Unified framework for sparse and dense SPMD code generation
(preliminary report)

Vladimir Kotlyar Keshav Pingali Paul Stodghill

March 10, 1997

Abstract

We describe a novel approach to sparse and dense SPMD code generation: we view arrays
(sparse and dense) as distributed relations and parallel loop execution as distributed relational
query evaluation. This approach provides for a uniform treatment of arbitrary sparse matrix
formats and partitioning information formats. The relational algebra view of computation and
communication sets provides new opportunities for the optimization of node program perfor-
mance and the reduction of communucation set generation and index translation overhead.

1 Summary of the paper

1.1 Problem statement

Sparse matrix computations are at the core of many computational science algorithms. A typical
application can often be separated into the discretization module, which translates a continuous
problem (such as a system of differential equations) into a sequence of sparse matrix problems, and
into the solver module which solves the matrix problems.

Typically the solver is the most time and space-intensive part of an application and, quite
naturally, much effort both in numerical analysis and in compilers community has been devoted to
producing efficient parallel and sequential code for sparse matrix solvers. There are two challenges
in generating solver code that has to be interfaced with discretization systems:

e Different discretization systems produce the sparse matrices in many different formats. There-
fore compiler should be able to generate solver code for different storage formats. We have
addressed this problem in [14].

e Some discretization systems partition the problem for parallel solution, and use various meth-
ods for specifying the partitioning (distribution). Therefore a compiler should be able to
produce parallel code for arbitrary distribution formats.

Our problem is as follows: given a dense program and descriptions of sparse matriz formats and
data and computation distribution formats — generate parallel sparse SPMD code. In this paper,
we consider DOALL loops and loops with reductions. This allows us to address the needs of many
important applications.

1.2 Previous work

Libraries A number of sparse matrix libraries have been developed over the years: SPARS-
PAK [12], PETSc [5], BlockSolve [15] — just to name a few. Their disadvantage is that they use
special storage formats and partitioning strategies. Therefore they impose the overheads of data
conversions both in terms of user effort and run-time overhead.

Compilers: regular computations Most of the research in parallelizing compiler community
has focused on dense matrix (regular) computations. This is because the flow of data in these
computations can be analyzed at compile-time.

Compilers: irregular computations The closest alternative to our work is a combination of
Bik’s sparse compiler [8] and the work on specifying and compiling irregular codes in HPF Fortran
([20], [19], [17]). One could use the sparse compiler to translate dense sequential loops into sparse
loops. Then, the Fortran D or Vienna Fortran compiler can be used to compile these sparse loops.
First of all, this scheme would restrict a user to a fixed set of sparse matrix formats, as well as
to a particular way of specifying distributions. Second, this approach prevents the compiler from
recognizing and exploiting “hybrid” dense-sparse sets as described in Section 4. One reason is that
in this scheme the compiler has to deal with indirect array subscripts and other complications,
which obscure the actual structure in the code. Another reason is that this scheme relies on the use
of run-time library (Chaos or PARTI) to perform index translation and communication schedule
generation. This library, even with extensions for multi-block problems [1], supports either fine
grain irregular communication (an integer, or a real number is a unit of index translation and
communication), or regular communication.

Interface problem The Meta-Chaos library [11] provides means of transferring data between
different applications. We address the problem of using different data formats directly. This is
advantageous because the different matrix formats usually reflect the needs of an application. For
example, the BlockSolve format is designed for matrices that have groups of rows with identical
non-zero structure; similarly, the jagged diagonal format is used for obtaining good performance
on vector machines [6].

1.3 Our approach

In [14], we have solved the problem of dealing with various sparse data structures by viewing sparse
matrices as relations (as in relational databases), and reducing the problem of generating sparse
code to a relational query optimization problem. In this paper, we apply this relational abstraction
to sparse SPMD code generation. The advantages of this approach are the following.

e We hide the details of arbitrary sparse matrix formats by representing sparse matrices as
relations.

e We hide the details of various distribution and index translation functions by representing
them as relations, as well. Thus, we solve the “interface problem”.

e We are able to recognize when various sets are either completely regular (i.e. can be rep-
resented in closed form) or are certain combinations (such as a cross product) of dense and
sparse sets and thus can optimize their storage and communication costs between processors.

Our code generator produces code that is a series of set (relational) assignments and com-
munication statements, which can be optimized by variations of standard code optimization
techniques.

e Since we can handle dense code generation and arbitrary storage formats, our techniques
might be of value in the implementation of HPF Fortran-like languages: an HPF front-end
can produce storage declarations, which our code generator can use to generate parallel code.
In this way, the treatment of dense and sparse codes can be unified.

Here is the outline of the rest of the abstract. In Section 2 we describe our code generation
algorithm. In Section 3 we show some experimental results. In Section 4 we present optimizations
on the generated code, which are possible within our framework. In Section 5 we discuss the use
of our compiler within an implementation of an HPF-like compiler. And in Section 6 we present
some conclusions, outstanding issues and on-going work.

2 SPMD code generation as distributed query evaluation

In this section we use an example to describe our code generation strategy. First, we describe
sparse matrix-vector multiplication and outline how this application is “hand-parallelized” in prac-
tice. Then we briefly mention the connection between compilation of sparse matrix codes and
relational query optimization and describe how the distributed query is formulated. In particular,
we describe an extension to HPF alignment/distribution specification that allows us to use user-
specified distributions and data structures for local storage. Then we outline our code generation
algorithm.

2.1 An example

Consider the loop nest shown in Figure 1, that computes a matrix-vector product y = A-x ' . The

DOi=1,n
DO j=1,n
IF (i, j) € A THEN
V(i) =Y (@) + A, 5) » X(J)

Figure 1: Sparse matrix-vector product

matrix A is sparse (we do not care about the storage format at this point) and the vectors X and Y
are dense. Also A has a non-zero in every row — we say that it is dense in the row dimension. Only
those iterations (7, j) for which A(7, 7) # 0 have to be executed. Since only non-zeros of A are stored,
this condition translates into the condition in the loop. This sparse matrix-vector multiplication
kernel (SMVM) is an important part of many matrix solvers and, despite its simplicity, illustrates
most of the ideas of our code generation approach.

We consider the case when the matrix is partitioned irregularly by rows, which means that the
processor assignments p = u(7) for the rows ¢ have been computed at run-time and can not be
represented in closed-form. Usually, p is a result of a graph partitioning or domain partitioning
procedure [13]. We call p a partition function. On processor p the matrix A is stored as a matrix

"We use bold letters, as in x, to denote matrices, vectors and tuples of attributes

A®) in new coordinates (7', 7): 1 is the local indez of the rows of A and j is the local column index,
which is the same as the global column index. 7’ runs between 1 and n’, which is the number of
rows assigned to p. Since A is not replicated, there is a 1-1 mapping (4, p, ') between the global
row indices ¢ and the pairs (p,i'). We call § a placement function. There is an obvious relationship
between p and §:

(p=p(i)) & (3" 6(i,p, 1)) (1)

The elements of X and Y are placed identically to rows of A. That is, on processor p we store the
vectors X ®) and Y () with the local index i’ related to the global index through 6.
Just as A is a relation that is partitioned across the processors, so is 4. Typical examples are:

e Each processor keeps an array of i’s indexed by ¢’s. This is how, for example, Parallel
ELLPACK ([10]) feeds problems to the matrix solver.

e The (i,p,?) tuples are placed on processor ¢ = i/B for some block-size B. This is the case
with the paged translation tables in the Chaos library.

e The simplest case: § is replicated. This is actually the case in the Petsc library [5]. The rows
are assigned to processors in contiguous blocks and § can be represented compactly by an
array of block sizes that is replicated across the processors.

It is not hard to see that if each processor p executes the iterations ¢ such that p = u(¢), then
no communication is necessary for A and Y. The set of elements of X to be communicated, or the
view set of X, is:

{713 (A<, <N)A(G) € A)} (2)

The local and non-local elements of X are collected into an array X. An index translation function
7 = f(j) has to be computed to represent the relationship between the local index j in X and the
global index 7 in X. One common optimization is to renumber the j indices stored in A into f(j)
(if possible). Given all of the above a typical parallel implementation is outlined in Figure 2. The

Collect the elements of the view set of X
Exchange requests for non-local data
Allocate storage for X

Renumber A()

Exchange the values for X

DO # =1,n’
DO j=1,n
J

IF (i',j) € AP) THEN
Y(p)(i/) — Y(p)(l'/) + A(P)(Z'/’j) * X(D

Figure 2: Outline of a parallel implementation of SMVM
highlights of this example are:

e We had to recognize that A, Y and the iterations of the loop are globally collocated. This
point is discussed in more detail in Section 2.5.

e The local computation is just a matrix-vector product on the local data. In general, this
means that the relationship between the global indices ¢ of A and Y has been translated
into the relationship between the local indices ¢’ of the local storage. We call this effect local
collocation. 1t is discussed in Section 2.6.

2.2 Relational query optimization approach

In [14] we show how the problem of generating efficient sequential code for a loop nest like the
one in Figure 1 can be reduced to a relational query optimization problem. If we view arrays and
loop iteration space as relations, then the final loop nest enumerates tuples satisfying the following

query:
Q = ObndTacc (I(la.]) X A(imjm ’Ua) X /XV(jm U'l‘) X Y(ilﬁ ’Uy)) (3)

where [is the relation that represents the bounds of the original loop. Relations A, X and Y
correspond to the arrays in the program. The notation “A(i4, j4, v4)” names the fields (attributes)
of the relation A. In our case 1, is the row index, j, is the column index and v, is the value of the
matrix element. To simplify the presentation we ignore the value fields.

Opnd is the selection operator that “filters” the tuples satisfying the loop bounds. And o,
relates the dimensions of the arrays to loop indices according to array access functions in the
original loop nest:

bnd = 1<4,7<n (4)
accesses = (i=1, =iy) A (J = Jo = Ju) (5)

The key to efficient evaluation of this query lies in “pushing” the o,.. selection through the cross
products to obtain natural joins:

Q = opna(1(i,5) > A2,) b1 X (§) pa Y (4)) (6)

In general, when compiling dense loops with sparsity predicates we get relational queries of the
form:

O'bndO'aCC(IX @(Al,AQ,... ,An)) (7)

where [is the relation representing the iteration set of the original loop and A’s represent arrays in
the loop. The selection op,q represents loop bounds. o,.. enforces equalities between the attributes
of the relations induced by array access functions in the loop nest. Both selections are naturally
limited to affine equalities and inequalities. ® is a combination of set union and cartesian product
operators. In the SMVM example it is just a cross product. In this abstract we limit our discussion
to conjunctive queries: ® is a cross product of its inputs. We will discuss the general case in the
full paper.

2.3 Distributed query formulation

The question now is: how do we specify the distributed query that corresponds to parallel execution
of the loop? First of all, we need to specify how the relations are partitioned across the proces-
sors. Ullman [18] describes a horizontal scheme for partitioning a relation. Each global relation is
represented as a union (not necessarily disjoint) of processor contributions, or fragments:

A=[Ja® (8)

Associated with a fragment AP we define a guard condition gp such that:
g, A=Al (9)

This means that if g,(x) = true for some tuple x, then x € A implies x € AP, Notice that this
definition does not imply that ngA(q) = for p # q. In other words, this scheme allows replication.
In our SMVM example: g,(¢,7) = (p = p(7)).

Unfortunately, this simple scheme is insufficient. Each fragment in (8) holds the original, global,
attributes, but we would like to be explicit about local attributes (indices) and the placement
function. Notice that in the SMVM example, the local matrices A®) would have been sparse both
in rows and in columns if they stored the global row index 7, because each processor only stores
a subset of the rows. By using a local row index ¢ we made the local matrices dense in the row
index, just like the global matrix A. In general, storing local relations in attributes other then
global allows us to translate structure present in the global space into the local space. This will
become more evident in Section 2.6.

If we represent a placement function §(x, p, x’), that maps global attributes x to local attributes
and processor numbers, as a relation with (x, p,x’) tuples, then we can rewrite (8) as: 2

A= Uﬂ'x (5(){,])7 x') a AWP) (x’)) (10)

This query says that the global relation A is the union of local fragments A®) translated into global
attributes. Notice that § can be a single (distributed) relation or a relational algebra expression.
In the following discussion we use the notation:

6p(4) = me (803, p, %) b AP (X)) (11)

That is ¢,(A) is the contribution to the global relation from processor p.
Now to complete the specification we need to give more structure to 4, so that the compiler is
able to recognize collocation in global and local spaces.

2.4 Placement function

Languages like HPF Fortran recognize collocation in the global space by dividing the partitioning
function g into two steps: alignment and distribution. Alignment is an affine map to an abstract
set of virtual processors, a.k.a. template. Distribution then partitions the template between the
physical processors. The essential property of this scheme is that if two data elements are mapped
to the same template element, they would also end up on the same processor: collocation in the
virtual processor space is sufficient for collocation in the physical processor space. For a detailed
discussion see [4], [7], [9].

We can not use this scheme because it only specifies a part of the placement function: the
assignment of global indices to processors. HPF compilers derive the rest based on the parameters
of the partition (see [3], for example). The disadvantage of this scheme in our context is that
compiler has a set of distribution formats “hard-wired”.

We augment the HPF partitioning scheme to arrive at a full placement function in the following
way (see Figure 3):

27 is the projection operator

Figure 3: Relationship between global and local attributes and template spaces

A global attribute x is mapped to the global template space t via an affine map D: t = Dx’
3 The map D is called global alignment.

e Global template space is related to local template space t' and processor numbers via a 1-1
distribution map A(t, p,t’). The flexibility in the specification of different partitions lie in the
flexibility of having an arbitrary relation for A.

e Local template space is related to local attributes x’ via t' = D’x’. The affine map D’ is
called local alignment.

e The picture is not complete without specifying how the dimensions of A that are not parti-
tioned are mapped to the dimensions of the fragments A®). This can be achieved by using
an affine relation: Dx = D'x’.

The tuple (D, D/,]3,]5’, A) is called the placement of relation A. The placement function & can be
written as:

§(x,p,x') = (Elt, t': (t =Dx'AA(t,p, t') At =D'x' A Dx = D’x’)) (12)
Or using relational algebra:
§= 7rx7p7xlat:DX//\m(Domain(x) x Domain(p,x’) x A(t, p, t’)) (13)

The values for D, D/, D and D’ for the matrix A in our SMVM example are shown in Table 1.

Matrix value | Comment
global alignment D= (1 0) t=1
local alignment D'=(1 0) [¢'=4
collapsed dimensions | D = (0 1) j'=j

D'=(0 1)

Table 1: Fragmentation in SMVM example. A(3,) is divided into AP (i, j)

By mistake, the user may specify inconsistent placement functions § when using the above
scheme. These inconsistencies, in general, can only be detected at runtime. For example, it can

3We actually allow replication by using an affine relation Rt = Dx, but in this abstract we limit our discussion
to non-replicated alignments

only be verified at run-time if a user specified distribution relation A in fact provides a 1-1 and
onto map. This problem is not unique to our framework — HPF with value-based distributions [19]
has a similar problem. Basically, if a function is specified by its values at run-time, its properties
can only be checked at run-time. In the full version of the paper, we will describe how to generate a
“debugging” version of SPMD code that checks for consistency in the placement function. Moreover
we will discuss the conditions on the affine maps that can be checked at compile-time.

2.5 Global collocation

Let us consider the following query, which involves the relations R and S with attributes x and y,
respectively:

Q = 9 5(y) (B X S) = 050y [J U (85(R) x 4(5)) (14)

where f(x,y) is a selection predicate, which consists of linear equalities and inequalities. We will
say that R and S are globally collocated relative to the query @, if for all “interesting” z and y (that
satisfy f), we only need to test membership in the fragments of R and S on the same processor.
In this case we can rewrite the query in (14) as:

Q = 950y) [J(8n(R) x 6,(5)) (15)

P

Let (Dg, D', Dg, ﬁ’R,AR> be the placement of R. Let (Dg, D’g, Ds, D’s, Ag) be the place-
ment of S. Furthermore, suppose we can solve f(x,y) to represent x and y through a parameter
u:

= Xg+ Fu
y = yo+Hu

The global template indices can be expressed as:

tp = Dgrx = Dpgxg+ DrFu

16

ts = Dsy = D,yo+DsHu (16)

This gives a sufficient condition for global collocation that can be checked at compile-time:
(Ar=Ag) A (‘v’u :Dgrxg+ DgrFu=D,ys + DSHu) (17)

This is exactly the alignment condition used in HPF (see [4] and [7] for more details).
In our SMVM example the equalities (coming from array access functions and global alignments)

are:
14 =1 ly =1
A . Y . =ta =1y
ta=14 ty =1y

which proves that A and Y are globally collocated.

2.6 Local collocation

So far we have shown how our fragmentation scheme allows us to recognize global collocation: we do
not have to communicate R and S to compute (). We now turn to the issue of local collocation, which
is absent from HPF terminology and has not been addressed in the literature on parallelization of
sparse codes. In [14] the main step in generating efficient sparse code is recognition of equalities
between the attributes. The equalities allows us to convert cross products into natural joins. By
using affine maps for local alignment our placement scheme enables translation of equalities in
global attributes into equalities in local attributes.

If the equalities in (16) and (17) are satisfied, we can relate the local attributes of the relations,
as well. Notice that our placement scheme gives us the equalities:

t'r = D'px (18)
t's = D'y’ (19)

If R and S are globally collocated, then tgp = tg, and we conclude that t'r = t’'s (because A is 1-1
and onto) and:

D'px' = D'sy’ (20)
In the SMVM example we have:
(ta =ty) = (th =ty) = (i = iy)

which caused an equi-join A®)(#’, j) > Y P)(i') to be performed locally.
To summarize the discussion so far:

e We have extended the HPF alignment/distribution scheme to allow arbitrary sparse matrix
storage formats.

e Our scheme also allows arbitrary formats for specifying distributions.

e Placement functions are structured in a way that permits translation of equalities in global
attributes into equalities in local attributes, thus facilitating efficient local code generation.

2.7 Outline of the query evaluation strategy

In general, we are dealing with distributed queries of the form * :

Q= abndaacc((u D0 (1)) % (U (40) % (U (42))) (21)

Now we have to describe how such queries are evaluated.

In the distributed query literature the optimization problem is: find the sites that will evaluate
parts of the query (21). In the context of, say, a banking database spread across branches of the
bank, the partitioning of the relations is fixed, and may not be optimal for each query submitted
to the system. This is why the choice of sites might be non-trivial in such applications. See [18]
for a detailed discussion of the general distributed query optimization problem.

*We restrict the discussion in this abstract to queries with cross products

In our case, we expect that the placement of the relations is correlated with the query itself
and is given to us by the user. In particular, the placement of the iteration space relation I tells
us where the query should be processed. That is the query to be evaluated on each processor is:

O®) = gy, 1000 <¢p(1) % (U (A1) x (| 8pa(42)) %) (22)

An obvious optimization is to group all collocated relations together. This reduces the work of
figuring out communication sets for each processor and of global-to-local attribute translation.
Without loss of generality, assume that I denotes the group collocated with the iteration space (we
call it the local group) and Ay denotes a group of collocated relations.

In our SMVM example I, A and Y form the local group. X is the only relation to be commu-
nicated (in a group by itself):

Q) =
((m,jw(i,p, i) 50 19)(i,) e AP (i,)b Y)) o ({5 (805, p, ') o< X<p><j>>)) (23)

Now our code generation algorithm is as follows:
1. Order the non-local groups heuristically.

2. Translate the sub-expression for the local group so that it can be evaluated locally. Notice
that the sub-expression

Sp(I) = mi(do(i, p, 1) pa 1) (i)) (24)

can not be evaluated locally because §o might be a distributed relation (or distributed query
expression). This localization procedure is outlined in Section 2.8. Let A denote the localized
expression.

3. Refine the localized expression A by bringing the necessary data for each non-local group to
the processing cite. This is done by projecting 6p,404.c(A X Domain(Ag)) on the attributes
of Ar. Now if we let ALOC be the expression for the localized data of the group Ag, then we
update the expression A to

1
Anem‘ = Ubndgacc(A X Akoc)

and continue with the next group. Section 2.9 goes into more detail.

It should be noted, that the above procedure only applies to conjunctive queries. For queries
involving set unions, the procedure for updating A is a bit more involved. We leave the details
for the full paper.

2.8 Localization of localization of ...

In (23) the sub-expression for the local group is not entirely local to processor p: § is a distributed
relation. We need to collect on the processor p the tuples (i,p,i’) € §. This turns out to be just
another SPMD code generation problem! We get the desired result when we assign § to another
relation (¢, p,'):

10

DO:=1,n
DO p = 1,nproc
DOV =1,n
IF (i,p,i") € § THEN
insert (7, p,1) into

We partition the iteration space relation J = .J(7,p,?’) of this loop in the same way as § is par-
titioned. We partition (7, p, i) by the p attribute. The communication required to scatter the
values into the non-collocated relation v would do the trick. Of course, when we generate the code
for the local group in the new query, we will have to localize the placement function ¢’ for 8. It is
not hard to see that this recursion terminates: one of the placement functions has to be in closed
form — otherwise we would have an infinite chain of placement definitions.

2.9 Communication of communication of ...

After we fully localize the local group we get the query:
Q) =i (AG,#,5) e ({60 0,59 0 X031) (25)
q

How do we ship X around? By projecting A onto 5 we get the view set for X — the set of global
indices of X used locally:

VO () = mi(AG, 7, §) pa {1 < j < n}) (26)

To generate communication we need to translate global j into local processor numbers ¢ and local
attributes j'. We call the resulting relation a communication set of X:

G, q,3") = 8(, 4, 5) s VP () (27)

Here again, we are dealing with another distributed query: ¢ is distributed. The problem now is
that for each j that we want to translate we might not know which processor hold the translation
tuple (j,¢,j’). In the Chaos library and in Fortran D, this problem is solved by creating a paged
translation table: the tuple (j, ¢, j’) resides on the processor r = j/B for some block size B. In our
framework, this means that we need to assign & to another relation 4 which is distributed block-wise
based on attribute j. The new query is the same as in the previous section, except that the + is
partitioned differently. Once the paged table is computed, we can formulate a distributed query
for (27):

Cx(p,J,4,3) = 70,4, 5") =< Vx (p, 5) (28)
where Cx is the global relation built out of Cg?) fragments. Vy is defined analogously. In this
query the non-collocated relation is . Again, the argument that this recursion terminates is the
same as in the previous Section. In the full paper we will describe in more detail how the actual
communication is represented in our framework. It should also be noted that our compiler performs
invariant code motion of the computation of the communication and storage sets. This is analogous
to what is done in the inspector/executor approach [20]).

11

3 Experimental results

At this point we have implemented a prototype to test out some of our ideas. Table 2 shows the
performance of the sparse conjugate gradient (CG) code generated by the prototype, compared
with the code found in the PETSc version 2.0 beta 2. CG is an iterative linear system solver ([6]).
Each iteration executes a matrix-vector multiply and some vector operations (inner products and
saxpys). Times include 16 iterations of the solver and do not include preprocessing costs. The
codes were run on 1 through 64 nodes of the Cornell Theory Center SP-2. Both codes used the
vendor supplied MPI implementation as the communication layer. The matrix A was determined
from a 64,000 node 3D mesh. In other words, A had 64,000 rows and columns, and an average of
27 non-zeros per row. A 3D mesh was used so that the problem could be optimally partitioned,
thus eliminating the effects of heuristic partitioning techniques. In the full paper we will report
the results showing how effective the hybrid set optimizations is. We will also show performance
comparisons between the code generated by our compiler and the code in BlockSolve library.

Procs. Compiler PETSc

2 9.95 7.48
4 4.86 4.16
8 2.40 2.20
16 1.26 1.42
32 0.70 1.01
64 0.44 0.47

Table 2: Wall clock times for CG, in secs.

4 Optimizations

Let us modify our example somewhat: make X into a “skinny” dense matrix. So that now we
compute a product of a sparse matrix A and a dense matrix X. The code is shown in Figure 4.
This loop nest (call it SMMM for “skinny matrix-matrix multiplication”) is an important kernel in

DOi=1,n
DO j=1,n
DOk=1m

IF (i, j) € A THEN
Y (i, k) = Y (i, k) + A(i,) * X (j, k)
ENDIF
ENDDO
ENDDO

Figure 4: Skinny matrix-matrix product (m < n)

many linear system solvers: X becomes a matrix, when we solve a system Axj; = b; for multiple
right-hand sides bg. One can think of X not as a matrix but as a collection of vectors.

For parallel execution we partition A, Y and X identically by rows. Just as in the SMVM
example we do not need to communicate A and Y, but need to communicate X. It is left as an

12

exercise for the reader to show that the view set for X is:

V@) = nij. k) ((5(i,p,)1 AP G s YO (i k) x {1 < b < m})

= {1<k<m}xnm (5(i,p, i) b1 AP (i, §) ba YO (i, k))

={1<k<m}x 7rj<(5(i,p, i') b A(p)(i’,j)) (29)

(We have removed the Y (?)(i k) term, because Y is dense and does not restrict the set in any
interesting way.)

This set is a product of two sets: one is in closed form and the other has to be computed at
run-time. So we only need to compute, store and communicate the set

7 (00,9, 1) 0 AP, 7)) (30)

This gives us an m-fold savings both in work and storage.
In general, suppose we have a query:

Q= Uf(x,y)(R(X) X S(Y)) (31)

where the relation R can be represented in closed form (say, as a collection of linear equalities
and inequalities) and S can not be represented in closed form. Let g(y) be the projection of the
constraints in f onto y ([16]). Then we can rewrite this query as:

Q= Uf(x,y)(R(X) X Ug(y)S(Y)) (32)

Say, we want to send the tuples in () from one processor to another. Then it is enough to send
Q' = Ug(y)S(y) — the whole query @ can be reconstructed from)'. Basically, we only need to send
what the other processor does not already know. It might actually be the case that @’ has more
elements than €, so the decision to break the query up is heuristic. One case when it is definitely
profitable to do is if we can separate f into the constraints in x and y. Then the query @ is in fact
a cross product of @)’ and a closed-form set. This is precisely the case in the SMMM example.

A degenerate case is when the whole query) can be represented in closed-form. This is what
happens when regular codes are compiled: the communication sets are just combinations of linear
constraints (see [2] or [3]). In this case we can eliminate the actual computations, storage and
communication of the sets (26) and (27) by a variation on constant propagation: the lattice of
values is

T = unknown set, computed at run-time

a hybrid set

a closed-form set

|
L

Now compilation of regular (dense) codes is just a special case of compilation of sparse codes!

13

5 Two uses of the compiler

We began this paper by suggesting that it be used to generate SPMD code for programs interfaced
with a discretization system. In such a scenario, the user writes a dense program for the solver,
whereas the discretization system supplies the information about storage formats and placement
(see the diagram in Figure 5).

Discretization Solver
system (formats) program

SPMD code generator

l

Node program

Figure 5: Using our compiler with a discretization system

But since we can also generate SPMD code for dense programs with regular distributions, our
compiler can be used as a code generation engine within a regular HPEF compiler: the HPF part
analyzes alignment/distribution directives and computes local storage formats as described, for
example, in [3]. This translates HPF partitioning directives into full placement directives. Our
compiler can then be used to generate the node programs (see the diagram in Figure 6).

Program with HPF directives

l

HPF compiler

l

SPMD code generator

l

Node program

Figure 6: Using our compiler as code generation engine

6 Conclusions

In this abstract, we have presented a relational framework for generating SPMD code for sparse
matrix computations, which can be represented as dense computations annotated with sparsity
formats. The highlight of this approach are:

e we are able to use arbitrary sparse matrix storage formats and distribution formats

e dense (regular) SPMD code generation is just a special case of sparse SPMD code generation

in our framework

14

e we can recognize hybrid dense-sparse sets and optimize their storage, computation or com-
munication costs

e our compiler can be used as a stand alone module or as a SPMD code generation engine for
an HPF Fortran-like compiler. In the latter case this would enable an HPF compiler to unify
treatment of regular and irregular codes.

In the full paper we will provide more details in the code generation algorithm, as well as more
experimental data, especially to demonstrate the importance of hybrid set optimization.

We are working on extending this work to loops with dependencies.

References

(1]

Gagan Agarwal, Alan Sussman, and Joel Saltz. An integrated runtime and compile-time approach
for parallelizing structured and block structured applications. IEEFE Transactions on Parallel and
Distributed Systems, July 1995. Also available from http://www.cs.umd.edu.

Saman P. Amarasinghe and Monica Lam. Communication optimization and code generation for dis-
tributed memory machines. In Proceedings of the PLDI ’93, June 1993.

Corinne Ancourt, Fabien Coelho, Franois Irigoin, and Ronan Keryell. A linear algebra framework for
static hpf code distribution. In CPC’93, November 1993. Also available at http://cri.ensmp.fr/doc/A-
250.ps.Z.

J. M. Anderson and M. S. Lam. Global optimizations for parallelism and locality on scalable par-
allel machines. In Proceedings of PLDI’93, June 1993. available at http://suif.stanford.edu/papers/-
anderson93/paper.html.

Argonne National Laboratory. PETSc, the Portable, Extensible Toolkit for Scientific Computation.
available at http://www.mcs.anl.gov/petsc/petsc.html.

Richard Barrett, Michael Berry, Tony Chan, James Demmel, June Donato, Jack Dongarra, Victor
Eijkhout, Roldan Pozo, Charles Romine, and Henk van der Vorst. Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods. STAM, 1994. Also available from ftp://ftp.netlib.org/-
templates/templates.ps.

David Bau, Induprakas Kodukula, Vladimir Kotlyar, Keshav Pingali, and Paul Stodghil. Solving align-
ment using elementary linear algebra. In Proceedings of the 7th LCPC Workshop, August 1994. Also
available as Cornell Computer Science Dept. tech report TR95-1478.

A.J. C.Bik and H. A. G. Wijshoff. Compilation techniques for sparse matrix computations. Technical
Report 92-13, Leiden University, Department of Mathematics and Computer Science, 1992. available
at file://ftp.wi.LeidenUniv.nl/pub/CS/TechnicalReports/1992/tr92-13.ps.gz.

S. Chatterjee, J. R. Gilbert, R. Schreiber, and S.-H. Teng. Optimal evaluation of array expressions on
massively parallel machines. ACM Transactions on Programming Languages and Systems, 1995.

Department of Computer Sciences, Purdue University. Parallel ELLPACK PDE Solving System. avail-
able at http://www.cs.purdue.edu/research/cse/pellpack/pellpack.html.

Guy Edjlali, Alan Sussman, and Joel Saltz. Interoperability of data parallel runtime libraries with
meta-chaos. Technical Report CS-TR-3633, University of Maryland, May 1996. Also available at
ftp:/ /hpsl.cs.umd.edu/pub/papers/Meta-Chaos-tr96.ps.Z.

Alan George and Joseph W-H Liu. Computer Solution of Large Sparse Positive Definite Systems.
Prentice Hall, Inc., 1981.

Bruce Hendrickson and Rober Leland. A multilevel algorithm for partitioning graphs. Technical Report
SAND93-1301, Sandia National Laboratories, 1993.

15

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Vladimir Kotlyar, Keshav Pingali, and Paul Stodghill. A relational approach to sparse matrix compi-
lation. Submitted to EuroPar ’97 conference, 1997.

Paul Plassman and M.T. Jones. Blocksolve95 users manual. Technical Report ANL-95/48, Argonne
National Laboratory, 1995.

William Pugh. The omega test: a fast and practical integer programming algorithm for dependence
analysis. Communications of the ACM, August 1992.

Manuel Ujaldon, Emilio Zapata, Barbara M. Chapman, and Hans P. Zima. New data-parallel language
features for sparse matrix computations. Technical report, Institute for Software Technology and Parallel
Systems, University of Vienna, 1995. Available at http://www.vcpc.univie.ac.at/activities/language.

Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems, v. I and II. Computer Science
Press, 1988.

Rinhard v. Hanxleden, Ken Kennedy, and Joel Saltz. Value-based distributions and alignments in
Fortran D. Technical Report CRPC-TR93365-S, Center for Research on Parallel Computation, Rice
University, December 1993.

Janet Wu, Raja Das, Joel Saltz, Harry Berryman, and Seema Hiranandani. Distributed memory com-
piler design for sparse problems. IEEE Transactions on Computers, 44(6), 1995. Also available from
ftp:/ /hyena.cs.umd.edu/pub/papers/ieee_toc.ps.Z.

16

