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Potyviruses are the largest group of plant viruses and can infect pepper, potato and 

tomato which were the focus of this dissertation. Pepper resistance to potyviruses has 

been attributed to point mutations at the pvr1 locus which cause conformational shifts 

in encoded protein eukaryotic translation initiation factor eIF4E. In addition to 

susceptible allele Pvr1+, three pvr1 resistance alleles were the focus of this study: 

pvr1, pvr11, pvr12. Resistance conferred by these three pvr1 alleles has been linked to 

the inability for eIF4E to interact with the viral encoded protein VPg, a protein 

covalently bound to the 5’ end of the potyvirus genome. To determine if VPg was the 

virulence determinant for two strains of Tobacco etch virus (TEV), two VPg viral 

chimera were synthesized using a PCR based domain swapping method which we 

developed. The technique is a versatile and widely applicable alternative to 

conventional restriction enzyme digestion and ligation methods and is a valuable tool 

for determining which domains of a viral genome are essential for infectivity. 

Substituting VPg from an infectious TEV strain was found to determine the outcome 

of host infection for both pvr1 and pvr12. In additional studies, we transformed widely 

cultivated potato variety Russet Burbank with one of the four pepper pvr1 alleles to 

confer resistance to potyvirus Potato virus Y (PVY). Russet Burbank lines which 

overexpressed the pvr12 or the pvr11 allele from pepper were resistant to at least one of 

three PVY strains tested. The majority of pvr12 lines were resistant to all strains of 

PVY and plants grown from tubers of the inoculated resistant lines were virus free. 
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CHAPTER 1 

INTRODUCTION 

 

This dissertation contains three chapters in addition to this introduction, 

general conclusions and two appendices. Each chapter has been or will be submitted 

for publication as indicated on the title page of that chapter. The first chapter describes 

a PCR-based method which was used to replace a viral domain, the VPg domain, 

easily and efficiently among different viral strains. This method allowed for the 

identification of the virulence determinant in the Capsicum-Tobacco etch virus (TEV) 

pathosystem. The second chapter describes the resulting VPg viral chimeras and their 

infectivity in Capsicum, a host system that contains an allelic series of mutations at the 

pvr1 locus (potyvirus resistance gene 1) that encode natural mutations in eIF4E which 

have been correlated with potyvirus resistance (Kang et al. 2005; Murphy et al. 1998). 

Mutations, now known to be clustered near the eIF4E cap binding pocket, can block 

potyvirus infection at the cellular level (replication/translation stage) in a protoplast 

assay (Murphy et al. 1998). Very few mutations in eIF4E are necessary to both confer 

resistance and eliminate interaction with VPg. In fact, a single mutation in the pvr1 

allele was sufficient to eliminate interaction with TEV VPg (Yeam et al. 2007). This 

study focuses on two alleles at the pvr1 locus, pvr1 and pvr12, that differ with respect 

to susceptibility to two strains of TEV, TEV-Mex21 and TEV-N, respectively. 

Chapter 3 discusses a transgenic approach to confer PVY resistance in potato using 

alleles of the pvr1 locus as transgenes. The potyvirus PVY is responsible for millions 

of dollars in loss each year to the potato industry (Brown 2009, personal 

communication). A pepper resistance screen using PVY strains currently devastating 

potato production was conducted and identified resistant pepper lines. pvr1 alleles 

which conferred PVY resistance were subsequently used as transgenes to confer 
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resistance in potato. Given the wide array of resistance sources currently in the 

population which confer potyvirus resistance, it seems there is no limit to potyvirus 

control using this approach.  

All the resistance genes described in this study are recessive resistance alleles. 

In fact, resistance to potyvirues is controlled primarily by recessive resistance genes 

(Robaglia and Caranta 2006). Recent reviews have tried to address why dominant 

susceptible alleles have been maintained in the environment. Robaglia and Caranta et 

al. hypothesized that since potyviruses are generally mild pathogens for wild plants, 

infection could therefore increase the plant’s innate immunity against other more 

destructive pathogens. However, while potyviruses may be minor pathogens in wild 

plants, viruses such as PVY in potato can cause major crop losses. Recessive 

resistance alleles are much more difficult to maintain in breeding populations than 

dominant alleles, however, the approach described in this study demonstrates that a 

recessive allele can behave as a dominant gene when constitutively expressed. Alleles 

such as pvr12 in pepper which have been used successfully to confer potyvirus 

resistance in pepper for over 50 years (Czaplewski 2009, personal communication), 

represent a tremendous resource for transgenic breeding approaches of the future.  

Plant translation initiation factors play an important role in the initiation of 

host translation, but can also function in the plant virus life cycle and have been shown 

to be crucial for infection or resistance. In plants, most mRNA has a m7G cap at the 5’ 

end which is bound by one of two cap-binding proteins: eukaryotic translation 

initiation factor eIF4E or its isoform eIF(iso)4E (Shatkin 1976; Sonenberg et al. 1979). 

The protein, eIF4E or eIF(iso)4E, along with eIF4G or eIF(iso)4G make up one of two 

translation initiation complexes, eIF4F or eIF(iso)4F, respectively (Browning 1996). 

Both 4F complexes are involved in mRNA 5’ cap recognition during translation 

initiation, and mRNA unwinding and recruitment to the ribosome (Browning 1996; 
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Gingras, Raught, and Sonenberg 1999; Kawaguchi and Bailey-Serres 2002; Nicaise et 

al. 2007). The mRNA cap binds eIF4E or eIF(iso)4E, while the mRNA poly-A tail 

binds the poly-A binding protein (PABP) (Le et al. 1997). Additionally, the PABP has 

been shown to bind eIF4G or eIF(iso)4G which was found to increase mRNA binding 

affinity, an interaction which occurs even in the absence of mRNA poly-A (Le et al. 

1997). These translation factors, eIF4F or eIF(iso)4F and the PABP are just a few of 

the components which collectively initiate translation, a process which requires as 

many as 11 distinct proteins that serve as initiation factors (Cheng and Gallie 2007).  

The existence of two isoforms of the 4F complex is unique to plants, and each 

appears to carry out distinct functions (Browning 1996). Recent data suggests that the 

4F isoforms preferentially recognize different subsets of total mRNA. The eIF(iso)4F 

complex recognizes standard capped mRNA molecules, while the eIF4F complex 

recognizes abnormal mRNAs, e.g. mRNA without a cap, mRNA with secondary 

structure near the cap, or polycistronic mRNA (Gallie and Browning 2001). Not only 

do the two isoforms appear to preferentially recognize mRNA, but they also appear to 

preferentially recognize RNA viruses (Robaglia and Caranta 2006). Brassica 

perviridis plants infected with Turnip mosaic virus showed expression of eIF4E only 

in infected plants, while eIF(iso)4E was identified independent of virus infection 

(Leonard et al. 2004).  

Given that viruses are obligate intracellular parasites, they encode very few 

proteins and rely heavily on their hosts to complete essential functions such as 

replication and translation. Any host protein that is essential for virus infection is a 

candidate gene for virus resistance. Several studies have shown that viral interaction 

with eIF4E or eIF(iso)4E is essential for virus infectivity. In fact, naturally occurring 

mutations in eIF4E or eIF(iso)4E have been identified with virus resistance in many 

systems. Resistance to Tobacco etch virus, Turnip mosaic virus and Cucumber mosaic 
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virus is observed in Arabidopsis thaliana eIF(iso)4E knock out mutants (Duprat et al. 

2002; Lellis et al. 2002; Yoshii et al. 2004). To date, virus resistance conferred by 

naturally occurring eIF4E variants has been observed in five plant families including 

the Solanaceae (Kang et al. 2005; Ruffel et al. 2005; Ruffel et al. 2002), Asteraceae 

(Nicaise et al. 2003), Poaceae (Kanyuka et al. 2005; Stein et al. 2005), Fabaceae (Gao 

2004), and the Cucurbitaceae (Nieto et al. 2006).  

Based on genetic studies of host resistance, three genera of RNA plant viruses 

are known to require eIF4E or an isoform. Resistance in the Poaceae was observed 

against Barley yellow mosaic virus, a bymovirus, and Cucurbitaceae resistance was 

conferred against Melon necrotic spot virus (MNSV), a carmovirus. All other naturally 

occurring resistance alleles at the eIF4E locus involve potyviruses including Potato 

virus Y (PVY), Tobacco etch virus (TEV), Lettuce mosaic virus and Pea seed-borne 

mosaic virus (Kanyuka et al. 2005; Stein et al. 2005). Bymoviruses and potyviruses 

are both found within the Potyviridae family. The Potyviridae share structural 

similarity with host mRNA. These viruses do not encode a cap, however, they encode 

a viral protein known as VPg covalently bound by a tyrosine residue to the 5’ terminus 

of the RNA genome (Murphy et al. 1991). Given the structural similarity and the 

observed correlation of the VPg-eIF4E interaction, it has been hypothesized that VPg 

acts as a cap mimic (Beauchemin, Boutet, and Laliberte 2007; Leonard et al. 2000; 

Roudet-Tavert et al. 2007; Schaad, Anderberg, and Carrington 2000; Wittmann et al. 

1997). Several studies have shown that VPg must interact with eIF4E or isoform 

eIF(iso)4E for full susceptibility. In fact, several studies have identified VPg as a 

virulence determinant, or the pathogen factor essential for virus infection (Borgstrom 

and Johansen 2001; Bruun-Rasmussen et al. 2007; Rajamaki and Valkonen 1999; 

Rajamaki and Valkonen 2002).  
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Consistent with this observation are several studies that demonstrate that 

mutations in eIF4E or eIF(iso)4E inhibiting interaction with VPg, both in vitro and in 

planta, correlate with virus resistance (Beauchemin, Boutet, and Laliberte 2007; 

Bruun-Rasmussen et al. 2007; Kang et al. 2005; Kuhne et al. 2003; Leonard et al. 

2000; Leonard et al. 2004; Moury et al. 2004; Yeam et al. 2007). This form of 

resistance has been classified as “passive” virus resistance, defined as an alteration or 

a deletion in a host factor essential for the virus, but dispensable for the host (Fraser 

1990). With respect to the mechanism by which this resistance is effected, there are 

two major possibilities. As in the host, VPg interaction with eIF4E or eIF(iso)4E could 

be essential for translation. In addition or alternatively, this interaction could also be 

involved in replication stabilization (Lellis et al. 2002; Robaglia and Caranta 2006). 

Interestingly, unlike potyviruses and bymoviruses, the virulence determinant for the 

carmovirus Melon necrotic spot virus has been mapped to the 3’-untranslated region 

(3’-UTR), rather than an expected 5’ component of the viral genome. Carmoviruses do 

not encode a VPg protein or a cap. It is hypothesized that, like VPg, the carmovirus 

3’UTR acts as a cap mimic since it has been shown that these viruses utilize structural 

elements in their 3’-UTR to carry out cap independent translation (Koh, Liu, and 

Wong 2002; Nieto et al. 2006). 
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CHAPTER 2 

MEGAPRIMER-MEDIATED DOMAIN SWAPPING FOR CONSTRUCTI0N 

OF CHIMERIC VIRUSES1,2 

 

Abstract 

Clones that encode viral genomes constructed from two viruses with 

contrasting biological properties have been widely used in studies of viral-host 

interactions, particularly when the objective is to determine the identity of the viral 

component recognized by the host in a resistant response, known as the avirulence 

factor.  This paper presents an efficient method based on megaprimer-mediated 

domain swapping for the construction of clones encoding chimeric viral genomes as a 

versatile and widely applicable alternative to conventional restriction enzyme 

digestion and ligation methods.  Potato Virus X (PVX)-derived vectors expressing 

genes encoding fluorescent proteins were used to demonstrate this concept.  The cyan 

fluorescent protein (CFP) gene was cloned into a binary PVX vector and subsequently 

replaced with the yellow fluorescent protein (YFP) gene using the megaprimer 

amplification reaction.  DNA fragments up to 1480 bp could be replaced efficiently 

and quickly.  Most viral clones showed the expected change in phenotype without 

altered infectivity.  Sequence analysis revealed mutations were not introduced into the 

four domain-swapped plasmids.  This approach will provide a valuable tool for 

determining which domains of a viral genome are essential for infectivity, avirulence, 

or otherwise determine biologically significant properties of plant viruses. 
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Introduction 

The component(s) of a plant virus responsible for triggering a resistance response 

is known as the viral avirulence determinant.  In plant-pathogen interactions, pathogen 

avirulence genes have long been defined by the fact that the gene or its corresponding 

gene product are essential in eliciting the resistant response in hosts containing a 

disease resistance (R) gene (Flor 1971; Jordan et al. 2007).  In plant-viral interactions, 

the avirulence determinant for a specific host/virus combination is typically identified 

by creating infectious chimeric viral clones derived from two viral genotypes that 

contrast with respect to virulence (Roger 2002).  Once an avirulence domain is 

identified, subsequent mutational analysis via site-directed methods can be used to 

identify specific point mutations responsible for virulence (Roger 2002).  Creating 

chimeric clones, however, can be problematic if the necessary endonuclease restriction 

sites are unavailable or unsuitable.  Despite this constraint, very few studies have 

employed alternative methods that do not rely on endonuclease and/or ligase (Charlier 

et al. 2003; Dekker et al. 2000; Liang et al. 2004).  Alternative methods published to 

date typically are very restricted in their application.  An easy, efficient and widely 

applicable strategy to generate chimeric clones of viral genomes is therefore highly 

desirable. 

The polymerase chain reaction (PCR)-based site-directed mutagenesis (SDM) 

technique is widely used to introduce desired mutations into target DNA sequences 

(Ishii et al. 1998).  A variety of PCR-based SDM protocols have been established to 

achieve efficient mutagenesis.  Among them, the 'megaprimer PCR' method is 

particularly attractive because it is simple and relatively inexpensive (Kammann et al. 

1989; Landt, Grunert, and Hahn 1990; Sarkar and Sommer 1990).  This approach 

relies on the fact that DNA synthesized in vitro is not methylated and therefore is 

resistant to digestion by the enzyme DpnI.  In the megaprimer method, in vitro DNA 
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synthesis takes place in two successive steps (Kirsch and Joly 1998; Sarkar and 

Sommer 1990).  First, a target DNA fragment is amplified in a typical PCR reaction 

using two oligonucleotide primers.  Then, the two strands of newly synthesized PCR 

fragments are used as megaprimers to synthesize the whole plasmid in vitro to 

incorporate mutagenic target DNA fragments.  The plasmid DNA is synthesized by a 

high-fidelity thermostable DNA polymerase such as Pfu DNA polymerase (Cline, 

Braman, and Hogrefe 1996), and the original parental DNA is subsequently digested 

by DpnI.  The DpnI-resistant mutated DNA is recovered directly by transformation 

into competent bacteria.   

This paper demonstrates an alternative to conventional restriction enzyme 

digestion and ligation for construction of chimeric viral clones using the megaprimer 

approach.  For simplicity, the Potato virus X (PVX) system was chosen because the 

PVX genome has been cloned into a binary vector suitable for Agrobacterium 

tumefaciens-mediated inoculation.  For a visual assay to confirm domain-swapping, 

the cyan fluorescent protein (CFP) gene was cloned into a binary PVX vector and 

subsequently replaced the gene with a gene encoding yellow fluorescent protein (YFP) 

via the megaprimer PCR reaction.  

Results 

Cloning CFP and YFP into pgR106 

To test the efficacy of the Megaprimer method to make specific exchanges of 

DNA sequences, a system based upon exchange of CFP and YFP was chosen because 

of the convenience of a fluorescence assay.  CFP and YFP show 97% nucleotide 

sequence identity, a degree of divergence between nucleotide sequences that is 

approximately similar to the degree of divergence that may be observed between two 

different strains of the same plant virus in nature.  These genes represent specific 
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functional units analogous in principle to viral domains that are very similar but not 

identical, and can be distinguished functionally. 

CFP and YFP genes were cloned into a binary PVX vector pgR106 and designated 

pgR106::CFP and pgR106::YFP, respectively (Figure 2.1A).  To test expression of 

CFP and YFP in planta, a transient assay was used.  N. benthamiana plants were 

inoculated with A.  tumefaciens carrying pgR106, pgR106::CFP and pgR106::YFP.  

Plants inoculated with A. tumefaciens carrying empty vector pgR106 showed typical 

systemic PVX mosaic symptoms at 6 - 9 dpi.  Plants inoculated with pgR106::CFP 

and pgR106::YFP displayed similar symptoms to plants inoculated with empty vector.  

Introduction of CFP and YFP via PVX-derived vectors resulted in symptoms that 

developed 2 -3 days later than those observed in plants inoculated with Agrobacterium 

containing empty vector pgR106. 

At 10 dpi, leaves displaying symptoms were harvested from each treatment and 

examined under a confocal microscope to detect fluorescent protein expressed by the 

PVX vectors.  N. benthamiana leaves infected by the empty vector control did not 

show either CFP or YFP expression, whereas plant leaves infected with PVX carrying 

CFP and YFP showed the expected result, the obvious presence of fluorescent protein 

(Figure 2.1B).  
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Figure 2.1. Cyan (CFP) and yellow fluorescent protein (YFP) expression in N. 
benthamiana cells infected with PVX-derived vectors.  
 
A. PVX constructs used in this study. CFP and YFP genes were cloned into the binary 
PVX vector pgR106.   
 
B. CFP and YFP expression observed by confocal laser microscopy 10 days after 
Agrobacterium-mediated inoculation. Agrobacterium containing empty vector pgR106 
was used as a negative control. Scale bar = 100 μm. 
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Conversion of CFP to YFP by megaprimer-mediated amplification reaction 

The megaprimer approach was applied to convert CFP cloned in pGR106 vector to 

YFP (Kirsch and Joly 1998).  A schematic diagram of megaprimer primer 

amplifications is shown Fig. 2.  A standard PCR reaction was performed to amplify 

720 bp YFP DNA fragments (Figure 2.2, Figure 2.3A).  To test megaprimers of 

different lengths, 1000, 1200, and 1500 bp DNA fragments were amplified using 

pgR106::YFP as a template; each fragment contained full length YFP (Figure 2.2 and 

Figure 2.3A).  These four fragments served as megaprimers in the second 

amplification reaction to convert CFP in pgR106::CFP plasmids to YFP.  Megaprimer 

amplification products were subjected to gel electrophoresis to confirm that bands of 

the expected size (12.3 kb) remained after DpnI digestion (Figure 2.3B).  A 1 μL 

aliquot of each reaction transformed into E.coli generated more than 100 colonies for 

each mutagenized plasmid (Table 2.1).  The number of colonies obtained was 

dependent on primer concentration, rather than on primer size (Figure 2.3A and Table 

2.1).  Amplification products at higher concentrations (Figure 2.3B, lane 2 and 3) 

resulted in more colonies than products at lower concentration (Figure 2.3B, lane1 and 

4). 

To test if the colonies carried mutagenized plasmids, colony PCR and restriction 

enzyme digestion reactions were performed.  CFP replacement could be screened 

easily using PstI; an enzyme which cuts YFP genes into two fragments, 220 and 500 

bp in length, but does not cleave CFP (Fig. 3C).  For each mutagenized plasmid, 45 

colonies were tested.  Results are summarized in Table 2.1.  When mutagenesis 

efficiency for megaprimers of various sizes was compared, all of the primers showed 

more than 90% efficiency.  A slight trend towards increased efficiency was observed 

for longer primers (Table 2.1). 
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Figure 2.2. A schematic diagram of megaprimer-mediated domain swapping.  
Megaprimer amplification was performed in two steps.  First megaprimers were 
generated containing YFP and different segments of the PVX genome.   
 
A. Resulting amplification products were recovered and purified. 
 
B. The target gene was amplified using the megaprimer.  
 
C. Digested with DpnI to remove parental template DNA.  
 
D. The in vitro synthesized DNA was used to transform E. coli. 
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Figure 2.3. DNA gel analyses for megaprimer-mediated domain swapping.   
 
A. PCR reaction to amplify megaprimers. Lane M, 1 kb ladder; lane 1, 732 bp 
megaprimer; lane 2, 981 bp megaprimer; lane 3, 1102 bp megaprimer;  lane 4, 1480 
megaprimer.  Megaprimer 981, 1102, and 1480 bp contained PVX sequences of 
various lengths in addition to the 732 bp YFP gene sequence. 
 
B. Domain swapping amplification reaction and removal of template plasmids.  
The DNAfragments resulting from the PCR reaction (A) served as megaprimers 
with pgR106::CFP as template.  The amplification products were treated with DpnI 
to remove template plasmids.  Lane M, 1 kb ladder; lanes 1 - 4, DNA  fragments 
amplified using megaprimers 732, 981, 1102 and1480 bp, respectively. Arrow 
indicates amplified and DpnI digested DNA fragments.  
 
C. Colony PCR and restriction enzyme digestion.  DpnI treated amplification (A) 
products were transformed into E. coli.  Clones containing swapped plasmids were 
subject to PCR using primers YFP-F and YFP-R and the amplified DNA fragments 
were digested by PstI.  Lane M, 1 kb ladder; lane C, CFP; lane Y, YFP; other lanes, 
putative pgR106::CFP YFP clones. 
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Table 2.1. Summary of mutagenesis efficiency using megaprimers of various sizes. 

 

a Number of colonies obtained from transformation of 1 μl  out of 25 μl reaction.  
b Number of colonies that amplified 732 bp inserts. 
c Number of PCR products showing the same PstI digestion pattern as the YFP gene. 
d Mutagenesis efficiency was calculated as the number of mutants confirmed by 
restriction enzyme digestion of PCR products/total number of plasmids analyzed. 

 

Verification of fluorescent phenotype change by confocal microscopy 

To demonstrate that the mutagenized plasmids yielded infectious transcripts in 

addition to producing fluorescence, Agrobacterium-mediated PVX inoculation was 

performed as described previously (Jones et al. 1999).  Sixteen randomly selected 

plasmids (pgR106::CFP YFP) confirmed by PCR/RFLP were isolated from E. coli 

and re-transformed into A. tumefaciens GV3101.  Agrobacterium cells carrying the 

plasmids were grown and inoculated on N. benthamiana leaves; four plants were 

inoculated for each plasmid.  All inoculated N. benthamiana plants displayed systemic 

mosaic symptoms typical of PVX infection at 8 - 10 dpi comparable to results 

obtained with pgR106::CFP and pgR106::YFP.  Symptom development observed in 

plants inoculated with pgR106::CFP YFP plasmids was identical to control plants 

inoculated with pgR106::YFP.  In order to test for differences in virus accumulation 

among treatments, indirect ELISA analysis was performed using anti-PVX antibody.  

Megaprimer 
size (bp) 

No. colonies 
obtaineda 

No. plasmids 
analyzedb 

No. plasmid 
swappedc 

Mutagenesis 
efficiencyd (%) 

  732 100 44 41   93.0 

 981 301 45 43   95.5 

1102 347 44 43   97.7 

1480 177 45 45 100.0 
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In plants inoculated with the swapped PVX mutants, PVX proteins apparently 

accumulated to slightly higher levels, but were very similar to control plants (Figure 

2.4).  This observation suggests that there were no detectible mutations in these 

plasmids that affected viral infection and pathogenesis. 

N. benthamiana plants were inoculated with Agrobacterium carrying plasmids 

resulting from the CFP/YFP swap.  Leaves showing PVX symptoms were observed 

using a confocal microscope to confirm a shift from cyan to yellow fluorescence.  

Except for one case, leaves of all plants tested showed strong yellow fluorescent 

protein expression comparable to control plants inoculated with pgR106::YFP plasmid.  

This result demonstrated that the CFP gene was successfully replaced by YFP (Figure 

2.5). 

 

 

 

 

 
 
 
 
 
 
 
 
Figure 2.4. ELISA analysis of N. benthamiana following inoculation with test 
constructs and controls.  Accumulation of PVX coat protein as determined by 
ELISA of systemically infected leaves of mock-inoculated (M) and vector-inoculated 
(V) N. benthamiana plants and plants inoculated with pgR106::CFP, pgR106::YFP, or 
the domain-swapped pgR106::CFP YFP (1 - 16). Virus accumulation in upper 
uninoculated leaves was determined at 21 dpi.  
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Figure 2.5. Yellow fluorescent protein expression in N. benthamiana leaves 
inoculated with Agrobacterium cultures containing in vitro mutagenized 
pgR106::YFP.  In vitro mutagenized pgR106::YFP plasmids were transformed into A. 
tumefaciens and inoculated in N. benthamiana plants. Systemically infected leaves 
showing PVX symptoms were observed under the confocal microscope and 
photographed at 10 dpi. a - q: N. benthamiana leaves infected by pgR106::CFP YFP 
clones. Scale bar  =  100 μm. 
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Frequency of unintended mutations in chimeric clones  

One potential disadvantage of this method might be the introduction of 

undesired mutations during in vitro plasmid synthesis.  The mutation frequency for the 

megaprimer amplification reaction was determined according to Lundberg et al., 

(1991) as described below, and confirmed by plasmid sequencing.  The mutation 

frequency (mf) of any PCR reaction using PfuUltra can be calculated using the 

PfuUltra error rate (ER) in the formula ER = mf/ (bp × d) (Lundberg et al. 1991) 

where “bp” reflects the number of base pairs in the sequence of interest.  The term, d, 

number of cycles of template duplications, is determined by the equation 2d = (amount 

of PCR product) / (amount of starting target) because the amount of product increases 

exponentially.  However, in this reaction, the mutagenized product contains staggered 

nicks which make it incapable of serving as template for the next round of PCR 

(Strategene 2004).  Template doublings can be calculated for this 18 cycle reaction 

using the formula 2d = 36 copies (2 × 18 cycles), d = 5.14.  According to this formula, 

just 3.4% of the mutagenized pGR106 PCR product, a 12.3 kb plasmid with 

approximately 5 template doublings, would contain a mutation introduced in error.  

Using the binomial proportion, a 95% confidence level could be assigned to 

the proportion of non-mutated plasmids that would be greater than a defined cutoff of 

25% (calculated using S-plus; power 0.8, α = 0.05).  This mutation frequency accounts 

for both silent and detectable single nucleotide mutations in the PCR product.  

According to this calculation, 25%, or at least one in four plasmids screened per 

reaction should not contain a single mutation.  To test this prediction, four randomly 

selected plasmids were sequenced.  Forward and reverse primers were synthesized at 

600 bp intervals covering the entire plasmid sequence (Table 2.1).  One plasmid was 

entirely mutation free, while 4 point mutations were detected in the other three 

plasmids (Table 2.2). However, all 4 mutations were located in the YFP gene 
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indicating the mutations were introduced during megaprimer synthesis.  High fidelity 

Taq DNA polymerase was not used for this PCR reaction.  Excluding the 4 mutations 

in the megaprimer, sequencing analysis revealed unintentional mutations were not 

generated during the domain-swapping reaction.  

 
Table 2.2. Summary of sequence analysis to determine rate of unintentional 
mutation. 

 

Discussion 

 This study demonstrates an efficient and reliable domain-swapping method 

that allows for quick construction of clones encoding chimeric viral genomes. In place 

of restriction enzymes and ligases, a two-step site-directed mutagenesis method 

allowed for the replacement of the CFP gene in a binary PVX-derived vector with the 

YFP gene. Fragments up to 1480 bp could be exchanged efficiently. Although 

previous studies showed that larger megaprimers were exchanged less efficiently than 

shorter megaprimers (Barik and Galinski 1991; Upender, Raj, and Weir 1995), these 

results have demonstrated efficient exchange of an extremely large fragment (1480 bp), 

equivalent in size to some of the larger genes encoded by plant viruses.   

Because plasmids were mutagenized in vitro using thermostable DNA polymerase, 

there was a possibility the mutagenized plasmids could contain unwanted mutations.  

Plasmid sequenced Mutations Gene affected by mutation 

pgR106::CFP YFP #3 G A (2716), 
A G (2917) YFP 

pgR106::CFP YFP #4 G A (2816) YFP 

pgR106::CFP YFP #5 - - 

pgR106::CFP YFP #6 G A (2831) YFP 
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However, in contrast to standard PCR, the predicted mutation rate for this method is 

extremely low for several reasons.  First, the newly synthesized product of each round 

of PCR is not used as a template for the following round of amplification because it 

contains nicks at the initiation site of each mutagenic primer (Strategene 2004). 

Second, this method requires fewer reaction cycles (less than 20 thermal cycles) than a 

typical PCR, further reducing the potential mutation rate.  Finally, PfuUltra has 

exonuclease-dependent proofreading activity resulting in 18-fold higher fidelity than 

regular Taq DNA polymerase (Flaman et al., 1994, Cline et al., 1996).  The error rate 

of Taq polymerase has been reported as approximately 10-fold higher than Pfu, and 

30-fold higher than PfuUltra (Cline et al., 1996, Stratagene personal communication).  

The Pfu error rate has been determined to fall between 1.3 x 10-6 and 1.6 x 10-6 (Cline 

et al., 1996; Lundberg et al., 1991).  The error rate of PfuUltra could therefore be 

estimated to fall between 4.3 x 10-7 and 5.33 x 10-7.   

The mutation frequency for the megaprimer amplification reaction was 

estimated as previously described (Lundberg et al., 1991).  According to this 

calculation, at least one out of four plasmids isolated from each reaction should be free 

of any mutations.  In fact, sequence analysis revealed the megaprimer PCR reaction 

using PfuUltra did not generate a single mutation in the four plasmids screened.  

Plasmid mutations were all located within the megaprimer sequence which was 

synthesized using standard Taq DNA polymerase.  These mutations could likely have 

been prevented with the use of high fidelity Taq DNA polymerase.  

This study tested whether the mutagenized plasmids were capable of producing 

an infectious viral genome.  While slight variation in YFP accumulation was observed 

among the clones as expected due to subtle differences that typically occur during 

viral infections as a consequence of environmental or unwanted YFP mutations (see 

Figure 2.5), all 16 plasmids tested showed no noticeable differences in infectivity and 
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symptom development, indicating this method is generally reliable for creating 

chimeric virus mutants.  This technique has been critical to identify precisely the 

avirulence determinant of Tobacco etch virus (TEV) that is involved in overcoming 

pvr1-mediated resistance in Capsicum (Kang et al. 2005; Murphy et al. 1998).  Using 

megaprimer PCR to swap domains of avirulent TEV strains with domains of virulent 

TEV strains circumvented the limitation posed by absence of restriction sites 

surrounding the domains of interest.  Rather than adding additional steps to generate 

unique restriction sites necessary for conventional cloning and domain exchange, this 

technique provided a particularly simple and easy method to swap TEV domains 

implicated in host resistance.  Megaprimer domain swapping will likely find wide 

applicability in any study where clones encoding precisely defined regions of plant 

viral genomes are required.   
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Materials and methods 

Cloning CFP and YFP into a binary PVX vector 

CFP and YFP genes were purchased from BD biosciences (Palo Alto, CA) and 

cloned into pgR106 provided by D. Baulcombe (Jones et al. 1999).  The 720 bp 

coding region of each gene was amplified via PCR from the plasmids using the 

primers YFP-ClaI and YFP-SalI.  Amplified fragments were cloned into pGEMT 

(Promega, Madison, WI) and confirmed by sequencing.  Sequence confirmed plasmids 

were digested with ClaI and SalI and subcloned into corresponding sites in the 

pgR106 vector.  The resulting pgR106 derivatives were designated pgR106::CFP and 

pgR106::YFP.   

Megaprimer-mediated domain swapping to replace CFP with YFP  

Megaprimer amplication was performed in two steps.  The first step was to 

generate the YFP megaprimer, a 732 bp DNA fragment, amplified using the YFP-F 

and YFP-R primers (Table 2.3).  Additional megaprimer reactions were carried out 

with three different forward primers, PVX6421, PVX6300, and PVX5922, each combined 

with YFP-R. These reactions generated megaprimers of 981, 1102, and 1480 bp, 

respectively.  

The 50 μL PCR reaction contained 10 ng YFP plasmid, 200 nM of each primer, 

200 μM dNTPs and 1.0 M Advatage2 DNA polymerase (Invitrogen, Carlsbad, CA) in 

1× Advantage2 reaction buffer.  PCR amplification was performed in a MJR PCT-100 

thermal cycler (MJ Research Inc., Watertown, MA).  After initial denaturation at 94oC 

for 2 min, DNA fragments were amplified through 30 cycles (94oC, 60 sec; 55oC, 60 

sec; 72oC, 90 sec) followed by elongation at 72oC for 5 min.  Amplification products 

were electrophoresed on 1% agarose gels; amplified DNA fragments were recovered 

and purified using Qiagen gel purification kit (Valencia, CA). 
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Table 2. 3. Primer sequences used in this study. 

Primer namea Orientation Primer sequenceb 

YFP-ClaI Forward 5`-CCATCGATATGGTGAGCAAGGGCGAGG-3`  
YFP-SalI Reverse 5`-CGGGTCGACTTACTTGTACAGCTCGTCCATG-3` 
YFP-F Forward 5`-ATCGATATGGTGAGCAAGGGCGAGG-3` 
YFP-R Reverse 5`-TTACTTGTACAGCTCGTCCATG-3` 
PVX5922 Forward 5`-GGAAGAAGGGCACTTAGAG-3` 
PVX6300 Forward 5`-ACAGCTTGCCACACGGAGGAG-3` 
PVX6421 Forward 5`-GCTGATCTATGGAAGTAAATAC-3` 
pgRPVXF1 Forward 5`-CCCGGAAGCCTGTGGATAG-3` 
pGRPVXR1 Reverse 5`-CTATCCACAGGCTTCCGGG-3` 
pGRPVXF2 Forward 5`-GGTCAACATGGTGGAGCACG-3` 
pGRPVXR2 Reverse 5`-CGTGCTCCACCATGTTGACC-3` 
pGRPVXF3 Forward 5`-GGAAAAACACAAACTAGCT-3` 
pGRPVXR3 Reverse 5`-AGCTAGTTTGTGTTTTTCC-3` 
pGRPVXF4 Forward 5`-CCAAGGATAGCTTTCTC-3` 
pGRPVXR4 Reverse 5`-GAGAAAGCTATCCTTGG-3` 
pGRPVXf5 Forward 5`-GCAAGCGTGGAAAGCCTTCCGA-3` 
pGRPVXR5 Reverse 5`-TCGGAAGGCTTTCCACGCTTGC-3` 
pGRPVXF6 Forward 5`-CAAGGCGCTGGAAATTCAGAGG-3` 
pGRPVXR6 Reverse 5`-CCTCTGAATTTCCAGCGCCTTG-3` 
pGRPVXF7 Forward 5`-GACAAAGCGTCTACCATGAAACT-3` 
pGRPVXR7 Reverse 5`-AGTTTCATGGTAGACGCTTTGTC-3` 
pGRPVXF8 Forward 5`-GGAAAAGTTTGACAGAGAGATC-3` 
pGRPVXR8 Reverse 5`-GATCTCTCTGTCAAACTTTTCC-3` 
pGRPVXF9 Forward 5`-GGAATTTCAGCAGACCTAGC-3` 
pGRPVXR9 Reverse 5`-GCTAGGTCTGCTGAAATTCC-3` 
pGRPVXF10 Forward 5`-CACACACTCACTTGCAGAACA-3` 
pGRPVXR10 Reverse 5`-TGTTCTGCAAGTGAGTGTGTG-3` 
pGRPVXF11 Forward 5`-GGAGTCTGAGACAACACTG-3` 
pGRPVXR11 Reverse 5`-CAGTGTTGTCTCAGACTCC-3` 
pGRPVXF12 Forward 5`-GGAAAGAACGCAGCATTTGCT-3` 
pGRPVXR12 Reverse 5`-AGCAAATGCTGCGTTCTTTCC-3` 
pGRPVXF13 Forward 5`-ATGGAAGTAAATACATATC-3` 
pGRPVXR13 Reverse 5`-GATATGTATTTACTTCCAT-3` 
pGRPVXF14 Forward 5`-GATACAGGTCCCTATTCCAAC-3` 
pGRPVXR14 Reverse 5`-GTTGGAATAGGGACCTGTATC-3` 
pGRPVXF15 Forward 5`-CGTTCAAACATTTGGCAAT-3` 
pGRPVXR15 Reverse 5`-ATTGCCAAATGTTTGAACG-3` 
pGRPVXF16 Forward 5`-GCGCTCACTGCCCGCTTT-3` 
pGRPVXR16 Reverse 5`-AAAGCGGGCAGTGAGCGC-3` 
pGRPVXF17 Forward 5`-GGGCTGTGTGCACGAACC-3` 
pGRPVXR17 Reverse 5`-GGTTCGTGCACACAGCCC-3` 
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Table 2. 3. Continued 
pGRPVXF18 Forward 5`-CCAACATCAATACAACCTATT-3` 
pGRPVXR18 Reverse 5`-AATAGGTTGTATTGATGTTGG-3` 
pGRPVXF19 Forward 5`-GGCGCATCGGGCTTCCC-3` 
pGRPVXR19 Reverse 5`-GGGAAGCCCGATGCGCC-3` 
pGRPVXF20 Forward 5`-GCCCGCCGTCGAGCGGGC-3` 
pGRPVXR20 Reverse 5`-GCCCGCTCGACGGCGGGC-3` 

 

a pgRPVXOO primers were used for plasmid sequencing. 
b Underlined sequences indicate introduced restriction enzyme sites. 
 

The second step involved amplifying the target gene using the megaprimer.  For 

the reaction, the Quikchange XL kit manufacturer’s protocol was followed exactly 

(Stratagene, La Jolla, CA).  The 50 μL amplification reactions contained 100 ng of 

megaprimers, 10 ng of pgr106::CFP plasmid, 2.5 U Pfu DNA polymerase, 50 μM 

dNTPs.  The thermal cycle program used was: 95 oC for 90 sec, 18 cycles of 94oC, 60 

sec; 55oC, 60 sec; 68oC, 12 min, 72 oC for 15 min.  Following this PCR reaction, a 

digestion with 10 U DpnI was performed at 37 oC for 1 hr.  After digestion, 1 – 2 μL 

of the reaction was transformed into E. coli.  Resulting clones were evaluated by PCR, 

restriction enzyme digestion, and sequenced to verify that the selected clones 

contained the desired mutation. 

Agrobacterium-mediated PVX inoculation 

 Mutated plasmids (pgR106::CFP  YFP) were electro-transformed into 

Agrobacterium strain GV3101.  Cells were allowed to grow for 2 days at 28 oC on LB 

plates containing tetracycline (12.5 μg/mL) and kanamycin (50 μg/mL).  Selected 

colonies were inoculated with a toothpick near main veins of lower leaves of N. 

benthamiana plants at the 4 to 6 leaf stage of development.  Four plants were 

inoculated per plasmid construct including empty vector pgR106 as a control. 



 29

 

Monitoring YFP fluorescence using a confocal microscope 

Ten days after inoculation, Nicotiana benthamiana leaves were monitored for 

YFP and CFP fluorescence using a Leica TCS SP2 scanning confocal microscope 

(Leica, Wetzlar, Germany).  YFP was excited by a 4-line argon laser at 514 nm and 

detected between 525 nm and 600 nm. 

Enzyme-linked immunosorbent assay 

Plants were monitored daily for the appearance and severity of symptoms.  

Leaf tissue was evaluated for the presence of virus using antigen plate-coating indirect 

enzyme-linked immunosorbent assay (ELISA) as previously described (Kang et al. 

2005).  Anti-PVX antibodies were obtained from Agdia, Inc. (Elkhart, IN) and were 

used according to the manufacturer’s instructions.  Virus accumulation was tested 10 

dpi for inoculated leaves or at 21 dpi for un-inoculated leaves.  
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CHAPTER 3 

A NARROW RANGE OF VARIATION IN VPG DETERMINES TOBACCO 

ETCH VIRUS INFECTIVITY SPECTRUM IN CAPSICUM1,2 

 

Abstract 

 Potyvirus resistance in Capsicum has been attributed to point mutations at 

the pvr1 locus which cause conformational shifts in eukaryotic translation initiation 

factor eIF4E. Two recessive pvr1 alleles were the focus of this study, pvr1 and pvr12. 

Resistance conferred by these alleles has been linked to the protein’s inability to 

interact with the viral encoded protein VPg, covalently bound to the 5’ end of the 

potyvirus genome. In this study, the VPg domains within three Tobacco etch virus 

(TEV) strains: TEV HAT, TEV Mex21 and TEV N, which differentially infect 

Capsicum lines encoding pvr1 and pvr12 were compared. To determine if VPg was the 

virulence determinant for these virus strains two VPg viral chimeras were synthesized. 

Substituting VPg from an infectious TEV strain was found to determine the outcome 

of host infection for both pvr1 and pvr12. Additionally, TEV-HAT VPg interaction 

with susceptible allele Pvr1+ was analyzed in a yeast two hybrid assay. The interaction 

between the VPg and eIF4E was not detected when 80 or more amino acids were 

deleted from the 5’ end of the VPg. 3D models constructed of VPg and eIF4E to 

analyze protein-protein interaction between the two proteins correlate with 

susceptibility.   
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Introduction 

Potyviruses make up the largest genus of plant viruses and are found within the 

Potyviridae family. Examples such as Tobacco etch virus (TEV) can infect 

agronomically important solanaceous crops such as pepper, tomato, potato and 

tobacco. Based on structural similarity, potyviruses reside within the same class or 

supergroup as members of the Picornavirdae family which includes polioviruses and 

rhinoviruses (Koonin, Dolja, and Morris 1993). They are single-stranded positive 

sense RNA molecules approximately 10 kb in length that encode a polyprotein that is  

subsequently cleaved into functional proteins by three virus encoded proteinases: P1, 

the helper component proteinase (HC-Pro) and the nuclear inclusion a (NIa) 

(Dougherty and Carrington 1988; Dougherty and Semler 1993). The NIa, which is 

also referred to as VPg-Pro, encodes a proteinase domain in its C terminus, and viral 

genome linked protein (VPg) in its N-terminus (Carrington and Dougherty 1987; 

Dougherty and Dawn Parks 1991; Murphy et al. 1990). After proteinase processing, 

the cleaved VPg protein is then covalently bound to the 5’ end of the virus genome by 

a tyrosine residue (Murphy et al. 1991). Mutation of this tyrosine residue in potyvirus 

Tobacco vein mottling virus rendered the virus noninfectious (Murphy et al. 1996). 

Virulence determinants, which are encoded by the virus and critical for 

infection, provide clues into host-virus interactions. VPg has been implicated as the 

virulence determinant in many resistance systems controlled by recessively inherited 

genes. VPg has been identified as the pathogenicity determinant for recessive 

resistance in nine pathosystems, although the virus is controlled at different stages of 

infection in these studies (Borgstrom and Johansen 2001; Bruun-Rasmussen et al. 

2007; Kuhne et al. 2003; Leonard et al. 2000; Moury et al. 2004; Rajamaki and 

Valkonen 1999; Rajamaki and Valkonen 2002). Functions of VPg in the virus 

infection cycle have been proposed previously (Lellis et al. 2002; Robaglia and 
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Caranta 2006) and includes potential roles in replication, translation, host gene 

inactivation and potyviral genome stabilization. In poliovirus replication, the 

uridylylated form of VPg is required for viral replication (Murray and Barton 2003; 

Paul et al. 1998). In vitro uridylylation has also been observed in the potyviruses, 

Potato virus A (PVA) and Pepper vein banding virus  (Anindya, Chittori, and Savithri 

2005; Puustinen and Makinen 2004). In these studies, uridylylation was carried out by 

nuclear inclusion protein b (NIb), which has RNA-dependent RNA polymerase 

activity (Hong and Hunt 1996). These findings suggest that VPg uridylyation is a 

requirement for replication; however, this has yet to be definitively demonstrated. In 

addition to a role in replication, studies have also implicated VPg has a role in viral 

translation. This role is in part contradicted by the fact that several VPg-encoding 

viruses, including TEV, have an internal ribosome entry site (IRES). It has been 

shown in several IRES encoding viruses, including TEV, that translation can still 

proceed without a VPg (Carrington and Freed 1990; Gallie 2001; Niepel and Gallie 

1999). However, we cannot rule out the potential role of VPg as a co-initiator or an 

enhancer of viral translation along with the IRES. This is supported by evidence that 

VPg interacts with host eukaryotic translation initiation factor eIF4E (Borgstrom and 

Johansen 2001; Bruun-Rasmussen et al. 2007; Graner and Bauer 1993; Kanyuka et al. 

2005; Kuhne et al. 2003; Leonard et al. 2000; Moury et al. 2004; Rajamaki and 

Valkonen 1999; Rajamaki and Valkonen 2002; Roudet-Tavert et al. 2007; Wittmann 

et al. 1997; Yambao et al. 2003). eIF4E is part of  the  translation initiation complex 

eIF4F, which consists of eIF4A, eIF4E and eIF4G (Browning 2004; Gingras, Raught, 

and Sonenberg 1999). This complex is responsible for translation initiation which 

includes mRNA 5’ cap recognition, mRNA unwinding and recruitment of the 40S 

ribosomal subunit (Browning 2004; Browning 1996; Gingras, Raught, and Sonenberg 

1999; Kawaguchi and Bailey-Serres 2002; Nicaise et al. 2007).  
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Naturally occurring mutations encoded in eIF4E have been correlated with 

virus resistance in five plant families and include resistance to bymoviruses, 

carmoviruses and potyviruses (Gao 2004; Kang et al. 2005; Kanyuka et al. 2005; 

Nicaise et al. 2003; Nieto et al. 2006; Ruffel et al. 2005; Ruffel et al. 2002; Stein et al. 

2005). Several studies which have identified eIF4E as the recessive resistance gene 

have identified VPg as a virulence determinant (Borgstrom and Johansen 2001; Kuhne 

et al. 2003; Moury et al. 2004). Since potyviral RNA is structurally similar to host 

mRNA, it has been hypothesized that VPg serves as a cap mimic, suggesting VPg 

interaction with eIF4E is essential for the viral translation. Mutations in eIF4E have 

been found to inhibit its interaction with VPg in planta, as well as in yeast, and have 

been correlated with potyvirus resistance (Bruun-Rasmussen et al. 2007; Kang et al. 

2005; Kuhne et al. 2003; Leonard et al. 2000; Moury et al. 2004; Yeam et al. 2007). 

Furthermore, the central region of VPg has been identified as essential both for its 

interaction with eIF4E and for virus infectivity (Borgstrom and Johansen 2001; Bruun-

Rasmussen et al. 2007; Graner and Bauer 1993; Kanyuka et al. 2005; Kuhne et al. 

2003; Leonard et al. 2000; Moury et al. 2004; Rajamaki and Valkonen 1999; Rajamaki 

and Valkonen 2002; Roudet-Tavert et al. 2007; Wittmann et al. 1997; Yambao et al. 

2003). The central region of PVA VPg was found to be essential for Solanum 

commersonii resistance, and mapped  to a single amino acid change His118Tyr 

(Rajamaki and Valkonen 2002). Nicandra physaloides susceptibility to PVA was also 

found to be determined by a single amino acid change in the same region of the VPg, 

Leu185Ser (Rajamaki and Valkonen 2002). Resistance to Potato virus Y (PVY) in 

Lycopersicum hirsutum, conferred by resistance gene pot1, was no longer effective if 

there was a single amino acid substitution in the central region of PVY VPg, 

Arg119His (Moury et al. 2004). In Pisum sativum, Pea seedborne mosaicvirus 

(PSbMV) resistance conferred by the mutated eIF4E gene, sbm11, was rendered 
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ineffective by mutations encoded in the central region (amino acids 105-107) of 

PSbMV VPg (Borgstrom and Johansen 2001). P. sativum resistance to  Bean yellow 

mosaic virus (BYMV) conferred by the wlv gene, which also encodes eIF4E, did not 

confer resistance to a BYMV isolate encoding a single mutation in the central region 

of VPg, Arg116His (Bruun-Rasmussen et al. 2007). All these studies concerned 

potyviruses or bymoviruses which both reside in the Potyviridae family. In fact, all 

studies used potyviruses, except for a one study which found the central region of VPg 

determined pathogenicity to the bymovirus, Barley yellow mosaic virus in barley 

plants containing the eIF4E resistance gene rym4 (Graner and Bauer 1993; Kanyuka et 

al. 2005; Kuhne et al. 2003).  

In addition to the role eIF4E-VPg interaction could play in the viral infection 

cycle, this interaction may prohibit or alter expression of eIF4E from participating in 

normal cell functions and subsequently adversely affect the host. This has been shown 

in plants infected with potyvirus Pea seedborne mosaic virus where host mRNA and 

protein levels were suppressed in infected leaves (Wang and Maule 1995). In addition 

to cytoplasmic host translation, eIF4E has been detected in the nucleus where it was 

believed to function in nascent nuclear translation and mRNA export to the cytoplasm 

(Iborra, Jackson, and Cook 2001; Lejbkowicz et al. 1992). Interaction with VPg could 

inhibit these crucial cellular functions and potentially make the plant more vulnerable 

to viral infection.  

TEV VPg has been the focus of several studies (Dougherty and Dawn Parks 

1991; Murphy et al. 1990; Schaad and Carrington 1996; Schaad, Lellis, and 

Carrington 1997; Schaad et al. 1996).  eIF4E mediated resistance conferred by the 

pvr1 locus correlated with a lack of interaction with TEV VPg (Kang et al. 2005; 

Murphy et al. 1998). In our study, we focused on two alleles at the pvr1 locus 

demonstrating differential infectivity for two strains of TEV. Pepper plants encoding 
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the eIF4E resistance allele pvr1 are susceptible to TEV-Mex21 (Murphy et al. 1998), 

and pepper plants encoding the pvr12 allele are susceptible to TEV-N (Jahn lab, 

unpublished results), whereas  both of these alleles confer resistance to TEV-HAT 

(Deom, Murphy, and Paguio 1997; Murphy et al. 1998).  This study identifies 

naturally occurring amino acid substitutions in TEV VPg, primarily occurring in the 

central domain, which are sufficient to establish infection in a previously resistant host. 

This domain was additionally confirmed to be critical for eIF4E-VPg interaction in a 

yeast two hybrid assay which showed interaction was eliminated after 80 amino acids 

(aa) or more of the 188 aa TEV-VPg protein were deleted. 

Results 

Chimeric TEV strains containing VPg from different TEV strains are generated 

to determine if the VPg is the virulence determinant of TEV. 

  The pvr1 resistance alleles pvr1 and pvr12 differ from susceptible allele Pvr1+ 

by four and three distinct amino acid substitutions respectively; however they vary in 

their TEV resistance spectra (Figure 3.1A) (Kang et al. 2005). Pepper plants 

containing the eIF4E resistance allele pvr1 were resistant to all TEV strains tested 

except TEV-Mex21 (Murphy et al. 1998), and pepper plants containing the pvr12 

allele were also resistant to all TEV strains tested, except they were susceptible to 

TEV-N (Jahn lab, unpublished results), whereas  both of these alleles confer resistance 

to TEV-HAT (Deom, Murphy, and Paguio 1997; Murphy et al. 1998).  Sequence 

analysis of the 188 amino acids encoding the TEV VPg revealed 97 % amino acid 

similarity between both pairs: TEV-Mex21 and TEV-HAT and TEV-N and TEV-HAT 

(Figure 3.1B). TEV-Mex21, TEV-N and TEV-HAT, referred to hereafter as Mex21, N 

and HAT (Figure 3.1B). 
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Figure 3.1. Amino acid changes of eIF4E and VPg proteins.  
 
A. pvr1 amino acid alignment. Comparison of eIF4E proteins encoded by 
pvr1 resistance alleles, pvr1, pvr11, pvr12 as well as the susceptibility allele, 
Pvr1+. eIF4E proteins are 98% similar to susceptibility allele Pvr1+. pvr1 
variation includes: T51A, P66T and G107R. pvr12 variation includes: VG7E, 
L79R and D109N.  
 
B. VPg amino acid alignment. Amino acid sequence alignment of TEV-HAT, 
TEV-Mex21 and TEV-N VPg proteins. Alignment shows TEV-Mex21 and 
TEV-N are 97% similar to TEV-HAT. Amino acid Changes are concentrated 
in the central and C-terminal region of the protein. The VPg amino acid 
variations between TEV-HAT and TEV-N included A53T, I111L, E112D, 
P113H, S117N and D184E . Those differing between TEV-HAT and TEV-
Mex21 include I107N, P113L, S115A, D184E andT186M. 
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Mex21 VPg differed from HAT VPg by six amino acids, while N VPg differed from 

HAT VPg by five amino acids. We created viral chimera which differed from HAT 

only in the VPg protein domain, encoded in the N terminus of NIa or VPg-Pro, to 

determine if the N-VPg or the Mex21-VPg protein would make HAT infectious in 

pepper plants containing the pvr1 or pvr12 genotypes. A full-length infectious HAT-

GFP clone, harboring the green fluorescent protein (GFP) gene fused to HC-Pro, was 

used as the primary template (Figure 3.2) (Dolja, McBride, and Carrington 1992; 

Schaad, Lellis, and Carrington 1997). The two TEV-based chimera were synthesized 

by replacement of the HAT-GFP VPg with the VPg of Mex21 or N. The resulting 

chimeric viruses were designated HAT Mex21-VPg-GFP and HAT N-VPg-GFP (Figure 3.2).  

The chimera were synthesized using the megaprimer method (Perez et al. 2006) and 

transcribed in vitro as described previously (Perez et al. 2006; Schaad, Lellis, and 

Carrington 1997). C. Chinense ‘CA4’ (pvr1/pvr1), C. annuum ‘Dempsey’ 

(pvr12/pvr12) , C. annuum  ‘Rnaky’ (Pvr1+/Pvr1+) and C. chinense ‘Habanero’ 

(Pvr1+/Pvr1+ ) were used for the infectivity study and will be subsequently referred to 

by the pvr1 allele each encodes:  pvr1, pvr12 and Pvr1+. A different Pvr1+ line was 

infected depending on species classification of the pvr1 and pvr12 lines included in the 

study. For the Mex21 and HAT Mex21-VPg-GFP infectivity test, which was conducted to 

test pvr1 susceptibility to the HAT Mex21-VPg-GFP, Pvr1+ line C. chinense ‘Habanero’ 

was included for comparison to pvr1 C. chinense line ‘CA4’. For the N and HATN-VPg-

GFP test, C. annuum Pvr1+ line ‘RNaky’ was included for comparison to the C. 

annuum pvr12 line ‘Dempsey’. Both RNaky and Habanero were used in the HAT-GFP 

screen. Inoculated plants were routinely monitored for visible symptom development 

from seven days post inoculation (dpi) to approximately 35 dpi. Symptoms were 

recorded at 10 dpi because they were most visible at this time point and remained 

consistent for the remainder of the screen. HAT-GFP induced systemic mosaic 
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symptoms and mild deformation in uninoculated leaves of the susceptible genotype 

Pvr1+ by 10 dpi. In contrast, no symptoms were observed in pvr1 or pvr12 genotypes 

inoculated with HAT-GFP, and plants developed similar to similar to mock inoculated 

controls. pvr1 plants inoculated with Mex21 or HATMex21-VPg-GFP displayed systemic, 

mild mosaic symptoms in uninoculated leaves by 10 dpi. Mex21 caused systemic 

mosaic symptoms and mild distortion in uninoculated Pvr1+ leaves by 10 dpi, whereas 

HATMex21-VPg-GFP symptoms were less severe consisting of systemic mosaic without 

leaf distortion. No visible symptoms developed in pvr12 plants inoculated with Mex21 

or HATMex21-VPg-GFP. By 10 dpi, N infection of pvr12 plants resulted in systemic 

mosaic symptoms with chlorosis and leaf deformation, whereas HATN-VPg-GFP 

induced a mild systemic mosaic symptom that was visible. Even though the severity of 

visible symptoms induced by HATN-VPg-GFP in pvr12 was less than that induced by N, 

symptoms were clearly visible when compared to mock inoculated and HAT-GFP 

inoculated pvr12 plants which were symptom-free (Table 3.1).  Pvr1+ plants inoculated 

with N resulted in severe systemic mosaic symptoms and leaf distortion at 10 dpi. 

Symptoms of reduced severity were observed for Pvr1+ plants inoculated with HATN-

VPg-GFP infection by 10 dpi.  pvr1 plants inoculated with N or HATN-VPg-GFP did not 

show any visible symptoms.  

Visible symptoms can be summarized as follows: HATN-VPg-GFP induced 

symptoms in Pvr1+ of lesser severity than N, but equivalent to symptoms induced by 

TEV-HAT. Pvr1+ plants inoculated with HATMex21-VPg-GFP displayed the least severe 

symptoms of the five virus strains tested. A systemic infection with similar types and 

severity of symptoms occurred in pvr1 plants inoculated with Mex21 and HATMex21-

VPg-GFP. pvr12 plants were systemically infected by both N and HATN-VPg-GFP; 

however, N induced much more severe symptoms  than those  induced by HATN-VPg-

GFP.  
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Figure 3.2. Diagrammatic representation of the TEV-green fluorescent protein 
(TEV-GFP) chimeric strains used in this study. TEV-GFP consists of the TEV-
HAT (HAT – highly aphid transmissible) genome with GFP inserted between P1 and 
HC-Pro. All chimera were derived from the TEV-HAT GFP where GFP is fused to the 
HC-Pro domain of the virus (Dolja, McBride, and Carrington 1992). Chimeric viruses 
were entirely TEV-HAT GFP, except for VPg (encoded in the NIa 5’ end) which was 
replaced by TEV-Mex21 VPg or TEV-N VPg. Above are 1: TEV-HAT GFP, 2: TEV-
Mex21, 3: TEV-N, 4: TEV-HATMex21-VPg GFP and 5: TEV-HAT N-VPg GFP. 
 

Plants of each genotype were tested by enzyme-linked imunosorbant assay 

(ELISA) to assess virus accumulation in uninoculated leaves. All viruses were 

inoculated on the same day, however, sampling times differed. Plants inoculated with 

N or HATN-VPg-GFP were sampled at 15dpi. Plants inoculated with HAT-GFP were 

sampled at 15 and  at 30dpi. HAT-GFP was detected in Pvr1+ leaves, but was not 

detected in pvr1 or pvr12 leaf tissue (Figure 3.3). N and HATN-VPg-GFP were detected 

in pvr12 and Pvr1+ plants.  Neither N nor HATN-VPg-GFP was detected in pvr1 samples. 

HAT-GFP and HATN-VPg-GFP accumulated to similar titers in Pvr1+ plants.  

Plants inoculated with Mex21 and HATMex21-VPg-GFP were sampled at 30dpi 

along with the second HAT-GFP sample. Mex21 and HATMex21-VPg-GFP were 

detected in uninoculated tissue of both Pvr1+ and pvr1 genotypes (Figure 3.3). 
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Consistent with the 15dpi sample, HAT-GFP was detected in uninoculated Pvr1+ 

leaves at 30dpi, but was not detected at either time point in pvr1 or pvr12 plants.  

Neither Mex21 nor HATMex21-VPg-GFP was detected in uninoculated leaf tissues from 

pvr12 plants at 30dpi. In conclusion, systemic infection developed in pvr1 plants 

inoculated with both Mex21 and the chimeric HATMex21-VPg-GFP, but no systemic 

infection was detected for  HAT-GFP. pvr12 plants were systemically infected  with 

both N and chimeric HATN-VPg-GFP, but not HAT-GFP. The VPg protein was the 

only difference between the chimera and the template HAT-GFP. ELISA absorbance 

values for Pvr1+ samples infected with HAT-GFP the chimera were very similar at 

both 15 and 30dpi. 

 

 
 
Table 3.1. ELISA infectivity summary for pepper plants encoding Pvr1+, 
pvr1 and pvr12. 

(pvr1 
allele)a 

TEV-
HAT-GFP 

TEV-
Mex21 TEV-N 

TEV-
HATMex21-

VPg-GFP 

TEV-
HATN-VPg-

GFP 

Pvr1+ S S S S S 

pvr1 R S R S R 

pvr12 R R S R S 

 
Data are based visual data and on detection of TEV by enzyme-linked immunosorbant assay ELISA 
using polyclonal antibodies made to TEV. Three to five plants per genotype were screened per virus 
strain. TEV-HAT-GFP was screened at 15 and 30dpi, TEV-Mex21 and TEV-HATMex21-VPg-GFP were 
sampled at 30dpi, and TEV-N and TEV-HATN-VPg-GFP were sampled at 15dpi.  
aPepper genotypes: plants encoding the pvr1 alleles are represented by the following pepper cultivars: 
Pvr1+: ‘Habanero’ and ‘RNaky’, pvr1: ‘CA4’ and pvr12: ‘Dempsey’. 
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Figure 3.3. TEV infection in pvr1, pvr12 and Pvr1+ leaf tissue determined by 
enzyme linked immunosorbent assay (ELISA). Values represent average ELISA 
absorbance values in uninoculated leaf tissue from 4-6 plant samples at 15 or 30 days 
post inoculation (dpi). Standard error is indicated at the top of each bar. Samples listed 
as mock are healthy controls and are represented as the first sample bar for each 
genotype. Pepper cultivars C. chinense ‘Habanero’ (Pvr1+/Pvr1+), C. annuum 
‘RNaky’ (Pvr1+/Pvr1+), C. chinense ‘CA4’ (pvr1/pvr1) and C. annuum ‘Dempsey’ 
(pvr12/pvr12) were tested. 
 
A. TEV-N, TEV-HAT GFP and TEV-HATN-VPg-GFP ELISA absorbance values, 
15dpi. RNaky, CA4 and Dempsey were tested. 
 
B. TEV-Mex21, TEV-HAT GFP and TEV-HATMex21-VPg-GFP ELISA absorbance 
values, 30dpi. Habanero, CA4 and Dempsey were tested.  
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GFP expression in susceptible genotypes correlates with ELISA data. 

Plants infected with GFP labeled viruses, HAT-GFP, HATMex21-VPg-GFP and 

HATN-VPg-GFP, were monitored by confocal microscopy for virus accumulation at 

approximately the eight leaf stage (Figure 3.4). Uninoculated leaves from at least three 

plants per genotype were sampled from each virus inoculation between 7 and 10 dpi; 

leaves showing mosaic symptoms were preferentially selected when present. GFP 

fluorescence always correlated with ELISA infectivity data. HATMex21-VPg-GFP was 

detected in uninoculated leaves of pvr1 plants but was not detected in pvr12 plants 

(Figure 3.4A and data not shown).  In contrast, HATN-VPg-GFP was detected in 

uninoculated leaves of pvr12 plants, but not in uninoculated pvr1 leaves (Figure 3.4B 

and data not shown).  GFP fluorescence was detected in all Pvr1+ leaves examined 

from each of the three GFP labeled viruses. Consistent levels of fluorescence for each 

virus strain were observed in Pvr1+ leaves. HAT-GFP was never detected in leaves of 

the resistant genotypes pvr1 or pvr12.  As we observed for Pvr1+ leaves, pvr1 plants 

infected with HATMex21-VPg-GFP showed GFP accumulation throughout the leaf 

independent of strong visible symptom development, whereas pvr12 plants infected 

with HATMex21-VPg-GFP did not accumulate GFP in any of the leaves sampled (Figure 

3.4A, and data not shown). In contrast, HATN-VPg-GFP was detected in pvr12 leaves, 

but not in pvr1 leaves (Figure 3.4B, and data not shown).  All HATN-VPg GFP infected 

pvr12 leaves examined showed GFP accumulation; however, unlike all other samples, 

GFP was not evenly distributed, rather islands of GFP accumulation were observed 

(data not shown). GFP was  observed in all cases in pvr12 leaves infected with HATN-

VPg GFP indicating the virus had  accumulated in all leaves sampled. Susceptible host 

Pvr1+ accumulated GFP equally for all three viruses. Based on this assay, GFP being 

an indicator of viral accumulation, replacement of the HAT VPg with that of N or 

Mex21 VPg did not appear to have an effect on virus accumulation providing evidence 
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the genomes behaved as expected and produced functional GFP in systemically 

infected tissue. With the exception of reduced symptom severity for HATMex21-VPg-

GFP, Pvr1+ visible symptoms, ELISA absorbance and GFP accumulation appear to 

indicate that the chimeric virus infectivity was similar to HAT-GFP infectivity when 

in susceptible genotypes.  
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Figure 3.4. Infectivity test of chimeric TEV-HAT GFP strains monitored by 
GFPaccumulation. Confocal microscopy images of GFP accumulation in pvr1, 
pvr12 and Pvr1+  pepper leaves at 7-10dpi. Uninoculated leaf tissue from at least 
three inoculated plants per genotype, per virus was examined. Uninfected plants 
were also included as controls. Images represent the three GFP encoding viruses 
used in this study: TEV-HAT GFP, TEV-HATMex21-VPg GFP and TEV-HATN-VPg 
GFP. For each virus, the first two images on the left represent leaves from 
uninoculatedplants; the two on the right represent  systemically infected leaf tissue 
7-10dpi. 
 
A. TEV-HAT GFP and TEV-HATMex21-VPg GFP fluorescence in Pvr1+ and pvr1. 
TEV-HAT-GFP and TEV-HATMex21-VPg-GFP: Top and bottom left panels show no 
GFP accumulation in uninfected leaves of Pvr1+ and pvr1. Middle and bottom right 
panels show TEV-HAT GFP fluorescence in systemically infected leaf tissue of 
TEVHAT GFP infected Pvr1+ but no fluorescence in pvr1 leaves.Top and bottom 
right panels show TEV-HATMex21-VPg GFP fluorescence in Pvr1+and pvr1.  
 
B.TEV-HAT GFP and TEV-HATN-VPg GFP in Pvr1+ and pvr12. TEV-HAT GFP 
and TEV-HATN-VPg GFP: Top left and bottom left panels show no GFP 
fluorescence in uninfected Pvr1+ and pvr12 leaves. Middle top and bottom panels 
show GFP fluorescence in systemically infected leaf tissue of TEV-HAT GFP 
infected Pvr1+ but accumulation in pvr12. Top and bottom panels at right show 
TEV-HATN-VPg GFP accumulation in systemic Pvr1+ and pvr12 leaf tissue. 
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N-terminal 60 amino acids of the VPg protein are not required for eIF4E-VPg 

interaction in Yeast. 

Since the VPg chimera were able to infect pvr1 and pvr12, an attempt was 

made to define the region of the VPg responsible for binding to the eIF4E protein 

encoded by Pvr1+. Yeast two-hybrid was performed with the VPg domain of HAT and 

susceptible allele Pvr1+.  The full-length HAT VPg was tested along with a series of 

mutants generated by deletion of HAT-VPg which had 40, 60, 80 or 100 amino acids 

deleted from the N-terminus of the protein: HAT-VPg Δ40AA, HAT-VPg Δ60AA, 

HAT-VPg Δ80AA, HAT-VPg Δ100AA. VPg interaction with Pvr1+ was detected for 

the full-length VPg, the HAT-VPg Δ40AA and HAT-VPg Δ60AA amino acid deletion 

mutants.  No interaction was observed between Pvr1+ and the HAT-VPg Δ80AA, 

HAT-VPg Δ100AA deletion mutants (Figure 3.5). The loss of interaction between 

VPg and Pvr1+ for HAT-VPg Δ80AA and HAT-VPg Δ100AA indicate that this region 

of the protein is important for this interaction. Because data indicates that after 80 

amino acids were deleted interaction stopped, this could mean that this region of the 

protein contains the interaction domain, or it could mean that the protein is unstable 

with such a large deletion and it is therefore no longer capable of interacting in yeast. 

The VPg sequence alignment shows five out of six amino acid changes, and six out of 

six amino acid changes occur after amino acid 100 in N and Mex21 VPg, respectively 

(Figure 3.1). Given that the majority of variation occurs after amino acid 100 and 

interaction stopped after 80 amino acids were deleted, this region may still be essential 

for interaction even though the sequence was identical for the three proteins in this 

region.  
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Figure 3.5. Interaction between susceptible pepper allele Pvr1+ and TEV-HAT 
VPg as shown via yeast two-hybrid β galactosidase assay to determine the 
region of VPg essential for interaction. VPg used in the study was 1. full length 
TEV-HAT VPg 2. 120bp deleted 3. 180bp deleted 4. 240bp deleted 5. 300bp 
deleted. All deletions were made from the 5’end of the VPg coding sequence (5’ 
end of NIa). 
 
A. Pvr1+ interaction with and TEV-HAT VPg. Expression of eIF4E in yeast 
containing empty vector or eIF4E in pJG45 grown on media lacking leucine and 
tryptophan  
 
B. Yeast expressing Pvr1+ encoded eIF4E protein. Proteins were extracted and run 
in 15% SDS-polyacrylamide gel and immunoblotted with eIF4E antibody. 
Immunoblot shows 26kDa eIF4E protein is only present in yeast samples 
containing Pvr1+ eIF4E in pJG45, not in empty vector. Top image is the 
immunoblot, lower is SDS PAGE SYPRO Ruby stained gel of total yeast protein. 
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A three dimensional model provides possible explanation of the phenotype. 

Because VPg interaction with eIF4E has been correlated with infectivity, we 

used protein models to attempt to correlate eIF4E and VPg interaction potential with 

susceptibility. We focused our effort in generating a 3D model of a fragment of VPg 

sequence that is expected to interact with eIF4E; this portion of VPg will be referred to 

as the ‘essential region’ for this particular interaction. The essential region was based 

the cap docking region of the mouse eIF4E crystal structure (Protein Data Bank [PDB] 

code: 1EJ1, monomer A; 190 residues). This region was additionally based on 

variation observed in the three VPg proteins included in the study (Figure 3.1), as well 

as the variation in the pvr1 alleles included in this work. Except for a single variation, 

all sequence changes in the pvr1 alleles are predicted to fold inside the binding pocket 

on the eIF4E models (Figure 3.1). Unlike eIF4E, modeling the active conformation of 

VPg proteins is a more difficult task, because there is no crystal structure available in 

the Protein Data bank (PDB) for any potyviral VPg or homologous protein. A recent 

NMR structure of poliovirus VPg was described (Schein et al. 2006) however, 

poliovirus VPg is much smaller than TEV VPg, just 22 residues to TEV VPg’s 188. 

As expected given the significant size difference, this structure was not identified as 

homologous.  Furthermore, functional assays, biochemical and biophysical analyses 

and structure prediction programs all suggest that that potyviral VPg exists in a 

natively unfolded conformation (Grzela et al. 2008; Rantalainen et al. 2008). 

Therefore we focused on variation which exist in both eIF4E and VPg. Using the 3D 

models for the three eIF4E variants and three VPg variants, we used an interactive 3D 

graphics program to explore possible modes of interaction of the eIF4E and VPg 

molecules that account for the experimentally observed infectivity (Figure 3.6). 

Mex21, N and HAT VPgs are highly homologous sequences, without insertions or 

deletions, in which differences are observed at only nine sequence positions. The 
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majority of the variations observed among the VPgs are located near the central region 

of the protein (Figure 3.1B). Furthermore, six of the positions where substitutions 

occur are concentrated in the region between residues L106 and T118.   While the 

effect of the substitutions at positions 53, 183 and 186 cannot be ruled out, based on 

the number and on the type of the substitutions (character of the residues), we have 

made the assumption that the sequence fragment 106-118 is a primary component of 

the essential region of VPg. Three out of six aa changes in Mex VPg (I107N, P113L 

and T186M) and one out of five aa changes in N VPg (P113H)  can be considered 

substitutions in which the amino acid properties at the specified site (i.e., charge, 

hydrophobicity,)  are altered substantially. According to secondary structure prediction 

methods, the VPg fragment 106-118 is likely to be part of a α-helical or partial α-

helical conformation (i.e., a broken α-helix).  Using the program ECEPPAK (Ripoll 

1999), a regular α-helical conformation was built for the VPg fragment, which will be 

referred to as VPgHX, involving residues I91 to T118.  
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Figure 3.6: Proposed three dimensional eIF4E-VPg interaction models 
provide a possible explanation for susceptible phenotypes.  
 
A. Pvr1+ TEV-HAT VPg proposed interaction model. HAT VPg residue P113 sits 
in the pocket formed by Pvr1+ residue D109 and the conserved Pvr1+ residues 
W75 and  W121 interacting favorably with  the two aromatic tryptophan residues. 
HAT VPg residue L116 hydrophobic – hydrophobic interaction with Pvr1+ 
residue V67 contributes favorably. The net sum of interactions favors Pvr1+ 
binding and thus susceptibility to HAT.   
 
B. pvr1 TEV-Mex21 VPg proposed interaction model. By displacing the pvr1 
residue R107 side chain, Mex21 VPg residue L113 is capable of forming a large 
hydrophobic cluster with pvr1 residues W75, W121, V67, and L79 as well as 
Mex21 VPg residue L116 that favors the bound state.  
 
C. pvr12 TEV-N VPg proposed interaction model. pvr12 binding pocket near 
conserved pvr12residues W75 and W121 is polar/charged in character; the walls of 
this pocket are lined by pvr12 residues N109, E67 and R79.  If N VPg residue 
H113 sits in that pocket, the electrostatic interactions with pvr12 residues E67 and 
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Among many possible conformations for the complex, a plausible binding 

model follows which is consistent with our infectivity data. It is possible that VPgHX 

docks inside the cap-binding cleft of eIF4E with at least two of the three negatively 

charged residues D108, D109 and E110 in VPg forming salt bridges with K133, K176 

and R171 in eIF4E. This electrostatic interaction may provide an anchor point for VPg 

binding, but additional interacting residues are needed to stabilize the complex 

between VPg and eIF4E. The N-terminal part of VPgHX (conserved residues M105, 

L106, and additionally I107 in NVPg and HATVPg) are anchored near I210 and L218 

in eIF4E, while the C-terminal portion of VPgHX is directed toward the region of 

eIF4E where residues W75 and W121 are located. Conserved residue L116 in VPg 

provides additional favorable interaction when a hydrophobic residue occupies 
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position 67 in eIF4E. Table 3.2 summarizes the favorable/unfavorable interactions for 

all eIF4E and VPg combinations.  

The susceptible allele, Pvr1+ was found to interact favorably with HAT, N and 

Mex21 VPg proteins (Figure 3.6A and Table 3.2). HAT VPg residue P113 sits in the 

pocket formed by Pvr1+ D109, and the conserved Pvr1+ residues W75 and W121 

interacting favorably with  the two aromatic tryptophan residues. HAT VPg residue 

L116 hydrophobic – hydrophobic interaction with Pvr1+ residue V67 contributes 

favorably to this interaction (Figure 3.6A). Mex21 VPg also interacts favorably with 

Pvr1+. Mex21 residue L113 sits in the pocket formed by Pvr1+ residue D109 and the 

conserved residues Pvr1+ W75 and W121. While the interaction with Pvr1+ residue 

D109 is not quite favorable, Mex21 VPg residue L113 is buried by the two aromatic 

tryptophans, and additional interactions with Pvr1+ residues V67 and L79 and Mex21 

VPg residue L116 may lead to a sizable hydrophobic cluster that tends to favor the 

bound state. N VPg also interacts favorably with Pvr1+. N VPg residue H113 interacts 

favorably in a pocket formed by Pvr1+ residue D109 and the conserved Pvr1+ residues 

W75 and W121. In addition, the conserved N VPg residue L116 interacts favorably 

with Pvr1+ residues V67 by hydrophobic – hydrophobic interactions.   

Additionally, pvr1 was predicted to interact favorably with Mex21 VPg 

providing support for pvr1 susceptibility to Mex21 (Figure 3.6B and Table 3.2). By 

displacing the side chain of pvr1 residue R107, Mex21 VPg residue L113 is capable of 

forming a large hydrophobic cluster with pvr1 residues W75, W121, V67 and L79 and 

Mex21 VPg residue L116 that favors the bound state. Unlike Mex21, N and HAT VPg 

are not predicted to favorably interact, corroborating pvr1 observed resistance to N 

and HAT. In the case of pvr1 interaction with N VPg, the pocket formed by pvr1 

residues D109, W75 and W121 is likely to be occupied by the side chain of pvr1 

residue R107 which interacts with pvr1 residue D109. N VPg residue H113 does not 
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seem to be able to displace pvr1 residue R107 to interact with pvr1 residue D109 and 

the bound state of the complex is disfavored. Unfavorable interactions provide an 

explanation for observed pvr1 resistance to N. As in the case of N VPg, HAT VPg 

also does not interact favorably with pvr1. HAT VPg residue P113 does not seem to 

be able to displace pvr1 residue R107 and the bound state of the complex is disfavored. 

Models predict that pvr12 interacts favorably with N VPg supporting pvr12 

susceptibility to N (Figure 3.6C and Table 3.2). The pvr12 binding pocket near 

conserved pvr12 residues W75 and W121 is much more polar/charged in character; the 

walls of this pocket are lined by pvr12 residues N109, E67 and R79.  If N VPg residue 

H113 sits in that pocket, the electrostatic interactions with pvr12 residues E67 and R79 

should be quite favorable. In contrast, models indicated an unfavorable interaction 

between HAT VPg and pvr12. HAT VPg residue P113 sitting in the polar/charged 

pocket of pvr12 near pvr12 residues W75 and W121 should not have favorable 

electrostatic interactions with pvr12 residues E67 and R79 and will adversely affect the 

interactions between the last-mentioned two residues. Models also indicate an 

unfavorable interaction between Mex21 VPg and pvr12. As in the case of HAT VPg, 

the interactions of Mex21 VPg residue L113 with residues in the polar/charged pocket 

of pvr12 should be unfavorable. The presence of Mex21 VPg residue L113 in the 

pocket will also adversely affect the electrostatic interactions between pvr12 residues 

E67 and R79. These models correlate with previous infectivity data supporting the 

hypothesis Mex21 and N infect pepper plants encoding pvr1 and pvr12, respectively.
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Each cell has been divided in two: the left half of the cell lists the variable residues in the VPgHX fragment for the 
particular VPg variant. The right half of the cell lists the variable residues in the particular eIF4E variant. We have taken the 
sequences of N VPg and Pvr1+ eIF4E as references, and used boldface letters to indicate residues in the particular variant 
that differ from the reference sequences. Finally, residues that according to our model of the complex provide “key” 
favorable interactions are highlighted in blue, while those that appear to contribute with interactions that are very 
unfavorable are colored in red. 

Table 3.2. Summary of the favorable/unfavorable interactions for all eIF4E and VPg combinations. 
Pvr1+ pvr1 pvr12 

VPg    
eIF4E 

VPg  res.      eIF4E res. VPg  res.      eIF4E res. VPg  res.      eIF4E res. 
N I107 L111 

D112 H113 
S115 N117 

  T51 P66 
V67 L79 

G107 D109 

I107 L111 
D112 H113 
S115 N117 

 A51 T66 
V67 L79 
R107 D109 

I107 L111 
D112 H113 
S115 N117 

T51 P66 
E67 R79 
G107 N109 

HAT I107 I111 
E112 P113 
S115 S117 

  T51 P66 
V67 L79 

G107 D109 

I107 I111 
E112 P113 
S115 S117 

A51  T66 
V67 L79 
R107 D109 

I107 I111 
E112 P113 
S115 S117 

T51 P66 
E67 R79 
G107 N109 

Mex21 N107 I111 
E112 L113 
A115 S117 

  T51 P66 
V67 L79 

G107 D109 

N107 I111 
E112 L113 
A115 S117 

A51   T66 
V67 L79 
R107 D109 

N107 I111 
E112 L113 
A115 S117 

T51  P66 
E67 R79 
G107 N109 
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Discussion 

eIF4E or eIF(iso)4E interaction with VPg has been correlated with virus 

infectivity in many pathosystems including the pvr1-TEV pathosystem (Borgstrom 

and Johansen 2001; Bruun-Rasmussen et al. 2007; Kang et al. 2005; Kuhne et al. 

2003; Leonard et al. 2000; Moury et al. 2004). The VPg chimera in this study 

demonstrate that VPg is a virulence determinant in the pvr1-VPg pathosystem. Visible 

symptom development, coat protein and GFP accumulation clearly indicate that N or 

Mex21 VPg substitutions in the HAT-GFP genome are sufficient to establish 

infectivity  in pvr12 or pvr1, respectively (Figure 3.3, 3.4 and Table 3.1). Based on 

visible symptoms, it is demonstrated that HATMex21-VPg-GFP and Mex21 induced 

infectivity with similar severity in pvr1. HATN-VPg-GFP induced symptoms which 

were much less severe than N. While ELISA data showed pvr1 and pvr12 plants 

clearly became infected with the chimeric viruses, ELISA absorbance values could not 

be comparable to those of the N and Mex21 because the antibody used for analysis 

binds the TEV coat protein (CP), and variation in the CP of N, Mex21 and HAT is 

unknown. Therefore, the likelihood the antibody would equally bind the CP of all 

three strains was not be determined, therefore a comparison of N, Mex21 and HAT 

absorbance values was not possible. Based on the ELISA absorbance values, we 

therefore cannot conclude that VPg alone created a strain of equivalent infectivity to 

that of the VPg donor strain. Additionally, because Mex21-GFP and N-GFP clones 

were not available we could not determine if there was a change in the level of GFP 

accumulation in relation to the VPg donor strain. Even though pvr12 plants infected 

with HATN-VPg-GFP showed a reduction in GFP accumulation compared to all other 

plants, we do not know if this is the nature of N, or a result of compromised infectivity 

due to the chimeric nature of the clone. On the other hand, HAT-GFP and the 

chimeras have identical genome identity except for VPg, therefore the absorbance 
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values and GFP accumulation could be compared for the susceptible genotype Pvr1+. 

HAT-GFP absorbance values in Pvr1+ were very similar to those of HATMex21-VPg-

GFP and HATN-VPg-GFP. Pvr1+ visible symptoms were also similar. Systemic mosaic 

symptoms were observed for both chimera and HAT-GFP. Mild distortion was also 

observed for HATN-VPg-GFP and HAT-GFP; this symptom was not observed for the 

HATMex21-VPg-GFP. This observation could indicate that the replacement of HAT VPg 

with that of Mex21 VPg reduced HAT-GFP infectivity in Pvr1+ at visible symptom 

level. In terms of GFP expression, Pvr1+ leaves appeared to display equivalent GFP 

expression upon infection with the chimera as well as HAT-GFP. Even though Pvr1+ 

visible symptoms were reduced for HATMex21-VPg-GFP compared to HAT-GFP, 

ELISA absorbance values and levels of GFP expression was similar. Based on these 

results, it appears the chimera infectivity was similar to HAT-GFP, indicating VPg 

replacement did not alter infectivity in the susceptible host. 
Several studies link nucleotide changes in the central domain of VPg with 

infectivity (Borgstrom and Johansen 2001; Bruun-Rasmussen et al. 2007; Leonard et 

al. 2000; Moury et al. 2004; Rajamaki and Valkonen 1999; Rajamaki and Valkonen 

2002). The yeast two-hybrid data presented here provide further support that HAT 

VPg interacts with susceptible protein Pvr1+, and that the interaction does not require 

the N-terminal 60 amino acids of VPg.  A similar study showed the VPg amino acids 

59-93 from Turnip mosaic virus were responsible for interaction with Arabidopsis 

thaliana eIF4E isoform eIF(iso)4E in yeast two-hybrid assays (Leonard et al. 2000). 

Because previous yeast-two hybrid results from our lab indicated pvr1 did not interact 

with Mex21-VPg (Yeam et al. 2007) and pvr12 did not interact with N-VPg (Jahn lab 

unpublished results) in spite of susceptibility, site directed mutagenesis of the N and 

Mex21 VPgs were not completed to determine which VPg amino acid changes were 

responsible for interaction/susceptibility. Therefore, because we did not test the effect 
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each amino acid difference in Mex21 and N VPg had on interaction by themselves, we 

do not know the effect these mutations have on interaction with the pvr1 and pvr12, 

respectively.  Future yeast-two hybrid experiments using the susceptible allele Pvr1+ 

and HAT-VPg with site specific deletions at the specific locations where the amino 

acid differences present in Mex21 and N VPgs occur to determine which amino 

acid(s) are responsible for eliminating interaction with Pvr1+ may answer these 

questions. Additionally, because interaction stopped prior to the region where this 

variation occurred, it could not be determined if the region containing the specific 

amino acid differences was essential for interaction. Further yeast-two hybrid 

experiments could also include the use of VPg proteins with deletions at both termini 

of the protein to determine if the interaction would still occur with a fragment of the 

VPg protein consisting of the region containing the majority of sequence variation 

such as amino acids 60-117. Another study would include full length VPg proteins 

which differed only in the specific amino acid changes present in the three proteins.  

In order to better understand the effect the specific amino acid differences 

present in VPg and eIF4E, we also looked at the potential interaction of VPg central 

domains of Mex21, N and HAT with the eIF4E encoding alleles Pvr1+, pvr1, and 

pvr12 to correlate favorable protein-protein interactions with infectivity. The Pvr1+, 

pvr1 and pvr12 eIF4E variants are highly homologous sequences; their alignments 

show no insertions/deletions, and the differences are localized in six positions in the 

sequence (Figure 3.1). Previously we reported that sequence variation in the eIF4E 

proteins encoded by the pvr1 and pvr12 alleles was concentrated in the mRNA binding 

pocket structure (Kang et al. 2005; Yeam et al. 2007). To better understand the ability 

of eIF4E and VPg to interact, predicted three dimensional models of eIF4E and the 

VPg from each of the three viruses were constructed. Based on the structural models, a 

favorable protein-protein interaction was predicted for those VPg – eIF4E 
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combinations that resulted in a systemic infection of the plant. pvr1 was predicted to 

interact favorably with Mex21 VPg, supporting pvr1 susceptibility to Mex21 and 

HATMex21-VPg-GFP (Figure 3.6). Additionally, VPg models from both N and HAT, 

which could not infect pvr1 plants, were predicted to interact unfavorably with pvr1 

(Table 3.2). pvr12, which was susceptible to N and HATN-VPg-GFP, was also predicted 

to favorably interact with N VPg, and did not interact favorably with the VPg from 

Mex21 and HAT (Figure 3.6 and Table 3.2). Model data shows favorable interactions 

for fully susceptible Pvr1+ plants with all three VPg proteins (Figure 3.6 and Table 

3.2). Since the models predicted the interactions of a few key amino acids interacted, 

site directed mutagenesis could be used to test if they are indeed essential for 

infectivity. Our results are supported by a study which used VPg chimera to 

demonstrate six codon changes in the central and C-terminus of PVY VPg, and five 

codon changes in the same region of PVA VPg, allowed infectivity in pepper plants 

encoding pvr1 alleles, pvr11 and pvr12, respectively (Moury et al. 2004).   

In the current study, we focused on two alleles of the pvr1 locus, pvr1 and 

pvr12. Using differential infectivity conferred by pvr1 and pvr12, we were able to 

determine that TEV VPg was the virulence determinant using TEV VPg chimeras. 

This study also supports prior evidence that the central domain is important for strain 

specific infectivity. Identifying variation in the VPg domain of resistance breaking 

strains like Mex21 and N can provide the reason for susceptibility. Because 

susceptibility is linked to VPg interaction with eIF4E or eIF(iso)4E, identifying the 

specific amino acids responsible for interaction with VPg it may be possible to 

engineer new  eIF4E alleles that are unable to interact with VPg and subsequently 

confer resistance to one or more viruses. Previously, we showed that overexpression 

of the pvr1 resistance allele in tomato conferred potyvirus resistance (Kang et al. 

2007). If a new strain of TEV is identified which can overcome all pvr1 resistance 
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alleles, it would be possible to mutate a pvr1 allele to eliminate interaction with the 

VPg of the resistance breaking strain and thereby confer resistance. The synthesis of 

new eIF4E or eIF(iso)4E transgenic resistance alleles could potentially be developed 

to confer resistance to any resistance breaking strain. This could be a powerful tool for 

engineering new sources of resistance to viruses which encode a VPg. 

Material and methods 

Plants, viruses and populations for genetic studies 

C. annuum  ‘NuMex RNaky’ (RNaky) was obtained from Asgrow Seed Co. 

(San Juan Bautista, CA).  C. annuum ‘Dempsey’ was provided by C. M. Deom, 

University of Georgia, Athens, GA, USA. C. chinense PI 159234 (CA4) was obtained 

from the USDA Southern Regional Plant Introduction Station (Griffen, GA). C. 

chinense ‘Habanero’ was obtained from Tomato Growers Supply Co. (Fort Myers, 

FL).  

Plant virus strains used in this study included TEV-HAT, TEV-N and TEV-

Mex21.  TEV-HAT and TEV-N were obtained from T. Pirone, University of 

Kentucky, Lexington, KY.  TEV-Mex21was obtained from J. F. Murphy, Auburn 

University, Auburn, AL.  Each virus was maintained by mechanical passage in 

Nicotiana tabacum ‘Kentucky 14’. TEV-HAT GFP was obtained from J. Carrington 

(Oregon State University, Corvallis, OR, USA. 

VPg cloning and sequence alignment 

Total RNA was extracted from flash frozen ‘Kentucky 14’ non-inoculated leaf 

tissue infected with the respective virus using a Qiagen RNeasy Plant Mini kit (Qiagen, 

Valencia, CA), following the manufacturer’s instructions. cDNA was synthesized as  

described previously (Kang et al. 2005) using primers TEV-Mex21 VPg reverse 

primer 5’-CCCTTCAAACATCAACTCCTC-3’ for TEV-Mex21 RNA and TEV-N 

VPg reverse primer 5’-CCCTTCAAACGTCAACTCCTC-3’ for TEV-N RNA. The 
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VPg coding region was cloned using a pGEM-T Easy kit (Promega). Clones including 

TEV-Mex21 VPg and TEV-N VPg as well as TEV-HAT GFP and both viral chimeras 

TEV-HATN-VPg and TEV-HATMex21-VPg GFP  were aligned using Seqman software 

(DNASTAR Inc., Madison, WI, USA) as described previously (Kang et al. 2005). 

Primers used for chimera sequencing are listed in Supplemental Table 3.1.   

Megaprimer  to replace VPg using mega primers 

The chimera were synthesized using the megaprimer method and transcribed in 

vitro as described (Kang et al. 2005; Perez et al. 2006; Schaad, Lellis, and Carrington 

1997).  In the initial reactions, a 564bp VPg DNA fragment was amplified. TEV-

Mex21 forward primer 5’-CAAGGGAAGAAGAATCAGAAG-3’ and reverse primer 

5’-CCCTTCAAACATCAACTCCTC-3’ were used to amplify TEV-Mex21 VPg. 

TEV-N VPg was amplified using TEV-N forward primer 5’-

CAGGGGAAGAAGAATCAGAAG-3’ and reverse primer 5’-

CCCTTCAAACGTCAACTCCTC-3’. For the second step of mega-primer 

amplification, the manufacturer’s protocol was followed for use of the Quikchange XL 

kit (Stratagene, La Jolla, CA) with the modification of  using 100 ng VPg 

megaprimers, 10 ng of pTEV-HAT GFP plasmid, 2.5 U Pfu DNA polymerase, 50 µM 

dNTPs as described previously (Perez et al. 2006). Following this PCR reaction, a 

digestion with 10 U DpnI was performed at 37 oC for 1 hr and transformed into E.coli. 

Clones were verified for VPg replacement by PCR, restriction enzyme digestion, and 

DNA sequencing analysis. 

In vitro transcription and biolistic inoculation 

TEV-HAT GFP, TEV-HATN-VPg and TEV-HATMex21-VPg RNA transcripts were 

prepared as described previously (Kang et al. 2005; Schaad, Lellis, and Carrington 

1997), and used to inoculate ‘Kentucky 14’plants at the 4-6 leaf stage using a 

microprojectile bombardment gun (Biorad, Hercules, CA, USA). The infected tobacco 



 

 66

plants were subsequently used as sources of inoculum throughout the study. For each 

virus, 15-20 plants were inoculated.  Leaf tissue from symptomatic plants at 7-10 dpi 

served as inoculum for additional ‘Kentucky 14’ plants at the 4-6 leaf stage.  These 

plants were used as inoculum for pepper plants.  

Virus inoculation and resistance test  

Pepper seeds were allowed to germinate at 30 C in petri dishes containing 

water-saturated sterilized germination paper. Germinated seed were sown in plastic 

trays containing the soilless potting medium Cornell Mix.  Plants were inoculated at 

approximately the six leaf stage. Virus inoculum was rub inoculated onto at least two 

of the youngest leaves big enough to inoculate, approximately 3cm2 in size, after the 

leaves were dusted with Carborundum. Inoculum was prepared by grinding 

systemically infected  ‘Kentucky 14’ tissue in 50 mM potassium phosphate buffer, pH 

7.5 (approximately 1 g tissue : 20 mL buffer). Mortars and pestles were chilled at -20 

C prior to use and then maintained on ice throughout the inoculation process.  

Genotypes pvr1, pvr12 and Pvr1+ were always included. For the TEV-Mex21, TEV-

HAT-GFP and TEV-HATMex21-VPg GFP test Pvr1+ genotype C. chinense Habanero 

was included so it could be compared to C. chinense CA4. For the TEV-HAT GFP, 

TEV-N, TEV-HATN-VPg GFP test and TEV-HATMex21-VPg test Pvr1+ genotype C. 

annuum RNaky was included so it could be compared to C. annuum Dempsey. Mock-

inoculated controls were always included. Plants were arranged so each tray contained 

a single genotype infected with a single virus; trays were arranged so plants did not 

touch each other to avoid cross-contamination. Plants were monitored routinely for the 

appearance of symptoms.  Leaf tissue was tested for the presence of virus using 

antigen plate-coating indirect ELISA, as described previously (Kang et al. 2005). TEV 

polyclonal anti-viral immunoglobulins were obtained from Agdia, Inc. (Elkhart, IN, 

USA). At least three uninoculated leaves were sampled and combined per plant at 15 
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and30 dpi. Tissue was sampled in identically sized leaf punches per plant. ELISA 

absorbance values were determined at 405 nm. Samples were considered positive if 

their absorbance value was above the mean of the mock inoculated controls plus three 

standard deviations. Samples are divided in Figure 3.3 based on sampling date and 

ELISA experiment. All samples included in each graph were inoculated and loaded 

into ELISA plates on the same day. Multiple 96well plates were included for each 

ELISA date. Mock inoculated controls were sampled for ELISA for genotype for each 

sampling date.  

GFP imaging 

GFP fluorescence resulting from virus infection was monitored using a Leica 

TCS SP2 scanning confocal microscope (Leica, Wetzlar, Germany). At 7-10dpi, 4-5 

uninoculated leaves were sampled from inoculated plants for viewing. At least 3 plants 

per genotype were sampled per virus and monitored for GFP accumulation. Leaves 

showing signs of infection were preferentially selected in all cases when available. 

Yeast two-hybrid analysis 

Yeast two-hybrid analysis using yeast strain EGY48 and vectors pEG202, 

pJG4-5 and pSH18-34 was carried out as described (Kang et al. 2005; Yeam et al. 

2007). Yeast and vectors were provided by G. Martin (Boyce Thompson Institute, 

Ithaca, NY). Full length and deleted TEV-HAT VPg was fused into pEG202 and prey 

plasmid, pJG4-5, expressed full length Capsicum eIF4E Pvr1+. Yeast western blot 

analysis with anti-eIF4E (New England Biolabs) assured equivalent expression for all 

constructs. eIF4E antibody was produced as previously described (Kang et al. 2005). 

Modeling of the VPg and eIF4E proteins 

 PSIPRED and SAM-T02 were used to develop secondary structure predictions 

of VPg, and the program ECEPPAK was used to build the VPgHX fragment (Ripoll 

1999). The program MODELLER (Sali 1995; Sali and Blundell 1993; Sanchez and 
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Sali 2000) was used to generate the 3D models for the sequences of the pvr1 alleles. 

Final adjustment of the alignment between the Capsicum-eIF4E and the yeast 

sequence was performed manually with the help of graphic tools included in the 

commercial programs ICM (MOLSOFT) and DS-Modeling (Accelrys). The pairwise 

alignments of the sequences of Capsicum variants and the template 1AP8 were 

generated by using the program BLAST (Altschul 1997).  
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Table 3.3. Primer sequences used in this study. 
Primer ID bp covered F R 

1 TEV 
HAT 1-600 ggcaagagacgcaaagtttc ttgcaaatgtcttccactgc 

2 TEV 
HAT 601-1200 gtgcaattgttcgcaagtgt tgcctcaaaactaggccact 

3 TEV 
HAT 1201-1800 agggtgagtcgggagaaagt gccagtacgtgtgtgaatgg 

4 TEV 
HAT 1801-2400 tcggatctaaagcacccaac cctttgcatcctcttccttg 

5 TEV 
HAT 2401-3000 atgcgcaggtaattttggac ttgcggagaatttttccaac 

6 TEV 
HAT 3001-3600 cctgaagggaaccatctcaa ttgtcccactcgctctcttt 

7 TEV 
HAT 3601-4200 ggggcacttcatggagttta atcctcaaagttgggaagca 

8 TEV 
HAT 4201-4800 gagcggtgcagtacaacaaa agcttcagtggcaaccattt 

9 TEV 
HAT 4801-5400 tgctggaaaatgccacatta atgccagcatcctctgctat 

10 TEV 
HAT 5401-6000 agggcaatatgaggttgcag tcaataggtgcgtttgtgga 

11 TEV 
HAT 6001-6600 cgagcaccatttgtcatttg ggaaatggtgggaaatcctt 

12 TEV 
HAT 6601-7200 tcagcatcgaatttcaccaa aggctcttcaggtttgctca 

13 TEV 
HAT 7201-7800 gaaagcagctatgggagcac cacgcaaactttaccagcaa 

14 TEV 
HAT 7801-8400 ggtggacaacacactcatgg tgtccctggtggtacagtca 

15 TEV 
HAT 8401-9000 tcagcacggaacaaactctg gcctgctcagcgactttatc 

16 TEV 
HAT 9001-9494 acgctatgcgttcgacttct gcatgttacggttcacatcg 
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CHAPTER 4 

PEPPER RECESSIVE RESISTANCE GENE PVR12 CONFERS DOMINANT 

NEGATIVE RESISTANCE TO POTATO VIRUS Y IN POTATOa,b 

 

Abstract  

Potato infecting viruses such as potyvirus Potato virus Y (PVY) continue to 

limit production despite breeding efforts to confer resistance. Transgenic approaches 

to confer virus resistance in potato are particularly significant because new varieties 

gain popularity infrequently and variety mainstays are often susceptible to PVY. In 

this study, we transformed widely cultivated and PVY susceptible variety Russet 

Burbank with one of four alleles of the naturally occurring pepper potyvirus resistance 

gene pvr1, which encode variants of eukaryotic translation initiation factor eIF4E. 

Naturally occurring mutations in eIF4E provide virus resistance in many systems. 

Enzyme-linked immunosorbant assay (ELISA) data indicate Russet Burbank lines 

overexpressing the pvr12 or the pvr11 allele from pepper were resistant to at least one 

of three PVY strains tested: PVYN-Wi, PVYO, and PVYNTN. The majority of pvr12 lines 

were resistant to all strains of PVY and plants grown from tubers of the inoculated 

resistant lines were virus free. pvr11 plants grown from tubers of inoculated plants 

were virus free in nearly all cases. This technology could be extremely valuable for the 

industry given potato is tuber propagated and controlling PVY costs seed producers 

and growers a great deal of income each year.  
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Introduction 

As the world’s fourth most important crop, potato (Solanum tuberosum) has a 

tremendous impact on the global food market. In fact, the Food and Agriculture 

Organization (FAO) of the United Nations named 2008 ‘The Year of the Potato’, 

stating the hardy crop could provide much needed food security worldwide (FAO 

2008). Small scale or subsistence farmers, representing 500 million in China, 500 

million in  India and 400 million in Africa (Toenniessen, O'Toole, and DeVries 2003), 

could benefit from increased potato productivity for many reasons. Potato is traded 

locally so prices are determined by the local market rather than the global market, like 

grain crops, whose prices have recently soared due to increased demand for cereals for 

biofuel production and animal feed (FAO 2008). Additionally, potato is highly 

nutritious containing potassium, phosphorus, folate, magnesium, Vitamins C, B1, B3 

and B6 as well as antioxidants and fiber, and has the highest protein to calorie ratio of 

any other tuber (FAO 2008; Mih and Atiri 2001). 

While potato can be produced in less than ideal environmental growing 

conditions, there are many viruses which have a tremendous impact on production 

(CIP 2007). Among them is Potato virus Y (PVY), an economically devastating virus 

found in all potato production areas which ravages potato yields worldwide (Crosslin 

et al. 2006; Ellis, Stace-Smith, and de Villiers 1997; Khurana 2004; Thottappilly 

1992). Isolates are differentiated as PVYO, the common strain, or as isolates of PVYN, 

the necrotic strain, which causes necrosis in tobacco and sometimes in potato (Beczner 

et al. 1984; de Bokx and Huttinga 1981). The four PVY strains were used in this 

study: PVYN, PVYO, PVYNTN and PVYN-Wi. PVYNTN was first identified in Hungary 

for its ability to cause tuber necrotic ringspot disease (Beczner et al. 1984). PVYNTN is 

now commonly found worldwide (Blanco-Urgoiti et al. 1998). PVYN-Wi was first 

identified in Poland (Chrzanowska 1991) and has also been identified in potato 
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growing regions throughout the world (Blanco-Urgoiti et al. 1998; Chikh Ali, Maoka, 

and Natsuaki 2007; Crosslin et al. 2006; Kerlan et al. 1999). Molecular analysis of 

isolates PVYNTN and PVYN-Wi revealed they were actually recombinant isolates of 

PVYO and PVYN (Glais, Tribodet, and Kerlan 2002). Mechanical transmission, as 

well as non-persistent transmission by aphids, particularly the green peach aphid, 

Myzus (Nectarosiphon) persicae (Sulzer), can quickly spread the virus through a field 

(Radcliffe and Ragsdale 2002). Oils as well as insecticides are used to control aphid 

populations (Martín-López 2006) and both can have a detrimental impact on the 

environment (Kleter 2007).  

The virus can also be transmitted to the tuber, making virus free seed tubers 

essential since potatoes are tuber propagated. Unfortunately, widely cultivated potato 

varieties such as Russet Burbank, which represented over 23 per cent of all potato 

acreage grown in the US in 2008, more than any other potato cultivar, are susceptible 

to PVY (Minnesota Certified Seed Potato Growers Association 2008). In the U.S., the 

incidence of PVY has been a major problem for potato seed certification programs 

which tolerate at most very low levels of virus incidence. Potato tuber seed is first 

multiplied first by Foundation Seed producers, then by Certified Seed producers who 

either save seed for recertification or sell to growers who produce for consumption. 

Seed growers are allowed a limited amount of virus in their fields which are monitored 

by state run seed certification programs such as the New York Seed Improvement 

Project (NYSIP) or the Idaho Crop Improvement Association. In New York, all 

varieties produced for potato seed need to be approved by NYSIP; currently they do 

not allow PVY asymptomatic cultivars in the program (Westra personal 

communication, 2009). The amount of virus mosaic permitted in the field increases 

the further the seed moves away from Foundation Seed. If mosaic symptoms are too 

high in the field, the seed will downgraded and likely sold for a lower price. The price 
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is dependent on fluctuations in the market price for tubers; in some years the table 

stock price will be high enough that certified seed growers will sell their harvest rather 

than putting it into storage (Westra personal communication, 2009). The strictest 

guidelines exist for Foundation Seed which is produced from tissue culture plantlets. 

These plants are subsequently grown in the field for multiplication. In New York, 

there is a 0.5% tolerance policy for visible mosaic symptoms in Foundation Seed 

fields (Westra personal communication, 2009). After Foundation Seed multiplication, 

seed is multiplied in certified fields which have a higher level of mosaic allowed in 

fields. There is a 5% tolerance policy in NY State for certified seed (Westra personal 

communication, 2009). In Idaho, which has had a tuber seed testing program since 

1913 (Potato Country November, 2005), the Idaho Crop Improvement Association 

allows 0.2 to 2.0% virus mosaic symptoms during a field inspection (Nolte et al. 2004). 

Most states have a 5% tolerance policy for foliar mosaic symptoms including Maine, 

Michigan and Wisconsin, while Colorado allows 10% and Nebraska 8% (Oregon Seed 

Certification Service 2009 ). These symptoms could be due to PVY, PVX or PVA or 

other viruses which induces foliar mosaic symptoms. Usually the mosaic symptoms 

are clearly distinguishable by eye, but if there is uncertainty they will be tested for 

virus infection in the laboratory by an independent source (Westra personal 

communication, 2009). Last year in New York, all questionable plants tested to 

confirm virus infection were infected with PVY; no other viruses were identified 

(Westra personal communication, 2009). If the amount of virus in the field is still too 

high, the seed can only be sold table stock. Some years the seed price has been close to 

the table stock, other years there is a significant difference in price. In these years 

growers can stand to lose a significant profit due to virus infection. Additionally, if 

plants are infected with virus the tubers will harder to sell (Westra personal 

communication, 2009). 
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In the Northwest, the investment to control viruses is about 100 million dollars 

annually, with at least a quarter of that due to PVY (Brown 2009, personal 

communication). In the developing world, certified seed tubers produced in the home 

country are often unavailable or do not meet the requirements of the growers due to 

difficult growing conditions (Vreugdenhil 2007). Seed tubers are often exported from 

the U.S., Europe and Canada around the world to meet these needs (Vreugdenhil 

2007). PVY susceptible Russet Burbank and Shepody are among top exported 

varieties from the U.S., making virus free seed essential for the global market 

(Vreugdenhil 2007). In addition to Russet Burbank, Shepody and Russet Norkotah are 

also PVY susceptible (Minnesota Certified Seed Potato Growers Association 2008; 

Potato Country November, 2005). In 2008, out of over 300 certified varieties produced 

in the U.S., Russet Burbank was the number one followed second by Russet Norkotah 

which made up 9.8%; Shepody ranked seventh and made up 3.2% (Minnesota 

Certified Seed Potato Growers Association 2008). These two cultivars are particularly 

problematic because they exhibit latent PVY infection so growers do not know the 

plants are infected until it is too late (Hane and Hamm 1999). Even though they do not 

show strong foliar symptoms, the virus has been shown to reduce yield nearly 80% for 

Shepody and 65% for Russet Norkotah (Hane and Hamm 1999). Unfortunately, latent 

PVY syndrome is not limited to Shepody and Russet Norkotah. Many new varieties 

also do not show strong symptoms (Brown 2009, personal communication). These 

cultivars serve as a source of infection for an entire field and seriously impact yield.   

 Natural sources of resistance to PVY include the single dominant genes Ry 

and Ny, which confer complete resistance or hypersensitivity, respectively (Solomon-

Blackburn and Barker 2001a). The Nytbr gene, identified from S. tuberosum, confers 

hypersensitivity only to the PVYO strains not the PVYN strains (Solomon-Blackburn 

and Bradshaw 2007; Solomon-Blackburn and Barker 2001a). Ry resistance genes have 
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all been identified from wild species (Solomon-Blackburn and Barker 2001a). The 

Rysto gene, isolated from S. soloniferum, has been introgressed into S. tuberosum (Ross 

1958). To date, cultivars encoding this gene are resistant to all strains of PVY 

(Baldauf, Gray, and Perry 2006; Solomon-Blackburn and Barker 2001a). Even though 

Rysto resistance is complete, clones such as Eva are not widely cultivated due to variety 

preferences in the industry (Brown 2009, personal communication; Minnesota 

Certified Seed Potato Growers Association 2008). In fact, over the past 100 years, few 

new potato cultivars have had success in the marketplace, even though over 250 

cultivars have been developed (Douches 1996). Potato breeding is not a closely 

targeted affair; sexual progeny are so variable that it is difficult to achieve an array of 

traits that make a potato a success (Brown 2009, personal communication). This is 

because many desirable characteristics must be combined in each cultivar: high yield, 

high horticultural quality and resistance to a range of pests and pathogens are all 

required (Solomon-Blackburn 2001b). Transgenic approaches can solve this problem 

because genes of interest can be integrated into any cultivar of interest without 

affecting quality. Transgenic strategies have been employed to control potato viruses 

since the first transformation of potato. The PVY coat protein was the first transgene 

used to transform potato (Newell et al. 1991). Other potato transgenes have included 

the Potato leafroll virus movement protein, an antibody that binds the PVY NIa 

protein, the PVY P1 and coat protein, cryIIIA (which produces toxin against pests such 

as the Colorado potato beetle) and a pathogen-inducible glucosyltransferase (TOGT) 

to confer PVY resistance (Gargouri-Bouzid et al. 2006; Kaniewski et al. 1990; 

Lawson et al. 1990; Mäki-Valkama et al. 2001; Matros and Mock 2004; McDonald 

1997; Newell et al. 1991; Perlak et al. 1993; Tacke, Salamini, and Rohde 1996; Visser 

et al. 1991). Additionally, the BASF corporation recently released another transgenic 

potato called Amflora after waiting nearly 12 years long for the European Food Safety 
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Authority (EFSA) to approve it (Burger and Steitz 2009). The potato is designed for 

industrial purposes rather than human consumption as the tuber starch has been altered 

to produce 100% amylopectin, and does not produce amylose which drastically alters 

the starch as well makes the tuber inedible (Burger and Steitz 2009; Visser et al. 

1991). Until the approval of the amyflora potato, only Bt maize was grown in Europe 

by seven of the 27 countries in the EU: Portugal, Spain, Germany, Czech Republic, 

Slovakia and Romania (James 2008). 

The Monsanto Corporation commercialized Russet Burbank lines encoding Bt 

gene and PVY resistance as NewLeaf Y as well as NewLeaf Plus which also encoded 

Bt as well as PLRV resistance in Canada and the United States in 1998 and 1999 

(Kaniewski 2004). The transgenic lines required fewer insecticide sprays, produced 

disease free tubers and was preferred by consumers for their superior quality and 

competitive pricing (Kaniewski 2004). Even with positive consumer feedback, 

McDonald’s, whose french fries are made from Russet Burbank potatoes, would not 

purchase the potatoes prompting the downfall of the transgenic potato market and 

Monsanto dropped the product in 2001 (Kaniewski 2004). To date, all transgenic 

approaches to control PVY in potato have encoded pathogen derived sources of 

resistance (PDR). It is possible that using a plant derived gene rather than a pathogen 

derived gene could improve acceptance of transgenic crops. This hypothesis is 

supported by a 2002 survey from Lusk et al. which found 59.6% of consumers 

surveyed would consume plant genes as transgenes, while just 14.3% would consume 

viral genes as transgenes (Lusk 2002).   

In this study, we have used a pepper gene as a transgene to confer PVY 

resistance. Pepper plants encode recessive resistance alleles at the pvr1 (potyvirus 

resistance gene 1) locus conferring resistance to several potyviruses (Kang et al. 2005). 

pvr1 encodes eukaryotic translation initiation factor eIF4E, which is part of translation 
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initiation complex, eIF4F, made up of eIF4A, eIF4E and eIF4G (Browning 2004; 

Gingras, Raught, and Sonenberg 1999). This complex is responsible for translation 

initiation which includes mRNA 5’ cap recognition, mRNA unwinding and 

recruitment to the 40S ribosomal subunit (Browning 2004; Browning 1996; Gingras, 

Raught, and Sonenberg 1999; Kawaguchi and Bailey-Serres 2002; Nicaise et al. 2007). 

eIF4E has been correlated with resistance in several pathosystems  In susceptible 

plants, eIF4E has been shown to interact with potyviral protein VPg, which is linked 

to the 5’end of the potyviral genome (Bruun-Rasmussen et al. 2007; Kang et al. 2005; 

Kuhne et al. 2003; Leonard et al. 2000; Moury et al. 2004; Yeam et al. 2007). In fact, 

VPg has been identified as the virulence determinant in a number of diverse hosts 

(Borgstrom and Johansen 2001; Bruun-Rasmussen et al. 2007; Murphy et al. 1991; 

Murphy et al. 1996; Rajamaki and Valkonen 1999; Rajamaki and Valkonen 2002; 

Revers et al. 1999). We have shown previously that just one amino acid substitution 

mutation in the pvr1 resistance allele is sufficient to eliminate the interaction with 

tobacco etch virus VPg and confer resistance (Yeam et al. 2007).  

Recessive resistance alleles at the pvr1 locus have been employed in pepper 

breeding programs for over 50 years (Greenleaf 1956). Currently the pvr12 (also cited 

as pvr22) allele is more widely used than the pvr1 or the pvr11 alleles in pepper 

breeding programs, making it the most important allele to the industry (Czaplewski 

2009, personal communication). The resistance conferred by the pvr12 allele has 

proven adequate in most areas. If it is overcome, the level of infection has not been 

overwhelming or recurring in the same area in subsequent years (Czaplewski 2009, 

personal communication). Fifty years later, pvr12 has not been replaced by other genes 

to any extent (Czaplewski 2009, personal communication). Because pvr12 mediated 

resistance has proven durable in pepper, we transformed Russet Burbank with the full 

length open reading frame (ORF) of the pvr12 allele. We also transformed the same 
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variety with the ORF of the other pvr1 alleles, pvr1, pvr11 and Pvr1+. Previous pepper 

PVY infectivity studies have shown peppers encoding the pvr12 confer the broadest 

spectrum of PVY resistance (Kyle and Palloix 1997). PVY isolates which infect 

Capsicum have been named for their ability to overcome recessive resistance alleles 

pvr1, pvr11 and pvr12 (Kyle and Palloix 1997), the last two alleles are also cited in the 

literature as pvr21 and pvr22 (Moury et al. 2004; Ruffel et al. 2002), but have been 

determined to be alleles of the pvr1 locus (Kang et al. 2005). A virus survey conducted 

in pepper fields found isolates PVY-0 and PVY-0,1 most frequently (Palloix 1994). 

Isolate PVY-0 is resisted by all three alleles, pvr1, pvr11 and pvr12, while PVY-0,1 

and PVY-0,1,2 can infect pvr11 plants, and PVY-0,1,2 can infect pvr12 (Kyle and 

Palloix 1997). Because PVY-0, PVY-0,1 and PVY-0,1,2 have not been sequenced, 

and were not included in this study, we could not correlate previous pepper  pvr1 

infectivity data with pvr1 infectivity data generated in this study for the four potato 

infecting strains we tested for pepper infectivity, PVYN, PVYO, PVYNTN and PVYN-Wi.  

Previous studies show that transgenic overexpression of a modified version of 

eIF4E can confer resistance to potyviruses. A study from Schaad et al. (1997) 

produced transgenic Arabidopsis overexpressing naturally occurring eIF4E mutants 

which confer resistance in other plant systems. When these plants were inoculated 

with Tobacco etch virus (TEV) virus, they accumulated the virus at levels much lower 

than wild type (Schaad, Lellis, and Carrington 1997). In our lab, we have shown that S. 

lycopersicum ‘MicroTom’ plants overexpressing the pvr1 gene were resistant to 

several strains of TEV as well as Pepper Mottle Virus (Kang et al. 2007). This study 

reports several Russet Burbank transgenic lines overexpressing the pepper pvr12 

resistance gene were resistant to all strains of PVY tested.  
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Results 

Pepper cultivars homozygous for the pvr12 or pvr11 alleles are resistant to PVY. 

Pepper cultivars homozygous for one of the four pvr1 alleles, Pvr1+, pvr1, 

pvr11 and pvr12, were tested for their susceptibility to isolates of four different strains 

of PVY (PVYN-Wi, PVYO, PVYNTN or PVYN). At least one cultivar per pvr1 allele was 

inoculated with each PVY strain and infectivity was assessed by visible symptom 

development and ELISA. Symptoms were never observed in plants encoding the pvr12 

and pvr11 inoculated by any of the four virus isolates; leaves looked identical to virus 

free controls (Figure 4.1A). Plants homozygous for pvr1 occasionally developed very 

mild mosaic symptoms, but most plants remained symptomless when infected with 

any of the isolates. Mosaic symptoms were observed on plants encoding the 

susceptible allele Pvr1+ by 20 days post infection (dpi) with PVYO, PVYNTN and 

PVYN (Figure 4.1A). In contrast, Pvr1+ plants infected with PVYN-Wi displayed severe 

yellow mosaic symptoms, necrotic lesions and leaf deformation. (Figure 4.1A). PVYO 

and PVYNTN were tested in the fall, PVYN in the winter and PVYN-Wi in the spring. 

Since the inoculations took place at different times of year, variation in day length and 

temperature could have accounted for symptom severity for the PVYN-Wi screen.  

 Young leaves that developed after the plants were inoculated with PVY were 

sampled 39-45 dpi and tested by ELISA using an antibody that detects all PVY strains. 

Virus antigen was not detected in leaves from any of the inoculated pvr12 or pvr11 

plants.  PVY antigen was detected in both Pvr1+ and pvr1 plants inoculated with each 

of the four PVY isolates (Table 4.1). 
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Table 4.1. PVY susceptibility in pepper plants differing at the pvr1 locus. 

Cultivara 
pvr1 
allele (PVYO)b 

PVYO 
symptomsc (PVYNTN)b 

PVYNTN 

symptomsc 
(PVYN-

Wi)b 
PVYN-Wi 

symptomsc (PVYN)b 
PVYN 

symptomsc 
RNaky Pvr1+ 11/17 M 28/28 M 10/10 SM, NL, LD 5/5 M 
HAB Pvr1+ 7/8 M NS M 6/6 SM NS M 
5502 pvr1 7/8 MM 7/8 MM 5/5 MM 5/5 MM 
CA4 pvr1 5/5 MM 9/15 MM 5/5 MM NS NS 
YY pvr11 0/6 none 0/13 none 0/5 none 0/4 none 
DP pvr12 0/8 none 0/6 none 0/6 none 0/4 none 

 
aCultivars included in the study are NuMex RNaky, Habanero (Hab), 5502, CA4, Yolo Y (YY) and Dempsey (DP). 

 
bData are number of plants which tested positive for PVY by double-antibody sandwich enzyme-linked immunosorbant assay. PVY screens include: 
PVYOME-11 which was sampled at 42days post inoculation (dpi), PVYNTN sampled at 41dpi, PVYN-Wi sampled at 39dpi and PVYN sampled at 45dpi. NS were 
not included in the screen. 2 uninoculated plants were sampled and screened per each cultivar included in each inoculation except for the PVYN screen where 
one uninoculated plant per cultivar was sampled. All uninoculated plants had abs values at or near zero (data not shown). 
 
cVisible symptoms were monitored until sampling date: None - no visible symptoms ever developed, MM mild mosaic, M - yellow mosaic, SM - severe 
yellow mosaic, NL - necrotic lesions, LD - leaf deformation. 
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Potato plants expressing the pepper pvr12 or pvr11 allele are resistant to PVY.  

Given that pepper plants encoding pvr11 and pvr12 had broad spectrum 

resistance to PVY, and that overexpression of the pvr1 pepper allele in transgenic 

tomato conferred resistance to other potyviruses (Kang et al. 2007), we hypothesized 

that expression of pvr11 or pvr12 in transgenic potato may confer broad spectrum PVY 

resistance. To test this hypothesis, the PVY susceptible Solanum tuberosum cultivar 

Russet Burbank was transformed with each of three pvr1 alleles: pvr11, pvr12, and 

Pvr1+.  

An initial transformation experiment generated five Russet Burbank lines 

transformed with Pvr1+, five lines transformed with pvr11 and three lines transformed 

with pvr12. T0 transformants were multiplied by cuttings and at least two plants 

derived from each line were inoculated with each strain of virus, PVYO, PVYN-Wi, or 

PVYNTN (Table 4.2). PVYN was not included because it was found infrequently in 

potato viral surveys. Infectivity was monitored by the appearance of visible symptoms 

and ELISA. Plants derived from each of the three pvr12 lines did not develop visible 

symptoms when inoculated with any of the three strains and virus antigen was not 

detected in leaves sampled 21 to 22 dpi (Table 4.2). A second experiment on 

additional cuttings from two of these three lines also indicated that all the plants were 

resistant to PVY infection when tested at 44 days post infection. Infectivity results of 

pvr11 lines were more complicated. All pvr11 plants derived from lines 5, 21 and 25 

were resistant to PVYO and PVYN-Wi in two separate experiments; however some of 

the plants from these lines were susceptible to PVYNTN. Plants derived from line 23 

were susceptible to all three PVY isolates, but the results were not consistent between 

experiments. Plants derived from line 27 were susceptible to PVYN-Wi and PVYNTN, 

but appeared resistant to PVYO, although only a small number of plants were tested 

(Table 4.2). Plants derived from each of the four Pvr1+ lines and the non-transgenic 
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Russet Burbank plants that were inoculated with each of the three PVY strains 

displayed yellow mosaic and leaf deformation symptoms. Virus antigen was detected 

by ELISA in all symptomatic plants, but not in the few asymptomatic plants which 

were considered escapes, not resistant plants.  

 To determine if the resistance to virus infection identified in the foliage also 

was functional in the tubers, tubers were harvested from a subset of plants used in the 

first inoculation experiment. Following an appropriate dormancy period, the tubers 

were sprouted and planted in the greenhouse, and the foliage was subsequently tested 

by ELISA (Table 4.2). All tubers from pvr12 plants were virus free, whereas at least 

one tuber from each of the infected non-transgenic control plants tested positive for 

virus. Tubers harvested from pvr11 plants which tested positive for infection in the 

infectivity test were always positive, but tubers produced from one plant that had 

tested negative by ELISA, a plant from line 21 infected with PVYNTN, produced 

infected daughter plants.  

To confirm resistance data from the previous transformation, a second 

transformation experiment using a different Russet Burbank clone produced more 

pvr12 and Pvr1+ lines, as well as lines transformed with another resistance allele pvr1 

and the GUS reporter gene. Since all of the lines transformed with pvr11 were 

susceptible to at least one PVY strain in the previous experiment, this allele was not 

included in the second experiment. Plants from the second transformation were 

propagated by cuttings from T0 tissue culture plants for PVY infectivity tests. Twenty-

four pvr12, five Pvr1+, five pvr1, and four GUS transgenic lines as well as non-

transgenic controls were tested for resistance to three PVY strains, PVYN-Wi, PVYO 

and PVYNTN. An additional eight pvr12 and seven GUS lines were tested for resistance 

to at least one of the three strains. Plants inoculated with PVYN-Wi and PVYO were 

tested in the same experiment, whereas time and space constraints forced plants 
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inoculated with PVYNTN to be tested in a separate experiment. A minimum of two 

plants were inoculated for each transgenic line, but typically five plants per line were 

inoculated with each virus strain. Infectivity was determined by visible symptom 

development and ELISA.  

All resistant pvr12 lines failed to show any visible symptoms of infection 

(Figure 4.1B). Leaf symptoms in the non-transgenic, GUS, pvr1, Pvr1+ and pvr12 

plants which were determined to be infected by ELISA were clearly visible 20-30dpi 

(Figure 4.1B). Symptom type and severity were similar in plants inoculated with 

PVYN-Wi and PVYO. Symptoms included mosaic and leaf deformation, while PVYNTN 

induced only minor mosaic symptoms. Plants were infected under the same 

conditions; however, the PVYNTN evaluation was completed several months prior to 

the PVYO and PVYN-Wi screens. The variation in visible symptoms severity could 

possibly be attributed to variation in day length, temperature variations, etc.  
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Figure 4.1. Potato Virus Y (PVY) symptoms. Evaluation of PVY resistance in 
pepper and transgenic and non-transgenic potato plants. Transgenic plants include 
plants expressing the GUS reporter gene as well as recessive resistance genes pvr12, 
pvr1 and Pvr1+ from Capsicum.  
 
A. PVY symptoms in pepper leaves. Pepper plants encoding Pvr1+ or pvr12 alleles 
inoculated with PVYNTN or PVYN-Wi. Pvr1+ inoculated with PVYNTN shows yellow 
mosaic symptoms at 52dpi. Pvr1+ inoculated with PVYN-Wi shows leaf 
deformation, severe yellow mosaic and necrotic lesions while pvr12 shows no 
symptoms. PVYN-Wi images were taken at 56dpi. 
 
B. PVY symptoms in potato leaves. T0 transgenic potato progenies from individual 
T0 plants previously assessed for the presence their respective transgenes were 
inoculated with PVYO, PVYN-Wi. Images of all inoculations were taken at 
approximately 63dpi. Leaves of non-transgenic samples (RBIDA) show leaf 
deformation and yellow mosaic, which encode the pvr12 transgene (ED3 lines) do 
not show symptoms. 
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aData are number of plants which tested positive for PVY by double-antibody sandwich enzyme-linked immunosorbant assay. PVY screens include: PVYO 
1st and second screens were sampled at 22dpi and 44dpi, respectively; PVYN-Wi screens were sampled at 42 and 41dpi; PVYNTN screens were sampled at 21 
and 45dpi, respectively. NS were not included in the screen. At least 2 uninoculated plants were sampled and screened per genotype for each inoculation 
except for Pvr1+ which only 1 plant was sampled (data not shown). All uninoculated plants had abs values at or near zero. 
 
bTotal number of tubers tested represents tubers sprouted from individual plants included in the infectivity test. One to three sprouted tubers were tested by 
ELISA per inoculated plant harvested from the first virus screen.  

  Table 4.2. pvr11, pvr12 and Pvr1+ transgenic potato PVY infectivity summary, preliminary transformation. 

Genotype 
Line 
number 

(PVYO)a: 
1st screen 

(PVYO)a: 
2nd screen 

Positive 
tubersb 

(PVYN-

Wi)a: 1st 
screen 

(PVYN-

Wi)a: 2nd 
screen 

Positive 
tubersb  

(PVYNTN)a: 
1st screen 

(PVYNTN)a: 
2nd screen 

Positive 
tubers b 

pvr11 5 0/5 0/6 0/14 0/5 0/5 0/1 1/6 2/6 4/7 
pvr11 21 0/3 0/10 0/7 0/4 0/12 0/10 0/5 1/12 2/5 
pvr11 23 2/5 0/10 0/8 3/7 0/11 5/11 0/7 1/11 0/5 
pvr11 25 0/3 0/10 0/8 0/4 0/10 NS 0/5 3/10 0/5 
pvr11 27 0/3 NS 0/2 2/3 NS 0/1 1/4 NS 0/3 
pvr12 8 0/3 NS NS 0/6 NS NS 0/4 NS 0/2 
pvr12 57 0/3 0/4 0/7 0/5 0/4 NS 0/4 0/4 0/4 
pvr12  59 0/3 0/12 0/4 0/4 0/12 0/8 0/4 0/12 0/4 
Pvr1+  63 3/3 3/3 NS 3/4 1/2 NS 2/4 4/4 NS 
Pvr1+ 65 2/2 NS NS 2/2 NS NS 2/2 NS NS 
Pvr1+ 67 3/3 NS NS 4/4 NS NS 4/5 NS NS 
Pvr1+ 79 3/3 NS NS 4/4 NS NS 4/4 NS NS 
Pvr1+ 81 3/3 NS NS 3/3 NS NS 2/5 NS NS 
Non-
transgenic NTRB 9/9 7/7 7/7 10/10 8/12 NS 8/12 9/9 2/4 
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Table 4.3. pvr12, pvr1, Pvr1+ and GUS transgenic potato PVY infectivity,  
second transformation. 
Genotype Line number (PVYO)a,b (PVYN-Wi)a,c (PVYNTN)a,d 
non-transgenic Mock RBIDA-1 0/2 0/3 0/3 
GUS Mock GUS 0/2 0/4 0/12 
pvr12 Mock ED3 0/2 0/23 0/23 
pvr1  Mock CA4 0/5 0/2 0/2 
Pvr1+ Mock RNOIY 0/5 0/2 0/2 
pvr12 ED3-11 0/5 1/5 NS 
pvr12 ED3-15 0/5 0/5 0/4 
pvr12 ED3-21 0/5 0/4 0/4 
pvr12 ED3-24 0/5 0/5 0/4 
pvr12 ED3-25 0/5 0/5 0/4 
pvr12 ED3-29 NS NS 1/2 
pvr12 ED3-37 0/4 4/5 NS 
pvr12 ED3-40 0/5 0/5 0/4 
pvr12 ED3-44 0/5 0/5 0/4 
pvr12 ED3-49 0/5 0/6 0/4 
pvr12 ED3-52 0/5 0/5 0/2 
pvr12 ED3-53 0/5 2/5 0/5 
pvr12 ED3-56 2/2 0/2 1/2 
pvr12 ED3-60 0/4 1/5 0/2 
pvr12 ED3-61 3/3 1/5 NS 
pvr12 ED3-62 0/5 0/4 0/2 
pvr12 ED3-64 0/5 0/5 0/2 
pvr12 ED3-66 0/5 2/4 NS 
pvr12 ED3-68 NS NS 2/4 
pvr12 ED3-70 0/2 0/2 NS 
pvr12 ED3-75 0/5 0/3 0/3 
pvr12 ED3-76 NS NS 1/4 
pvr12 ED3-77 0/5 0/5 0/4 
pvr12 ED3-82 0/5 0/5 0/2 
pvr12 ED3-85 4/4 3/3 3/3 
pvr12 ED3-86 0/5 0/3 0/3 
pvr12 ED3-87 NS NS 2/2 
pvr12 ED3-95 4/4 3/3 3/3 
pvr12 ED3-97 4/4 3/3 3/3 
pvr12 ED3-98 0/5 3/3 3/3 
pvr12 ED3-110 4/4 3/3 3/3 
pvr12 ED3-111 0/5 0/3 1/3 
pvr12 ED3-112 0/3 0/3 0/2 
pvr1 CA4-39 3/3 3/3 2/2 
pvr1 CA4-49 5/5 3/3 2/2 
pvr1 CA4-68 5/5 4/4 3/3 
pvr1 CA4-111 5/5 3/3 3/3 
pvr1 CA4-242 5/5 3/3 3/3 
Pvr1+ RNOIY104 5/5 3/3 3/3 
Pvr1+ RNOIY180 5/5 3/3 3/3 
Pvr1+ RNOIY186 5/5 4/4 3/3 
Pvr1+ RNOIY191 5/5 3/3 3/3 
Pvr1+ RNOIY203 4/4 3/3 3/3 
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Table 4.3 Continued 
GUS GUS7 NS NS 4/4 
GUS GUS32 4/4 5/5 3/3 
GUS GUS37 5/5 4/4 3/3 
GUS GUS40 NS NS 4/4 
GUS GUS46 3/3 4/4 3/3 
GUS GUS53 5/5 5/5 NS 
GUS GUS64 NS NS 3/3 
GUS GUS66 4/4 4/4 4/4 
GUS GUS68 NS NS 3/3 
GUS GUS76 NS NS 4/4 
GUS GUS82 NS NS 2/2 
Non-transgenic RBIDA-1 21/21 13/13 9/9 
Non-transgenic  RBIDA-2 6/6 6/6 6/6 
 
aData are number of plants which tested positive for PVY by double-antibody sandwich enzyme-linked 
immunosorbant assay. pvr12,, GUS and non-transgenics (RBIDA-1) were sampled at 61dpi PVYO 61dpi, 
51dpi PVYN-Wi, and 31dpi PVYNTN. Pvr1+, pvr1 and non-transgenics (RBIDA-2) were sampled at 41dpi 
PVYO, 42dpi PVYN-Wi and 46dpi PVYNTN. All infected pvr12 lines as well as Pvr1+, pvr1, GUS and 
non-transgenic plants displayed mild mosaic symptoms for PVYNTN and yellow mosaic and leaf 
deformation symptoms for PVYO and PVYN-Wi. Samples listed as mock were uninoculated controls. NS 
were not included in the screen. Two uninoculated non-transgenic plants were also sampled as controls 
for the pvr1, Pvr1+ screen for each of the three viruses; all had abs values at or near zero (data not 
shown).  
 

b,cPVYO and PVYN-Wi symptoms: Symptom type and severity were similar in plants inoculated with 
PVYN-Wi and PVYO. Symptoms included mosaic and leaf deformation (Figure 4.1B). Non-trangenic 
plants, GUS,  pvr1 and pvr12 transgenic lines which tested positive by ELISA for PVY infection 
displayed symptoms which were similar in type and severity. 
 

dPVYNTN symptoms: PVYNTN induced only minor mosaic symptoms. As PVYO and PVYN-Wi, PVYNTN 
induced similar symptoms in all positive samples. Plants were infected under the same conditions; 
however, the PVYNTN evaluation was completed several months prior to the PVYO and PVYN-Wi screens. 
The variation in visible symptoms severity could possibly be attributed to variation in day length, 
temperature variations, et
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aData is number of plants which tested positive for PVY by ELISA. Pvr1+, pvr12 and non-transgenics 
(RBIDA) were sampled at 41dpi for PVYO, 42dpi for PVYN-Wi and 46dpi for PVYNTN. Samples listed as 
mock were uninoculated controls. Infectivity data for pvr12 lines 24, 25, 40, 44 and 52 represents the 
second screen for these lines; previous data is listed in Table 4.3. All other screen data is repeated from 
Table 4.3. 
 
bFor the PVYNTN and PVYN-Wi tests, all tubers were sprouted from three plants of transgenic lines 24, 25, 
40, 44, 52, and 86. For the same six lines, tubers were sprouted from all plants included in the PVYO 

test, between four to five plants. At least two tubers per plant were sprouted per plant. A limited number 
of tubers were harvested for pvr12 lines 111 and 112; tubers from one plant were harvested from the 
PVYN-Wi test for both 111 and 112, tubers from three 112 plants and one 111 plant were sprouted from 
the PVYO screen, tubers from three 111 plants and two 112 plants were harvested from the PVYNTN 
screen. All plants sprouted from pvr12 tubers were virus free. Tubers were harvested from three Pvr1+ 
plants from line 191 from the PVYO screen, three plants of Pvr1+ line 186 from the PVYN-Wi test, and 
from three plants of Pvr1+ line 104 for the PVYNTN test. Tubers from two non-transgenic plants were 
harvested from the PVYO screen and five non-transgenic plants from the PVYNTN and PVYN-Wi screens. 
All Pvr1+ and non-transgenic tubers sprouted PVY infected plants

Table 4.4.  pvr12, Pvr1+ and non-transgenic tuber PVY infectivity test, second 
transformation. 

PVYOa PVYN-Wi a PVYNTN a 

Genotype Line  

 
Plants 

Infected 
Tubers 

Infected 

 
Plants 

Infected 
Tubers 

Infected 

 
Plants 

Infected 
Tubers 

Infected 
Non-

transgenic Mock RBIDA 0/2 0/2 0/2 0/2 0/2 0/2 

Pvr1+ Mock RNOIY 0/5 0/2 0/2 0/2 0/2 0/2 
pvr12 Mock ED3 0/13 0/2 0/2 0/2 0/2 0/2 
pvr12 ED3-24 0/5 0/15 0/3 0/7 0/3 0/10 
pvr12 ED3-25 0/5 0/12 0/3 0/6 0/3 0/8 
pvr12 ED3-40 0/5 0/12 0/3 0/9 0/3 0/10 
pvr12 ED3-44 0/5 0/11 0/3 0/9 0/3 0/10 
pvr12 ED3-52 0/5 0/10 0/3 0/7 0/3 0/8 
pvr12 ED3-85 4/4 NS 3/3 NS 3/3 NS 
pvr12 ED3-86 0/5 0/14 0/3 0/6 0/3 0/9 
pvr12 ED3-95 4/4 NS 3/3 NS 3/3 NS 
pvr12 ED3-97 4/4 NS 3/3 NS 3/3 NS 
pvr12 ED3-98 4/5 NS 3/3 NS 3/3 NS 
pvr12 ED3-110 4/4 NS 3/3 NS 3/3 NS 
pvr12 ED3-111 0/5 0/2 0/3 0/2 1/3 0/5 
pvr12 ED3-112 0/3 0/4 0/3 0/3 0/2 0/4 
Pvr1+ RNOIY104 5/5 NS 3/3 NS 3/3 9/9 
Pvr1+ RNOIY186 5/5 NS 4/4 8/8 3/3 NS 
Pvr1+ RNOIY191 5/5 4/4 3/3 NS 3/3 NS 
Non-

transgenic RBIDA 6/6 4/4 6/6 10/10 6/6 10/10 
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Upon completion of the infectivity tests, plants were sprouted from tubers of 

inoculated plants to test for PVY by ELISA (Table 4.4). For the PVYNTN and PVYN-Wi 

tests, tubers were sprouted from three plants of pvr12 transgenic lines 24, 25, 40, 44, 

52 and 86 included in the each of the two infectivity tests. For the PVYO test, tubers 

from the same six lines were spouted from all plants included in the test, between four 

to five plants. For all three infectivity tests, at least two tubers were sprouted and 

tested by ELISA per plant. A limited number of tubers were also sprouted from pvr12 

resistant line 112, as well as susceptible pvr12 line 111; because tubers from these 

lines sprouted up to a week later than other lines making sufficient tissue unavailable 

at sampling time. Tubers from one 111 plant and one 112 plant were harvested from 

the PVYN-Wi test, tubers from three 112 plants and one 111 plant were sprouted from 

the PVYO screen and tubers from three 111 plants and two 112 plants were harvested 

from the PVYNTN screen. During the infectivity test, one 111 plant became infected 

with PVYNTN, plant 111-1. Two tubers were produced by plant 111-1 and both were 

sprouted; they both tested negative for virus accumulation. In fact, all plants sprouted 

from pvr12 tubers were virus free; ELISA absorbance values were similar to plants 

sprouted from uninfected control tubers. In contrast, tubers harvested from three Pvr1+ 

lines 104, 180 and 191, as well as several non-transgenic plants all tested positive for 

PVY. Tubers were harvested from three Pvr1+ plants from line 191 from the PVYO 

test, three plants of Pvr1+ line 186 from the PVYN-Wi test, and from three plants of 

Pvr1+ line 104 for the PVYNTN test. Tubers from two non-transgenic plants were 

harvested from the PVYO test and five non-transgenic plants from the PVYNTN and 

PVYN-Wi tests.  

While the majority of transgenic material included in this study appeared 

identical to non-transgenic plants, all three pvr12 transgenic lines from the first 

transformation, as well as seven pvr12 lines from the second transformation grew 
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abnormally compared to non-transgenic plants. These plants were stunted and 

produced cupped leaves. Interestingly, all three abnormal pvr12 lines from the first 

transformation were resistant to all strains of the virus, while the seven abnormal pvr12 

lines from the second transformation became infected with PVY: lines 29, 85, 56, 60, 

61, 76 and 85. Two GUS and one pvr1 line from the second transformation also 

exhibited this phenotype. The remaining transgenic material did not show this 

phenotype; they appeared identical to non-transgenic plants.  

Resistant pvr12 transgenic potato lines show high level of Capsicum eIF4E.  

Northern analysis to determine RNA expression of the transgene was 

conducted on transgenic and non-transgenic plants from both transformation 

experiments.  Varying levels of pvr12 and pvr11 transgene mRNA were detected in 

virus infected and uninoculated transformed plants (Figure 4.2A, lanes 3-10 and 

Figure 4.2B, lanes 3-8), but endogenous eIF4E mRNA was  not detected in virus 

infected or uninoculated non-transgenic plants (Figure 4.2A, lanes 1-2 and Figure 

4.2B, lanes 1-2). Two pvr11 lines, 5 and 21, show eIF4E mRNA levels that are 

consistently higher in three separate Northern blots than the non-transgenics plants 

where expression was barely discernible from empty wells on the blot. pvr12 lines 57 

and 59 were confirmed in four separate Northern blots; each blot included multiple 

sample replicates of each line and each time the same results were obtained. All lines 

included in the study were included in one blot and the same result was obtained for 

all transgenic lines. Additionally, transgene mRNA levels were independent of 

inoculation. Non-transgenic, pvr11 and pvr12 inoculated leaves were sampled three 

days after inoculation with PVYO, PVYN-Wi and PVYNTN (Figure 4.2B). Inoculation 

appeared to have no effect on the level of pvr1 mRNA in both transgenic and non-

transgenic plants when compared to uninoculated mRNA expression (Figure 4.2A and 

2B).  
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Figure 4.2. eIF4E RNA expression in transgenic plants, preliminary 
transformation. Total RNA was isolated to test for eIF4E accumulation using 
radiolabeled pepper eIF4E cDNA as a probe. RNA was extracted from both inoculated 
and uninoculated T0 pvr11and pvr12 transgenics, as well as non-transgenic plants.  
 
A.Uninoculated leaf tissue samples. NT (non-transgenic), pvr11: 5 and 21, pvr12: 57 
and 59.  
 
B. 3dpi inoculated leaf tissue samples. NT (non-transgenic potato) -  PVYO and PVYN-

Wi, pvr11: 5 - PVYO, 21 - PVYOZ, pvr12: 57 - PVYN-Wi, 58 - PVYO and PVYNTN, 59 - 
PVYN-Wi.  
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pvr12 transgenic lines produced from the second transformation experiment were also 

analyzed for pvr12 mRNA expression by Northern blot (Figure 4.3). Fifteen resistant 

and nine susceptible pvr12 lines were included; RNA samples from each line were 

included except for resistant line 86 and susceptible lines 85, 95, 97, 98, 110 and 111. 

Of the 15 transgenic samples, pvr12 expression was not detected in one sample, line 61, 

which appeared identical to the non-transgenic and GUS samples also included in the 

blot (Figure 4.3). Unlike all other samples included in the study, line 61 leaf tissue was 

of poor quality at sampling time which could have been the cause for this result. Other 

than this sample, Northern analysis shows pepper pvr12 mRNA expression was high in 

all pvr12 transgenic samples. eIF4E mRNA was not detected in the non-transgenic and 

GUS transgenic samples which could have been due to the sequence dissimilarity to 

potato eIF4E mRNA, or the low level of expression of the endogenous gene compared 

to transgenic expression.   
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Figure 4.3. eIF4E RNA blot using pvr12-pepper eIF4E probe, second 
transformation. eIF4E blot shows elevated levels of pepper eIF4E RNA in transgenic 
pvr12 lines, not in non-transgenic samples or in GUS transgenic lines. Total RNA was 
isolated to test for eIF4E accumulation using radiolabeled pepper cDNA as a probe. 
All lane one pvr12 samples were isolated from plants of lines resistant to all strains of 
PVY screened. Lane two pvr12 samples were isolated from plants which had at least 
one plant from their lines become infected with at least one PVY strain, except for line 
pvr12112 which was resistant to all three strains. With the exception of the sample 15 
in lane two, susceptible and resistant lines show nearly equivalent eIF4E RNA 
expression. Lane 1 samples: NT (RBIDA), NT, (RBIDA), NT, (RBIDA), GUS32, 
pvr12 lines: 15, 21, 24, 25, 40, 44, 49, 52, 53, 62, 64, 70, 75, 77, 77 and 82. Lane 2 
samples: NT (RBIDA), NT (RBIDA), NT (RBIDA), GUS53, GUS85, pvr12 lines: 112, 
11, 56, 60, 37, 66, 76, 29, 68 and 61 
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To better understand the composition of the eIF4E mRNA pool, RT-PCR using eIF4E 

primers which amplify both pepper and potato eIF4E followed by sequence analysis 

were completed on three pvr12 resistant transgenic lines, as well as two non-transgenic 

plants and one GUS transgenic line (Figure 4.4). A total of 31 clones from three 

independent resistant lines were sequenced, 10 each from pvr12 lines 15 and 25, and 

11 from pvr12 line 21. Additionally, eight clones were sequenced from a GUS plant, 

and 21 clones from two non-transgenic plants. All 31 clones sequenced from the pvr12 

lines were identical to pepper pvr12 coding sequence. The sequences of clones from 

the non-transgenic and GUS plants all represented one of three eIF4E potato alleles 

which are aligned in Figure 4.4 with pepper pvr12 eIF4E. From this analysis, one 

potato eIF4E allele appeared to be predominant, however, due to small sample size 

conclusions could not be drawn on relative abundance of the three alleles. Potato 

eIF4E alleles are 89% homologous at the DNA level to pepper eIF4E (Figure 4.4).  
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Figure 4.4. Sequence alignment of eIF4E cDNA cloning from transgenic and 
non-transgenic potatoes. RNA was isolated for eIF4E cDNA synthesis from 
pvr12 resistant lines 15, 21 and 25 as well as from two non-transgenic plants and 
one GUS transgenic line; all transgenics were developed in the second 
transformation. eIF4E cloned from non-transgenics and the GUS line indicates 
there are three potato eIF4E alleles present while only transgenic pepper pvr12 was 
isolated from resistant transgenic lines. Dots represent consensus sequence, dashes 
in the pvr12 sequence represent nucleotides present only in the RBIDA potato 
sequence missing sequence in the alignment with the RBIDA alleles. Forward and 
reverse primer sequences are underlined in the consensus sequence at the used for 
cDNA synthesis and cloning are underlined in the consensus sequence. 
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Immunoblot analysis using pepper eIF4E antibodies bound pepper eIF4E 

protein in transgenic pvr12 potato plants and non-transgenic pepper plants, but not in 

non-transgenic potato plants (Figure 4.5A). Our transgenic samples clearly show a 

26kDa band, the expected size of pepper eIF4E, present for pvr12 transgenic resistant 

lines 21 and 25 (Figure 4.5A). This result was replicated in six blots; all six contained 

line 25, and three of the six also contained line 21 (data not shown). The 26kDa 

pepper eIF4E band was also observed for pvr12 transgenic tomato (MicroTom) as well 

as non-transgenic pepper lines RNaky (Pvr1+) and Dempsey (pvr12). This protein is 

clearly not present in non-transgenic tomato (MicroTom) or non-transgenic potato 

(RBIDA). The pvr12 transgenic potato plants that were sampled for these experiments 

were not the same plants that were inoculated for the PVY infectivity test. Another 

immunoblot was completed to determine the level of pvr12 transgenic protein in the 

plants which became infected with PVY. Figure 4.5B shows that transgenic eIF4E 

protein was not detected in susceptible pvr12 plants, but was detected in resistant pvr12 

plants. This immunoblot included leaf tissue harvested from susceptible plants from 

lines 37, 61 and 66. While eIF4E transgenic protein appeared to be either inconsistent 

or absent in susceptible lines, eIF4E in resistant lines such as 21 and 25 was consistent 

as evidenced by replicated immunoblot analysis and plant resistance. Because samples 

included in the Western blot in 5B had been in a -80○C freezer for fourteen months, 

we included control samples to test for eIF4E degradation during storage. Two pepper 

samples and one transgenic tomato sample were included as controls: one sample had 

been in the same freezer for six months, and the other sample had been in the freezer 

for one day (Figure 4.5B).  eIF4E was no longer detected in the pepper sample which 

had been in storage for six months, but was detected in freshly harvested tissue. A 

protein of slightly lower molecular weight than eIF4E was detected in the frozen 

pepper sample, however, in addition to the size difference, this protein could not have 
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been pepper eIF4E given it was also detected in non-transgenic potato sample. Unlike 

the pepper sample, storage did not seem to have an effect on the detection of eIF4E 

protein in transgenic potato and tomato plants. Transgenic protein was still detected in 

the pvr12 tomato sample and in resistant pvr12 transgenic potato samples; however, the 

protein was not detected in susceptible potato plants. We frequently found the level of 

eIF4E protein to be lower in pepper samples compared to the transgenic samples 

(Figure 4.5). Storage could have also degraded eIF4E protein in the transgenic 

samples, but this degradation was clearly apparent in the pepper sample due to the 

comparatively smaller amount of the eIF4E protein present. 
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Figure 4.5. eIF4E immunoblot shows PVY resistant pvr12 transgenic potato 
plants produce pvr12 protein.  
A. 26kDa pepper eIF4E protein is present only in pepper and transgenic potato and 
tomato samples. Total protein was isolated from equal amounts of leaf tissue from 
non-transgenic and transgenic plants. Non-transgenic plants included: non-transgenic 
potato (NT Russet Burbank cv. RBIDA), tomato variety MicroTom (uTOM), pepper 
lines RNaky (Pvr1+) and Dempsey (pvr12/pvr12), and Arabidopsis thaliana.  
Transgenic samples included: PVY resistant transgenic potato lines from the second 
transformation 21 and 25, as well as pvr12 transgenic tomato (uTOM). Top image is 
the immunoblot using pepper eIF4E antibody, lower is SDS-PAGE SYPRO Ruby 
stained gel of leaf total protein. Lanes in both immunoblot and gel from left: 1 – 
ladder, 2 – non-transgenic (NT) tomato (uTOM) 3 – pvr12 transgenic tomato (uTOM), 
4 – non-transgenic (NT) potato (RBIDA) 5 – pvr12 transgenic potato line 21, 6 – pvr12 
transgenic potato line 25, 7 – non-transgenic pepper Dempsey (pvr12/pvr12) 8 – non-
transgenic pepper RNaky (Pvr1+) 9 – non-transgenic Arabidopsis thaliana. 

 
B. 26kDa pepper eIF4E protein is present only in pepper, transgenic tomato and 
resistant transgenic potato samples. Total protein was isolated from pvr12 transgenic 
potato and non-transgenic (NT RBIDA) potato leaves inoculated with PVYN-Wi or 
PVYOZ at 70 dpi. All pvr12 potato samples included in this blot were developed during 
the second potato transformation experiment. Leaf tissue samples harvested from non-
transgenic potato and pvr12 transgenic lines were kept in -80○C storage for 14 months 
before this Western blot was completed. Pepper and pvr12 transgenic tomato samples 
were kept in the -80○C freezer for six months prior to the completion of this Western 
blot. The pepper frozen sample shows degradation of the eIF4E protein has occurred 
after six months in the freezer compared to the fresh pepper sample. There is no 
evidence of degradation in transgenic tomato, which was harvested at the same time, 
or resistant transgenic potato samples, which were harvested eight months prior to the 
pepper and transgenic tomato (uTOM) samples. Top image is the immunoblot, lower 
is SDS-PAGE SYPRO Ruby stained gel of leaf total protein. Lanes in both 
immunoblot and gel from left: 1 – pvr12 transgenic tomato (uTOM) after four months 
in the -80○C freezer, 2 – ladder, 3 – non-transgenic pvr12 pepper Dempsey after four 
months in -80○C freezer, 4 – non-transgenic Russet Burbank inoculated with PVYN-Wi, 
5 - non-transgenic pepper Dempsey (pvr12) after one day in -80○C freezer, 6 – 
resistant pvr12 transgenic plant 24-4 inoculated with PVYN-Wi, 7 – resistant pvr12 
transgenic plant 25-1 inoculated with PVYN-Wi, 8 – susceptible pvr12 transgenic plant 
37-5 inoculated with PVYN-Wi, 9 – susceptible pvr12 transgenic plant 61-1 inoculated 
with PVYOZ, 10 – susceptible pvr12 transgenic plant 66-2 inoculated with PVYN-Wi. 
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Discussion 

Overexpression of pepper-pvr12 in potato conferred resistance to multiple PVY 

strains. 

This study transformed the popular potato cultivar Russet Burbank with a 

pepper resistance gene pvr12, an eIF4E homolog, to confer PVY resistance. 

Overexpression of pvr12 in potato conferred the same resistance spectra observed in 

pvr12 pepper plants. Replicated experiments show half of all pvr12 transgenic potato 

lines produced were extremely resistant to all three of the PVY strains screened: 

PVYN-Wi, PVYO, and PVYNTN. Except for line 112, which based on our limited sample 

size, produced tubers which sprouted slower than non-transgenic plants, these lines 

were just as vigorous as the non-transgenic plants and did not display defects in 

vegetative or tuber growth and development. All resistant transgenic lines from the 

second transformation did not display the aberrant phenotype observed in several lines 

included in this study. We believe somaclonal variation, which is frequently reported 

in transgenic experiments, was the cause of this phenotypic dissimilarity (Davidson 

2002; Heeres et al. 2002; Meiyalaghan et al. 2006; Phillips 1994).  

The infectivity screen was stringent enough that not a single escape was 

allowed; all pvr1, Pvr1+, GUS and non-transgenic plants became infected. Among 24 

pvr12 lines tested for all three strains, 15 displayed resistance against all PVY strains, 

while at least one plant became infected from each of the remaining nine lines. 

Additionally, at least one plant became infected from an additional eight pvr12 lines 

which were only screened for one or two strains. Only five lines encoding the pvr11 

gene were tested for this study and the results were inconsistent. Screening more pvr11 

lines may be necessary to identify a line that can produce a consistent phenotype. Only 

with sufficient lines would we be able to conclude this gene functions against the virus. 

This is supported by the result from the pvr12 infectivity test.  
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Virus free tubers are crucial for the control of viruses such as PVY since tubers 

are planted by potato farmers for propagation. It was therefore essential tubers 

produced during the inoculation tests were sprouted and tested for virus infection to 

determine the ability for the transgene to control virus accumulation in all parts of the 

plant not only the leaves. The results show that all the pvr12 tubers we tested from the 

infectivity test produced virus free plants. All tubers sprouted and tested from non-

transgenic and Pvr1+ transgenic plants included in the infectivity test sprouted PVY 

infected plants, demonstrating the high stringency of the infectivity assay. An 

additional field experiment is planned to determine if the transgene is able to control 

the virus in the presence of PVY inoculum and the aphid vector as it did in our 

greenhouse inoculation studies. If resistance is maintained under these conditions, the 

pvr12 gene could potentially be used to transform any potato cultivar, particularly the 

asymptomatic cultivars, such as Shepody and Russet Norkotah, whose latent PVY 

symptoms have cost the potato industry millions of dollars (Brown 2009, personal 

communication; Hane and Hamm 1999). Furthermore, it is possible that transgenic 

expression of the pvr12 gene in potato provides resistance against other viruses, since 

pvr12 confers resistance not only to PVY, but also to Tobacco etch virus and Pepper 

mottle virus in pepper (Kang et al. 2005; Yeam et al. 2007). pvr12 transgenic lines 

should be tested for resistance to other important potato viruses such as Potato virus A 

(PVA) and Potato virus X (PVX) which also adversely impact the industry with crop 

losses as well as costs due to clean seed production. Like PVY, PVA has a VPg which 

has been identified as the virulence determinant in Nicandra physaloides (Rajamaki 

and Valkonen 1999). PVX does not have a VPg, but it does have a 5’ M7Gppp cap 

(Sonenberg 1978). Cucumber mosaic virus, which also has a cap, has been shown to 

be effectively controlled by eIF4E knock-out mutations in Arabidopsis thaliana 
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(Yoshii et al. 2004). These studies suggest PVX and PVA could also be controlled 

using the pvr12 transgene. 

Because PVY strains which currently infect potato were our focus, we did not 

correlate PVY infectivity to previous data in pepper PVY infectivity data which 

includes PVY-0 and PVY-1, and PVY-1,2 because sequence data are not available for 

these isolates (Kyle and Palloix 1997). It remains unknown if PVY isolate PVY-1,2, 

which was previously reported to infect pvr12 (Kyle and Palloix 1997), is a problem 

for the potato industry. From our work, it is clear that the pvr12 gene, both in pepper 

and in transgenic potato, is highly effective against the PVY strains currently infecting 

potato. Moury et al. (2004) identified the PVY VPg domain essential for interaction 

with pvr12. If a strain of the virus was capable of overcoming pvr12 mediated 

resistance, the VPg of that strain, as well as the VPg of the three strains included in 

this study, should be cloned and sequenced. Studies have shown that VPg - eIF4E 

interaction correlates with infectivity (Bruun-Rasmussen et al. 2007; Kang et al. 2005; 

Kuhne et al. 2003; Leonard et al. 2000; Moury et al. 2004; Yeam et al. 2007), 

therefore, engineering eIF4E transgenes which eliminate this interaction could provide 

effective means of virus control.  

Transgene expression analysis 

We believe the resistance observed in transgenic pvr12 potatoes is conferred by 

a dominant negative mechanism where transgenic eIF4E overwhelms the expression 

of the endogenous potato eIF4E. Northern analysis indicated that pvr12 eIF4E mRNA 

levels were high in all but one of the pvr12 samples; even samples from susceptible 

lines showed high levels of eIF4E transgenic RNA (Figure 4.3). However, samples 

included in all Northern blots were not included in the inoculation tests, even those 

samples of inoculated leaves were not the same plants which were tested by ELISA. 

Therefore, our Northern data indicates only that it was possible for each transgenic 
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line to express high levels of transgenic eIF4E RNA and do not represent the level of 

transgenic RNA in infected transgenic plants. Northern blot analysis using tissue from 

plants which became infected during the infectivity test could indicate eIF4E RNA 

levels were lowered or negligible compared to resistant plants. In addition to Northern 

blot analysis, the only eIF4E cDNA cloned and sequenced from three resistant pvr12 

transgenic potato lines was pepper eIF4E; no potato eIF4E was sequenced during 

cloning. On the other hand, three potato eIF4E alleles were sequenced from non-

transgenic potato and GUS transgenic lines. Potato allele sequences are aligned with 

the pvr12 sequence in Figure 4.4. None of these three potato alleles were identified in 

the transgenic pvr12 samples. This result clearly indicates the predominant form of 

eIF4E present in transgenic plants is that of pepper eIF4E. In addition to RNA 

analysis, all immunoblot experiments showed resistant pvr12 lines contained pepper 

eIF4E protein (Figure 4.5). eIF4E protein was only identified in resistant plants and 

was not identified in susceptible plants, providing proof that the presence of the eIF4E 

protein correlates with resistance (Figure 4.5B).  

pvr12 line variation 

In previous transgenic potato projects encoding genes for pathogen resistance, 

very few transgenic lines of the total developed were resistant to the targeted pathogen 

(Solomon-Blackburn 2001b), and considerable variations in plant phenotype have 

been reported (Heeres et al. 2002). An example of this is clearly illustrated by 

Monsanto’s transgenic potato lines expressing the PVY and Potato virus X  coat 

proteins to try to achieve resistance to both viruses (Lawson et al. 1990). Out of the 

sixteen lines produced, just one line showed complete resistance to both viruses 

(Kaniewski et al. 1990; Lawson et al. 1990). Transgenic studies have shown transgene 

expression can be unstable and vary by organ and tissue stage (Tennant et al. 2001), 

particularly when the gene is overexpressed with the 35S promoter which we used in 
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this study (Davidson 2002; Pauk et al. 1955). Additionally, studies have shown that 

transgene expression can increase with plant development. For this study, plants were 

inoculated at the earliest possible stage of development for the infectivity tests. A 

study in transgenic rapeseed, also using the 35S promoter, showed that the transgene 

was much more active in older tissue rather than in meristematic buds (Pauk et al. 

1955). This was further supported by another study in papaya, also using the 35S 

promoter, which found older plants were resistant to certain virus isolates which were 

able to infect younger plants of the same genotype (Tennant et al. 2001). We did not 

inoculate older plants, which could have shown a reduction in susceptibility. We also 

only sampled very young leaves for RNA and protein expression analysis so gene 

expression in older leaves is unknown. An additional Western blot of the same 

susceptible pvr12 plants from the infectivity test using older leaf tissue rather than 

young tissue as we used for analysis in Figure 4.5B, may have shown the presence of 

transgenic protein. 

Transgene multicopy number has also been associated with an overall 

reduction in phenotype activity (Flavell 1994; Hobbs, Warkentin, and DeLong 1993). 

Our results show that the level of transgenic protein in some lines is inconsistent, and 

it is possible that this observation could be associated with increased copy number. 

Copy number was not determined for any transgenic plants used in this study. 

Southern blot analysis may provide a possible explanation for observed susceptibility. 

In addition to copy number, studies have shown that flanking host DNA can adversely 

affect introduced sequences. Transgene modification or association of the DNA with 

chromatin proteins prior to integration have also been cited as possible explanations 

(Peach and Velten 1991). Methylation is another frequent side effect of transformation 

which can sometimes cause undesired variations in plant phenotype (Phillips 1994). 

Studies in transgenic petunia have shown have shown that 35S promoter methylation, 
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which can occur at anytime during development and can effect isolated parts of the 

plant, caused unstable transgene expression (Linn et al. 1990). Researchers found 

methylation can occur on single branches and not others, and can occur early or late in 

development (Meyer et al. 1992). Methylation of the 35S promoter could provide a 

possible explanation for the phenotype variation observed in this study. For the 

infectivity screens, at least three leaves at the plant apex were inoculated per plant. If 

the gene was not stably expressed in each of these leaves, perhaps due to methylation, 

the virus could have infected that leaf and spread to any new leaves which were not 

expressing the gene. Another possible reason for differences in phenotype could be 

due to post-translational modification. This has been the subject of review in 

recombinant protein expression studies and includes modifications due to 

glycosylation, degradation or folding and assembly (Ann R. Kusnadi 1997). Because 

we have not looked at the transgenic protein present in all the susceptible transgenic 

lines, we do not know if the level of protein will be lower as we showed in Figure 

4.5B, or if the susceptibility was due to some type of post-translation modification. 

Therefore we do not know if the protein has been modified in some way which would 

allow eIF4E to interact with VPg. As we have shown in the past, slight modifications 

in eIF4E can determine infectivity (Kang et al. 2005; Yeam et al. 2007). 

Concluding remarks 

pvr12 mediated PVY resistance would benefit the potato industry in several 

ways. Most importantly, our results show that over half of the transgenic lines were 

resistant to all three of the predominant PVY strains identified in cultivated potato 

fields. In an industry dominated by very few varieties which are often susceptible to 

PVY, transgenic resistance would allow growers to produce their favorite varieties 

which maintain the plant and tuber phenotype they expect. Transgenic expression did 

not appear to have an adverse effect on Russet Burbank plant growth and development. 
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Future field studies of the material will determine if what we observed in the 

greenhouse is consistent with what we see in the field. Additionally, PVY resistance 

may decrease the amount of insecticides growers spray which are used as a means to 

control aphid populations in potato cultivation (Guenthner et al. 1999; Radcliffe and 

Ragsdale 2002). While insecticides are not particularly effective against the control of 

virus spread by aphids, particularly for non-persistently transmitted viruses such as 

PVY (Perring, Gruenhagen, and Farrar 1999; Radcliffe and Ragsdale 2002), certain 

applications such as synthetic pyrethroids have been shown to increase growth and 

yield of plants infected with potyviruses (Thomas M. Perring and Farrar 1993) and 

have been shown to reduce PVY transmission (Gibson 1982). These transgenics 

would diminish the need for such products which have been shown to have a 

damaging impact on human health, as well as on the environment (Pimentel 1992). 

Studies have found that there is a decrease in the impact of transgenic plants on the 

environment versus classically bred crops due to an overall decrease in the pesticide 

usage (Kleter 2007).  

Alleles of the pvr1 gene have successfully conferred resistance in both tomato 

and potato (Kang et al. 2007). Using this dominant negative strategy, any plant gene 

could potentially be transferred across sexual hybridization boundaries to disrupt the 

activity of a wild type protein. In our system, we have shown this strategy even works 

with a recessive gene. This strategy provides a great resource since certain pathogens 

are more destructive in some plant species compared to others. For example, 

overexpression of an eIF4E mutant in the stone fruits could provide much needed 

control the industry has been searching for against Plum pox virus. Furthermore, an 

endogenous eIF4E allele from any cultivar currently ravaged by potyviruses could be 

mutated and transgenically expressed to confer resistance. This strategy could not only 
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be an effective means of virus control, but consumer surveys suggest these products 

would enjoy the greatest amount of consumer acceptance (Lusk 2002).  

Materials and Methods 

Plant materials and viral cultures 

Pepper lines which differ at the pvr1 locus were used in infectivity studies as 

well expression analysis. C. annuum  Pvr1+ line NuMex RNaky (RNaky), pvr11/pvr11 

line Yolo Y, pvr12/pvr12 line Dempsey and pvr1/pvr1 breeding line 5502 were 

obtained from Asgrow Seed Co. (San Juan Bautista, CA) except ‘Dempsey’ which 

was provided by M. Deom, University of Georgia, Athens, GA, USA.  

Solanum tuberosum cultivar Russet Burbank was used for all pvr1 

transformations, infectivity studies and transgenic expression analysis. Two different 

Russet Burbank clones were transformed, RB and RBIDA. In vitro-plantlets used for 

the first transformation, the RB transformation, were obtained from Sandra Austin-

Phillips at the University of Wisconsin-Madison Biotechnology Center, where the 

transformation was completed. The second transformation used Russet Burbank clone 

RBIDA which was received from Deb Baer at the North Dakota State Seed 

Department, Fargo, ND. The RBIDA transformation was carried out by the Joyce Van 

Eck lab at the Boyce Thompson Institute for Plant Research, Ithaca, NY.  

PVY strains used in this study were previously identified in a survey of US 

cultivated potato: PVYO-ME11, an isolate of the ordinary strain PVYO, as well 

recombinant strains PVYN-Wi and PVYNTN which are recombinants of  PVYO and 

necrotic strain PVYN (Blanco-Urgoiti et al. 1998; Glais, Tribodet, and Kerlan 2002). 

Viruses used for infectivity tests include PVY strains: PVYN (252), PVYWi-N (209), 

PVYO isolates PVYOZ and PVYO-ME11 isolates, and PVYNTN (312) were obtained from 

Stewart Gray (Cornell University, Ithaca, NY, USA). All PVY strains were 

maintained on Nicotiana tabacum cv. ‘NN’ and were inoculated onto potato at 15-20 
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days post inoculation (dpi). The same PVYN-Wi and PVYNTN isolates were used to 

infect pepper and potato, however, a different PVYO isolate, PVYO-ME11 was used in 

the pepper inoculations because PVYOZ inconsistently infected susceptible control 

RNaky. Out of five PVYO isolates, PVYO-ME11 was the only isolate identified which 

consistently infected RNaky. In addition to PVYOZ and PVYO-ME11, PVYO-MT7, PVYO-

NY557, PVYO-MN20 were also tested. 
Plant Material and Transformation  

 The first transformation consisted of a 2-day co-cultivation with the 

Agrobacterium tumefaciens (LBA4404) followed by selection on 25 mg/l kanamycin 

using the regeneration protocol previously described (Cearley 1997). This 

transformation produced a total of five pvr11 events, three  pvr12 events and five Pvr1+ 

events. All events were screened for resistance to at least one strain of PVY. eIF4E 

cloning was completed as described previously (Kang et al. 2005). Constructs were 

constructed using vector pBI121 and full length eIF4E as previously described (Kang 

et al. 2007). 

For the second transformation experiment, approximately 100 stem internode 

segments of 0.5 - 1 cm in length were excised from 6-week-old in vitro-grown plants, 

and incubated in 50 ml of Agrobacterium tumefaciens strain LBA4404 containing 

either pG-CHa/s or p35S-CHa/s for 10 min.  They were blotted on sterile filter paper 

and transferred to a callus induction medium (CIM) which contained Murashige and 

Skoog (MS) salts (Murashige and Skoog, 1962) (Caisson Laboratories, Sugar City, 

ID), 2 mg/l glycine, 0.5 mg/l nicotinic acid, 0.5 mg/l pyridoxine, 0.4 mg/l thiamine, 

0.25 mg/l folic acid, 0.05 mg/l D-biotin, 100 mg/l myo-inositol, 30 g/l sucrose (grade 

II; PhytoTechnology Laboratories, Shawnee Mission, KS), 1 mg/l benzyladenine (BA), 

2 mg/l naphthaleneacetic acid (NAA) (added after autoclaving), and 6 g/l Agar/Agar 

(SIGMA, St. Louis, MO).  The pH of the medium was adjusted to 5.6 before the 
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addition of the Agar/Agar. One hundred explants were cultured per 100 x 20 mm Petri 

plate.  All cultures were maintained at 24 + 1C under a photoperiod of 16h (light)/8 h 

(dark) at 74 µE m-2s-1. 

After 48 hours, the internode segments were transferred to selective plant 

regeneration medium containing MS salts, 1 mg/l thiamine, 0.5 mg/l nicotinic acid, 

0.5 mg/l pyridoxine, 100 mg/l myoinositol, 30 g/l sucrose, 0.1 mg/l indole-3-acetic 

acid (IAA) (added after autoclaving), 3.4 mg/l zeatin riboside (added after 

autoclaving), 500 mg/l carbenicillin (Phytotechnology Laboratories) (added after 

autoclaving), 75 mg/l kanamycin monosulfate (added after autoclaving), and 8 g/l 

Agar/Agar.  The pH of the medium was adjusted to 5.9 before the addition of the 

Agar/Agar.  Twenty-five internode segments were cultured per 100 x 20 mm Petri 

plate and the plates were sealed with 0.5 inch Micropore Tape (3M HealthCare, St. 

Paul, MN).  Explants were transferred weekly for 1 month to fresh selective plant 

regeneration medium, then every 10 - 14 days after the 1-month period.  All cultures 

were maintained at 24 + 1C under a photoperiod of 16 h (light)/8 h (dark) at 74 µE m-

2s-1. 

When regenerants were approximately 0.5 - 1 cm in length, they were excised 

and transferred to selective rooting medium which contained MS salts, 0.4 mg/l 

thiamine, 0.1 mg/l myoinositol, 500 mg/l carbenicillin (added after autoclaving) and 

75 mg/l kanamycin (added after autoclaving).  Five regenerants were cultured per 

GA7 Magenta box (Phytotechnology Laboratories).  For extended maintenance of the 

transgenic lines, the shoot tip from each plant was transferred to rooting medium 

without kanamycin and carbenicillin in test tubes. 

Four GUS, five Pvr1+ events, five pvr1 events, and 24 pvr12 lines were 

screened for resistance to three strains of the virus. An additional seven GUS and 

eight pvr12 lines were screened for resistance to one or more stains of the virus.  
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Virus inoculation and resistance test  

Pepper seed was germinated on water saturated sterilized germination paper at 

30○C until seed sprouted. Germinated seed were sown in plastic trays containing 

Cornell Mix potting medium. Potato cuttings were made as described previously 

(Chapman et al., 1961) dipped in Hormex Rooting Powder No.1 and potted in plastic 

trays filled with 1:5 mix of fine grade vermiculite to Cornell potting medium. Plants 

were allowed to root on a mist bench for 7-10 days at 21ºC before they were put in the 

greenhouse and allowed to acclimate for approximately 7 days. Once visible new 

growth appeared cuttings were transplanted into approximately 15cm pots so they 

could produce tubers which we could later harvest and screen for PVY infection. 

Plants were maintained in a temperature-controlled Guterman greenhouse, Cornell 

University, Ithaca NY, USA.  Ambient air temperatures in the greenhouse were 

maintained at 23ºC day/20ºC night.  Watering procedures were carried out routinely 

by greenhouse personnel.  

Potato and pepper plants were inoculated with three PVY strains: PVYO, 

PVYN-Wi and PVYNTN. Pepper plants and the preliminary transformation were also 

inoculated with PVYN. All potato plants were inoculated with the PVYOZ isolate of 

PVYO, while pepper plants were inoculated with PVYO-ME11 because PVYOZ was not 

consistently infectious in pepper. Plants were arranged in rows by genotype. Separate 

benches divided the different strains in the same greenhouse, including the 

uninoculated plants which were always included and kept on a separate bench in the 

same greenhouse. Uninoculated plants were sampled along with the virus infected 

plants to test for presence of PVY to ensure starting material was virus free. Inoculum 

was prepared by grinding systemically infected tobacco variety ‘NN’ tissue in 50 mM 

potassium phosphate buffer, pH 7.5 (approximately 1 g tissue: 20 mL buffer). Mortars 

and pestles were chilled at -20 C prior to use and then maintained on ice throughout 
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the inoculation process.  Pepper plants were inoculated at approximately the six leaf 

stage. Virus inoculum was rub inoculated onto at least two of the youngest leaves big 

enough to inoculate, approximately 3cm2 in size, after the leaves were dusted with 

Carborundum. Once the new cuttings had developed at least 6 new leaves at least 

3cm2 in size, at least three of them were inoculated. These leaves developed 

approximately three to four weeks after the cuttings had been transplanted to the 

greenhouse. For both pepper and potato, inoculum was allowed to dry and was 

reapplied once to the same leaves approximately one hour after the first inoculation. 

Plants were monitored routinely for the appearance of symptoms.  

 For ELISA screening, 0.3-0.4g of fresh pepper or RBIDA potato leaf tissue 

was squeezed in 2mL General Extract Buffer (Agdia). Pepper was sampled at 39-

42dpi and potato plants was sampled between 40-61dpi. Only uninoculated leaves 

were sample for ELISA; inoculated leaves showed inconsistent infection in the initial 

screening process at 7 and 14dpi (data not shown), therefore, only non-inoculated 

leaves were sampled. Before harvesting leaves for ELISA, the entire plant was 

scanned for PVY symptoms (yellow mosaic and leaf deformation). Leaves which 

displayed PVY symptoms were always sampled when identified. For all RBIDA 

transgenic screens, at least 5 leaves were included per plant. These leaves were 

weighed and broken up until their combined weight was 0.3-0.4g. Agdia PVY 

Pathoscreen Kits (PSA 200001) were used for all screens according to Agdia protocol 

(both coat and conjugate antibody were included). Sampled leaf tissue was pressed 

through a motorized leaf squeezer along with 2mL General Extract Buffer and sap was 

collected (Agdia Buffer GEB). 

 All RB transformants were screened differently than RBIDA transformants. 

For the first ELISA screen of RB transformations, two leaf discs were sampled per 

plant, each approximately 1cm in diameter. This tissue was ground and liquid nitrogen 
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and weighed approximately 200mg per sample. ELISA was also carried out using the 

aforementioned Agdia PVY Pathoscreen kit (PSA 200001). PVYN was sampled at 

22dpi in the first screen and was not included in the second screen. PVYO was 

sampled at 22dpi in the first screen, and 44dpi for the second screen. PVYNTN was 

screened at 21dpi and 45dpi, for the first and second screens, and PVYN-Wi was 

sampled at 43dpi and 41dpi for the first and second screens. The second RB ELISA 

screens was carried out identical to the RBIDA protocol 41-45dpi. 

 For all ELISA screens, average absorbance values at wavelength 405nm of 

the uninoculated plants were at or near zero, samples were therefore considered 

positive if the absorbance values reached 0.09 or above.  

Tubers were put into cold storage for approximately four months, left at room 

temperature for approximately 2 weeks and subsequently treated with Rindite in the 

case of the RB plants or carbon disulfide in the case of the RBIDA plants to induce 

sprouting. Tubers were then green sprouted. For the first pvr11 screen, tubers were 

planted in the greenhouse and leaves were sampled once the plants produced large 

enough leaves for sampling approximately one month after transplant. For all the 

RBIDA lines in this study, tubers were also allowed to green sprout. As soon as tubers 

produced approximately 0.3g of leaves (approximately 3 mature leaves), the tissue 

was harvested for ELISA. 

Immunoblot analysis 

Two leaf discs each approximately 1cm in diameter were flash frozen and 

ground in liquid nitrogen. The powder was suspended in 100ul GTEN extraction 

buffer: 10% glycerol, 25mM Tris (pH 7.5), 1mM EDTA, 150mM NaCl, 1% protease 

inhibitor (Sigma Aldrich) and 10mM DTT, and 200uL SDS-PAGE loading buffer: 

12.5% 1M Tris-Cl (pH 6.8), 10% glycerol, 1% SDS, 2.5ml 2-Mercaptoethanol and 

0.125% bromophenol blue . Samples were boiled 10 minutes and immediately spun at 
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12,0000g for 10min. 20uL was loaded onto a 12% SDS-PAGE Tris-HCL gel (BioRad 

161-1102). Proteins were transferred to PVDF membrane and blocked overnight in 

5% non-fat milk resuspended in 1XPBS at 4○C. Anti-eIF4E (Spring Valley 

Laboratories, Inc.) produced as previously described (Kang et al. 2005), was added for 

one hour at room temperature. Membrane was washed 2x5min in 1XPBS, 2x5min in 

1XPBS 5% Tween 20 and 2x5min 1XPBS. The secondary antibody, anti-rabbit (GE 

Healthcare), was added to 5% non-fat milk resuspended in 1XPBS. Proteins were 

detected using ECL Plus Western Blotting Detection kit (GE Healthcare) according to 

manufacture’s instructions on Kodak BioMax XAR film. The blot in Figure 4.5A is 

representative of a result which was obtained six times, the blot in Figure 4.5B was not 

repeated.  

 DNA extraction 

 Potato genomic DNA was extracted using standard CTAB protocol as 

described previously (Doyle 1987). All transgenics were confirmed by PCR using 

eIF4E specific primers in all cases except GUS which were confirmed via PCR using 

nptII primers. 35SF 5’-GCTCCTACAAATGCCATCATTGCG-3’ and eIF4E SacR 

5’-GAGCTCCTATACGGTGTAACGATT-3’ primers were used for eIF4E transgenic 

lines. nptII F 5’-GGTGGAGAGGCTATTCGGC-3’ and nptII R 5’-

CGGGAGCGGCGATACCGTAAAGC-3’ primers confirmed GUS transgenic lines.  

RNA extraction, RNA blotting and cDNA synthesis  

Total RNA was extracted from two flash frozen leaf discs approximately 1cm 

in diameter using RNeasy Plant Mini kit (Qiagen) following the manufacturer’s 

instructions. 14uL of RNA was loaded per sample and run according to RNeasy 

recommendations. RNA was transferred to Hybond-XL membrane according to 

manufacture’s Northern blotting recommendations by neutral transfer with 10 x SSC. 

Transgenic pvr12 genomic DNA served as template for eIF4E PCR using eIF4E 
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primers: eIF4E-F 5’-CCCGGGATGCAACAGCTGAAATGGA-3’ and eIF4E-R 5’-

GAGCTCCTATACGGTGTAACGATTC-3’ were purified using Qiaquik gel 

purification kit (Qiagen). eIF4E primers were designed using pepper eIF4E cDNA 

sequence. 50ng of purified eIF4E PCR product was labeled with 32P dCTP using 

Amersham Ready-To-Go DNA Labelling Beads (-dCTP) and purified through 

MicroSpinTM G-25 columns according to manufacturer’s instructions. Membranes 

were hybridized in Ambion ULTRAhyb hybridization buffer according to 

manufactuer’s instructions and placed on a phosphoimager and visualized 3-5 days 

depending on signal strength. 

First strand cDNA was synthesized as described previously (Kang et al. 2005) 

using the same eIF4E-R primer listed above. eIF4E PCR products using the same 

primers listed above eIF4E-F and eIF4E-R, were purified using Qiaquik gel 

purification kit (Qiagen) and cloned into pTOPO TA Cloning System (Invitrogen). 

eIF4E was cloned from 3 pvr12 resistant transgenic lines, 2 non-transgenic RBIDA 

plants and 1 GUS transgenic line. 32 pvr12 clones were sequenced from the three 

pvr12 lines and 29 clones were sequenced from the 2 RBIDA plants and the GUS plant. 

Sequences were aligned using Seqman software (DNASTAR Inc.) as described 

previously (Kang et al. 2005).   
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CHAPTER 5 

CONCLUSIONS 

 

This thesis presents a series of studies that shed light on the determinants of 

plant-virus interactions.  Virus stain or isolate variation can be due to reassortment, 

recombination or mutation and can occur in any region of the viral genome.  My data 

suggest that at least in the interactions under investigation in this work, VPg variation 

is the key to understanding why certain viral stains are able to infect a previously 

resistant host. Our previous data (Kang et al. 2005; Yeam et al. 2007)indicated that 

interaction of VPg with eIF4E correlated with susceptibility in the pvr1-TEV 

pathosystem. The work included in these three chapters and Appendix One describes 

the evolution of our understanding of the pvr1-potyvirus pathosystem. In Chapter 2, I 

described the technique employed to identify VPg as the virulence determinant in the 

pvr1-TEV pathosystem identified in Chapter 3. The identification of the VPg as the 

specific domain required for susceptibility supports this interaction data and shows us 

that VPg determines infectivity. Since we identified VPg as the virulence determinant 

and we previously showed this interaction correlated with infectivity, we developed 

transgenic plants which aimed to knock out this interaction to confer resistance 

described in Chapter 4. We have shown that susceptible potato plants encoding the 

pepper pvr12 resistance allele were resistant to all strains of PVY tested. Because the 

pepper eIF4E transgene was overexpressed using a constitutive promoter, we 

hypothesized that endogenous potato eIF4E was overwhelmed by pepper-encoded 

eIF4E in the cell. Future protein interaction studies to determine if the pvr12 and pvr11 

resistance alleles interacted with PVY VPg should be completed.  Based on infectivity 

data, we also hypothesized that PVY VPg would not interact with pvr12 or pvr11, but 

would interact with pvr1 and Pvr1+. Because many mutated forms of eIF4E have been 
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identified, there is a huge potential for the application of this technique to confer 

resistance to a wide array of viruses. Additionally, this technique could potentially be 

used to combat resistance-breaking strains by using site directed mutatagenesis to 

specifically mutate eIF4E so as to inhibit VPg interaction and thus potentially confer a 

more stable form of resistance even in a highly divergent species. 

Many factors in the translation initiation complex could be essential to initiate 

viral translation and/or replication in addition to eIF4E. Previously we have shown 

that the pepper pvr1 resistance alleles, pvr1, pvr11 and pvr12, can all still interact with 

arabidopsis eIF4G in yeast, even though they may have reduced cap binding ability 

(Kang et al. 2007; Yeam et al. 2007). In addition to eIF4E interaction, eIF4G interacts 

with initiation factors eIF4A and eIF3 as well as the poly(A)-binding protein (PABP) 

(Browning 1996; Korneeva et al. 2000; Le et al. 1997). Because eIF4E is the only 

factor overexpressed in the transgenic plants we developed, there is a limited amount 

of all the other initiation factors, such as eIF4G, in the cell. Previous eIF4E-eIF4G 

interaction data in yeast suggests that pvr12-encoded eIF4E can still interact with 

endogenous potato eIF4G, which would presumably maintain interaction with the 

other components of the complex, eIF4A, eIF3 and the PABP. Our eIF4E cloning 

results showed the amount of transgenic pepper eIF4E is much more abundant than 

endogenous potato eIF4E in transgenic plants. Therefore, we hypothesize other 

initiation factors would be bound to pepper eIF4E and would not be available to 

interact with endogenous potato eIF4E. This resistance mechanism could potentially 

work for any one of the factors in the translation initiation complex. Other factors 

could potentially be mutated and overexpressed to block interaction and potentially 

confer resistance. Two candidates are eIF4G (or isoform eIF(iso)4G) and the PABP 

which have been the focus of several studies. In addition to eIF4E based resistance, 

eIF4G and eIF(iso)4G mutants in Arabidopsis thaliana and rice have been found to 
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confer resistance to both Cucumber mosaic virus and Rice yellow mottle virus, 

respectively (Albar 2006; Yoshii et al. 2004). In rice, transformation with the 

eIF(iso)4G susceptible allele resulted in susceptibility in a previously resistant host 

(Albar 2006). eIF4G has been linked to potyviral translation via direct interaction with 

the potyviral internal ribosome entry site (IRES) which is responsible for cap-

independent translation (Gallie and Browning 2001; Ray et al. 2006). Overexpression 

of a mutated eIF4G which could not interact with the IRES element could potentially 

confer resistance by interfering with translation. In a human virus, a rotavirus, it has 

been shown that a rotaviral RNA-binding protein binds eIF4G and subsequently takes 

the place of PABP on eIF4G (Piron 1998). A mutated form of eIF4G which would 

inhibit interaction with the RNA-binding protein could inhibit viral accumulation. In 

addition to eIF4G, overexpression of a mutated PABP could potentially confer 

resistance. PABP was found to interact with VPg in planta (Leonard et al. 2004), 

demonstrating that other protein-protein interactions may be essential in addition to 

eIF4E interaction with VPg. Additionally, the PABP from cucumber was shown to 

interact with the RNA-dependent RNA polymerase (RdRp) of Zucchini yellow mosaic 

virus in vitro, providing evidence for PABP involvement in viral replication (Wang, 

Ullah, and Grumet 2000). In poliovirus infection, human PABP interaction with both 

the viral poly(A)-tail and ribonucleoprotein complexes at the ends of the viral genome 

have been shown to be essential for viral replication (Herold and Andino 2001). 

Clearly eIF4E is just one of many proteins involved in viral translation/replication, 

demonstrating the potential for many different factors to be overexpressed to confer 

resistance. 

Transgene overexpression strategies, as we used in Chapter 4, are frequently 

employed to confer resistance using constitutive promoters such as the 35S promoter. 

By overexpressing the mutated pepper eIF4E in potato, we were able to disrupt the 
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activity of wild type potato eIF4E in the virus infection cycle. This strategy is often 

referred to as a ‘dominant negative’ transgenic where a mutated gene is overexpressed 

to disrupt the activity of a wild type proteins (Herskowitz 1987). Both pathogen and 

plant genes have been overexpressed to confer resistance. Several studies have 

overexpressed mutated forms of viral genes to interfere with wild type viral gene 

function. Overexpression of a Tomato yellow leaf curl virus (TYLCV) replicase 

mutant conferred resistance by inhibiting transcription of the TYLCV C1 domain of 

the virus (Lucioli et al. 2003). Another study overexpressed a dysfunctional form of 

the Tobacco mosaic virus (TMV) movement protein which interfered with TMV 

movement and conferred resistance (Lapidot 1993; Malyshenko et al. 1993). In 

Nicotiana benthamiana, overexpression of a  29 amino acid peptide of unknown origin 

was found to interfere with the nucleocapsid protein of  several tospoviruses (Rudolph, 

Schreier, and Uhrig 2003).  

In addition to viral genes, plant genes have been constitutively expressed to 

confer resistance or tolerance as we showed in chapter 4. Many of these studies 

focused on genes which trigger a defense response (Cao, Li, and Dong 1998; Chen 

and Chen 2002; Deslandes et al. 2002; Friedrich et al. 2001; He et al. 2001; Li, Brader, 

and Palva 2004; Malnoy 2007; Marchive et al. 2007; Oldroyd and Staskawicz 1998; 

Park et al. 2001; Seo et al. 2006; Tang et al. 1999). In these studies, the transgene 

frequently turns on the salicylic acid or jasmonic acid defense pathways to stimulate 

the production of plant defense compounds such as salicylic acid, ethylene, and 

hydrogen peroxide. For example, a full length Arabidopsis thaliana resistance gene 

was overexpressed in a susceptible arabidopsis plant to confer resistance to a bacterial 

pathogen (Deslandes et al. 2002). Just as in our study, the gene was a recessive 

resistance gene which, when overexpressed, behaved as a dominant gene in transgenic 

plants. The resistance conferred in this case was salicylic acid dependent suggesting 
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similar signaling pathways to those controlled by resistance genes in a gene for gene 

interaction. Tolerance to Rice tungro bacilliform virus (RTBV) was conferred by 

overexpressing two plant transcription factors important for viral promoter activity 

(Dai et al. 2008). Researchers hypothesized that the overexpression of wild type 

transcription factors RF2a and RF2b, which are important for RTBV promoter activity, 

conferred tolerance to the virus because the factors, which were previously 

monopolized by the virus, became available for transcription of defense related genes 

(Dai et al. 2008). Additional research has focused on plant genes which inactivate a 

stage of the pathogen life cycle, rather than triggering a defense pathway. 

Overexpression of a  ribosome inactivator gene from the cell walls of polkweed in 

both N. benthamiana and potato conferred some resistance to PVX and PVY (Lodge, 

Kaniewski, and Tumer 1993). Researchers hypothesized the gene functioned by 

inhibiting viral translation (Lodge, Kaniewski, and Tumer 1993).  This paragraph 

needs something to tie it back to your work  

Of all the studies identified in this literature search which encoded plant 

transgenes, our study was the only plant transgenic strategy which conferred complete 

resistance without triggering a defense pathway. Because consumer acceptance of 

plant transgenes is higher than acceptance of pathogen transgenes (Lusk 2002), 

transgenic strategies using plant transgenes should be the direction of transgenic 

development. Since three genera of plant viruses require eIF4E or eIF(iso)4E for the 

virus infection cycle (Robaglia and Caranta 2006), and plants from five plant families 

confer virus resistance by naturally occurring eIF4E or eIF(iso)4E mutants, transgenic 

strategies using these genes could have a broad impact to confer complete viral 

resistance worldwide (Kang et al. 2005; Kanyuka et al. 2005; Nicaise et al. 2003; 

Nieto et al. 2006; Ruffel et al. 2005; Ruffel et al. 2002; Stein et al. 2005). 
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Genetic engineering is obviously a very important tool to confer pathogen 

resistance in many plant systems. The technique has been extremely important given 

sexual incompatibility prevents plant breeders from introgressing genes from distantly 

related species.  In addition to genetically modified organisms (GMOs), advancements 

in non-transgenic breeding methodologies such as marker assisted selection including 

precision breeding have greatly reduced the number of generations required to develop 

new varieties. Genes of interest can be selected early to make sure important traits 

such as disease resistance are maintained in the breeding population. Since resistant 

plants can be selected early, or in some cases even before they are planted based on 

DNA marker analysis of the seeds, these strategies can dramatically increase desirable 

gene frequencies in  each field generation and can reduce the number of plants that 

have to grown. Precision breeding uses molecular markers to identify and track 

genetic regions responsible for favorable genetic traits to expedite breeding improved 

varieties (Stuber, Polacco, and Senior 1999). This was the strategy employed to create 

flood tolerant rice which allows rice to survive flooding preventing crop loss in 

adverse conditions (Xu et al. 2006). Like molecular markers, genetic engineering 

represents a tool available to plant breeders to improve crops. Crops are frequently 

genetically modified through chemically induced mutations. Approximately 2250 new 

plant varieties have been developed through mutation breeding methods, most 

commonly by radiation (Ahloowalia, Maluszynski, and Nichterlein 2004). Of the 2250, 

approximately 1575 were released directly, while the remaining varieties were 

included in breeding programs (Ahloowalia, Maluszynski, and Nichterlein 2004).  

Public perception of agricultural biotechnology ranges from a belief that it can 

save agriculture or it could destroy the planet. Ironically, transgenics are currently 

being employed to detoxify pollution in the air, soil and water through a technique 

known as phytoremediation which utilizes transgenes to aide in environmental clean-
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up (Macek, Macková, and Kás 2000; Macek et al. 2008; Meagher 2000). In addition, 

there are several advancements that genetic engineering has made to the to the biofuels 

industry, such as increasing energy yield by improving biomass cell wall 

deconstruction and decreasing toxins required for pretreatment (Chen and Dixon 2007; 

Himmel et al. 2007; Koslowsky 2008; Sticklen 2006). However, even with all the 

advances  researchers have made in using transgenics to help the environment, 

transgenics do pose a real environmental risk as they must be contained and tested to 

prevent transgene flow and ensure safety. Transgenic contamination in native maize 

landraces in Oaxaca, Mexico has been reported (Quist and Chapela 2001). However, 

the validity of these results have been seriously questioned (Christou 2002), and the 

results could not be repeated in subsequent studies (Ortiz-Garcia et al. 2005). 

Nevertheless, the initial results provoked a government moratorium on GM planting 

which could be the reason the results were not repeatable in subsequent studies 

conducted by other laboratories (Marris 2005; Ortiz-Garcia et al. 2005). Even though 

this result was severely questioned, it sparked a backlash around the world because 

Mexico is the maize center of origin and contamination of the native varieties with 

transgenes could contaminate unique native species and detrimentally affect the 

earth’s ecosystem. 

Another important example of transgene contamination occurred with the 

release of StarLink corn by the Aventis Corporation. Starlink encodes the  Cry9C 

protein making the plants toxic to the European corn borer as well as other insect pests 

(Lin 2003).  StarLink was initially released only for use in animal feed and industrial 

uses due to concerns about possible allergenicity of the Cry9C protein (Lin 2003). 

This limited release was a grave mistake given the strict tolerance policy for 

unapproved transgenics in food products in the U.S., Japan and South Korea (Lin 

2003) . Ultimately, Starlink cost the industry a great deal of money due to transgene 
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contamination in the human food supply. The contamination in corn shipments was 

determined to be between 5-10% during the 2000 – 2001 marketing year (Lin 2003), 

and the transgene was identified in several processed corn food products between 

2000 and 2001 (Schmitz 2005). These products were subsequently taken off the 

market (Schmitz 2005). The appearance of StarLink in food products caused Japan to 

stop all corn imports from the U.S. (Schmitz 2005). The USDA was forced to start a 

program whereby growers were paid an additional 25 cents per bushel to ensure they 

would only feed the corn to their animals (Lin 2003). On top of crop losses, multi-

million dollar settlements were awarded to consumers who claimed to have suffered 

allergic reactions after consuming processed corn products produced with StarLink 

corn, even though no physical evidence of an allergic reaction was ever demonstrated 

(Schmitz 2005). Other multimillion dollar lawsuits were awarded to growers who did 

not grow StarLink, but claimed they had lost income due to crop losses and property 

contamination (Schmitz 2005). Overall, StarLink cost growers, Aventis, the U.S. 

government and food processors such as Kraft Foods a great deal of money. It is 

unknown if the contamination occurred in the field or during storage and/or processing. 

(Lin 2003). It was unrealistic to believe the crop could have been separated from corn 

intended for human consumption given the same storage and processing facilities were 

used for the two crops (Lin 2003). Additionally, extremely sensitive testing procedures 

such as PCR were used for transgene detection (Lin 2003). Therefore, even if DNA 

samples were pooled together to expedite screening, just one transgenic seed in a pool 

could make the entire the pool positive. The StarLink disaster proved it is nearly 

impossible for grain crops to be kept separate in the grain marketing system due to 

additional costs associated with separation (Lin 2003).  

While issues of gene flow are of potential importance, the risk transgenes have 

on human health need to be realistically questioned. To date, GMO crops have not had 



 136

an adverse effect on health, undoubtedly due to thorough safety testing requirements 

(Ronald 2008). On the other hand, conventionally bred crops, which are not subject to 

the same rigorous safety testing, have caused health problems. There are many 

naturally occurring toxins, or natural toxicants, which can be present in food. 

Transgenics suffer poor public opinion because their introduction was not 

accompanied by a consumer education campaign; instead there was a strong anti-

GMO campaign started by environmental watch organizations such as Greenpeace. 

Education campaigns focused on communicating the safety of transgenic plants would 

undoubtedly show consumers that many fears surrounding these products are simply 

unfounded and the benefits of these crops including reduced pesticide usage and 

increased yield justify their continued regulated production. Genetic engineering 

represents a valuable tool for agriculture to produce enough food for an ever-growing 

world population. This work demonstrates plant transgene overexpression strategies 

can provide broad spectrum virus resistance in a divergent species, even against 

viruses which are responsible for significant crop losses. Future field trial experiments 

including pvr12 transgenic potato lines developed in this study will hopefully 

demonstrate the PVY resistance is in fact durable in the field. Given PVY continues to 

cause crop losses in potato worldwide, this technology could reduce losses and 

provide growers with a means to grow their favorite varieties without worrying about 

PVY. There seems to be no limit to the usage of strategies such as this one to control 

potyvirus infection worldwide.  
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APPENDIX 1 

ABSPII: AGRICULTURAL BIOTECHNOLOGY SUPPORT PROJECT II, 

APPLICATION OF BIOTECHNOLOGY TO THE TOMATO VIRUS CRISIS 

IN WEST AFRICA  

 

 

Establishment of regional capacity for screening virus resistant tomato 

germplasm in West Africa. 

'Tomato leaf curl disease' refers to symptoms caused by Begomoviruses both in 

West Africa and elsewhere in the world.  In West Africa, there are three tomato-

infecting Begomoviruses that have been associated with the disease: Tomato leaf curl 

Mali virus (TLCMV), Tomato yellow leaf curl Mali virus (TYLCMV) and Pepper 

yellow vein Mali virus (PYVMV) (Zhou et al. 2008).  These are each distinct virus 

species, but often occur in mixed infections (Gilbertson 2006, personal 

communication). Using PCR primers, ABSPII collaborators at the Gilbertson lab at 

UC Davis have determined all three viruses are present in the region. TLCMV was 

identified most often, but PYVMV was also common, and was the most common in 

Ghana (Gilbertson 2006, personal communication).  TYLCMV was less common, but 

was frequently identified in Burkina Faso (Gilbertson 2006, personal communication). 

All three viruses are important, depending on location.  

TLCMV, TYLCMV and PYVMV are distinct viral species from those 

previously identified in other parts of the world and not strains of Tomato yellow leaf 

curl virus (TYLCV). TYLCMV is a recombinant between TYLCV and other 

unknown Begomoviruses making a unique strain (Zhou et al. 2008). Therefore, tomato 

cultivars encoding some resistance to tomato leaf curl disease must be screened in 

West Africa to specifically identify sources of resistance.  
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The objective of this project was to establish capacity for Begomovirus 

resistant tomato germplasm screening in West Africa to identify sources of resistance 

which would stand up against West African viruses. Three years of trials were 

conducted. For the first year, over 40 tomato varieties obtained from seed companies 

and public institutions were collected with several sources of TYLCV resistance 

sources represented: TY172 based resistance (which includes at least 3 genes from L. 

peruvianum), TY-1 (one major gene with two modifier genes from L. chilense) and 

TY-2 (source which includes 2 epistatic genes from L. hirsutum ). Seminis, Harris 

Moran, Enza Zaden, DeRuiter Seeds, Takii, Nunhems and Hazera, as well as the 

Volcani Institute, all donated seed for the project. Tomato lines were trialed by 

National Agricultural Research and Extension Institute (NARES) partners in Benin, 

Burkina Faso, Togo, Ghana, Mali, Niger and Senegal. In addition to seed collection, 

we worked very closely with our Mali based AVRDC collaborators to plan the 

NARES trials by providing plot designs as well as infectivity scoring materials.  

A wide array of TYLCV resistance sources were represented in the first year’s 

trial designed to select only those resistance sources which held up well against West 

African strains of the virus. Trials were conducted for three consecutive years. The 

first year testing was comprised of a preliminary trial which was not replicated. In the 

second year, another non-replicated preliminary trial was conducted including new 

lines, and an advanced trial of the 10 best lines from the previous season was 

conducted using a triple replicate randomized complete block design. The third year, 

an advanced trial with the best material from the previous year’s preliminary trial was 

conducted. In addition, a multi-location trial was conducted with the four to six of the 

best varieties from the previous year’s advanced trial which included three replicates 

per location in two ecologically distinct locations per country. A total of 115 varieties 

were trialed at least once, but some were only trialed in Mali. Approximately 70 
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varieties were trialed in replicated multi-location trials. In the first two years, the trials 

were conducted in Benin, Burkina Faso, Ghana, Mali, Niger, Senegal and Togo. In the 

third year, Burkina and Senegal didn't participate because of funding restrictions.  

The West African Seed Alliance is trying to develop a small-scale seed 

distribution industry in West Africa to make begomovirus resistant tomato seed 

directly available to farmers. They are currently working with three companies that 

donated seed to the trials, De Ruiter, Enza Zaden and Seminis.  

Production of transgenic virus resistant tomatoes 

The goal of this breeding program was to create a virus resistant tomato which 

would be resistant to both Begomovirues and Potyviruses. Potyvirus Pepper veinal 

mottle virus has been shown to infect tomato in West Africa (Konate 1999). 

Previously, a virus survey of all pepper producing regions throughout Senegal, which 

includes seven locations throughout the country, showed that all pepper plants 

encoding the pepper Potyvirus resistance allele  pvr1 were resistant to Pepper veinal 

mottle virus (PVMV) (Mbaye 1999). Recently we showed that MicroTom plants 

overexpressing the pvr1 gene were resistant to several strains of Tobacco etch virus 

(TEV) as well as Pepper Mottle Virus (Figure 1) (Kang et al. 2007). A population was 

therefore developed by crossing transgenic S. lycopersicum MicroTom containing the 

pvr1 transgene with a Seminis TYLCV resistant hybrid, GemPride.  

GemPride was selected for the breeding program because it was previously 

found to hold up well in West Africa against Begomovirus infection when it was 

trialed in Mali (Thera 2002). Additionally, it was included in the three years of trials in 

project 1 and was included in the set of four varieties that every participating country 

trialed during the multi-location trials in the third year of project 1. NARES partners 

conducting the trials found it was notably tomato leaf curl disease resistant and a good 

producer. In addition to TYLCV resistance, GemPride is also resistant to verticillium 
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wilt race 1 and fusarium wilt races 1 and 2 (Scott 2005). GemPride is an F1 hybrid 

with a large determinant plant which produces medium square fruit with extended set 

for processing or fresh market (Scott 2005). 

MicroTom encodes the DWARF (d) gene making it a brassinosteroid mutant 

as well as a recessive miniature gene (Scott 2005, personal communication). The pvr1 

transgene, due to constitutive expression driven by the 35S promoter, behaves as a 

dominant gene. Transgene segregation ratios therefore followed the single dominant 

gene pattern of inheritance. This was illustrated by TEV infectivity data which 

confirmed F1 progeny (pvr1 MicroTom by TEV susceptible GemPride) were resistant 

to TEV  (Figure 2). In order to eliminate all dwarf traits and bring the F1 back to the 

GemPride phenotype, three backcross generations followed by three generations of 

selfing were completed. Backcross breeding was carried out as described previously 

(Briggs and Allard 1953). The breeding strategy is outlined below and diagramed in 

Figure 3.  

 

Backcross Breeding Plan: 

F1 and BC1F1: F1 seed was obtained from the initial cross: pvr1 transgenic 

MicroTom (male) by GemPride (female). GemPride was the female parent for the 

entirety of this breeding program. Forty F1 plants confirmed by PCR for the pvr1 

transgene, which segregated in a 1:1 ratio, were planted along with 70 plants of the 

recurrent parent GemPride in Cornell greenhouses (Figure 4). Pollen from the 10 F1 

plants most horticulturally similar to GemPride were selected and backcrossed to 

GemPride. At least 4500 seed were collected from this generation.  

BC2F1: Approximately 4000 seed were planted in Ithaca greenhouses and 

confirmed transgenic by kanamycin resistance (Figure 4) (Weide, Koornneef, and 

Zabel 1989). Again, given that the pvr1 transgene behaves as a dominant gene, 
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segregation would be expected to be approximately 1:1. Of the 4000 seedlings grown 

to approximately the six leaf stage in the greenhouse, 2296 plants were confirmed 

transgenic by kanamycin resistance and planted in Ithaca fields, summer, 2006. 

Seventy-two GemPride plants were planted alongside the BC1F1 plants so selections 

could be made more accurately. Three plant breeders separately evaluated the field to 

make selections which were based on plant likeness to the recurrent parent. Twenty-

nine confirmed transgenic BC1F1 plants were selected based on superior horticultural 

characteristics such as fruit shape and size, number of fruit per plant and plant habit 

(Figure 5). These 29 plants were backcrossed to the recurrent parent; and a minimum 

of two fruit were produced per BC1F1 selection. Twenty-nine BC2F1 lines were 

obtained. 

BC3F1:  Twelve BC2F1 plants were planted for each of the 29 lines (348 

plants) in Cornell greenhouses. Two confirmed transgenic plants from each of the 29 

BC2F1 lines were transplanted to large pots to allow plants to fully mature so they 

could be evaluated based on the same horticultural characteristics: fruit shape and size, 

number of fruit per plant and plant habit before backcrossing to maintain only the 

most superior lines for the next generation. The lines were grown alongside the 

recurrent parent GemPride and some were found to be horticulturally superior to 

GemPride based on the aforementioned criteria. The best two plants from the 29 

BC2F1 lines were selected to backcross to produce BC3F1 seed.  

Brix BC3F1 and fruit images: Total soluble solids (brix) was determined on 

BC3F1 fruit using a hand-held refractometer as described previously (Tanksley and 

Hewitt 1988). Soluble solids was determined for four fruit from each plant and 

averaged. The four selected fruit were representative in size, shape, quality and color 

of all the fruit produced by the plant. Brix was also determined for GemPride and 
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tomatoes purchased from the local Ithaca grocery store for comparison. Fruit with the 

highest brix are shown in Figure 6, and listed in Table 1.  

BC3F2: Twelve BC3F1 lines which had the highest brix were selected out of 

the original 29 lines to produce the BC3F2 generation. Statistically, one in 16 plants 

should be homozygous for the pvr1 transgene (Hanson 1959). A minimum of 17 

confirmed transgenic plants were therefore planted and manually self pollinated to 

insure adequate seed set. Three separate plant breeders phenotyped all the lines after 

the plants had set fruit. If a plant continued to maintain any of the dwarf MicroTom 

characteristics, the line was dropped. Two lines were dropped for this reason.  

BC3F3: 50 BC3F3 seed were planted from each line and sprayed at the four to 

six leaf stage with kanamycin. Any BC3F3 line which showed absolutely no bleaching 

was confirmed homozygous for the transgene. Homozygous lines are listed in Table 2. 

This BC3F2 seed was sent to Bob Gilbertson to test for resistance to TYLCV (Table 

3). 

Final BC3F3 selections: Final selections of this breeding program are shown in 

Figure 6. Selections were based on homozygosity for the pvr1 transgene, TYLCV 

resistance, brix and the aforementioned horticultural traits: fruit shape and size, 

number of fruit per plant and plant habit.  

 

Conclusions and recommendations for future research 

Mali has recently lifted the ban on transgenic cultivation (Shotkoski 2009, 

personal communication), and Burkina Faso is currently growing transgenic cotton. 

Pending approval from our West African collaborators, selected material will be sent 

to Mali for further evaluation and selection. Three backcross generations have created 

tomato lines which are nearly 95% back to the GemPride genotype. We originally 

thought several generations of intercrossing may be necessary to adapt the variety for 
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the region, but given the recurrent parent GemPride consistently performed well in all 

the countries which trialed the variety, these selected lines should be perform well in 

the region. This breeding material represents a great resource to combat multiple virus 

infections in West Africa and steps will hopefully be taken to make the material part 

of the West African tomato germplasm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix Figure 1. pvr1 transgenic MicroTom is resistant to TEV-HAT. Our 

previous work confirmed the pvr1 transgene conferred TEV resistance in susceptible 

MicroTom.(Kang et al. 2007). 
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Appendix Figure 2. F1 (pvr1 transgenic MicroTom x GemPride) is 

extremely resistant to Tobacco etch virus isolate HAT (TEV-HAT). 

A. TEV-HAT induced symptoms: Recurrent parent GemPride displays 

symptoms characteristic of TEV infection such as leaf curling and leaf dwarfing 

approximately 15 days post inoculation. Below are uninocualted leaves from 

inoculated plants approximately 20dpi. 

 

B. TEV-HAT ELISA results: Enzyme linked immunosorbant assay (ELISA) 

average absorbance values represent uninoculated leaf tissue sampled from 3-12 

plants per genotype at 32 days post inoculation. ELISA absorbance values in F1 

tomato progeny indicate plants are extremely resistant to TEV-HAT while 

GemPride is fully susceptible, along with transgenic MicroTom encoding the 

GUS reporter gene. Plants from five F1 lines were included and averaged. All 

samples had absorbance values similar to mock inoculated plants. Error bars 

represent standard error. 
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Appendix Figure 3. Transgenic Breeding Plan. A three generation backcross 

breeding program is diagramed below; GemPride is recurrent parent. This was 

followed by 3 generations of selfing to identify pvr1 homozygotes. 
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Appendix Figure 4. Transgene confirmation methods. Tomato progeny were 

selected using kanamycin antibiotic sprays. Plants were sprayed for three consecutive 

days with 300mg/L kanamycin solution to test for presence of the nptII gene, the 

selectable marker of the transformation vector which confers kanamycin resistance. 

Foliar bleach spots appeared on non-transgenic approximately three days after the last 

spray. For the F1 selection, unbleached plants were additionally genotyped for 

presence of the pvr1 transgene by PCR using pvr1 specific primers.  
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Appendix Figure 5. BC1F1 field season: Ithaca, NY. 2296 BC1F1 plants along with 

72 GemPride plants in Ithaca fields, summer 2006. Selections were made based on 

plant habit, fruit shape, fruit size and the number of fruit per plant. 
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Appendix Table 1. BC3F1 fruit with highest total soluble solids (TSS) or brix.  

Tomato line/Variety Brix se 

Wegman's beefstake 

tomatoes 4.13 0.05 

Wegman's vine 

ripened tomatoes 4.10 0.07 

GemPride 4.86 0.13 

7-1-3 4.98 0.04 

18-1-1 5.02 0.02 

21-1-1 5.02 0.02 

1-2-10 5.04 0.02 

29-2-1 5.08 0.03 

11-2-1 5.10 0.10 

9-2-2 5.40 0.04 

8-1-2 5.70 0.18 

17-1-2 6.24 0.15 

Grape tomatoes 7.50 0.47 
 
Two selections were made from each of the 29 lines and planted in Cornell 
greenhouses. Brix was determined for at least one of the two selections for each of the 
29 lines. All selected lines had higher brix than the recurrent parent. Commercially 
available tomatoes were included for comparison. Brix values represent an average 
refractometer reading from four fruit per plant. 
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Appendix Table 2. Homozygous BC3F3 according to brix in descending order. 

BC3F3 homozygous 

lines: 

17-1-2-13 

17-1-2-14 

17-1-2-2 

 8-1-2-16 

 8-1-2-4 

 8-1-2-7 

8-1-2-7 

9-2-2-10 

9-2-2-4 

9-2-2-5 

11-2-1-10 

11-2-1-12 

29-2-1-5 

29-2-1-9 

1-2-10-10 

1-2-10-2 

18-1-1-11 

18-1-1-2 

21-1-1-17 

21-1-1-7 

7-1-3-3 

7-1-3-6 



 156

Appendix Table 3. BC3F3 TYLCV resistance screening of selected homozygous 

lines.  

Resistant lines: A total of 6 lines were resistant to TYLCV. No symptoms 

in any of the inoculated plants 

17-1-2-2, 9-2-2-5, 9-2-2-4, 9-2-2-10, 11-2-1-12, and 7-1-3-6  

  

Moderately resistant: Six lines showed moderate resistant; plants showed 

a combination of no symptoms or very mild to mild symptoms 

17-1-2-13, 29-2-1-5, 18-1-1-2, 18-1-1-11, 21-1-1-7 and 7-1-3-3 

  

Susceptible lines: Nine lines were fully susceptible and showed strong 

symptoms 

17-1-2-14, 8-1-2-7, 8-1-2-4, 8-1-2-16, 11-2-1-10, 29-2-1-9, 1-2-10-2, 1-2-

10-10, and 21-1-1-17  
 
The Gilbertson lab agroinoculated four seedlings of each line with TYLCV. One 
uninfected plant was maintained as a control. Four TYCLV resistant sister lines were 
identified. 
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Appendix Figure 6. BC3F1 fruit final selections. BC3F1 fruit from lines which 

made the final selection are pictured below. Lines were selected based on superior 

horticultural characteristics, homozygousity for the pvr1 transgene and TYLCV 

resistance. Other than 17-1-2 which produced off-type and overly blocky fruit, all 

selections produced fruit similar to the GemPride.  
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APPENDIX 2 

MOLECULAR BIOLOGY FOR AGRICULTURAL RESEARCH 

APPLICATIONS 

August 27th – 31st, 2007 – Bamako, Mali 

Introduction 

This document outlines a curriculum for an intensive hands-on workshop on molecular 

biological theory and techniques to be held in Bamako, Mali August 27th – 31st, 2007. 

The workshop will introduce the ABSPII West African NARES partners, who have 

been involved in conducting trials of begomovirus-resistant tomatoes, to applications 

of molecular plant genetics and pathology through integrated lectures and laboratory 

exercises. The goal of the workshop is to build regional intellectual capacity in West 

Africa for the continuation of ABSPII-related activities, including modern plant 

breeding, germplasm screening, and pathogen detection by scientists and practitioners 

in the region. Structured to acknowledge the conditions of the research programs in 

the participants’ countries while simultaneously building expertise for future capacity 

expansion, the workshop’s laboratory exercises cover techniques with minimal 

equipment requirements alongside the state-of-the-art approaches to transgene 

detection and pathogen identification 
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Course Details 

Instructors 

Jeff Gordon, graduate student, Cornell University. jsg54@cornell.edu 

Kari Perez, graduate student, Cornell University. kwp6@cornell.edu 

 

Location 

Biotechnology Laboratory, University of Bamako, Mali 

Dean of the Faculty of Science and Technology: Saliku Sanogo 

Director of the Biotechnology Laboratory: Ousmane Koita 

 

Onsite Coordinators 

Dr. Issoufou Kollo Abdourhamane, Project Coordinator, AVRDC  

Dr. Ousmane Cisse, University of Bamako 

Dr. Youssouf Sanogo, University of Bamako 

 

Course Outline: 

 

The course will be conducted over a period of five days, with all days having both 

lecture and laboratory components. The following is a breakdown of the topics 

covered by day: 
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Section Topics:  

1. Basic plant molecular biology and genetics 

Associated laboratory exercise: getting acquainted with the lab 

2. Basic techniques for detecting, manipulating and identifying nucleic acids 

Associated laboratory exercise: DNA extraction 

3. Genetic engineering and plant transformation 

Associated laboratory exercise: DNA detection – PCR and gel electrophoresis 

4. Basic molecular plant pathology and disease resistance 

Associated laboratory exercise: DNA detection – Squash blots 

5. Detection of proteins 

Associated laboratory exercise: Protein detection – ELISA and immunostrips 

 

Day 1: Basic plant molecular biology and genetics  

 

This section will serve as an introduction to the biological concepts necessary for 

subsequent sections of the workshop. Of course, it is impossible to teach all of plant 

molecular biology in one day, and therefore this section will be carefully designed to 

emphasize the aspects of plant molecular biology that are most relevant to the 

techniques covered in the workshop. 
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Topics: 

• Introduction to the plant cell 

• From DNA to protein – transcription and translation 

• Cell cycle: Mitosis and meiosis 

• Molecular genetics: Mendel meets DNA 

 

Laboratory Exercise: Getting acquainted with the lab 

Workshop participants may be unfamiliar with the basic tools, facilities, and safety 

procedures of molecular biology labs. This laboratory section will be used to ensure 

that participants are ready to begin conducting experiments by day 2. 

• Tour of laboratory equipment and facilities 

• Overview of laboratory safety regulations and protocols 

• Pipetting practice 
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Day 2: Basic techniques for detecting, manipulating and identifying nucleic acids 

 

Detection and manipulation of nucleic acids serve as the foundation of molecular 

genetics. In this section, workshop participants will learn about the basic toolkit 

available to molecular geneticists from a practical standpoint. 

 

Topics: 

• Theory and practice of DNA extraction 

• Hybridization – using complementarity for specific detection 

• Cutting and pasting – restriction enzymes and ligases 

• Separation – gel electrophoresis 

• Amplification – PCR, RT, and bacterial amplification 

• Combining techniques for in-depth analysis  – Mapping, cloning, and 

sequencing 

 

Laboratory Exercise: DNA Extraction 

 

Laboratory exercises for days 2 will focus on three different methods for extracting 

DNA from plant materials. Each method meets different scientific needs and is 

appropriate for different analyses: 
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• CTAB method – used to purify DNA from fresh leaf tissues in the laboratory. 

Is appropriate for most downstream applications. 

 

• FTA cards – used for collecting samples in the field, and for long-term storage 

of DNA or RNA at room temperature. Can be used as templates for DNA or 

RNA amplification. 

 

• Squash blots on nylon membranes – also used for collecting samples in the 

field. They are appropriate for detection of specific DNA sequences by 

hybridization. 

Day 3: Genetic engineering and plant transformation 

 

The lectures on day 3 will focus on how and why transgenics are made. Genetic 

engineering of plants can potentially offer solutions to agricultural problems in the 

developing world, from virus resistance to drought tolerance. It is also a major tool in 

modern molecular biology, and a capacity that is relevant to modern laboratory 

research even when no agricultural product is intended. This section will elucidate the 

basic processes involved in generating transgenic plants. 

 

Topics: 

 

• Why transgenics – crossability barriers and the linkage problem 

• Genetic engineering – design and assembly of a transgene cassette 
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• Transformation – Agrobacterium and gene guns 

 

Laboratory Exercise: DNA Detection 

 

Laboratory exercises for day 3 will introduce two different approaches for detecting 

specific sequences in DNA samples. For these exercises participants will use the DNA 

samples they extracted the previous day. 

 

• Transgene detection by PCR: Polymerase chain reaction (PCR) is a powerful 

technique used for amplifying short, specific sequences of DNA for detection 

or further manipulation. Participants will use PCR to amplify the sequences for 

both a transgene and a housekeeping gene from both transgenic and wild-type 

DNA samples. Agarose gel electrophoresis will be used to visualize the PCR 

results. 

 

• Geminivirus detection by squash blot: Squash blots allow for the direct 

detection of high-copy sequences, such as viral genomes, in tissue samples 

collected in the field. Participants will be use squash blots to search for 

geminiviruses in plants collected in Bamako. On day 3 participants will set up 

the squash blot hybridizations. 
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Day 4: Basic molecular plant pathology and disease resistance 

 

This section will mark a change of focus from the theory and practice of molecular 

biology to the more applied topic of plant pathology. Pathogens are a serious 

constraint to production, and appropriate control depends on proper pathogen 

identification. A special session on day 4, led by Dr. Issoufou Kollo Abdourhamane, 

will introduce participants to many of the pathogens endemic to West Africa. Lectures 

will address the different types of pathogens, their impacts on plant function, and plant 

defense responses, with a focus on the translation of molecular processes into visible 

symptoms. 

 

Topics: 

• Fungi, nematodes, bacteria and viruses – an overview of plant pathogens 

• Local plant diseases – an introduction to West African pathogens 

• Molecular disease – pathogen effects on cell and molecular processes 

• Resistance genes – dominant vs. recessive resistance 

 

Laboratory Exercise: Squash Blot Detection of Geminiviruses (cont’d) 

 

Workshop participants will continue the squash blot protocol started on day 3 by 

conducting various washes of the blots, and setting up the color development reaction. 
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Day 5: Detection of proteins 

 

The detection and analysis of proteins is vital to molecular biology. While the tools of 

genetics offer scientists many opportunities to study protein function indirectly, it is 

often necessary to more directly detect, isolate, and manipulate proteins to better 

understand their functions. The session will begin with a study of antibodies and their 

use in diagnostic aspects of molecular plant pathology, and will continue to cover 

more advanced protein analysis techniques and their uses in modern proteomics 

studies. 

 

Topics: 

 

• Antibodies – what are they? 

• Antibody production and purification 

• Protein detection methods using antibodies 

• Advanced protein analysis 

 

Laboratory Exercise: Ralstonia detection in tomato 

 

Ralstonia solanacearum is a bacterial pathogen that causes bacterial speck disease in 

tomato. It can be detected using DNA or protein methods – in this session we will be 

using two different protein methods to detect Ralstonia in samples collected from 
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around Bamako. 

 

• Enzyme-Linked ImmunoSorbent Assay (ELISA) is a sensitive laboratory 

technique for detecting proteins with specific antibodies. Antibodies are linked 

to an enzyme that generates a colored precipitate when exposed to a colorless 

buffer, allowing detection of very low levels of the protein being sought.  

• Immunostrips are modern protein detection kits designed for use directly in the 

field. Though based on similar chemistry to ELISA, they sacrifice the 

flexibility and semi-quantitative nature of ELISA for extremely high speed and 

ease of use. 




