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Abstract. We consider the problem of estimating the life-distribution F from censored
lifetimes. Two observation schemes are considered, namely renewal testing over a long
time horizon and survival testing with repetitions. In each case we exhibit a product-limit
estimator of F which is shown to be consistent and to converge weakly to a Gaussian
process. To do this we first extend these properties of the Nelson-Aalen martingale
estimator to the family of Poisson-type counting processes. Our proof of weak
convergence is based on the general functional central limit theorems for semimartingales of
Jacod et al. (1982). The result for renewal testing is new while for survival testing we give
an alternative proof of weak convergence, to that of Gill (1980b), which does not rely on

special constructions.
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1. Introduction. Life-testing situations arise in various fields such as medical
clinical trials, industrial reliability and biological experimentation. In general a lifetime 1s a
positive random variable X with distribution function (df) F. This paper considers the
problem of estimating F under two observation schemes, namely testing with replacement
and testing without replacement. In the former, called renewal testing, one observes a
renewal process {Sp, n = 0} induced by the distribution F over a period of time [0,7], say,
t> 0. Lifetimes correspond to the interrenewal times {Sp - Sp.1, n 2= 1}. In testing
without replacement one observes n independent lifetimes X1,...,Xn, called survival times,
each with df F.

We treat the problem of estimating the distribution function F when the
observations are censored and when F is arbitrary. Our approach is, based on the general
theory of counting processes and relies on their martingale dynamics. For each observation
scheme we exhibit a product-limit estimator of F which is consistent and whose normalized
difference converges weakly to a Gaussian process. These properties are established as n
and 7T tend to infinity in testing without replacement and renewal testing, respectively. To
handle the generality of F we appeal to results on weak convergence of semimartingales in
Jacod et al. (1982).

The problem of estimating the life-distribution in renewal testing is treated by Gill
(1981) for the two cases where F is purely discrete and F is continuous. His observation
scheme is to observe n independent copies of an uncensored renewal process over a fixed
horizon [0,t] and to let n increase to infinity. The case of random right censoring under the
same observation scheme is covered by more general results in Gill (1980a). Our
observation scheme has n = 1, random right censoring and 7T increasing to infinity. These
results are new and generalize the results of Moore and Pyke (1968) who treat the case
T — oo without censoring. Moreover, our approach shows that contrary to the discussion
in section 8 of Andersen and Borgan (1985), the counting process methods they review do

extend to renewal-type processes.



The problem of estimating a general life-distribution is treated by Gill (1980b,
1983). We given an alternative proof of weak convergence to that of Gill (1980b) based on
our Theorem 3.2. This proof has the appeal of being a direct generalization of methods
used in connection with the well known multiplicative intensity model (see Aalen (1977,
1978)) and does not rely on any special construction such as the one employed by Gill
(1980b). The method of proof is based on generalizations of results of Lipster and
Shiryaev (1980) found in Jacod, et al. (1982), a fact which was anticipated by Gill (1980b)
(see comments, p. 78), but not actually used by him.

The organization is as follows. Section 2 introduces Poisson type counting
processes and their compensators whose pathwise Radon-Nikodym derivative relative to a
fixed Borel measure is an observed predictable process. Section 3 introduces the
martingale estimator of this Borel measure and develops its main asymptotic properties of
consistency and weak convergence. Our results extend these properties of the Nelson-
Aalen martingale estimator to the family of Poisson type counting processes. The weak
convergence result is a novel application of the theory of Jacod et al. (1982) and is of

independent interest. Section 4 applies these results to estimating general life-distributions.

2. Poisson Type Counting Processes and Life-Testing

We define the family of Poisson type counting processes giving examples from life-
testing. Let (Q,F,P) denote a probability space and H = {#, t 2 0} a given family of sub-
o-algebras of F such that H is nondecreasing, right continuous and complete relative to P.
For definitions of some standard terminology, such as adapted, predictable or
compensator, we refer the reader to, for example, Metevier (1982) and Lipster and
Shiryaev (1978).

Let N = {N;, t = 0} denote a counting process defined on (Q,F,P) and adapted to
{H,, t= 0} so that the sample paths of N are right continuous step functions with jumps of

size +1, Ng = 0 and for each t = 0 N¢is an H-measurable random variable. Let B denote a



fixed Borel measure over the Borel sets in R, = [0,00) and let Y = {Y, t 2 0} denote a
nonnegative H-predictable process. Suppose N has compensator A = {Ag t 20} relative
to H given by

A= j Y B{ds}, @.1)
(0.4

then in the terminology of Lipster and Shiryaev (1978) N is called a Poisson type counting
process. Note that if Y is a constant A >0 forall t 2 0 and B denotes the Lebesgue

measure, then N is a simple Poisson point process. By definition the process

M = {M;, t = 0} given by

M, =N- A 2.2)

is a local square integrable martingale relative to H and, in the terminology of Jacod (1975),
the kernel A{dt] is the dual predictable projection to N. When A is pathwise absolutely
continuous (i.e. A{dt} = Yb(t)dt where dt is Lebesgue measure and b is a nonnegative rate
function) then the model (2.1) gives rise to the multiplicative intensity family of counting

processes considered by Aalen (1978).

Model 1. Renewal Testing. Let (Q,F,P) denote a probability space on which a
renewal process {Sp, n = 0} induced by the distribution function F is defined. For each
n > 1 define X = Sn - Sn-1 so that {Xp, n = 1} denote the interrenewal times or successive

lifetimes in testing with replacement. Define H = {H;,t=>0} by
thAvac(ans,sst,nZD (2.3)

where N contains the P-null sets of F and F 2 A is independent of 6(Xp, n2 1).

Suppose there is a sequence of nonnegative random variables {Up, n 2 1} defined on

(Q,F P) such that for each n Uy is a stopping time relative to H.

For each n > 1 define N(n) = {N¢(n), t 20} and A(n) = {A¢n), t 2 0} by



Nm) = 1(X, 1) (2.4)

A(n) = J (X 2s) B{ds} (2.5)
0.t]

t
where B(t) =J (1 - F(s-))_1 F{ds}, t = 0. Itis an easy exercise to show that N(n) has
0

compensator A(n) relative to H. Define K(n) = {K¢(n),t 20} by

K,(m) = 1(U, 2 1). (2.6)

The process K(n) is bounded and predictable, and plays the role of right censoring for the
nth interrenewal time Xy. Thus if we define the censored processes
t

N (n) = | KmdN () = I(X_ ~» U <t,X sU), t2 0 (2.7)
0
t t
A M= K (mdA n) = .f (X AU 2s)B{ds}, t= 0 (2.8)

0 0

where a A b = min(a,b), then Theorem 18.7 of Lipster and Shiryaev (1978) implies that

{N(n), t = 0} has compensator {At(n), t > 0} relative to H, and therefore is of the Poisson

type. =

Model 2. Testing without replacement and random censorship. For each
n>1 Xjand U, i = 1,...,n are 2n independent random variables. X; has distribution
function F and Ui has (sub)-distribution function Li®. The observable random variables
%0 and 8 are given by X = Xj A Ui and 8 = 1(X;< Ujn). Thus X ;" are right
censored lifetimes and 1 - 8" is an indicator of censoring. We assume without loss of
generality below (cf. Rebolledo (1980)) that for each n = 1, X1,....Xpn, U1h,...,Up are
defined on the same probability space (Q.F,P).

For each n > 1 define H? = {H8, t > 0} by

n ~ ~
H =NvoX|<s 81X <1, s<ti=1..n) (2.9)



where N contains the P-null sets of F and their subsets. Fori=1,...n define the HB-
adapted processes NRB(@) = {N{(@), t 2 03, Yn@i) = {Y{(@), t =2 0} and
Mn@) ={M¢(i), t 2 0} by

N'G) = 1X "<, 8] = 1) (2.10)
Yi) = 1X [ 21) (2.11)
M) = N() - J Y (i) B{ds} (2.12)

0,1

where B is defined as in model 1. It is a consequence of Theorem 3.1.1 of Gill (1980b)
that M(1),...,M0(n) are orthogonal square integrable martingales relative to H? so that for
each i, Nn(i) has compensator AR(i) = {A{(), t =2 0} given by N(i) - M¢@(i). Thus N1(i)
is of the Poisson type. It is worth pointing out that if we aggregate (2.12) over i the
resulting sum is still a martingale. However, the term given by aggregation over i of (2.10)
is not in general a simple counting process as multiple points occur with positive
probability whenever F has points of positive mass. ¥

Models 1 and 2 are examples of random right censorship of lifetimes. More general
censoring patterns may be considered as in Chapter 6 of Gill (1980b). We note that
unfortunately our approach to censoring in model 1 is not general enough to include the
sequential decision procedure of Bather (1977), but will include sequential procedures

which give rise to H-stopping times.

3. Estimation from Poisson Type Counting Processes. This section is
devoted to estimating the Borel measure B from observations of Poisson type counting
processes. The results of this section are of independent interest and are used in section 4
to solve the main problem of estimating a life-distribution F.

Forn > 1, Hh = {H 0, t > 0} denotes a given filtration and let N? = {N¢*, t 2 0}

denote a Poisson type counting process with compensator A" = {A{", t = 0} defined on a



probability space (Q,F.P) (cf. Rebolledo (1980), pp. 271). Let B denote a fixed Borel
measure on (R,,6(R,)) and let Y? = {Y{®, t> 0} denote the pathwise Radon-Nikodym

. t .
derivative of AR relative to B(i.e. for t 2 0 AP = OI Y B{ds}). In view of our

applications we allow for N to have multiple points but these may only occur with positive
probability on {t: AB(t) > 0} (cf. Brown (1978)). Here as below AB(t) = B(t) - B(t-) for
allt=0.

For each n assume that the bivariate process (N7, YD) is observable over a period of
time and consider the problem of estimating B. Define the empirical process

I/?\:n = {]/B\t“, t >0} by the Stieltjes integral
t

B[ X an: 6.
S s
0
where X0 = (Ygn)-1 1(Y® > 0) (0/0 = O by convention). Consider the process

Mn = {M{, t >0} given by the Stieltjes integral
t
M, = J. X (AN} - dAY). (3.2)
0

If for t = 0, B(t) < = or more generally Oj t X" dAgP < oo, then by Theorem 18.7 of

Lipster and Shiryaev (1978), M1 is a local martingale relative to H". Thus ]%n is called the
martingale estimate of B and is an extension of the so-called Nelson-Aalen estimator to the
family of Poisson type counting processes (cf. Andersen and Borgan (1985)). We assume
below that MR is a locally square integrable local martingale on [0,0) with quadratic
variation <Mn> = {<MD>, t 2 0}. In our applications Oj t XM B{ds} <o (t=20)1s
sufficient for M0 to be locally square integrable (Theorem 18.8, Lipster and Shiryaev
(1978)) and <M?> will be explicitly calculated. In Theorem 3.1 below we show that ﬁ“ is

a consistent estimator of B.



Theorem 3.1. Consistency. Forn > 1, suppose M? = {M@, t 2 0} is a locally

square integrable local martingale. For t 2 0 suppose thatasn — oo
t

a) J 1(Y; = 0)B{ds} = 0,
P
0

and

b) <Mn>t — 0.
P

Then sup |B§l -B(s)] >0 as n—> oo,
s<t p

Proof. Let t > 0 be such that (a) and (b) hold and observe that for each s = 0

B”-B(s)= M + [J' 1(Y; > 0) B{du} - B(s)] -
0

By (a) the second term in brackets converges to zero in probability uniformly in [0,t] as n
tends to infinity. Next for n > 1, let {7® k = 1} denote a localizing sequence of HP-
stopping times for M. Then fork > 1andn 21 the Lenglart-inequality (Lenglart (1977))
implies that fora>0,b >0

P( sup M]>a)s ; +P(M'> , 2b).

n
k
SSEATy

Since M is a local martingale on [0,e0), T — oo almost surely as k — eo. Therefore the

theorem is proved upon letting k increase to infinity and invoking condition (b). =

We now turn in Theorem 3.2 below to the problem of the asymptotic distribution
theory of the martingale estimator (3.1), where it is shown that the normalized difference
converges weakly to a Gaussian process of independent increments. Let

{ti, k=1} = {t: AB(t) >0} andletX = {X;, t = 0} denote a Gaussian process having

covariance function



X> (1) =G0+ 2 o, t20 (3.3)
k: st

where G¢ denotes a continuous function and {c2, k > 1} are positive constants. Let

{ap, n > 1} denote a sequence of nonnegative constants increasing to infinity as n

increases. For each n > 1 define the process Z% = {Z*, t = 0} by

7' =a (YD) 1Y > 0). (3.4)

Theorem 3.2. Weak convergence. For n > 1 suppose M = {M{", t > O} is a locally

square integrable local martingale and that the following conditions hold. Asn — oo,
t
(a) anj 1(Y; = 0)B{ds} =0,
P
0

(b) Fort=0Oandallee (0,1],

t

J’(zf;)2 1(Z0 >8) dAy =0,
p

0

where A™ = A" - TAA" denotes the continuous part of A"

t
(©) Fort20, J @) dAY - G,
P
0

iqu(l n ~u2<5%(/2
(d) Fork=1landue R E(e th_)——> e ,
4
P

54} n n n .
where Wy =Z; (AN] - AA}). Herei= -1 .
2 n_ [ 2.0
@ Fort20l=12 Y, (&AM > ) = Y .
ki<t P kst

Let D denote the space of functions from R, into R; right-continuous with limits from the

A
left. Then as n — o, {an(B™ - B(1)), t 2 0} converges weakly to X in D endowed with the



Skorohod topology (see Billingsley (1968)), where X is a Gaussian process having

variance function (3.3).
Proof. See appendix. =

Theorems 3.1 and 3.2 extend the properties of consistency and asymptotic
normality of the martingale estimator to the family of Poisson type counting processes. In
our case the limiting Gaussian process has fixed points of discontinuity on {tg, k = 1}.
For the purpose of data analysis or inference from Poisson type counting processes plots of
ﬁ“ and confidence bands for B are particularly easy to construct (see Andersen and Borgan
(1985) for a discussion along these lines). To construct confidence bands we need a
consistent estimator of the asymptotic variance function <X>. This is illustrated in our

application below.

4. Estimating the Life-distribution. The general results of section 3 are now
applied to our main problem of estimating the life-distribution from censored lifetimes. We
begin with some preliminaries.

Let F and B be defined as in model 1, and let y denote a nonnegative monotone

decreasing function on R, with I = {t: y(t) > 0}. Then define a function G by
t
G(t) = J.y(s)'l(l -AB(s))B{ds}, tel 4.1)
0

and a function L by
t
L) = f 1(AB(s) < 1)(1 - AB(s))—2 G{ds}, tel. 4.2)
0
Let X = {Xp, t € I} and Z = {Z, t € I} denote zero-mean Gaussian processes with

variance functions G and L, respectively. Note that X and Z will have fixed points of

discontinuity whenever B has jumps.



4.1. Renewal Testing. Consider model 1, section 2, which describes testing with
replacement and random censorship. Let {Sp, n2 0} denote the underlying renewal

process and define the renewal counting process T = {ft, t 2 0} by

oo

=Y, 16,51 (4.1.1)
n=1
Also define the process K = {K;, t = 0} by
K[=Kt_thl () if S_, St<S, (4.1.2)
where K(n) is defined by (2.6). For each T > O define the observable processes

Y (1) = {Y(%), t = 0}, N() = {Ny(1), t > 0} and T (v) by

(o) =J K dr, (4.1.3)
0
Y= D, 1(X, AU, 21 (4.1.4)
n=1
N@ =Y, N, @0 (4.1.5)
n=1

where ﬁt(n) and Up, are defined in model 1 (see (2.6) and (2.7)).
Consider the empirical processes ﬁ(’c) = {ﬁt(t), t= 0} and f*‘ (1) = {I/}t("c), t= 0}

defined by

t
B (= [ X,@dN® (4.1.6)
0
where Xs(1) = (Ys(0)1 1(Ys(1) > 0), and

Igt('c) =1- H (1- Aé (D) . (4.1.7)

s<t

10



A A
We propose B(t) and F(t) as an estimator of B and F, respectively. These estimators
extend the Nelson-estimator and the product-limit estimator to this observation scheme.
Note that by Theorem 2.1 of Prabhu (1965) 7 is finite almost surely so we ignore the null

event {T(T) = Ty = ==}

Theorem 4.1.1. Consistency. Suppose that L = OJm (1 -F(y))dy <o andlett>0

such that Y¢(T) converges to infinity in probability as T — o, then
(@) sup B (D)-B@E) =0, T,
sst P

(b) sup Ilgs (D) -F@)—0, T—oo.
s<t P

Proof. For T > 0let I' = I'(t) = [t/] denote the largest integer in T/p and define
YD) = {YyI), t =2 0} and N(I') = {N¢(I), t = 0} by substituting I" for 77 in (4.1.4) and
(4.1.5), respectively. Let H = {Hy, s = 0} denote the history defined by (2.3) of model 1.
It is obvious that relative to H, N(I') is a Poisson type counting process with fixed Borel
measure B and predictable auxiliary process Y(I'). Thus let }%(F) = {ﬁ s, s 2 0} denote
the martingale estimator of B derived according to equation (3.1) from N(I') and Y(I).

Next observe that for 0 <'s <t, Y(T) is monotone decreasing so that

B, O - B, @i<x_-TIX (O[1 + B, (D]

where X(T) = (Y¢(1))"! 1(Y () > 0), and recall that 7t¢/T converges to w1 almost surely as
T — oo, Moreover, our assumption implies that F(t-) < 1 and B(t) < e, and that X(7)
converges to zero in probability as T — eo. Therefore to prove (a) it suffices to prove the
same result for ﬁ(I‘).

Let M(ID) = {Ms(I), s = 0} denote the square integrable martingale defined by
substituting N(I') and Y(I') for N® and Y™ in equation (3.2). According to Theorem 3.1, to

A
prove the result (a) for B(I') it suffices to show that as T — o

11



t

J. LY (D) = 0)B{ds} < 1(Y,I) =0)B®H — 0,
P

0

and

t
<M(F)>t=J X I - AB(s))B{ds} —» O,
P
0

where X)) = (Ys(1))! 1(Ys(t) >0) (0 <s <t). But B(t) <o and our assumption
together with the monotonicity of Y(t) implies that as T — oo 1(Ys(ID) = 0) and Xs(I)
converge to zero in probability uniformly over [0,t]. This implies the desired result.

To prove (b) we note that since F(t-) < 1, Lemma 3.2.1 of Gill (1980b) implies that

t
sup I, (9)- F9)| < (1 - F) [ 18, @ - B,
< 0

and moreover that

Afl;t(’c) -AF({t) =(1- fA‘t—(’c)) Aﬁt(’c) - (1 -F(t)) AB(t) .

Thus the result (b) easily follows from (a) and Lemma 2 of Gill (1980a). =

Theorem 4.1.2. Weak Convergence. Suppose that |l = OJ = (1-F(y))dy < oo and

that as T — oo,

(@ =wEr —0>0,
Top

(b)  sup Y (0)/n(7) - y($) =0,
s p

© sup R (Y () 1(Y,(1)>0)[|>0.
§ P

Let D(E) denote the space of right-continuous functions from E into R with limits
from the left, I = {t: y(t) > 0}, and ¢ = sup{t: y(t) > 0}. Consider the processes
W(T) = {;t(t)l/z(ﬁt(m -B(t),0<t<ctand Z(T) = {E('c)l/z(l/;t('c) -FON1FM < 1)/ (1 -
F(t)), t € I}. Then conditions (a), (b), and (c) imply that as T — o, W(T) and Z(7)

12



converge weakly to X and Z1(F < 1) in ID([0,0)) and D(D), respectively, endowed with the

Skorohod topology. If ¢ € I and F(c) < 1 then the result for W(t) extends to all of L.

Proof. We have that fort < ¢, F(t) < 1 sothatforallte I

1-F (1) 1(AB(s)< 1)

. t
F (1) - F(®)
t
1(F(t)<1)=[(! T-F) 1. ABG)

1-F(®)

(dB (v)- dB())] 1E® < 1)

where if 6 € I and F(6) = 1 the expressions above are set equal to zero. By virtue of
Theorem 4.1.1, conditions (a) and (b) imply that (1—1/5\15-(‘5))/( 1-F(s-)) converges to one in
probability uniformly over Ias T — eo. Thus to prove the desired result for Z(t) it suffices
to prove the desired result for W(t) (see Corollary A.1 of the appendix).

Since | < oo, condition (a) implies that there is a constant, say, p > 0 such that as
T — oo, T(T)/T converges to p in probability. For T > 0 define A = A(t) = [p1] and let
ﬁ(P) = {]gt(I‘ ), t = 0} be the martingale estimator of B defined in the proof of Theorem
4.1.1. Consider the normalized difference W(I') = {Alfz(é\t(I‘) -B(), 0<t<oc} and

observe thatfor0<t< o

W) - W) < D)2 - AV B - B, @) + APX @11 + B, (D) I, - T

where X(t) = (Yi(0))-1 1(Y((T) > 0). Recall thaty(t) >0for0<t<o,so that conditions
(a) and (b) imply that Y(t) converges to infinity uniformly on [0,0) as T — ce. Thus, by
Theorem 4.1.1, ﬁt(r) and ﬁt('l:) converge to B(t) in probability uniformly on [0,0) as
T — oo. Moreover, conditions (a) and (c) imply that AV2X (1) converges to zero uniformly
as T — oo. Finally, as B(t) < oo for 0 <t < G, it follows that, in particular, [W¢(T') - Wi(T)]
converges to zero uniformly on [0,5) as T — oo. Therefore, to prove the desired result for

W () it suffices to prove the result for W(I'). Note that if o € I and F(0) < 1 the argument

above extends to all of I.

13



For any function f let f° denote the continuous part of f. To prove weak

convergence of W(I') we identify Z? of equation (3.4) with ZI' = {Z ', t = 0} given by

z! = Ay ) 1Y@ > 0) = A X (@)

and verify the conditions of Theorem 3.2. Direct calculation reveals that conditions (a),
(b), (c), and (e) of Theorem 3.2 are equivalent, respectively, to the following four

conditions: forO0<t<ocandas T — e

t

1 A" |1y @ =0)B{ds} >0,
P

0
.
2 A XD 1ZMD) >e)dB )= 0,
n P
0
.
3) A |XMDdBs) - G(®)
P p
0

where G is defined by (4.1), and for [ = 1,2

1
@ L IAX, (- ABEIABGI > D [y6) (1 - ABE)AB@

kit <t P <t

where t € {t: AB(t) > 0}. Itis an easy exercise to show that conditions (b) and (c) of
Theorem 4.1.2 hold if we replace Yg(t) and 1~c('t) with Y4(I') and A, respectively. Thus,
condition (a) together with the uniformity of conditions (b) and (c) of Theorem 4.1.2
directly imply (1) - (4) above. Therefore, it remains to verify condition (d) of Theorem

3.2.
Consider the history H = {#, t 2 0} defined by (2.3), and let tx € {t: AB(t) > 0}

with tx < 6. By virtue of the independence of the interrenewal times it follows that
conditional on Htk_, ANtk(l“) is a binomial random variable with parameter Ytk(l") and

probability AB(tk) (here the fact that Ytk(I’) € H‘k‘ is used). Moreover, when Ytk(I‘) >0

the random variable Wi! in (d) of Theorem 3.2 is given by

14



wl - A“Z(A}‘g (T - AB(t.)) _ A2 ( ANtk(r) —AB(tk))
: K Y (D) '

b

Therefore, as a consequence of condition (b) of Theorem 4.1.2 and the Gaussian

approximation to binomial sampling, it follows that the conditional law of
A

A1/2(ABtk(1") - AB(ty)) given ?r{tk_ converges to a Gaussian law with mean zero and

variance (1 - AB(t)) AB(tx)/y(tx) in probability as T — c. As this verifies condition (d)

of Theorem 3.2, the desired result for W(I') and hence W(t) now follows. Againifoe I

and F(c) < 1 all the arguments above extend to all of I. This completes our proof. &

In practice the asymptotic variance functions G and L defined by (4.1) and (4.2),
respectively, will be unknown. It turns out that under the as sumptions of the theorem these

have consistent estimators given by

t
G,=7_| ¥/ @a-aB,@)aEm, t20, (4.1.8)
0

and
t

L= TJ (Y (1) - AN (1) 1AN (@) < Y,())dB (D), t20 .  (4.1.9)
0

4.2. Testing Without Replacement. Consider the setup of model 2, section 2
which describes testing without replacement and random censorship. For n 2 1 let
{Hm, t> 0}, N@G), Y(i) and M(i) be defined by (2.9)-(2.12), respectively, i = 1,...,n.
Next define the aggregate process N = {Ni, t =0}, Y = {Y;, t=0} and M = {M;, t=0} by
summing (2.10)-(2.12), respectively, over i. Then N is a Poisson type counting process in
the extended sense of section 3 so we define the martingale estimator én = { ﬁtn, t= 0} of

B by
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t

An
N .
B = J. X, dN, 4.2.1)
0

where X = (Y)! 1(Ys > 0); the dependence of Y and N on n is implicit. The estimator
A
BN is the Nelson-estimator of the cumulative hazard and is used to define the product-limit

A A
estimator F? = {F®, t 2 0} by

Fr=1- J] a-a8). (4.2.2)

s<t

Recall that if t > O such that Y; converges to infinity in probability as n — oo, then
Theorem 4.1.1 of Gill (1980b) implies that ﬁn and ﬁn converge uniformly over [0,t] to B
and F, respectively, as n — oo. We give an alternative proof of weak convergence to that

of Theorem 4.2.2 of Gill (1980b) which is based on our Theorem 3.2.

Theorem 4.2.1. Weak convergence of the Nelson-estimator and the
product-limit estimator. Let the space D be defined as in Theorem 4.1.2 and suppose
that Y/n converges uniformly on [0,e0) to a function y in probability as n — . Let
6 = sup{t: y(t) > 0} and I = {t: y(t) > O}, and consider the processes
W(n) = {nl/z(]/%\tn -B(t),0<t< 0o} and Z(n) = {n”z(ﬁt“ - FO)1(FEQ®) < 1)/A - F®)),
te I}. Then as n — o, W(n) and Z(n) converge weakly to X and Z1(F < 1) in ([0,0))

and D(I), respectively, endowed with the Skorohod topology.

Proof. Since ﬁn and f’n are the martingale estimators of B and F, respectively, it is a
corollary of the proof of Theorem 4.1.2 that it suffices to verify the equivalent of
conditions (b) and (c) of that Theorem, and finally to verify condition (d) of Theorem 3.2.
Here, of course, condition (a) of Theorem 4.1.2 is irrelevant. But the assumption above is
equivalent to conditions (b) and (c) of Theorem 4.1.2 with Y: and n in place of Y(t) and

Tg, respectively. Hence, it remains to verify condition (d) of Theorem 3.2.
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Suppose tx € {t: AB(t) >0}andtx<o. T hen according to Theorem 3.1.1 of Gill
(1980b), the conditional law of AN b given H,t:_ is Binomial with parameter Ytk and

probability AB(tx). Moreover, when Ytk > 0 the random variable WE of condition (d) in

Theorem 3.2 is given by

A

Nt
Y,

L - AB(t)) -

WI]; _ n1/2 (
K

Therefore, by the assumption and the Gaussian approximation to Binomial sampling it

n
follows that the conditional law of WE given ﬂtk converges to a Gaussian law with mean

zero and variance (1 - AB(tx))AB(tx)/y(tk) in probability as n — oo. As this verifies

condition (d) of Theorem 3.2, this completes our proof. =

The method of proof in Theorem 4.2.1 is based on functional central limit theorems
for semimartingales, overcomes the need for elaborate constructions, and integrates the

proof for continuous and discrete distributions.
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Appendix: Proof of Theorem 3.2 on Weak Convergence
Before proceeding to a formal proof of Theorem 3.2 we develop some preliminary

results regarding the martingale estimator (3.1). We first observe that

t
BB =M + j 1(Y; = 0)B{ds}
0

M +B}, t20, (A1)
where M1 = {Mrt‘, t > 0} is the square integrable martingale defined by (3.2), and the term

~ ~ A
Bn = {BIZ, t> 0} is a process of local bounded variation. Hence B"-B is a semi-

martingale, so to prove weak convergence for the normalized process we apply the general
functional central limit theorems for semimartingales of Jacod, Klopotowski and Memin
(1982) JKM).

Let X1 denote the characteristic function of the set I = {tx: k=1, AB(tx) > 0} and
consider the decomposition

t
aMi=a, [ -xEHMIva, D AM]
0

kst

=U; + V], t20, (A.2)

with obvious correspondence between terms. Here U = {Ultl, t=0} and Vi = {VI:, t=0}

decompose apM™ into orthogonal local martingales defined over the set I¢ (where B is

continuous) and I (where B has jumps), respectively. The process UM is a purely discrete
local martingale (cf. Shiryaev (1981)) so that there exists a random measure U - v on

R, xR such that

U = J x(((0,] x dx) - v'((0,t] xdx)), t=0. (A.3)
R

18



In the terminology of Jacod (1975), u® is a random counting measure with predictable

projection v0, Forn > 1 and u € R define the complex, predictable process
A(URu) = {Ay(Unu), t= 0} given by
AU = j @™ - 1- wx) V(0,8 x dx) . (A4)
R

By virtue of the definition of U™ in (A.2), it is easily verified that for each t 2 0

vi({t} x ) = 0 so that, in particular, AA(U%u) = 0. Therefore equation (2.8) of JKM

becomes
E(AU" W), = exp{A U W} . (A5)

Let G denote the continuous function defined in Theorem 3.2. We have the following.
Lemma A.l. Conditions (a), (b), and (c) of Theorem 3.2 imply that for t =2 0

E(AU ), — exp{G ()} asn — co. (A.6)
p

Proof. We begin by showing that conditions (a), (b), and (c) of Theorem 3.2 imply
conditions [B] and [8] of Theorem 2.21 of JKM, and condition [y '] of Proposition 2.22 of
JKM with Z0 = 0, BYn = agB1 (see (A.1)), BX = 0, vX = 0, C¥n = 0, CX = G¢, and
Yn = Un, Then lemma 2.24 of JKM will imply the desired result.

Obviously condition (a) implies condition [B1, so it remains to show that conditions
(b) and (c) imply conditions [3] and [y]. Since vX = 0, condition [8] is equivalent to the
following condition. Foralle>0,t20

VIO x {x: x| >eP— 0 asn-—>oco. (A7)
p

Moreover, it follows that condition (A.7) implies that condition [Y] is equivalent to the

condition
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J vn((O,t] X dx)x2 1(x] £¢e) — Gc(t) as n—> oo, (A.8)

R P

fort>0and € > 0. Hence, it suffices to show that (b) implies (A.7), and that (b) and (c)
together imply (A.8). To prove these statements we first observe that by definition the

quadratic characteristic of U™ has the representation
t
2
<U"> =a J (1-X(s))d<M">
0

t
n.2 nc
=J (ZS) dAS
0

= J V(0,1 x d)x”, 20, (A.9)
R

where ADC denotes the continuous part of AR (see section 3). Secondly, it is easily verified

that
t

t
J. @) 1(Z] > e)dAY 2 € J 1(Z! > e)dAY
0 0

— V(0,1 x {x: [x|>€}), t=20. (A.10)

The inequality (A.10) shows that condition (b) implies (A.7). Also, by virtue of equation
(A.9), condition (b) together with condition (c) implies (A.8). Now Lemma 2.24 of JKM

implies the desired result. ®
We are now in a position to give a proof of Theorem 3.2.

Proof of Theorem 3.2. By virtue of equation (A.1) and condition (a), it suffices to
show that WD = {anM?, t >0} converges weakly to X. Our plan is to demonstrate that the

finite dimensional distributions converge and that the sequence { W} is tight.
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To prove finite dimensional convergence we apply Theorem 3.4 of JKM, where in
Theorem 3.4 we take X = X and X0 = W0, By virtue of the decomposition (A.2), the
sequence {R™(u,m), m = 1} of predictable stopping times in Theorem 3.4 is given by the
deterministic sequence {tm: tm € I} for allu and n. In addition, using the structure of the
Gaussian process X in our Theorem 3.2, the sequence {R(u,m), m = 1} in Theorem 3.4 is
also given by {tm: tm € I}. Hence, conditions (i) and (ii) of Theorem 3.4 of JKM are
trivially satisfied. Now, by invoking the definitions of all the quantities involved, it is
immediately seen that condition (d) of Theorem 3.2 is equivalent of condition (iii) of
Theorem 3.4 of JKM. Finally, since in Theorem 3.4 of JKM we have X = U, and
G'(u); = exp{G<(t)}, Lemma A.1 shows that conditions (a), (b), and (c) imply condition
(iv) of Theorem 3.4 of JKM. Therefore, according to Theorem 3.4 of JKM conditions (a),
(b), (c), and (d) of Theorem 3.2 imply that the finite dimensional distributions of W1
converge to those of X.

We proceed to showing that {Wn} is tight with an application of Theorem 2.8 of

Jacod and Memin (1980). To apply Theorem 2.8 we identify X with W9, and the
predictable process GP = {G?, t = 0} in Theorem 2.8 is defined by

t
n n n2 nc 2 n
Gt =<a M >t=J Z) dA +k2 a_ A<M >y - (A.11)
0 DSt

First observe that in Theorem 2.8 of Jacod and Memin (1980) Xg = Wr(') = (0, so that

condition (i) of Theorem 2.8 is trivially satisfied. Secondly, in condition (i1) of Theorem
2.8 of Jacod and Memin (1980) we have F1 = GP, so we proceed to verify condition (2.5)
of Jacod and Memin (1980). In their condition (2.5) we take G* to be the deterministic
function <X> defined by our equation (3.3). Now it is easily seen that conditions (c) and
(e) together imply (2.5) of Jacod and Memin (1980). Therefore, by Theorem 2.8 of Jacod

and Memin (1980) the sequence {Wn} is relatively compact. Since I is separable and

complete, it follows from Theorem 6.2 of Billingsley (1968) that {Wn} is tight. Finally,
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by combining this result with the previous one on finite dimensional convergence, we
obtain the desired result. =
In our application of Theorem 3.2 we use the following corollary.

Corollary A.1. Suppose H" = {Hr;, t = 0} is a bounded predictable process such that

H" converges to a function h uniformly on [0,e2). Then under the conditions of Theorem
A
3.2, the sequence of martingales ap j H™(dB® - dB) converges weakly to a Gaussian

process J hdX. =

Corollary A.1 is easily proved by noting that the conditions of Theorem 3.2 remain

valid if we replace Zn by Z"HP. The proof is omitted.
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