to the other variance-reduction methods, conditional Monte Carlo

takes much longer to produce an estimate in each iteration because it needs to

solve two linear programs LP and cannot “skip” any of them as can be done when

solving the decomposed feasibility problems LS(i).

2.8 Numerical Results

In this section we show numerical results on some test functions, assuming the more

realistic case that the sampling variance is unknown. Since we can freely choose

the r points to sample from (and evaluate them by running the simulation with

the regarding inputs), we wish to locate the r points such that the method is able

to detect non-convexity efficiently. Therefore, for a test function in d dimensions,

we first sample d + 1 points uniformly at random within the (assumed compact)

sample space S, and for each such random point, we generate a uniform random

direction on the surface of the unit sphere. Each point-direction pair defines a

line segment within S. Then we sample 3 points uniformly at random on each

line segment. In such way, each group of 3 points on the same line are able

38

to determine non-convexity independent of all the other samples. This method

generates r = 3(d + 1) sample points. We select the points to lie on d + 1 line

segments because doing so seems to improve the performance of the convexity

test relative to just sampling points uniformly within S. In each iteration of the

sequential algorithm, we use m = 100 Monte Carlo samples from the posterior

predictive distribution to estimate a 95% confidence interval for pn.

Our procedure is implemented in Matlab and freely available in an online repos-

itory [40]. The repository contains two versions. The first version uses only a stan-

dard Matlab installation, solving linear programs using the built-in linprog func-

tion [51]. The second version requires the installation of the packages CVX [32, 31],

which is a package for specifying and solving convex programs, and Gurobi [33],

a commercial optimization solver. We suggest the second version if a user has the

requisite licenses, since Gurobi seems more robust than linprog. For example, we

have found cases where linprog was not able to find a feasible solution, whereas

Gurobi did. However, because of the overhead of CVX in setting up the linear pro-

gram in a format that Gurobi is able to read, linprog is usually faster when the

problem dimension is low. When the problem dimension is high, the inefficiency

of the interior-point-method used by linprog outweighs the overhead of CVX. Fig-

ure 2.1 compares solving times by these two solvers for the linear programs (LP),

tested with the sample function f(x) = ||x||2,x ∈ [−1, 1]d for different values of

d.

All test cases are run on a desktop with a 4-core Intel Core i7-3770 3.40 GHz

processor with 16G memory, running Matlab R2013a on 64-bit Windows 7.

39

0 5 10 15 20
0

100

200

300

400

500

600

700

800

900

Problem dimension

T
im

e
(s

ec
on

ds
)

Gurobi

linprog

Figure 2.1: The solving time vs. testing function dimension for the two linear pro-
grams in the conditional Monte Carlo method using Gurobi and linprog. Gurobi
is faster when the dimension exceeds 10, when 33 sample points are used.

2.8.1 A Strictly Convex Function

We use f(x) = ||x||2 in this section as the test function.

First, we compare vanilla Monte Carlo with the variance reduction methods

in Section 2.7, showing 95% confidence intervals for the estimated probability

of convexity, the time per iteration, and the efficiency per iteration. Here the

efficiency of the Monte Carlo estimator p̃n is defined as the inverse of the product

of the computational time per replication and the variance of one replication; see,

e.g., [29]. We first take the dimension d = 1, on the sample space [−1, 1]. The

sampling covariance matrix has equal constant variances of 0.01 on the diagonal,

and we use a Gaussian kernel of 10−4 exp{−||xi − xj||2/2} for the off-diagonal

components. Hence the noise at different points is positively correlated, and the

correlation is stronger between closer points [61].

We use linprog instead of Gurobi to avoid the time overhead incurred by

CVX, since the dimension d = 1. For the change of measure method, a new set of

samples is obtained every iteration for the first 30 iterations, and every 5 iterations

40

thereafter. For the acceptance-rejection method we start to reuse samples only

after the first 30 iterations. Thus the first 30 iterations of these two methods are

exactly the same as vanilla Monte Carlo.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Number of iterations

E
st

im
at

ed
 p

ro
ba

bi
lit

y
of

 c
on

ve
x

0 20 40 60 80 100
1.4

1.6

1.8

2

2.2

Number of iterations

Ite
ra

tio
n

tim
e

0 20 40 60 80 100
0

0.5

1

1.5

2

Number of iterations

Ite
ra

tio
n

ef
fic

ie
nc

y
(lo

g1
0

sc
al

e)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Number of iterations

E
st

im
at

ed
 p

ro
ba

bi
lit

y
of

 c
on

ve
x

0 20 40 60 80 100
0

0.5

1

1.5

2

Number of iterations

Ite
ra

tio
n

tim
e

0 20 40 60 80 100
0

2

4

6

8

10

12

Number of iterations

Ite
ra

tio
n

ef
fic

ie
nc

y
(lo

g1
0

sc
al

e)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Number of iterations

E
st

im
at

ed
 p

ro
ba

bi
lit

y
of

 c
on

ve
x

0 20 40 60 80 100
0.5

1

1.5

2

2.5

Number of iterations

Ite
ra

tio
n

tim
e

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

Number of iterations

Ite
ra

tio
n

ef
fic

ie
nc

y
(lo

g1
0

sc
al

e)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Number of iterations

E
st

im
at

ed
 p

ro
ba

bi
lit

y
of

 c
on

ve
x

0 20 40 60 80 100

2.95

3

3.05

3.1

3.15

Number of iterations

Ite
ra

tio
n

tim
e

0 20 40 60 80 100
0

2

4

6

8

Number of iterations

Ite
ra

tio
n

ef
fic

ie
nc

y
(lo

g1
0

sc
al

e)

Figure 2.2: Comparisons of the estimated probability of convexity, the iteration
time (in seconds), and the log (base 10) efficiency (left to right) of vanilla Monte
Carlo, change of measure, acceptance-rejection, and conditional-Monte-Carlo (top
to bottom) methods applied to a one-dimensional strictly convex function.

Figure 2.2 shows that the estimated probability of convexity increases to 1 for

all methods. Later in the iterations, the change of measure method can return

greater-than-one estimates due to the poor behavior of the likelihood ratio as dis-

cussed in Section 2.7.1. Among all methods, the conditional Monte Carlo method

41

has the smallest variance but takes the longest time to compute. (This differ-

ence in the computational time becomes more significant for higher-dimensional

test functions when we later experiment on a 30-dimensional function.) For the

1-dimensional convex function here, taking both computational time and variance

into consideration, we observe that conditional Monte Carlo has the highest over-

all efficiency. The efficiency of vanilla Monte Carlo is the lowest. The efficiency

plots occasionally break when the sample variance of the estimator is 0, where all

the linear systems (LS) are feasible. This also happens for the change of measure

method because that method corresponds with vanilla Monte Carlo every 5 iter-

ations after the first 30. The efficiency of the change of measure method and the

acceptance-rejection method both increase whenever they reuse the samples from

a previous iteration because the linear feasibility problems need not be solved. The

change of measure method occasionally has a very large efficiency because of the

small sample variance of the estimate. This happens in later iterations when the

posterior density is very concentrated. In this case all the Monte Carlo samples are

close to the mean, giving almost identical posterior densities and similar likelihood

ratios. When all reused samples are convex (corresponding to the iterations where

the vanilla Monte Carlo method has infinite estimated efficiency), the change of

measure estimator has almost 0 variance. However, due to the heavy tail behavior

of the likelihood ratio, it is risky to trust the change of measure estimator values, as

we see when the change of measure method estimates a probability greater than 1.

The acceptance-rejection estimator has slightly lower estimated efficiency, but the

estimator is more trustworthy in that it is statistically identical to vanilla Monte

Carlo.

Consider now the 30-dimensional test function f(x) = ||x||2, x ∈ [−10, 10]30

with r = 3(d + 1) = 93 sample points. The covariance matrix Γ has diag-

42

onal entries Γii = 0.04f 2(xi), and off-diagonal entries Γij = 10−2 exp{−||xi −

xj||2/2}0.04f(xi)f(xj). Hence the variance depends on the function value, and

there is also modest positive correlation between any two design points depending

on the distance between them. As before, for the change of measure method, a

new set of samples is obtained every iteration for the first 30 iterations, and every

5 iterations thereafter, and for the acceptance-rejection method we start to reuse

samples only after the first 30 iterations. We find that the change of measure

and acceptance-rejection methods do not work very well on this example. Indeed,

according to Proposition 1, the heavy-tail behavior of the likelihood ratio becomes

more severe with more design points. With the likelihood ratio often taking very

large values, the change of measure estimates evaluate to large values with wide

confidence intervals, as shown in Figure 2.3 (notice the y-axis scale). Due to the

same reason, the acceptance-rejection method reduces to vanilla Monte Carlo by

rejecting almost all previous samples, so we omit that method from the results in

Figure 2.3. In early iterations, conditional Monte Carlo takes more than 6 minutes

to generate an estimate using CVX with Gurobi (linprog takes over 1 hour), and

the iteration efficiency is around 0.20. In comparison, the vanilla Monte Carlo

method only takes 80 seconds per iteration at the beginning of the iteration by

solving the decomposed LS(i), giving around the same level of iteration efficiency.

However, towards the end of the 100 iterations, conditional Monte Carlo is able to

reduce the variance of the estimated probability so well that the efficiency improves

beyond that of vanilla Monte Carlo. Therefore we recommend using conditional

Monte Carlo (with CVX + Gurobi) if one can afford the running time, and vanilla

Monte Carlo otherwise or when CVX is not installed.

43

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Number of iterations

E
st

im
at

ed
 p

ro
ba

bi
lit

y
of

 c
on

ve
x

0 20 40 60 80 100
30

40

50

60

70

80

90

Number of iterations

Ite
ra

tio
n

tim
e

0 20 40 60 80 100
−1.5

−1

−0.5

0

0.5

Number of iterations

Ite
ra

tio
n

ef
fic

ie
nc

y
(lo

g1
0

sc
al

e)

0 20 40 60 80 100
0

0.5

1

1.5

2

Number of iterations

E
st

im
at

ed
 p

ro
ba

bi
lit

y
of

 c
on

ve
x

0 20 40 60 80 100
0

20

40

60

80

100

Number of iterations
Ite

ra
tio

n
tim

e
0 20 40 60 80 100

−8

−6

−4

−2

0

2

Number of iterations

Ite
ra

tio
n

ef
fic

ie
nc

y
(lo

g1
0

sc
al

e)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Number of iterations

E
st

im
at

ed
 p

ro
ba

bi
lit

y
of

 c
on

ve
x

0 20 40 60 80 100
385

390

395

400

405

410

Number of iterations

Ite
ra

tio
n

tim
e

0 20 40 60 80 100
−2

−1

0

1

2

3

4

Number of iterations

Ite
ra

tio
n

ef
fic

ie
nc

y
(lo

g1
0

sc
al

e)

Figure 2.3: The estimated probability of convexity, the iteration time (in seconds),
and the log (base 10) efficiency (left to right) of the vanilla Monte Carlo, change
of measure, and conditional Monte Carlo methods (top to bottom) applied to a
30-dimensional strictly convex function.

2.8.2 A Non-Convex Function

Consider the function f(x) = −||x||2,x ∈ [−1, 1]d. In order to make the problem

“harder,” we choose the covariance matrix Γ to be d2/4 on the diagonal, so that

the sampling standard deviation is bigger than half of the function value, and 0

on the off-diagonal. Figure 2.4 gives the results from the vanilla Monte Carlo esti-

mator, with acceptance-rejection applied after the initial 30 iterations, for varying

dimensions. The estimated probabilities of convexity hover near zero over all itera-

tions, especially in lower dimensions. This is perhaps intuitive: with few iterations

the noise in the estimated function values dominates, and in the presence of large

noise any function will appear to be nonconvex, while after many iterations, the

44

nonconvexities of the (true) function dominate and are detected.

0 50 100 150 200
0

0.05

0.1

0.15

0.2

Number of iterations

E
st

im
at

ed
 p

ro
ba

bi
lit

y
of

 c
on

ve
x

0 50 100 150 200
0

0.05

0.1

0.15

0.2

Number of iterations

E
st

im
at

ed
 p

ro
ba

bi
lit

y
of

 c
on

ve
x

0 50 100 150 200
0

0.05

0.1

0.15

0.2

Number of iterations

E
st

im
at

ed
 p

ro
ba

bi
lit

y
of

 c
on

ve
x

Figure 2.4: The estimated probability of convexity for the simple strictly non-
convex function in dimensions 3 and 5 and 10 (from left to right). The estimates
when the function is one-dimensional are not shown because they were effectively
identically 0.

2.8.3 Linear Function

Linear functions are convex but lie on the boundary of the cone C. Theorem 1

does not inform us of the likely behaviour of our algorithm in this case, because

the event that the function lies on the boundary of C has measure 0 in the context

of that result. Thus the posterior probability of convexity could converge to any

number between 0 and 1 or not converge at all. Here we use a one-dimensional

linear function f(x) = 0,x ∈ [−1, 1], with a sampling covariance matrix that

equals 10−4 on the diagonal and 0 on the off-diagonal.

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Number of iterations

E
st

im
at

ed
 p

ro
ba

bi
lit

y
of

 c
on

ve
x

Figure 2.5: The estimated probability of convexity for a 1-dimensional linear func-
tion. The mean does not appear to converge.

45

As shown in Figure 2.5, the estimated probability does not converge to 0 or

1, but stays close to 0. When we increase the dimension, e.g., to 5, and keep

the sampling variance the same, the estimated probabilities stay at 0 throughout

the first 100 iterations. Changing the sampling variance does not change the

qualitative nature of results because when the function is zero-valued the sampling

variance only changes the “scale” of the observations. These results are perhaps to

be expected because a linear function would only appear convex when the function

noise at all design points “happens to” form a strictly convex function.

2.8.4 Output of a Simulation

Finally, we have also tested our algorithm on a more realistic example similar to

the “Ambulances in a Square” problem from SimOpt [58]. In this problem, patient

calls arrive in a one kilometer unit square [0, 1]2 according to a Poisson process

at a constant rate of 1 call every 2 hours. The (x, y) locations of the calls are

i.i.d. and distributed with a density proportional to 1.6 − (|x − 0.8| + |y − 0.8|).

Upon receiving a call, a nearest ambulance is dispatched, traveling to the scene at

a constant speed of 60 km/h. Once arriving at the scene, the ambulance spends a

Gamma-distributed scene time with mean 45 minutes and standard deviation 15

minutes, then returns to the base at a speed of 40 km/h if no other call is received.

We are interested in the mean response time (time from when the call is received

until the ambulance arrives at the call location) as a function of the location(s) of

the ambulance base(s).

We sampled the base locations of the ambulance along (4 × the number of bases

+ 1) random lines in the unit square, with 3 points sampled on each line. Each

base has two coordinates, so this is equivalent to 3(2d+ 1) design points, where d

46

is the dimension of the sample space. We are using more design points than in our

previous test cases because we wanted to try more points (and consequently more

computation) on a real case. Similar to our other experiments, we obtain a sample

of the mean response time on each set of sampled base locations from running the

simulation until 360 calls receive a response (approximately 30 days). The mean

response times of the sampled base locations are evaluated using common random

numbers, which compares the locations using the exact same random call arrivals

and scene times. The convexity of the mean response time as a function of the

ambulance base locations is tested with one, two, and three ambulance bases, using

the conditional Monte Carlo method. The estimated probabilities vs. iteration are

plotted in Figure 2.6.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Number of iterations

E
st

im
at

ed
 p

ro
ba

bi
lit

y
of

 c
on

ve
x

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Number of iterations

E
st

im
at

ed
 p

ro
ba

bi
lit

y
of

 c
on

ve
x

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Number of iterations

E
st

im
at

ed
 p

ro
ba

bi
lit

y
of

 c
on

ve
x

Figure 2.6: The estimated probability of convexity for the mean response time as
a function of the base locations, when the number of bases is one, two, and three.

It seems that the mean response time is convex as a function of the base location

when there is only one base, while it is not convex for more than one ambulance

base. This agrees with our intuition that the location of a single ambulance base

should have one global minimizer in the unit square. By plotting the posterior

mean function, we found that the minimizer is located near the point [0.46, 0.54],

near, but slightly offset from, the mode [0.8, 0.8], to balance the travel time to the

farther corner [0, 0]. However, when there is more than one ambulance base, the

objective does not have a single minimizer due to symmetry and the interactions

between bases.

47

2.9 Conclusion

Given a function that can be observed on a finite number of points in the pres-

ence of noise, we have suggested a sequential algorithm to estimate the posterior

probability that the function is convex. The method models the function values on

a fixed set of design points using a Bayesian conjugate model, and estimates the

probability of convexity by Monte Carlo simulation, using samples of the function

values from the posterior distribution. This Bayesian procedure gives sequential

estimates for function convexity. It is useful when a function is expensive to evalu-

ate, e.g., the output of a large simulation, or when its values can only be obtained

on a constrained set of points, e.g., a function defined on a discrete domain.

To improve the efficiency of our algorithm we have introduced three variance re-

duction methods - change of measure, acceptance-rejection, and conditional Monte

Carlo. The first two methods reuse samples obtained in an earlier iteration to

calculate an estimator in the current iteration. However, they both rely on the

likelihood ratio of normal or Student-t posterior densities, which we prove could

take extreme values due to its heavy-tail behavior. In our computational results,

we observe that the change of measure method may give poor (e.g., greater than 1)

estimates of the probability, and the acceptance-rejection method rejects most of

the earlier samples and reduces to vanilla Monte Carlo when the number of design

points is large. Finally, the conditional Monte Carlo method takes the longest to

compute but is the most effective in variance reduction, giving the highest efficiency

among all methods. We recommend using it with CVX and Gurobi, especially for

high-dimensional functions, to ensure reasonable computational time.

A package containing the main algorithm and all variance reduction alternatives

is available on Github [40].

48

CHAPTER 3

USING GRADIENT-LIKE INFORMATION IN OPTIMIZING A

LARGE-SCALE BIKE-SHARING SYSTEM

3.1 Introduction

Citi Bike in New York City (NYC) is a large-scale bike-sharing system where a

customer can check out a bike from any station and return the bike to any other

station. Due to time-varying demand, this freedom of movement of bikes creates

unbalanced flows in the system. For example, many customers ride bikes from

residential areas to the financial district during the morning rush (6-10am) and

reverse their origin and destination in the afternoon. Citi Bike relocates bikes in the

system, both overnight (12-6am) and throughout the day. Overnight rebalancing

operations can move many more bikes than during the day due to traffic congestion.

We are interested in how many docks should be assigned to each station and, based

on that dock assignment, how many bikes should be allocated to each station at

the beginning of the day.

This optimization problem is an extension of the rebalancing problem in the

bike-sharing literature, in that we attempt to rebalance docks in addition to bikes.

Insight into the rebalancing problem has been obtained by [21] and [20] using

mean-field analysis, showing, e.g., that in a system with perfectly balanced inflows

and outflows at each station, that the optimal number of bikes is equal to half

the combined station capacities plus the number on trips. Work that is more

operational includes [37, 56] and [55] where the CTMC model we refer to later is

developed. [62] and [63] develop a solution to bike (only) repositioning. Based on

this work, [19] develop a practical recipe for bike repositioning. [65] develop related

49

integer programming models for repositioning bikes (only). [67] use a time-space

formulation that is more detailed than our models. [13], and [60] are examples of

other repositioning algorithms.

We use discrete-event simulation to model the bike-sharing system, and thus we

tackle the rebalancing problem over bikes and docks as a simulation-optimization

problem. Ideally, we would apply standard simulation-optimization methods to

solve the problem, but as discussed in [44] this seems computationally infeasible.

In particular, the optimization problem (3.1) over 466 stations is an integer-ordered

optimization problem with 932 decision variables. The scale of this problem renders

methods based on random search principles unlikely to be effective. Indeed, since

the numbers of bikes and docks are fixed, any local moves likely involve moving

bikes and/or docks between randomly selected pairs of stations, and there are over

100,000 such pairs of stations. Moreover, if one attempts to perform a variant of

gradient search where the gradients are estimated by finite (integer) differences,

then each step of such an algorithm would require simulating 932 “neighboring”

configurations (if forward differences are used).

These computational demands seem, to us, to be impractical. We instead

develop heuristic search procedures that use statistics from a single simulation

run in order to update the allocation of bikes and docks between stations. Our

methods build on the heuristic introduced in [44] for allocating bikes to satisfy

only the morning rush demand, to allocate both bikes and docks for a full day’s

operations. We exploit the simulation and use station-specific information from it

to group the stations according to their estimated contributions to the objective.

These “contributions” can reasonably be viewed as approximate gradients, but we

make no claim that our approximate gradients are accurate or unbiased, nor do

50

we claim that we find a locally optimal solution. We instead see the value of these

algorithms in the improvements they can make in performance relative to that of

starting solutions. Since the ideas effectively better any feasible configuration of

bikes and docks, they potentially reduce the need for more sophisticated models

like the CTMC model.

In obtaining the station-specific information and generating a search direction,

we are using the simulation as a “white box” that provides significantly more

information than just the final performance estimate that is the starting point

for more traditional “black box” approaches. By grouping stations using that

information we have also reduced the dimensionality of the problem. These can be

invaluable in search algorithms for large-scale simulation optimization problems.

3.2 Preliminaries

This section introduces the problem and its input data, the discrete-event sim-

ulation model we use, and some alternatives for obtaining starting solutions for

the simulation-optimization search. Parts of Sections 3.2.3, 3.2.4, and a time-

homogeneous version of 3.2.4 are recaps of a discussion in [44].

3.2.1 Problem Statement

Our goal is to minimize the expected number of “unhappy” customers who want to

check out a bike when a station is empty or return a bike when a station is full, by

giving an initial bike allocation xi and dock (capacity) allocation ri at each station

i. We assume that the total number of bikes b and the total number of docks c is

51

fixed in the system. The level of bikes xi assigned is constrained by the capacity ri,

and the capacity ri is constrained between 16 and 60 by physical space limits at the

station. (This latter restriction is a simplification, since the actual space limits vary

from station to station.) In practice in NYC, docks mostly come in sets of 3, but we

ignore that complication in the work that follows. We use ξ to denote the random

objects in the system, including the random arrivals and departures of customers

at each station as well as the trip durations, so the notation accommodates for the

use of Sample Average Approximation [48]. Thus the problem can be formulated

as

minimize
x,r

f(x, r) = Ef(x, r; ξ)

subject to
∑
i

xi = b

∑
i

ri = c

0 ≤ xi ≤ ri, ∀i

16 ≤ ri ≤ 60, ∀i

xi, ri integer, ∀i.

(3.1)

The function f(·, ·) yields the number of unhappy customers in one day, and we

estimate its expectation using simulation.

3.2.2 Input Data

We use real trip data from the 14 weekdays in the period December 1 to 20,

2015. We selected this time period because Citi Bike completed its most recent

expansion up to 86th Street by November 2015 [15]. This period excludes the lower

demands seen on weekends and during the holiday season starting from December

21. During December 1 to 20 there were 466 active stations in Manhattan and

52

Brooklyn, with a total capacity of
∑

i ri = 15777 docks. The number of bikes

used is approximately b = 6074. The daily number of trips in this period was

31,400, which is lower than the August average of 45,000, presumably because of

cold weather. We subsequently adjusted the rates by a multiplier of 1.5 to align

our data to an average non-winter month after expansion.

The input data used in the simulation consists of the flow rates between pairs of

stations and the trip durations. The flow rates are taken to be piecewise constant

over each of the 48 30-minute time intervals throughout the day, and are estimated

from the data. The flow rate µt,i,j in time interval t, t = 1, . . . , 48 from station i to

j is calculated from the total number of observed trips from station i to j in that

interval, divided by the time that the station is not empty. (This accounts for the

censoring that happens when no bikes are available, but does not account for the

censoring that happens when a biker tries to return a bike to a full rack and must

go to an adjacent station.) The trip durations are obtained using linear regression,

fitting the log of the trip durations seen in data to the log of the predicted cycling

durations from Google Maps. Figure 3.1 shows a scatter plot in log scale with the

fitted regression line (right plot) on 85% of the data inside the central ellipse (left

plot).

3.2.3 Discrete-Event Simulation Model

We adapt an existing simulation model [55] written in Python that operates in

discrete time (minute by minute). The arrival process of potential bikers at stations

are independent across stations, and at each station i is a time-varying Poisson

process with rate µt,i =
∑

j µt,i,j in time interval t, with the arrival times rounded

to the nearest minute. The destination of a biker leaving station i in time interval t

53

Figure 3.1: The regression line is ln(observed) = 0.93 ln(google) + 0.53 + ε), where
ε is normally distributed with mean 0 and variance 0.066. The R2 value of the fit
is 0.806. Durations are measured in seconds.

has a multinomial distribution with the probability of going to station j estimated

by Pt,i,j = µt,i,j/µt,i. The associated trip duration Tij is lognormally distributed

with parameters obtained from the regression model above, and also rounded to

the nearest minute.

The system evolves as follows. In each new minute we generate and schedule

the trips starting in that minute from each station i and assign a destination and

duration to each trip. Next, all the trips scheduled to arrive or depart a station in

this minute are executed as follows. If a departing trip cannot start now because

the origin station i is empty, the customer leaves the system and the trip is recorded

as a “failed-start”. If an arriving trip cannot end because the destination station

j is full, the state “failed-end” is triggered, and a new trip heading from j to the

nearest station is scheduled. Customers make at most 3 attempts to return a bike,

at which point we label the final trip as a “bad-end,” which happens rarely (less

than 1% of the trips). With this simulation model, the objective in (3.1) is

min
x
f(x) = Ex[#failed-starts] + Ex[#failed-ends] + Ex[#bad-ends], (3.2)

where each expectation is estimated using sample-average approximation over a

fixed set of replications of the simulation model.

54

We have sped up the basic model by a factor of approximately 40% by gen-

erating trips in 30-minute batches and using conditional uniform occurrences to

generate the Poisson arrival processes. The time required to simulate one repli-

cation of an 18-hour day (assuming nothing happens from 12-6AM in which only

2.4% of the daily trips occur) is around 1.4 seconds on a desktop with 4-core Intel

Core i7-3770 CPU 3.40 GHz processor, 16G memory, and Ubuntu 14.04 OS.

3.2.4 Starting Solutions for the Simulation Optimization

We introduce three alternative methods to generate starting solutions.

An Equal Allocation Solution

With the current capacity at each station fixed at its true value as of December,

2015, a näıve solution is to allocate some bikes to every station in proportion to

its capacity. This solution does not take the flows in and out of stations into

consideration, and so suffers from flow imbalances.

A Fluid Model Solution

Now consider flow rates but ignore randomness, so that in period t customers

drop off bikes at station i with constant rate λt,i =
∑

j µt,j,i and pick up bikes at

the same station with constant rate µt,i. (For simplicity we assume that the trip

durations are 0.)

The key idea is to calculate the minimum level of bikes and docks to start the

day with so that the objective is 0. To achieve that, suppose the level of bikes in

55

station i at minute q in the day Yi(q) is not constrained by 0 or the capacity. Then

given any starting bike allocation xi, Yi(q) is equal to the initial level xi, plus the

net flow of bikes in all the complete 30-minute intervals before q, and the net flow

in the last less-than-30-minute interval that contains q. That is,

Yi(q) = xi +

bq/30c∑
t=1

30(λt,i − µt,i)

+ (q − 30bq/30c)(λq,i − µq,i).

To avoid cost when the station is empty or full, in a perfect world we would start

with x̂i = xi − minq Yi(q) bikes and capacity r̂i = maxq Yi(q) − minq Yi(q) docks

so there are sufficient bikes and docks throughout the day. Figure 3.2 gives an

example of this “ideal” solution.

Figure 3.2: The bike level in an 18-hour day for the fluid model. The blue curve
starts with 0 bikes, with lowest and highest levels of -45 and 54. The red curve
starts with the “ideal” of 45 bikes and 99 docks.

Starting with the ideal x̂i and r̂i for all stations i would require many more

bikes and docks than we have. Therefore, after obtaining these ideal levels, we

scale the dock allocations to ensure that we don’t exceed our available capacity.

In doing so, some care is required to account for the integer nature of the dock

allocations; we omit the details. A similar scaling is used for the bike allocations.

An additional complexity results when these unequal scalings result in a station

56

receiving more bikes than its allocated docks, but again we omit the details of our

ad-hoc solution.

A shortcoming of the fluid model, noted in [44], is that it allocates almost no ca-

pacity to stations with nearly balanced inward and outward flow rates, irrespective

of their magnitude.

A Continuous-Time Markov Chain Solution

[37] use a very similar model to ours, and show that under the admittedly very

strong assumption that the objective function in our optimization problem is sep-

arable by stations. That is, the problem decomposes into a sum of functions,

where the function for each station depends only on the inflow and outflow rates

and the number of bikes and docks allocated to that station. Also, the change in

the allocations at one station does not affect the inflow and outflow rates at its

downstream and upstream stations. This dramatic simplification, together with

a result establishing that the objective function can be extended to a piecewise-

linear convex function, allows them to obtain bike and dock allocations by solving

a linear integer program. Their result only applies to the case where the flow rates

are constant in time. An extension of their result due to Freund, Henderson, and

Shmoys allows us to solve the time-inhomogeneous problem, albeit still under the

“objective separable by stations” assumption. The solution thus obtained is our

third starting solution for simulation optimization.

57

3.3 Simulation Optimization

In this section we suggest four simulation-optimization heuristics that can be used

to solve (3.1) over different time horizons and problem features. Each alternative is

tested using the starting solutions in Section 3.2.4. The structures of the heuristics

are similar. In each iteration we generate a trial solution and evaluate it with the

discrete event simulation model in Section 3.2.3. If the trial solution improves the

objective, then we move to the solution; otherwise we stay at the last solution. We

use common random numbers to evaluate each trial solution using 30 replications

of the simulation. In generating the trial solutions, we treat the simulation as a

“white box,” exploiting gradient-like information that can be gathered inside the

model.

Recall that in the objective function (3.2), “# failed-starts” is the number of

trips that cannot start because the origin station has no bikes, “# failed-ends” is

the number of trips that cannot end because the destination station has no empty

docks, and “# bad-ends” is the number of trips in which the customer finally

abandons the bike after 3 failed attempts. Although “bad-ends” have serious

consequences, they happen very rarely (< 1% of the trips) and thus are ignored

in our methods when generating trial solutions. We denote the allocation of bikes

(docks) at station i at the beginning of the day by x(i) (r(i)), where i is the station

id of one of the 466 stations. As a reminder, the total number of bikes in the system

is b = 6074, and the capacity at each station is the status-quo as of December 2015.

58

3.3.1 Simulation Optimization Heuristics to Optimize Bike

Allocations

First, consider a simpler problem that only optimizes the bike allocation x for a

fixed capacity r equal to the status-quo of December 2015 by treating r in (3.1)

as an input parameter. We start with a simple heuristic that optimizes the bike

allocation only considering the morning rush (6-10am), similar to the one intro-

duced in [44], then turn to optimizing over an 18-hour day (6-12am). We disregard

12-6am because only 2.4% of the daily trips occur in that interval.

Optimizing Bike Allocations for the Morning Rush-hour

Suppose for now we are only optimizing the objective (3.2) over the morning rush

(6-10am).

From m replications (days) of the 6-10am simulation with x as the initial al-

location, we can estimate the objective evaluated at x from the counts of the

failed-starts and failed-ends over all replications. Suppose we also obtain the list

of stations where the failed-starts and first attempts of failed-ends (not including

later attempts when the destination station is full) arose. Define the ordered list

statE (x,m, `) (we will suppress the arguments) as origin stations with the top ` #

failed-starts, and statF (x,m, `) as the destinations with the top ` # failed-ends.

We expect that the statE stations have many failed-starts because they are too

empty at 6am, whereas the statF stations have many failed-ends because they are

too full at 6am. Thus, increasing the initial bike level x at a station in statE and

decreasing it at a station in statF should decrease the # failed-starts and the #

failed-ends in (3.2). This is mostly true for the morning rush-hour period, but is

59

flawed if we are optimizing over the entire day, as discussed in Section 3.3.1. The

method swaps w bikes between two randomly selected stations in these lists as

described in Heuristic 4.

We use m = 30 replications. The list size for statE and statF is ` = 20.

The number of bikes allowed to move from/to each station in each iteration w

is changed adaptively along the iterations. Initially w = 3, and whenever a con-

secutive of 100 iterations (100 trial solutions) cannot improve the objective, w is

reduced by 1. When starting with a solution closer to optimality (like CTMC),

w can be adjusted to start from 1, but here we keep it consistent for all starting

solutions just for the fairness of comparison. The initial solution x0 and the termi-

nating one are evaluated with 50 and 100 independent replications, respectively,

to obtain an independent estimate of the objective-function value, independent of

the replications used in the search. We choose to stop the heuristic when it fails

to improve the objective for 200 consecutive iterations (trial solutions generated).

The heuristic is tested from the proportional-allocation solution and the CTMC

solution, giving Figure 3.3, in which the x-axis is the number of simulated days

(replications), and the y-axis is the objective. The equal allocation solution starts

with a 95% confidence interval for the objective of 4673±35 and ends at 2775±22.

The CTMC solution starts with an objective of 2276± 30 and ends at 2236± 22.

The heuristic makes great improvements to the equal allocation solution (42%),

but not much to the better CTMC solution (2%).

60

Heuristic 4 Optimizing x for the morning rush.

Input: A starting solution x0. The list size ` for statE and statF. The random
seed for the simulation (daySeed). Number of replications m for the simulation.
Number of bikes w allowed to move to/from each station in each iteration.

1: initialize Set k = 1. Run simulation to evaluate x0 and obtain the initial
statE and statF.

2: repeat
3: procedure Generate Trial Solution
4: Randomly choose sE from statE and sF from statF such that xk−1(sE)+
w ≤ r(sE) and xk−1(sF)− w ≥ 0.

5: Generate trial solution x′ by add w bikes to sE and removing w bikes
from sF based on xk−1.

6: procedure Simulate and Evaluate
7: Set random seed = seed.
8: Evaluate x′ using the sample average of the objective in (3.2) over m

replications of simulation.
9: if x′ shows improvement in the average objective then
10: Set xk = x′ and let k = k + 1. Record statE and statF from the

simulation.
11: else
12: Go back to generate another trial solution.

13: until Stopped.

Figure 3.3: The objective of running Heuristic 4 (optimize bikes only for morning
rush) starting from the equal allocation and CTMC solutions. The left one is the
comparison of the two, and the right one is CTMC only on a magnified scale.

61

Optimizing Bike Allocations for the Entire Day

Consider the same bike-allocation-only problem as above, but instead evaluating

the objective over an 18-hour day. When we use Heuristic 4, changing only the

simulation period to 18 hours, the method was not able to find improvement for

a long time. One of the problems is that most stations behave very differently

in the morning and in the afternoon, but statE and statF are still chosen based

on the counts of failed starts and failed ends over the entire day. If a station

in statE has many failed starts in the morning, then adding bikes to the station

at the beginning of the day helps in reducing the objective. However, consider a

busy station in statE that fills in the morning and then empties in the afternoon.

Adding bikes to this station at the beginning of the day makes # failed ends in the

morning worse. Meanwhile, because the station starts to empty at the same time

irrespective of adding bikes or not, it does not help to reduce the count of failed

starts in the afternoon. Indeed, the sample path for the increased allocation of

bikes couples with that of the previous allocation once the bike level hits 0 or the

capacity. A symmetric problem arises with stations in statF that empty out in the

morning and fill up in the afternoon; reducing their bike levels at the beginning of

the day would increase the objective instead. Moreover, these stations with both

failed starts and failed ends are typically those that have large traffic, e.g., near

Penn Station, and thus contribute heavily to the objective.

To adjust Heuristic 4 to address this issue, we define the following 7 types of

stations, with illustrations in Figure 3.4.

1. statEA: the stations that are empty in the morning and not full in the after-

noon.

62

2. statEP: the stations that are empty in the afternoon and not full in the

morning.

3. statFA: the stations that are full in the morning and not empty in the after-

noon.

4. statFP: the stations that are full in the afternoon and not empty in the

morning.

5. statBI: the stations that are full in the morning and empty in the afternoon.

6. statBD: the stations that are empty in the morning and full in the afternoon.

7. statC: the stations that contribute the least to the objective by rarely being

full or empty.

Figure 3.4: The bike levels for the example stations from the lists statEA, statEP,
statFA, statFP, statBI, and statBD (ordered from left to right in rows) over 10
replications. The x-axis is in time from 6-12am.

It appears that statEA, statEP, and statBI need more bikes in the morning,

whereas statFA, statFP, and statBD need fewer bikes in the morning. The stations

in statC contribute the least to the objective, and thus are used as “back-up.” This

63

inspires Heuristic 5 that changes the method for generating trial solutions, while

keeping the rest of Heuristic 4 the same.

Heuristic 5 Optimizing x for the entire day.

1: procedure Generate Trial Solution
2: Randomly choose a station stype from each of the list types {EA, EP, FA,

FP, BI, BD}.
3: To generate trial solution x′ from xk−1

4: take w bikes from each of sFA, sFP and sBD,
5: give w bikes to each of sEA, sEP and sBI .
6: If any of the movements is not possible because of capacity restrictions, we

substitute the station by a random station in statC that allows the movement.

With the same configurations of m, `, w, and the stopping criteria as in Section

3.3.1, Figure 3.5 depicts the progress of this heuristic starting from the equal

allocation and CTMC solutions when optimizing the bike allocation over the 18-

hour period. The equal allocation starts with a 95% confidence interval of the

objective of 12249±89 and ends at 10428±47 (-15%). The CTMC solution starts

at 9239± 73 and ends at 9168± 46 (-1%). The percentage difference between the

starting and ending objectives has decreased compared to when optimizing only

over the morning rush, suggesting that the 18-hour day problem with its time-

flow complexities is more difficult than the rush-hour problem. The fact that the

heuristics started from different solutions are unable to close the gap in the ending

solutions may also suggest that there is room for improvement for this 18-hour

problem.

64

Figure 3.5: The objective of running Heuristic 5 (optimize bikes only for the entire
day) starting from the equal allocation and CTMC solutions. The left plot is the
comparison, and the right one is CTMC only on a magnified scale. The scale is
different from Figure 3.3 since more failed trips are incurred over a 18-hour day.

3.3.2 Simulation Optimization Heuristics to Optimize

Both Bike and Dock Allocations

Now we return to the original formulation (3.1), solving for the allocations of both

bikes and docks, initially just over the morning rush and then for an 18-hour day.

Optimizing Bike and Dock Allocations for the Morning Rush-hour

To incorporate the movements of docks into Heuristic 4, notice that some stations

in statE cannot receive more bikes because they are already full. Increasing the

capacity at such stations allows us to allocate more bikes and thus reduces the

failed-starts. Similarly, some stations in statF start empty, so increasing the

capacity at such stations allows them to receive more bikes and thus reduces the

failed-ends. The docks added to these two types of stations come from statC

that is subject to the least amount of change in the objective due to the loss of a

65

dock or a bike. Thus we change the procedure for generating the trial solution in

Heuristic 4, giving Heuristic 6.

Heuristic 6 Optimizing x and r for the morning rush.

1: procedure Generate Trial Solution
2: Randomly choose stations sE from statE and sF from statF.
3: To generate trial solutions (x′, r′) from (xk−1, rk−1),
4: if xk−1(sE) + w ≤ rsE and xk−1(sF)− w ≥ 0 then
5: Take w bikes from sF and give w bikes to sE.
6: else if xk−1(sE) + w > rsE and rk−1(sE) + w ≤ 60 then
7: Take w docks and w bikes from a random station in statC and give

them to sE.
8: else if xk−1(sF)− w < 0 and rk−1(sF) + w ≤ 60 then
9: Take w docks from a random station in statC and give them to sF.

Excess bikes will go to sE.

This heuristic prioritizes moving bikes first, and if that fails, it moves docks

to the stations that cause the failure. With the same configurations of m, `, and

w as in Section 3.3.1, Figure 3.6 gives the progress of this heuristic starting from

the equal allocation, the fluid model, and the CTMC solutions, when optimizing

both bike and dock allocations over the 18-hour day. The equal allocation starts

with a 95% confidence interval of the objective of 4690 ± 45 and terminates at

1936± 18 (-59%), the CTMC solution starts with objective of 1379± 28 and ends

at 1333±13 (-3%), and the fluid model starts with objective of 1472±32 and ends

at 1378± 13 (-6%).

66

Figure 3.6: The objective of running Heuristic 6 (optimize bikes and docks for
the morning rush) starting from the equal allocation, the fluid model, and CTMC
solutions. The left plot is the comparison of all three, and the right one is the
comparison between the CTMC and the fluid model solutions on a magnified scale.

Optimizing Bike and Dock Allocations for the Entire Day

Now we make changes to Heuristic 5, which optimizes the bike allocation over

the entire day, to allow for dock movements. Similar to Heuristic 5, the following

heuristic requires lists statEA, statEP, statFA, statFP, statBI, statBD, and statC

from the last solution (xk−1, rk−1).

With the same configurations of m, `, w, and the stopping criteria as in Section

3.3.1, Figure 3.7 gives the objective change of this heuristic starting from the equal

allocation, the fluid model, and the CTMC solutions, when optimizing both bike

and dock allocations for the 18-hour day. The equal allocation starts with a 95%

confidence interval for the objective of 12249 ± 89 and terminates at 8915 ± 47

(-27%), the CTMC solution starts with objective 6937 ± 122 and terminates at

6681± 43 (-3%), and the fluid model solution starts with objective 7063± 89 and

terminates at 6865 ± 44 (-3%). Note that here the starting objectives of CTMC

and Fluid solutions are both smaller than those in Figure 3.5. This is because the

solutions here optimize both bike and dock allocations, whereas the dock levels in

67

Heuristic 5 are taken as is from the reality.

Heuristic 7 Optimizing x and r for the entire day.

1: procedure Generate Trial Solution
2: Randomly choose a station stype from each of the list types in {EA, EP,

FA, FP, BI, BD}.
3: To generate trial solutions (x′, r′) from (xk−1, rk−1),
4: Move w docks from a random station in statC to sBI if rk−1(sBI) +w ≤ 60.
5: Move w docks from a random station in statC to sBD if rk−1(sBD)+w ≤ 60.
6: Try taking w bikes from each of sFA, sFP and sBD in xk−1. If any of the

movements is not allowed because the station is already empty, give the station
w docks from a random station in statC.

7: Try giving w bikes to each of sEA, sEP and sBI in xk−1. If any of the
movements is not allowed because the station is already full, give the station
w docks and w bikes from a random station in statC.

Figure 3.7: The objective of running Heuristic 7 (optimize bikes and docks for the
entire day) starting from the equal allocation, the CTMC, and the fluid model
solutions. The left plot is the comparison of all three, and the right one is the
comparison between the CTMC and the fluid model solutions on a magnified scale.

3.4 Remarks

Our heuristics can make local improvements to the objective regardless of the start-

ing solution, yielding practically relevant improvements over all solutions, although

the improvements relative to the (already apparently well-performing) CTMC so-

lutions are modest especially in the 18-hour problem. The starting solution plays

68

an important role, because the heuristics cannot close the gap to the best solution

we have seen. The heuristics are perhaps best viewed as using approximations for

“gradients” (for this integer-variables problem) to guide reallocations of bikes and

docks.

69

CHAPTER 4

USING PSEUDO-GRADIENT IN LARGE-SCALE SIMULATION

OPTIMIZATION

4.1 Introduction

In last chapter, we have explored the idea of smartly making local improvements

using simulation traces and applied it to the bike-sharing example. The resulting

heuristics move only a few bikes and docks in each iteration according to a few

priority rules, making modest improvements with every 30 replications of the sim-

ulation. The limitation of such heuristics seems to lie in the complicated structure

and the small magnitude of the local changes. In each local step, by using the

output of the latest simulation runs, we carefully choose a few stations that gener-

ated the most number of failed starts or failed ends in the morning or afternoon,

and move a bike and/or a dock between them. This is based on the intuition that

the chosen stations contribute most to the objective value. Such intuition is very

similar to gradient search, except that we are not estimating the gradient itself,

but instead using gradient-like information from the simulation traces. This has

inspired us to further exploit the simulation traces to come up with direct approx-

imations to the gradient, which we call pseudo-gradient, and use it to generate

bigger and more efficient local steps. Similar to the heuristic from the last chapter,

we expect this to be useful in solving large-scale simulation optimization problems

where the solution space is so large that the direct gradient estimation using finite

differences is too costly and a pure random search is unlikely to be effective.

The general idea of obtaining pseudo-gradient is as follows. We use simulation

traces to approximate the system states after a small change in a single coordinate

70

of the input parameter (i.e. decision variable). Then from the changed states we

can estimate the partial derivative of the objective function in that coordinate.

The information needed from simulation traces could be the sequence of events,

which we assume does not alter with a small change in the decision variable. When

the input parameter is in continuous space and the change is infinitesimal, this idea

of “keeping the event list as is” is similar to Infinitesimal Perturbation Analysis

(see, e.g. [38], [26], [22], [24]), for which asymptotic results have been established.

[38] provides methods (e.g. event and state matching) for Finite Perturbation

Analysis that can be applied to discrete changes, but it is nontrivial how to use

those methods on a finite-horizon simulation with huge state space and complicated

event list.

In this chapter, we illustrate how to numerically solve such simulation opti-

mization problems using pseudo-gradient. We provide quality and affordable new

methods to solving the large-scale problems of bike-sharing and multi-skill call cen-

ters with nearly 1000 decision variables. However, our contribution is not limited

to these two specific problems. We give a general framework of local search using

pseudo-gradient that can be applied to simulation optimization problems with both

deterministic and stochastic constraints. We show that when the pseudo-gradient

approximation is close enough and the optimized function has “nice” structural

property, the search will lead to a near-optimal solution. We give ideas on how

to generate approximate gradients from the simulation traces without re-running

the simulation, as would be required with finite differences, for example. The

savings in computational time makes it feasible to obtain quality solution to large-

scale simulation optimization problems that were not tractable using traditional

methods like gradient search or random search.

71

The chapter is organized as follows. Section 4.2 gives the outline of a search

algorithm using pseudo-gradient. In Section 4.3 we show that when the objective

function is continuous and strongly convex and the pseudo-gradient is a close

approximation to the actual gradient, the pseudo-gradient search algorithm would

terminate at a near-optimum solution. This proves what a gradient search using

gradient information with errors (pseudo-gradients) can achieve in the best-case

scenario of strongly convex functions and uniformly bounded errors. Sections 4.4

and 4.5 use two case studies to illustrate how pseudo-gradient search can be used

in large-scale simulation optimization. Each section contains problem description,

literature reviews, summary of algorithm, and numerical results for the regarding

problem. The first problem is the (re)allocation of bikes and docks in a large bike-

sharing system from last chapter, and we have shown that using pseudo-gradients

gives a more efficient search procedure. The second case is the scheduling of agents

of different skill groups and shifts in a multi-period multi-skill call center, and we

compare the heuristic using pseudo-gradients with the state-of-art cutting plane

method designated for call center scheduling problems.

4.2 Pseudo-gradient Search

Suppose we are solving the simulation optimization problem

min
x∈Θ

f(x), (4.1)

consisting of an objective f : S → [−∞,+∞] where S ⊆ Rd, d < ∞, decision

variables x, and constraints x ∈ Θ ⊆ S. Here f = Ef(x, ξ), where f(x, ξ) rep-

resents the output of a simulation logic for the objective for one replication. The

constraint set Θ could be deterministic or stochastic as Θ = {x : Eh(x, ξ) ≥ 0},

72

where h(x, ξ) is the output of a simulation logic for the constraint function for one

replication.

A pseudo-gradient provides gradient-like information calculated from the sim-

ulation traces. This is rather vaguely specified, as a pseudo-gradient is not unique

given the simulation traces and could be anything that provides directional infor-

mation for local improvement. For example, suppose f is continuous and proper,

and ∇f(x) ∈ ∂f(x) where ∂f(x) is the sub-differential set of f at point x. A

pseudo-(sub)gradient ∇̂f(x) could be an approximation of the subgradient ∇f(x).

When f is discrete, the i-th coordinate of ∇̂f(x) could be an estimation to the

forward difference f(x + ei) − f(x). In the above-mentioned simple cases, the

pseudo-gradient ∇̂f(x) is taken as an approximation of the true “gradient” and

thus has the same dimension as x, but it does not have to, as shown in the bike-

sharing example in Section 4.4.

For simplicity, suppose for now we have the unconstrained version of (4.1),

min f(x), (4.2)

We will discuss how to convert box-constrained and stochastic-constrained prob-

lems to this unconstrained version in Sections 4.4 and 4.5, respectively.

For the unconstrained problem (4.2), we use Algorithm 8 that is similar to a

random search but uses pseudo-gradient ∇̂f to generate trial solutions. Algorithm

8 lacks precise details on how some steps are to be completed. In later sections

we will be more concrete on these steps, especially the procedure to generate trial

solution from pseudo-gradient in step 3. Note that each trial solution is evaluated

using the same random seed over m replications of the simulation. This use of

Common Random Numbers improves the signal to noise ratio in comparing differ-

ent solutions. We usually use a shrinking step size in the procedure of generating

73

trial solution, so that the algorithm is able to make faster progress in the initial

iterations and does not “miss” the optimum in the later ones. The next trial solu-

tion is generated randomly in a small neighborhood, which allows for exploration

while exploiting the “best” direction indicated by the pseudo-gradient. Finally,

the stopping criteria is a combination of budget limitation and local optimality

(defined by pseudo-gradient).

Algorithm 8 Pseudo-gradient Local Search

Input: A starting solution x. A random seed seed. Number of replications m
and m′ for the simulation. Maximum number of consecutive failures before
stopping nmaxFails.

1: initialize Run m replications of the simulation to evaluate the starting solu-
tion. Calculate pseudo-gradient ∇̂f(x) using the traces. Set nfails = 0.

2: repeat
3: procedure Generate Trial Solution
4: Generate a trial solution x′ using pseudo-gradient ∇̂f(x).

5: procedure Simulate and Evaluate
6: Set random seed = seed.
7: Evaluate x′ using the sample average of the objective over m replications

of simulation.
8: Record pseudo-gradient ∇̂f(x′) calculated from the simulation traces.
9: if x′ shows improvement in the average objective then
10: Set x = x′ and ∇̂f(x) = ∇̂f(x′).
11: Set nfails = 0.
12: else
13: Set nfails = nfails + 1 and go back to generate another trial solution.

14: until Either nfails >= nmaxFails or ∇̂f(x) shows no room for improvement.
Output: Set random seed = seed + 1 and evaluate x using m′ > m replications of

simulation. Output x and the sample average of the objective (with confidence
interval).

As any other simulation optimization method, this algorithm does not guar-

antee to output the global optimal or near-optimal solution, unless the objective

function has special structure (see Section 4.3). We use the standard approach of

restarting when the search is suspected to be trapped in the “basin of attraction”

of a local minimum. This is done by resetting the step size to a large value, as

74

applied in the bike-sharing example in 4.4.

4.3 Convergence Results

This section provides theoretical support to the near-optimality of a pseudo-

gradient search algorithm under certain conditions. Throughout the section, we

use the following common definition of proper function and strong convexity (see,

e.g., [8]). Recall that in Algorithm 8, the optimized function f is unconstrained,

so we assume S = Rd throughout the section.

Definition 3 (Proper function). Suppose X is nonempty. A convex f : X →

[−∞,+∞] is proper if −∞ /∈ f(S) and {x ∈ X : f(x) < +∞} is nonempty.

Definition 4 (Strongly convexity). Let S be a convex set and f : S → [−∞,+∞]

be continuous and proper. f is σ-strongly convex if and only if f(·) − σ|| · ||2/2

is convex, or equivalently, f(y) ≥ f(x) + 〈y − x,∇f(x)〉 + σ||y − x||2/2, ∀x, y ∈

S,∇f(x) ∈ ∂f(x), where ∂f(x) is the subdifferential set of f at x.

For simplicity, assume Algorithm 8 always stops only when

||∇̂f(x)|| ≤ εs (4.3)

in line 14 for some small and positive εs (|| · || is the Euclidean norm). Suppose the

true optimal solution is x∗ and the outputted solution of Algorithm 8 is x̂∗ when

stopped. Then the following results are true.

Theorem 5. Assume f(x) is σ-strongly convex by Definition 4, and when Algo-

rithm 8 stops with condition (4.3), the pseudo-gradient ∇̂f(x) satisfies ||∇f(x̂∗)−

∇̂f(x̂∗)|| ≤ ε for some with ε > 0. Then f(x̂∗)− f(x∗) ≤ (ε+ εs)
2/(2σ).

75

Proof. Since f is closed (by continuity) and convex, we have f ∗∗ = f . By Theorem

18.15 in [8], f is σ-strongly convex if and only if the (convex) conjugate function

f ∗(y) := supx 〈y, x〉 − f(x) has a (1/σ)-Lipschitz derivative. Thus by descent

lemma,

f ∗(∇f(x)) ≤ f ∗(∇f(y)) + 〈∇f ∗(∇f(y)),∇f(x)−∇f(y)〉+ 1

2σ
||∇f(x)−∇f(y)||2

(4.4)

Since f is closed (by continuity) and convex and we have f ∗∗ = f . Thus ∇f ∗ =

∇f−1 and ∇f ∗(∇f(y)) = y. Following from (4.4) we have

f ∗(∇f(x)) ≤ f ∗(∇f(y)) + 〈y,∇f(x)−∇f(y)〉+
1

2σ
||∇f(x)−∇f(y)||2

= f ∗(∇f(y)) + 〈y,∇f(x)〉 − 〈y,∇f(y)〉+
1

2σ
||∇f(x)−∇f(y)||2.

Therefore,

〈y,∇f(y)〉−f ∗(∇f(y))

≤ 〈x,∇f(x)〉 − f ∗(∇f(x)) + 〈y − x,∇f(x)〉+
1

2σ
||∇f(x)−∇f(y)||2.

(4.5)

By Fenchel-Young Inequality (see, e.g. [8]), we have

f(y) + f ∗(∇f(y)) ≥ 〈∇f(y), y〉.

Thus following from (4.5),

f(y) ≤ f(x) + 〈y − x,∇f(x)〉+
1

2σ
||∇f(x)−∇f(y)||2.

Now suppose the optimal solution to (4.2) is x∗. Since f is strongly convex on

the entire domain, ∇f(x∗) can be taken as a d-dimensional zero vector. Then take

x = x∗ and y = x̂∗ in (4.3),

f(x̂∗) ≤ f(x∗) +
1

2σ
||∇f(x̂∗)||2. (4.6)

76

Since ||∇̂f(x̂∗)|| ≤ εs,

||∇f(x̂∗)|| ≤ ||∇f(x̂∗)− ∇̂f(x̂∗)||+ ||∇̂f(x̂∗)|| ≤ ε+ εs.

Thus f(x̂∗)− f(x∗) ≤ (ε+ εs)
2/(2σ).

Theorem 5 gives the bound on the optimality gap ||f(x)− f(x∗)|| of a pseudo-

gradient search when the pseudo-gradient is approximated uniformly within ε of

the true gradient. Sometimes the bound on the approximation error is proportional

to the size of the true gradient, so that the pseudo-gradient becomes closer to the

true gradient as the search approaches the optimal solution. Suppose the ratio of

the approximation error to the true gradient is small enough (< 1/2) and we stop

at a small εs ≤ ε, then the optimality gap of the pseudo-gradient algorithm would

be tighter than that in Theorem 5.

Corollary 6. Assume f(x) is σ-strongly convex, and when Algorithm 8 stops

with condition (4.3), the pseudo-gradient ∇̂f(x) satisfies ||∇f(x̂∗) − ∇̂f(x̂∗)|| ≤

(1 + c||∇f(x̂∗)||)ε, with ε > 0 and 0 ≤ c < 1/ε. Then f(x̂∗) − f(x∗) ≤ (ε +

εs)
2/(2σ(1− cε)2).

Proof. When stopped,

||∇f(x̂∗)|| ≤ ||∇f(x̂∗)− ∇̂f(x̂∗)||+ ||∇̂f(x̂∗)|| ≤ ε+ εs + c||∇f(x̂∗)||,

so with 0 ≤ c < 1/ε,

||∇f(x̂∗)|| ≤ ε+ εs
1− cε

.

Then by (4.6), f(x̂∗)− f(x∗) ≤ (ε+ εs)
2/(2σ(1− cε)2).

When c = 0, Corollary 6 reduces to Theorem 5. Otherwise, the bound in

Collary 6 is looser than that in Theorem 5. Note that in both Theorem 5 and

77

Corollary 6, we assume a bound on the pseudo-gradient at the stopping solution

of Algorithm 8. This is probably difficult to verify in general, but is implied if the

bound apply to all points x in the entire domain.

Theorem 5 states that in the best-case scenario of strongly convex objective

function, if we can derive a pseudo-gradient that uniformly approximates the true

gradient within an error of ε, then the pseudo-gradient search can output a near-

optimal solution when stopping at condition (4.3), with an optimality gap of order

(ε+ εs)
2. This describes the best we can expect from any gradient-search method

that use gradient information with error, as in the case of pseudo-gradient.

Corollary 6 describes what happens when the approximation error is propor-

tional to the size of the true gradient when x is far away from x∗, and bounded

by ε when x is within a small neighborhood around x∗. It would achieve an opti-

mality bound equal to or better than that in Theorem 5 when the approximation

error is not too large with respect to the true gradient (cε < 1/2). This corollary

motivates the use of shrinking step sizes. At the earlier iterations of Algorithm

8, we make more steps into the negative pseudo-gradient direction approximated

from the last evaluated trial solution before re-running the simulation again to

update the pseudo-gradient (more details in later sections). The intuition is that

when the search is at a trial solution that is far away from the optimal solution,

the pseudo-gradient only needs to be directionally consistent with the actual gra-

dient in order to yield improvements. However, in later iterations of the search,

when the trial solution is within a small neighborhood of the optimal solution, the

pseudo-gradient needs to be more precise and updated more frequently so that we

do not step away from the optimum. Using the result of Corollary 6, we show that

this shrinking step size regime makes faster progress towards the optimal solution

78

without sacrificing the near-optimality.

The conditions in Theorem 5 and its corollary are rarely met in real-world

problems (for example, decision variables could be discrete so there is no notion

of strong convexity). Yet we will show that the use of pseudo-gradients can still

provide quick and significant progress in the search for a good solution later in

Sections 4.4 and 4.5.

4.4 Citibike

4.4.1 Introduction

In this section, we revisit the simulation optimization of Citi Bike system from

Chapter 3 and provide a brand new and more efficient search heuristic using

pseudo-gradient. For an overview of the problem and details on the simulation

model, see Chapter 3.

4.4.2 Problem Statement

As a reminder, we are trying to find the optimal bike level x and dock level r to

start each station with, so that the expected daily number of failed trips f(x, r) is

minimized. The problem can be formulated as

79

minimize
x,r

f(x, r) = Ef(x, r; ξ)

subject to
∑
i

xi = b

∑
i

ri = c

0 ≤ xi ≤ ri, ∀i

16 ≤ ri ≤ 60, ∀i

xi, ri integer, ∀i,

(4.7)

where the objective is evaluated using simulation via

min
x
f(x, r) = Ex,r[#failed-starts] + Ex,r[#failed-ends].

Similar to Chapter 3, the “bad-end” event where a customer abandons the bike is

rare and thus omitted from the objective.

4.4.3 Generating Trial Solutions Using Pseudo-gradient

In this section, we will fill in the details in step 3 of Algorithm 8 to use it for

the bike-sharing example. A pseudo-gradient in this example would approximate

the change in the number of failed trips with regard to a small (integer-valued)

change in (x, r). Since Algorithm 8 is designated for solving the unconstrained

prolem (4.2), to use it on the bike-sharing problem (4.7), we need to make sure

that the pseudo-gradient does not guide the trial solution out of the feasible set.

For example, consider a station that has 20 docks and 20 bikes at the current

solution. We cannot remove a dock without removing a bike from it. Neither

can we add a bike to the station without adding a dock. However, we can add

or remove a bike and a dock simultaneously from such station and the resulting

80

solution would be feasible. Therefore, when considering possible changes to the

current solution, we incorporate such “diagonal” changes in (x, r) to accommodate

for the constraints.

More specifically, for each station i, we consider the following six changes,

keeping all other stations j 6= i the same.

C1: x′i = xi + 1

C2: x′i = xi − 1

C3: r′i = ri + 1

C4: r′i = ri − 1

C5: C1 and C3

C6: C2 and C4

For each change Cs, s = 1, . . . , 6, we use the information from the last simulation

run of (x, r) to calculate the estimated change in the total number of failed-starts

and failed-ends. This can be achieved by recording the sequence Ii of (attempted)

bike pick-ups (−1) and drop-offs (+1) at each station i when started with xi

bikes and ri docks. Assuming that the sequence does not change when the sta-

tion is started with x′i bikes and r′i docks instead, we can trace through the bike

level during the day and compute how many failed-starts and failed-ends this

station would have incurred. This gives the estimated change in the objective

∆si = f(x′, r′) − f(x, r) with regard to the change Cs in the starting configura-

tion of station i, assuming it does not affect any other stations j 6= i. We define

{∆si, s = 1, . . . , 6, i = 1, . . .} as the pseudo-gradient ∇̂f(x, r). Note that it has

a larger dimension than (x, r) by taking diagonal changes into consideration, to

81

support better trial solution generation within the feasible set, as mentioned in the

beginning of this section.

If we calculate ∆si for all stations i in the system, we can obtain an ordered list

∆s of the change in objective with regard to change type Cs. Since our problem

(4.7) is constrained, we use the following “matches” to generate a trial solution

that satisfies
∑

i x
′
i = b and

∑
i r
′
i = c. Furthermore, each match is executed only

if the resulting (x′, r′) is feasible with 0 ≤ x′i ≤ r′i and 16 ≤ r′i ≤ 60 for any i. This

enables us to use Algorithm 8 as if the problem is unconstrained.

M1: Move a bike from station i to j.

M2: Move a dock from station i to j.

M3: Move a bike and a dock from station i to j.

M4: Remove a bike and a dock from station i and give them to station j and k,

respectively.

M5: Remove a bike from station j and a dock from station k and give them to

station i.

The effect of each movement on the objective can be estimated by the sum of ∆si

of the relevant changes to the stations. For example, the estimated change in the

objective from movement M4 is approximately ∆6i+∆1j+∆3k. We wish to generate

the trial solution such that the sum of such estimated changes is minimized.

In summary, the procedure of generating a trial solution in Algorithm 8 is

presented in Heuristic 9. When embedded in Algorithm 8, we set an initial nmatch

in the beginning of the search, and reduce it by half every time the stopping criteria

in line 14 is met. Then we restore nfails to 0 to continue the search with a smaller

82

step size until eventually nmatch = 1 and the algorithm terminates. The required

pseudo-gradient ∇̂f(x) in Algorithm 8 is here in the form of ∆si, s = 1, . . . , 6 and

i indexing each of the stations in the system, so taking values from 1 to 466.

Heuristic 9 Generation trial solution (x′, r′) for the bike-sharing example.

1: procedure Generate Trial Solution
Input: {∆si, s = 1, . . . , 6, i = all stations}. Local randomization parameter dR.

Number of matches nmatch to generate.
2: For each change Cs, sort {∆si} from smallest to largest.
3: repeat
4: for Each match M1 to M5 do
5: for Each change Cs corresponding to the match do
6: Choose station i randomly with top dR smallest ∆si. Make sure

the Cs is feasible for this station.
7: Recalculate ∆si and ascend/descend it to maintain the ordered

list.
8: until Total number of matches generated exceeds nmatch.

4.4.4 Numerical Results

Based on the simulation model in Chapter 3, we implement Algorithm 8 with

pseudo-gradient generated from Heuristic 9 on the bike-sharing example. In Al-

gorithm 8, each trial solution is evaluated with m = 30 replications (days) of the

simulation, and the final solution is evaluated independently with m′ = 50 repli-

cations. The maximum number of consecutive failures before stopping is set to be

nmaxFails = 30. In Heuristic 9, the local randomization radius dR is set to be 30

stations. Each trial solution is initially generated with a “step size” of nmatch = 32,

and is reduced by half (until reaching 1) every time the stopping criteria in line 14

is met, as mentioned in the previous section.

We compare the pseudo-gradient search in this chapter with Heuristic 7 from

Chapter 3 in the problem of optimizing the allocation of both bikes and docks over

83

the entire day. Both search methods are started from the same solutions of equal

allocation, the fluid model, and CTMC, and the trial solutions are evaluated using

the same random number stream. Figure 4.2 compares the two methods by each

starting solution and Figure 4.1 combines all starting solutions into one plot. The

corresponding starting and ending objective values are given in Table 4.1 below.

Starting Heuristic 7 Pseudo-gradient Search
Objective Ending Objective Ending Objective

7071± 43 (−42%),
Equal Allocation 12249± 89 8915± 47 (−27%) 6636± 43 (−46%)

after restart
CTMC 6937± 122 6681± 43 (−3%) 6679± 43 (−4%)
Fluid 7063± 89 6865± 44 (−3%) 6715± 43 (−5%)

Table 4.1: Comparison of the starting and ending objective values in 95% confi-
dence intervals for Heuristic 7 and pseudo-gradient search started from the solu-
tions of equal allocation, CTMC, and fluid model.

When the search started from the equal allocation solution terminates for the

first time, we observe a gap between the ending objective value and that of the

other two starting solutions. To check if the search is trapped in a local minimum,

we restart the pseudo-gradient search by resetting nmatch to the initial value of 32,

as mentioned in Section 4.2. After the restart, the search is able to make further

progress and close the gap between equal allocation and other starting solutions.

We have also tried this trick on the search with the other two starting solutions,

but it cannot further improve the objective value by much (results negligible and

hence omitted here). In fact, Table 4.1 shows that the 95% confidence intervals

for the ending objective values of three solutions overlap each other, indicating the

potential value of the global optimum.

Compared to Heuristic 7 from the last chapter, the pseudo-gradient search

is able to make much faster progress. When started from the “bad” solution of

84

equal-allocation, the search takes around 3000 simulated days (around 1.5 hours)

to reach a good solution (the first “basin” in Figure 4.2), and only around 1000

simulated days (30 minutes) when started from the better solutions of CTMC and

fluid model. Thus the method is well within the budget for planning the daily

re-balancing of a large-scale bike sharing system like Citibike. Further, it has the

potential to solve problems even larger than the current system with 466 stations

(932 decision variables), and may reduce the need for more sophisticated methods

like CTMC.

The code and input data is available in [41], and all the experiments are run

with Python 2.7 on a desktop with 4-core Intel Core i7-3770 CPU 3.40 GHz

processor, 16G memory, and Ubuntu 14.04 OS.

Figure 4.1: Combination of all starting solutions into one plot.

85

Figure 4.2: Comparison of objective value vs. number of simulated days between
Heuristic 7 (“wsc Heuristic”) and pseudo-gradient search (“Table Method”). The
three plots are with starting solutions of equal allocation, CTMC, and fluid model,
respectively.

86

4.5 Multi-period Multi-skill Call Center

4.5.1 Introduction

In this section, we consider a multi-skill call center, where calls of different types

arrive randomly into the system during the day. Each type of calls require certain

skill to be handled, and the agents working in the call center are grouped by their

skill sets for training and hiring purposes. When a call arrives, it is assigned to an

agent with the corresponding skill, and the agent is then occupied for the random

duration of the call. If there are multiple feasible agents available, the call is

assigned according to a routing rule determined by the preferences of the agents.

If there is no agent with matching skills available, the caller will wait for a random

patience time before abandoning the system. The quality of service at a call center

is measured by the service level (SL), defined as the (expected) fraction of calls

that are picked up within a certain time constraint. The SL constraint can be

overall, by call type, and by period in the day. Agents work on a predetermined

set of shift schedules with different starting times, durations, and breaks. The

cost associated with a particular agent is given based on his/her skill set and the

length of the shift. The goal is to find the optimal number of agents to schedule

in each skill group and shift, so that the total cost is minimized without violating

the service level requirement.

Despite that the cost function in the objective is deterministic and usually

piecewise linear, a multi-skill call center problem is hard for many reasons. First,

there is no closed-form formula or quick numerical algorithm for calculating the

service level in the multi-skill setting. The only way to accurately estimate SL

is by stochastic simulation ([5]). This makes the scheduling of a multi-skill call

87

center a simulation optimization problem with integer variables and stochastic

constraints. Furthermore, SL as a function of the number of agents is not concave

(see, e.g. [3]), making the simulation optimization problem non-convex, so that

no algorithm can guarantee a global optimum ([44]). Finally, each period during

the day can be covered by many shifts, and each call type can be handled by

many agent groups that share the same required skill set. This has created heavy

dependency between different coordinates of the decision variable, resulting in

many near-optimal solutions.

For multi-skill call centers, two types of problems have been defined in the

literature. First, a staffing problem divides the day into small periods, and the

goal is to determine the number of agents of each skill group to hire for each

period. Since the problem is solved independently in each period, the staffing

problem can also be regarded as a single-period problem. For staffing problem

with a single overall SL constraint, [59] uses a local search with approximate SL to

solve a Lagrangian formulation of the problem. For SL constraints by call type and

period, [6] uses a local search with SL approximated from a loss-delay function. [12]

applies a cutting-plane method with SL estimated by simulation. Since the problem

is non-convex, the cutting-plane method may generate cuts that eliminate feasible

solutions, for which [12] provides heuristics to deal with the difficulty. The second

type is the multi-period scheduling problem, where agents working on an admissible

set of shifts, and the goal is to find the optimal number of agents assigned to each

skill group and shift. A scheduling problem is harder to solve than a staffing

problem because of the larger problem dimension and the dependency between

overlapping shifts. Thus [10] decomposes the scheduling problem into two steps

by first solving for the optimal staffing level for each period in the day. Then the

staffing solution is converted to a feasible schedule using the predetermined shifts.

88

It is found that such two-step approach usually overestimates the number of agents

needed, so [5] chooses to optimize the staffing and the scheduling simultaneously

by extending the cutting-plane method of [12] to the multi-period setting.

Different from all the approaches mentioned above, the simulation-based opti-

mization method provided in the section uses pseudo-gradient to drive local search

steps. For simplicity and ease of computation, we only include the overall SL

constraint, and provide a Lagrangian formulation with a three-step optimization

framework in Section 4.5.2. However, the essence of our method is not constrained

by the Lagrangian formulation - we can foresee the pseudo-gradient introduced in

Section 4.5.4 to be used for generating cuts in a cutting plane method like [12]. The

numerical experiments in Section 4.5.5 shows that our method is able to output

feasible and reasonably optimal solutions. For the staffing problem, the outputted

solutions of the pseudo-gradient search are close to the experiment results in [59]

for their comparison with [12]. For the scheduling problem, we are not able to

compare the method directly with anything in the literature due to the difference

in problem settings and input data.

4.5.2 Problem Statement and Lagrangian Formulation

For the scheduling problem, assume there are K types of calls, I groups

of agents, and a total of Q different shifts. The cost matrix matrix C =

(c1,1, . . . , c1,Q, . . . , cI,1, . . . , cI,Q) contains the cost ci,q of hiring an agent of group i

and shift q. The goal is to find the optimal number of agents xi,q to hire in each

group i and shift q, so that the total cost
∑

i=1,...I

∑
q=1,...,Q ci,qxi,q is minimized, and

the overall service level, defined as the expected fraction of calls picked up within

20 seconds, is bounded below by α. Define the service level g : RI×Q → [0, 1]

89

as a function of the schedule X = (x1,1, . . . , x1,Q, . . . , xI,1, . . . , xI,Q). Then the

scheduling problem can be formulated as (4.8).

minimize
X

p(X) =
∑

q=1,...,Q

ci,qxi,q

subject to g(X) ≥ α

X ≥ 0 and integer.

(4.8)

For the staffing problem, We simply remove the subscript q from C and X, so

that they become vectors of length I.

The service level function g(·) is estimated using a discrete-event simulation

model with the following parameters. The day is divided into J periods, and in

each period j ∈ {1, . . . , J}, calls of type k arrive into the system according to a

stationary Poisson process with rate λjk. The service time of the call handled by

agents of group i is exponentially distributed with mean µik. The routing logic R

defines the priority Rik of agents of group i for calls of type k. Lower values of Rik

represent higher preferences, and ∞ means agents in group i cannot handle calls

of type k. If there is no available agent who can pick up the call, the caller will

wait in the system for an exponentially distributed patience time with mean ρ.

To use Algorithm 8, we convert problem (4.8) into an unconstrained one using

Lagrangian transformation. We assign the Lagrangian multiplier β ≥ 0 to the

constraint g(X) ≥ α. The Lagrangian form of the problem (4.8) is

max
β≥0

min
X∈NI×Q

p(X) + β(α− g(X)), (4.9)

where N = {0, 1, 2, . . .}. By weak duality (see, e.g. [11]), the optimal value of

this Lagrangian problem serves as a lower bound to that of the original problem

90

(4.8). If we ignore the integrality of X and assume that g(·) is concave, the original

problem becomes convex, and the bound is tight as a result of strong duality.

However, the service level function g(·) is typically not concave even if X is

continuous. In fact, it is convex in each coordinate of X when the coordinates

are small, and concave for larger coordinates ([12]). The intuition is that when

the number of agents in a certain group is zero, adding just one or two may not

improve the service level by much. The service level starts to increase at a faster

rate when the number of agents is large enough. Eventually, when there are many

agents so that the service level is close to one, adding more agents would be un-

necessary. In order to solve this difficulty, we define
∑
X =

∑
i=1,...I

∑
q=1,...,Q xi,q

and decomposes the inner layer of (4.9) into two steps:

max
β≥0

min
n∈N

min∑
X=n,

X∈NI×Q

p(X) + β(α− g(X)). (4.10)

The idea is that by constraining
∑
X = n for large enough n in the inner problem,

we try to limit the local search of X inside the concave region of g(·), so that we

have a “convex” problem with “strong duality” (not exactly because X is integer-

valued). In result, the optimal value of the Lagrangian problem would be closer

to that of the original problem, and we can switch the order of optimizations in

(4.10).

For ease of notation, we define

fn(β,X) = p(X) + β(α− g(X)).

91

Then problem (4.10) can be decomposed to the following three subproblems.

f ∗ = min
n∈N

f ∗n, (I)

f ∗n = max
β≥0

fn(β), (II)

fn(β) = min∑
X=n,

X∈NI×Q

fn(β,X). (III)

4.5.3 Search Framework for the Lagrangian Problem

In this section, we provide a 3-step search framework used for solving the decom-

posed Lagrangian problem (I), (II), and (III) of multi-skill call center schedul-

ing/staffing problem. The golden section search for (I) and the bisection search

for (II) are very similar to the procedure in [59], whereas our local search for (III)

is simulation-based and driven by pseudo-gradient.

For the out-most layer of optimization problem (I), we use the following golden

section search algorithm. We obtain the lower and upper bound by an approxi-

mation based on the Erlang-C formula. The lower bound is calculated by treating

the system as a single-skill call center with one call type and one agent group, and

we take the period with the largest arrival rate and use the smallest service rate

among all agents. The upper bound is calculated by having a separate call center

for each call type, and summing up the number of slowest agents needed for each

call center. Taking into account the effect of shift schedules, we scale the upper

bound further by the minimum number of shifts needed to “cover” the business

day.

92

Algorithm 10 Golden search for (I).

Input: Lower and upper bounds nL and nU .
1: Initialize f ∗ =∞.
2: while nU − nL > 0 do
3: Set nλ = bγnL + (1− γ)nUc and nρ = d(1− γ)nL + γnUe, where γ =

2/(1 +
√

5) is the golden ratio.
4: Call Algorithm 11 with input nλ. Record the outputs as Xnλ and f ∗nλ .
5: Call Algorithm 11 with input nρ. Record the outputs as Xnρ and f ∗nρ .
6: if f ∗nλ ≤ f ∗nρ then
7: Set nU = nρ and reuse fnλ as fnρ in the next iteration.
8: If f ∗nλ < f ∗, record f ∗ = f ∗nλ and X∗ = Xnλ .
9: else
10: Set nL = nλ and reuse f ∗nρ as f ∗nλ in the next iteration.
11: If f ∗nρ < f ∗, record f ∗ = f ∗nρ and X∗ = Xnρ .

Output: X∗.

The second layer of optimization uses a bisection search (Algorithm 11) to find

f ∗n in (II) while maintaining the feasibility of the corresponding X.

Algorithm 11 Bisection search for (II).

Input: Total number of agents n.
1: Initialize lower bound βL = 0 and upper bound βU = 1000. Set f ∗n = −∞.
2: while βU − βL > 0.01 do
3: Set β = βL + (βU − βL)/z.
4: Call Algorithm 8 with f = fn(β). Record the outputted solution as Xn(β),

and store the corresponding objective and estimated service level as fn(β) and
ĝ(Xn(β)).

5: if then
6: Set f ∗n = fn(β) and X∗n = Xn(β).

7: if ĝ(Xn(β)) < α then
8: Set βL = β.
9: else
10: Set βU = β.

Output: X∗n and f ∗n.

Note that in each iteration of the bisection search step, we update the bounds

βL and βU so that Xn(β) remains feasible for the values of β in between. With

93

such modification, a bisection can be used to optimize (II) due to the following

observation that the objective is monotone in the region where Xn(β) is feasible.

Observation 1. Suppose there exists set Θ such that for every β ∈ Θ, β ≥ 0 and

Xn(β) := arg min∑
X=n,

X∈NI×Q
fn(β,X) satisfies g(Xn(β)) ≥ α. Then fn(·) is monotone

in Θ.

Proof. Choose β1, β2 ∈ Θ such that β1 > β2. Then by optimality of Xn(β2), we

have

fn(β2) = fn(β2, Xn(β2))

= p(Xn(β2)) + β2(α− g(Xn(β2))

≤ p(Xn(β1)) + β2(α− g(Xn(β1)))

< p(Xn(β1)) + β1(α− g(Xn(β1)))

= fn(β1, Xn(β1)) = fn(β1).

Algorithms 10 and 11 act as a wrapper outside Algorithm 8 that uses a pseudo-

gradient search for the final step (III) of the optimization. Each iteration of Al-

gorithm 10 requires two calls of Algorithm 11, and each iteration of Algorithm

bisection 11 requires one call of Algorithm 8, in which the trial solution is eval-

uated using simulation. Thus, to reduce the number of simulation runs, when

Algorithm 10 calls the bisection with input n, we first run an initial local search

with β = βU = 1000 to obtain an upper bound on the service level. If this upper

bound is below α, we set nL = n and skip the rest of the golden section iteration.

Also, we take z = max{2, log2(βU − βL)} so that the size of βU − βL reduces on a

logarithmic scale.

94

4.5.4 Generating Trial Solution Using Pseudo-gradient

Throughout this section, we use f as a shorthand of fn(β) in (III), corresponding

to the objective function f(·) in Algorithm 8.

The only remaining part is to define a pseudo-gradient that drives Algorithm 8

to solve (III). A well-defined pseudo-gradient for the multi-skill call center schedul-

ing problem would approximate the change in the Lagrangian objective value in

(III) with regard to a small change in the schedule X. Since the change can be

positive or negative, we define the forward pseudo-gradient ∇̂f+(X) with (i, q)-

th component being the approximate change in the objective f(X ′) − f(X) with

X ′i,q = Xi,q + 1, keeping all other coordinates the same. Similarly, we define the

backward pseudo-gradient ∇̂f−(X) as the approximate change in the objective

after removing an agent from group i and shift q, while keeping all other groups

and shifts the same.

To calculate the forward pseudo-gradient ∇̂f+(X), We use the list of lateCalls

recorded from the simulation run that evaluates X. lateCalls contains the record

of two kinds of calls. The first type is the calls that run out of patience before

ever picked up, in which case lateCalls contains their arrival time, call type, and

patience time. The second type is the calls that are picked up late (> 20 seconds

since arrival), and in addition to the same information for the first type, lateCalls

also contains the group and shift number of the corresponding agent and the ser-

vice time generated. Then the (i, q)-th component of ∇̂f+(X) is calculated by

“simulating” the lifetime of an additional agent added to group i and shift q. The

procedure of generating ∇̂f+(X) is described in the pseudo-code below, where

Ncalls is the total number of calls that entered the system in the simulation.

95

Procedure 4.1: The procedure to generate the forward pseudo-gradient ∇̂f+(X).

Set time = beginning of shift q.
Set ∇̂f+(X)i,q = ci,q for all i = 1, . . . , I and q = 1, . . . , Q.
while time < end of shift q do

for every call in lateCalls do
if the call can be picked up by agent of group i then

Increment ∇̂f+(X)i,q by −β/Ncalls.
Increment time by the service time (from lateCalls or otherwise gen-

erated).

The backward pseudo-gradient ∇̂f−(X) is generated from the list of lastCalls,

for which the (i, q)-th component is the number of calls handled by the “last” agent

in group i and shift q. An agent is labeled “last” if he/she is the remaining one

when number of available agents in the same group and shift drops down to 1 for

the first time during the day. The intuition is that if this agent is removed from the

system, the calls picked up by him/her will now be answered late or dropped, and

the service level will suffer. Thus the (i, q)-th component of ∇̂f−(X) is calculated

as

∇̂f−(X)i,q = −ci,q + β(lastCalls i,q/Ncalls),

if Xi,q >= 1; otherwise set ∇̂f−(X)i,q =∞.

However, a caveat in this logic is that in a multi-skill setting, one type of call

can be picked up by several groups of agents. Thus the removal of the last agent

from one group may not necessarily harm the service level if the calls can be picked

up by available agents in other groups. Therefore, our backward pseudo-gradient

∇̂f−(X) overestimates the true effect of agent removals and may result in over-

staffing. Nevertheless, the substitution effect is too complicated to capture in the

simulation unless we store a complete trace of the run, which requires significant

memory space and may slow down the simulation.

Finally, with ∇̂f+(X) and ∇̂f−(X), the trial solution X ′ is generated by

96

Heuristic 12. Since the total number of agents in the system needs to remain

at n, we generate X ′ from the current solution X by moving agents between pairs

of coordinates. Similar to Heuristic 9 for the bike-sharing example, we use a de-

creasing nmatch to balance between the exploration of the search space and the

exploitation of the neighborhood around the last best solution X. Apart from

the decrease in size, the choice of nmatch used to generate the new trial solution

X ′ from X should also depend on the available room for improvement, indicated

by the number of negative components in ∇̂f+(X) and ∇̂f−(X). For example, if

there is only one pair of (i1, q1) and (i2, q2) with ∇̂f+(X)i1,q1 + ∇̂f−(X)i2,q2 < 0,

the search radius nmatch can only be as large as one.

Heuristic 12 Generation trial solution X ′ for the multi-skill call center example.

1: procedure Generate Trial Solution
Input: ∇̂f+(X) and ∇̂f−(X). Local randomization parameter dR. Number of

matches nmatch to generate.
2: Initialize X ′ = X ′.
3: Sort ∇̂f+(X) and ∇̂f−(X) from smallest to largest.
4: repeat
5: Choose group i1 and shift q1 from the top dR largest components of
∇̂f+(X).

6: Choose group i2 and shift q2 from the top dR largest components of
∇̂f−(X), such that ∇̂f+(X)i1,q1 + ∇̂f−(X)i2,q2 < 0.

7: Increment X ′i1,q1 by 1 and decrement X ′i2,q2 by 1.

8: until No pairs of (i1, q1) and (i2, q2) can be found with ∇̂f+(X)i1,q1 +

∇̂f−(X)i2,q2 < 0 or the total number of pairs generated exceeds nmatch.

4.5.5 Numerical Results

The pseudo-gradient search in Algorithms 10, 11, and Heuristic 12 is implemented

in Matlab based on the simulation code for “Multi-period multi-skill call center”

on SimOpt.org (see [36]). The code and data is available in the online repository

97

[39]. All test cases are run on a desktop with a 4-core Intel Core i7-3770 3.40 GHz

processor with 16G memory, running Matlab R2013a on 64-bit Windows 7.

Staffing Problem

We take the three-skill call center problem from [59] as an example for a staffing

problem. The call center has K = 3 types of calls and I = 6 agent groups. The

routing matrix is

R =



1 ∞ ∞

∞ 1 ∞

2 2 ∞

3 ∞ 1

∞ 3 2

4 4 3


,

where a call of type k will be assigned to the agent group i with the smallest Rik

first (e.g. call type 1 will be assigned in the order of 1 → 3 → 4 → 6). Rik = ∞

indicates that the agents of group i cannot pick up calls of type k. The service

rates µik of agent group i for call type k are summarized in Table 4.2, and the

arrival rates λk of call type k and the cost ci of hiring an agent in group i are

displayed in Table 4.3. All calls have infinite patience time and never abandon the

system.

We run the simulation for 160 hours to evaluate each trial solution. In Algo-

rithm 8, we stop before the consecutive number of fails reaches nmaxFails = 5 or there

does not exist a pair of (i1, q1) and (i2, q2) with ∇̂f+(X)i1,q1 + ∇̂f−(X)i2,q2 < 0.

In Heuristic 12, the starting nmatch is set to be 32. Each time the stopping criteria

14 is met, nmatch is reduced to the minimum between half of its previous value and

98

the total possible pairs of (i1, q1) and (i2, q2) with ∇̂f+(X)i1,q1 +∇̂f−(X)i2,q2 < 0.

We consider the following 5 cases from [59]. Based on Case 1, Case 2 and 3

have the service times associated with the call types 1 and 2 increased. Case 4 has

arrival rate and service time of call type 1 both increased. Case 5 has arrival rate

of type 1 and the service time of type 2 increased.

ID µ11 µ22 µ31 µ32 µ41 µ43 µ52 µ53 µ61 µ62 µ63

1 0.20 0.18 0.19 0.17 0.19 0.16 0.17 0.16 0.18 0.16 0.15
2 0.15 0.18 0.14 0.17 0.14 0.16 0.17 0.16 0.13 0.16 0.15
3 0.20 0.15 0.19 0.14 0.19 0.16 0.14 0.16 0.18 0.13 0.15
4 0.15 0.18 0.14 0.17 0.14 0.16 0.17 0.16 0.13 0.16 0.15
5 0.20 0.15 0.19 0.14 0.19 0.16 0.14 0.16 0.18 0.13 0.15

Table 4.2: Service rates µik of agent group i for call type k.

ID λ1 λ2 λ3 c1 c2 c3 c4 c5 c6

1 1.0 1.5 2.0 1.0 1.0 1.1 1.1 1.1 1.2
2 1.0 1.5 2.0 1.0 1.0 1.1 1.1 1.1 1.2
3 1.0 1.5 2.0 1.0 1.0 1.1 1.1 1.1 1.2
4 2.0 1.5 2.0 1.0 1.0 1.1 1.1 1.1 1.2
5 2.0 1.5 2.0 1.0 1.0 1.1 1.1 1.1 1.2

Table 4.3: Arrival rates λk for call type k and cost ci for agent group i.

Table 4.4 contains a comparison between the pseudo-gradient search, the local

search using approximate SL from [59], and the cutting-plane method from [12].

The ending service levels for the pseudo-gradient search are all within ±0.02 of

the target level 0.8. The results for the other two methods are taken from [59].

Since we do not have the code for the search method or the simulation model

from [59], the comparison of the optimal objective values in Table 4.4 is not exact.

For the comparisons of the number of simulations and β steps, both our pseudo-

gradient search and the local approximate search from [59] are based on Lagrangian

relaxation, but [59] uses blocking probability to estimate the service level function

99

in their local search, and only runs simulation when evaluating fn(β) for each β

step in Algorithm 11. Our method uses simulation in each local search step in

Algorithm 8, so we expect our number of simulations to be much larger, while the

number of β steps to be comparable. Comparing to the cutting-plane method, the

number of simulation runs used in the pseudo-gradient search is still much larger.

Our intuition is that the cutting plane method requires solving integer programs,

which is efficient for problems with small solution space like this, but might require

more time when the problem dimension is larger.

ID Solution Cost # Simulation runs # β steps
1 Pseudo-gradient search 35.8 400 32
1 Local approximate search 34.6 31 31
1 Cutting planes 34.8 50 NA
2 Pseudo-gradient search 38.1 280 20
2 Local approximate search 36.8 18 18
2 Cutting planes 37.1 56 NA
3 Pseudo-gradient search 37.8 240 20
3 Local approximate search 36.7 19 19
3 Cutting planes 37.6 32 NA
4 Pseudo-gradient search 45.0 450 36
4 Local approximate search 43.8 34 34
4 Cutting planes 44.8 43 NA
5 Pseudo-gradient search 43.2 290 23
5 Local approximate search 42.0 22 22
5 Cutting planes 42.5 55 NA

Table 4.4: Results of the three-skill staffing problem over three different methods:
our pseudo-gradient search, the local search based on SL approximation from [59],
and their comparison to the cutting-plane method from [12]. Note that our method
is using a different simulation model with different seed, so the cost comparison is
not exact.

We expect the local search driven by simulation to yield more optimal solutions

than the local search driven by approximated SL, but in our experiment this is not

the case. Apart from the difference in our simulation models (e.g. random seed), we

have mentioned in Section 4.5.4 that our backward pseudo-gradient overestimates

100

the negative effect of removing agents, which may result in over-staffing.

Scheduling Problem

In this subsection, we take the example of a small call center with 2 call types and

2 agent groups, and a large call center with 20 call types and 35 agent groups. All

the data used in this section are from the case of “Multi-period Multi-skill Call

Center” on SimOpt.org (see [34]), except that we adapt a 285-shift scheme from [5]

instead of the original 74 shifts on on SimOpt.org. The examples are very similar

to the small and 36-period large call center cases from [5], but the arrival rates

and the routing policy we take from [34] differ, making the results in this section

not directly comparable. In addition, [5] constrains service level by each period

(and sometimes also by call type), while we only have the overall constraint, so the

problems being solved are different. Finally, [5] runs the numerical experiments

in Java with a CPU time budget, so without being able to compare the solution

quality, it is difficult to claim which method can achieve a better solution more

quickly.

In both scheduling problems, the 8am-10pm business day is divided into 36

periods of 15 minutes. We use a total of 285 shifts, each with a 30-minute lunch

break and two 15-minute coffee breaks, spanning the business day from 8am to

10pm. The details on the shift schedules are available from Table 1 of [5], hence

omitted here. The cost of hiring an agent of group i in shift q is calculated by

ciq = (1 + (ηi)ς)lq/30,

where ηi is the number of call types that agents of group i can pick up, ς = 0.1 is

a constant, and lq is the length of shift q in number of 15-minute periods. Calls of

101

each type arrive arrive according to a stationary Poisson process with piece-wise

constant rate in each period. The service time is exponentially distributed with

a rate of 8 per minute regardless of the agent group and call type. Customers

abandon the system after a patience time that has a mixture distribution. The

patience time is exponentially distributed with mean of 10 minutes with probability

0.999, and zero with probability 0.001.

We evaluate each trial solution using m = 30 days of simulation. Each simu-

lated day takes around 0.9 seconds for the small call center, and 3.2 seconds for

the large call center, with the simulation model implemented in Matlab. The con-

figurations of nmaxFails and nmatch in Algorithm 8 and Heuristic 12 are similar to

those in the staffing problem.

Scheduling Problem: Small Call Center

In the small call center with two call types and two agent groups, agents of group

1 can only pick up calls of type 1, while agents of group 2 can pick up both but

prefers calls of type 2. The decision variable is in the dimension of 570 (2 agent

groups × 285 shifts). The arrival rates for each call type are plotted in Figure 4.3

and the data is available from [34].

102

0

20

40

60

80

100

120

140

160

180

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

N
u

m
b

er
 o

f
ar

ri
va

ls
 p

er
 h

o
u

r

15-min Periods

Call type 1

Call type 2

Figure 4.3: The arrival rates for the small call center.

Table 4.5 gives the mean and median cost and service level outputted by the

final solution of Algorithm 8 over 5 independent trials of the small call center

problem using different random seeds. We also give the average utilization of the

agents in each group, and the average percent of abandonment for each call type,

to gain insight on the optimality of the outputted solution. It seems that the search

is able to output a solution with feasible service level most of the time (4 out of 5),

and low call abandonment rate. The utilizations of both groups do not indicate

over-staffing or under-staffing. Also, group 1 agents have higher utilization rate

since calls of type 1 have higher arrival rates. The utilization of group 2 agents

is not much lower because they are generalists that can also pick up type 1 calls.

The average number of simulated days is 3320, indicating that there are about 110

trial solutions evaluated before the algorithm terminates.

103

Metric Experiment output
mean cost 37.33

median cost 38.88
mean SL 0.81
min SL 0.78

mean # simulations 3320
mean CPU time (seconds) 3242

mean util. of group 1 0.75
mean util. of group 2 0.69

mean %abandonment of call type 1 0
mean %abandonment of call type 2 0.0015

Table 4.5: The results of pseudo-gradient search on the small call center with
different random seeds.

Scheduling Problem: Large Call Center

In a large call center, there are 20 call types and 35 agent groups, giving a decision

variable of 35 × 285 = 9975 dimensions. Figure 4.4 gives the arrival rate by call

type in each of the 15-minute period in the day. The routing policy and agent

groups are available from [34], hence omitted here.

0

50

100

150

200

250

300

350

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

N
u

m
b

e
r

o
f

ar
ri

va
ls

 p
er

 h
o

u
r

15-minute periods

Call type 20

Call type 19

Call type 18

Call type 17

Call type 16

Call type 15

Call type 14

Call type 13

Call type 12

Call type 11

Call type 10

Call type 9

Call type 8

Call type 7

Call type 6

Call type 5

Call type 4

Call type 3

Call type 2

Call type 1

Figure 4.4: The arrival rates for the large call center.

104

Table 4.6 summarizes the results from 5 independent trials of the pseudo-

gradient search, each with a different random seed.

Metric Experiment output
mean cost 89.58

median cost 87.49
mean SL 0.80
min SL 0.78

mean # simulations 9,870
mean CPU time (seconds) 32,129

Table 4.6: The results of pseudo-gradient search on the large call center with
different random seeds.

The search takes an average of around 9 hours to output the final solution.

Although the input data for this experiment is different from that in [5], the solving

time is smaller than their budget time of 10 hours, with each iteration of the

simulation taking 3 times as long (due to the difference in the processing time

of Matlab vs. Java). The outputted solution is feasible with an average server

utilization of 0.55. The busiest agent groups have utilizations of around 0.79, and

the most idle group has an utilization of 0.18 and specializes in the call type with

the smallest arrival rates.

4.6 Remarks and Future Work

In this chapter, we propose the new concept of pseudo-gradient and use it to

guide a search procedure for large-scale simulation optimization problems. Our

pseudo-gradient search is implemented in the bike-sharing and multi-skill call cen-

ter settings.

For the bike-sharing problem, the pseudo-gradient is calculated as the change

105

in the number of failed trips with regard to the change by swapping bikes and/or

docks between pairs of stations. The calculation is based on the assumption that

the attempted sequence of bike pick ups and drop offs at each station remains the

same with a small change in the bike or dock level. In the implementation, we

find the pseudo-gradient search is able to make quick and effective progress and

improve upon any starting solution. The method potentially eliminates the need

for more sophisticated methods like CTMC.

For the call center problem, the pseudo-gradient is the total change in the

hiring cost and the service level. To calculate the change in the service level, we

use the lists of lateCalls and lastCalls to “simulate” what happens if we add or

remove an agent from certain group and shift. lateCalls captures all the calls that

are picked up late (or never picked up), which can be eliminated by hiring more

agents. lastCalls records the calls picked up by the last agent in each shift and

group, and those calls will become late if the agent is removed from the system.

In our numerical experiment, compared to the cutting-plane methods, the pseudo-

gradient search is slower in small problems and is comparable or faster in larger

instances.

During the numerical experiments, we find that the pseudo-gradient search

works better for the bike-sharing example because of two factors. The first one is

the simplicity of how the system states are changed with regard to the future events.

In the bike-sharing example we are able to record the list of bike pick ups and drop

offs for all stations, and the effect of a change in the starting configuration of a

station can be calculated relatively easily from that. However, for the call center

example, the addition or removal of an agent changes the event list significantly,

and its effect on the service level cannot be calculated in a straightforward way. The

106

second factor is that the objective function in the bike sharing system can be easily

decomposed by stations. This does not apply to the service level function in the

call center example because of the complex interactions between agent groups and

shifts. For example, our forward gradient and backward gradient calculated from

the list of lateCalls and lastCalls cannot capture the substitution effect between

agents of similar skill sets and overlapping shifts. Because of these two factors, the

pseudo-gradient for the call center example does not approximate the true gradient

as accurately as that for the bike-sharing example. This motivates future work in

finding better pseudo-gradients in the subclass of simulation optimization problems

with complex structure and large correlation between different coordinates of the

decision variables.

107

APPENDIX A

APPENDIX TO CHAPTER 2

A.1 Characterizing Strictly Convex Vectors

Here we show that the interior of C, denoted C◦, is the set of all strictly convex

vectors, where C is defined in Definition 2. We repeatedly exploit the fact that

g ∈ C if and only if the linear system (LS) is feasible. Throughout this section we

take the points {xi : 1 ≤ i ≤ r} as fixed. Denote the set of indices of the design

points as I = {1, 2, . . . , r}. For each fixed k ∈ I, consider the set Tk of real-valued

coefficients that express xk as a convex combination of the other points, i.e.,

Tk = {t ∈ Rr : tk = 0, ti ∈ [0, 1] i 6= k,
∑
i

ti = 1,
r∑
i=1

tixi = xk}.

Lemma 1. Given a function g, suppose that for each k ∈ I,
∑r

i=1 tig(xi)−g(xk) >

0 for all t ∈ Tk. Then there exists ε > 0 such that
∑r

i=1 tig(xi) − g(xk) ≥ ε > 0

for all k and all t ∈ Tk.

Proof. Since there are only finitely many choices for xk, we just need to show

that such a bound exists for each k ∈ I. So fix k ∈ I. If Tk is a finite set,

then the required bound exists by taking the minimum over a finite number of

positive terms. So suppose Tk contains an infinite number of terms, as arises for

example when multiple xi are linearly dependent. If a positive ε as stated does

not exist, then there is a sequence {t(n), n ≥ 1} contained in Tk such that D(n) :=∑r
i=1 t

(n)
i g(xi)− g(xk)→ 0 as n→∞. The set Tk is compact, so by passing to a

subsequence we can assume that t(n) → t∗ ∈ Tk as n→∞. Also since D(n)→ 0,

it follows by continuity that D∗ =
∑r

i=1 t
∗
i g(xi)−g(xk) = limn→∞D(n) = 0, which

contradicts the assumption of the lemma.

108

Proposition 2. An r-dimensional vector g ∈ C◦ if and only if there exists a

strictly convex function g whose values on x coincide with those of g, i.e. g(x) = g

for x = (x1,x2, . . . ,xr).

Proof. First, suppose there exists a strictly convex function g with g(x) = g. We

want to show g ∈ C◦. Since g is strictly convex, the strict inequalities in the

statement of Lemma 1 hold for all k ∈ I and all t ∈ Tk. Lemma 1 then implies

that there exists ε > 0 such that

r∑
i=1

tig(xi) ≥ g(xk) + ε (A.1)

for all k and all t ∈ Tk. Consider the ball in Rr defined by (y ∈ Rr : |yi| ≤ ε/2 ∀i),

and the perturbed vector g̃ = g + y with ith component g(xi) + yi. Then for any

k ∈ I and any t ∈ Tk,(
r∑
i=1

tig̃(xi)

)
− g̃(xk) =

(
r∑
i=1

ti(g(xi) + yi)

)
− (g(xk) + yk)

=
r∑
i=1

tig(xi)− g(xk) +

(
r∑
i=1

tiyi

)
− yk

≥ ε− r
max
i=1
|yi| − |yk|

≥ ε− ε/2− ε/2 = 0.

Thus all perturbed function values in the ball centered at g are convex, and it

follows that g ∈ C◦.

Now suppose that g ∈ C◦. We want to show that there exists a strictly convex

function, g∗ say, that coincides with g on x. Since g ∈ C there exists a convex

function g that coincides with g on x. Let h be an arbitrary finite-valued strictly

convex function, e.g., h(x) = ‖x‖2
2, and let h be the restriction of h to x. For

δ > 0 sufficiently small, g − δh ∈ C, since g ∈ C◦ and δh is a finite vector with

109

arbitrarily small norm for δ sufficiently small. Thus, there exists a convex function

f that coincides with g − δh on x. But then g∗ = f + δh coincides with g on x,

and is the sum of a convex and strictly convex function so is strictly convex.

A.2 Alternatives to the Posterior Updates

When the covariance matrix Γ is known,the normal-normal conjugate prior (pos-

terior) updates in (2.1) involve inverting the posterior covariance matrix Λn in

every iteration. An alternative method is to use the Sherman-Morrison-Woodbury

formula

µn = µn−1 + Λn−1sΓ
−1(I + Λn−1sΓ

−1)−1(ȳ − µn−1)

Λn = Λn−1 − Λn−1sΓ
−1(I + Λn−1sΓ

−1)−1Λn−1

(A.2)

In this version, only the inverse of (I + Λn−1sΓ
−1) needs to be updated in each

iteration, and the inverse of Λn−1 is not required. However, since Γ is full rank,

this update is a full rank update on Λn, which means the calculation still requires

O(r3) math operations.

Another way to avoid repeated matrix inversions is to update the precision

matrix Λ−1
n from iteration n to n+ 1 instead of the covariance matrix, and to use

the Cholesky factorization when performing the updates. In each iteration, the

update formula is

Λ−1
n = Λ−1

n−1 + sΓ−1

Ln = Chol(Λ−1
n)

µn = Λn(Λ−1
n−1µn−1 + sΓ−1ȳ)

= LTn\[Ln\(Λ−1
n−1µn−1 + sΓ−1ȳ)].

(A.3)

Here Chol(Λ−1
n) is the lower-triangular Cholesky factor of Λ−1

n , which is unique

110

when Γ−1
n positive definite, and x = A\b means to solve the linear system Ax = b.

In Algorithm 2, when samples with distribution N(µn,Λn) are required, we can

generate them by computing µn+LTn\Z, where Z ∼ N(0, I). This is based on the

fact that Chol(Λn) = L−Tn . We are not able to find a way to directly update the

Cholesky factor, so the Cholesky decomposition step is required in each iteration,

which means that this method also has O(r3) complexity at each iteration.

Although these proposals do not reduce the computational complexity of the

update, they allow us to do fewer matrix inversions, which makes them numerically

more robust.

111

BIBLIOGRAPHY

[1] Abrevaya, J. and Jiang, W. A nonparametric approach to measuring and
testing curvature. Journal of Business & Economic Statistics, 23:1–19, 2005.

[2] Allon, G., Beenstock, M., Hackman, S., Passy, U., and Shapiro, A. Nonpara-
metric estimation of concave production technologies by entropic methods.
Journal of Applied Econometrics, 22(4):795–816, 2007.

[3] Atlason, J. A Simulation-Based Cutting Plane Method for Optimization of
Service Systems. PhD thesis, University of Michigan, Ann Arbor, MI, 2004.

[4] Atlason, J., Epelman, M. A., and Henderson, S. G. Call center staffing
with simulation and cutting plane methods. Annals of Operations Research,
127:333–358, 2004.

[5] Avramidis, A. N., Chan, W., Gendreau, M., LEcuyer, P., and Pisacane, O.
Optimizing daily agent scheduling in a multiskill call center. European Journal
of Operational Research, 200(3):822 – 832, 2010.

[6] Avramidis, A. N., Chan, W., and L’Ecuyer, P. Staffing multi-skill call cen-
ters via search methods and a performance approximation. IIE Transactions,
41(6):483–497, 2009.

[7] Baraud, Y., Huet, S., and Laurent, B. Testing convex hypotheses on the
mean of a Gaussian vector. application to testing qualitative hypotheses on a
regression function. The Annals of Statistics, 33(1):214–257, 2005.

[8] Bauschke, H. H. and Combettes, P. L. Convex Analysis and Monotone Oper-
ator Theory in Hilbert Spaces. Springer Publishing Company, Incorporated,
1st edition, 2011.

[9] Bernardo, J. M. and Smith, A. F. M. Bayesian Theory, pages 240–376. John
Wiley & Sons, Inc., 2008.

[10] Bhulai, S., Koole, G., and Pot, A. Simple methods for shift scheduling in
multiskill call centers. Manufacturing & Service Operations Management,
10(3):411–420, July 2008.

[11] Boyd, S. and Vandenberghe, L. Convex Optimization. Cambridge University
Press, New York, 2004.

112

[12] Cezik, M. T. and L’Ecuyer, P. Staffing multiskill call centers via linear pro-
gramming and simulation. Management Science, 54(2):310–323, 2008.

[13] Chemla, D., Meunier, F., and Calvo, R. W. Bike sharing systems: Solving
the static rebalancing problem. Discrete Optimization, 10(2):120 – 146, 2013.

[14] Chen, X., Ankenman, B. E., and Nelson, B. L. The effects of common random
numbers on stochastic kriging metamodels. ACM TOMACS, 22(2):Article 7,
2012.

[15] CitibikeNYC. Accessed Apr. 28, 2016, http://www.citibikenyc.com/.

[16] DeGroot, M. Optimal Statistical Decisions. McGraw-Hill, New York, NY,
1970.

[17] Diack, C. A. T. and Thomas-Agnan, C. A nonparametric test of the non-
convexity of regression. Nonparametric Statistics, 9:335–362, 1998.

[18] Feng, M. and Staum, J. Green simulation designs for repeated experiments.
In Proceedings of the 2015 Winter Simulation Conference, WSC ’15, pages
403–413, Piscataway, NJ, USA, 2015. IEEE Press.

[19] Forma, I. A., Raviv, T., and Tzur, M. A 3-step math heuristic for the static
repositioning problem in bike-sharing systems. Submitted for publication,
2015.

[20] Fricker, C. and Gast, N. Incentives and redistribution in homogeneous bike-
sharing systems with stations of finite capacity. Manuscript, 2014.

[21] Fricker, C., Gast, N., and Mohamed, H. Mean field analysis for inhomogeneous
bike sharing systems. In Discrete Mathematics and Theoretical Computer
Science Proceedings, pages 365–376, 2012.

[22] Fu, M. C. Gradient estimation. In Henderson, S. G. and Nelson, B. L., ed-
itors, Simulation, Handbooks in Operations Research and Management Sci-
ence, pages 575–616. Elsevier, Amsterdam, 2006.

[23] Fu, M. C. Handbook of Simulation Optimization. International Series in
Operations Research & Management Science. Springer New York, 2015.

[24] Fu, M. C. Stochastic gradient estimation. In Handbook of Simulation Opti-

113

http://www.citibikenyc.com/

mization, International Series in Operations Research & Management Science.
Springer New York, 2015.

[25] Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. Bayesian Data
Analysis. Chapman & Hall/CRC Texts in Statistical Science. Chapman and
Hall/CRC, 2nd edition, July 2003.

[26] Glasserman, P. Gradient Estimation Via Perturbation Analysis. Kluwer, The
Netherlands, 1991.

[27] Glasserman, P. Monte Carlo methods in financial engineering. Springer, New
York, 2004.

[28] Glynn, P. W. and Infanger, G. Simulation-based confidence bounds for two-
stage stochastic programs. Mathematical Programming, 138(1-2):15–42, 2013.

[29] Glynn, P. W. and Whitt, W. The asymptotic efficiency of simulation estima-
tors. Oper. Res., 40(3):505–520, May 1992.

[30] Golub, G. H. and Van Loan, C. F. Matrix Computations. Johns Hopkins
Studies in Mathematical Sciences. The Johns Hopkins University Press, 3rd
edition, October 1996.

[31] Grant, M. and Boyd, S. Graph implementations for nonsmooth convex pro-
grams. In Blondel, V., Boyd, S., and Kimura, H., editors, Recent Advances
in Learning and Control, Lecture Notes in Control and Information Sciences,
pages 95–110. Springer-Verlag Limited, 2008. http://stanford.edu/~boyd/
graph_dcp.html.

[32] Grant, M. and Boyd, S. CVX: Matlab software for disciplined convex pro-
gramming, version 2.1. http://cvxr.com/cvx, March 2014.

[33] Gurobi Optimization, I. Gurobi optimizer reference manual, 2016.

[34] Gutierrez, G. Simopt: Scheduling for multi-skill call center. http://simopt.
org/wiki/index.php?title=Multi-period_multi-skill_call_center

Accessed March 15, 2017.

[35] Hannah, L. A. and Dunson, D. B. Multivariate Convex Regression with Adap-
tive Partitioning. ArXiv e-prints, May 2011.

114

http://stanford.edu/~boyd/graph_dcp.html
http://stanford.edu/~boyd/graph_dcp.html
http://cvxr.com/cvx
http://simopt.org/wiki/index.php?title=Multi-period_multi-skill_call_center
http://simopt.org/wiki/index.php?title=Multi-period_multi-skill_call_center

[36] Henderson, S. G. and Pasupathy, R. Simulation optimization library, 2011.
http://www.simopt.org Accessed March 26, 2011.

[37] Henderson, S. G., O’Mahony, E., and Shmoys, D. B. (citi)bike sharing. Sub-
mitted for publication, 2015.

[38] Ho, Y. C. and Cao, X. R. Perturbation Analysis of Discrete-Event Systems.
Kluwer Academic, Boston MA, 1991.

[39] Jian, N. Matlab code for multi-skill call center optimization. Created May.
16, 2016. https://github.com/njian/MPMultiSCC, 2017.

[40] Jian, N. Matlab package for convexity detection. Created Feb. 17, 2017.
https://github.com/njian/convexity, 2017.

[41] Jian, N. Python code for citibike optimization. Created Dec. 22, 2016. https:
//github.com/njian/bikesharSimOpt, 2017.

[42] Jian, N., Henderson, S. G., and Hunter, S. R. Sequential detection of con-
vexity from noisy function evaluations. In Tolk, A., Diallo, S. D., Ryzhov,
I. O., Yilmaz, L., Buckley, S., and Miller, J. A., editors, Proceedings of the
2014 Winter Simulation Conference, pages 3892–3903, Piscataway, NJ, 2014.
Institute of Electrical and Electronics Engineers, Inc.

[43] Jian, N., Freund, D., Wiberg, H. M., and Henderson, S. G. Simulation op-
timization for a large-scale bike-sharing system. In Proceedings of the 2016
Winter Simulation Conference, WSC ’16, pages 602–613, Piscataway, NJ,
USA, 2016. IEEE Press.

[44] Jian, N. and Henderson, S. G. An introduction to simulation optimization.
In Yilmaz, L., Chan, W. K. V., Roeder, T. M. K., Macal, C., and Rosetti,
M., editors, Proceedings of the 2015 Winter Simulation Conference, pages
1780–1794, Piscataway NJ, 2015. IEEE.

[45] Jian, N. and Henderson, S. G. Convexity detection in noisy function evalua-
tions. arXiv, 1703.04185, 2017.

[46] Judge, G. G. and Takayama, T. Inequality restrictions in regression analysis.
Journal of the American Statistical Association, 61(313):pp. 166–181, 1966.

[47] Juditsky, A. and Nemirovski, A. On nonparametric tests of positiv-
ity/monotonicity/convexity. The Annals of Statistics, 30(2):498–527, 2002.

115

http://www.simopt.org
https://github.com/njian/MPMultiSCC
https://github.com/njian/convexity
https://github.com/njian/bikesharSimOpt
https://github.com/njian/bikesharSimOpt

[48] Kim, S., Pasupathy, R., and Henderson, S. G. A guide to SAA. In Fu, M.,
editor, Encyclopedia of Operations Research and Management Science, Hillier
and Lieberman OR Series. Elsevier, 2014.

[49] Lau, L. J. Testing and imposing monoticity, convexity, and quasi-convexity
constraints. Electronic Journal of Statistics, 1:409–453, 1978.

[50] Lim, E. and Glynn, P. W. Consistency of multidimensional convex regression.
Operations Research, 60(1):196–208, 2012.

[51] Mathworks. Documentation for linprog. Accessed Feb. 17, 2017. https:

//www.mathworks.com/help/optim/ug/linprog.html, 2016.

[52] Meyer, M. C. Constrained penalized splines. Canadian Journal of Statistics,
40(1):190–206, 2012.

[53] Murty, K. G. Linear Complementarity, Linear and Nonlinear Programming.
Heldermann Verlag, Berlin, 1988.

[54] Nesterov, Y. Introductory Lectures on Convex Optimization: A Basic Course.
Kluwer Academic, 2004.

[55] O’Mahony, E. Smarter Tools for (Citi)bike Sharing. PhD thesis, Cornell
University, Ithaca NY, 2015.

[56] O’Mahony, E. and Shmoys, D. B. Data analysis and optimization for (citi)bike
sharing. In Proceedings of the Twenty-Ninth AAAI Conference on Artifi-
cial Intelligence, January 25-30, 2015, Austin, Texas, USA., pages 687–694.
AAAI, 2015.

[57] Pasupathy, R. and Henderson, S. G. Simopt : A library of simulation opti-
mization problems. In Jain, S., Creasey, R. R., Himmelspach, J., White, K. P.,
and Fu, M., editors, Proceedings of the 2011 Winter Simulation Conference,
pages 4080–4090, Piscataway NJ, 2011. IEEE.

[58] Pasupathy, R. and Henderson, S. G. Ambulance bases. Accessed May.
15, 2014. http://simopt.org/wiki/index.php?title=Ambulances_in_a_

square, 2007.

[59] Pot, A., Bhulai, S., and Koole, G. A simple staffing method for multiskill call
centers. Manufacturing & Service Operations Management, 10(3):421–428,
2008.

116

https://www.mathworks.com/help/optim/ug/linprog.html
https://www.mathworks.com/help/optim/ug/linprog.html
http://simopt.org/wiki/index.php?title=Ambulances_in_a_square
http://simopt.org/wiki/index.php?title=Ambulances_in_a_square

[60] Rainer-Harbach, M., Papazek, P., Hu, B., and Raidl, G. R. Balancing bicycle
sharing systems: A variable neighborhood search approach. In Middendorf, M.
and Blum, C., editors, EvoCOP, volume 7832 of Lecture Notes in Computer
Science, pages 121–132. Springer, 2013.

[61] Rasmussen, C. E. and Williams, C. K. I. Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning). The MIT Press,
2005.

[62] Raviv, T. and Kolka, O. Optimal inventory management of a bike-sharing
station. IIE Transactions, 45(10):1077–1093, 2013.

[63] Raviv, T., Tzur, M., and Forma, I. Static repositioning in a bike-sharing
system: models and solution approaches. EURO Journal on Transportation
and Logistics, 2(3):187–229, 2013.

[64] Rubinstein, R. Y. and Shapiro, A. Optimization of static simulation models
by the score function method. Mathematics and Computers in Simulation,
32:373–392, 1990.

[65] Schuijbroek, J., Hampshire, R., and van Hoeve, W.-J. Inventory rebalancing
and vehicle routing in bike sharing systems. Tepper School of Business, Paper
1491, 2013.

[66] Seijo, E. and Sen, B. Nonparametric Least Squares Estimation of a Multi-
variate Convex Regression Function. ArXiv e-prints, March 2010.

[67] Shu, J., Chou, M. C., Liu, Q., Teo, C.-P., and Wang, I.-L. Models for effec-
tive deployment and redistribution of bicycles within public bicycle-sharing
systems. Operations Research, 61(6):1346–1359, 2013.

[68] Silvapulle, M. J. and Sen, P. K. Constrained Statistical Inference: Order,
Inequality, and Shape Restrictions, chapter 3, pages 59–141. John Wiley &
Sons, Inc., 2001.

[69] Szechtman, R. and Yücesan, E. A bayesian approach to feasibility determi-
nation. In Proceedings of the 2016 Winter Simulation Conference, WSC ’16,
pages 782–790, Piscataway, NJ, USA, 2016. IEEE Press.

[70] Vogel, S. Stability results for stochastic programming problems. Optimization,
19(2):269–288, 1988.

117

[71] Wang, H., Pasupathy, R., and Schmeiser, B. W. Integer-ordered simulation
optimization using R-SPLINE: Retrospective search using piecewise-linear in-
terpolation and neighborhood enumeration. ACM TOMACS, 23(3), 2013.

[72] Wang, J. C. and Meyer, M. C. Testing the monotonicity or convexity of a
function using regression splines. Canadian Journal of Statistics, 39(1):89–
107, 2011.

[73] Williams, D. Probability with Martingales. Cambridge mathematical text-
books. Cambridge University Press, 1991.

[74] Xu, J., Nelson, B. L., and Hong, J. L. Industrial strength compass: A compre-
hensive algorithm and software for optimization via simulation. ACM Trans.
Model. Comput. Simul., 20(1):3:1–3:29, February 2010.

118

	Biographical Sketch
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Convexity Detection in Noisy Function Evaluations
	Using Gradient-like Information in Optimizing A Large-scale Bike-sharing System
	Using Pseudo-Gradients in Large-Scale Simulation Optimization
	Major Contributions

	Convexity Detection in Noisy Function Evaluations
	Introduction
	Problem Statement and Assumptions
	Sequential Algorithm
	Posterior Updates
	Conjugate Prior under Known Sampling Variance
	Conjugate Prior under Unknown Sampling Variance

	Convexity
	Asymptotic Validity of the Main Algorithm
	Variance Reduction Methods
	Change of Measure
	Acceptance/Rejection
	Conditional Monte Carlo

	Numerical Results
	A Strictly Convex Function
	A Non-Convex Function
	Linear Function
	Output of a Simulation

	Conclusion

	Using Gradient-like Information in Optimizing A Large-scale Bike-sharing System
	Introduction
	Preliminaries
	Problem Statement
	Input Data
	Discrete-Event Simulation Model
	Starting Solutions for the Simulation Optimization

	Simulation Optimization
	Simulation Optimization Heuristics to Optimize Bike Allocations
	Simulation Optimization Heuristics to Optimize Both Bike and Dock Allocations

	Remarks

	Using Pseudo-gradient in Large-scale Simulation Optimization
	Introduction
	Pseudo-gradient Search
	Convergence Results
	Citibike
	Introduction
	Problem Statement
	Generating Trial Solutions Using Pseudo-gradient
	Numerical Results

	Multi-period Multi-skill Call Center
	Introduction
	Problem Statement and Lagrangian Formulation
	Search Framework for the Lagrangian Problem
	Generating Trial Solution Using Pseudo-gradient
	Numerical Results

	Remarks and Future Work

	Appendix to Chapter 2
	Characterizing Strictly Convex Vectors
	Alternatives to the Posterior Updates

	Bibliography

