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CERTAIN PROBABILISTIC ASPECTS OF SEMISTABLE LAWS

MAKOTO MAEJIMA AND GENNADY SAMORODNITSKY

ABSTRACT. We study the extent to which the property of semistability of a random vector in
R? is determined by semistability of its marginals, and the place of semistable laws within the
family of type G and sub-stable laws. Similarities and differences between stable and semistable
laws are discussed.

1. INTRODUCTION

The law u of a non-Gaussian random vector X in R4 (or even in a more general space) is called
semistable if it is infinitely divisible and there exist 7,b € (0,1) U (1,00) and ¢ € 4 such that

(1.1) p* = p(b) * bc,

where for positive 7, u*” stands for the rth convolution power of p, * means the convolution of
two measures, and d. is the point mass at ¢. If y is semistable, then X is also called semistable,
and we often say that X satisfies (1.1). One can alternatively define the semistability of X by
requiring existence of i.i.d. random vectors 7MW 73, ... in R4, vectors c®,c@, ... in R and
positive numbers a1,az,... such that

(1.2) ak (Z(l) o+ Z("k)) +c¢® =X

as k — oo for a sequence {ny, k > 1} such that n; — oo and ngy1/nk — 1/r or r as k — oo,
according as 0 < r < 1 or r > 1, where => means the convergence in law. It is also known that
there exists an a € (0,2) depending only on X such that b in (1.1) is expressed as b = /e
namely

(1.3) p* = p(r ) x 6.

Thus « is a characteristic of X and is called the index of X.

Suppose X is semistable with index & (shortly SS(a)). Let T’ be the collection of all » € (0, 00)
for which X satisfies (1.3) for some ¢ in ®4. Following Rajput and Rama-Murthy (1987), for a
fixed r € T'\ {1}, we say that X is r—semistable index « (shortly r — SS(a) ). It follows directly
from (1.1) that if X is ; — SS(a) for some r; € R\ {1}, ¢ = 1,2, then X is 7172 — SS(a), and
hence T is a closed multiplicative subgroup of (0,00). We refer the reader to Chung et al. (1982)
and Rajput and Rama-Murthy (1987) for these and other facts on semistable laws. We will be
using a somewhat unorthodox terminology that X is I'-semistable index «a, whose meaning is,
however, obvious.
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A T-semistable index o random vector X for which I' = (0,00) (this follows automatically
if I' contains a sequence of ’s approaching 1) is a-stable. Since a-stable random vectors, 0 <
a < 2, are often viewed as heavy tailed analogs of Gaussian random vectors, the dependence
structure of a-stable random vectors and processes has been extensively studied. See, for instance,
Samorodnitsky and Taqqu (1994) and Janicki and Weron (1994) for two recent books on the
subject. The tails of semistable random variables are similar (even though not necessarily strictly
comparable) to those of stable random variables, and since the family of a-stable laws is, from
many points of view, a small subset of the family of all SS(a) laws, the latter offer higher flexibility
in stochastic modeling than the former. This fact points to potential uses of semistable laws in
applied probability. The first step in realizing such potential is to understand the probabilistic
structures of semistable laws. This step has not been, so far, taken. Rather, much of the works
on semistable laws have been concentrated on more abstract properties of the latter, like the
structure of their support (Rajput et al. (1994)) or the tail properties of the norm (Louie and
Rajput (1979), Rajput (1997)).

In this paper we study certain probabilistic aspects of semistable laws. We concentrate on
two issues, that are of interest in clarifying the place of semistable laws among all the infinitely
divisible laws. In the next section we study the extent to which the property of semistability of
a random vector in R¢ is determined by the property of semistability of its marginals, and in
Section 3 we clarify which of the semistable random variables in ® are of type G, and which of
them are, in fact, sub—stable.

We finish this introductory section by recalling a few basic facts about semistable random
vectors. Let X be an r — $S(a) random vector in ®4, 0 < r < 1, 0 < a < 2. The Lévy measure
v of X has then the scaling property

(1.4) My =p(r MY, n= 41,42,

Conversely, any infinitely divisible random vector X whose Lévy measure has the scaling property
(1.4) is r — SS(a) . An immediate conclusion from (1.4) is the well known fact that a non-
degenerate I'-semistable index o real-valued random variable X with I' # {1} has a finite pth
moment, p > 0, if and only if p < .

An r — SS(a) random vector X is called strictly r — $S(a) if ¢ = 0 in (1.3). It is obvious that

a symmetric r — SS(a) random vector X (i.e. X 4 —X) is strictly r — SS(a) . Furthermore,
the notion of strictness applies equally well to the notion of I-semistability, in the sense that if
r; € T for i = 1,2 are numbers different from 1, and X is strictly r1-semistable index «, then it
is also strictly ro-semistable index . As before, we refer the reader to, for instance, Rajput and
Rama-Murthy (1987).

2. WHAT CAN WE SAY ABOUT A RANDOM VECTOR WHOSE MARGINALS ARE ALL SEMISTABLE?

Let X be a random vector in R4, If it is r — SS(a) (that is, if it satisfies (1.3)) then it is easy to
see that for every v € R the real-valued random variable (a marginal of X) Yo = (v, X) (where
(, ) is the inner product in ®?) satisfies (1.3) as well, and so is 7 — SS(«) (in R1). If the converse is
true, then one can use it as an alternative definition of semistability in a multidimensional space.
This approach (through one-dimensional projections) is a well known way to define a multivariate
Gaussian vector, and it was stated by Dudley and Kanter (1974) that the same was true for a-
stable random vectors. However, their argument turned out to be valid only for o € (1, 2), or,
alternatively, under the assumption of strict stability. Indeed, Marcus (1983) gave an example
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of a non-stable random vector in $2 whose marginals were all a-stable, with an a € (0,1). It
follows from the result of Giné and Hahn (1983) that the random vector constructed in Marcus
(1983) is not even infinitely divisible and, hence, not §S(c). Therefore, the S8 («) property of
the marginals does not imply the SS(a) property of X if 0 < a < 1, the statement on page 141
of Rajput and Rama-Murthy (1987) notwithstanding. On the other hand, Samorodnitsky and
Taqqu (1991) showed that the statement of Dudley and Kanter (1974) was true for o = 1. The
main result of this section, Theorem 1 below, shows that the situation in the SS(o) case is similar
to that in the a-stable case.

Theorem 1. Let X be a random vector in R4, such that for every v € R the marginal Yoy =
(4, X) is Ty-semistable indez a(y) for some I'y # {1} and 0 < a(v) < 2. Assume that I’ =
Nyegaly # {1}. Then the index a(vy) does not depend on . That is, there is an a € (0,2) such

that a(v) = a for all v € R? such that Y~ is not degenerate (i.e. not constant). Moreover,
() If 1 < o < 2, then the vector X is I'-semistable indez o (with I' = nnyegedr'y).
(ii) In the case 0 < a < 1 the conclusion of part (i) remains true if, additionally, one of the
following two conditions holds.
(a) For every vy € R4, the marginal Yoy = (7, X) is strictly r-semistable for some r € I'y.
(b) For every vV € R4 and ~2) € R4, the random vector (Y,Y(l),Y,Y(z)) in 2 is infinitely
divisible. This is true, in particular, if the random vector X is infinitely divisible.
Proof. Suppose, there are v(1) € ¢ and ~@ € R4 such that Yy and Yo ) are non—degenerate,

and 0 < a(yW) < a(¥?) < 2 (say). Let p be any nonzero number, and let v(p) = oY 4+ 42,
Then pYoya) + Yoo = Yoy (p) is Ty(p)-semistable index a(+(p)). Observe that for every p €

[a('Y(l)), a(v?)), we have
E|Yy ()l = ElpYy) + Yoo [P = o0,
because ElY’Y(” [P = o0 and E IYPy(Z) [P < o0o. Therefore, Yo, is non-degenerate and, further,

a(y(p)) < a(yW). Let now {p,} be a sequence of (say) positive numbers that converge to 0.
Let Y, = Yoy ,,) and a(n) = a(¥(pn)), n > 1. Observe that ¥;, = Yoz as n — oo. Therefore,
vy = v, where vy, is the Lévy measure of Y, n > 1 and v is the Lévy measure of Y;Y(z) . Choose an

r < 1in I'. Then every Y, is r-semistable index a(n), while Yo ) is r-semistable index a(v®).

Choose an a > 0 such that for all m > 0 the point »™/ a(YMg s a continuity point of v. Choose
an € > 0 so small that

(2.1) I t+e< -11;
Then there is an ng such that for all n > ng we have
Un ((aa OO)) < (1 + e)y((a, OO)) .

Choose, further, an m > 0 so big that m/a(v®) > (m+ 1)/a(y?). We have by (1.4), for all
n> ng,

Vﬂ ((T(m+1)/a(‘y(2))a’ Oo)) S Uﬂ» ((T’n/a(v(l))aﬂ OO)) S I/ﬂ ((T’"I’a(")a, m))

=7r""y, ((a, oo)) <1+ G)TﬂmV((as 00)) .
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Letting n — oo, we conclude that
V((T(mH)/a(’Y(z))a, oo)) <1+ e)'r_mz/((a,oo)).
On the other hand, once again by (1.4) we have
(T ) = ) (10,9,
and so we must have

(1 +€)r~m > r—(m+1)’

which contradicts the choice (2.1) for €. Therefore, the index a(+y) does not depend on .

To proceed, we need the next lemma which provides a simple estimate we will need in the
sequel. Let X be an 7 — SS(«a) real-valued random variable. Letting v, as before, denote its Lévy
measure, one has

(2.2) EeX = exp{/ (ew“’ —1—10z1(|z| < 1)) v(dz) +i90}, 0 e R,

for some ¢ € R, where 1(A) is the indicator function of A.

Lemma 1. Let {X,X;, i > 1} be i.i.d. 7 — SS(c) random variables satisfying (2.2),0<r<1.
Let, further, X*t denote the t-th convolution power of X, t > 0. Ti hen, if a # 1, for each
k=41,%2,... we have

phla-1)/a _ 1

gy (e o) + (L= e e < X,

(2.3) pk/axert
where & means the equality in law, and
1/

my = / ' e(de), m. = /_ 1 v (dz).

1/a

If a =1, then
(2.4) rE X 4 k(my +mo) X
Moreover, if a # 1,
L rk(l—a)/a -1 k(1
(2.5) V(X 4ot X)) + —————(my +m_) + (1= PPN X
1— pl-a)/a
as k — oo along the sequence n = [r=*]. If @ = 1, then along the same sequence we have
(2.6) n I X1 +... + Xp) —k(my +m_) = X.
Proof. We have for every k > 1 (say), using (1.4)
kla—1)/a __ 1 ) .
—kjaywrk T o k(a-1)/a
Eexp{r X+ T~ (my+m)+Q1Q—r )c}

0 ’
= exp{rkf (e"ar Hoe 1 — ior M og1(le] < 1)) v(dz) + ier'—’v(l—a)/ac}
-0

0
= exp{rk/ (e'e" Hew - Or g1 (|rH og| < 1)) v(dz)
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. % v
2.7 —i0r_k(1—°‘)/a/ 21(r?* < |z| < 1) v(dz) + i9r_k(1—a)/“c}
-0
= ex oo(w“:—l—'el
—exp{ [ (e i621(J2| < 1)) v(d2)
-0
k-1

—igp~h(1-a)/a Z i D/em, +m_) + i9r“k(1‘a)/ac} .
=0
The statements (2.3) and (2.4) are now obvious, and the case k < —1 is completely analogous.
Similarly, for every n > 1

R — of R w - —_ o
EetOn Yo Xy +o.4Xn) — exp{n/ (ezon Voag 1— iGn_l/aml(Iml < 1)) V(dm) + ienlwl/ac}.
—00

Let now n = [r %] for k =1,2,.... It is straightforward to check that for any 8 € R we have

i ign—Y g n.—1/a —k
ln/ (e —1—1i6n z1(|z| < 1)) v(dz)—r f

—20

i i0rk/ g nnkfa

(e —1—i0r* *z1(|z| < 1)) V(da:)‘
-0

as k — oo. Therefore, as k — 0o, we have

N —1fof 3 o0 > o y [
Eewn Vo Xy4o+Xe) exp{r—hf (ewrkl T _ 1 iGrk/“ml(‘wl < 1)) V(da}) +,i0,rk(1~a)/ac},
—00

and (2.5) and (2.6) of Lemma 1 now follow from (2.3) and (2.4). O

We now go back to the proof of Theorem 1. Pick and fix any r € I' N (0,1), and recall that
for every 4 € R4, Yy = (7,X) is 7 — SS() . Regarding ¢ in (2.2) and m4 and m_ defined in
Lemma 1 as parameters of an infinitely divisible random variable, we denote by c(v), m4 () and
m_ (=) the corresponding parameters of Yo, and set

ﬁ(7)={ meEm ) 4 o) if o # 1

b/

my(v) +m_(7) fa=1

~ € R4, Further, for 4 = e;, the jth coordinate vector, we denote B(e;) by Bj, i =1,...,d. Let
ﬁ = (»Bla”' aﬁd)'

With n = [r“k], k=1,2,..., we consider a subsequence of normalized partial sums

2.8) s = _il/_(x“) b+ X)),
n «Q
where X, X®, ... are i.i.d. copies of X, and
phl-)/a _ 1 ifa#1
(2.9) cpla) = { k fa=1"

k=0,+1,+2,.... It follows from Lemma 1 that all of the d coordinates of the sequence (S(k), k>
1) converge weakly as k — oo, and so the whole sequence is tight. Therefore, for every v € R4,
the sequence ((, Sk)), k > 1) is tight as well. Here

) 1 n .
(2.10) (7,8%) = =2 37y - er(0)(8,7),
j=1
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where Y(l),Y(z), ... are i.i.d. copies of Y~. However, another application of Lemma 1 shows that
the sequence

L
i/ ZYff” — cp(@)B(7), k=1,

j=1

(2.11) .

converges weakly, and so is tight as well. Now suppose 1 < o < 2. Then, since cx(a) — o0 as
k — oo, the only way the sequences (2.10) and (2.11) can be tight simultaneously is

(2.12) B(y) = (8,7,

and since the above argument works for every v € #4, the relation (2.12) must hold for all such +.
However, (2.10), (2.12) and Lemma 1 imply that for every v € %4 the sequence ((7, Sk, k> 1)
converges weakly to Y+, and so

(2.13) s® = X

as k — 0o, which is the same as

1

nl/a

n
» X0 —gy(@)B=X.
J=1

Therefore, the random vector X satisfies (1.2) with n; = [r~*] and so is r — SS(a) . Thus the
proof of part (i) is complete.

If0 < a < 1, then ¢x(a) = —1 as k — 0o, and so the above argument does not work. However,
to make it work one only needs to establish (2.12). It is easy to check that a one—dimensional
r — $58(a) random variable X with characteristic function given by (2.2) is strictly r — SS(e) if

and only if 8 = 0, where
,Bz{ 1—'_";’(—}1—?)—',;-!—0 ifa#1

my +m_ fa=1"

Therefore, if for every v € R¢ the marginal Yo = (v, X) is strictly r—S88(c) for somer € I'N(0,1),
then B(v) = 0 for all v € R4, which establishes (trivially) (2.12) and, hence, the r—semistability
index a property of X, no matter what « is. This shows part (ii) of the theorem.

Consider now the situation described in part (i), (b). Fix, once again, an 7 € I' N (0,1),
and fix arbitrary v € ®¢ and ~+® € R4, Consider the two-dimensional random vector Y =
(Y‘Y“)’ Y—Y(2‘)), which is, by assumption, infinitely divisible . Define

Y, = r*k/aY*rk — c_k(a)ﬁ, k=12,...,

with 8 = (5(7(1)), ,8(7(2))) € 2. Here once again Y** denotes the 7*th convolution power of Y.
This convolution power is possible to be defined because Y is infinitely divisible. Observe from
(2.3) that the two coordinates of the sequence Y1, Y2,... have fixed r — 8S(a) distributions, and
so the whole sequence is tight. Therefore, the same is true for the sequence {(Yg,t), k=1,2,...}
for every t = (t1,t2) € R2. However,

—k wrk ~
(2.14) (Vi t) =r 7MoY v = cr(@)(Bit), k=1,2,....
On the other hand, once again from (2.3) the sequence
(2.15) - phlaysrt — c_x(e) Bty + toy@), k=1,2,...

t17(1)+t2‘y(2)
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has a fixed r— SS(a) distribution, and so is tight as well. However, if 0 < a < 1, then c_p(a) = o0
as k — o0, and so the only way the two sequences, (2.14) and (2.15), can be tight at the same
time is when

(2.16) Bty + t2y®) = (B,%) = t18(7 D) + t26(+v?).
However, this shows that (2.16) must hold for all ~+M and @ € R? and all real t1,t2. Hence
(2.12) holds, and hence X is 7 — SS(e) . This completes the proof of the theorem. O

We would like to mention that we do not know whether the assumption Nycgil'y # {1} in
Theorem 1 is superfluous or not, that is, if this fact is already implied by the assumption that
for every v € R4 the marginal Y~ = (v, X) is ['y-semistable index avy for some I'y # {1} and
0< ay < 2.

3. WHICH » — SS(a) RANDOM VARIABLES ARE OF TYPE G AND WHICH ARE SUB—STABLE?

Recall that a real-valued random variable X is said to be of type G if
(3.1) x & z512,

where Z is a standard normal random variable independent of a nonnegative infinitely divisible
random variable S. A similar definition is used in multidimensional (including infinite dimen-
sional) settings. Here X is a random vector and Z a centered Gaussian random vector in the
appropriate space. A type G random variable is itself infinitely divisible, and is a variance mixture
of Gaussian random variables. One important example of type G random variables is symmet-
ric a-stable (shortly SaS )random variables. Moreover, the type G property extends to SaS
processes; see Samorodnitsky and Taqqu (1994). Hence, SaS processes are covariance mixtures
of (centered) Gaussian processes, and many properties of the former have been understood via
(conditional) reduction to the properties of the latter; some examples can be found in Marcus
and Pisier (1984), Talagrand (1988), Rosinski et al. (1993) and Adler et al. (1993). The approach
of the latter paper was applied to a larger class of type G infinitely divisible processes in Marcus
and Shen (1997). The power of this approach alone makes it important to understand which
semistable random variables and vectors are of type G. This will also serve to clarify, further, the
structure of semistable laws. Type G processes were introduced by Marcus (1987), and we refer
the reader to Rositiski (1991) for more information on type G random variables and processes.

A notion parallel to that of a type G random variable is that of a sub-stable random variable.
A random variable X is said to be sub—3-stable, 0 < 8 < 2, if

(3.2) x £ 7581/,

where this time Zg is a standard symmetric S-stable random variable independent of a nonneg-
ative infinitely divisible random variable S. That is,

(3.3) Ee'%8 = e"‘e"a, 0eR,

with a similar definition in a multidimensional case. We mentioned above that symmetric stable
random variables are of type G. Moreover, in that case the variance mixing random variable in
(8.1) is positive stable, and one can use this fact to conclude immediately that any sub-stable
random variable is also of type G. Let us denote by E(3) the collection of all sub—3-stable random
variables, 0 < 8 < 2. Every symmetric a-stable random variable with 0 < a < 2 is sub—-stable
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for every B8 € («,2]. That is, a standard SaS random variable Z,, 0 < o < 2, can be represented
in the form

(3.4) Zo 2 Zp(2})"°

for every 8 € («,2]. Here Z;L/ 8 is a positive strictly a/B-stable random variable, whose Laplace
transform is given by

+ Le g
(3.5) | Ee %Zars = ¢ u>0.

This shows that
E(B1) CE(B2) for 0< 1 <22

Clearly, £(2) is the collection of type G random variables. In this section we study not only the
question, whether or not r — S5 («) random variables are of type G, but also whether or not they
belong to other families Z(8). We refer the reader to Samorodnitsky and Tagqu (1994) for more
information on the sub-stability property of symmetric stable random variables.

Let us introduce some notation. Denote by SS(a, ) the collection of (the laws of) all symmetric
r — $S(a) real-valued random variables, 0 < a < 2,0 <r < 1, and by S(a) C SS(a,r) the
collection of (the laws of) all symmetric a-stable real-valued random variables, 0 < a < 2. It
follows then from (3.4) that

(3.6) S(a) CE(B), alla<p<L2

We are interested in the common parts of Z(8) and SS(e,7)\ S(a), @ < B < 2.

The following is the main result of this section. Throughout, 0 < 7 < 1 is fixed. This result
shows that among non-stable symmetric r — $S(c) random variables there are both those inside
Z(B) and outside of it. Furthermore, (3.6) cannot be extended to any part of SS(a,r) other than
S(a).

Theorem 2. (i) Let 0 < a < 8 < 2, and let S::/ﬁ be a positive strictly r-SS(a/B) random
variable, independent of a symmetric 3-stable random variable Zg. Then

(3.7) X =Zg(St)"?

is a symmetric 7 — SS(a) random variable. Moreover, X is not SaS unless S:/ﬂ is a positive
strictly a/B-stable random variable. That s,

(38) 2(8) N (SS(a,r) \S(a)) £ 0.

(i1) If 0 < o < B < 2, and a symmetric T — $S(a) random variable X is sub—-B-stable, then the
random variable S in (3.2) must be a positwe strictly r—-S5 (a/B) random variable. Furthermore,
for every 0 < a < B8 < 2 there arer — SS(a) random variables that are not sub-0 stable. That is,

(3.9) SS(a,r)N (E(ﬁ))c £ 0.
Moreover, for any o < B1 < B2 < 2 the inclusion

(3.10) E(8,) N SS(a,r) C E(B2) N SS(a,r)
is proper, and

(3.11) N (E(ﬁ) N SS(a, 'r)) = S(a).

a<fPL2
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Proof. Let H denote the law of a symmetric 3-stable random variable Zg, 0 < B < 2, satisfying
(3.3) and let 5 denote a multiple of the Lévy measure of Si g 0<a< B < 2, such that

o>
Ee %Sars = exp{—/ (1-e™) n(dz)},
0
u > 0. Observe that for every z > 0 and real 6
20
1— el = 2/ (1 - cos(Ozl/ﬂy)) H(dy).
0
Therefore, for X defined by (3.7) we have
i0X 161’5y > ~ 6|3
(8.12) Ee** = Ee o/B = exp{—-/ 1-e 16172y n(dz)}
0

0 20
= exp{—Z/ n(dz)/ (1 — cos(@zl/ﬁy)) H(dy)}.
0 0
We see immediately that X is a symmetric infinitely divisible random variable with Lévy measure
v given by
(3.13) v(4) = (n® H){(2,y),2 > 0,y € R : 2Py € A},
A a Borel set.
Since S:/ﬂ is an r — $S(a/B) random variable, its Lévy measure 7 satisfies (1.4). That is,
n(r~?*4) = rn(4)
for every Borel set A. Therefore, for every such A

v(r- Vo) = / " nyPrBleAP) H(dy)

-0

—r / " n(yPAP) H(dy) = ri(4).

—20
That is v satisfies (1.4) and, hence, X is symmetric r — SS(a) . The first part of (i) is proved.
In the opposite direction, suppose now that a symmetric r — S$S(a) random variable X is
sub—B-stable, in the form (3.2), 0 < a < 8 < 2, and let v be the Lévy measure of X. We have,
as in (3.12),

20
(3.14) Ee ™S = exp{-—Z/ (1 - cos(ul/ﬂ:c)) z/(dm)},
0
u > 0. Since X is r — SS() , the Lévy measure v satisfies (1.4). Therefore, for every u > 0

Eevw®/®8 = exp{—2/0°o (1 - cos(ul/ﬂrl/“m)) v(da:)}

= exp{—2r /000 (1 - cos(ul/ﬁm)) v(dw)} = (Ee"“s)r.

That is, S must be a positive strictly r—SS(a/8) random variable. The first part of (ii) is proved.
To show the second part of (i), observe that the above argument also implies that if X is SaS,
then S must be a positive strictly 7~SS(a/B) random variable for all 0 < r < 1, and hence it is
a positive strictly o/B-stable random variable. Therefore, if S;L/ P in (8.7) is non-stable, then X

is a non-stable r — $S(a) random variable.
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We have now proved (i) and the first part of (i) of the theorem. To prove the remaining
statements of (ii) of the theorem, it is enough to note that the law H of Sg is absolutely continuous
with respect to the Lebesgue measure on ®, and we immediately see from (3.13) that the Lévy
measure of any symmetric 7 — SS(a) random variable X that is sub—B-stable for some 8 > a is
absolutely continuous as well. Therefore, any symmetric 7 — S5 (o) random variable whose Lévy
measure is not absolutely continuous, cannot be sub-(-stable for any 8 > .

Moreover, let us denote by SS* (e, r) the collection of (the laws of) all positive strictly r—SS(a)
random variables, 0 < o < 1, 0 < r < 1. It follows from part (i) of the theorem that for every
random variable S} whose law is in 88t (a,r), independent of a symmetric B-stable random
variable Zg, the product

(3.15) X = Zzg(sH)"*

is a symmetric 7-SS(a8) random variable. For a 81 € (0,8) denote by S5t (a; 8, B1,7) the
subset of SS* (o, r) consisting of the laws of such S+ that the product in (3.15) is sub—3;-stable.
Observe that if the law of S isin SS*(e; 8, 81,7) then we can alternatively represent X in (3.15)
as

(8.16) x2 Zp, (Siﬂ/ﬁl)l/ﬁl < Zp (Z;l/ﬂ)l/ﬂ(siﬂ/ﬁl
where we are using our usual notation, and all random variables in a product are independent.
Now, it follows from (3.14) that the law of X in (3.7) uniquely determines the law of the factor

)1/ﬁ1

?

Si/ﬂ' Hence, (3.15) and (3.16) imply that
d
(3.17) st Lz} o S:ﬂ/ﬂl)ﬂ/ﬁl.
We have then g
| —ub/85+
exp{—f (1 — e*‘uz) n(dz)} — Ee_usg = Fe udr/ Sa!?/.ﬂl
0

—ep{- [Ta- e maa)} e [T mian) [T0- e Qe

where 77 and 7 are (multiples of) the Lévy measures of S+ and S:ﬂ /6, accordingly, and Q is the
law of Zgl /8" Therefore, we conclude that

(3.18) n(4) =m ® Q{(2,9),2> 0,y >0: PPy e A}

This is a description of the Lévy measures of the laws in 88T (a;8,81,7). Since it follows as
above that, in particular, any law in 88t (a; B, B1,r) must have an absolutely continuous Lévy
measure, we conclude that SS*(; 3, B1,7) is a proper subset of S St (a,7).

Let a < 81 < B2 < 2, and let the law of X be in E(82)NSS(e, 7). Then X has a representation

with S:/ 8 being a positive strictly r—SS(a/B82) random variable. Since for X above to be also

a sub-Bi-stable random variable we must have the law of S:/Bz to be in SS*(a/B2;81,81,7),
which has been proved to be a proper subset of all laws of positive strictly —SS(a/B2) random
variables, we conclude that Z(81) N SS(a,r) is a proper subset of E(82) NS S(a, 7).

It remains to prove (3.11). Assume that an r — §S(a) random variable X is sub—8-stable
for all 8 € (e, 2], and consider the family of corresponding positive strictly r—SS(a/) random
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variables that make (3.7) hold (in distribution) for 8 € («,2]. This family is, obviously, tight. Its
all possible limiting points, as 8 | «, have to be nonnegative r—$S5(1) random variables, hence
nonnegative constants. Therefore, taking weak limits along an appropriate subsequence of 8 | «
we conclude that X is equal in distribution to a constant multiple of Z, and, hence, the law of
X is in S(«).

This completes the proof of the theorem. O

Remarks. 1. From the argument used in the proof of Theorem 2 we see, for example, that an
r — SS(a) random variable X with Lévy measure given by

[ o]
v=c Z r"(&,n/a—}—c?_,n/a), c> 0,

n=-—o0

is not sub-g3-stable for any 8 > a.

2. One can give a somewhat more complete description of type G, r — 88(a) random variables
than that given in Theorem 2. It follows from (3.13) that the Lévy measure v of such random
variables has a derivative of the form

dz(:) = g(z?),

where g is a completely monotone function that can be represented in the form

1 X0
— e ¥/(22) =12 (4,
9(y) 7z ), n(dz),

where 7 is the Lévy measure of a positive strictly r—SS(c/ 2) random variable. See also Rositiski
(1991).

3. It follows immediately from Theorems 2 and 1 that for 0 < a <8< 2, 2 positive strictly
r-88(c/B) random variable ,S':/ﬂ independent of a symmetric B-stable random vector Zg, the
random vector

X = Zg(SH)"?

is a symmetric » — $S(e) random vector. In a similar way, starting with appropriate centered
Gaussian or symmetric stable processes one can construct families of symmetric 7 — SS(a) pro-
cesses that have features one would like to model, e.g. stationarity, self-similarity, etc.
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