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GM1 is known to influence several signaling pathways in somatic cells that are also 

important in sperm functional maturation, such as “capacitation” and fertilization.  

These pathways include tyrosine phosphorylation and exocytosis of the acrosomal 

vesicle (AE). I report that the ganglioside GM1 is enriched in a stable, micron-scale 

sub-domain in the plasma membrane overlying the acrosome of the sperm head in 

several species.  This membrane sub-domain is conserved across several mammalian 

species.  The domain appears to be specifically masked by seminal vesicle fluid 

secretions during the process of insemination. I also report that the acrosomal vesicle 

membrane is enriched in GM1.  This enrichment may act to increase plasma membrane 

GM1 during point-fusion events between the acrosomal and plasma membranes. I 

investigated the impact of modulating the GM1 concentrations in sperm membranes.  I 

found that exogenous GM1 stimulated an increase in intracellular calcium and 

accelerated tyrosine phosphorylation cascades in sperm through activation of the TrkA 

kinase pathway, by-passing the need for sterol efflux in this pathway.  Additionally, I 

found that changing GM1 focal enrichments in the plasma membrane, either through 

the addition of exogenous GM1 or using the pentameric B subunit of cholera toxin to 

cross-link endogenous GM1, induced AE. The effect of GM1 clustering appeared to be 

mediated by the sialic acid residue of GM1 because ceramide and asialo-GM1 were 

unable to induce such effects. GM1 influences many calcium dependent processes in 

other cell types, and I hypothesized that a similar calcium-dependent process was 



 

active in sperm.  AE was inhibited in a concentration-dependent manner by inhibiting 

calcium channel activity either with Ni2+ or store-operated calcium channels and 

CaV2.3 calcium channel inhibitors. Sperm lacking the CaV2.3 channel displayed 

impaired fertility and were unable to undergo AE in response to progesterone, zona 

pellucida, or GM1, despite apparently normal capacitation and membrane fusion.  

Together, these data suggest a model in which an increase in plasma membrane 

fluidity during sterol efflux, together with point fusions between the plasma membrane 

and acrosomal membrane, allow the clustering of endogenous GM1.  This clustering 

then stimulates calcium influx through the CaV2.3 channel and signaling pathways 

necessary for mammalian fertilization. 
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INTRODUCTION 
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Membrane organization 
 

Lipid rafts (Fig. 1) are small, heterogeneous, highly dynamic and physiologically 

active microdomains assembled within the plasma membrane bilayer of mammalian 

cells. These membrane domains are rich in cholesterol and sphingolipids (see Simons 

& Vaz, 2004, for review). The shape and rigidity of cholesterol preferentially selects 

for the inclusion of saturated hydrocarbon chains of lipids in the surrounding 

membrane architecture, conferring a lipid-ordered property on the membrane that can 

restrict the lateral diffusibility of membrane components within a nanometer-scale raft 

(Fan, Sammalkorpi, & Haataja, 2009).  A specific cohort of sphingolipids, cholesterol, 

and proteins are targeted to these membrane rafts. The targeted molecules include 

gangliosides, or glycosylated sphingolipids, GPI-linked proteins, calcium regulatory 

molecules, signaling receptors, and structural proteins.  

 

The lipid composition of rafts confers on them the biophysical property of a light 

buoyant density (Rajendran & Simons, 2005) and resistance to solubilization with 

detergents at low temperature.  These properties allow the isolation of lipid rafts from 

biologic membranes.  However, detergent-based methods can also induce non-

physiological, artifactual coalescence of smaller rafts and “patching” artifacts induced 

by cross-linking reagents such as fixatives (Munro, 2003; Shogomori & Brown, 2003).  

This has provoked disagreement and controversy among lipid biologists and 

necessitated greater care in interpreting localization studies.  Detergent resistant 

membranes, or DRM’s, have little physiologic significance because their composition 

is disrupted due to reorganization artifacts induced during the processing.  Therefore, 

DRM’s must be interpreted together with alternate methods of disruption and 

characterization (Pike, 2006).  However, density sedimentation properties of in vivo 
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membrane rafts have allowed a non-disruptive protocol for characterization of 

physiologic raft properties (Asano et al., 2009; Travis et al., 2001). Together, these 

studies have generated important information on the composition of membrane rafts 

and on their formation and maintenance (Lagerholm, Weinreb, Jacobson, & 

Thompson, 2005). While the inherent tendencies of some lipids to self-aggregate 

might energetically drive for raft organization, similar to the phenomenon seen in 

model membranes, protein-lipid and protein-protein interactions likely play a 

significant role in the formation of heterogeneous membrane sub-domains seen in vivo 

(see Chichili & Rodgers, 2009, for review). Cells utilize transmembrane proteins, lipid 

binding proteins, cytoskeletal elements and active vesicular trafficking mechanisms to 

maintain the lateral heterogeneity of membrane rafts. Together, these interactions 

contribute to the selective localization of cohorts of molecules influenced by the 

membrane microenvironment in which they reside.  

 

Within a cell, rafts are usually extremely dynamic and variable in terms of 

composition, lifespan, and cellular function. A variety of cellular functions and 

signaling pathways are initiated and regulated by lipid membrane domain formation 

and function (see Lingwood et al., 2010, for review).  These functions include viral 

entry, cell signaling for migration and differentiation, and more recently, fertilization 

(Bou Khalil et al., 2006; Nixon & Aitken, 2009; Selvaraj et al., 2006; van Gestel et al., 

2005). 

 

One way in which the lipid microenvironment can influence biological activity is 

through the modulation of ion channels.  Membrane sterol and sphingomyelin contents 

have been found to influence the activity of a variety of ion channels, including  
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Figure 1. Schematic drawing of a membrane raft and the cohort of molecules typically 

found in a membrane raft (not to scale).  Membrane rafts are cholesterol- and 

sphingolipid-rich membrane domains that are also enriched in GPI-linked proteins, 

transmembrane proteins, and other signaling components such as non-receptor 

tyrosine kinases.  Many calcium transporters are also segregated to membrane rafts.  

Rafts can also function to separate certain signaling components or auxiliary proteins 

until an initiating membrane-reorganization event occurs such as sterol efflux or 

receptor cross-linking.  The signaling complex can then be assembled outside or inside 

of a raft, depending on the nature of the complex and cell membrane components.  

Auxiliary subunits of calcium channels or synaptic fusion proteins are hypothesized to 

function in this manner, with raft association increasing calcium current or membrane 

fusion complex formation.  The glycosphingolipid GM1 is segregated to membrane 

rafts and often used as a marker for localization of membrane rafts in cellular 

membranes.  GM1 also contains extracellular sugar residues that can act to modulate 

signaling pathways, similar to glycosylated transmembrane proteins of membrane 

rafts.
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nucleotide-gated channels (Brady et al., 2004), voltage-operated calcium channels 

(Taverna et al., 2004), and epithelial sodium channels (Shlyonsky, Mies, & Sariban-

Sohraby, 2003) in a reversible manner.  Certain ion channels, including inward 

rectifying potassium channels (Romanenko et al., 2004; Romanenko, Rothblat, & 

Levitan, 2004) and transient receptor potential canonical (TRPC) calcium channels 

(Brazer, Singh, Liu, Swaim, & Ambudkar, 2003; Torihashi, Fujimoto, Trost, & 

Nakayama, 2002), are assembled in membrane raft signaling complexes where their 

activity is influenced by the sterol composition of the raft environment.  

 

 Sphingomyelin-enriched membrane domains have been reported to determine the 

efficacy of calcium-triggered membrane fusion (Rogasevskaia & Coorssen, 2006), and 

many synaptic receptors are targeted to rafts by palmitoylation (Golub, Wacha, & 

Caroni, 2004; Kanaani, Diacovo, El-Husseini Ael, Bredt, & Baekkeskov, 2004), 

where the receptor can modulate calcium influx. 

 

Membrane organization and functional maturation in sperm 

 

Gametes, particularly the highly polarized mammalian spermatozoon, provide 

especially pronounced examples of membrane compartmentation that is important to 

their function. A spermatozoon released into the female reproductive tract is not able 

to fertilize an egg (Austin, 1951; Chang, 1951).  It must instead reside within the 

reproductive tract of the female for a species-specific amount of time to undergo the 

process of capacitation (Austin, 1952; Kopf, Visconti, & Galantino-Homer, 1999; 

Visconti et al., 2002).  Capacitation involves changes in membrane composition in 

which sterols, phospholipids, and inhibitory seminal plasma components are removed 

from the plasma membrane. These same stimuli translate to different responses 
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depending on the region of a spermatozoon despite the fact that a sperm is 

transcriptionally and translationally quiescent (see Dadoune, Siffroi, & Alfonsi, 2004, 

for review), leaving the sperm to rely heavily on compartmentation to streamline and 

regulate its signaling pathways. 

 

Although the events of capacitation and fertilization are highly predictable and 

reproducible in vitro under defined conditions (Pike 2006), the molecular 

underpinnings of these signaling pathways are not yet fully elucidated.  It is thought 

that membrane organization and the compartmentalization of signaling pathways to 

different plasma membrane regions equip a spermatozoon to respond to the same 

extracellular stimuli in different ways (Bou Khalil et al., 2006; Selvaraj et al., 2006; 

van Gestel et al., 2005).  Membrane rafts may help to accomplish this exquisite 

regulation by scaffolding or sequestering pre-assembled signaling components in these 

domains. Indeed, an increase in oocyte-binding ability has been reported for isolated, 

detergent-resistant membranes from capacitated sperm (Bou Khalil et al., 2006).  

Additionally, membrane-association of machinery needed for fertilization, such as 

secretion molecule Rab3A and putative egg-interaction molecules, increases with 

cholesterol depletion during sterol efflux from sperm (Belmonte et al., 2005; Bou 

Khalil et al., 2006; Rogasevskaia & Coorssen, 2006).  This can allow rapid, precise 

responses by sperm to stimuli in a localized manner.   

 

Alternatively, the segregation of signaling molecules by membrane components can 

play an important role in the regulation of cellular responsiveness.  Separating 

molecules of multi-component signaling pathways can prevent premature responses, 

such as inappropriate vesicular release, which would be devastating to these cells, 

which has only a single secretory vesicle to release.  Changes in membrane 
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architecture, such as sterol efflux, may then allow association of components in these 

signaling complexes, such as those for membrane fusion or for calcium signaling, only 

when the sperm are in close proximity with the egg (van Gestel et al., 2005).  In this 

way, membrane rafts can play a crucial role in both sperm quiescence as well as 

activity. 

 

In support of this hypothesis, distinct sub-domains within the sperm have been 

described both in fixed cells (Friend & Fawcett, 1974; Friend, 1982) and in live, 

motile sperm (Selvaraj et al., 2006).  For example, the plasma membrane overlying the 

acrosome is enriched in sterols, GM1, and the protein caveolin-1 (Selvaraj et al., 2006; 

Travis et al., 2001).  When sperm are released from the epididymis, the plasma 

membrane overlying their acrosome is rich in cholesterol and desmosterol (Bleau & 

VandenHeuvel, 1974; Elias, Goerke, Friend, & Brown, 1978; Legault, Bouthillier, 

Bleau, Chapdelaine, & Roberts, 1979).  This enrichment promotes the efflux of sterols 

from the sperm plasma membrane during sperm transit through the reproductive tract.  

This can dramatically change the fluidity properties of the plasma membrane domain 

overlying the acrosome (Friend, 1989; van Gestel et al., 2005).   Changes in lipid 

diffusibility within this sub-domain suggest that sterol efflux results in an increase in 

membrane fluidity, allowing the formation and/or diffusion of smaller raft units within 

the larger sub-domain (Lin & Kan, 1996; Smith, McKinnon-Thompson, & Wolf, 

1998; van Gestel et al., 2005; Wolf, 1995; Wolfe, James, Mackie, Ladha, & Jones, 

1998) or potentially disassembling membrane signaling complexes (Bou Khalil et al., 

2006; Cross, 2004; Shadan, James, Howes, & Jones, 2004; see Tanphaichitr et al., 

2007, for review).  Sperm that fail to shed some of this cholesterol and increase the 

membrane fluidity are unable to fertilize an egg (Buffone et al., 2006; Buffone, 

Verstraeten, Calamera, & Doncel, 2009).  
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Figure 2. A schematic of a murine sperm depicting the regions and major organelles.  
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While the events that transpire during this transit and maturation of sperm are well 

documented (see Visconti et al., 2002, for review), they are less well understood.  

These events, mediated by separate pathways, are: the acquisition of an asymmetric 

flagellar beat pattern (“hyperactivation”), and the phosphorylation of a subset of 

tyrosine residues that change the functional responsiveness of the sperm. The 

signaling pathway leading to protein tyrosine phosphorylation is not yet fully defined, 

but involves activation of a soluble adenylate cylase by calcium and bicarbonate 

resulting in cyclic AMP production and activation of the serine/threonine kinase PKA 

(see Visconti et al., 2002, for review).  Other kinase activity is necessary, as shown by 

the ability of tyrosine kinase inhibitors to prevent capacitation and acrosomal 

exocytosis, including protein kinase C (PKC) (Jaiswal, Cohen-Dayag, Tur-Kaspa, & 

Eisenbach, 1998; Foresta, Rossato, & DI virgilio, 1995; Spungin & Breitbart, 1996). 

 

Concomitant with the changes in kinase activity during capacitation are changes in ion 

transport in sperm.  Upon the efflux of sterols, bicarbonate and calcium enter the 

sperm (see (Abou-haila & Tulsiani, 2009), for review).  In concert with these changes, 

hyperpolarization of the membrane occurs during capacitation, from -35 to -45 mV in 

a non-capacitated state to -80 mV (Arnoult et al., 1999; Munoz-Garay et al., 2001).  

This hyperpolarization occurs in part to activity of the sperm-specific Slo3 potassium 

channel, although a Na+/HCO3
- cotransporter has been localized in sperm and may also 

be involved, accounting for the change in intracellular bicarbonate levels (Demarco et 

al., 2003; Santi et al., 2010).  It is likely that sterol efflux-mediated Slo3 activity then 

facilitates activation of the depolarization-sensitive proton pump Hv1, which 

alkalinizes the sperm, a requirement for successful response to the oocyte (Lishko, 

Botchkina, Fedorenko, & Kirichok, 2010). 
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The ultimate consequence of these changes is the functional responsiveness of the 

sperm to the oocyte.  This responsiveness allows the regulated exocytosis of the 

sperm’s single secretory vesicle (the acrosome), in response to contact with the 

cumulus-oocyte complex and associated glycoproteins, steroid hormones, and 

structures of the egg (see Bhandari, Bansal, Talwar, & Gupta, 2010, for review).  

Although a specific, single, and essential sperm receptor for the zona pellucida (ZP) 

has not yet been described in mammals, both progesterone and ZP glycoproteins are 

known to induce release of the acrosomal contents (Yanagimachi, 1988; Sutton et al., 

2005).  The effects of these agonists differ in the initial rise in calcium, which is a 

single, transient spike for ZP and potentially oscillatory waves for progesterone 

(Bailey & Storey, 1994; Florman, 1994; O'Toole, Roldan, & Fraser, 1996b).  After 

this initial, voltage-operated calcium entry, phospholipase C (PLC) is activated in both 

pathways to produce inositol triphosphate (IP3) and diacylgylerol (DAG) (Fukami et 

al., 2001; Rice, Parrington, Jones, & Swann, 2000).  Intracellular IP3 then activates 

IP3R receptors on the acrosomal membrane to release calcium stores from the 

acrosome (Herrick et al., 2005; Stamboulian et al., 2005; Sutton et al., 2004).  This 

increase in intracellular calcium mediates calcium influx from a store-operated plasma 

membrane calcium channel, likely a TRPC channel, although species differences in 

channel sub-types exist (Jungnickel, Marrero, Birnbaumer, Lemos, & Florman, 2001).  

This sustained influx of calcium results in SNARE mediated fusion of the plasma 

membrane and outer acrosomal membrane (De Blas, Roggero, Tomes, & Mayorga, 

2005).   

 

Despite the downstream similarities of progesterone and ZP-induced acrosomal 

excoytosis (AE), progesterone and ZP stimulation of sperm differ in several ways.  
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Progesterone appears to initiate signaling in part through GABAA receptors on the 

sperm (Bhandari et al., 2010; Murase & Roldan, 1996).  This differs from the GABAA 

insensitive but G-protein dependent ZP-induced membrane fusion and exocytosis 

(Tesarik, Carreras, & Mendoza, 1993).  These differential mechanisms have been 

suggested to work synergistically, with the lower levels of progesterone found within 

the oviduct acting to ‘prime’ the sperm in the event progesterone levels are not 

sufficient to induce exocytosis on its own.  This initial priming with pico- to 

micromolar concentrations of progesterone may transiently depolarize and further 

hyperpolarize the sperm membrane, allowing full activation of voltage-operated 

calcium channels that open upon G-protein coupled responses of the sperm to contact 

with the ZP (Patrat, Serres, & Jouannet, 2002).  Both agonists appear to induce fusion 

initially via transient, punctate fusion events followed by full-scale exocytosis for 

release of the enzymes within the acrosome that may aid in penetration of the cumulus 

matrix and zona pellucida (Kim & Gerton, 2003). 

 

 

 

Raft-associated GM1 in biologic membranes 

 

Not surprisingly, lipid order alone cannot account for the diverse activities ascribed to 

membrane rafts and changes in ion fluxes.  Cells assemble raft complexes with a 

variety of structurally distinct and biologically active molecules, including 

gangliosides.  Of these gylcosphingolipids, the most work has been done on the 

ganglioside GM1.  This is largely due to the fact that the B subunit of cholera toxin 

(CTB) binds to GM1 with a remarkable specificity and sensitivity (Cuatrecasas, 1973; 

Fishman, Pacuszka, & Orlandi, 1993; Lauer, Goldstein, Nolan, & Nolan, 2002), 
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making it useful for a variety of experimental techniques.  Additionally, 

glycosphingolipids such as GM1 can have dramatic influence on the architecture and 

functionality of biologic membranes (see Westerlund & Slotte, 2009, for review).  

 

GM1 is synthesized in the Golgi apparatus and subsequently transferred to the outer 

leaflet of the plasma membrane (Zeller & Marchase, 1992).  The sialic acid residue of 

GM1 projects to the extracellular environment, where it can interact with exogenous 

molecules, while its hydrophobic ceramide tail remains intercalated into the 

membrane, where it can interact with intra-membrane and intracellular constituents 

(Fig. 2) (Svennerholm, 1994; Wiegandt, 1995).  These chemical properties make for a 

very dynamic molecule in terms of the broad array of potential membrane interactions 

witnessed for GM1.  GM1 has been shown to segregate preferentially to distinct 

membrane sub-domains where even a single GM1 molecule can exert local effects on 

the membrane (Goins, Masserini, Barisas, & Freire, 1986; Roy & Mukhopadhyay, 

2002).   GM1 is highly enriched in membrane rafts of neuronal tissues, where it plays a 

central role in neuronal plasticity, synaptogenesis, response to ischemic and excitatory 

injury, as well as ionic conductance (Fadda, Negro, Facci, & Skaper, 1993; Ledeen & 

Wu, 2002; Pedata, Giovannelli, & Pepeu, 1984; Toffano et al., 1983; Wu, Lu, & 

Ledeen, 1995; Wu et al., 1998).  

 

Studies in somatic cells have shown GM1 to be a biologically active molecule, 

important in transducing extracellular stimuli into intracellular signals 

(Hadjiconstantinou & Neff, 1998).  At the cell surface, GM1’s extracellular sugars can 

act as receptors for cholera toxin and polyoma and SV40 viruses (Tsai et al., 2003).  It 

can act as a co-receptor for FGF2 (Rusnati et al., 2002), initiating fusion and migration 

(Chen et al., 2003), and a form of GM3 can mediate sperm-egg adhesion in trout 
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Figure 3. Schematic drawing of the ganglioside GM1 (bold face) in the outer leaflet of a 

phopholipid bilayer.  The sugar residues are hydrophilic and exposed to the 

extracellular environment while the ceramide tail of GM1 is hydrophobic and 

intercalates into the phospholipid and cholesterol-enriched face of a membrane 

bilayer. 
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 (Yu et al., 2002).  The overall amphipathic nature can modulate the open probability 

of ion channels or alter plasma membrane calcium ATPase (PMCA) (Zhang, Zhao, 

Duan, Yang, & Zhang, 2005; Zhao, Fan, Yang, & Zhang, 2004), sarcoplasmic-

endoplasmic reticulum calcium ATPase (SERCA) (Xie, Wu, Lu, Rohowsky-Kochan, 

& Ledeen, 2004), or sodium/calcium exchanger conformation (Xie, Wu, Lu, & 

Ledeen, 2002; Zhao et al., 2004). The hydrophobic ceramide tail of GM1 can serve as a 

potent intracellular signaling molecule either alone or in concert with sialyl binding 

partners, such as calmodulin (CaM), and calcium/calmodulin-dependent protein kinase 

II (CaMKII) to activate tyrosine phosphorylation cascades (Chan, 1989; Duchemin, 

Neff, & Hadjiconstantinou, 1998; Fukunaga, Miyamoto, & Soderling, 1990; Higashi, 

Omori, & Yamagata, 1992; Hilbush & Levine, 1991).  Sometimes, these properties 

can work synergistically.  GM1 clustering through its extracellular sugars can alter the 

conformation and activity of the palmitoylated, raft-targeted plasma-membrane 

calcium ATPase (PMCA) (either alone or in a CaM dependent manner), which is 

essential for calcium homeostasis in most cell types, including sperm (Kanaani et al., 

2004; Pang, Zhu, Wu, & Chen, 2005; Wennemuth, Babcock, & Hille, 2003).  The 

effect of GM1 on calcium channels and calcium influx has been shown to lead to a 

variety of functional responses, including cell-cell adhesion, neuronal synapse 

formation (Silva, Felicio, Nasello, Vital, & Frussa-Filho, 1996), osteoclast 

differentiation (Fukumoto et al., 2006), and hepatocyte synchronization (Brodsky et 

al., 2003; see Ledeen & Wu, 2002, for review).    

 

Though the biological effects of GM1 vary depending upon cell type, many of its 

ascribed functions involve calcium as an integral part of signal transduction.  The 

exact molecular underpinnings of this relationship are not fully understood. 

Crosslinking of GM1 molecules by either the pentameric B subunit of cholera toxin 
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(Fang, Xie, Ledeen, & Wu, 2002) or the pentameric anti-GM1 IgM antibody (Quattrini 

et al., 2001) can stimulate calcium influx through a voltage operated calcium channel.  

Fang et al. characterized this apparent voltage-operated calcium channel to be gated by 

the ganglioside GM1 and permeable to calcium and barium but not manganese (2002).  

This current is sensitive to blockade by nickel, cadmium, and lanthanum, qualities 

shared by T-type, or CaV3, and R-type, or CaV2.3, calcium channels (Ertel, 2004;  

Fang et al., 2007). The activity of this channel upon cholera toxin B (CTB) binding 

was responsible for calcium influx and neuritogenesis observed with gangliosides in 

neurons.  Other groups have identified an apparent L-type calcium current that is 

stimulated by gangliosides (Carlson, Masco, Brooker, & Spiegel, 1994) and inhibited 

by serum from patients with anti-ganglioside antibiodies (Buchwald et al., 2007; 

Nakatani et al., 2009), but these studies relied upon calcium channel inhibitors that can 

non-specifically affect other alpha subunits such as CaV 2.3 (Ertel, 2004).  Similarly, 

GM1-induced currents in Neuro2A cells were identified as T-type currents because of 

their sensitivity to amiloride, which was used at concentrations that will also inhibit 

the CaV 2.3 channel (Ertel, 2004).   

 

GM1 in sperm 

In sperm, GM1 is highly enriched in and segregated to the plasma membrane overlying 

the acrosome as well as the outer acrosomal membrane in sperm of mouse, bull, horse, 

and human (Buttke, Nelson, Schlegel, Hunnicutt, & Travis, 2006; Selvaraj et al., 

2006).   This is in stark contrast to somatic cell membrane organization, where very 

little GM1 is found in vesicular membranes (Zeller & Marchase, 1992).  GM1 of the 

sperm plasma membrane is bound specifically by the seminal plasma component 

SVS2 upon ejaculation when sperm mix with seminal plasma (Kawano, Yoshida, 

Iwamoto, & Yoshida, 2008).  The binding of SVS2 has a de-capacitation effect on 
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sperm, preventing tyrosine phosphorylation cascades, acrosomal exocytosis, and the 

fertilization of oocytes in vitro (Kawano & Yoshida, 2007; Kawano et al., 2008).  

However, as sperm transit through the female reproductive tract, SVS2 is 

progressively lost from the sperm plasma membrane.  At the same time, cholesterol 

efflux results in an increase in membrane fluidity, and GM1 is found to diffuse more 

freely within the plasma membrane overlying the acrosome (Cross, 2004; Jones et al., 

2010; Selvaraj et al., 2007; Shadan, James, Howes, & Jones, 2004).  It is plausible 

then that SVS2 may exert its decapacitation effects by sequestering GM1 and 

preventing its movement around or interaction with target signaling molecules 

important for sperm responsiveness, such as a calcium channel, similar to the 

mechanisms seen in somatic cells and described above.  

 

Calcium flux in sperm 

 

Calcium homeostasis and flux in sperm is a dynamic, complex, and highly regulated 

messaging system that is poorly understood. In the flagellum, increased calcium is 

important to sperm motility, specifically evident in homozygous null mouse models 

lacking the calcium channel CatSper or calcium transporter PMCA4, which display 

aberrant motility (Carlson et al., 2003; Quill et al., 2003; Schuh et al., 2004). 

Downstream, calcium/Calmodulin (CaM) specifically stimulates hyperactivation 

through CaMKII (Ignotz & Suarez, 2005; see Suarez & Ho, 2003, for review). In the 

sperm head, calcium influx leading to AE in response to solubilized ZP glycoproteins 

or progesterone is likely more complex (Abou-haila & Tulsiani, 2009; H. M. Florman, 

Lemos, Arnoult, Kazam, & O'Toole, 1998; O'Toole, Arnoult, Darszon, Steinhardt, & 

Florman, 2000).  The increase in intracellular calcium in the sperm head occurs in 

discrete steps, including an elevation in resting calcium levels during capacitation 
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(Florman, 1994) that is dependent upon the pH-dependent CatSper channel (Olson, 

Suarez, & Fauci, 2010; Xia & Ren, 2009), and a second, unidentified but likely 

voltage-operated calcium channel allowing transient calcium elevation upon ZP3 

binding that coincides with activation of PLCδ4 and production of IP3 for the third and 

store-operated Ca2+ entry (Arnoult, Zeng, & Florman, 1996).  

 

The transient rise in calcium that initiates AE has been hypothesized to be facilitated 

by a voltage dependent calcium channel or voltage operated calcium channel (VOCC) 

that is activated by membrane depolarization and appears to be regulated by 

phosphorylation with PKC (Breitbart et al., 1997; Spungin & Breitbart, 1996). Low 

levels of progesterone can transiently depolarize the sperm plasma membrane, but this 

is followed quickly by an additional hyperpolarization (Patrat et al., 2002). 

Mechanisms for this non-genomic progesterone effect are unknown.  Mice lacking the 

Slo3 potassium channel are infertile due to their inability to undergo membrane 

hyperpolarization during capacitation (Santi et al., 2010).  This hyperpolarization 

appears necessary to transition voltage-operated calcium channels from an inactive 

state to a closed but voltage-operated state (Rossato, Di Virgilio, Rizzuto, Galeazzi, & 

Foresta, 2001).  Inhibition of the sperm sodium-potassium ATPase using 

pharmacological inhibitors can invoke membrane depolarization, but a physiological 

mechanism for its inhibition leading to acrosomal exocytosis is not known 

(Thundathil, Anzar, & Buhr, 2006).  

 

Several candidates for the ZP-induced membrane depolarization exist.  Efflux of Cl- 

stimulated by GABAA receptors or Glycine receptors could be responsible for the ZP 

induced membrane depolarization (Garcia & Meizel, 1999; Melendrez & Meizel, 

1995).  Alternatively, G-protein dependent muscarinic receptors have been 
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hypothesized to be essential for sperm penetration of the zona (Florman & Storey, 

1981) as well as zona-induced acrosomal exocytosis (Brandelli, Miranda, & Tezon, 

1996; Bray, Son, Kumar, Harris, & Meizel, 2002; Ward, Storey, & Kopf, 1994) 

because inhibitors of muscarinic receptors can inhibit zona penetration and acrosomal 

exocytosis.  It has been hypothesized that Gi-proteins must be released from 

muscarinic receptors, allowing their activation and a spike in intracellular calcium 

(Bray et al., 2002). The spike in calcium produced by muscarinic receptor activity 

could contribute to the membrane depolarization required for VOCC activation.   

 

The need for G-protein activity in acrosomal exocytosis can be overcome by 

artificially raising the intracellular pH of sperm (Florman, Tombes, First, & Babcock, 

1989; Florman, Corron, Kim, & Babcock, 1992).  Physiologically, the increase in 

intracellular pH appears dependent upon the activity of the proton pump Hv1, which is 

activated by membrane depolarization likely induced by Slo3 activity (Lishko et al., 

2010).  Although G-protein interactions with Hv1 have not been described, G-protein-

Hv1 interaction would provide an attractive mechanism and straightforward 

explanation for G-protein dependence of alkalinization and capacitation regulation. 

The increase in sperm pH is thought to be necessary for the membrane depolarization 

and activation of VOCC (Fraire-Zamora & Gonzalez-Martinez, 2004).  In agreement 

with this hypothesis, the pH sensitive and ZP-responsive CatSper channel could allow 

propagation of calcium influx into the head from its activity in the flagellum, allowing 

the depolarization required for VOCC activation (Olson, Suarez, & Fauci, 2010).  This 

VOCC activity results in a transient influx of calcium that ceases within 50 

milliseconds of opening (Jungnickel et al., 2001).  In summary, this model links initial 

sterol-efflux activation of Slo3 to activation of Hv1, which allows CatSper activity 

and responsiveness for the VOCC calcium entry and AE. 
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As mentioned above, the transient, VOCC-mediated rise in calcium during initial 

contact with the zona pellucida is followed closely by a final sustained elevation in 

intracellular calcium (Arnoult et al., 1999).  This sustained influx has been 

characterized and includes 1) activation of the acrosomal IP3R by phospholipase C δ4 

(PLCδ4) generated IP3, which depletes the acrosomal calcium store and 2) a plasma 

membrane store operated TRPC channel, definitively TRPC2 in the mouse, that 

interacts with a CaM-binding protein to open in response to acrosomal calcium 

depletion ((Jungnickel et al., 2001; Rice et al., 2000; see Darszon et al., 2005, for 

review).  These changes in intracellular calcium then allow SNARE-mediated fusion 

of the plasma membrane with the acrosomal membrane in a Rab3A dependent manner 

(Michaut, Tomes, De Blas, Yunes, & Mayorga, 2000; Michaut et al., 2001; Yunes et 

al., 2002).  

 

Despite recognition of the chronology and pattern of calcium influx in the sperm head, 

the nature and regulation of the channels involved in AE remain unclear, specifically 

the channel responsible for the initial rise in calcium during acrosomal exocytosis.  

This is due to many factors, such as the high redundancy of pathways in sperm, which 

converge downstream to elicit similar functions.   Pharmacologic inhibitors of calcium 

channel targets are notoriously non-specific and vary in their effectiveness from one 

cell-type to the next (Ertel, 2004).  Additionally, ablation of certain calcium channel 

genes can alter expression of other calcium-associated genes in a compensatory 

manner  (Carlson et al., 2005).   Further confounding analysis, many types of channels 

with unknown function have been identified in sperm (see Darszon et al., 2005, for 

review).   
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Although several subtypes of voltage-operated calcium channels have been described 

in sperm, their in vivo activity is unknown. Initial studies on AE suggested the 

involvement of an L-type channel based on sensitivity to dihydropyridines (DHP) 

(Florman, 1994), but the concentration and interaction of DHP was later found to 

affect other channels.  Patch-clamp recordings from developing male germ cells 

detected low voltage activated (LVA), T-type currents, which was in agreement with 

pharmacological characterization (Arnoult, Villaz, & Florman, 1998). However, mice 

lacking key T-type calcium channels Cav 3.1 and 3.2 are also fertile, and the current 

remaining in these sperm differs from somatic cell T-type currents (Stamboulian, De 

Waard, Villaz, & Arnoult, 2002). Pharmacological studies of T-type channels in 

mature sperm often require non-specific concentrations to elicit effects, affecting 

sodium and non-target calcium channels and leading some to the conclusion that T-

type channels are not involved in acrosomal exocytosis (Bonaccorsi, Forti, & Baldi, 

2001).  Additionally, work characterizing depolarization-induced calcium influx to 

simulate ZP-induced calcium rise in mature mouse sperm proved to be insensitive to 

blockers of L-, P/Q-, and T-type channels (Wennemuth, Westenbroek, Xu, Hille, & 

Babcock, 2000).  One common thread throughout reported studies on mature sperm is 

the inhibition of AE by nickel and cadmium ions and the intermediate membrane 

potentials at which voltage operation occurs, which together support the involvement 

of a high voltage activated (HVA), R-type current (Westenbroek & Babcock, 1999).   

 

The voltage-operated CaV2.3 channel 

The CaV2.3 alpha subunit of voltage gated calcium channels is thought to be 

responsible for the residual, or R-type current, so named for its resistance to traditional 

inhibitors of L-, N- and P/Q-type calcium channel inhibitors (Fang et al., 2007).  This 

subunit is expressed in neurons, heart tissue, testis and pituitary, with physiologic 
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roles elucidated in neurotransmitter exocytosis and repetitive firing.  Mice lacking the 

CaV2.3 gene retain a portion of the R-type current, suggesting that the R-type current 

actually reflects a heterogenous mixture of channel subunits (Wilson et al., 2000).  

These mutant mice survive to adulthood and are fertile; however, they exhibit altered 

pain responses, aberrant eleptogenesis, and sperm abnormaltities including abnormal 

flagellar waveform and decreased responsiveness to mannosylated-BSA, an agent that 

induces calcium influx into sperm of some species (Matsuda, Saegusa, Zong, Noda, & 

Tanabe, 2001; Sakata, Saegusa, Zong, Osanai, Murakoshi, Shimizu, Noda, Aso, & 

Tanabe, 2001; Sakata et al., 2002; Wilson et al., 2000).  

 

The CaV2.3 subunit shares pharmacologic and gating properties with T-type calcium 

channels, making it difficult to differentiate between the two (Bourinet et al., 1996).  

Like T-type channels, the CaV2.3 channel containing the α1E subunit is activated and 

inactivated at negative membrane potentials, sensitive to Ni2+, and permeable to Ba2+ 

and Ca2+ (see (Dolphin, 2006), for review; (Bourinet et al., 1996).  The CaV2.3 channel 

differs from the T-type channels in its higher sensitivity to Cd 2+, larger conductance, 

slower inactivation, and lower sensitivity to amiloride (Ertel, 2004).  Like L-type 

channels, the CaV2.3 channel can be transiently activated at low to moderate voltages, 

but is inactivated faster than L- or N-type channels (Miljanich & Ramachandran, 

1995).   

 

These properties, however, differ significantly between cell type examined, and are 

highly influenced by secondary binding and signaling molecules that vary between 

cell types and among cell-signaling stages.  Activation of current by exogenously 

expressed CaV2.3 subunits has been reported to vary from -30 to -10 mV using rat 

subunits in Xenopus oocytes to 0 to +5 mV using the human α1E subunit expressed in 
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HEK 293 cells (Ertel, 2004).   These differences may be accounted for by the potential 

differences in membrane architecture between cells types, as well as differences in 

protein kinase C (PKC) and G-protein activity (Bannister, Melliti, & Adams, 2004; 

Klockner et al., 2004; Yassin, Zong, & Tanabe, 1996). Heat shock protein 70 (Hsp70) 

interacts with the II-III intracellular loop of the α1E subunit to allow binding of PKC 

and allow subsequent phosphorylation of the channel (Krieger et al., 2006).  

Phosphorylation of the α1E subunit by PKC and PKA changes its gating properties 

and can dramatically increase calcium current through this channel (Hell, Yokoyama, 

Breeze, Chavkin, & Catterall, 1995; Kamatchi et al., 2003).  PKC activity is necessary 

for CaV2.3 currents in brain cells in vitro and in vivo (Tai, Kuzmiski, & MacVicar, 

2006).   G-protein coupled muscarinic receptors such as M1, M3, and M5 have been 

found to interact with the α1E subunit upon activation and stimulate open-gating 

properties of the channel (Bannister et al., 2004). α1E binding partners have not been 

studied in sperm. 

 

The α1E (CaV2.3) subunit is especially interesting for sperm cell biology.  Its limited 

tissue distribution (restricted to brain, heart, and testis), combined with the relative 

abundance of α1E message in testis, makes the CaV2.3 an intriguing candidate for 

depolarization-induced calcium entry  (Westenbroek & Babcock, 1999).  The mRNA 

for the α1E subunit is the most abundant of all calcium channel subunit mRNA in 

developing spermatocytes, suggesting a potential role for this protein in mature sperm.  

Additionally, two common signaling pathways are necessary for both zona pellucida-

induced voltage-dependant channel activation leading to exocytosis, as well as 

voltage-operation of CaV2.3 channels.  Gi-protein activity is necessary for open-gating 

of the α1E subunit (Toro-Castillo, Thapliyal, Gonzalez-Ochoa, Adams, & Meza, 

2007) and zona-induced calcium entry (Ward, Storey, & Kopf, 1992).  Furthermore, 
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protein-kinase A and C activities are absolute requirements for capacitation and later 

progesterone and zona-induced acrosomal exocytosis (Brener et al., 2003; Endo et al., 

1989; O'Toole, Roldan, & Fraser, 1996a; Tomes, Roggero, De Blas, Saling, & 

Mayorga, 2004).  The requirement of PKC activity in AE has been attributed in part to 

the PKC phosphorylation-dependence of a membrane voltage-operated calcium 

channel for calcium influx at the initiation of exocytosis (Breitbart et al., 1997).  The 

CaV2.3 channel is phosphorylated by PKC, which significantly increases current 

through this channel upon voltage operation (Kamatchi et al., 2003; Krieger et al., 

2006), making it a very attractive candidate for the voltage-operated channel in sperm.  

 

Despite the similarities between the CaV2.3 channel and the unidentified VOCC 

required for acrosomal exocytosis in sperm, there has been limited investigation of 

CaV2.3 as a candidate for the sperm VOCC.  Additionally, the few published reports 

on CaV2.3 in sperm are contradictory. No R-type current was detected from 

developing spermatocytes, leading the authors to conclude that this channel is not 

active in sperm cells (Arnoult et al., 1998), and spermatocytes from α1E null mice 

have normal LVA calcium currents (Sakata, Saegusa, Zong, Osanai, Murakoshi, 

Shimizu, Noda, Aso, & Tanabe, 2001).  However, the lack of α1E current in immature 

sperm cells and morphologically abnormal sperm, such as sperm with cytoplasmic 

droplets used for patch clamp techniques, does not rule out the potential for activity of 

this channel at a later stage in morphological or functional  

 

 

 

 

 



 

25 

 

 

 

 

 

 

 

 

 

 

Figure 4. A schematic of the alpha 1 subunit of a voltage-operated calcium channel 

and the potential intracellular regions of modification and interaction domains and 

their respective partners.  Not all modifications depicted have been confirmed to occur 

with the α1E subunit of the CaV2.3 calcium channel, but the intracellular target 

regions are conserved across all alpha 1 subunits.  Reprinted with permission from 

Felix, 2005. 
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development.  Indeed, the dependence of α1E  subunit current on the activation of 

signaling molecules such as chaperone proteins, PKA, PKC, and G-protein coupled 

muscarinic receptors, supports the hypothesis that CaV2.3 currents would not be  

functional in sperm at least until the onset of capacitation and tyrosine 

phosphorylation of the channel allows open gating. In agreement with this 

interpretation, the VOCC in sperm is not functional until the maturational process of 

capacition.  It may then be necessary to evaluate such currents in mature, capacitated 

sperm to definitively address this question.  Patch-clamp techniques are difficult in 

capacitated sperm (Florman, pers. comm.), making another investigative approach 

necessary.   

 

The recent generation of mice lacking the α1E pore-forming subunit of the CaV2.3 

calcium channel provides an excellent way to investigate the CaV2.3 channel in sperm.  

Functional responsiveness of α1E null sperm has not been fully characterized.  

However, sperm from these mice were noted to have a more straight flagellar 

waveform and path velocity in vitro (Sakata et al., 2002).  Additionally, these sperm 

had lower and significantly slower calcium influx in response to mannosylated-BSA, 

despite normal intracellular resting and capacitated calcium levels.  No other agonists 

for acrosomal exocytosis have been characterized, and a description of acrosomal 

exocytosis competence of the CaV2.3 null sperm has not been reported.  This is an 

important next step in addressing the role of the CaV2.3 channel in sperm function, and 

the effects of mannosylated-BSA versus progesterone and zona pellucida proteins 

have not been characterized in murine sperm. 
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Conclusions and Objectives 

 

The following studies address the question of how form translates into function for a 

mammalian sperm.  The ganglioside GM1 has historically been considered a 

membrane-organizing lipid associated with membrane raft formation, but not 

necessarily the signaling molecule that many studies are beginning to suggest.  

Considerable gaps exist in our knowledge of how movements or interactions with GM1 

are translated into the diverse cellular functions and signals ascribed to this molecule.  

The studies presented in this thesis are initially descriptive in nature.  Chapters two 

and three describe the organization of mammalian sperm membrane and build a 

picture of a highly compartmentalized cell with unique membrane organizing 

principles.  It is the peculiar quality, dynamics, and nature of the GM1-enriched 

membrane domain described in chapters two and three that lays the foundation for the 

question,  ‘Why have mammalian sperm evolved such conserved enrichment of 

GM1 in such a highly active and interactive membrane region of the sperm?’  This 

question is addressed in three parts.  In chapter four, I address the issue of membrane 

dynamics and species diversity of GM1 changes as a sperm functionally matures.  In 

conducting these experiments, I discovered the responsiveness of a spermatozoon to 

changes in focal concentrations of membrane GM1.  The work described in chapter five 

tells of the regulation of calcium channel activity through focal enrichment of GM1 in 

the plasma membrane overlying the acrosome, which mimics sperm responses to 

agonists of acrosomal exocytosis.  This work identifies the voltage-operated calcium 

channel responsible for the initial depolarization-evoked rise in intracellular calcium 

caused by zona pellucida as the CaV2.3 channel formed by the α1E subunit.  Chapter 

six presents a mechanism by which GM1 dynamic might regulate signaling processes 

important to CaV2.3 and exocytotic function.  That chapter also gives clinical 
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significance to current methods of cryopreservation that may be limiting sperm 

viability by re-capitulating GM1 clustering that is physiologically relevant to sperm-

oocyte interaction.  The final chapter summarizes the significant findings presented 

here and suggests future directions for the field of sperm biology and ganglioside 

function.  
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CHAPTER 2 

 

THE ORGANIZATION AND STABILITY OF GM1-ENRICHED MEMBRANE 

DOMAINS IN MAMMALIAN SPERM 
1

                                                
1 This work is the author’s contribution to previously published reports “Segregation 
of micron-scale membrane sub-domains in live murine sperm. Selvaraj V, Asano A, 
Buttke DE, McElwee JL, Nelson JL, Wolff CA, Merdiushev T, Fornés MW, Cohen 
AW, Lisanti MP, Rothblat GH, Kopf GS, Travis AJ. (2006) J Cell Physiol 206(3), 
636-46.” and “Mechanisms underlying the micron-scale segregation of sterols and GM1 
in live mammalian sperm. Selvaraj V, Asano A, Buttke DE, Sengupta P, Weiss RS, 
Travis AJ. J Cell Physiol. 2009 Mar;218(3):522-36.” 
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Abstract 

The organization of functional signaling pathways within discrete domains of sperm 

membranes into is an attractive means by which the transcriptionally and 

translationally quiescent sperm could respond to the same extracellular stimuli in 

regionally differing ways.  Several labs have attempted to visualize membrane 

heterogeneities through the localization of GM1 in fixed sperm membranes with widely 

varing results.  I examined the localization of GM1 in live sperm using a fluorophore-

conjugated B subunit of cholera toxin (CTB) and witnessed dramatic changes in 

localization upon the cessation of motility and cell death.  Examination of 

fluorescence intensity suggested that new GM1 binding sites were becoming accessible 

to the extracellular environment upon cell death, and attempts to saturate GM1 binding 

with CTB were only successful when cells were permeabilized, suggesting an 

intracellular pool of GM1 existed.  We identified the acrosome of developing male 

germ cells as being highly enriched in GM1 and accounting for the extra source of 

surface GM1 externalized upon cell death.  Furthermore, we present evidence that 

communication occurs between these two membranes during capacitation, as some 

CTB became internalized and no longer accessible to the extracellular environment 

during incubation with capacitating stimuli.  These findings suggest that dynamic 

changes in membrane GM1 concentrations occur during capacitation and might suggest 

an important role for this biologically active lipid in sperm function.
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Introduction 

 

Mammalian sperm are highly specialized cells, with specific functions and pathways 

compartmentalized to distinct regions of the spermatozoon (see Travis & Kopf, 2002b, 

for review).  This high degree of specialization is thought to be necessary in order to 

minimize the size of the cell and maximize mobility and speed, while still maintaining 

discrete and timely responsiveness to the extracellular environment.  The sperm can be 

divided into two separate macro-regions consisting of the head and flagellum, which 

can itself be divided into the principal piece and end piece.  Aside from the end piece, 

each is associated with specific signaling and metabolic pathways that perform the 

distinct functions of each region.  The flagellum propels the spermatozoon forward 

using energy produced by the mitochondria as well as by glyolytic enzymes thethered 

along the membrane.  The midpiece is a rigid region of the spermatozoon containing 

mitochondria that perform oxidative respiration.  The head of the spermatozoon 

interacts with and penetrates the zona pellucida and then fuses with the oocyte plasma 

membrane.   

 

Each of these segregated functional pathways in sperm must respond to the same 

extracellular stimuli as the sperm transits through the female reproductive tract.  

Penetration of and fusion with the zona pellucida and oocyte is the final step in a 

spermatozoon’s journey.  The sperm has evolved numerous mechanisms to ensure the 

precisely timed success of these events.  The use of membrane rafts to organize and 

scaffold signaling pathways within the membrane is commonly employed in somatic 

cells (see Helms & Zurzolo, 2004; Rajendran & Simons, 2005; Salaun, James, & 

Chamberlain, 2004, for review).  Evidence of similar membrane organization exists in 

the sperm (Asano et al., 2009; Travis et al., 2001a; van Gestel et al., 2005).  Within the 
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head, distinct subdomains exist based on differences in lipid/protein composition 

caused or maintained by diffusion barriers (Asano et al., 2009; Selvaraj et al., 2006; 

Selvaraj et al., 2009).    The post-acrosomal plasma membrane is extremely rigid and 

sterol-poor (James, Hennessy, Berge, & Jones, 2004).  The plasma membrane 

overlying the acrosome is highly enriched in sterols and sphingolipids, with the 

subacrosomal ring possessing a high degree of rigidity relative to the apical acrosomal 

membrane (Friend, 1982; Friend, 1989; Selvaraj et al., 2009).  The lipid composition 

of the plasma membrane overlying the acrosome is further modified by the adsorption 

of lipids and proteins from seminal plasma during ejaculation (Florman & First, 1988; 

Metz, Berger, & Clegg, 1990; San Agustin & Lardy, 1990; Tezon, Miller, & Bardin, 

1986).  These factors include many noted to have a de-capacitating effect on the 

sperm, maintaining a state of relative quiescence until these factors and sterols are lost 

or removed from the membranes as the sperm transits the female reproductive tract.  

Despite a number of elegant studies describing the relative changes in sterol content 

during the process of capacitation, the precise regulatory and downstream effects of 

this process remain unknown.   
 

Membrane rafts are small, heterogenous, and highly dynamic regions of the plasma 

membrane that possess a high molar ratio of saturated sphingolipids and sterols 

relative to phospholipids, as well as a cohort of proteins that preferentially segregate to 

these membrane rafts (Pike, 2006).  Because of this, proteins, such as caveolin or GPI-

anchored proteins, and sphingolipids, such as the ganglioside GM1, can be used as 

markers to identify membrane rafts.  Localization of membrane rafts has increased our 

knowledge of their prevalence in polarized cells, where rafts increase the 

responsiveness of the cell for exocytosis, cell migration, differentiation, and 
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endocytosis and membrane fusion (Asano et al., 2009; Bou Khalil et al., 2006; James 

et al., 2004; Jones et al., 2010; Tanphaichitr et al., 2007; van Gestel et al., 2005). 

 

Because of this similar membrane composition and functional relevance of membrane 

rafts to signaling organization, we wanted to investigate whether membrane rafts were 

present in live spermatozoon in order to address their potential roles in sperm function.  

Visualization of membrane rafts is difficult due to the small and variable nature of 

rafts as well as the complications and artifacts that fixatives and aggregating probes 

can induce in cell membranes (Gaus et al., 2003; Heerklotz, Szadkowska, Anderson, 

& Seelig, 2003; Lagerholm, Weinreb, Jacobson, & Thompson, 2005).  In order to 

avert some of these potential complications, we utilized the B subunit of cholera toxin, 

which binds up to five GM1 molecules in the plasma membrane with high affinity and 

specificity. 

 

Materials and Methods 
 

Reagents and animals 

All reagents were purchased from Sigma (St. Louis, MO), unless otherwise noted. 

CTB (Molecular Probes, Eugene, OR) was purchased conjugated with Alexa Fluor 

488 or Alexa Fluor 647 as indicated. Male CD-1 mice were from Charles River 

Laboratories (Kingston, NY). 

 

Preparation of media and incubations of sperm 

A modified Whitten's medium (MW; 22 mM HEPES, 1.2 mM MgCl2, 100 mM NaCl, 

4.7 mM KCl, 1 mM pyruvic acid, 4.8 mM lactic acid hemi-calcium salt, pH 7.35) 

(Travis et al., 2001) containing 5.5 mM glucose was used for all incubations unless 
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otherwise indicated. 2-hydroxypropyl--cyclodextrin (2-OHCD; 3 mM) was 

supplemented as needed. 2-OHCD supports sperm capacitation and in vitro 

fertilization by functioning as a sterol acceptor, and is preferred over the more potent 

methyl--cyclodextrin (Visconti et al., 1999). Mature sperm were collected from the 

cauda epididymides by a swim-out procedure as described previously (Travis et al., 

2001). All steps of washing of sperm and all incubations for experiments were 

performed at 37°C. 

 

Fluorescence localization of lipids 

All incubations during localization experiments were carried out under dim lighting at 

37°C in a humidity chamber. Sperm (2 × 106) were incubated in 300 µl MW. The 

localization of GM1 was visualized with CTB in live sperm or after fixation under 

different conditions. In both cases, cells were viewed with a Nikon Eclipse TE 2000-U 

microscope (Nikon, Melville, NY) equipped with a Photometrics Coolsnap HQ CCD 

camera (Roper Scientific, Ottobrunn, Germany), and Openlab 3.1 (Improvision, 

Lexington, MA) automation and imaging software. Assignments of sperm to GM1 

localization patterns were performed in a blind fashion regarding incubation condition. 

To compare shifts in population tendencies, the numbers were converted to 

percentages prior to statistical evaluation. In all cases, 100 cells were counted for each 

test condition, and every sperm in a given field was counted to avoid potential bias. 

 

For localization in live sperm, a stage-mounted incubation chamber (LiveCell, Neue 

Product Group, Westminister, MD) was used along with an objective heater 

(Bioptechs, Butler, PA). Samples were observed using glass bottom culture dishes 

(MatTek Corporation, Ashland, MA) overlaid with mineral oil, or using small aliquots 

on slides under coverslips. Samples were incubated for 10 min with CTB (10 µg/ml). 
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To avoid any membrane damage, some samples were not washed, but viewed with 

CTB in the final medium as indicated. To study the effect of sterol efflux in live 

sperm, MW medium supplemented with 3 mM 2-OHCD was used and the sperm were 

incubated for 45 min before addition of CTB. Images of motile sperm were captured 

using programmed exposure intervals, and serial images were tethered into QuickTime 

(Apple Computers, Cupertino, CA) movies. 

 

Alternatively, for experiments designed to quantify the relative fluorescence 

intensities over the plasma membrane overlying the acrosome (APM) versus the 

plasma membrane overlying the post-acrosomal area (PAPM), live sperm were 

allowed to attach to coverslips, incubated in CTB (5 µg/ml) for 10 min, and then 

washed five times with MW medium. Images of motile sperm were taken before and 

after changes in pattern of GM1 localization. Using image analysis tools in Openlab 

3.1, minimum, maximum, mean, and mode fluorescence intensity per pixel (arbitrary 

units) were recorded for the whole sperm head and for equal-sized circles drawn 

within the APM and PAPM, before and after change in GM1 localization. Background 

fluorescence intensity was measured in identically-sized circles immediately adjacent 

to the sperm head, and these values were subtracted from each measurement within 

the sperm head to adjust for local differences in background and for any signal 

quenching that might have occurred between images taken of the same cell. Means for 

the signal intensity over the whole sperm head, the APM, and the PAPM were 

compared within sperm cells that exhibited a change in localization pattern, using the 

Wilcoxon-signed rank test for non-parametric data. 
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Localization of GM1 in live cells 

For visualizing GM1, cells were incubated with CTB (AlexaFluor 488; 5 µg/ml) for 10 

min. For experiments assessing acrosomal status, PNA (5 µg/ml) was used after 

incubating with CTB as above. For induction of sterol efflux, sperm were incubated in 

MW medium supplemented with 3 mM 2-hydroxypropyl--cyclodextrin (2-OHCD) for 

30 min. For all the above conditions, samples were not washed, but viewed with the 

respective reagents in the final medium to avoid damage to membranes. 

 

Localization of GM1 and sp56 in developing male germ cells 

For labeling GM1 in developing male germ cells, the cells were spread on coverslips 

and incubated in KRB in a humidity chamber at 37°C for 10 min to allow attachment. 

The cells were then fixed using 4% PF for 10 min, permeabilized using 0.1% Triton 

X-100 for 1 min, washed, and air-dried. They were then rehydrated with PBS and 

incubated with CTB (5 µg/ml) for 10 min, and washed again using PBS. For dual 

labeling experiments, these cells were first blocked for 30 min in PBS with 1% bovine 

serum albumin, and then incubated with anti-sp56 (1:50) for 1 h. The cells were then 

washed using PBS, incubated with the secondary antibody (1:500) for 30 min, and 

washed again. In dual labeling experiments, the cells were incubated with CTB 

(AlexaFluor 488 or 555) as a final step. Coverslips were mounted using a GVA 

mountant (Invitrogen). A control for non-specific binding of the secondary antibody 

was performed. 

 

 

Saturation experiment using labeled CTB 

To test whether there was exposure of additional GM1 during or after redistribution 

from the APM to the PAPM, we performed experiments in which GM1 was saturated 
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in murine sperm before and after weak fixation. As a control to demonstrate our ability 

to saturate all surface-accessible GM1, live sperm were incubated with CTB conjugated 

with FITC (250 µg/ml) for 1 min, while simultaneously allowing attachment to 

coverslips. This was followed by fixation using 0.004% PF and then a final addition of 

AlexaFluor 555-conjugated B subunit of cholera toxin (CTB; 5 µg/ml). If successful, 

saturation with a 50-fold higher concentration of FITC-conjugated CTB should 

prevent AlexaFluor 555-conjugated CTB from binding. To investigate if there was 

exposure of additional GM1 upon redistribution, live sperm were incubated with CTB 

conjugated with FITC (250 µg/ml) for 1 min while simultaneously allowing 

attachment to coverslips, followed by concurrent addition of AlexaFluor 555-

conjugated CTB (5 µg/ml) and 0.004% PF. In this experiment, if new GM1 became 

exposed on the surface, then AlexaFluor 555-conjugated CTB would compete for any 

new binding sites as they appeared during redistribution. The concentration of FITC-

conjugated CTB was selected empirically so that all surface-accessible GM1 was 

saturated in both live and fixed sperm. 

 

Results 
 

Using a fluorescent-probe conjugated B subunit of cholera toxin (CTB), we have 

found the plasma membrane overlying the acrosome of murine sperm to be highly 

enriched with the ganglioside GM1 in live sperm (Fig. 1A).  Importantly, this 

segregation of GM1 to the APM was maintained even after sterol efflux with 2-OHCD 

(3 mM) for 60 min (Fig. 1B, C), a concentration and duration of incubation sufficient  
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Figure 1. Captured images from a single live sperm showing no change in GM1 

segregation or appearance with sterol efflux.  Sperm were incubated with Alexa 488-

CTB and 3 mM 2 OHCD with 10 mM bicarbonate to induce sterol efflux and 

capacitation.  Images were taken at 0 (panel A), 30 (panel B) and 60 (panel C) minutes 

of incubation. 
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to induce the level of sterol efflux necessary for sperm capacitation (Visconti et al., 

1999). 

 

However, within seconds after the cessation of motility, the pattern of CTB 

fluorescence changed dramatically, appearing to lessen over the APM and brightening 

strongly over the PAPM (Fig. 2). First, the signal decreased from within the ES and 

increased at the borders of the APM (the AA, the SAR, and the perforatorium), prior 

to extending into the PAPM. The redistribution occurred within 10-100 sec after the 

cessation of motility. This change was consistent with the pattern seen in dead sperm 

and was not associated with acrosomal exocytosis (data not shown). Similar 

localization of GM1 to the PAPM was also seen in most sperm that were not motile at 

the beginning of these same experiments, suggesting that the loss of segregation 

coincided with the sperm becoming non-viable. 

 

Two possibilities exist for the change in pattern seen upon the cessation of 

motility/death. The first would be a redistribution of GM1 from the APM to the PAPM, 

whereas the second would involve the unmasking or appearance of new GM1 on the 

outer leaflet of the PAPM in conjunction with some degree of redistribution. To 

distinguish between these possibilities, we repeated these experiments with repetitive 

washing out of unbound CTB from the medium. This would minimize free CTB 

available to bind to new molecules of GM1 that might become exposed in the PAPM. 

Quantification of fluorescence intensity in the APM against the PAPM revealed a 

statistically significant decrease in the APM coincident with a significant increase in 

signal in the PAPM (Fig. 2A,B,D). These changes, and the pattern of movement seen 

indicate that redistribution did indeed occur. 
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Figure 2. Fluorescence intensity of CTB in different regions of the sperm head. Images 

were taken of live sperm having an APM pattern of fluorescence and then again at the 

same exposure settings after cessation of motility when they displayed a PAPM 

pattern (n = 9). Mean fluorescence intensities within the APM and PAPM were 

recorded before and after (*) the shift in pattern of localization (Part B), using an 

equal-sized circle within each region (Part A). Fluorescence intensity was also 

recorded for the whole sperm head before (WA) and after (WP) the shift in 

localization pattern (Part C). Results are shown as box-whisker plots in Parts B-D, 

with the boundaries of the boxes representing the 25th and 75th quantiles, the 50th 

quantile displayed as a line within the box, and the mean as a line extending through 

the box. Whiskers extend to the 10th and 90th quantiles, and circles represent outliers. 

Statistically significant differences were found between groups (Part B, P < 0.004), 

and between the whole sperm heads upon shift in pattern (Part C, P < 0.03), using 

Wilcoxon's signed rank test. The percent change in intensity was also determined for 

the APM, PAPM, and whole sperm head (Part D). In this part, a negative value 

denotes a decrease in fluorescence intensity, and a positive value an increase in 

fluorescence intensity. 
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However, the decrease in signal over the APM could not account for the 

disproportionate increase in fluorescence intensity over the PAPM, even taking into 

consideration the fact that the PAPM is approximately one-half the size of the APM 

(Fig. 2B,D). The increase in fluorescence associated with the PAPM also caused an 

increase in whole head intensity after redistribution (Fig. 2C). To determine if 

redistribution induced some change in the fluorescence properties of the fluorophore 

((Maxfield, 1982), we used both a fluorimeter and ELISA plate reader to quantify total 

fluorescence intensity of AlexaFluor 488-conjugated CTB in entire incubation tubes 

before and after the CTB-induced redistribution of GM1 (In separate experiments with 

n  3, these readings were taken both with excess CTB in the medium, and after 

washing out unbound CTB. In addition, in separate experiments, sperm were allowed 

to lose motility on their own, or by the addition of Fixative A.). We did not detect a 

significant change in total fluorescence of the system under any of these conditions 

(data not shown). Interestingly, experiments involving the quenching of fluorophores 

conjugated to CTB have suggested that internalization and reappearance of GM1 in the 

APM is also occurring prior to redistribution, suggesting that a combination of 

mechanisms is responsible for the change in pattern. We are therefore continuing to 

investigate this phenomenon.  

 

Redistribution caused an increase in GM1 on the plasma membrane 

To address the increase in total CTB fluorescence as a result of redistribution upon 

cell death, we investigated whether intra-cellular compartments were contributing to 

an increase in surface GM1. For these experiments, we employed a general strategy of 

saturating all surface-accessible GM1 with FITC-conjugated CTB (250 µg/ml), and 

then probing with AlexaFluor 555-conjugated CTB (5 µg/ml) to look for any newly 

exposed binding sites. First, to verify that saturation could be attained, we incubated 
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live sperm with the FITC-CTB, and then probed with AlexaFluor 555-CTB; no 

binding by the latter conjugate was seen (data not shown). To confirm that saturation 

could be attained after GM1 redistribution to the PAPM, we incubated live sperm with 

the FITC-CTB, and then induced redistribution with 0.004% PF, still in the presence 

of the FITC conjugate. We have shown previously that this concentration of PF does 

not interfere with CTB binding and that it induces redistribution (Selvaraj et al., 2006). 

In this way, all surface-accessible GM1 should be bound by FITC-CTB before, during 

and after redistribution. We then added AlexaFluor 555-conjugated CTB to see if any 

unbound GM1 remained. No new binding was detected, confirming saturation (Fig. 

4A). Next, we repeated the first incubation of live sperm with FITC-CTB. Then we 

added the AlexaFluor 555-conjugated CTB simultaneously with the 0.004% PF. If 

new GM1 were exposed on the surface during redistribution, there should be a 

competition between the FITC-CTB and AlexaFluor 555-CTB for these new sites. 

Assuming they have equal binding efficiencies and based on relative concentrations, 

only approximately 2% of newly exposed GM1 should be bound by the AlexaFluor 

555-CTB. For technical reasons related to risk of membrane damage and sperm death 

during washing, we chose this approach over first washing out the unbound FITC-

CTB. Nonetheless, when we performed this experiment, a percentage of the sperm 

corresponding roughly with the initial percentage of motile sperm showed AlexaFluor 

555-CTB fluorescence, primarily on the borders of the APM and in the PAPM (Fig. 

3B). Another subpopulation of sperm showed only FITC-CTB signal. These sperm 

were probably not viable during the initial incubation and served as an efficient 

internal control, showing that the initial surface saturation with the FITC-conjugate 

was thorough. 
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Figure 3. Plasma membrane GM1 dynamics in sperm. We saturated all surface-

accessible GM1 using 250 µg/ml FITC-conjugated CTB, and then added 5 µg/ml 

AlexaFluor 555-conjugated CTB to see if there was exposure of additional GM1 during 

CTB-induced redistribution to the PAPM. A: Live sperm were incubated with FITC-

CTB, fixed using 0.004% PF to induce redistribution, and then AlexaFluor 555-CTB 

was added. All sperm had an intense FITC-CTB fluorescence and no detectable 

AlexaFluor 555-CTB fluorescence, showing that FITC-CTB completely saturated GM1 

in murine sperm. B: Sperm were incubated with FITC-CTB, then simultaneously 

treated with AlexaFluor 555-CTB and fixed using 0.004% PF to induce redistribution. 

Some sperm had intense FITC-CTB fluorescence and no detectable AlexaFluor 555-

CTB fluorescence [similar to (A); not shown] and others showed AlexaFluor 555-CTB 

labeling over the APM and PAPM (shown). This finding suggested that additional 

molecules of GM1 appeared in the plasma membrane during redistribution to the 

PAPM. The percentages of cells showing the two patterns corresponded with the 

percentage of dead and live cells, respectively. C: Fluorescence intensity measurement 

over the region of the APM with and without saponin permeabilization in fixed cells. 

Box-whisker plots show mean pixel intensities measured in the region of the APM 

(inset: Region of quantification outlined) in saponin permeabilized and control, 

unpermeabilized cells. The lower and upper ends of the box mark the 25th and 75th 

quantiles; the median is represented as a horizontal line within the box, and the mean 

as a horizontal line through the box. Vertical whiskers extend from the ends of the box 

to the 10th and 90th quantiles. A Student's t-test showed significant differences 

between the permeabilized and control cells (P < 0.0001). This finding provides 

evidence for an acrosomal pool of GM1 accessible to CTB after saponin 

permeabilization.
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GM1 enrichment in the acrosomal membrane in spermatids and sperm 

In light of our previous work (Selvaraj et al., 2006) and the above findings that 

suggested that redistribution of CTB also involved an increase in GM1 on the sperm 

surface, we investigated whether an internal membranous compartment might 

represent a source of additional GM1. Because of its location immediately underneath 

the APM, and because it is the only intracellular vesicle in the sperm head, we 

hypothesized that the acrosome was the likely intracellular pool of GM1. We addressed 

this possibility using two different approaches. First, we labeled sperm after strong 

fixation with or without saponin permeabilization and compared mean fluorescence 

intensity in the APM. Our results showed that there was significantly higher mean 

fluorescence intensity over the APM in permeabilized compared to nonpermeabilized 

sperm (Fig. 3C; P < 0.0001). Note also that saponin did not reveal additional 

fluorescence in the PAPM, showing that the additional labeling was not originating 

from some source in that region of the sperm. These data suggested that GM1 was 

present in the acrosomal vesicle underlying the APM. In mature sperm the APM and 

acrosome are in extremely close apposition, and differential localization to one 

membrane or the other cannot be distinguished at the level of light or even 

transmission electron microscopy. Therefore, in the second approach we examined 

round spermatids for the presence of GM1 in the developing acrosome. In these cells 

one can more easily distinguish between the acrosomal and plasma membranes 

because they are separated by cytoplasm. From this experiment, we found that GM1 

was strongly enriched in the developing acrosome in round spermatids. In cap phase 

round spermatids, the GM1 approximately co-localized with the acrosomal matrix 

component sp56 in the developing acrosome (Fig. 4A). Deconvolution and 

reconstruction of serial sections taken at higher magnification revealed that the GM1 

appeared to surround the acrosomal matrix (Fig. 4B). These findings showed that GM1 
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Figure 4. Localization of GM1 and sp56 in murine male germ cells. A: Parts show 

confocal images of CTB (green) and sp56 (red) localization in round spermatids 

connected by intercellular bridges. Merged image (yellow) from the two channels and 

the corresponding Nomarski DIC image are also shown. CTB approximately co-

localized with the acrosomal matrix protein sp56 during development of the acrosome. 

B: 3D-rendered image compilation of GM1 and sp56 localization in a murine round 

spermatid. Serial z stacks were deconvoluted and reconstructed in three dimensions as 

described. Each row represents frames from the supplemental movie file and show 

rotation along the vertical axis. CTB (green) and sp56 (red) are seen localized to 

regions of the developing acrosomal vesicle. The nucleus was stained using Hoechst 

(blue). These frames (and also the Supplemental Material movie) show that GM1 

largely enveloped the sp56 fluorescence of the acrosomal matrix. This suggested that 

GM1 was associated with the acrosomal membranes and was not localized within the 

acrosomal matrix. 



 

73 



 

74 

was enriched in the acrosomal membranes of round spermatids and strongly suggested 

that GM1 could be present in the acrosomal membrane of mature sperm. 

 

Evidence of membrane communication between the APM and OAM 

Recently, evidence has begun to accrue that acrosomal exocytosis is a more gradual 

process than previously thought.  This stepwise membrane fusion is similar to the kiss-

and-run fusion events seen in neurons and could account for the appearance of 

proteins of acrosomal origin on the surface of the sperm prior to acrosomal exocytosis 

(Kim et al 2002), including the apparent increase in GM1 fluorescence noted on the 

apical ridge of capacitated sperm.  This seemed even more plausible given our 

discovery of the acrosomal membrane as a source of GM1.  We addressed this question 

using two approaches.  We reasoned that if proteins and lipids were being transferred 

from the APM to the OAM, the reverse would likely be true.  In order to test this 

hypothesis, we incubated sperm with FITC-CTB for 20 minutes under capacitating 

and non-capacitating conditions.  The extracellular FITC fluorescence was then 

quenched by adding 0.75% trypan blue, which had no effect on sperm viability.  In 

capacitated sperm, a ridge of FITC fluorescence remained over the apical acrosome 

(Fig. 5).  This fluorescence remained after two additional volumes of trypan blue were 

added, but disappeared when sperm were permeabilized with 0.1% triton-X 100, 

suggesting that the remaining FITC fluorescence had been internalized and was not 

longer assessable to the extracellular environment.  Cells treated with .20% tannic acid 

prior to FITC-CTB incubation to immobilize the plasma membrane failed to retain any 

FITC fluorescence after trypan blue addition, supporting the hypothesis that 

membrane communication between the APM and OAM was allowing the intermixing 

of APM and OAM GM1.  Adding tannic acid at the end of the FITC-CTB incubation 

had no effect on the residual CTB fluorescence over the apical acrosome region. 
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Figure 5.  Phase contrast (left) and fluorescence (right) image of a sperm showing 

remaining apical acrosomal fluorescence after extracellular FITC fluorescence was 

quenched with trypan blue.  Sperm were incubated with FITC-CTB for 20 mintues 

followed by the addition of 0.75% trypan blue to quench extracellular fluorescence.  In 

the majority of live sperm, a ridge of fluorescence remained over the apical acrosomal 

ridge (n=8).  This ridge of fluorescence disappeared when cells were permeabilized 

with 0.1% triton-X 100, suggesting the FITC fluorescence had become internalized.  

No FITC fluorescence was seen after trypan blue addition if cells were treated with the 

viable membrane fixative tannic acid prior to FITC-CTB addition (data not shown). 
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Discussion 

 

Several studies describing GM1 localization in sperm exist, with widely varied results.  

Previous studies using fixed cells in the mouse have localized GM1 to the PAPM 

(Trevino, Serrano, Beltran, Felix, & Darszon, 2001).  Other labs have utilized human 

sperm at ambient temperatures and reported a diffuse localization after capacitation 

(Cross, 2004).  It has also been suggested using rat spermatozoa that GM1 is present in 

the PAPM and then moves to the APM after capacitation (Roberts, Wamstad, Ensrud, 

& Hamilton, 2003).  Coalescence of membrane rafts at temperatures below 16 degrees 

Celsius is well documented and can influence the localization of rafts in fixed cells as 

well.  Our lab has also reported the influence of the choice and relative concentrations 

of fixatives on changes in fixed sperm membranes relative to live cell localization 

(Selvaraj et al., 2006).  The studies reported here, together with other reports from our 

lab (Buttke, Nelson, Schlegel, Hunnicutt, & Travis, 2006; Selvaraj et al., 2006), help 

resolve differences reported in the literature as differences induced by fixative choice 

and the use of epididymal versus ejaculated sperm (see chapter 3).   

 

The organization of membrane microdomains in mammalian sperm is similar to 

membrane raft organization in somatic cells in many ways, but striking differences are 

noted here.  The size and stability of the sperm membrane subdomain enriched in GM1 

is unprecedented in live cells.  The diffusion barrier present between the APM and 

PAPM appears exceptionally stable in live cells.  The relative size of the GM1 enriched 

membrane far exceeds the typical nanometer-scale rafts described in somatic cells, and 

may represent numerous smaller rafts within this subdomain.  The same subdomain is 

responsible for initial interaction with the cumulus complex and zona pellucida of the 
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oocyte, and may exhibit such extreme size and stability to increase the surface area of 

the sperm capable of responding to the cumulus-oocyte complex. 

 

Membrane communication between the APM and OAM has been hypothesized to 

occur due to the appearance of acrosomal contents on the APM during the process of 

capacitation and prior to acrosomal exocytosis.  A putative receptor for the zona 

pellucida, Sp56, is located within the acrosomal matrix and membrane of non-

capacitated cells but gradually moves to the APM as capacitation ensues.  The relative 

increase in CTB fluorescence in sperm both upon cell death as well as prior to 

acrosomal exocytosis and upon capacitation (Buttke et al., 2006; Jones et al., 2010), 

suggests that an internal store of GM1 existed.  The discovery that the acrosomal 

membrane is highly enriched in GM1 suggested a plausible internal source of the extra 

GM1 seen with capacitation in some species and cell death in murine sperm.  The 

inability to quench all FITC-CTB fluorescence suggests that the remaining 

fluorescence is no longer accessible to the extracellular environment and has been 

internalized through membrane intermixing between the APM and OAM.  This 

hypothesis is supported by the observation that permeabilization of the sperm with low 

concentrations of detergent either before or after the addition of the quenching agent 

resulted in a loss of all fluorescence.  Additionally, low concentrations of tannic acid, 

which fixes the surface of the membrane of cells without affecting the cells’ viability 

and is used in studies of endocytosis and pinocytosis, also prevented any fluorescence 

from remaining in the apical acrosome when added prior to the FITC-CTB.   

 

Intermixing of the APM and OAM membrane components provides an attractive 

means by which a sperm could regulate and time the appearance of signaling and 

receptor molecules on the sperm surface.  This may help prevent premature acrosomal 
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exocytosis, as well as provide a mechanism by which a sperm could regulate 

membrane composition and raft formation.  Delivery of lipids to the plasma membrane 

of somatic cells occurs during periods of cellular activity through vesicle fusion with 

the plasma membrane, and can influence the raft composition of the plasma 

membrane, specifically at times of growth or differentiation, such as neurite outgrowth 

and synapse formation in neurons (Guirland, Suzuki, Kojima, Lu, & Zheng, 2004; 

Helms & Zurzolo, 2004; Salaun et al., 2004).  A similar mechanism might be utilized 

by the sperm in punctate fusion events with the OAM, allowing transfer of lipids and 

proteins from the OAM to the PAPM.  Whether or not this process occurs along a 

concentration gradient or is energy dependent is not yet known.  Further study 

characterizing the amount and dynamics of potential membrane transfer could 

elucidate how a sperm prevents and then later facilitates full exocytosis of the single 

sperm vesicle of the acrosome. 
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CHAPTER 3 

 

VISUALIZATION OF GM1 WITH CHOLERA TOXIN B IN LIVE EPIDIDYMAL 

VERSUS EJACULATED BULL, MOUSE, AND HUMAN SPERMATOZOA 
 
+

                                                
Buttke DE, Nelson JL, Schlegel PN, Hunnicutt GR, Travis AJ. 
As published in (2006) Biol Reprod 74(5), 889-95. Nelson contributed technical 
support, PN Schlegel and GR Hunnicut provided human sperm and experiments. AJ 
Travis was primary supervisor. 
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Abstract 
 

The organization of membrane sub-domains in mammalian sperm has recently 

generated controversy, with several reports describing widely differing localization 

patterns for the ganglioside, GM1.  Using the pentameric B subunit of cholera toxin 

(CTB), we found GM1 to be restricted to the plasma membrane overlying the acrosome 

in the heads of live murine sperm.  Interestingly, CTB had minimal binding to live 

bovine and human sperm. To investigate whether this difference in GM1 localization 

was due to species differences or differences between collection from the epididymis 

(mouse) or an ejaculate (bull, human), we examined epididymal bovine and human 

sperm.  We found that GM1 localized to the plasma membrane overlying the acrosome 

in sperm from these species.  To determine whether some component of seminal 

plasma was interfering with the ability of CTB to access GM1, we incubated 

epididymal mouse sperm with fluid from murine seminal vesicles and epididymal bull 

sperm with bovine seminal plasma.  This treatment largely abolished the ability of the 

CTB to bind to GM1, producing a fluorescence pattern similar to that reported for the 

ejaculated human sperm.  The most abundant seminal plasma protein, PDC-109, was 

not responsible for this loss. As demonstration that the seminal plasma was not 

removing GM1, sperm exposed to seminal plasma were fixed prior to CTB addition, 

and again displayed fluorescence over the acrosome.  These observations reconcile 

inconsistencies reported for the localization of GM1 in sperm of different species, and 

provide evidence for the segregation of GM1 to a stable sub-domain in the plasma 

membrane overlying the acrosome. 
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Introduction 

 

 

The organization of co-localized receptor and effector complexes is an effective way 

to transduce signaling events into functional changes within a specific area of a cell 

(Golub et al. 2004).  Membrane sub-domains enriched in sterols and sphingolipids 

such as gangliosides have been postulated to play an important role in a wide variety 

of cellular functions, by acting as scaffolds or foci for the compartmentalization of 

signaling molecules to specific regions of membrane (see Simons & Toomre 2000, for 

review).  Such “lipid raft” sub-domains have been found to anchor signaling 

molecules in somatic cells until stimulation allows for the release and activation of the 

molecule (Okamoto et al. 1998).  Dynamic changes in raft components and 

localization can also allow for the interaction of previously segregated signaling and 

effector molecules, as seen in the transduction of downstream events in B and T 

lymphocytes (Sedwick & Altman 2002; Naal et al. 2003; Harder 2004).   

 

The presence of lipid raft sub-domains in mammalian spermatozoa is of special 

interest due to the importance of plasma membrane alterations in sperm function.  For 

example, the removal of sterols from the plasma membrane is a required stimulus for 

the process of capacitation, in which sperm acquire the ability to undergo acrosomal 

exocytosis (Florman & First 1988) and a hyperactivated pattern of motility (Katz & 

Yanagimachi 1980).  These changes render the sperm fertilization competent.  

Because of their ability to transduce sterol efflux into functional changes, lipid rafts 

have been suggested to be involved in a number of processes of capacitation, 

including sterol efflux and acrosomal exocytosis (Flesch et al. 2001; Travis et al. 

2001; Cross 2004; Shadan et al. 2004). Evidence of the presence of membrane sub-
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domains in fixed/dried sperm has been provided by several methods, including direct 

labeling with membrane antibodies (Koehler 1975), fluorescence imaging of lipid-

binding probes (Bearer & Friend 1980) and exogenous lipid probes (Wolfe et al. 1998; 

James et al. 2004), freeze fracture, surface replica, and freeze-etch electron 

microscopy (Friend & Fawcett 1974; Elias et al. 1978; Bradley et al. 1980; Friend 

1982; Suzuki 1988), and atomic force microscopy (Ellis, Shadan et al. 2002). For 

example, the polyene antibiotic, filipin, has been used to show that the distribution of 

sterols within the plasma membrane of fixed sperm is heterogeneous.  Visualized by 

freeze fracture electron microscopy or autofluorescence, filipin-sterol complexes 

delineate an area of extreme sterol enrichment in the plasma membrane overlying the 

acrosome, with a much lower sterol content found in the post-acrosomal region 

(Friend 1982; Pelletier & Friend 1983; Lin & Kan 1996; Visconti et al. 1999).  

Caveolin-1, a sterol-binding protein associated with rafts (Smart et al. 1999), has since 

been shown to co-localize with the sterol-rich sub-domain overlying the acrosome 

(Travis et al. 2001).  Caveolin-1 has been reported to scaffold signaling complexes and 

to participate in the movement of sterols across membranes (see Schlegel et al. 1998, 

for review). 

 

Despite the rapidly-growing literature regarding lipid raft membrane sub-domains in 

both sperm and other cell types, legitimate controversy has arisen regarding whether 

lipid rafts are found in nature, or instead represent artifacts induced by the methods 

used to isolate them.  For example, the use of fixatives/cross-linking reagents when 

trying to visualize lipid rafts can cause “patching artifacts” as different membrane 

components are brought into proximity.  In addition, there is also controversy 

regarding the use of detergents during biochemical isolation, as they can cause 

artifactual coalescence of membrane components that might not interact under 
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physiological conditions (Edidin et al. 1991; Heerklotz 2002; Rouvinski et al. 2003). 

We have demonstrated that the same region of the plasma membrane that is enriched 

in sterols and caveolin-1 in fixed cells is enriched in the ganglioside, GM1, in living, 

motile sperm (Selvaraj et al. 2005). This demonstrates that the membrane sub-domain 

overlying the acrosome is not an artifact of fixation.  In addition, we have been able to 

use a protocol without detergents to partition sperm membrane sub-domains by means 

of their relative buoyancy alone (Travis et al. 2001).  Together, these data demonstrate 

the existence of membrane sub-domains in sperm. 

 

Much attention has been focused on GM1 because of its suggested association with 

lipid raft sub-domains and the ease and specificity of its localization by means of 

fluorescence conjugates of the pentameric subunit B of cholera toxin (CTB).  Previous 

work has also suggested that sperm-egg interactions in several non-mammalian 

species might be mediated in part by one or more ganglioside(s) (Sato et al. 2002; Yu 

et al. 2002; Maehashi et al. 2003). 

 

However, our experiments using murine sperm (Selvaraj et al. 2005) have yielded 

results that contrast with other published results for the mouse (Trevino et al. 2001) 

and rat (Roberts et al. 2003), which themselves contrast with studies localizing GM1 in 

human (Cross 2004) and boar sperm (Shadan et al. 2004).  For example, we 

demonstrated localization to the plasma membrane overlying the acrosome in 

epididymal murine sperm, a region consistent in terms of size and stability (Selvaraj et 

al. 2005), while other rodent studies localized GM1 to the post-acrosomal plasma 

membrane (Trevino et al. 2001; Roberts et al. 2003). Conversely, GM1 localization in 

non-capacitated human and boar sperm was reported as nonexistent or patchy and 

inconsistent throughout the entirety of the sperm cell (Cross 2004; Shadan et al. 2004).  
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One likely difference between the studies in rodents was the use of fixation conditions.  

We demonstrated that upon cessation of motility/cell death in unfixed or lightly fixed 

cells, GM1 moved rapidly from its position overlying the acrosome to the post-

acrosomal plasma membrane (Selvaraj et al. 2005).  This finding underscores some of 

the difficulty inherent in visualizing lipid sub-domains.  One clear difference between 

the studies in rodents and those in other species was that the murine sperm were 

collected from the epididymis, whereas the human and boar sperm were collected 

from ejaculates.  This raised the possibility of sperm source as an alternative to true 

species differences regarding the localization of GM1.  In an attempt to resolve these 

dissimilar findings and improve understanding of the dynamics of membrane sub-

domains in mammalian sperm, we have compared the localization of GM1 in 

epididymal and ejaculated sperm of bull, mouse, and human. 

 

Materials and Methods 

 

Reagents and Sources of Samples 

All reagents were purchased from Sigma (St. Louis, MO), unless otherwise noted.  

CTB conjugated with Alexa-Fluor 488 and anti-rabbit IgG conjugated with Alexa-

Fluor 647 were purchased from Molecular Probes (Eugene, OR). Purified PDC-109 

(SPF1_BOVIN; UniProt/Swiss-Prot Accession number P02784; also known as BSP 

A1/A2) was a gift from the labs of Puttaswamy Manjunath and Susan Suarez.  Rabbit 

polyclonal antiserum against PDC-109 was a gift from the lab of Susan Suarez.  GVA 

mount was from Zymed (San Francisco, CA).  Semen was collected from proven high 

fertility bulls at Genex/CRI (Ithaca, NY). Bull epididymides were collected from 

Cudlin’s Meat Market (Newfield, NY) and Wyalusing Livestock Market (Wyalusing, 



 

90 

PA). Male CD-1 mice were obtained from Charles River Laboratories (Kingston, NY).  

All animal work was conducted under the approval of Cornell University’s 

Institutional Animal Care and Use Committee, in accordance with the Guide for Care 

and Use of Laboratory Animals.  Human epididymal sperm was collected from the 

Center for Male Reproductive Medicine and Microsurgery at Cornell University’s 

Weill Medical College from men with obstructive disorders undergoing epididymal 

aspiration for use in assisted reproduction. All procedures were performed as part of 

treatment of these patients and with institutional review board oversight at Weill 

Cornell Medical Center.  

 

Collection and Handling of Sperm 

Bull:  Ejaculated bull semen was immediately diluted at a 1:4 ratio in sperm Hepes-

buffered Tyrode-albumin lactate pyruvate (TALP H: 100 mM NaCl, 3.1 mM KCl, 0.3 

mM NaH2PO4, 21.6 mM sodium lactate, 0.4 mM MgCl2, 40 mM HEPES, 0.4 mM 

EDTA, 10 mM NaHCO3, 2 mM CaCl2, 1 mM pyruvic acid, 50 µg/ml Gentamycin, 1 

mg/ml PVA) (Parrish et al. 1988) and transported to the laboratory at 39˚C.  Sperm 

were washed at 39˚C in TALP H. One ml of diluted semen was brought to 7 ml with 

TALP H and spun at 170 g’s for 8 minutes.  The sperm were transferred to a round-

bottomed tube to repeat the spin twice more, resulting in a loose pellet of sperm, 

which was resuspended in a final volume of 5 ml.   

 

For experiments involving additional washes of ejaculated bull sperm, the sperm were 

washed under four separate media conditions: 1) TALP with 250 mM NaCl, 2) TALP 

with 500 mM NaCl, 3) TALP pH 9, and 4) TALP pH 11. Motility was assessed and 

sperm counted.  No experiment was performed if motility was <50% immediately 

prior to fluorescent microscopy or fixation.  Sperm (2x106) were then resuspended in 
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300µl TALP (TALP: 100 mM NaCl, 3.1 mM KCl, 0.3 mM NaH2PO4, 21.6 mM 

sodium lactate, 0.4 mM MgCl2, 10 mM HEPES, 0.4 mM EDTA, 25 mM NaHCO3, 2 

mM CaCl2, 1 mM pyruvic acid, 50 µg/ml Gentamycin, 1 mg/ml PVA) (Parrish et al. 

1988).   

 

Cauda epididymides of bulls were transported on ice from the abattoir and then 

warmed to room temperature for the dissection of the epididymides from the testis and 

connective tissue.  Epididymides were washed three times in PBS before being minced 

in TALP H. Sperm were allowed to swim out for 15 minutes before being washed in 

TALP H, resuspended in TALP and incubated at 39°C and 5% CO2.  

 

Mouse:  A modified Whitten’s medium (MW; 22 mM HEPES, 1.2 mM MgCl2, 100 

mM NaCl, 4.7 mM KCl, 1 mM pyruvic acid, 4.8 mM lactic acid hemi-calcium salt, 

pH 7.35) (Travis et al. 2001) containing 5.5mM glucose was used for all mouse sperm 

incubations. Mature sperm were collected from the cauda epididymides by a swim-out 

procedure as described previously (Travis et al. 2001) and washed at 37˚C.  All 

incubations of mouse sperm were conducted at 37˚C in MW. 

 

Human:  Ejaculated human sperm were collected from healthy male donors, allowed 

to liquefy for 30 minutes at 37°C, and then diluted 1:4 in MW.  The sperm were 

washed by centrifugation (200 g) for 10 min at 37˚C into MW.  All incubations of 

human sperm were carried out at 37°C. 

 

Microsurgical epididymal sperm aspiration was carried out as previously described 

(Schlegel, Berkeley et al. 1994). Briefly, the epididymides of two patients with 

documented normal spermatogenesis and obstruction were explored, and the 
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epididymal segment with optimal sperm motility was identified and aspirated using a 

micropuncture technique to avoid contamination with red blood cells. The presence of 

sperm and their motility were confirmed by evaluation during the operative procedure.  

 

Fluorescence Localization of GM1 in Live Sperm 

All steps of localization experiments were carried out under dim lighting in a light-

protected humidity chamber. Sperm (2x106) were incubated in 300µl MW (mouse, 

human) or 300µl TALP (bull) containing 10 µg/ml CTB for 10 minutes.  For some 

experiments, different concentrations of epididymal bull sperm were pre-incubated 

with purified PDC-109 (0.4mg/ml) for 30 minutes prior to CTB addition.  For the 

mouse and bull, a 10 µl aliquot was transferred to a pre-warmed slide and a coverslip 

was placed over the slide and viewed under a Nikon Eclipse TE 2000-U microscope 

(Nikon, Melville, NY) equipped with a Photometrics Coolsnap HQ CCD camera 

(Roper Scientific, Ottobrunn, Germany), and Openlab 3.1 (Improvision, Lexington, 

MA) automation and imaging software.  Human sperm were visualized with an 

Olympus BX60 epifluorescent microscope equipped with a 37˚C stage warmer and a 

Peltier-cooled, CCD digital camera controlled by QCapture 2.68.6 software 

(Quantitative Image Corporation, Burnaby, BC, Canada).  

 

Fluorescence Localization of GM1 in Fixed Cells 

Bull sperm motility was assessed at the start and completion of washing, and after 1.5 

and 3 hours incubation.  Mouse and bull samples were removed from the incubation 

tubes described above and settled on coverslips and the human sperm were placed 

onto Cel-Line HTC SuperCured 10-spot slides (Cel-Line Association Inc., Newfield, 

NJ) for 15 minutes to allow the sperm to attach before the supernatant was aspirated.  

Mouse and human sperm were fixed with 4% paraformaldehyde (PF), 0.1% 
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glutaraldehyde, and 5 mM CaCl2 in PBS, whereas bull sperm were fixed with 1% PF 

and 12.5 mM CaCl2 in PBS. The sperm were then washed three times with PBS and 

incubated for 10 minutes in CTB (10 µg/ml) for GM1 localization.  

 

Mouse Seminal Vesicle Fluid Collection and Incubation 

The seminal vesicles (SV) were isolated from surrounding blood vessels and the 

coagulating glands by sharp dissection.  Care was taken to avoid contamination with 

either blood or coagulating gland secretions, as these rapidly catalyze the precipitation 

of proteins within the SV fluid (Schon et al. 1982). The glands were removed 

individually and the fluid contents were allowed to drip out and/or were manually 

expressed into microcentrifuge tubes.  Using a large orifice pipette tip, 10 µl of SV 

fluid was aspirated and the tip and contents were placed in a humidity chamber at 

37°C to await sperm addition.  Sperm (4x106) were added to the SV fluid in the pipette 

tip, the tip was immersed in a 600 µl drop of PBS, and sperm were allowed to swim 

through the SV fluid, out of the tip into the PBS for 15 minutes.  The tip and 

associated SV fluid were then carefully removed and CTB (10 µg/ml final 

concentration) was added to the coverslip and allowed to incubate for 10 minutes.  The 

supernatant was aspirated before the coverslip was placed on a pre-warmed slide and 

viewed for GM1 localization.  

 

Protein assays were conducted on seminal vesicle fluid, and the concentrations 

(ranging from 167 to 350 mg/ml) were in accord with published levels, which range 

from 250 to 350 mg/ml (Mann & Lutwak-Mann 1981).  As a control for exposure to 

an equivalent amount of protein as that found in the SV fluid, sperm (4x106) were 

incubated in 600 µl of PBS with casein that was varied to match the total amount of 
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protein contained in the SV fluid (ranging from 1.67 to 3.5 mg) for 15 minutes, prior 

to incubation with CTB. 

 

Bull Seminal Plasma Isolation and Incubation 

Ejaculated bull sperm was diluted 1:3 in TALP H and transported to the laboratory at 

39°C.  This volume was then spun at 800 g’s for 10 minutes to pellet the sperm 

fraction.  The supernatant was carefully aspirated without disturbing the sperm pellet 

and snap frozen for later use. 

 

Aliquots of frozen, dilute seminal plasma were thawed at 39°C and examined with 

light microscopy to verify the absence of sperm before incubation.  Epididymal bull 

sperm (4 x 106 ) were incubated in 600 µl dilute seminal plasma) for 10 minutes before 

fluorescence localization as described for live epididymal bovine sperm. 

 

Immunofluorescence 

Epididymal bull sperm incubated with and without purified PDC-109 were processed 

as previously described (Desnoyers & Manjunath 1992) with minor modifications.  

Briefly, aliquots of the sperm suspensions were added to slides on a 37°C warming 

stage and allowed to air dry.  Slides were blocked in 0.1% BSA overnight before an 

additional overnight incubation with anti-PDC-109 (1:500) followed by three washes 

with PBS and incubation with secondary antibody.  Slides were washed three times in 

PBS before being mounted with GVA and visualized by epifluorescence. 
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Results 

 

Ejaculates from some bulls displayed a low percentage of sperm with faint CTB 

binding over the acrosome, but the vast majority of motile ejaculated bull spermatozoa 

failed to bind CTB.  However, immotile bull sperm uniformly displayed a post-

acrosomal pattern of fluorescence (Fig. 1A-B).  These findings were remarkable in 

comparison with motile epididymal murine sperm, which show an acrosomal pattern 

of CTB in all motile cells (Fig. 1C-D).  We have shown previously that upon cessation 

of motility, epididymal murine sperm switch from having a pattern of CTB 

localization overlying the acrosome to a post-acrosomal pattern ((Selvaraj et al. 2005); 

shown here in Fig. 1E-F). 

 

During the process of ejaculation, sperm are exposed to several accessory sex gland 

secretions that interact with a sperm’s plasma membrane (Desnoyers & Manjunath 

1992; Manjunath et al. 1994) and which could potentially interfere with the ability of 

exogenous reagents to bind to sites on this membrane.  The differences in reported 

results between species, and between our findings in the mouse and the findings 

shown in Fig. 1 in the bull, could therefore have been due to true species differences 

or a difference between sperm collected from the epididymis versus those from an 

ejaculate.  To distinguish between these possibilities, we next localized GM1 in 

epididymal bull spermatozoa.  All morphologically normal epididymal bull sperm that 

were motile (Fig. 2A) displayed a pattern of GM1 localization identical to that seen in 

epididymal mouse sperm (Fig. 1C-D), with fluorescence restricted to an area of the 

plasma membrane overlying the acrosome and also throughout the flagellum.  

Interestingly, live epididymal spermatozoa exhibiting abnormal morphology also 

displayed aberrant patterns of GM1 localization (Fig. 2B).  For example, sperm with  
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Figure 1. A comparison of motile and immotile ejaculated bull sperm incubated with 

CTB (n=9 experiments; over 100 cells examined per treatment for this and subsequent 

experiments). A) Transmitted and B) fluorescent images of ejaculated bull sperm.  

Note the lack of signal in the motile cell.  Arrows indicate the location of the live cell 

present next to an immotile cell displaying a post-acrosomal pattern of fluorescence. 

Transmitted and fluorescent images of motile (C-D) and immotile (E-F) epididymal 

murine spermatozoa incubated with CTB. 
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proximal droplets were frequently observed to have abnormal CTB binding over the 

area of the proximal droplet, connecting piece, and caudal portion of the post-

acrosomal sub-domain of the head.   

 

Based on the results of GM1 localization in epididymal bull sperm, we hypothesized 

that exposure of murine epididymal sperm to accessory sex gland fluids would also 

result in a loss of CTB binding and/or fluorescence in the plasma membrane overlying 

the acrosome.  The majority of bull and mouse ejaculate volume originates from the 

SV (Seidel & Foote 1970; Mann & Lutwak-Mann 1981).  We therefore allowed 

epididymal mouse sperm to swim through SV secretions and then observed the pattern 

of CTB fluorescence.  As predicted, exposure to SV fluid significantly reduced the 

ability of CTB to bind GM1 as compared to normal epididymal murine sperm (Fig. 3; 

p<0.05, n=3).  CTB fluorescence was undetectable in the heads of the majority of cells 

(49%; Fig. 3A, D), with remaining cells displaying a patchy, mottled pattern of 

fluorescence (47%; Fig. 3B).  To demonstrate that non-specific interactions with an 

equivalent amount of protein would not cause this decrease in binding, motile sperm 

were incubated in base medium alone (data not shown) or with casein (Fig 3C).  In 

both cases, motile sperm displayed an acrosomal pattern of fluorescence.  In both of 

those treatment conditions, the vast majority of immotile cells displayed a post-

acrosomal pattern (n=4 experiments; data not shown).  Together, these results 

suggested an interaction of the SV fluid with the sperm plasma membrane overlying 

the acrosome that sterically and/or specifically prevented the binding and/or 

fluorescence of CTB to GM1. Similarly, epididymal bull sperm exposed to seminal 

plasma isolated from an ejaculate lost CTB binding over the acrosome and appeared 

identically as those collected from an ejaculate (n=3 experiments; data not shown).
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Figure 2. Epididymal bull sperm incubated with CTB (n=3 experiments representing 

12 individual bulls).  Survey image of motile epididymal sperm displaying acrosomal 

patterns of fluorescence (A).  Fluorescent image of a motile cell displaying an 

acrosomal pattern of fluorescence (B).  Motile cell possessing a proximal cytoplasmic 

droplet and displaying abnormal CTB fluorescence (C).   
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The similarities between the pattern of GM1 localization reported for human sperm 

(Cross 2004) and our results for epididymal mouse sperm exposed to SV secretions 

suggested that the localization in epididymal human sperm would also be in the 

plasma membrane overlying the acrosome.  We found that CTB binding in ejaculated 

human sperm matched data previously reported for the human (Cross 2004), with little 

to no fluorescence in motile cells (data not shown).  We therefore examined GM1 

localization in epididymal human sperm.  One caveat regarding these experiments is 

that normal human epididymal sperm are difficult to procure.  Typically, epididymal 

aspirations are performed in men who have obstructive pathologies, and the sperm 

collected tend to be abnormal.  Accordingly, the epididymal human sperm we 

examined exhibited a very high percentage of abnormal morphologies, particularly 

large proximal droplets and irregular head shapes.  However, the small population of 

motile cells with normal morphology seen did display an acrosomal pattern of 

fluorescence (Fig. 4A-B).  As found in the bull, a high percentage of cells possessing 

abnormal morphologies also exhibited atypical patterns of GM1 localization (Fig. 4C-

F). 

 

In all three species examined, we observed a distinct and reproducible pattern of GM1 

localization to the plasma membrane overlying the acrosome in motile epididymal 

sperm.  Exposure of sperm of these three species to accessory sex gland secretion 

either through normal ejaculation (bull or human) or in vitro exposure (mouse and 

bull) resulted in a loss of CTB signal.  Two possible interpretations existed.  One was 
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Figure 3. Effect of exposure to seminal vesicle fluid on CTB binding in murine 

spermatozoa (n=3 experiments).  Sperm incubated with SV fluid prior to incubation 

with CTB displayed little (A) or dim and mottled (B) fluorescence when compared to 

sperm incubated with an equivalent amount of casein prior to CTB incubation (C). 

Normal motile epididymal mouse sperm display 100% acrosomal fluorescence prior to 

SV fluid exposure (n=3). 
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that exposure to these secretions inhibited binding of CTB to the GM1, while the other 

was that exposure to seminal plasma removed GM1 from the plasma membrane.  To 

rule out qualitatively the large-scale loss of GM1, we fixed ejaculated bull sperm and 

epididymal mouse sperm exposed to SV fluid prior to incubation with CTB. Sperm 

exposed to accessory sex gland secretions and subsequently fixed had a GM1 

localization pattern that mirrored the pattern and intensity of live epididymal sperm 

and the pattern and intensity of CTB signal in epididymal sperm fixed without 

exposure to SV fluid (Fig. 5).  This unmasking of GM1 with fixation suggested that the 

majority of GM1 remained in the sperm plasma membrane even after exposure to 

accessory sex gland secretions.  

 

The majority of accessory sex gland secretions in the bull originate from the seminal 

vesicles, with the major constituent being PDC-109, which binds phospholipids in the 

sperm plasma membrane (Desnoyers & Manjunath 1992).  To determine whether  

PDC-109 binding to sperm was responsible for the loss of CTB binding to GM1, we 

incubated epididymal bull sperm with purified PDC-109 prior to incubation with CTB.  

We found no loss of CTB binding, with labeling of the plasma membrane overlying 

the acrosome as in untreated epididymal sperm (Fig. 6A; n=3 experiments) As a 

control to demonstrate that the purified PDC-109 was binding these sperm, we 

performed indirect immunofluorescence (Fig. 6B-C). 

 

In a further attempt to remove and qualify the inhibition of CTB binding GM1 in 

ejaculated sperm, ejaculated bull sperm was washed in TALP modified with either 

high salt (NaCl 250 mM and 500 mM) or high pH (9 and 11).  Although binding was 

recovered in a low percent of sperm washed in 500 mM NaCl (13.5%), a treatment 
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Figure 4. GM1 localization in epididymal human sperm (n=2 experiments, representing 

two individuals). Transmitted (A) and fluorescent images (B) of motile epididymal 

human sperm, showing normal morphology and an acrosomal pattern of fluorescence 

with CTB. Transmitted (C) and fluorescent images (D) of immotile human sperm 

displaying signal over the post-acrosomal region and a proximal droplet.  Other 

abnormal morphologies observed in brightfield, such as this misshapen head (E), were 

often accompanied by abnormal patterns of CTB binding and fluorescence (F). 
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Figure 5. GM1 was not removed from sperm upon exposure to accessory sex gland 

secretions.  GM1 localization in live epididymal bull sperm (A) or ejaculated bull sperm 

fixed with 1% paraformaldehyde, 12.5mM CaCl2 before incubation with CTB (B; n=6 

experiments).    
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Figure 6.  Incubation of epididymal bull sperm with purified PDC-109 did not prevent 

CTB binding to GM1.  Fluorescent image of CTB bound to epididymal bull sperm after 

incubation with purified PDC-109 (A; n=3 experiments). Indirect 

immunofluorescence localization of PDC-109 in epididymal bull sperm after this 

incubation, showing that the purified PDC-109 did bind to the plasma membrane 

overlying the acrosome (B). Incubation of sperm with the secondary antibody alone 

served as a control for specificity of binding (C). 
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which also stopped motility, none of the conditions tested significantly altered the 

fluorescence pattern in ejaculated bull sperm from that of ejaculates washed in normal 

TALP H (pH 7.35, NaCl 100mM) (n=3, data not shown). 

 

Discussion 

 

Lipid rafts have been postulated to play a role in signaling and effector complex 

compartmentalization in sperm plasma membranes. Because of this, several studies 

have attempted to observe membrane sub-domains in live and fixed sperm, but have 

reported widely differing results.  The results obtained in this study suggest that 

exposure to secretions from accessory sex glands might mask the true localization of 

specific lipids—and therefore membrane sub-domains—in mammalian sperm, 

accounting for some of the discrepancies within the literature.   

 

Our previous work has described the segregation of the ganglioside GM1 to the plasma 

membrane overlying the acrosome in live epididymal murine spermatozoa (Selvaraj et 

al. 2005).  This pattern was identical to the pattern of sterol localization seen in fixed 

sperm with filipin (Friend 1982; Lin & Kan 1996; Visconti et al. 1999) and of the 

lipid-raft-associated protein, caveolin-1 (Travis et al. 2001).  The segregation of a 

sphingolipid (GM1), sterols, and caveolin-1 to this region suggests the presence of a 

lipid raft sub-domain extreme in terms of size and stability (Selvaraj et al. 2005).  The 

biochemical partitioning of caveolin-1 to detergent-resistant membranes, as well as to 

fractions with light buoyant-density separated without the use of detergents (Travis et 

al. 2001), supports the raft-like nature of such a sub-domain. Use of an exogenous 

lipid probe that partitions to liquid-ordered domains has recently confirmed the “raft” 

nature of this micron scale sub-domain (Sleight et al. 2005). 
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Other studies of CTB binding in epididymal rodent sperm had previously suggested a 

different pattern of localization, with GM1 being restricted to the plasma membrane of 

the post-acrosomal sub-domain in rat (Roberts et al. 2003) and mouse (Trevino et al. 

2001). Our recent discovery that CTB induces a redistribution of GM1 from the plasma 

membrane overlying the acrosome to the post-acrosomal plasma membrane upon cell 

death and in lightly fixed sperm (Selvaraj et al. 2005) can account for the differences 

observed in rodent studies. However, the present report is the first to demonstrate that 

interaction with seminal plasma can account for many of the other reported differences 

among species. 

 

For example, fluorescence localization of GM1 in ejaculated human spermatozoa was 

reported to show no large-scale segregation of GM1 (Cross 2004).  Similar studies of 

ejaculated boar sperm reported a lack of GM1 localization in the majority of sperm 

heads, although this percentage decreased with time and incubation with reagents 

known to mediate sterol efflux (Shadan et al. 2004). The trend toward increased 

acrosomal fluorescence observed in that study was interpreted as sterol efflux-induced 

raft organization, which would be consistent with previous models suggesting that 

lipid rafts form during capacitation (Flesch et al. 2001). Both our published results and 

those herein contrast with such a model, and alternately suggest that lipid sub-domain 

segregation exists on a micron scale in epididymal sperm prior to exposure to 

capacitating stimuli.  Our results therefore help reconcile these conflicting reports, 

suggesting either a specific competitive inhibitor of binding to GM1 or a non-specific 

steric masking of GM1 in the plasma membrane overlying the acrosome by substances 

within accessory sex gland secretions.   
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The binding of proteins secreted by the accessory sex glands to specific molecules of 

the sperm plasma membrane has been well characterized in several species, including 

the mouse and bull (Manjunath and Sairam 1987; Miller et al. 1990; Desnoyers & 

Manjunath 1992; Manjunath et al. 1994; Greube et al. 2001; Ignotz et al. 2001; Luo et 

al. 2001).  Bovine seminal plasma (BSP) proteins such as PDC-109 (SPF1_BOVIN), 

BSP A3 (SPF3_BOVIN), and BSP-30kDa (SPF4_BOVIN) (UniProt/Swiss-Prot 

Accession numbers P02784, P04557, and P81019, respectively) preferentially bind to 

phospholipids enriched in the plasma membrane overlying the acrosome and promote 

membrane stabilization and subsequent destabilization upon their removal during 

capacitation (Desnoyers & Manjunath 1992; Manjunath et al. 1994; Therien et al. 

1998; Manjunath & Therien 2002). PDC-109 is the most abundant of these proteins, 

so we investigated whether its binding to plasma membrane phospholipids would 

inhibit CTB- GM1 binding.  This was not the case, suggesting either another protein or 

seminal plasma component was responsible for this loss. 

 

One additional finding of this work bears discussion for its possible clinical relevance.  

The aberrant patterns observed in human and bull sperm with proximal droplets and 

other abnormalities provide a correlation between morphological defects associated 

with reduced fertility and abnormal distribution of plasma membrane lipids.  

Interestingly, sperm with morphological defects in one region, such as proximal 

droplets, also showed abnormal GM1 distribution in surrounding regions that appeared 

morphologically normal at the level of light microscopy.  This suggests such defects 

might be more widespread than are immediately obvious at the level of light 

microscopy.  Large proximal droplets have been associated with reduced fertility 

(Thundathil et al. 2001; see Cooper 2005, for review), although an exact cause for this 

impairment has not been described.  It is intriguing to speculate that appropriate lipid 
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compartmentalization and function might provide a molecular underpinning for such 

defects.  The localization of lipids such as GM1 may therefore prove to be of value as a 

screening tool in evaluating male fertility. 

 

The data presented in this chapter provide evidence for the segregation of GM1 to the 

plasma membrane overlying the acrosome in three different families of mammals.  

These data suggest that the formation of large membrane sub-domains in mammalian 

sperm has been conserved evolutionarily, and that these compartmentalized domains 

might have important roles in sperm function. The co-localization of GM1, sterols, and 

caveolin-1 to this lipid raft sub-domain suggests possible mechanisms by which the 

process of sterol efflux might be transduced into the functional changes that allow a 

sperm to fertilize an egg.  Because of this, studies into the dynamic responses of GM1 

and this sub-domain to stimuli associated with sperm capacitation, the acrosome 

reaction, and fertilization have begun.   
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CHAPTER 4 

 

GM1 DYNAMICS AS A MARKER FOR MEMBRANE CHANGES ASSOCIATED 

WITH THE PROCESS OF CAPACITATION IN MURINE AND BOVINE 

SPERMATOZOA1

                                                
1 Buttke DE*, Selvaraj V*, Asano A, McElwee JL, Wolff CA, Nelson JL, Klaus AV, 
Hunnicutt GR, and Travis AJ. 
As published in (2007) J Androl 28(4), 588-99. 
*These authors contributed equally to this work. V. Selvaraj completed experiments 
for patterns of GM1 in the mouse and the SEM of flagellar GM1 while D. E. Buttke 
completed patterns of GM1 in the bull and GM1 during acrosomal exocytosis in the 
mouse and bull. A Asano assisted in figure 4; J McElwee, C Wolff, J Nelson A Klaus 
provided technical assistance; G Hunnicutt assisted in scientific design, and A Travis 
was primary supervisor. 
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Abstract 

 

We previously showed that in live murine and bovine sperm heads, the ganglioside 

GM1 localizes to the sterol-rich plasma membrane overlying the acrosome (APM). 

Labeling GM1 using the pentameric cholera toxin subunit B (CTB) induced a dramatic 

redistribution of signal from the APM to the sterol-poor postacrosomal plasma 

membrane (PAPM) upon sperm death. We now show a similar phenomenon in the 

flagellum where CTB induces GM1 redistribution to sterol-poor membrane subdomains 

of the annulus and flagellar zipper. Because sterol efflux from the plasma membrane is 

required for capacitation, we examined whether GM1 localization might be useful to 

detect membrane changes associated with capacitation and/or acrosomal exocytosis. 

First, incubation of murine and bovine sperm with their respective stimuli for 

capacitation did not change GM1 distribution in live cells. However, incubation of 

sperm of both species with specific stimuli for capacitation, followed by the use of 

specific fixation conditions, induced reproducible, stimulus-specific patterns of GM1 

distribution. By assessing changes in GM1 distribution in response to progesterone-

induced AE, we show that these patterns reflect the response of murine sperm 

populations to capacitating stimuli. These data suggest that GM1 localization can be 

used as a diagnostic tool for evaluating sperm response to stimuli for capacitation 

and/or AE. Such information could be useful when deciding between technologies of 

assisted reproduction or when screening for male fertility. Furthermore, stimulus-

specific changes in GM1 distribution showed that sperm could respond to NaHCO3 or 

mediators of sterol efflux independently, thereby refining existing models of 

capacitation. 
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Introduction 

 

“Capacitation” describes the maturational changes a sperm must undergo in the female 

reproductive tract to gain competence to fertilize an egg (Chang, 1951; Austin, 1952). 

The external stimuli required for capacitation can differ among species based on 

conditions encountered in the respective female tracts. For many species, these stimuli 

include efflux of sterols from the sperm plasma membrane (Davis, 1974; Davis et al, 

1979) and the presence of bicarbonate and calcium ions (Neill & Olds-Clarke, 1987; 

DasGupta et al, 1993; Visconti et al, 1995a) and glucose (Travis et al, 2001a; Urner et 

al, 2001). Notably, bovine sperm require the presence of heparin (Parrish et al, 1988) 

and the absence of glycolyzable substrates (Parrish et al, 1989; Galantino-Homer et al, 

2004) for capacitation. 

 

In vitro capacitation of sperm using such stimuli effects changes in membrane 

properties that have been reported to lead either directly or indirectly to several 

downstream events. These include plasma membrane hyperpolarization (Zeng et al, 

1995; Arnoult et al, 1999), cyclic adenosine monophosphate-dependent protein kinase 

A activation and protein tyrosine phosphorylation (Visconti et al, 1995a; Visconti et 

al, 1995b), loss of plasma membrane bilayer phospholipid asymmetry and lipid order 

(Harrison et al, 1996; Gadella & Harrison, 2000; Flesch et al, 2001; Gadella & 

Harrison, 2002; Cross, 2003), phosphatidyl inositol signaling-mediated cytoskeletal 

remodeling (Brener et al, 2003; Breitbart et al, 2005), and calcium influx/release from 

internal stores (Ho & Suarez, 2001a, 2001b; Carlson et al, 2003; Herrick et al, 2005). 

However, it remains unclear how the changes at the level of the membrane and the 

downstream signaling events are transduced into hyperactivated motility in the tail and 
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priming of the membranes of the sperm head for acrosomal exocytosis (AE). Although 

it has been shown that only a subpopulation of sperm responds to the stimuli for 

capacitation through protein tyrosine phosphorylation (Urner et al, 2001), there is lack 

of reliable and easy means to evaluate the capacitation status of sperm in response to a 

given stimulus/stimuli, be it within a population or a comparison between populations. 

 

Currently, the most widely used assay for capacitation status involves patterns of 

fluorescence intensity in the sperm head using the fluorescent antibiotic 

chlortetracycline (Saling & Storey, 1979). More recently, studies on sperm membrane 

lipid organization have led to assays using merocyanine 540 to detect changes in 

packing order of lipids on the outer leaflet of the plasma membrane (Williamson et al, 

1983) that are believed to change with capacitation (Rathi et al, 2001). In addition, 

annexin V has been used to bind and detect phosphatidyl serine on the outer leaflet of 

the plasma membrane indicating activation of phospholipid scramblase activity 

(Flesch et al, 2001). However, concerns about the effectiveness of merocyanine 540 in 

detecting capacitated vs abnormal/damaged sperm have been raised (Muratori et al, 

2004), and phospholipid scramblase-mediated phosphatidyl serine exposure in 

capacitated sperm does not appear to be conserved in all species (Baumber & Meyers, 

2006). Further complicating the study of changes to the state of the plasma membrane 

of the sperm head is the organization of this membrane into discrete micron-scale 

subdomains based on sterol and sphingolipid composition (Friend & Fawcett, 1974; 

Selvaraj et al, 2006). In the heads of fixed sperm from several species, the plasma 

membrane overlying the acrosome (APM) was found to be enriched in sterols and 

distinctly segregated from the postacrosomal plasma membrane (PAPM) that was 

found to be relatively sterol poor (Friend, 1982, 1989; Pelletier & Friend, 1983; Lin & 

Kan, 1996). In addition, within the APM are at least 2 distinct areas of membrane—
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one over the apical acrosome (AA) and a larger one over the equatorial segment (ES) 

(Friend, 1989; Lin & Kan, 1996; Selvaraj et al, 2006). 

 

Membrane rafts are defined as small (10–200 nm), heterogeneous, highly dynamic, 

sterol- and sphingolipid-enriched domains that compartmentalize cellular processes. 

Groups of small rafts can sometimes be stabilized to form larger platforms through 

protein-protein and protein-lipid interactions (Pike, 2006). However, studies on 

membrane rafts have generated significant controversy regarding the existence and 

dynamics of these subdomains in cells—specifically, that artifacts appearing as rafts 

might be induced by the use of detergents or crosslinking reagents/fixatives in 

attempts to visualize these subdomains (Munro, 2003). 

 

To visualize potential membrane subdomains in live sperm in the absence of any 

fixative, we used the B subunit of cholera toxin (CTB) to bind the ganglioside GM1. 

We found that this sphingolipid does indeed segregate to the APM, as did sterols and 

the sterol-binding protein caveolin-1 in fixed sperm (Travis et al, 2001b). Other 

investigators have reported the use of fluorescent lipid probes to suggest that the APM 

subdomain behaves in a liquid-ordered fashion consistent with a raft (Sleight et al, 

2005). The size and stability of the APM and PAPM subdomains in mammalian sperm 

are quite extreme in comparison with their counterparts in somatic cells, making it 

possible that the APM of live sperm represents a "super raft" of stably segregated 

smaller sub-subdomains. Fitting the proposed theory behind larger raft platforms, we 

found that the lipid segregation in sperm is maintained at least in part by disulfide-

bonded proteins (Selvaraj et al, 2006). This is consistent, albeit at a larger scale, with a 

membrane compartmentation model of segregation (Kusumi et al, 2004). We found 

that this segregation to the APM was highly conserved across mammals, being present 
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in murine, bovine, and human sperm, and that discrepancies in the literature between 

species were at least in part due to confounding effects of seminal plasma (Buttke et 

al, 2006). The organization of these membrane subdomains in sperm continues to be 

of great interest because of the pathways that potentially might be targeted to the APM 

super raft, which could function in capacitation, binding to the zona pellucida, and/or 

AE. 

 

Although we were able to demonstrate distinct segregation of endogenous lipids in 

live sperm, the pitfalls inherent to localizing lipids in a biological system did reveal 

themselves in our studies. For example, we observed the interesting phenomenon that 

within seconds of a sperm's death (inferred by cessation of motility), CTB bound to 

GM1 helped induce a dramatic redistribution to the PAPM (Selvaraj et al, 2006). In the 

present study, we show a similar redistribution phenomenon seen in the sperm tail 

while exploring variations in sperm GM1 dynamics in response to stimuli for 

capacitation and AE. Our results not only demonstrate changes in individual cells but 

also shed light on the nature of functional subpopulations of sperm and the temporal 

dynamics of capacitation pathways. 

 

Materials and Methods 

 

Reagents and Animals 

All reagents were purchased from Sigma (St Louis, Mo) unless otherwise noted. CTB 

conjugated with Alexa Fluor 488 (Invitrogen, Carlsbad, Calif) was used. Male CD-1 

mice were purchased from Charles River Laboratories (Kingston, NY). Bovine semen 

was collected from Holstein bulls of known high fertility at Genex Corporation 
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(Ithaca, NY). All animal procedures were performed under the guidelines of the 

Institutional Animal Care and Use Committee at Cornell University. 

 

Preparation of Media 

For murine sperm, a modified Whitten medium (MW; 22 mM HEPES, 1.2 mM 

MgCl2, 100 mM NaCl, 4.7 mM KCl, 1 mM pyruvic acid, 4.8 mM lactic acid 

hemicalcium salt, pH 7.35 [Travis et al, 2001a]) was used for all incubations. Glucose 

(5.5 mM), NaHCO3 (10 mM), and 2-hydroxypropyl-ß-cyclodextrin (2-OHCD; 3 mM) 

were supplemented as needed. The 2-OHCD supports sperm capacitation and in vitro 

fertilization (IVF) by functioning as a sterol acceptor and is preferred over the more 

potent methyl-ß-cyclodextrin (Visconti et al, 1999). 

 

For diluting and transporting bovine semen, a HEPES-buffered Tyrode-albumin 

lactate pyruvate medium (TALP-H; 100 mM NaCl, 3.1 mM KCl, 0.3 mM NaH2PO4, 

21.6 mM sodium lactate, 0.4 mM MgCl2, 40 mM HEPES, 0.4 mM ethylenediamine 

tetraacetic acid (EDTA), 10 mM NaHCO3, 2 mM CaCl2, 1 mM pyruvic acid, 1 

mg/mL polyvinyl alcohol (PVA; Parrish et al, 1988) was used. For washing and 

incubation of bovine sperm, TALP medium (100 mM NaCl, 3.1 mM KCl, 0.3 mM 

NaH2PO4, 21.6 mM sodium lactate, 0.4 mM MgCl2, 10 mM HEPES, 0.4 mM EDTA, 

25 mM NaHCO3, 2 mM CaCl2, 1 mM pyruvic acid, 1 mg/mL PVA (Parrish et al, 

1988) was used. Bovine serum albumin (BSA; 6 mg/mL) and heparin (20 µg/mL) 

were supplemented as needed to facilitate capacitation (Galantino-Homer et al, 1997). 

 

Sperm Collection and Handling 

Murine sperm were collected from the cauda epididymides of male CD-1 mice by a 

swim-out procedure as described previously (Travis et al, 2001b). All steps of 
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collection and washing were performed at 37°C using MW medium, and large-orifice 

transfer pipettes or large-orifice pipette tips were used for handling sperm to minimize 

membrane damage. Bull semen collected from proven high-fertility bulls was 

immediately diluted (1:4) using TALP-H and transported to the laboratory at 39°C. 

All steps of washing and sperm handling were performed at 39°C as described 

previously (Buttke et al, 2006). After the initial washes but prior to experimental 

incubations, motility assessment was carried out for both mouse and bull sperm, and 

samples showing less than 60% motility for murine sperm and less than 80% motility 

for bovine sperm were not used. 

 

Sperm Capacitation and Induction of AE 

For murine sperm, incubation with different stimuli for capacitation was carried out 

with 2 x 106 sperm in 300 µL of medium with glucose under 1 of 4 conditions: (a) 

MW base medium, (b) MW supplemented with 10 mM NaHCO3, (c) MW 

supplemented with 3 mM 2-OHCD, and (d) MW with both 10 mM NaHCO3 and 3 

mM 2-OHCD for 45 minutes (or 60 minutes for all conditions when inducing AE). 

The pH of medium for all incubation conditions was adjusted to 7.35. The medium in 

incubation condition ("d") has been shown to be sufficient to support IVF (Travis et al, 

2004) and capacitation-induced tyrosine phosphorylation (Travis et al, 2001a) in 

murine sperm. Progesterone was added to a final concentration of 20 µM to induce AE 

in capacitated murine sperm (Roldan et al, 1994; Murase and Roldan, 1996; Kobori et 

al, 2000) (A 2 mM working stock was prepared in MW immediately before use from a 

20 mM stock of progesterone in dimethylsulfoxide (DMSO); 0.2% vol/vol final 

DMSO concentration.). The dead spaces of tubes used for all incubations were filled 

with nitrogen to avoid the generation of bicarbonate anions in the aqueous media in 
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conditions "a" and "c." This had no effect on protein tyrosine phosphorylation events 

associated with capacitation (data not shown). 

 

For bovine sperm, incubation with different stimuli for capacitation was carried out 

with 2 x 106 sperm in 300 µL of medium under 1 of the 4 conditions: (a) TALP base 

medium, (b) TALP supplemented with BSA (6 mg/mL), (c) TALP supplemented with 

heparin (20 µg/mL), (d) TALP with both BSA and heparin at the same concentrations 

for 90 minutes at 39°C. Lysophosphatidyl choline (100 µg/mL final concentration) 

was used for the induction of AE (Parrish et al, 1989). For live sperm of both species, 

the localization pattern of GM1 was visualized using CTB after incubation under one of 

the conditions described and/or after the induction of AE. 

 

Fluorescence Localization of GM1 in Mature Sperm 

All steps of localization experiments using either live or fixed sperm were carried out 

under dim lighting at 37°C in a humidity chamber. In all cases, the localization of GM1 

was visualized with CTB. For localization of GM1 in fixed samples, sperm were 

allowed to adhere to coverslips for 20 minutes (at the end of incubations for 

capacitation experiments) and then fixed for 10 minutes with either 0.004% 

paraformaldehyde (PF) in phosphate buffered saline (PBS) for murine sperm or 1% PF 

with 12.5 mM CaCl2 in PBS for bovine sperm. The sperm were then washed with 

PBS and incubated for 10 minutes with CTB (5 µg/mL). The sperm were washed 

again and mounted using a GVA mountant (Invitrogen). For all conditions in 

experiments evaluating pattern change associated with AE, murine sperm were fixed 

while in suspension by adding an equal volume of 0.008% PF, were incubated with 

CTB as above, and aliquots were then placed directly on slides for microscopy. 
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Microscopy and Image Collection 

Cells were viewed with a Nikon Eclipse TE 2000-U microscope (Nikon, Melville, 

NY) equipped with a Photometrics Coolsnap HQ CCD camera (Roper Scientific, 

Ottobrunn, Germany) and Openlab 3.1 (Improvision, Lexington, Mass) automation 

and imaging software. Assignments of sperm to GM1 localization patterns were 

performed in a blind fashion regarding incubation condition. To compare shifts in 

population tendencies, the numbers of sperm having a given pattern were converted to 

percentages prior to statistical evaluation. In all cases, 100 or more cells were counted 

for each test condition, and every sperm in a given field was counted to avoid potential 

bias. Sperm with morphologic abnormalities showing aberrant GM1 localization 

patterns (as described in Buttke et al, 2006) were not included in the count. 

 

Scanning Electron Microscopy 

SEM was performed using 2 techniques to visualize surface topography. In the first 

method, sperm were fixed for 2 hours with 2.5% glutaraldehyde in 100 mM sodium 

cacodylate and 1% tannic acid at pH 7.4 in a culture tube. After washing by 

centrifugation and resuspension, they were again fixed with 2% osmium tetroxide and 

2% sodium cacodylate at 4°C overnight. The cells were washed and dehydrated in 

ethanol with a 20-minute incubation in 2% uranyl acetate at 70% ethanol. Once in 

absolute ethanol, they were critical point dried, coated, and viewed using a Hitachi 

S4500 scanning electron microscope (Hitachi, Pleasanton, Calif). Digital micrographs 

were collected using a Princeton Gamma Tech digital beam acquisition program 

(Imix, Princeton, NJ). 

 

In the second method, sperm were fixed in 2.5% glutaraldehyde in 100 mM sodium 

cacodylate (pH 7.4) overnight at 4°C. A 20 µL aliquot of sperm suspension was then 
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washed in 100 mM sodium cacodylate buffer by centrifugation and resuspension. 

Aliquots were placed on poly-L-lysine–coated 12-mm round coverslips and allowed to 

incubate for 45 minutes at 4°C. The coverslips were rinsed by gentle dipping 3 times 

in cacodylate buffer and then dehydrated in ethanol followed by 2 changes in 100% 

ethanol for 20 minutes each. Coverslips were critical point dried, sputter-coated with 

gold/palladium (Au/Pd) and imaged on a Hitachi S4700 cold field-emission scanning 

electron microscope operating at 10-kV accelerating voltage and 7-µA emission 

current. Digital images were captured at 2500 x 1900 pixel resolution. 

 

Results 

 

Effect of stimuli for capacitation on CTB-induced GM1 patterns 

We previously showed in live murine sperm that CTB bound to GM1 exclusively in the 

APM. However, almost immediately upon sperm death, the crosslinking produced by 

the pentameric CTB induced a redistribution of GM1 to the PAPM. We also showed 

that weak fixatives (eg, 0.004%–1% PF) did not prevent this redistribution but that 

strong fixation (eg, 4% PF with 0.1% glutaraldehyde) could immobilize GM1 to where 

it had been in live murine sperm (Selvaraj et al, 2006). In the present study, we 

investigated whether membrane changes brought about by different stimuli for 

capacitation (alone or in combination) could affect the distribution of GM1 in murine 

and bovine sperm. In live sperm, as we demonstrated for sterol efflux (Selvaraj et al, 

2006), bicarbonate had no effect on the localization of GM1 (data not shown). 

However, we found interesting variations in patterns of GM1 localization in response to 

different stimuli for capacitation followed by incubation under species-specific 

fixation conditions. 
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Figure 1. Patterns of GM1 localization seen in epididymal murine sperm after 

incubation under different conditions, either live or followed by fixation. (A) 

Fluorescence images and schematic diagrams (drawn as negative images) showing the 

range of patterns seen in live sperm and sperm fixed with 0.004% PF in PBS. Pattern 

APM denotes signal over the APM and was seen almost exclusively in live sperm. 

Pattern D denotes diffuse localization. Pattern AA/PA denotes signal over the apical 

acrosome (AA) and in the PAPM. Pattern PAPM denotes postacrosomal signal. 

Notably, 2 thin lines of fluorescence labeling, bordering a central unlabeled area of 

membrane, were sometimes seen over the AA in the D pattern and, less frequently, in 

the PAPM pattern, suggestive of a smaller "sub-subdomain" in the AA area. The 

images also represent GM1 labeling patterns seen in the midpiece, annulus, and 

principal piece, which did not depend on specific treatment conditions, and are 

described further below. (B) Box-whisker plots showing percentages of the different 

GM1 patterns in sperm incubated under a noncapacitating condition (NC) or in the 

presence of bicarbonate (NaHCO3), cyclodextrin (CD), or both bicarbonate and 

cyclodextrin (CAP) for 45 minutes. The lower and upper ends of the box mark the 

25th and 75th quantiles; the median is represented as a horizontal line within the box 

and the mean as a horizontal line through the box. Vertical whiskers extend from the 

ends of the box to the 10th and 90th quantiles. A Kruskal-Wallis rank sum analysis 

showed significant differences between the different conditions (P < .05). Pairwise 

comparisons made with individual Wilcoxon tests for each pattern between the 

different conditions are indicated by the letters above the whiskers (P < .025). These 

results show that the AA/PA pattern increased significantly in the presence of 

NaHCO3, that the D pattern increased significantly in the presence of 2-OHCD and 

CAP conditions, and that the increases in those patterns were accompanied by 

significant decreases in sperm showing the PAPM pattern. 



 

129 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

130 

 

For murine sperm we used 0.004% PF in PBS, which has been reported to be 

sufficient to immobilize sperm but not permeabilize their membranes (Harrison and 

Vickers, 1990). After fixation, noncapacitated murine sperm showed GM1 over the 

PAPM as previously observed (Selvaraj et al, 2006) but, in the presence of 

capacitating stimuli, new patterns of GM1 distribution were seen (Figure 1A). These 

patterns were highly reproducible, with specific patterns occurring in response to 

specific stimuli. Under all conditions, labeling over the APM similar to that seen in 

live sperm was only seen in rare cells after weak fixation. In the presence of NaHCO3, 

a significant percentage of cells (36.1% ± 2.5%) showed an incomplete redistribution 

to the PAPM with residual GM1 labeling over the AA (the AA/PA pattern; Figure 1B) 

when compared with noncapacitated sperm. In the presence of 2-OHCD, a significant 

percentage of cells (42.0% ± 3.4%) had GM1 diffusely distributed over the entire APM 

in addition to the PAPM (the D pattern; Figure 1B) when compared with 

noncapacitated sperm. The presence of both NaHCO3 and 2-OHCD caused no 

additional increase in the percentages of sperm showing either the AA/PA or the D 

patterns (Figure 1B). 

 

In bovine sperm, we previously showed CTB did not bind to ejaculated live sperm due 

to masking by seminal plasma components; however, GM1 in the APM could be 

visualized using CTB in both epididymal sperm and fixed ejaculated sperm (Buttke et 

al, 2006). In the present study, we found that the use of a weak fixative, 0.004% PF in 

PBS, predominantly induced a PAPM pattern in noncapacitated bovine ejaculated 

sperm. This localization did not show any change in response to capacitating stimuli  
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Figure 2. Patterns of GM1 localization seen in ejaculated bovine sperm after incubation 

under different conditions followed by fixation. (A) Fluorescence images and 

schematic diagrams (drawn as negative images) showing the range of patterns seen in 

bovine sperm fixed using 1% PF with 12.5 mM CaCl2 in PBS. Pattern APM denotes 

signal over the APM. Pattern D denotes diffuse localization. Pattern AA/ES denotes 

signal over the AA and the ES. Pattern PAPM denotes postacrosomal signal. (B) Box-

whisker plots showing percentages of the different GM1 patterns in sperm incubated 

under a noncapacitating condition (NC) or in the presence of heparin (Hep), BSA 

(BSA), or both heparin and BSA (Hep/BSA) for 90 minutes. The lower and upper 

ends of the box mark the 25th and 75th quartiles; the median is represented as a 

horizontal line within the box and the mean as a horizontal line through the box. 

Vertical whiskers extend from the ends of the box to the 10th and 90th quartiles. 

Outliers are represented as dots along the axis of the box. A Kruskal-Wallis rank sum 

analysis showed significant differences between the different conditions (P < .05). 

Pairwise comparisons made with individual Wilcoxon tests for each pattern between 

the different conditions are indicated by the letters above the whiskers (P < .025). 

These results show that the D pattern increased significantly in the presence of 

heparin, that the APM pattern decreased significantly in the Hep and Hep/BSA 

conditions, and that the AA/ES pattern increased significantly in the Hep/BSA 

treatment. 
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(data not shown). However, when bovine sperm were fixed with a slightly stronger 

fixative, 1% PF with 12.5 mM CaCl2 in PBS (Buttke et al, 2006), they displayed 

different patterns of GM1 distribution in response to these stimuli. As in the mouse, the 

bovine sperm showed highly reproducible patterns of GM1 localization based on the 

specific stimulus used for capacitation (Figure 2A). Unlike murine sperm, strong 

fixation such as 4% PF with 0.1% glutaraldehyde induced significant membrane 

damage in bovine sperm (data not shown). 

 

Also unlike murine sperm, a very small percentage of bovine sperm showed the 

PAPM pattern and a large percentage of sperm showed the APM pattern under all 

conditions (Figure 2B). Incubation with heparin was associated with a significant 

increase in a diffuse localization, pattern D (70.9% ± 3/7%; Figure 2B). In the 

presence of BSA, there were no significant changes in patterns vs incubating sperm 

under noncapacitating conditions, but when both BSA and heparin were present in the 

medium, there was a significant increase in a pattern showing localization in both the 

AA and ES (AA/ES pattern; 39.1% ± 9.6%; Figure 2B). These patterns in bovine 

sperm were similar but did not correspond directly to the patterns seen in murine 

sperm. However, the GM1 redistribution in response to weak fixation (0.004% PF) in 

noncapacitated sperm from both species was from the sterol-rich APM to the sterol-

poor PAPM (Buttke et al, 2006; Selvaraj et al, 2006). 

 

GM1 Localization in Acrosome-Reacted Sperm 

Distribution of GM1 in live epididymal murine and bovine sperm remained unchanged 

even after incubation with stimuli for capacitation. However, induction of AE using 

progesterone in capacitated murine sperm and lysophosphatidyl choline in capacitated  
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Figure 3. Localization pattern of GM1 in acrosome reacted murine and bovine sperm. 

(A) Mouse sperm were capacitated in MW medium with NaHCO3 (10 mM) and 2-

OHCD (3 mM) for 45 minutes, and acrosomal exocytosis (AE) was induced by 

treatment with progesterone (20 µM) for 5 minutes. Sperm were then fixed with 

0.004% PF in PBS, and GM1 labeling using CTB was carried out as described. (B) 

Bovine sperm were capacitated in TALP with BSA (6 mg/mL) and heparin (20 

µg/mL), and AE was induced by treatment with lysophosphatidyl choline (100 

µg/mL) for 15 minutes. Sperm were then fixed with 1% PF with 12.5 mM CaCl2 in 

PBS, and GM1 labeling using CTB was carried out as described. (C) Box-whisker plots 

showing percentages of the different GM1 localization patterns in murine sperm 

incubated for 60 minutes under a noncapacitating condition (NC), or both bicarbonate 

and cyclodextrin (CAP), or after the induction of AE at the end of incubation. The 

lower and upper ends of the box mark the 25th and 75th quantiles; the median is 

represented as a horizontal line within the box and the mean as a horizontal line 

through the box. Abbreviations for patterns are same as in Figure 1A. "AR" refers to 

the acrosome-reacted pattern shown in panel A. A Kruskal-Wallis rank sum analysis 

showed significant differences between the different conditions (P < .05). Pairwise 

comparisons made with individual Wilcoxon tests for each pattern between the 

different conditions are indicated by the letters above the whiskers (P < .025). These 

results show that both the D and AA/PA patterns increased significantly under CAP 

conditions and that there was a corresponding decrease in the PAPM pattern. 

Moreover, there was a statistically significant increase in the AR pattern upon 

incubation of capacitated sperm with progesterone. This increase was accompanied by 

a corresponding decrease in the D pattern under these incubation conditions and no 

significant decline in the AA/PA pattern, showing that the sperm having the AR 

pattern came from the D subpopulation.  
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bovine sperm showed an increase in a pattern distinct from those seen after exposure 

to stimuli for capacitation followed by fixation as described above. After capacitation, 

a subset of murine and bovine sperm induced to undergo AE demonstrated a pattern 

characterized by a hollow AA suggestive of loss of both acrosomal contents and 

membranes from the AA (the AR pattern; Figure 3A and B). In both species, this 

pattern was characterized by the AA showing somewhat ragged borders consistent 

with the nature of vesiculations associated with this exocytotic process. In bovine but 

not murine sperm, this GM1 pattern in the AA was associated with a weak PAPM 

signal. In murine sperm, there was a significant increase in the AR pattern after the 

induction of AE (21.8% ± 1.3%; Figure 3C) when compared with sperm incubated 

under noncapacitating and capacitating conditions. This increase in AR pattern was 

associated with a significant decrease in the D pattern after the induction of AE when 

compared with sperm incubated under capacitating conditions (D pattern in 

capacitated sperm [48.9% ± 2.8%] and after AE [32.5% ± 1.6%]). 

  

GM1 Localization in the Midpiece and Principal Piece 

GM1 was also seen in the flagella of both murine and bovine sperm. In live sperm, the 

CTB signal was faint and appeared diffuse (data not shown). After fixation with 

0.004% PF for murine sperm and 1% PF for bovine sperm, the localization of GM1 in 

the midpiece did not conform to a specific pattern. In murine sperm, it appeared either 

distributed evenly across the entire midpiece or was somewhat more prominent in the 

distal half to third of the midpiece (Fig 1A), and in bovine sperm the midpiece labeled 

more uniformly (Figure 2A). In murine sperm, GM1 became greatly enriched in the 

plasma membrane at the region of the annulus, where the mitochondrial sheath of the 

midpiece abuts the fibrous sheath of the principal piece (Friend and Fawcett, 1974)  
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Figure 4. Localization of GM1 at the annulus and principal piece in murine sperm fixed 

with 0.004% PF. Noncapacitated sperm were fixed, and labeling for GM1 was carried 

out as described. The region of the annulus (arrowheads) showed intense GM1 labeling. 

A linear track of CTB fluorescence in the principal piece suggested GM1 localization 

over the flagellar zipper starting at the annulus and running down the length of the 

principal piece (Panels A and C). Notably, panels A and C have had their brightness 

and contrast adjusted to highlight the fluorescence over the extremely thin subdomain 

of the flagellar zipper, although this does result in an effective "overexposure" of the 

midpiece and annulus. Corresponding Nomarski Differential Interference Contrast 

images are shown in panels B and D. Dotted lines in both figures outline the proximal 

part of the principal piece showing that GM1 labeling was confined to a linear track 

narrower than the width of the principal piece.  
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(Figures 4 and 1A). In the principal piece, GM1 fluorescence was seen as a fine line 

coursing caudally from the annulus (Figure 4). To our knowledge, there is only 1 

linear feature that runs the length of the plasma membrane in the principal piece. This 

is a distinct membrane subdomain known as the flagellar zipper that has been 

identified primarily through the use of freeze fracture techniques in several species 

(Friend and Fawcett, 1974; Lin and Kan, 1996). We now show by SEM that the 

flagellar zipper is a morphologically distinct membrane subdomain within the flagellar 

plasma membrane (Figure 5A). In an SEM micrograph of a demembranated sperm 

(Figure 5B), structures underlying or comprising internal components of the annulus 

and the flagellar zipper can be seen. 

 

 

  

 

 

 

 

 Figure 5. Scanning electron micrographs of murine sperm showing the annulus and 

flagellar zipper. (A) SEM of a sperm fixed with glutaraldehyde showing a region of 

the proximal principal piece. Although membranous structures were not specifically 

stabilized with osmium tetroxide after fixation, it appears that the membrane overlying 

the surface of the flagellar zipper (white arrowheads) is distinct as a narrow 

subdomain running longitudinally down the principal piece. (B) For comparison is 

SEM of a fixed sperm that was completely demembranated during handling. This 

panel shows the annulus (small black arrowheads), and characteristic substructure, 

which lends the flagellar zipper its name (white arrowheads). 
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Discussion 

 

GM1 patterns reflect capacitation-associated membrane changes 

Efflux of sterols from the sperm plasma membrane (Davis, 1974; Davis et al, 1979) 

and the presence of bicarbonate and calcium ions (Neill & Olds-Clarke, 1987; 

DasGupta et al, 1993; Visconti et al, 1995a) have long been known to play a critical 

role in capacitation. Two models have arisen describing the order of membrane events 

during capacitation, perhaps reflecting species differences. The first, based on work in 

the mouse, suggests that sterol efflux is an initial event, stimulating bicarbonate and 

calcium uptake (Travis & Kopf, 2002; Demarco et al, 2003). Alternatively, based 

primarily on work in the boar, bicarbonate and calcium uptake have been suggested to 

trigger an increase in intracellular cAMP and PKA activity, stimulating the activity of 

phospholipid scramblases (Harrison et al, 1996; Gadella & Harrison, 2000). The 

resultant increase in lipid disorder was suggested to facilitate raft formation and sterol 

efflux (Flesch et al, 2001). 

 

Although GM1 redistribution upon cell death appears to be induced by CTB, variations 

in the pattern of GM1 revealed several important points of information about the nature 

of membrane changes during capacitation, both within single cells and at the level of 

sperm populations. Supporting the hypothesis that different populations of sperm exist 

within a single ejaculate or collection, only a subset of both murine and bovine sperm 

(approximately 40%) responded fully to stimuli for capacitation. This figure 

corresponded to the approximate percentage of sperm showing protein tyrosine 

phosphorylation in response to incubation under capacitating conditions (Urner et al, 

2001). 
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Interestingly, in murine sperm we observed that both 2-OHCD and NaHCO3 could 

independently alter membrane properties, showing that unlike either existing model 

for the chronology of response to stimuli for capacitation, both stimuli could induce 

membrane changes as an initial event. Here the D pattern was indicative of sperm that 

responded to sterol efflux (2-OHCD), and the AA/PA pattern indicated sperm that 

responded to NaHCO3. If the 2 patterns were induced together in the same sperm, 

they would overlap to provide a D pattern. Because there was no net increase in the 

percentage of sperm showing the D pattern when both stimuli were included in the 

medium, this result indicates that the sperm that responded to the presence of 

NaHCO3 were the same population as those that responded to sterol efflux. 

 

These results suggested that the D pattern represented capacitated sperm. Capacitation 

can be assessed by means of different end points and is most rigorously defined by the 

ability to fertilize an egg. However, use of that end point would not allow visualization 

of the membrane GM1 pattern. Therefore, we used the acquisition of the ability to 

undergo AE as a marker for capacitation. We saw an increase in the AR pattern after 

AE and an almost identically sized decrease in the D pattern in this treatment. These 

results showed that it was indeed the population of sperm having the D pattern that 

responded to progesterone, which would be consistent with the D pattern being a 

marker for capacitated sperm. This finding confirmed our hypothesis that CTB 

labeling of GM1 could function as an indicator of membrane changes associated with 

capacitation, being able to identify populations of sperm responding to specific 

capacitating stimuli. 

 

In bovine sperm, there were no significant changes in patterns compared with 

noncapacitated sperm even after exposure to BSA, which is commonly used to 
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mediate sterol efflux. However, the presence of heparin alone did induce an increase 

in the D pattern in bovine sperm, suggesting that this stimulus could independently 

exert effects on bovine sperm membranes. The AA/ES pattern emerged only when 

both heparin and BSA were present in the medium, revealing that bovine sperm 

require both stimuli to show the full extent of membrane changes suggested by these 

GM1 localization patterns. Appropriately, similar patterns were not observed with 

bovine epididymal sperm (data not shown), suggesting that epididymal sperm of this 

species did not effectively respond to capacitating stimuli. This finding supports 

existing literature showing that epididymal bovine sperm incubated under capacitating 

conditions fail to undergo zona pellucida protein-mediated AE (Florman & First, 

1988). 

 

There have been several studies demonstrating changes in membrane distribution or 

mobility of membrane raft-associated proteins and/or lipids in the sperm head with 

capacitation (Cowan et al, 2001; Roberts et al, 2003; Cross, 2004; Shadan et al, 2004; 

Belmonte et al, 2005; van Gestel et al, 2005). Some of these studies have also 

examined GM1 localization in sperm from different species, with varying results. In the 

mouse, it was suggested that GM1 localizes to the PAPM and that this localization does 

not change with capacitation (Trevino et al, 2001); another study localized GM1 to the 

midpiece and moving to the head during capacitation (Shadan et al, 2004). Both these 

studies were done at 16°C, and phase transitions between this and physiologic 

temperatures (Wolf et al, 1990) might account for some disparity with our results. In 

rat sperm, it was suggested that GM1 localizes to the PAPM and then moves to the 

APM during capacitation (Roberts et al, 2003). In both this and the study in murine 

sperm showing no movement, it is clear that the initial localization to the PAPM was 

an effect of fixation condition (Selvaraj et al, 2006). In human sperm, it was reported 
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that GM1 has a diffuse localization pattern and then assembles in the APM (Cross, 

2004). Also as discussed, this was likely due to exposure of sperm to seminal plasma 

(Buttke et al, 2006). 

 

Possible Explanation for the Redistribution Phenomenon 

Based on our observations and current models of sperm membrane properties, we have 

arrived at one possibility that could explain why CTB induced GM1 redistribution from 

the APM to the PAPM. We suggest that once crosslinked by CTB, GM1 moves from 

sterol-rich, liquid-ordered membrane regions to sterol-poor, less-ordered areas on the 

sperm. In both live and fixed sperm, it has been suggested that in noncapacitated 

sperm, the sterol-rich APM is a liquid-ordered subdomain whereas the sterol-poor 

PAPM is liquid disordered (Sleight et al, 2005). 

 

Therefore, in sperm incubated under noncapacitating conditions, GM1 redistributed to 

the PAPM, being excluded from or forced out of the sterol-rich, more-ordered APM. 

Upon incubation of murine sperm with NaHCO3 in the presence of calcium 

(stimulators of sperm phospholipid scramblases [Gadella & Harrison, 2000]), some 

GM1 redistributed to the PAPM, but some also remained in the AA. The 

aminophospholipid transporter (SAPLT) with homology to a flippase localizes to this 

region (Wang et al, 2004). Studies comparing sperm from wild-type vs SAPLT-null 

mice suggest that phospholipid scramblase activity in this region depends on the 

activity of the flippase as well as the presence of NaHCO3 (Wang et al, 2004). 

Therefore, the presence of NaHCO3 could be inducing liquid disorder at the region of 

the AA giving rise to the AA/PA pattern. Sterol efflux from murine sperm has been 

shown to occur throughout the APM (Visconti et al, 1999), increasing lipid disorder 

throughout this subdomain (Cross, 2003; Sleight et al, 2005). Accordingly, there was a 
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diffuse pattern of GM1 localization throughout the head (APM and PAPM) of sperm 

incubated with 2-OHCD. The presence of both NaHCO3 and 2-OHCD induced no 

additional increase in the percentage of sperm, suggesting again that these populations 

of sperm were the same. 

 

Also supporting the notion that crosslinked GM1 redistributed to membrane 

subdomains of reduced-order/lower-sterol abundance was the redistribution seen in the 

flagellum of murine sperm upon death or fixation with 0.004% PF. Originally diffuse 

throughout the flagellum, GM1 became concentrated at the annulus and the flagellar 

zipper of the principal piece, structures shown by freeze fracture to be devoid of 

sterols (Pelletier & Friend, 1983; Lin & Kan, 1996). 

 

Our data on the stimulus-specific patterns of changes in GM1 localization suggest 

strongly that temporally sperm can respond to NaHCO3 or mediators of sterol efflux 

independently of one another. This finding provides a refinement to existing models of 

capacitation. Yet, in addition to these points of basic science, our findings also suggest 

a clinical application for GM1 as a marker for detecting capacitation-associated 

membrane changes in murine and bovine sperm. Changes in localization patterns of 

GM1 in response to specific stimuli for capacitation could provide a diagnostic tool for 

predicting a male's reproductive fitness based on the proportion of sperm that are 

capable of responding to such stimuli. This information could be used in agricultural 

industries to make broad classifications regarding a male's fertility or could be used to 

help guide clinicians when choosing between techniques such as in vitro fertilization 

or intracytoplasmic sperm injection. Furthermore, because this potential assay is based 

upon functional membrane responses, it might also be useful when evaluating or 

comparing media or conditions used to handle sperm in vitro or to cryopreserve them. 
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CHAPTER 5 

 

THE VOLTAGE-OPERATED CAV2.3 CALCIUM CHANNEL IS REQUIRED FOR 

ACROSOMAL EXOCYTOSIS IN MAMMALIAN SPERM AND ITS ACTIVITY IS 

MODULATED BY THE GANGLIOSIDE GM1 
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Abstract 

We have previously shown GM1 to be stably segregated to the plasma membrane 

overlying the acrosome (APM) in live murine, bovine, and human sperm (Buttke, 

Nelson, Schlegel, Hunnicutt, & Travis, 2006; Selvaraj et al., 2006) and to be highly 

enriched in the acrosomal membranes in both developing male germ cells as well as in 

mature sperm (Asano et al., 2009). This localization, as well as other reports in several 

other mammalian species (Bou Khalil et al., 2006; Cross, 2004; Tanphaichitr et al., 

2007; van Gestel et al., 2005), indicates the presence of membrane rafts in sperm, and 

a localization of those rafts that might suggest a role in acrosomal exocytosis (AE).  

We present physiological evidence that clustering of GM1, induced either through the 

use of the pentameric B subunit of cholera toxin (CTB) or through the addition of 

exogenous GM1, can induce AE in capacitated mouse sperm through activation of the 

CaV2.3 channel. AE mediated by GM1 is dependent upon extracellular calcium, is 

sensitive to pertussis toxin, and is inhibited by nickel and CaV2.3 inhibitors including 

SNX-482. The functional interaction of GM1 with CaV2.3 appears to occur in the same 

pathway to AE as that induced by solubilized zona pellucida-proteins, since their 

induction of AE was also inhibited by SNX-482.  In support of this, mice lacking the 

α1E subunit of the CaV2.3 calcium channel failed to undergo AE in response to 

solubilized zona pellucida, or changes in the GM1 microenvironment.  These mice also 

have decreased litter size and impaired IVF success rates.   Our results provide the 

first evidence of function for GM1 in sperm, characterize more completely the 

reproductive phenotype of α1E-deficient mice, point to this channel subunit as being 

responsible for voltage-gated calcium influx early in AE, and provide an explanation 

for why GM1 localization is so strictly segregated in diverse mammalian species. 

Together, these results lead us to formulate a new model for the initiation of AE. 
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Introduction  

 

 

The lipid microenvironment is a powerful regulator of calcium flux and homeostasis 

in mammalian cells (see Golub, Wacha, & Caroni, 2004; Rajendran & Simons, 2005, 

for review). The organization of signaling molecules into functional, pre-assembled 

complexes through the use of membrane rafts is one way in which a membrane can 

regulate calcium homeostasis and signaling.  Rafts are dynamic, nanometer-sized 

microdomains enriched in sterols and sphingolipids that have been found to influence 

the activity of a variety of ion channels, including nucleotide-gated channels (Brady et 

al., 2004), voltage-operated calcium channels (VOCC; Taverna et al., 2004), and 

epithelial sodium channels (Shlyonsky, Mies, & Sariban-Sohraby, 2003) in a 

reversible manner.  

 

Of the raft-associated sphingolipids, the role of the ganglioside GM1 has been the most 

studied. This is largely due to the fact that the B subunit of cholera toxin (CTB) binds 

to GM1 with a remarkable specificity and sensitivity (Cuatrecasas, 1973; Fishman, 

Pacuszka, & Orlandi, 1993; Lauer, Goldstein, Nolan, & Nolan, 2002), making 

possible a variety of experimental techniques. GM1 has been shown to segregate 

preferentially to membrane rafts where even a single GM1 molecule can exert local 

effects on the membrane (Goins, Masserini, Barisas, & Freire, 1986; Roy & 

Mukhopadhyay, 2002). At the cell surface, GM1’s extracellular sugars can act as a 

receptor, such as GM1’s role as a co-receptor for FGF2 (Rusnati et al., 2002), and as a 

receptor for murine polyoma and SV40 virus (Tsai et al., 2003), or GM3-carbohydrate 

mediated sperm-egg adhesion in trout (Yu et al., 2002). GM1 has been suggested to 

promote the open probability of ion channels or the conformation of plasma 
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membrane calcium ATPases (PMCA), sarcoplasmic-endoplasmic reticulum calcium 

ATPases (SERCA), or sodium/calcium exchangers (Fang, Xie, Ledeen, & Wu, 2002; 

Ravichandra & Joshi, 1999; Zhao, Fan, Yang, & Zhang, 2004).  

 

Many of these same calcium transporters and channels have been identified in 

mammalian sperm (see Darszon et al., 2005, for review).  However, despite advances 

in understanding the complex process of regulated calcium influx during acrosomal 

exocytosis (AE), understanding of the nature and regulation of upstream channels 

involved in AE has remained elusive. This is due to many factors including the high 

redundancy of signaling pathways in sperm that elicit similar functions. The increase 

in intracellular calcium in the sperm head during AE occurs in discrete steps, 

including an initial pH-sensitive current potentially attributed to the sperm-specific 

Ca2+ channel CatSper, which raises resting calcium concentrations upon sterol efflux 

(Florman, 1994; Xia & Ren, 2009a); a second, previously un-identified voltage-

operated calcium channel allowing transient calcium elevation (Arnoult, Cardullo, 

Lemos, & Florman, 1996; Arnoult et al., 1999); followed closely by a final sustained 

elevation in intracellular calcium (Arnoult, Zeng, & Florman, 1996). These changes in 

intracellular calcium then allow SNARE-mediated fusion of the plasma membrane 

overlying the acrosome (APM) and the outer acrosomal membrane (OAM) (De Blas, 

Roggero, Tomes, & Mayorga, 2005; Michaut et al., 2001; Yunes, Michaut, Tomes, & 

Mayorga, 2000; Yunes et al., 2002).  

 

Although several subtypes of voltage-operated calcium channels have been described 

in sperm, their in vivo activity has been difficult to characterize.  Patch-clamp 

recordings from developing male germ cells detected low voltage activated (LVA), T-

type currents, in agreement with pharmacological characterization (Arnoult, Villaz, 
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Florman, & 6, 1998). However, male mice lacking T-type calcium channels CaV3.1 

and CaV3.2 are fertile, and the remaining current in male germ cells from these mice 

displays characteristics that differ slightly from somatic cell T-type currents 

(Stamboulian et al., 2004). Pharmacological studies of T-type channels in mature 

sperm often require very high concentrations of inhibitors to elicit effects, and these 

high concentrations can affect sodium channels and other calcium channels as well 

(Bonaccorsi, Forti, & Baldi, 2001). Additionally, depolarization-induced calcium 

influx to simulate ZP-induced calcium rise in mature mouse sperm proved to be 

insensitive to blockers of L-, P/Q-, and T-type channels (Wennemuth, Westenbroek, 

Xu, Hille, & Babcock, 2000).   

 

One common thread throughout reported studies on mature mouse sperm is the 

inhibition of AE by nickel and cadmium ions, which together would support the 

involvement of the CaV2.3 channel (Wennemuth et al., 2000). This channel is nearly 

indistinguishable from T-type channels with regard to its LVA gating properties, and 

is responsible for the majority of the residual, or R-type calcium current, (Ertel, 2004). 

R-type channels have been defined based on their resistance to inhibitors of other 

high-voltage activated (L-, N-, and P/Q-type) calcium channels and by their sensitivity 

to the spider venom peptide SNX-482 (Bourinet et al., 2001). Several studies have 

shown that R-type, CaV2.3 channels are modulated by phosphorylation and membrane 

binding partners and are also antagonized by peptides that antagonize Gαq and Gαi (R. 

A. Bannister, Melliti, & Adams, 2004; Cohen & Atlas, 2004; Kamatchi et al., 2003; 

Klockner et al., 2004; Toro-Castillo, Thapliyal, Gonzalez-Ochoa, Adams, & Meza, 

2007).  Such studies have defined physiologic roles for CaV2.3 in cerebellar 

neurotransmitter secretion, hormone secretion, neuronal plasticity and memory, and 
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morphine analgesia susceptibility (Cohen & Atlas, 2004; Fang et al., 2007; Muller et 

al., 2007).  

 

In sperm, CaV2.3 has been localized to the membrane of the principal piece of the 

flagellum and the apical acrosome and equatorial region of the sperm head 

(Westenbroek & Babcock, 1999).  CaV2.3 mRNA accounts for the greatest amount of 

voltage-operated calcium channel (VOCC) message in maturing sperm (Lievano et al., 

1996). Despite the findings of both mRNA and protein, CaV2.3 channel activity was 

not detected in patch-clamp readings of immature spermatocytes (Stamboulian et al., 

2004), suggesting that it might not function until later in maturation or in mature 

sperm.  Imaging studies of depolarization-evoked calcium entry in mature sperm 

provided evidence that CaV2.3 currents are activated in sperm, but the lack of a 

specific inhibitors or genetic models prohibited further investigation of this finding at 

the time (Wennemuth et al., 2000). 

 

Many maturational events of sperm capacitation, such as PKA and PKC 

phosphorylation, membrane fusion complex (SNARE) formation, and G-protein 

activity, have the potential to modify the CaV2.3 channel and regulate its activity 

(Bannister et al., 2004; Cohen & Atlas, 2004; Hell, Yokoyama, Breeze, Chavkin, & 

Catterall, 1995; Klockner et al., 2004).  These activities are mediated in sperm in part 

by the reorganization of membrane rafts and increases in membrane fluidity that 

change the lipid microenvironment of the sperm (Bickel, 2002; Brazer, Singh, Liu, 

Swaim, & Ambudkar, 2003; Taverna et al., 2004; van Gestel et al., 2005).  Here, we 

present evidence that focal clustering of the extracellular sugars of GM1 mediates AE 

through the activation of the CaV2.3 channel, and mice lacking this channel have 

severe defects in fertility.  This is also the first report describing an essential role for 
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CaV2.3 as the previously-unidentified, initial voltage-gated calcium channel in zona 

pellucida-mediated AE. 

 

 

Materials and Methods 

 

Reagents and animals 

All reagents were purchased from Sigma (St. Louis, MO), unless otherwise noted. 

CTB conjugated with Alexa Fluor 488 and 555 (Invitrogen, Carlsbad, CA) or 

conjugated with FITC was used as indicated.  Male CD-1 mice were purchased from 

Charles River Laboratories (Kingston, NY). Male and female B6129SF/J mice were 

purchased from Jackson laboratories (Barr Harbor, ME).  All experiments were 

repeated on both strains of mice. B6129SF/J mice carrying a null mutation for the α1E 

gene were a generous gift from the lab of Richard Miller, Northwestern University, IL.  

For indirect immunofluorescence, a monoclonal antibody against mouse α1E (Santa 

Cruz, Santa Cruz, CA) was used. Secondary antibody used was AlexaFlour 488- or 

AlexaFluor 555-conjugated goat anti-mouse IgG (Invitrogen). Changes in intracellular 

calcium concentrations were monitored using the membrane permeant fluorescent 

indicator dye Fluo-3 AM and Fluo-4 FF-AM (Molecular Probes, Invitrogen). All 

animal procedures were performed under the guidelines of the Institutional Animal 

Care and Use Committee at Cornell University. 

 

Preparation of media 

For murine sperm, a modified Whitten’s medium (MW; 22 mM HEPES, 1.2 mM 

MgCl2, 100 mM NaCl, 4.7 mM KCl, 1 mM pyruvic acid, 4.8 mM lactic acid hemi-
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calcium salt, pH 7.35; (Travis et al., 2004)) was used for all incubations. Glucose (5.5 

mM), NaHCO3 (10 mM), and 2-hydroxypropyl-b-cyclodextrin (2-OHCD; 3 mM) were 

supplemented as needed. 2-OHCD supports sperm capacitation and in vitro 

fertilization by functioning as a sterol acceptor, and is preferred over the more potent 

methyl-β-cyclodextrin (Visconti et al., 1999).  

 

Sperm collection and handling 

Murine sperm were collected from the cauda epididymides of male CD-1 mice by a 

swim-out procedure as described previously (Travis et al., 2001). All steps of 

collection and washing were performed at 37˚C using MW medium, and large orifice 

transfer pipettes or large orifice pipette tips were used for handling sperm to minimize 

membrane damage. After the initial washes but prior to experimental incubations, 

motility assessment was carried out, and samples showing <60% motility were not 

used.  

 

Sperm capacitation and induction of AE 

2x106 sperm were incubated in 300 µl of MW with glucose as base medium alone as 

non-capacitating media or MW base media supplemented with both 10 mM NaHCO3 

and 1 mM 2-OHCD as capacitating conditions. The pH of media for all incubation 

conditions was adjusted to 7.35. The capacitating condition media has been shown to 

be sufficient to support IVF (Travis et al., 2004) and capacitation-induced tyrosine 

phosphorylation (Visconti et al., 1999a) in murine sperm. The dead spaces of tubes 

used for all incubations were filled with nitrogen to avoid the generation of 

bicarbonate anions in the aqueous media. Nitrogen had no effect on protein tyrosine 

phosphorylation events associated with capacitation (Travis et al., 2001; data not 

shown). Calcium channel inhibitors were added 10 minutes prior to the addition of AE 
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agonists.  Progesterone (3 µg/ml final concentration, diluted in DMSO) was used as a 

positive control to induce AE in capacitated murine sperm after 50 minutes of 

incubation. CTB (1.5 µM final concentration, diluted in PBS) was added where 

indicated to assess its affect on AE.  The exogenous lipids ceramide, asialo-GM1, and 

GM1 (diluted in DMSO; 25 mM stock concentration) were also added to a final 

concentration of 25 µM where indicated.  Sperm were then processed for Coomassie 

assessment of AE as described previously (Visconti, Stewart-Savage et al., 1999).  

Briefly, after a 10-minute incubation with the AE agonist, 300 µL 8% 

paraformaldehyde in PBS was added to each tube to a final concentration of 4 %.  

After a 10-minute fixation, sperm were washed with PBS and again with 500 mM 

ammonium acetate before being air dried on glass slides.  The slides were stained with 

0.22% Coomassie Blue G-250 in 50% methanol and 10% acetic acid for 10 minutes 

before being rinsed and mounted with GVA mount.  To calculate the percentage of 

AE, all sperm in a given field were counted until at least 200 sperm were assessed per 

treatment condition for the presence or absence of a Coomassie stained acrosomal 

matrix.  A Kruskal-Wallis test was run to look for differences among treatment groups 

and any that were found were subjected to a Wilcoxon Signed Rank test to 

differentiate between groups with significant differences. 

 

Sperm capacitation and tyrosine phosphorylation 

For murine sperm, incubation with different stimuli for capacitation was carried out 

with 2x106 sperm in 300 µl of medium with 5.5 mM glucose under one of two 

conditions: (a) MW base medium (“non-capacitating conditions”), (b) MW with both 

10 mM NaHCO3 and 3 mM 2-OHCD (“capacitating conditions”), for 45 minutes. The 

pH of media for all incubation conditions was adjusted to 7.35 with HCl.  
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As a marker for capacitation-associated changes, phosphorylated tyrosine residues 

were detected using Western blotting techniques as described previously (Visconti et 

al., 1999).  Briefly, the sperm were homogenized in 5X protease inhibitor cocktail 

containing 0.2 mM sodium orthovanadate and the proteins were solubilized by boiling 

in sample buffer and then separated by SDS-PAGE under reducing conditions. 

Immunoblotting was performed with an anti-phosphorylated tyrosine monoclonal 

antibody and signals were detected by chemiluminescence as described previously 

(Travis et al., 2001). 

 

Collection and preparation of heat-solubilized zona pellucida 

Zona pellucidae (ZP) were collected via ovarian homogenization as described 

previously (Buffone, Rodriguez-Miranda, Storey, & Gerton, 2009).  All glass and 

plasticware were siliconized to reduce the loss of ZP by adherence to surfaces.  

Homogenization buffer  (HB) contained 150 mM NaCl, 25 mM triethanolamine 

(TEA), 1 mM MgCl2, 1 mM CaCl2, pH 8.5, with 10 mg DNase, and 1 tablet Complete 

Protease Inhibitor added to 50 ml HB just prior to ovary collection.  Approximately 70 

ovaries from 6 to 12 week-old female mice were homogenized using 7-12 strokes in a 

Wheaten-Boroek tissue grinder on ice in 2 ml of HB.  Ten percent Nonidet P40 (w/v) 

and 10 percent sodium deoxycholate (w/v) were added to the homogenate and briefly 

homogenized again.  The homogenate was layered atop a discontinuous percoll 

gradient containing 3 ml of 22% percoll in HB, 2 ml of 10% percoll in HB, and 2 ml 

of 2% percoll in HB.  The gradient was centrifuged for 2 hours at 400 g in a swinging 

bucket rotor at 4 °C.  The 10 % percoll fraction was collected and diluted with 45 ml 

of HB.  The diluted fraction was split into 24 2-ml conical centrifuge tubes and 

centrifuged for 10 minutes at 16,000 g at 4 °C.  The top 1.7 ml of supernatant was 

removed and discarded, and the zonae were pooled into six tubes and washed again 
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via centrifugation at 16,000 g for 10 minutes as previously in HB, followed by two 

additional washes in MW.  The final pellets were collected and combined.  Three 1 µl 

aliquots were visually inspected under a dissecting microscope to determine the 

concentration (ZP per µl).  The ZP solution was heated at 60 °C for 2 hours to 

solubilize the ZP and 12 µl aliquots were snap-frozen and stored at -80 °C until use.   

 

Evaluation of changes in intracellular calcium concentrations 

Intracellular calcium concentrations in a population of sperm were monitored using 

the membrane permeant fluorescent indicator dyes Fluo-3 AM and Fluo-4 FF-AM.  10 

million sperm in both non-capacitating and capacitating conditions were incubated in 

5 µM fluo-3 AM for 20 minutes at 37 °C in the dark.  Excess dye was washed from 

sperm by centrifugation at 400 g for 2 minutes.  Sperm were incubated for an 

additional 20 minutes to allow complete de-esterification of the intracellular dye with 

calcium channel inhibitors present where indicated. Fluorescence intensity was read at 

10-minute intervals for 60 minutes using a Tecan SaFire fluorescent plate reader 

(MTX Lab Systems, Inc; Vienna, VA) and analyzed using Magellan software (MTX 

Lab Systems, Inc.). 

  

In vitro fertilization 

All steps of in vitro fertilization (IVF) were carried out in modified Kreb’s bicarbonate 

(TYH) medium (Kito & Ohta, 2005).  Sperm were allowed to swim out from the 

cauda epididymides for 15 minutes followed by a 1-hour incubation in TYH medium 

prior to IVF.  Ovulation was induced in six-week-old B6129SF/J mice by 

intraperitoneal injections of 5 IU pregnant mare serum gonadotropin (PMSG) 

followed 48 hours later by 5 IU of human chorionic gonadotropin (hCG). Cumulus 

oocyte complexes were collected from the oviducts 13 hours later using 20 gauge 
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needles. Cumulus-oocyte complexes were either used directly for IVF or treated with 

0.015% hyaluronidase for 1 minute and pipetted up and down to remove cumulus 

cells.  Cumulus-free oocytes were washed in TYH and allowed to rest for 20 minutes 

prior to sperm addition at a concentration of 500,000 sperm/ml and incubation at 38 

°C in 5% CO2/5% O2/90% nitrogen.  Oocytes were transferred to sperm-free droplets 

after 6 hours and returned to the incubator.  Percent of eggs fertilized was calculated 

by assessing 2-cell embryos after 24 hours.  Embryos and unfertilized oocytes were 

fixed with 4 % paraformaldehyde and stained with 1:100 Hoechst to evaluate the 

occurrence of sperm binding and polyspermy. 

 

Results 

 

Exposure to CTB can induce AE in sperm incubated under capacitating conditions 

Our prior characterization of GM1 segregation and enrichment within the plasma 

membrane overlying the acrosome and acrosomal membrane, as well as the temporary 

masking of GM1 to maintain quiescence, led us to hypothesize that this organization 

and dynamic was important for sperm function (Asano et al., 2009; Buttke et al., 2006; 

Selvaraj et al., 2006).  Unexpectedly, in conducting those experiments, we noted that a 

portion of live, capacitated sperm exhibited a clearing of labeled CTB signal over the 

apical acrosomal area that appeared consistent with acrosomal exocytosis.  Co- 

labeling with FITC-conjugated peanut agglutinin to assess acrosomal status confirmed 

that these sperm had in fact lost the plasma membrane overlying the acrosome in 

response to CTB (data not shown). To investigate whether this event involved changes 

in the membrane alone or was also associated with a loss of acrosomal matrix as 

occurs during physiologic acrosomal exocytosis, we assessed acrosomal status with 
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Figure 1. A. Box whisker plots of percentage of sperm undergoing acrosomal 

exocytosis in response to capacitating conditions alone (C), calcium ionophore 

A23187 (A23187), progesterone (P4), solubilized zona pellucida (ZP), or CTB as 

assessed by coomassie staining patterns (n=4 experiments, > 200 sperm per 

experiment).  Sperm were incubated under capacitating conditions for 50 minutes and 

treated with P4 (3 µg/ml), ZP (2 ZP/µl), or CTB (1.5 µg/ml) to induce acrosomal 

exocytosis (AE) for 10 minutes prior to processing for Coomassie assessment as 

described above. As shown, CTB induced a significant increase in the percent of AE 

(p< 0.0001; α=0.05) that was statistically similar to the rates of AE induced by both 

P4 and ZP, but lower than A23187.   
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 Coomassie staining after treatment with 1.5 µM CTB or commonly employed 

agonists for AE: progesterone (P4; 3 µg/ml), solubilized zona pellucida proteins (ZP; 

2 ZP/µl), or calcium ionophore (A23187; 10 µM).  As with the P4 and ZP controls, 

exposure to CTB induced AE in sperm incubated in capacitating conditions (Fig. 1), 

whereas no increase in AE was seen in those sperm incubated in base media alone (C).  

 

The observed induction of AE by CTB in capacitated sperm might have been due to a 

non-physiologic membrane perturbation induced by the binding of the pentameric 

CTB (McCann, Mertz, Czworkowski, & Picking, 1997).  Conversely, cross-linking of 

GM1 by CTB might have mimicked a physiologically relevant clustering of GM1 that 

could occur upon sterol efflux-induced increased membrane fluidity (Shoeb, Laloraya, 

& Kumar, 2004; van Gestel et al., 2005).  If the effect were due specifically to GM1 

clustering as opposed to non-specific membrane perturbations, then the addition of 

exogenous GM1 into the plasma membrane should mimic this clustering effect by 

increasing focal concentrations of GM1 in areas where it inserts (Gouy, Debre, & 

Bismuth, 1995). To address this question, we added 25 µM exogenous GM1 to sperm.  

This concentration of GM1 has been shown to stimulate GM1–induced signaling events 

in somatic cells without affecting overall membrane integrity or cholesterol efflux 

(Yatomi, Igarashi, & Hakomori, 1996). As seen with the addition of CTB, exogenous 

GM1 significantly increased the rate of AE in capacitated sperm (Fig. 2), with no effect 

on viability or AE of non-capacitated sperm.  Additionally, a bivalent antibody against 

GM1 with only two potential binding sites and, therefore, less clustering potential, was 

unable to induce AE in capacitated sperm (data not shown).  This again suggests that it 

is the local concentration of GM1 in the membrane that is important in CTB induction 

of AE.  
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Studies from somatic cells have generated a model in which ligand-mediated 

clustering of GM1’s extracellular sugars, specifically sialic acid, allow the open gating 

of calcium channels and/or sterically inhibit outward calcium transporters (Fang et al., 

2002; Ledeen & Wu, 2007; Xie, Wu, Lu, & Ledeen, 2002; Zhang, Zhao, Duan, Yang, 

& Zhang, 2005).  This is analogous to the regulation of the pore-forming subunit of 

VOCC through the heavily glycosylated α2 portion of the α2δ subunits (Bannister et 

al., 2009).  In such a model, proximity of the ceramide tail alone should not stimulate 

an increase in intracellular calcium, and a ganglioside lacking a sialic acid side chain 

(e.g. asialo-GM1) might have decreased ability to stimulate calcium flux. To test this 

model in sperm, we evaluated the AE-inducing ability of the lipids asialo-GM1, which 

lacks the extracellular sialic acid side-chain of GM1, and ceramide, which lacks the 

entire extracellular portion of GM1. This experiment addressed the specificity of GM1 

clustering in the sperm membrane for induction of GM1-mediated AE as opposed to 

non-specific membrane perturbations, which would be induced by other lipids.  

Neither asialo-GM1 (25 µM) nor ceramide (25 µM) was able to induce a significant  

elevation in AE as compared to exogenous GM1 (Fig. 2).  These data suggest that the 

extracellular, carbohydrate portion of GM1 is important in the GM1-mediated AE in 

sperm.  

 

If the clustering of the extracellular sugars of GM1 could stimulate an increase in the 

activity of a plasma membrane-associated calcium channel, we reasoned that GM1-

mediated AE would require extracellular calcium. Indeed, the depletion of 

extracellular calcium prevented CTB- and P4-induced AE (Fig. 3B, C).  This 

suggested that GM1 promoted AE by modulating intracellular calcium concentrations 

through the activation of a membrane-associated calcium channel or transporter. To 

further investigate this hypothesis, we employed several pharmacological inhibitors of 
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Figure 2. Box whisker plots of the percentage of sperm undergoing acrosomal 

exocytosis in response to base medium (C) or 25 µM of the exogenous lipids GM1, 

asialo-GM1 (Asialo), ceramide (Cer), or solvent (DMSO, data not shown) (n=4 

replicates, >200 sperm each replicate).  Sperm were incubated under capacitating 

conditions for 50 minutes before the addition of exogenous lipids for 10 minutes.  

Coomassie staining was performed as described above, with no differences in motility 

seen among treatments after incubation. As shown, exposure to GM1 induced 

acrosomal exocytosis in in capacitated sperm at levels expected with exposure to 

progesterone, zona pellucida, or CTB (see Figure 1.), while asialo-GM1 and ceramide 

had no effect.  This suggests that the extracellular portion of GM1, particularly the 

sialic acid residue, is important in the GM1-mediated effect on sperm acrosomal 

exocytosis.  Diamond denotes statistical significance.  
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 known calcium channels and studied their effect on the CTB- and GM1-induced AE 

observed through Coomassie assessment of acrosomal status. We attempted to inhibit 

the CTB-induced AE using nickel as a known inhibitor of low-voltage activated 

calcium channels, R-type calcium channels, and store-operated calcium channels 

(SOCC’s), as well as calcium transporters (Ertel, 2004).  The CTB-induced AE was 

inhibited by nickel in a concentration dependent manner (Fig. 3A). 100 µM nickel will 

inhibit T-type, R-type, and SOCC channels, while 30 µM is only fully effective for R-

type and SOCC’s. Inhibiting SOCC’s with either cadmium (100µM; which also 

inhibits the CaV2.3, R-type calcium channels) or lanthanum (10 µM) prevented both 

the P4 and the CTB induced AE.  The SOCC, TRP channel specific inhibitor, BPT2, 

had no effect on either CTB or progesterone-induced AE (data not shown).  

 

The effect of 30 µM nickel suggested that T- and L-type calcium channels are not 

important for GM1-mediated AE. In support of this, the dihydropyridine nifedipine, 

which has reported selectivity for L-type channels, failed to inhibit either the CTB or 

the P4 induced AE even at concentrations of up to 100 µM (Fig. 3). Kurtoxin type 

KL1 (1 µM), which has been shown to inhibit T-type CaV 3.1 and 3.2 and HVA 

calcium channels in sperm, exhibited a non-significant reduction in P4-induced AE 

and had no effect on CTB-induced AE, suggesting that T-type channels are not 

important in GM1-mediated AE.  However, in agreement with our nickel and cadmium 

data, inhibition of the CaV2.3 or R-type calcium channel with SNX-482 (500 nM) 

prevented the CTB- and GM1-induced AE, but had no significant effect on P4-induced 

AE. Together, these pharmacological data suggest that both the CaV2.3 R-type channel 

and SOCC activities are necessary for GM1-mediated AE. 
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Figure 3. Box whisker plots of the percentage of sperm undergoing acrosomal 

exocytosis in response to CTB (panels A and B) or P4 (panel C) in the presence of 

inhibitors of various calcium channel inhibitors. A. Nickel (Ni) inhibited CTB-induced 

AE in a dose-dependent manner at concentrations that inhibit CaV2.3 channels (30 

µM) as well as store-operated calcium channels (100 µM).  B. The CTB-induced AE 

requires extracellular calcium, SOCC activity, and the CaV2.3 channel activity (n=4 

replicates, p< 0.005).  CTB-induced AE requires extracellular calcium as shown by 

the lack of response in calcium-depleted media (de-Ca).  CTB-induced AE is inhibited 

by the SOCC inhibitor lanthanum (La; 10 µM), the L-, N-, P-type, and CaV2.3 channel 

inhibitor cadmium (Cd, 100 µM), but not LVA inhibitor nifedipine (Nif; 30 µM) or t-

type kurtoxin KL1 (Kur; 1 µM).  The CaV2.3 specific inhibitor SNX-482 (SNX; 500 

nM) inhibits CTB-induced AE in addition to pertussis toxin (PTx). GM1-induced AE 

showed the requirement for extracellular calcium and sensitivity to inhibitors as CTB-

AE (data not shown).  C. P4-induced AE also required extracellular calcium (de-Ca) 

and was inhibited by La, but was only partially inhibited by the same concentrations of 

Cd, nifedipine, and kurtoxin, and completely insensitive to SNX and pertussis toxin. 

The GABAA inhibitor picrotoxin (Picro, 50 µM) had no effect on CTB- or GM1-

induced AE (data not shown).  Pertussis toxin (PTx, 0.1 µg/ml) inhibited CTB-, GM1-, 

and ZP-induced AE but failed to inhibit P4-induced AE.  
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The difference in SNX-482 susceptibility between CTB- and P4-induced AE 

suggested a difference in signaling pathways for these two agonists. No further 

increase in the percent of sperm undergoing AE was seen with the combination of 

progesterone and CTB and/or GM1, suggesting that both agents were acting on the 

same physiologically relevant population of cells (data not shown). Like CTB, 

solubilized zona-pellucida proteins (ZP) also acts on the same physiologically relevant 

population of cells as P4, but utilizes a different initial signaling cascade for AE.  

Therefore, we wanted to characterize potential GM1-mediated AE signaling 

components common to P4 and/or ZP.  

 

SOCC are necessary for later steps of both of the physiological P4 and ZP induced AE 

(Bhandari, Bansal, Talwar, & Gupta, 2010; Jungnickel, Marrero, Birnbaumer, Lemos, 

& Florman, 2001; Sutton et al., 2004).  However, like the GM1-mediated AE, the initial 

ZP-induced calcium rise appears to differ from that in P4.  Previous studies have 

shown that the P4-induced AE is inhibited by blocking GABAA channel activity with 

picrotoxin, while GABAA blockade has no effect on ZP induced AE (Bhandari et al., 

2010; Murase & Roldan, 1996). Conversely, P4-induced AE is pertussis toxin 

insensitive, whereas ZP-induced AE is inhibited by pertussis toxin (0.1 µg/ml), 

providing a means to differentiate the initial steps of these two distinct pathways to 

AE (Endo, Lee, & Kopf, 1987; H. M. Florman, Tombes, First, & Babcock, 1989; 

Tesarik, Carreras, & Mendoza, 1992). Like the ZP-induced AE, both the CTB- and 

GM1-induced AE are unaffected by the presence of the GABAA antagonist picrotoxin 

(100 µM), while conversely, pertussis toxin inhibits CTB- and GM1- induced AE (Fig. 

3B).  This suggests that GM1- mediated AE shares more common pathways with the 

ZP-induced AE than with P4.  In support of this, SNX-482 inhibited ZP-induced AE, 
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suggesting that the CaV2.3 channel is essential for ZP induced AE as well as the GM1 

mediated AE (Fig. 5). 

 

Characterization of sperm lacking CaV2.3 

In order to confirm the importance of the CaV2.3 channel in AE, we took a genetic 

approach.  Sperm from mice lacking the α1E subunit of the CaV2.3 channel have 

normal intracellular calcium concentrations, but altered calcium dynamics (Sakata et 

al., 2002). This translates into a straighter flagellar wave-form and delayed and lower 

calcium rises in response to mannosylated-BSA, an agent that can induce AE in 

human sperm (Amin et al., 1996).  No reports investigating ZP or P4 responses in 

CaV2.3 null sperm have been published.  We therefore wanted to characterize the 

response of α1E, CaV2.3 null mice to address the potential role of this channel in AE 

and sperm function, especially given our pharmacologic data supportive of an 

important role of this channel in AE and GM1-regulated sperm function.   

 

The CaV2.3 channel is found in the apical acrosome and flagellum of mature sperm 

(Fig. 4). Tyrosine phosphorylation cascades in CaV2.3 null sperm were 

indistinguishable from wild-type sperm (data not shown), and motility and 

morphology were grossly normal. As reported previously (Sakata et al., 2002), the 

increase in intracellular calcium during capacitation was identical in normal and 

homozygous null mice as measured by fluo-3 and -4 calcium indicator fluorescence, 

suggesting that other calcium homeostasis and flux machinery are functional in the 

knockout mice (data not shown).  However—and in agreement with our 

pharmacological data—sperm from CaV2.3 null mice failed to undergo AE in response 

to P4, CTB, GM1, or ZP (Fig. 5).  AE in response to calcium ionophore was 
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Figure 4. Indirect immunofluorescence images of strain-matched A) wild-type sperm 

stained with antibodies against the α1E subunit of the CaV2.3 calcium channel 

showing apical acrosomal and midpiece localization and a phase-contrast image of the 

same spermatozoon.  B) A spermatozoon from an α1E homozygous null mouse 

stained with the same antibodies against the α1E subunit showing a complete lack of 

signal and a phase contrast image of the same spermatozoon. 
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normal in these sperm, suggesting that the AE membrane fusion machinery is intact 

and functional in these sperm (Fig. 5). Defects in CaV2.3 knockout fertility were 

evident in significantly smaller litters than strain-, age- and season-matched control 

mice (4 pups versus 7.1 pups, n= 12, p=0.001; Table 1) and impaired IVF rates with 

cumulus-intact oocytes (61% 2-cell embryos for wildtype sperm versus 4% 2-cell 

embryos for CaV2.3 null sperm; n=2 days, 4 female mice). These findings are 

supportive of our hypothesis that it is the failure of the initial calcium response in 

these sperm that prevents AE, and the CaV2.3 channel is responsible for the initial, 

voltage-operated calcium influx during regulated exocytosis in sperm. 

 

Table 1. Average litter sizes for homozygous and heterozygous matings of 

wildtype and CaV2.3 null mice 

Genotype Pairing Mean litter size St. Deviation N 

WT male/WT female 7.1 1.6 11 

Null male/Null female 4 2.1 13 

WT male/Null female 7.25 1.25 8 

Null male/WT female 4 6 2 
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Figure 5. Box whisker plots of the percentages of AE in α1E null sperm (KO) and 

wildtype sperm (WT) in response to calcium ionophore A23187 (A23187), P4, CTB, 

GM1, and ZP (n=4).  KO sperm fail to respond to physiologic agonists for AE, but can 

undergo AE when intracellular calcium is artificially increased by using calcium 

ionophore A23187.  ZP-induced AE in WT sperm is also inhibited by SNX-482 (CZP 

SNX) (p> 0.0001; α=0.05).  Diamond denotes statistical significance. 
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Discussion 

 

The identification of the CaV2.3 channel as the voltage-operated channel responsible 

for the depolarization-induced rise in calcium at AE resolves several important 

conflicts and questions in the field of sperm biology, most notably, the reported 

differences between patch-clamp recordings on spermatogenic or uncapacitated sperm 

(Arnoult et al., 1998; Stamboulian et al., 2004) and reports from calcium imaging and 

pharmacologic studies (Sakata et al., 2001; Wennemuth et al., 2000).  The necessity 

for PKA- (Hell et al., 1995) and for PKC-dependent phosphorylation and potential 

interaction with the raft-associated chaperone protein Hsp70 (Krieger et al., 2006) or 

syntaxin1A (Cohen & Atlas, 2004) for CaV2.3 current might explain the lack of 

CaV2.3 current found in uncapacitated or spermatogenic sperm cells.  The physiologic 

maturation events of PKA and PKC activity and SNARE assembly have not occurred 

in these immature cells, and the sterol content maintains a high degree of membrane 

rigidity to limit diffusion of membrane signaling molecules.  The lack of CaV2.3 

activity without these membrane-remodeling events, such as an increase in fluidity 

and GM1 clustering, highlights the importance of capacitation in priming the sperm for 

the signaling processes of AE (Visconti, Stewart-Savage et al., 1999).   

 

Precisely how changes in membrane GM1 heterogeneity result in opening of the 

CaV2.3 channel is unknown. GM1 is known to regulate calcium fluxes in somatic cells 

through voltage-operated channels (Buckley, Su, Milstien, & Spiegel, 1995; Muthing, 

Maurer, & Weber-Schurholz, 1998; Nakatani et al., 2009), as well as nuclear 

sodium/calcium exchangers and activation of second messenger signals such as IP3 

generation (see Mocchetti, 2005, for review).  Clustering of GM1 might promote 
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voltage-operated calcium current in two main ways: through modification of 

secondary signaling molecules (Chen et al., 2003; Maehashi et al., 2003), or through 

direct interaction with the calcium channel itself (Xie, Wu, Lu, Rohowsky-Kochan, & 

Ledeen, 2004; Zhang et al., 2005; Zhao et al., 2004).  

 

In support of the direct interaction hypothesis, many voltage-operated calcium 

channels are regulated by the highly glycosylated, extracellular α2 component of the 

α2-δ auxiliary subunit (see Davies et al., 2007, for review; Bannister et al., 2009). The 

δ portion of this subunit is a GPI-linked protein, so the sugars on the α2 portion are 

held in a conformation that can interact with the pore-forming, α1 subunit and is 

segregated to membrane rafts.  Indeed, the conformation and interaction of GM1 with 

membrane calcium channels alone has been shown to promote the open gating 

conformation (Fang et al., 2002; Xie et al., 2004; Zhang et al., 2005), providing a 

mechanism by which GM1 might stimulate CaV2.3 calcium flux in sperm.  Clustering 

of GM1 around a membrane calcium channel, either CaV2.3 or an additional channel, 

might initiate a small influx of calcium into the cell, similar to the effect of the 

extracellular portion of the α2δ auxiliary subunit association, that could cause 

sufficient depolarization to open additional voltage-operative CaV2.3 channels.   

 

As another possibility, clustering of GM1 might influence membrane depolarization by 

changing the activity of the alkalinizing Hv1 proton pump (Lishko, Botchkina, 

Fedorenko, & Kirichok, 2010), the hyperpolarizing Slo3 channel (Santi et al., 2010), 

or BSA-activated calcium current through CatSper (Xia & Ren, 2009a; Xia & Ren, 

2009b).  The upstream activity of each of these ion transporters is necessary for AE 

and likely contributes to the membrane depolarization that facilitates CaV2.3 activity.  

Other upstream modifiers, such as PKC activity, G-protein activation, and/or SNARE 
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assembly are potential avenues for GM1-mediated changes.  For example, in Neuro2a 

cells, GM1 has been shown to mediate calcium influx through an R- or T-type channel 

dependent upon pertussis toxin-sensitive G-proteins (Ravichandra & Joshi, 1999).  A 

similar GM1-mediated mechanism might also account for the GM1- and ZP3-induced 

AE sensitivity to pertussis toxin.  

 

Our characterization of sperm membrane organization and dynamics have led to a 

model through which either 1) removal of inhibitory factor SVS2 (Kawano & 

Yoshida, 2007), 2) an increase in membrane fluidity with sterol efflux (Jones, 2010), 

or 3) point fusion events between the plasma membrane and acrosomal membrane 

(Kim & Gerton, 2003) and lipid transfer allows the clustering of GM1 focally in the 

plasma membrane around a signaling target to activate calcium influx. Some 

combination of these three possibilities is also quite likely. 

 

The decapacitation factor SVS2 specifically binds GM1 during the process of 

ejaculation and is gradually lost from the sperm surface during transit through the 

female reproductive tract (Kawano & Yoshida, 2007; Kawano, Yoshida, Iwamoto, & 

Yoshida, 2008).   The evolution of a conserved protein that specifically and transiently 

masks the extracellular portion of GM1 to prevent capacitation is highly suggestive of 

an important role for GM1 in physiologic signaling processes important for 

fertilization.  The decapacitation effects of SVS2 might be accomplished by 

preventing GM1 interaction with membrane targets, such as CaV2.3. Such a mechanism 

of “masking” GM1 might act as an additional means for sperm to regulate a gradual 

clustering of GM1. This unmasking is likely accompanied by other membrane changes 

that occur with sterol efflux. 
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Although the requirement for sterol efflux in fertilization has been known for decades, 

the exact mechanisms through which sterol efflux influences sperm signaling have not 

been fully elucidated.  Efflux of sterols from the plasma membrane might facilitate 

GM1 stimulation of CaV2.3 activity in sperm.  Capacitation-induced changes in lipid 

diffusibility within the acrosomal sub-domain have suggested that sterol efflux 

mediates an increase in membrane fluidity, allowing the formation and/or diffusion of 

smaller raft units within the larger sub-domain (Smith, McKinnon-Thompson, & 

Wolf, 1998; van Gestel et al., 2005; Wolf, Maynard, McKinnon, & Melchior, 1990; 

Wolf, 1995; Wolfe, James, Mackie, Ladha, & Jones, 1998). Association of raft-

associated syntaxin 1A and/or synaptotagmin with CaV2.3 dramatically increases 

current through this channel (Cohen & Atlas, 2004). Likewise, raft-dependent 

interaction of the α2-δ subunit with the pore-forming calcium subunits has been 

hypothesized to prevent channel activation until raft-association of the pore-forming 

subunit occurs with membrane reorganization (Davies et al., 2010; Dickman, Kurshan, 

& Schwarz, 2008).  A similar raft-orchestrated regulation of GM1-CaV2.3 dynamics 

would provide a mechanism both for the regulation of CaV2.3 activity, as well as the 

requirement for sterol efflux in AE.  Such an increase in fluidity, coupled with the loss 

of SVS2, might allow the movement and clustering of the extracellular sugars of GM1 

within the plasma membrane, similar to the experimental clustering induced with CTB 

or the addition of exogenous GM1 (Fig. 6). Clustering of other potential oocyte or ZP 

interaction molecules, such as β-1,4-galactosyltransferase-1 (Gong, Dubois, Miller, 

Shur, & 5231, 1995), on the sperm surface might also facilitate the clustering of GM1 

around the CaV2.3 channel. 

 

Alternatively or concomitantly, the efflux of sterols from the plasma membrane and 

the resultant increase in membrane fluidity might allow point fusion events to occur 
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between the plasma membrane and the outer acrosomal membrane.  These point 

fusion events might allow GM1 enriched in the acrosomal membrane to move to the 

plasma membrane, as seen with the acrosomal protein sp56 (Kim & Gerton, 2003). 

Although it has been known for decades that the process of AE itself has several steps 

(Saling, Sowinski, & Storey, 1979), only recently has it been proposed that “kiss-and-

run” fusion events, similar to those observed in neurons, occur between the APM and 

OAM during the process of sperm capacitation (Buffone, Foster, & Gerton, 2008; 

Gerton, 2001; Kim & Gerton, 2003).  In either the membrane fluidity or membrane 

point fusion scenario, the data presented here suggest that the resultant local 

enrichment of GM1 upon sterol efflux allows the activation and opening of the CaV2.3 

channel, resulting in AE. 
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Figure 6. Schematic drawing of a sperm plasma membrane and acrosome depicting the 

potential roles of GM1 in sperm signaling pathways leading to AE.  In ejaculated 

sperm, the plasma membrane overlying the acrosome is highly enriched in sterols.  

Seminal plasma components, such as SVS2, have adsorbed to the plasma membrane 

by binding GM1.  During transit through the female reproductive tract, sterols and 

seminal plasma components, including SVS2, are removed from the plasma 

membrane, resulting in an increase in membrane fluidity.  The increased membrane 

fluidity, coupled with the loss of SVS2 binding to GM1, might allow increased 

movement and clustering of GM1 in the plasma membrane.  Alternatively or 

concomitantly, the changes in membrane fluidity facilitate point fusion events between 

the plasma membrane and the outer acrosomal membrane, allowing further enrichment 

and focal clustering of GM1 in the plasm membrane.  Focal clustering of GM1 around a 

membrane target such as the CaV2.3 calcium channel allows open gating of the 

channel and a resultant increase in intracellular calcium within the spermatozoon.  

This increase in calcium stimulates PLCδ4 production of IP3, which stimulates IP3 

receptors to release calcium stores and generate store-operated calcium influx.  The 

sustained calcium influx results in membrane fusion complex formation and 

exocytotic release of the acrosomal vesicle.   
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These potential pathways are not mutually exclusive and likely work in concert to 

facilitate optimal sperm responsiveness.  Further work characterizing the chronology 

and nature of the signaling events leading to CaV2.3 mediated calcium influx will 

greatly contribute to the knowledge of this enigmatic but crucially important step in 

sperm-egg communication. 
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CHAPTER 6 

THE TRKA KINASE PATHWAY IS ACTIVE DURING CAPACITATION OF 

MURINE SPERM AND REGULATED BY THE GANGLIOSIDE GM1 
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Abstract 

 

Previous studies have shown that the ganglioside GM1 is highly enriched in and stably 

segregated to the acrosomal membrane and plasma membrane overlying the acrosome 

in human, mouse, and bull.  GM1 is also specifically bound by the decapacitation factor 

SVS2 from seminal vesicle fluid upon ejaculation and is progressively lost from the 

membrane as the sperm transits the female reproductive tract.  The mechanism of the 

decapacitating effect of SVS2 is currently unknown.  In order to elucidate this 

mechanism and the role of GM1 in sperm membrane dynamics, we investigated the 

effects of modulating GM1 concentrations in murine sperm.  Exogenous GM1 

accelerated tyrosine phorphorylation of sperm proteins even without the presence of a 

sterol acceptor in the medium and bypassed the decapacitating effects of SVS2.  This 

hastening of phosphorylation was blocked specifically by the TrkA inhibitor 

tyrphostin AG 879. Supporting the specificity of the inhibitor, TrkA mRNA and 

protein were identified in sperm.  Activation of PLC by TrkA appears essential for 

these effects.  This is the first report documenting the presence of TrkA kinase activity 

in sperm and its potential role in capacitation.  These findings have important clinical 

implications regarding the presence of GM1 in current semen extenders and 

implications in cryocapacitation of mammalian sperm.  
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Introduction 

 

The ability of the lipid microenvironment to influence the composition and 

accessibility of signaling molecules effectively regulates the responsiveness, efficacy, 

duration, and reliability of signaling cascades (Lingwood & Simons, 2010). Although 

described relatively recently, membrane domains termed membrane rafts are essential 

components of cellular signaling processes.  Membrane rafts are defined as “small, 

heterogeneous, highly dynamic, sterol- and sphingolipid-enriched domains that 

compartmentalize cellular processes.  Small rafts can sometimes be stabilized to form 

larger platforms through protein-protein and protein-lipid interactions” (Pike, 2006).  

Cells utilize transmembrane proteins, lipid binding proteins, cytoskeletal elements and 

active vesicular trafficking mechanisms to maintain the heterogeneity of membrane 

rafts (Fan, Sammalkorpi, & Haataja, 2009).  This interplay of components results in an 

organization more sophisticated than lipid phase separation would allow on its own.  

 

Membrane rafts have been described in sperm and appear to play an integral role in 

signaling and maturation based on their dynamic reorganization during capacitation 

(Bou Khalil et al., 2006; Jones et al., 2010; Nixon & Aitken, 2009; Asano et al., 2009; 

Travis et al., 2001; van Gestel et al., 2005).  The process of capacitation has not been 

fully described but includes the removal of sterols and seminal plasma constituents 

from the plasma membrane with a concomitant influx of calcium and bicarbonate into 

the cell (Darszon et al., 2005; Demarco et al., 2003).  The rise in intracellular 

bicarbonate activates a sperm-specific soluble adenylate cyclase (sAC) to produce 

cAMP, resulting in PKA activation (Breitbart, 2003; Wuttke, Buck, & Levin, 2001).  

Through an unknown mechanism, these changes are transduced into a series of 
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tyrosine phosphorylation events on a specific subset of protein residues (Visconti, 

Stewart-Savage et al., 1999).   

 

Several kinases have been identified in sperm, and these enzymes play redundant 

roles.  The activation of calmodulin dependent kinase (CAMKII) is essential for 

hyperactivated motility patterns (Ignotz & Suarez, 2005).  Protein kinase C appears 

necessary for the pathways of capacitation resulting in exocytotic release from the 

single sperm vesicle, the acrosome, upon contact with the egg coat (Breitbart, Lax, 

Rotem, & Naor, 1992). Still different tyrosine phophorylation pathways appear active 

during the process of cryocapacitation, during which the freeze-thaw process results in 

a slightly different subset of phosphorylated proteins (Cormier & Bailey, 2003; 

Hammerstedt, Graham, & Nolan, 1990; Huo, Yue, & Yang, 2002; Pommer, Rutllant, 

& Meyers, 2003).   Freeze-thawed sperm display altered membrane properties, 

tyrosine phosphorylation, and are able to undergo acrosomal exocytosis without prior 

incubation with capacitating stimuli, an effect which limits the longevity and fertility 

of these sperm. 

 

Important roles for membrane rafts in tyrosine phosphorylation cascades are known to 

exist in many excitable cells, and rafts have been hypothesized to play a role in 

organizing signaling pathways involved in capacitation (Guan, 2004; Harder, 2004; 

Janes, Ley, & Magee, 1999; Parpal, Karlsson, Thorn, & Stralfors, 2001; Sato et al., 

2003; Ushio-Fukai et al., 2001).  Membrane rafts organize lipid-protein complexes 

that facilitate epidermal and nerve growth-factor receptor phosphorylation cascades in 

many cells, as well as calcium-dependent kinase activity and other calcium dependent 

processes (Salzer, Hinterdorfer, Hunger, Borken, & Prohaska, 2002; Sato et al., 2003).   
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Lipid constituents of membrane rafts can also act as signaling molecules themselves.  

The importance of phosphoinositides in regulating kinase pathways and intracellular 

calcium release is well documented in sperm (Berruti & Franchi, 1986; Domino & 

Garbers, 1989; Roldan & Harrison, 1989), and glycosphingolipids can act both as cell 

surface receptors as well as transducers of intracellular signals in somatic cells 

(McNamara et al., 2001; Rusnati et al., 2002; Tsai et al., 2003; Yu et al., 2002).  Most 

notably, lipid constituents of membrane rafts have been hypothesized to play an 

important role in the organization of membrane fusion machinery that is essential for 

sperm-egg recognition (see Nixon & Aitken, 2009, for review). 

 

The glycosphingolipid GM1 is commonly associated with membrane rafts and is 

involved in many signaling processes in somatic cells.  The pentameric B subunit of 

cholera toxin binds up to five GM1 molecules in a membrane with high specificity and 

affinity (Cuatrecasas, 1973; Lauer, Goldstein, Nolan, & Nolan, 2002).  This 

experimental tool has contributed greatly to studies of GM1 in live cells and cell 

signaling pathways.  GM1 has a role as a receptor for cholera toxin, SV40 and polyoma 

virus, and as a co-receptor for FGF2 (Cuatrecasas, 1973; Fukumoto et al., 2006; Tsai 

et al., 2003).  Through these and other pathways, GM1 is involved in cell 

differentiation and growth, tyrosine phosphorylation cascades, and modulation of 

calcium homeostasis and flux (Brodsky et al., 2003; Chen et al., 2003; Fang, Xie, 

Ledeen, & Wu, 2002; Rusnati et al., 2002). GM1 can interact either directly or through 

binding partners to increase calcium flux through several calcium transporters and 

channels (Buchwald et al., 2007; Buckley, Su, Milstien, & Spiegel, 1995; Ledeen & 

Wu, 2007; Yatomi, Igarashi, & Hakomori, 1996).  Likewise, exogenous GM1 will also 

induce calcium influx in sperm (see chapter 5).  This has dramatic and important 

effects in calcium dependent processes in sperm, including acrosomal exocytosis. 
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In mammalian sperm, GM1 is stably segregated to and highly enriched in the plasma 

membrane overlying the acrosome of several species (Buttke, Nelson, Schlegel, 

Hunnicutt, & Travis, 2006; Selvaraj et al., 2006).  GM1 is specifically bound by the 

decapacitation factor SVS2, which is gradually removed from the plasma membrane 

as sperm transit the female reproductive tract (Kawano, Yoshida, Iwamoto, & 

Yoshida, 2008).  In this report we investigate the role of GM1 as a signaling molecule 

in murine sperm and present a model in which GM1 enhances signaling pathways 

important in capacitation and acrosomal exocytosis.  These findings have important 

implications not only to our understanding of mammalian sperm capacitation, but also 

to the formulation and use of cryopreservation and semen extension media. 

 

 

 

Materials and Methods 

 

Reagents and animals 

All reagents were purchased from Sigma (St. Louis, MO), unless otherwise noted. 

Male CD-1 mice were purchased from Charles River Laboratories (Kingston, NY). 

Purified GM1, ceramide, and asialo-GM1 were purchased from Matreya, LLC (Pleasant 

Gap, PA).   A monoclonal antibody against phosphorylated tyrosine, clone 4G10 was 

purchased from Invitrogen (Carlsbad, CA). Antibodies against TrkA and 

phosphorylated TrkA were obtained from Cell Signaling Technology (Danvers, MA). 

All animal procedures were performed under the guidelines of the Institutional Animal 

Care and Use Committee at Cornell University. 
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Preparation of media 

For murine sperm, a modified Whitten’s medium (MW: 22 mM HEPES, 1.2 mM 

MgCl2, 100 mM NaCl, 4.7 mM KCl, 1 mM pyruvic acid, 4.8 mM lactic acid hemi-

calcium salt, pH 7.35) (Travis et al., 2001) was used for all incubations. Glucose (5.5 

mM), NaHCO3 (10 mM), and 2-hydroxypropyl-β-cyclodextrin (2-OHCD; 3 mM) 

were supplemented as needed. 2-OHCD supports sperm capacitation and in vitro 

fertilization by functioning as a sterol acceptor, and is preferred over the more potent 

methyl-β-cyclodextrin (Visconti et al., 1999).  

 

Sperm collection and handling 

Murine sperm were collected from the cauda epididymides of male CD-1 mice by a 

swim-out procedure as described previously (Travis et al., 2001). All steps of 

collection and washing were performed at 37˚C using MW medium, and large orifice 

transfer pipettes or large orifice pipette tips were used for handling sperm to minimize 

membrane damage. After the initial washes but prior to experimental incubations, 

motility assessment was carried out, and samples showing <60% motility were not 

used.  

 

Sperm capacitation and tyrosine phosphorylation 

For murine sperm, incubation with different stimuli for capacitation was carried out 

with 2x106 sperm in 300 µl of medium with 5.5 mM glucose under one of four 

conditions: (a) MW base medium, (b) MW supplemented with 10 mM NaHCO3, (c) 

MW supplemented with 3 mM 2-OHCD and (d) MW with both 10 mM NaHCO3 and 

3 mM 2-OHCD, for 45 minutes. The pH of medium for all incubation conditions was 

adjusted to 7.35. The medium in incubation condition (d), has been shown to be 
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sufficient to support IVF (Travis et al., 2004) and capacitation-induced tyrosine 

phosphorylation in murine sperm.   

 

Western blotting to detect phosphorylated tyrosine residues as a marker for 

capacitation associated changes was conducted as described previously (Travis et al., 

2001).  Briefly, the sperm were homogenized in 5X protease inhibitor cocktail 

containing 0.2 mM sodium orthovanadate and the proteins were solubilized by boiling 

in sample buffer and then separated by SDS-PAGE under reducing conditions. 

Immunoblotting performed with an anti-phosphorylated tyrosine monoclonal antibody 

and detection by chemiluminescence were performed as described previously (Travis 

et al., 2001). 

 

Isolation of SVS2 

Native SVS2 was purified according to (Kawano & Yoshida, 2007).  Seminal vesicle 

fluid was collected from the seminal vesicles of retired male CD-1 mice by manual 

expression of dissected glands into 1 ml PBS pH 7.4.  The fluid was centrifuged at 

10,000 x g for 10 minutes at 4˚ C and the supernatant was collected and placed over a 

P-30 gel filtration column (1 x 50 cm, Bio-Rad Japan, Tokyo) and centrifuged for 2 

minutes at 200 x g in a swinging bucket rotor.  The eluate was desalted and run on a 

polyacrylamide gel and stained with Coomassie Blue to confirm the presence of a 

single 40-kDa protein before the purified SVS2 was lyophilized and stored at -80 ˚ C 

until use.   

 

Indirect immunofluroescence 

Sperm were fixed and treated as described previously for detection of proteins on 

whole cells (Selvaraj et al., 2006).  Cells were fixed with 4% paraformaldehyde with 



 

210 

0.2 % gluteraldehyde for 10 minutes.  After fixation, cells were washed with PBS and 

blocked overnight in 3% bovine serum albumin at 4 ˚ C.  Cells were incubated in 

primary antibody at a 1:50 dilution for 2 hours, washed three times in PBS, and 

incubated in anti-rabbit Alexa fluor 488 at a 1:200 dilution.  As a negative control, 

cells were incubated in secondary antibody alone after the blocking step.  Imaging was 

done using a Nikon Eclipse TE 2000-UY microscope (Nikon, Melville, NY) equipped 

with a Photometrics Coolsnap HQ CCD camera (Roper Scientific, Ottobrunn, 

Germany) and Openlab 3.1 automation and imaging software. 

 

Molecular characterization 

Germ cells were isolated from the testes of male CD-1 retired breeders by a 20-

minute incubation in collagenase followed by a 10-minute incubation in 0.5 

mg/ml trypsin with 1 µg/ml DNAse I.  The cell suspension was filtered through 

a mesh filter, and cells were collected and lysed for RNA extraction using the 

RNeasy Mini Kit (Qiagen, Hilden, Germany). Reverse transcription PCR was 

performed in the germ cell RNA using the superscript III kit (Invitrogen) and 

primer (5’ – TCG CCT CAG TGT TGG AGA G) corresponding to the C-

terminal intracellular kinase domain of TrkA.  Resulting cDNA was amplified 

using GoTaq enzyme with amplification reactions performed in volumes of 25 

µl using TrkA specific primer (3’ AGG TGG CTG CTG GTA TGG T 5’) 

containing 50 ng template DNA, reaction buffer (10 mM Tris–HCl, 50 mM 

KCl, 2 mM MgCl2), 200 µM dNTP (Fisher Scientific, Pittsburgh, PA, USA), 

and 0.5 U Taq DNA polymerase (Invitrogen) in a Mastercycler gradient PCR 

machine (Eppendorf, Westbury, NY, USA). The protocol was as follows: initial 

denaturation for 2 min at 94 °C; then 35 cycels of 94 °C for 20 s, 58.5 °C for 15 

s, and 72 °C for 1.5 minutes, followed by a final extension cycle of 5 min at 72 
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°C. PCR products were purified using agarose gel electrophoresis.  A single 

band was excised from the germ cells and submitted to the Cornell Biological 

Resource Center (Ithaca, NY) for sequence analysis. 

 

Results 

 

We have previously found that the plasma membrane overlying the acrosome and 

outer acrosomal membrane of mammalian sperm is highly enriched in GM1 (Buttke et 

al., 2006; Selvaraj et al., 2006; Selvaraj et al., 2009), and that GM1 influences calcium 

dynamics crucial for AE (see chapter 5).   Because calcium flux is a key component of 

other signaling pathways important for sperm function, we next investigated the 

impact of exogenous GM1 on calcium-dependent tyrosine phosphorylation events in 

sperm.  We evaluated the effect of exogenous GM1 on tyrosine phosphorylation 

cascades over 0, 15, 30, 45, and 60 minutes of incubation in capacitating and non-

capacitating conditions. Exogenous GM1 accelerated tyrosine phosphorylation 

cascades beyond levels seen under capacitating conditions alone (Fig. 1).  As shown in 

Figure 1, GM1 induced phosphorylation in the same subset of proteins as seen under 

capacitating conditions, suggesting that the same targets and pathways are active.  

After 15 minutes of incubation, levels of phosphorylation in sperm treated with 

exogenous GM1 equaled levels of phosphorylation seen only after 60 minutes of 

incubation under capacitating conditions without exogenous GM1 in the media.  

 

Interestingly, GM1 appeared to bypass the need for a sterol acceptor in the media, 

because bicarbonate and GM1 alone were able to induce tyrosine phosphorylation 

consistent with capacitation (Fig. 2, lane B5).  The extracellular sugars of GM1 appear 
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Figure 1. A Western blot of phosphorylated tyrosine residues in sperm incubated 

under capacitating conditions without and with 25 µM GM1 in the media, showing 

GM1-mediated acceleration of tyrosine residues beyond levels seen under capacitating 

conditions alone. C=capacitating conditions.
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 important in mediating this effect, as ceramide (which lacks these sugars) failed to 

induce this effect (lanes B3, D3) and asialo- GM1 increased phosphorylation to a lesser 

extent and only in the presence of a sterol acceptor in the media (lanes B4, D4). 

Additionally, the increased efficacy of GM1 in inducing phosphorylation was apparent 

despite the fact that the increased hydrophobicity of ceramide and asialo- GM1 

compared to GM1 result in a higher percent of these lipids inserting into a membrane as 

compared to exogenous GM1 (O'Keefe & Cuatrecasas, 1977; Scheel, Schwarzmann, 

Hoffmann-Bleihauer, & Sandhoff, 1985; Spiegel, Schlessinger, & Fishman, 1984).  

The requirement for sialic acid in ganglioside-mediated effects in sperm is in 

agreement with reports from somatic cells where the extracellular sialic acid residue of 

GM1 is necessary to induce conformational changes in membrane-associated targets 

such as tyrosine kinases (Duchemin, Ren, Mo, Neff, & Hadjiconstantinou, 2002a; 

Woronowicz et al., 2007). 

 

Cells can regulate membrane lipid composition in a variety of ways.  Transfer of GM1 

between membranes can occur through both spontaneous and facilitated transport 

mechanisms and result in focal enrichments of GM1 (Brown & Thompson, 1987; 

Brown & Hyland, 1992; Depauw et al., 1990).  Conversely, regulation through the 

acquisition or loss of binding partners can change the movement and accessibility of 

membrane lipids.  One way in which sperm might regulate GM1’s interactions in vivo 

is through the gradual loss of the seminal vesicle protein SVS2 that binds specifically 

to GM1 during ejaculation and is lost during transit through the female reproductive 

tract (Kawano et al., 2008).  This would provide an additional level of physiologic 

regulation of GM1 dynamics.  We tested whether the addition of GM1 could bypass the 

SVS2 mediated suppression of tyrosine phosphorylation cascades that occurs during 
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Figure 2.  Exogenous GM1 accelerates the phosphorylation of tyrosine residues in 

sperm. In panel A) sperm were incubated in MW base media alone, B) MW 

supplemented with 10 mM bicarbonate, C) MW supplemented with 3 mM 2-

hydroxypropyl cyclodextrin (2-OH CD), and D) MW supplemented with both 10 mM 

bicarbonate and 3 mM 2-OH CD. Lane 1) base media, 2) DMSO solvent control, 3) 25 

uM ceramide, 4) 25 uM asialo GM1, 5) 25 uM GM1.  
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Figure 3. Exogenous GM1 overcomes SVS2 mediated inhibition of tyrosine 

phosphorylation. A 20-fold increase in SVS2 concentration was needed to overcome 

the effects of exogenous GM1 in the media.  Physiologic concentrations of SVS2 are 

reported to be approximately 25 µM according to Kawano and Yoshida, 2008.  N= 

MW base media alone.  C= MW supplemented with 10 mM bicarbonate and 3 mM 2-

OHCD.  
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 normal fertilization.  As shown in Figure 3, SVS2 inhibits tyrosine phosphorylation in 

a dose-dependent manner.  This inhibition was overcome with the addition of GM1 to 

the media.  A twenty-fold increase in SVS2 concentration was necessary to inhibit the 

GM1 effects on tyrosine phosphorylation.   

 

In vitro and in vivo studies of murine neurons have shown that clustering of GM1 in the 

plasma membrane results in the transactivation of the tyrosine kinase and NGF 

receptor TrkA (Duchemin, Neff, & Hadjiconstantinou, 1998a; Duchemin, Ren, Mo, 

Neff, & Hadjiconstantinou, 2002a; Farooqui, Franklin, Pearl, & Yates, 1997).  

Importantly, this activation occurs irrespective of the presence of NGF through 

association with GM1 with or without G-protein coupled receptors.  TrkA has been 

localized by immunohistochemistry to the head and flagellum of mature sperm in rat, 

human, and macaque (Jin et al., 2006; Li et al., 2005; Muller et al., 2006), but has not 

been investigated in murine sperm. Therefore, we wanted to confirm and characterize 

the presence of TrkA in murine sperm.  We conducted PCR on cDNA from mixed 

male germs cells of mice and sequenced the corresponding 218 base pair fragment of 

TrkA. Immunoblotting revealed the presence of an approximately 130 kDa protein 

recognized by a polyclonal antibody directed against the N terminus of somatic cell 

TrkA near alanine 225 (Fig. 4).  An additional band of approximately 10 kDa was 

identified that was not present in brain.  The antibody used for Western blotting was 

not able to immunolocalize TrkA in fixed sperm (data not shown).  Conversely, a 

different commercial antibody against TrkA labeled the flagellum and apical acrosome 

of sperm but failed to recognize TrkA in Immunoblotting techniques. Although these 

data agree with previous reports localizing TrkA in the acrosomal area of rat and 

macaque sperm, they should be interpreted with caution given the application-limited 
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Figure 4. Immunoblot of total brain and sperm protein extracts using a polyclonal 

antibody against the extracellular portion of TrkA.  Lane 1) brain, lane 2) sperm.  The 

smaller band seen in the sperm extracts is at the level of the dye front.
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 nature of the antibodies and noted potential differences in the antigenic domain of 

TrkA. 

 

Having confirmed the presence of the kinase domain of TrkA in sperm, we next 

attempted to characterize TrkA activity during sperm signaling pathways stimulated 

by exogenous GM1.  The binding of TrkA to its ligand or interaction with GM1 induces 

TrkA dimerization and trans-phosphorylation of the kinase domain in neurons, 

resulting in its activation. Using an antibody directed against the active 

phosphorylated TrkA, we found TrkA to be strongly activated by exogenous GM1 (Fig. 

5).  This phosphorylation occurred in the absence of GM1 only after prolonged 

incubation under capacitating conditions and did not yield as robust a response. 

Importantly, we were able to inhibit GM1-induced tyrosine phosphorylation in sperm 

through the use of the specific TrkA inhibitor tyrphostin AG 879 (Fig. 5B; 25 µM).  

Although less dramatic, TrkA inhibition reduced tyrosine phosphorylation under 

normal capacitating conditions as well.  This appeared to be specific to TrkA 

inhibition, because use of tyrphostin AG 825, to inhibit Her2 (a protein whose 

transcription is reported to be down-regulated by tyrphostin AG 879) had no effect on 

tyrosine phosphorylation or sperm viability at any timepoint (25 µM; data not shown).  

The nitric oxide synthesis pathway has also been implicated in tyrosine 

phosphorylation cascades in sperm, but appears not to play a role here based on 

insensitivity to the inhibitor N (G)-nitro-L- arginine methyl ester, L-NAME (data not 

shown).  These data further support the hypothesis that TrkA activation is responsible 

for the GM1-induced tyrosine phosphorylation effects.
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Figure 5.  Inhibition of TrkA activity prevented the GM1-induced acceleration of 

tyrosine phosphorylation and reduced phosphorylation levels in sperm under normal 

capacitating conditions.  Panel A) immunoblot using antibody against phosphorylated 

TrkA .  Panel B) The same membrane shown in panel A was stripped and re-probed 

using antibody against phosphorylated tyrosine residues.  Cap: MW supplemented 

with 10 mM bicarbonate and 3 mM 2-OHCD.  GM1: supplemented with 25 µM GM1. 

879: MW supplemented with 50 µM tyrphostin AG 879, a specific inhibitor of TrkA 

activation.  825: MW supplemented with 50 µM tyrphostin AG 825, a specific 

inhibitor of Her2 that has been shown to have no effect on TrkA activation.
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Activation of TrkA results in the activation of PLCγ, PI3K, and the Ras-ERK-MAPK 

pathway (Duchemin, Ren, Mo, Neff, & Hadjiconstantinou, 2002a; Willard et al., 

2007).  Therefore, we next investigated if signaling pathway(s) initiated with TrkA 

activation were important in sperm. Inhibiting PI3K with wortmannin (20 nM) failed 

to ablate GM1-induced tyrosine phosphorylation.  Blockade of IP3 receptors using 2-

aminoethoxydiphenyl borate (2- ABP; 20 µM) had no effect on tyrosine 

phosphorylation, nor did inhibition of Ras via the inhibitor GW-5074 (10 µM). 

However, prevention of PLC activity with the inhibitor U73122 (10 µM) prevents 

GM1-induced tyrosine phosphorylation.  Surprisingly, the use of U73122 also 

significantly reduced the amount of phosphorylated TrkA, suggesting a positive 

feedback mechanism between TrkA and PLC activity, or a role of PLC in maintaining 

TrkA activation.  These data suggest that the tyrosine phosphorylation induced by 

exogenous GM1 occurs downstream of TrkA activation and likely involves PLC 

activity.   

 

Discussion 

The ganglioside GM1 is an amphipathic glycosphingolipid with diverse cellular 

functions orchestrated from its distinct association with membrane rafts. GM1 is 

essential in several somatic cell signaling pathways (see (Mocchetti, 2005), for 

review), including tyrosine phosphorylation and regulatory pathways that are also 

critical for sperm function.  The discovery and characterization of TrkA activity in 

sperm during physiologic and GM1 accelerated capacitation provides a mechanism for 

activation of essential signaling pathways, such as PLC, PI3K, and other tyrosine 

kinases.   
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Figure 6.   Downstream activation of the TrkA effector PLC, but not PI3K, is 

necessary for observed effects of exogenous GM1. Sperm were incubated with or 

without the given inhibitor for 60 minutes prior to processing for immunoblotting.  

Only experiments where sperm had >50% motility after 60 minutes of incubation were 

used.  U7: inhibitor of PLC activity U73122 50 µM;  WM: inhibitor of PI3K 

wortmannin 10 nM;  825: Her2 inhibitor tyrphostin AG 825 25 µM  879: TrkA 

inhibitor tyrphostin AG 879 25 µM.
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 GM1 is stably segregated to membrane rafts in mammalian sperm (V. Selvaraj et al., 

2009; V. Selvaraj et al., 2006), where its signaling functions are suppressed by GM1’s 

specific interaction with seminal vesicle protein SVS2 (Kawano et al., 2008).  While 

present on the sperm surface, SVS2 prevents tyrosine phosphorylation cascades and 

acrosomal exocytosis.  The decapacitation effects of this molecule are relieved 

gradually; as the sperm transit the female reproductive tract, SVS2 is lost and 

capacitation ensues.  We hypothesize that the loss of SVS2 allows focal clustering of 

the extracellular sugars of GM1 to facilitate TrkA activity during capacitation, as 

evidenced by the ability of TrkA inhibition to decrease tyrosine phosphorylation both 

with and without exogenous GM1.   This likely occurs in concert with GM1-mediated 

calcium influx (see chapter 5), because the loss of sterols and seminal plasma proteins 

from the sperm membrane increases membrane fluidity and clustering of GM1 in the 

membrane (James, Hennessy, Berge, & Jones, 2004; Jones et al., 2010; Shadan, 

James, Howes, & Jones, 2004).  GM1-mediated calcium influx provides an additional 

potential mechanism for TrkA potentiation of tyrosine phosphorylation.  

 

TrkA activity in sperm provides a plausible mechanism for both the decapacitating 

effects of SVS2 and the observed cryocapacitation effect noted in mammalian sperm. 

The activity of this kinase is seen under normal capacitating conditions and 

accelerated with the addition of exogenous GM1, as might be seen with exposure to 

some cryopreservation media.   Many media utilized for semen extenders or 

cryopreservation purposes in assisted reproduction technologies rely upon undefined 

components, such as egg yolk or milk, that are known to contain the ganglioside GM1 

(Ford et al., 1992; Phelps et al., 1999).  The presence of GM1 in cryopreservation 

media may in part account for the cryocapacitation phenomena observed as precocious 

tyrosine phosphorylation and membrane changes upon freeze thaw in the absence of in 
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vitro capacitating conditions (Thomas et al., 2006).  The findings presented here could 

help to refine cryopreservation media to improve freeze-thaw outcomes and assisted 

reproduction techniques in humans and other species alike. 

 

Previous reports have identified two isoforms of TrkA expressed in the testis, the long 

form found in neuronal tissues and responsive to NGF, as well as a shorter form which 

lacks exons 2-3 corresponding to the leucine-rich repeats of the protein (Dubus et al., 

2000).  This shorter isoform is hypothesized to have decreased to abolished affinity for 

NGF based on structure models and known binding properties of the short isoform of 

TrkB, which also lacks these leucine-rich repeats.  Based on our immunoblotting 

results for TrkA protein and the lack of sequence for exons 2 and 3 despite numerous 

attempts with various primers and 5’ RACE techniques, we hypothesize that the 

shorter form is present in sperm, where activation by GM1 might bypass the need for 

NGF binding and thus the need for the extra leucine rich repeats. 

 

Investigations into potential GM1-TrkA interactions in somatic cells stemmed from the 

observations that both exogenous GM1 and clustering of endogenous GM1 mimics and 

potentiates the actions of neurotrophic factors in vivo and in vitro (Hakomori & 

Igarashi, 1993; R. W. Ledeen & Wu, 2002; Zeller & Marchase, 1992).  These GM1-

induced effects include the prevention of ischemia-induced neuronal death (Karpiak, 

Wakade, Tagliavia, & Mahadik, 1991), neurite outgrowth, treatment of 

neurodegenerative diseases (Fadda, Negro, Facci, & Skaper, 1993; Hadjiconstantinou 

& Neff, 1998a; Hadjiconstantinou & Neff, 1998b; Vyas et al., 2002), and cell 

migration assays (Fukumoto et al., 2006; Hakomori & Igarashi, 1993).  Additionally, 

TrkA and GM1 have been co-immunoprecipitated, showing a tight and specific 

interaction of GM1 with the glycosylated, membrane-associated TrkA (Duchemin, 
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Neff, & Hadjiconstantinou, 1998a; Mutoh, Tokuda, Miyadai, Hamaguchi, & Fujiki, 

1995).  The clustering of GM1 in the membrane results in TrkA phosphorylation to 

activate signaling pathways (Avrova et al., 2010; Duchemin, Neff, & 

Hadjiconstantinou, 1998b; Duchemin, Ren, Mo, Neff, & Hadjiconstantinou, 2002b; 

Woronowicz et al., 2007).  Although we report here that similar TrkA signaling 

pathways are also active in sperm, the interaction of GM1 and TrkA has not been 

documented in sperm, as we were unable to co-immunoprecipitate the two molecules. 

Additionally, clustering of GM1 through CTB addition was not sufficient to stimulate 

tyrosine phosphorylation cascades or TrkA phosphorylation and activation, suggesting 

potential differences in GM1 dynamics of the highly-tethered and sharply-curved 

flagellar plasma membrane. Further characterization of the relationship between sperm 

TrkA and GM1 is needed. 

 

While evidence exists for an association between GM1 and TrkA activation in sperm, it 

appears as though TrkA is not the only effector in GM1-induced cell signaling.  The 

ability of GM1 to induce a smaller but still significant pro-survival pathway in PC12 

cells lacking TrkA expression suggests that although TrkA activity is important for 

GM1 effects, it is not the sole transducer.  One significant effect of GM1 that can 

account for a number of signaling effects, including calcium-dependent cytoskeletal 

remodeling, neurotrophin exocytosis (and thus further Trk receptor activation), and 

tyrosine phosphorylation cascades is the ability of GM1 to increase calcium influx 

(Buchwald et al., 2007; Buckley et al., 1995; Carlson, Masco, Brooker, & Spiegel, 

1994; Gouy, Deterre, Debre, & Bismuth, 1994; R. Ledeen & Wu, 2007; Yatomi et al., 

1996).  GM1 induces a rise in intracellular calcium in all neuronal cell types 

investigated, including those lacking TrkA transcripts and protein (Mocchetti, 2005).   
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Figure 7. The TrkA kinase pathway can be activated by nerve growth factor (NGF; 

Dubus et al., 2000) or GM1 to stimulate the activity of the MAPK, PI3K, and PLC 

pathways.  Each of these signaling pathways has been implicated in sperm biology.  In 

the present report, we find evidence for involvment of the PLC pathway in sperm 

capacitation and acrosomal exocytosis.  Inhibition of TrkA activity or PLC activity 

prevented tyrosine phosphorylation cascades both with and without exogenous GM1 in 

the media.  The activation of PLC results in the generation of diacylglycerol (DAG), 

which can stimulate protein kinase C (PKC) activation.  Phosphorylation of the 

CaV2.3 calcium channel increases current through this channel.   Phosphorylation of 

the decapacitation factor, PEBP1, might facilitate its release from the sperm plasma 

membrane to further facilitate capacitation, and has been found to be enhanced by 

exogenous GM1 (data not shown).  
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Although it is known that GM1 induces tyrosine phosphorylation cascades through 

TrkA activation in somatic cells and likely in sperm, how activation of TrkA targets 

affects other signaling pathways active during capacitation is not yet understood.  

Roles for Ras, Raf, ERK, and MAPK have been suggested in sperm function (Fig. 7; 

Luconi et al., 1997; Nixon et al., 2010), and PKC and PLC activity is known to be 

essential for fertilization in mammalian sperm (Breitbart, 2003).  Roles for PLC are 

especially well established during acrosomal exocytosis (Fig. 7; Jungnickel, Marrero, 

Birnbaumer, Lemos, & Florman, 2001).  Redundant pathways for the activation of 

PKC and PLC appear present in sperm (Breitbart, 2003).  Each of these pathways is 

directly activated by TrkA, which provides an attractive means for their activation in 

sperm.  Further understanding of how membrane microdomain organization and lipid 

signaling in sperm influences these pathways and functions during capacitation and 

fertilization is needed.  This would greatly improve our understanding of how a sperm 

can respond to its extracellular environment in a timely and precise manner and holds 

promise for improving assisted reproduction outcomes. 
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The organization of GM1 in sperm membranes 

 

The localization of GM1 has been an active topic in sperm biology due to its 

association with membrane rafts and the putative role of membrane rafts in sperm 

signaling and fertilization. However, the localization of GM1 in mammalian sperm has 

also been a contentious issue, with conflicting studies reported in the literature 

(Roberts, Wamstad, Ensrud, & Hamilton, 2003; Shadan, James, Howes, & Jones, 

2004; Trevino, Serrano, Beltran, Felix, & Darszon, 2001).  Studies from our lab have 

largely reconciled or explained the reported inconsistencies, with differences in 

localization attributed to fixatives (Selvaraj et al., 2006) and/or exposure to seminal 

plasma (Buttke, Nelson, Schlegel, Hunnicutt, & Travis, 2006).  In addition to these 

studies of mammalian sperm membrane organization, further characterization by our 

lab has identified a second pool of GM1 in the acrosomal membrane (Selvaraj et al., 

2009). Biochemical characterization concurs with this finding, identifying two distinct 

membrane fractions enriched in GM1: one possessing density and composition 

properties consistent with membrane rafts of the plasma membrane, and the other, less 

buoyant fraction consistent with the acrosomal membrane (Asano et al., 2009).  This 

was a surprising finding, as the acrosomal membrane is not enriched in sterols or other 

raft markers (Clark & Koehler, 1990; Seki, Toyama, & Nagano, 1992; Toshimori et 

al., 2001), and the golgi vesicle of somatic cells lacks significant amounts GM1 

(Lencer, Hirst, & Holmes, 1999).   Together, these experiments further piqued our 

interest in the functions of this versatile ganglioside in sperm biology. 

 

These descriptive studies beg the question, why would a sperm need such stable, 

dramatic segregation and enrichment of GM1?  What role does this subdomain play in 

sperm-egg communication?  Why is the acrosomal membrane, a membrane of very 
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different composition and properties compared to the plasma membrane, also enriched 

in GM1?  The studies described in this dissertation provide a strong foundation towards 

understanding these questions.  

 

The discovery of a de-capacitating protein in seminal plasma, named SVS2, that 

specifically binds GM1 accounts for the ability of seminal vesicle fluid to mask GM1 

(Kawano & Yoshida, 2007; Kawano, Yoshida, Iwamoto, & Yoshida, 2008).  

Importantly, the interaction of SVS2 with GM1 occurs during ejaculation as a sperm is 

deposited in the female reproductive tract, when cellular quiescence is desirable 

(Fraser, Adeoya-Osiguwa, Baxendale, & Gibbons, 2006).  This binding maintains low 

intracellular calcium and cAMP levels, while preventing the tyrosine phosphorylation 

cascades acquired during capacitation (Kawano & Yoshida, 2007).  As sperm transit 

the female reproductive tract, SVS2 is gradually lost from the membrane in the distal 

oviduct and capacitation ensues.  One can hypothesize that this loss of SVS2 allows 

the interaction of GM1 with membrane targets important for signaling processes of 

sperm-egg interaction.   

 

Many seminal plasma components are known to adsorb to the sperm plasma 

membrane (Acott & Carr, 1984; Adeoya-Osiguwa & Fraser, 1996; Carr & Acott, 

1984; Fraser et al., 2006; White, Rodger, Murdoch, Williams, & Abney, 1975).  The 

removal of these molecules, as well as membrane sterols and phospholipids, 

dramatically changes the membrane microenvironment of the spermatozoon.  An 

increase in membrane fluidity has been described (James, Hennessy, Berge, & Jones, 

2004; Jones et al., 2010; Shadan, James, Howes, & Jones, 2004; van Gestel et al., 

2005), but it is likely that many other processes and attributes are altered during this 

dramatic change in membrane composition.  For example, the activity of many 
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membrane ion-transporters is affected by membrane composition in somatic cells and 

is likely to be affected in sperm as well (Brady et al., 2004; Lingwood & Simons, 

2010; Romanenko et al., 2004; Romanenko, Rothblat, & Levitan, 2004).   

 

One potential consequence of this increase in membrane fluidity and reorganization is 

the formation and/or restructuring of membrane rafts (Asano et al., 2009; Cross, 2004; 

Jones et al., 2010; Shadan, James, Howes, & Jones, 2004; Tanphaichitr et al., 2007).  

This is a hypothesis that has been difficult to observe in vitro due to the small size and 

variable nature of membrane rafts (van Meer, 2004).  However, biochemical 

characterization of raft molecules has been a promising tool in defining these changes.  

An increase in zona pellucida-binding affinity of isolated membrane rafts has been 

reported to occur following sterol efflux and capacitation (Bou Khalil et al., 2006).  A 

coalescence of raft-associated GM1 at the apical ridge of the acrosome occurs during 

capacitation in bull (Selvaraj et al., 2007) and boar (Jones et al., 2010).  The 

relationship between sterol efflux-mediated raft formation and changes in signaling 

processes and ion channels warrants further investigation. 

 

In addition to raft reorganization, sterol efflux and seminal plasma removal have been 

hypothesized to induce point-fusion events between the plasma membrane overlying 

the acrosome and outer acrosomal membrane (Kim, Cha, & Gerton, 2001; Kim, 

Foster, & Gerton, 2001; Kim & Gerton, 2003).  Acrosomal exocytosis is thought to be 

a graduated process (Gerton, 2001).  Priming of the membranes might occur through 

these point fusion events analogous to kiss-and-run fusion events observed in neurons.  

Such membrane communication accounts for the appearance of molecules of 

acrosomal origin on the plasma membrane of sperm (Kim et al., 2001).  This is 

observed late in capacitation and prior to acrosomal exocytosis.  Additionally, these 
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point fusion events might explain the observation that plasma membrane GM1 is 

internalized during capacitation.  This prolonged membrane communication and 

reorganization could then allow a sperm to regulate its responsiveness to the 

extracellular environment, preventing premature exocytosis and thereby maximizing 

fertilizing potential. 

 

Differences in membrane composition between the plasma membrane overlying the 

acrosome versus the acrosomal membrane might facilitate these point fusion events, or 

the differences between membranes might rely on these communication events for 

functional relevance, ie, a concentration gradient might facilitate lipid or protein 

transfer.  It is tempting to speculate that the sterol-poor acrosomal membrane is poised 

to transfer GM1 to the sterol-rich, raft environment of the plasma membrane overlying 

the acrosome, which represents a more favored environment for GM1.  Such transfer 

could occur during point fusion events preceding acrosomal exocytosis, allowing 

plasma membrane enrichment of GM1 and initiation of GM1-mediated signaling 

processes.  

 

Effects of GM1 dynamics 

The formation of focal enrichments of GM1 might occur through three potential 

mechanisms, with synergism of these three mechanisms likely.  First, unmasking of 

GM1 through the removal of SVS2 might allow interaction and clustering of GM1 

through the extracellular carbohydrate groups. The evolution of this specific masking 

protein makes this an attractive hypothesis.  Second, the removal of SVS2 occurs in 

concert with an increase in plasma membrane fluidity.  Increased diffusion of GM1 

within the acrosomal domain of the plasma membrane upon sterol efflux might be 

sufficient to facilitate GM1 clustering.  This could occur through increased diffusion of 
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GM1 alone, or via a sialic acid binding molecule, such as egg glycans.  Again, the 

unmasking of GM1 would occur simultaneously with changes in membrane fluidity and 

allow GM1-target binding to occur synergistically.  Alternatively, the point fusion 

events between the plasma and acrosomal membranes might allow the translocation of 

acrosomal GM1 to the plasma membrane, increasing focal concentrations of plasma 

membrane GM1.  It is likely that a combination of these three mechanisms occurs. 

 

An increase in the focal concentration of GM1 would translate to an increased potential 

for raft-molecule interaction with GM1, as occurs with α1 and α2δ subunit of calcium 

channels (Davies et al., 2007; Davies et al., 2010).  α1 subunits are found in both raft 

and non-raft membrane fractions of somatic cells.  However, the α2δ subunit is a GPI-

anchored protein found primarily in membrane rafts, where the highly glycosylated, 

extracellular α2 portion of the subunit interacts with the  α1 subunit to dramatically 

change current properties (Bannister et al., 2009; Dickman, Kurshan, & Schwarz, 

2008; Hahm et al., 2009).  We hypothesize that the extracellular sugars of GM1 mimic 

the effects of the glycosylated α2δ subunit. Clustering of GM1 around the α1E subunit 

could increase current and responsiveness of this channel to changes in the membrane 

environment due to its similarity to other modifying subunits. 

 

Changes in membrane concentrations of GM1 have significance for many signaling 

processes in somatic cells as well as key events of a spermatozoon’s life.  We have 

determined that exogenous GM1 results in phosphorylation and activation of the 

tyrosine kinase TrkA.  This may occur through direct binding of GM1 and TrkA, as 

seen in neuronal cells (Duchemin, Ren, Mo, Neff, & Hadjiconstantinou, 2002; 

Farooqui, Franklin, Pearl, & Yates, 1997), or through intermediate binding partners 

(Ledeen & Wu, 2007; Mocchetti, 2005).  The activity of this kinase is seen under 
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normal capacitating conditions and accelerated with the addition of exogenous GM1, as 

might be seen with exposure to some cryopreservation media.  Downstream effectors 

of TrkA kinase activity, such as PLC, PI3K, and PKC, are required for capacitation 

(Evans & Florman, 2002; Visconti et al., 2002) and acrosomal exocytosis (Jungnickel, 

Marrero, Birnbaumer, Lemos, & Florman, 2001), so it is plausible that TrkA 

activation of these pathways is important for sperm function.  Precisely when 

activation of these pathways is necessary and how their activity is regulated is not 

known and is an important area for future research. 

 

One possible role for GM1-induced TrkA activity is the induction of phosphorylation 

of CaV2.3 by PKC.  As presented in this dissertation, the clustering of GM1 in the 

sperm plasma membrane results in acrosomal exocytosis through calcium influx via 

the CaV2.3 channel.  Although we have demonstrated this dependence of GM1 effects 

on CaV2.3 activity using pharmacologic and genetic mechanisms, the potential 

intermediate steps and interactions in this pathway are currently unknown.  CaV2.3 is a 

voltage-gated calcium channel, likely dependent upon an initiating membrane 

depolarization event (Ertel, 2004).  Whether GM1 initiates this depolarization event 

through another mechanism or through direct activation of CaV2.3 current is unknown.   

 

Additionally, membrane hyperpolarization and depolarization is dependent upon the 

intracellular alkalinization of sperm (Florman, Tombes, First, & Babcock, 1989).  

Changes in the activity of the sperm proton pump Hv1 occurs during capaciation and 

results in intracellular alkalinization of the sperm (Lishko, Botchkina, Fedorenko, & 

Kirichok, 2010).  This rise in pH occurs together with potassium flux through sperm 

Slo3 channels, which ultimately leads to the hyperpolarization of the sperm membrane 

(Martinez-Lopez et al., 2009; Santi et al., 2010; Schreiber et al., 1998).  This 
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hyperpolarization allows transitioning of the CaV2.3 channel from an inactive state to 

an active, closed state in which the channel is primed for opening in the event that 

depolarization occurs (Fang et al., 2007).  Interaction of GM1 with this upstream proton 

pump or Slo3 channels is another potential target for the observed GM1 effects. 

Additionally, Slo3 null sperm fail to undergo calcium ionophore A23187-induced 

acrosomal exocytosis or fertilize zona-intact or zona-free oocytes, suggesting that this 

channel is important in other, later-stage pH and/or voltage dependent processes (Santi 

et al., 2010). 

 

Membrane depolarization, such as occurs through the Slo3 channel, and alkalinization, 

such as occurs with Hv1 activity, is a requirement for CatSper and CaV2.3 channel 

activity (Carlson et al., 2003; Wennemuth, Westenbroek, Xu, Hille, & Babcock, 

2000).  The relationship between the two identified voltage-dependent calcium 

channels and the chronology of calcium influx during acrosomal exocytosis is 

unknown.  Sperm from CatSper null mice are infertile, a phenotypic defect attributed 

to the inability of these sperm to remain motile or undergo hyperactivation and 

penetrate the viscous cumulus cell and zona pellucida matrix (Carlson et al., 2003; 

Quill et al., 2003), but CatSper also appears necessary for initial ZP-induced calcium 

influx (Xia & Ren, 2009).  In addition to its role in hyperactivated motility, CatSper 

activation has been reported (Carlson et al., 2003) and predicted (Olson, Suarez, & 

Fauci, 2010) to induce calcium influx in the head of the sperm, and is pH dependent.  

This CatSper-mediated calcium influx might be the pH-dependent depolarization 

event necessary for CaV2.3 activity.  Potential CatSper-evoked activation of CaV2.3 is 

also a possibility that needs further investigation.  Such a model would provide for 

Slo3 and Hv1 activity priming of the sperm for ZP-induced CatSper activity, resulting 

in CaV2.3 activity and final store-operated calcium entry and exocytosis.  
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The initial calcium rise of acrosomal exocytosis is short-lived, discrete, and apparently 

voltage-independent (Florman, Arnoult, Kazam, Li, & O'Toole, 1998). Several 

alternative voltage-independent candidates for calcium rise have been identified in 

sperm, such as the GABAA channel in progesterone-medicated AE (Murase & Roldan, 

1996) or the glycine receptor/chloride channel in ZP-induced AE (Bray, Son, Kumar, 

Harris, & Meizel, 2002; Melendrez & Meizel, 1995; Sato, Son, & Meizel, 2000), but 

no single candidate appears necessary for all pathways of AE.  Roles for the nicotinic- 

or muscarinic-acetylcholine receptor channels have been hypothesized, but neither has 

been fully characterized (Bray, Son, & Meizel, 2005; Ward, Kopf, & Storey, 1994).  

Activation of any of these channels might have the potential to induce membrane 

depolarization through chloride efflux or calcium influx, respectively.  Indeed, 

coupling between glycine receptor/chloride channel activation and VOCC influx has 

been described in somatic cells (Bannister, Melliti, & Adams, 2004; Tai, Kuzmiski, & 

MacVicar, 2006). 

 

Potential indirect targets for GM1 in acrosomal exocytosis also merit further 

investigation.  Regulatory molecules are important for several aspects of signaling in 

excitable cells.  Acrosomal exocytosis induced by either zona pellucida or GM1 

clustering requires inhibitory G-protein activity through an unknown mechanism.   

CaV2.3 activity is stimulated and enhanced by G-protein interaction as well as 

phosphorylation by PKC (Bannister et al., 2004; Krieger et al., 2006; Toro-Castillo, 

Thapliyal, Gonzalez-Ochoa, Adams, & Meza, 2007).  Each of these mechanisms is a 

potential avenue for GM1 regulation of CaV2.3, as TrkA phosphorylation stimulates 

PKC activity (Duchemin, Ren, Mo, Neff, & Hadjiconstantinou, 2002) and G-proteins 
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can be activated either directly through GM1 (Chen et al., 2003) or through alternative 

downstream signaling processes (Rajagopal, Chen, Lee, & Chao, 2004).   

 

The potential signaling intermediates through which GM1 might stimulate CaV2.3 

activity and the chronology of this signaling is a promising area of research that has 

potential for clinical interventions as well as elucidating a fundamental mechanism of 

mammalian fertilization.  The interplay of intracellular alkalinization, membrane 

hyperpolarization and subsequent depolarization leading to VOCC activity has been a 

long present and puzzling question in sperm biology.  Moreover, while CaV2.3 null 

sperm undergo normal tyrosine phosphorylation cascades in response to capacitating 

stimuli and GM1, other potential defects and differences in these knockout sperm merit 

further evaluation.  Initial  
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Figure 1. Sterol efflux mediates membrane remodeling events that are known to 

stimulate changes in several ion transporters.  The proton pump Hv1 is stimulated by 

sterol efflux to increase the intracellular pH of the sperm.  This pump is sensitive to 

depolarization as well.  Activation of Slo3 hyperpolarizes the sperm plasma membrane 

and may cause sufficient hyperpolarization to transition the voltage-operated CaV2.3 

channel from an inactive state to an active, closed state.  The sperm-specific CatSper 

channel is both weakly depolarization and more strongly pH sensitive, and has been 

shown to become active with BSA-mediated sterol efflux.  GM1 may influence the 

activity of any of these or other membrane channels to ultimately result in activation 

of the CaV2.3 calcium channel for initiation of acrosomal exocytosis.  Calcium influx 

into sperm can occur by changes in activity of a number of channels and transporters, 

and it is likely that different cohorts of channel activity can result in successful 

fertilization.  This concept is highlighted by the ability of CaV2.3 null mice to produce 

viable litters while still unable to respond to physiologic agonists of acrosomal 

exocytosis or successfully fertilize oocytes in vitro. 
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reports on the fertilization competence of CaV2.3 null sperm described a more straight 

flagellar wave form and path velocity (Sakata et al., 2002), and empirical observations 

of sperm exposed to exogenous GM1 suggest that GM1 can influence sperm motility 

patterns (personal observation).  Roles for CaV2.3 and GM1 in motility are another 

avenue of study requiring more thorough characterization.   

 

Furthermore, proteomic studies from our lab have identified raft-associated 

phospholipase B that is activated upon sterol efflux (Asano et al., in preparation).  This 

enzyme cleaves phospholipids in the plasma membrane and has the potential to 

increase focal membrane curvature.  We hypothesize that this change in membrane 

curvature could act to mediate point fusion events that facilitate the transfer of 

acrosomal GM1 to the plasma membrane overlying the acrosome.  This provides a 

physiologic regulatory mechanism by which a sperm might control GM1 enrichment 

for activation of exocytotic machinery.   

 

The highly compartmentalized mammalian spermatozoon undergoes a significant 

amount of maturational events and signaling changes without the aid of many somatic 

cell tools, such as protein transcription and translation.  As presented in this 

dissertation, the organization of membrane rafts and tethering of signaling complexes 

within the membrane serve as an attractive mechanism for sperm to accomplish these 

changes in a timely and precise manner.  The ganglioside GM1 is stably segregated to 

distinct membrane domains in mammalian sperm where it appears to effect dynamic 

signaling processes for capacitation and acrosomal exocytosis important for successful 

fertilization.  The work presented here suggests that focal enrichments of GM1 ocurring 

during membrane remodeling of capacitation can activate TrkA signaling pathways 

during physiologic capacitation processes.  This effect is likely accelerated during 
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exposure to ill-defined cryopreservation media and may adversely affect assisted 

reproduction outcomes.  This work therefore may have direct applications for 

improving assisted reproduction technologies.  Also activated during focal clustering 

of GM1 is calcium influx and CaV2.3 actvity.  This ascribes significant function to the 

previously under-described CaV2.3 channel and may have corrollaries in somatic cell 

CaV2.3 function.  Further definition of precisely where and how GM1 activates 

signaling processes for acrosomal exocytosis will have important consequence for our 

understanding of sperm function and dysfunction for potential intervention strategies.  

This report on GM1 in mammalian sperm function is likely just the beginning for the 

story of how this biologically active sphingolipid regulates one of the first and most 

fundamental events in cell-cell recognition and communication. 
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