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Hybrid or switched models are often used in engineering to analyze complex behavior.

The hybrid paradigm can be used to design systems that utilize the relationship between

discrete and continuous variables. This dissertation presents three examples in which

hybrid principles are implemented in order to: 1) reduce the number of models required

to establish hard bounds on the state estimate of smooth nonlinear systems, 2) enable

the exchange of low-level information between vehicles using movements instead of

radio-communication, and 3) improve the cooperative reconnaissance performance of

two autonomous aerial vehicles in a leader/follower configuration under strict commu-

nication constraints.

First, the problem of establishing hard bounds on the state estimate of a nonlinear

system using a switching piecewise linear hybrid estimator is considered. Within an

operating region, the proposed hybrid/switched estimator uses a variant of the Extended

Set-Membership Filter to select piecewise linear models based on minimizing uncer-

tainty. A priori selection of the base piecewise linear models is achieved by optimizing

the placement of operating points over the operating region.

Second, vehicle mode detection in a cooperative environment while minimizing

communication is investigated. The behavior of a vehicle is described using a finite

number of operating modes. Each mode is defined by a model which describes the ve-

hicle’s dynamics as well as a perturbation signature based on Gold codes. A locally

most powerful detector is derived based on detection theory in which the test statistic is

a function of the Kalman Filter innovations. In order to facilitate real-time implemen-



tation, a suboptimal detector that requires less computations is also developed. Monte

Carlo simulations of a linear and a nonlinear system are presented and the detection

performance of the locally most powerful and the suboptimal detectors are compared.

Finally, the cooperative reconnaissance performance of two unmanned aerial ve-

hicles (leader/follower) in uncertain environments while minimizing communication is

investigated. To enable cooperative reconnaissance, the follower estimates the operating

mode of the leader vehicle by using video camera measurements. The performance of

the overall system is gauged using two metrics: 1) by the length of time required for the

two vehicles to collect a certain level of information, and 2) by the amount of informa-

tion collected in a time interval. Monte Carlo simulations of the system are compared to

a decentralized system in which there is no cooperation and a centralized system with

full communication.
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CHAPTER 1

INTRODUCTION

In this dissertation, estimation methods are derived for systems in which it is benefi-

cial to use multiple models. The systems studied include: 1) smooth nonlinear systems

with unknown-but-bounded uncertainties, and 2) multiple vehicle systems used in coop-

erative reconnaissance in uncertain environments. Hybrid/switched estimation methods

are derived and tested on these systems.

Chapter 2 investigates the problem of establishing hard bounds on the state estimate

of a smooth nonlinear system using a switching piecewise linear hybrid estimator based

on set-membership. The basis of set-membership estimation is to assume hard bounds

on the noise, which allows hard bounds on the state estimate to be developed. Set-

membership estimation recursively computes an output set in which no point is more

likely to be the actual state than any other point, but does guarantee that the actual state

lies within this set. The linear set-membership filter, first derived in [1], is extended

in [2] for dynamic nonlinear systems to formulate the extended set-membership filter

(ESMF). Within an operating region, the proposed hybrid/switched estimator uses a

switched version of the ESMF to select piecewise linear models based on minimizing

uncertainty. A priori selection of the base piecewise linear models is achieved by op-

timizing the placement of operating points over the operating region. The algorithm

calculates the minimum number of models (and their locations) necessary within an op-

eration region to guarantee a certain level of uncertainty. Several methods of switching

models are also investigated. The algorithm is implemented on a complex high perfor-

mance aircraft model to demonstrate its function and benefits.

In Chapter 3, vehicle mode detection in a cooperative environment while minimizing

communication is investigated. The behavior of a vehicle is described using a finite

number of operating modes. Each mode is defined by a model which describes the
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vehicle’s dynamics as well as a perturbation signature based on Gold codes which is

embedded in the trajectory of the system. The perturbations are designed such that

there are the small enough not to affect the performance of the vehicle, yet large enough

to be detected in the presence of noise by another vehicle. A locally most powerful

detector is derived based on detection theory in which the test statistic is a function of the

Kalman Filter innovations. A suboptimal detector that requires less computations is also

developed. Monte Carlo simulations of a linear and a nonlinear system are presented and

the detection performance of the locally most powerful and the suboptimal detectors are

compared.

Chapter 4 describes the cooperative reconnaissance performance of two unmanned

aerial vehicles (leader/follower) in uncertain environments while minimizing communi-

cation. The goal is to evaluate whether it is possible to implement cooperative recon-

naissance using perturbation signatures in the absence of direct radio communication

between the vehicles. To enable cooperative reconnaissance the first vehicle, or the

leader, uses mode perturbation signatures to encode information about its current target.

A video camera is used by the second vehicle, or follower, to observe the motion of

the leader. The suboptimal detector developed in Chapter 3 is used by the follower to

detect the leader’s operating mode as a way to estimate information about the leader’s

current target. The mode estimate is then used by the follower to evaluate whether co-

operation would improve performance. The performance of the overall system (leader

and follower) is gauged using two metrics: 1) by the length of time required for the two

vehicles to collect a certain level of information, and 2) by the amount of information

collected in a time interval. Monte Carlo simulations of the system are compared to a

decentralized system in which there is no cooperation and a centralized system with full

communication.
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CHAPTER 2

SWITCHED LINEAR ESTIMATOR FOR SMOOTH NONLINEAR SYSTEMS

2.1 Introduction

The study of hybrid systems is attractive because of its wide applicability to complex

systems. Although the term hybrid system is used for a wide range of systems, it can

loosely be defined as a system in which there is interaction of discrete (in value) and

continuous dynamics. Hybrid systems arise in various engineering applications such as

automotive power-train systems, intelligent vehicle systems, and air traffic management

[3, 4, 5]. A more specific definition of a hybrid system is a system described by a

set of ordinary differential equations with discontinuities [6]. These models can be

used to represent nonlinearities such as saturation, hysteresis, switches, relays, and dead

zones. Control laws such as rule-based control, programmable logic control, and gain

scheduling are piecewise linear by nature and fit naturally into the hybrid framework.

A hybrid framework poses a challenge to estimation theory as estimators must use

measurements to recover information not only about the continuous state (sometimes

referred as the base-state), but also about the discrete state (sometimes referred to as

the modal state). The Interacting Multiple Model (IMM) estimator fuses N models to

efficiently compute a high quality state estimate. Fusion is based on computing the

probability of the modes based on their residuals; the mode with the smaller residual is

weighted more in the estimate [7]. Other stochastic multiple model estimators are pre-

sented in [8, 9, 10]. Biased estimates calculated by the Extended Kalman Filter (EKF) in

problems with incorrect noise assumptions led to the development of the Polymorphic

Estimator (PME) derived in Ref. [11]. As an alternative, the Gaussian Wavelet Estima-

tor (GWE) is derived in Ref. [12], which finds a finite dimensional Gaussian wavelet

approximation to the unnormalized density function of the hybrid state. In Ref. [13],
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the author proves that a switching observer with asymptotically stable error dynamics

can be constructed under the assumptions of compactness and Lyapunov detectability.

The usefulness of the approach is somewhat limited as it is difficult to design each of the

observers using the Lyapunov direct method. There exists a rich literature addressing

estimators for hybrid systems and the above summary is not exhaustive.

This paper develops a piecewise linear, hybrid bounded estimator designed for a

large family of systems (including continuous nonlinear); the output is a set of bounds

on the state estimate that are guaranteed even through model switching. System nonlin-

earities are addressed by implementing a set of estimators designed for linear models,

each over a particular operating range. Each individual continuous estimator is designed

in a context similar to the Extended Set-Membership Filter (ESMF) [2]: where the ef-

fects from higher order uncertainty of the nonlinear system are integrated directly into

the estimation framework. In contrast, stochastic filters such as the Extended Kalman

Filter (EKF) and Sigma Point Filter (SPF) [14] address nonlinearities directly: the EKF

linearizes the dynamics while the SPF propagates finite points through the nonlinear

dynamics. But both approaches ignore higher order terms of the nonlinearities. By ig-

noring these higher order terms, the error covariance is not an accurate measurement

of the bound on the state estimate. Therefore, many of these estimators are incompati-

ble with current robust and hybrid control techniques that require bounded uncertainty

information in their formulations in order to guarantee closed loop stability and perfor-

mance. The proposed hybrid observer can be integrated with control in the following

ways: 1) by finding the largest bound across the operating region and models and using

it as a constant uncertainty bound, or 2) in model predictive control where the uncer-

tainty bounds constrain the optimization [15]. Unique aspects of this work include: 1) a

hybrid switching methodology that directly minimizes the estimation uncertainty while

also guaranteeing bounds, 2) a model selection process which finds the number and loca-
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tion (state) of each model/estimator which minimizes the states estimation uncertainty,

and 3) theoretically guaranteeing boundedness of the estimator for a particular class of

systems.

The paper is presented as follows. Section 2.2 describes the ESMF and how its hard

bounds on the state are obtained. The derivation of the piecewise linear hybrid estimator

is derived in Section 2.3, based in part on the ESMF steps. Model selection methods and

conditions that guarantee the boundedness of the state estimate are also presented. The a

priori selection of piecewise linear models for use with the hybrid estimator is discussed

in Section 2.4. Finally an aircraft example is presented in Section 2.6 to illustrate the

function and benefits of the proposed techniques.

2.2 The Extended Set-Membership Filter

The basis of set-membership estimation is to assume hard bounds on the noise,

which allows hard bounds on the state estimate to be developed. In contrast, the Kalman

Filter (or Extended Kalman Filter for nonlinear systems) assumes noise sources are

stochastic, and then recursively calculates the highest probability state estimate and co-

variance [16]. Set-membership estimation recursively computes an output set in which

no point is more likely to be the actual state than any other point, but does guarantee that

the actual state lies within this set. In the literature, set-membership methods have been

derived using polytope and ellipsoidal methods. Ellipsoid methods require less infor-

mation to represent the uncertainty as compared to polytope methods, and are perhaps

more intuitive because of their analogy to the covariance in stochastic estimation. The

ellipsoidal set method, as developed by Schweppe for linear systems [17], is extended

in [2] for dynamic nonlinear systems to formulate the extended set-membership filter

(ESMF). The ESMF is chosen as a basis for a piecewise linear hybrid estimator in this

paper because it is well suited for on-line usage, does not make any assumptions on noise
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statistics (except that they are bounded), and allows boundedness of the uncertainty to

be verified, even for smooth nonlinear systems.

Consider the discrete nonlinear state-space system:

xk+1 = f (xk)+wk (2.1)

yk+1 = h(xk+1)+vk+1 (2.2)

where xk ∈ Rn is the state vector, wk ∈ Rn is the disturbance, yk+1 ∈ Rny is the mea-

surement, vk+1 ∈ Rny is the sensor noise. Note that adding a disturbance, sensor noise,

or control input which does not enter Equations (2.1-2.2) linearly is a straightforward

extension to the subsequent developments, but if left out for convenience.

The initial state, x0, process noise, and sensor noise are assumed to be bounded by

ellipsoids.

x0 ∈Ω(x̂0,Σ0,0), (2.3)

wk ∈Ω(0,Qk), (2.4)

vk+1 ∈Ω(0,Rk+1), (2.5)

where an ellipsoidal constraint of the form

[x− x̂]T P−1[x− x̂]≤ 1 (2.6)

is represented by the notation x ∈Ω(x̂,P).

Linearizing Equation (2.1) about the current state estimate, x̂k, yields

xk+1 = f (x̂k)+
∂ f (xk)

∂x

∣∣∣∣
xk=x̂k

(xk− x̂k)+O(xk
2)+wk. (2.7)

Even though Equation (2.6) only defines a set that contains x, if a point estimate is

needed the center of the ellipsoidal set can be used as it minimizes the error between the

true value and x̂. The ESMF [2] combines the higher order terms and the process noise

into one bound such that Equation (2.7) can be rewritten as

xk+1 = f (x̂k)+
∂ f (xk)

∂x

∣∣∣∣
xk=x̂k

(xk− x̂k)+ ŵk (2.8)
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where ŵk is a new noise term that bounds both the original noise and the linearization

remainder, ŵk ∈ Ω(0, Q̂k). The procedure to combine the process and measurement

noise with the linearization remainder utilizes interval mathematics for bounding, and is

described in detail in [2]. Considering the scalar case for simplicity, Equation (2.7) can

be rewritten as

xk+1 = f (xk)|xk=x̂k
+

∂ f (xk)
∂x

∣∣∣∣
xk=x̂k

(xk− x̂k)+ . . .+
f (xk)

nr

nr!

∣∣∣∣
xk=x̂k

(xk− x̂k)
nr +

Rnr (xk− x̂k,Xk)+wk (2.9)

where Rnr is a remainder term, and f nr the (nr)th derivative. Following Taylor’s Theo-

rem [18], the Lagrange remainder is written as

Rnr (xk, x̂k,Xk) =
f (nr+1) (Xk)
(nr +1)!

(xk− x̂k)
nr+1 . (2.10)

The term Xk can take on any value over an interval that includes the state xk. There-

fore, Equation (2.10) can be bounded by simply defining the interval Xk and evaluating

Rnr (xk− x̂k,Xk) using interval mathematics [2]. The ESMF considers nr = 1, the first

order dynamics used for prediction and update steps and the second order terms used to

define the Lagrange remainder, and therefore the uncertainty.

Given the initial conditions (Ω(x̂0,Σ0,0)), the extended noise bound calculated at

each time step, ŵk ∈ Ω(0, Q̂k,k), and the system dynamics in Equation (2.1), the pre-

dicted state ellipsoid, Ω(xk+1,k,Σk+1,k), can be estimated recursively by applying a lin-

ear set-membership filter at each time step [17]. Note that starting at time k the sub-

scripts (k,k), (k +1,k), and (k +1,k +1) are used to denote the elements used in the

prediction step, the update step, and final estimate at time k +1. A similar procedure is

applied to the measurement update using the output in Equation (2.2), the extended sen-

sor noise bounds v̂k+1 ∈Ω(0,Rk+1), to yield the updated state ellipsoid, Ω(x̂,Σk+1,k+1).

A summary of the ESMF is given in Equations (2.12-2.17). The prediction step,

Equations (2.12-2.13), is physically the addition of two ellipsoids: 1) the augmented
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noise ellipsoid Ω(0, Q̂k,k) and 2) the state uncertainty ellipsoid Ω(x̂k,k,,Σk,k) rotated and

scaled by the linearized dynamics, AT
k and Ak. The update step, Equations (2.14-2.17), is

the intersection of two sets: 1) the predicted state ellipsoid Ω(x̂k+1,k,Σk+1,k) and 2) the

set described by the output equation Ω(yk+1, R̂k). The actual state, xk, is then bounded

by Ω(x̂k+1,k+1,Σk+1,k+1), or

[
xk+1− x̂k+1,k+1

]T Σ−1
k+1,k+1

[
xk+1− x̂k+1,k+1

]≤ 1. (2.11)

2.3 Bounded Hybrid Estimator

A hybrid system, or more specifically a switched dynamical system, can be described

by an ordinary differential equation of the form:

ẋ(t) = fi(x(t),u(t),w(t)), y(t) = hi(x(t),u(t),v(t))

where x(t) ∈ Rn is the state and fi(·), hi(·) for i ∈ 1, . . . ,N, are continuous vector func-

tions that describe the behavior and output of the system under N conditions. This hybrid

model is used to more accurately describe systems in which a single vector function is

not sufficient. Switching between the individual models is done for control reasons,

such as to maintain stability or improve robustness. The work here focuses on switching

an estimator based on the estimation uncertainty.

2.3.1 Derivation

The proposed hybrid estimator uses a single active estimator as the one that mini-

mizes a measure of the set that contains the state estimate (equivalently this measure can

be referred to as a measure of the uncertainty bound). This is defined generally to be

J (·) : Rn×Rn → R. The switching law is then given as

J∗i∗ = min
i

[J1 (·) , . . . ,JN (·)] (2.19)
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Prediction step

x̂k+1,k = f (x̂k,k) (2.12)

Σk+1,k = Ak
Σk,k

1−βk
AT

k +
Q̂k,k

βk
(2.13)

Update step

x̂k+1,k+1 = x̂k+1,k +
Σk+1,k

1−ρk+1
CT

k+1

[
Ck+1

Σk+1,k

1−ρk+1
CT

k+1 +
R̂k+1

ρk+1

]−1

[yk+1−h(x̂k+1,k)] (2.14)

Σ̄k+1,k+1 =
Σk+1,k

1−ρk+1
− Σk+1,k

1−ρk+1
CT

k+1

[
Ck+1

Σk+1,k

1−ρk+1
CT

k+1 +
R̂k+1

ρk+1

]−1

Ck+1
Σk+1,k

1−ρk+1
(2.15)

δk+1 =
[
yk+1−h(x̂k+1,k)

]T
[
Ck+1

Σk+1,k

1−ρk+1
CT

k+1 +
R̂k+1

ρk+1

]−1

[
yk+1−h(x̂k+1,k)

]
(2.16)

Σk+1,k+1 = (1−δk+1)Σ̄k+1,k+1 (2.17)

Ak =
∂ f (xk)

∂x

∣∣∣∣
xk=x̂k,k

, Ck+1 =
∂h(xk)

∂x

∣∣∣∣
xk=x̂k,k

(2.18)

based on evaluating J (·) for each of the N filters. This enables the hybrid estimator to

minimize and bound uncertainty across the operating regions and transitions.

For the proposed hybrid estimator formulation, the nonlinear dynamics are linearized

about N operating points, xi, for i ∈ [1, . . . ,N], not the current state estimate, x̂k, as in

the ESMF. Linearizing fi and hi in Equation (2.19) about the ith operating point, xi,

results in the ith model, Φi, composed of the matrices (Ai,Bi,Ci,Di). This allows the
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estimator to remain linear over a particular operating range, but with varying process

and sensor noise bounds. Thus, this switched estimator, as compared to the ESMF, has

the advantage of being piecewise linear which is helpful for analysis and control design.

Although for estimation the cost of model switching is not high, it is advantageous to

minimize the number of operating points around which controllers must be designed and

tuned. The disadvantage for estimation and control of having a minimal set of operating

points is that there is a larger uncertainty because the system does not always operate

very close to the operating points.

The expansion of the true state dynamics about the ith operating point analogous to

Equation (2.9) for the one-state case using a Lagrange remainder is

xk+1 = f (xk)|xk=xi
+

∂ f (xk)
∂x

∣∣∣∣
xk=xi

(xk− xi)+Rk
(
xk− xi,Xk,k

)
+wk (2.20)

where Rk is again the Lagrange remainder, and is written as

Rk
(
xk− xi,Xk,k

)
= (xk− xi)

T 1
2

∂2 f (Xk,k)
∂x

(xk− xi) , (2.21)

for xk, xi ∈ Xk,k and the subscript k,k is used to denote the value of a variable used in

the prediction step of the estimator.

To maintain the piecewise linear characteristics of the estimator, the prediction step

of the hybrid estimator, (analogous to Equation (2.12) for the ESMF) must be modified

to rely on a linear model to calculate x̂k+1,k. The linear prediction step for the estimator

that functions near the ith operating point has the following form:

x̂k+1 = f (xk)|xk=xi
+

∂ f (xk)
∂x

∣∣∣∣
xk=xi

(x̂k− xi). (2.22)

Equation (2.22) differs from the ESMF prediction step as the current state estimate is

passed through the nonlinear dynamics in the latter. The error dynamics are found by

subtracting Equation (2.22) from Equation (2.20):

xk+1− x̂k+1 =
∂ f (xk)

∂x

∣∣∣∣
xk=xi

(xk− x̂k)+Rk
(
xk− xi,Xk,k

)
+wk. (2.23)
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The term Rk
(
xk− xi,Xk,k

)
can be bounded by an interval such that, Rk ∈ XRk , by defin-

ing Xk,k and evaluating Rk
(
xk− xi,Xk,k

)
using interval mathematics. For the scalar case

this is,

XRk =
(
Xk,k− xi

)T 1
2

∂2 f (Xk,k)
∂x

(
Xk,k− xi

)
. (2.24)

The expression for the general multi-state case is shown in Equation (2.32). In order to

guarantee that the higher order terms are bounded, the hybrid estimator requires that the

system be twice differentiable and smooth over all states and inputs.

The state interval is found by finding the extrema of the current state ellipsoid

Ω
(
x̂k,k,Σk,k

)
:

[Xk,k] j =
[
[x̂k,k] j−

√
[Σk,k] j, j, [x̂k,k] j +

√
[Σk,k] j, j

]
(2.25)

where the superscripts j denotes the jth state and j, j denotes the ( jth- jth) element of

Σk,k. In contrast to the ESMF, the interval Xk,k in the hybrid formulation must explicitly

include the current operating point to guarantee that Rk ∈ XRk bounds the linearization

error:

Xk,k = Xk,k∪ [xi,xi] , (2.26)

where [xi,xi] is equivalent to a degenerate interval.

The interval of the remaining term is found by using the interval defined in Equation

(2.26) and evaluating Equation (2.24) using interval mathematics. While there are many

bounding ellipsoids available, a unique closed form can be found by minimizing the

volume of the ellipsoid. If the volume is minimized, the closed form solution of the

outer bounded ellipsoid is written as [2]

[
Qk,k

] j,l
Rk

= 2

([
XRk,+

] j− [
XRk,−

] j

2

)2

, if j = l, 0 otherwise, (2.27)

for j, l ∈ [1, . . . ,n] where
[
XRk,±

] j represents the jth element extrema of the interval

in Equation (2.24) (see Ref. [19] for a derivation). The combined process noise bound,

11



Q̂k,k, is found by adding the ellipsoid bounding the linearization remainder, Equation

(2.27), and the ellipsoid bounding the process noise, Qk, or Q̂k,k = Ωs(Qk,k,Qk,βQ),

where βQ is a scalar, 0 < βQ < 1. Note that Ωs (·, ·, ·) denotes the addition of two ellip-

soids. A similar approach can be used for the update step.

A summary of the hybrid ESMF is given in Equations (2.31-2.52). The prediction

step, Equations (2.39-2.40), is physically the addition of two ellipsoids: 1) the aug-

mented noise ellipsoid Ω(0, Q̂k,k) and 2) the state uncertainty ellipsoid Ω(x̂k,k,,Σk,k)

rotated and scaled by the linearized dynamics, AT
k and Ak. The update step, Equations

(2.49-2.52), is the intersection of two sets: 1) the predicted state ellipsoid,

Ω
(
x̂k+1,k,Σk+1,k

)
, (2.28)

and 2) the set described by the output equation

Ω(yk+1, R̂k). (2.29)

The actual state, xk, is then bounded by Ω(x̂k+1,k+1,Σk+1,k+1), or

[
xk+1− x̂k+1,k+1

]T Σ−1
k+1,k+1

[
xk+1− x̂k+1,k+1

]≤ 1. (2.30)

When the initial state, noise, and higher order terms are bounded the δk+1 term in Equa-

tion (2.51) has to be < 1. In the hybrid ESMF formulation, as the system moves away

from an operating point a δk+1 > 1 means that the ellipsoid defined in Equation (2.37) is

not correctly bounding the higher order terms suggesting that the continuity and smooth-

ness assumptions on the system are invalid. The scalar parameters βk and ρk+1 in Equa-

tions (2.40), (2.49) are defined strictly between 0 and 1 can be optimized to minimize

a metric on the size of the resulting set (the reader is referred to [2] for a more detailed

discussion).

The switched ESMF algorithm can be summarized by the following steps performed

on each of the operating points, xi, for i ∈ [1, . . . ,N]:
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1. Calculate the Jacobian, Equation (2.31), evaluated at, xi.

2. Evaluate the Hessian, Equation (2.32).

3. Find the state interval, Xk,k Equation (2.32), bound by computing the extrema of

the current state ellipsoid, Ω
(
x̂k,k,Σk,k

)
, Equation (2.34).

4. Find the union of the state interval, Xk,k, and the degenerate interval containing

xi, Equation(2.35).

5. Evaluate the Lagrange Remainder, Equation (2.36), using interval mathematics.

6. Compute the ellipsoid, Q̂k,k, that bounds the Lagrange Remainder, Equation (2.37).

7. Find the ellipsoid that bounds the addition of the process noise ellipsoid, Qk, and

the Lagrange Remainder ellipsoid Q̂k,k.

8. Calculate the predicted state ellipsoid, Equations (2.39-2.40).

9. Using the state prediction x̂k+1,k, repeat steps 1-7 for the output dynamics, h(·),
to calculate the ellipsoid that bounds the measurement noise ellipsoid, Rk+1, and

the bounding ellipsoid of the Lagrange Remainder of output dynamics Rk+1.

10. Calculate the updated state ellipsoid, Ω
(
x̂k+1,k+1,Σk+1,k+1

)
, Equations (2.49-

2.52).

Switched ESMF Prediction Step:

Ai =
∂ f (xk)

∂x

∣∣∣∣
xk=xi

, (2.31)

H f j =
∂2 f j (·)

∂x2 , (2.32)

[Xk,k] j =
[
[x̂k,k]

j
−, [x̂k,k]

j
+

]
, (2.33)

=
[
[x̂k,k] j−

√
[Σk,k] j, j, [x̂k,k] j +

√
[Σk,k] j, j

]
, (2.34)

Xk,k = Xk,k∪ [xi,xi] , (2.35)
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XRk =
1
2

diag
(
Xk,k−xi

)T




H f 1(Xk,k)
...

H f n(Xk,k)




(
Xk,k−xi

)
, (2.36)

[
Qk,k

] j,l
Rk

= 2
(

[XRk ,+] j−[XRk ,−]
j

2

)2

, (2.37)

if j = l, 0 otherwise.

Q̂k,k = Ωs(Qk,k,Qk,βQ), (2.38)

x̂k+1,k = f (xi)+Ai(x̂k−xi), (2.39)

Σk+1,k = Ai
Σk,k

1−βk
AT

i +
Q̂k,k

βk
, (2.40)

Switched ESMF Update Step:

Ci =
∂h(xk)

∂x

∣∣∣∣
xk=xi

. (2.41)

Hh j =
∂2h j (·)

∂x2 , (2.42)

[Xk+1,k] j =
[
[x̂k+1,k]

j
−, [x̂k+1,k]

j
+

]
, (2.43)

=
[
[x̂k+1,k] j−

√
[Σk+1,k] j, j, [x̂k+1,k] j +

√
[Σk+1,k] j, j

]
, (2.44)

Xk+1,k = Xk+1,k∪ [xi,xi] , (2.45)

XRk+1 =
1
2

diag
(
Xk+1,k−xi

)T




Hh1(Xk+1,k)
...

Hhn(Xk+1,k)




(
Xk+1,k−xi

)
(2.46)

[
Rk+1

] j,l
Rk+1

= 2

([
XRk+1,+

] j
−

[
XRk+1,−

] j

2

)2

, (2.47)

if j = l, 0 otherwise.

R̂k+1 = Ωs(Rk+1,Rk+1,βR), (2.48)
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x̂k+1,k+1 = x̂k+1,k +
Σk+1,k

1−ρk+1
CT

i

[
Ci

Σk+1,k

1−ρk+1
CT

i +
R̂k+1

ρk+1

]−1

[
yk+1−

(
h(xi)+Ci(x̂k+1,k−xi)

)]
, (2.49)

Σ̄k+1,k+1 =
Σk+1,k

1−ρk+1
− Σk+1,k

1−ρk+1
CT

i

[
Ci

Σk+1,k

1−ρk+1
CT

i +
R̂k+1

ρk+1

]−1

Ci
Σk+1,k

1−ρk+1
, (2.50)

δk+1 =
[
yk+1−

(
h(xi)+Ci(x̂k+1,k−xi)

)]T
[
Ci

Σk+1,k

1−ρk+1
CT

i +

R̂k+1

ρk+1

]−1 [
yk+1−

(
h(xi)+Ci(x̂k+1,k−xi)

)]
, (2.51)

Σk+1,k+1 = (1−δk+1)Σ̄k+1,k+1. (2.52)

2.3.2 Piecewise Linear Estimator Selection

It is proposed here to switch estimators based on the size of the uncertainty, while

maintaining boundedness in the uncertainty through the mode transitions. There are

several approaches to this, such as using the actual state uncertainty, the higher order

term uncertainty, or using a normalized version of these. Part of the study here is to

evaluate and compare metrics.

Each of the i estimators develop a bound of the state in the form of an ellipsoid,

Ω
(
x̂k,k,Σk,k

)
. The true state is guaranteed to lie within this ellipsoid for all i estima-

tors; the quality of the estimate can be assessed by evaluating the size of the uncertainty

bound. In the ESMF, the size of the bound is influenced by the measurement, the process

and measurement noise, and the higher order term uncertainty. In the hybrid formula-

tion of the ESMF, the linearization remainder inherently increases as the system moves

away from the operating points. The quality of the estimate is evaluated by comparing

(in terms of a scalar metric) the “size” of the uncertainty ellipsoids, Ω
(
x̂k,k,Σk,k

)
. The

advantage of this metric is that it is the “true” evaluation of the estimator performance.

Metrics that could be used include the trace, determinant (volume), and maximum eigen
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value of Σk,k (largest dimension). In practice, the trace is often used for this purpose

because of its speed of computation. An alternative metric can be developed for estima-

tor selection based on the bound on the linearization remainder, such as Ω
(
0, Q̂k,k

)
or

Ω
(
0, R̂k

)
. The advantage of this metric is that it isolates the influence of the linearization

remainder on the size of the uncertainty, which is the primary difference between the es-

timators. Because these metrics do not consider the measurement, yk+1, the metrics

immediately react to fluctuations in the linearization error.

In addition to using the uncertainty for estimator selection, based on Σk,k, Q̂k,k, and

R̂k, a scaling can be used to change the relative magnitude of elements of the matrices.

Consider the scaling matrix of the following form:

S(·) = S · (·) ·ST , (2.53)

where s j scales elements of the matrix (·). S = diag
(
s1, . . . ,sn). As an example, con-

sider X j,−, X j,+ which denote the minimum and maximum values respectively that the

jth element of the state achieves in the operating range X . In cases where the relative

magnitude of the state variables is not equal, the scaling si can be defined as follows:

s j =
1√

X j,+−X j,− . (2.54)

Let Ji = f (·) denote the evaluation of an uncertainty metric corresponding to the ith

model where f (·) could be the trace, determinant, or maximum eigenvalue of Σk,k, Q̂k,k,

R̂k, or S(·).

The proposed bounded hybrid estimator is modelled as a hybrid automaton. Each

node, qi, in the graph represents the model currently used. Let Ji (·) denote the evaluation

of an uncertainty metric corresponding to the ith model. Portions of all filters must

evolve in order to evaluate Ji(·) at each time step. At each time step, the state estimate

and state uncertainty are calculated by using only the ith model that is associated with

the ith node. In stricter mathematical terms, let Q = {q1,q2, . . . ,qi, . . . ,qn} be the set
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of discrete states and define the discrete variable q ∈ Q. The current state estimate and

uncertainty remain in the domain of qi, where the domain is defined as follows:

Dom(qi) =
{

Ji(·) ∈ R | Ji(·) = min
i

[J1(·), . . . ,JN(·)]
}

, (2.55)

as long as the uncertainty metric for the ith estimator is the minimum. Equation (2.55)

states that the current model (node on the graph) is active as long as the scalar metric,

Ji (·), is the smallest among all models. Otherwise, the guards dictate which other model

is selected to compute the next step of the estimator.

To prevent unnecessary sensitivity in the model transitions, “memory” can be im-

parted onto the expression of Equation (2.55) by counting the number of times that the

minimum uncertainty metric associated with the i∗th estimator does not correspond to

the current discrete state, qi. At every step, if i∗ 6= i then a counter is increased, η = η+1.

Equation (2.55) can be rewritten to include this memory term in the following way:

Dom(qi) =
{

Ji(·) ∈ R | Ji(·) = min
i

[J1(·), . . . ,JN(·)] OR η < L
}

, (2.56)

where L is length of the memory. This is done in order to minimize the effects of noise

in switching, and to retard a model switch until there is enough information to warrant

a transition. The difference between Equation (2.55) and Equation (2.56) is that in the

latter the scalar uncertainty metric for a model must be the smallest for L steps before a

switch occurs. The next model is selected by evaluating a guard for ith node that has the

following form:

G(qi,qi+1) =
{

Ji(·) ∈ R | Ji+1 = min
i

[J1(·), . . . ,JN(·)]
}

. (2.57)

The guard allows the transition from qi to qi+1 if the metric for the (i+1)th estimator is

the minimum. If a transition occurs then the estimate and state ellipsoid of the (i+1)th

estimator is selected to be the active estimator. After a transition, the continuous state

remains the same, but the counter is reset, η = 0.
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2.3.3 Stability Analysis

For real time implementation, it is important to understand the stability characteris-

tics of an estimator. For the hybrid estimator, analysis shows if nonlinear observability

is maintained both the state ellipsoid and the error dynamics (error between the center

of the ellipsoid and the true state) are bounded. This issue is further discussed in the

Appendix A.

2.3.4 Numerical Example

In order to gain insight into how the hybrid observer functions, it is applied to the

relative motion of one aircraft with respect to another,

xr,k+1 = xr,k +T [−v0,k + v1,k cosψr,k +ω0yr,k] = f 1

yr,k+1 = yr,k +T [v1,k sinψr,k−ω0xr,k] = f 2

ψr,k+1 = ψr,k +T [ω1−ω0] = f 3

(2.58)

where (xr,yr,ψr)⊂ X = [0,20]× [0,20]× [0, π
2 ], is the relative position and orientation

of aircraft 1 with respect to aircraft 0 and vi and ωi are the linear and angular velocities

of each aircraft, ω0 = ω1 = 0. The control input is the linear velocity of aircraft 0,

uk = v0,k = 0, the disturbance is the linear velocity of aircraft 1, dk = v1,k = 10, and

T = 0.01 is the sampling time. The sensor output is:

yk+1 =




xr,k+1

yr,k+1


+vk+1. (2.59)

The trajectory for the system is shown in Figure 2.1.

Since the purpose of the switched piecewise linear observer is to minimize the num-

ber of models necessary for accurate estimation, it would be impossible to guarantee

accuracy without defining an operating region, X , in which the system is expected to
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Figure 2.1: Relative motion of plane 1 with initial conditions [0, 0, 0]T .

operate. This requirement is not overly restrictive as in estimation and tracking appli-

cations a priori information about the speed and agility of the system is used to define

prediction models and to tune noise parameters.

For the case of three operating points, N = 3, Figure 2.2 shows the state ellipsoid

uncertainty metric, tr
(
Σk,k

)
. The dashed horizontal lines in Figure 2.2 show the location

of the operating points, xi, for each of the three models. As the system evolves in time

the value of the linearization remainder and uncertainty metrics change for the three

models. Model switches which are shown by the vertical dashed lines in the figure. The

figure shows that for t < 1, when the state is near the initial condition, the estimator

implemented with the first operating point, x3 = [0,0,0], has a smaller uncertainty (as

measured by tr(Σk,k)) than the other two estimators. As the system moves towards

ψr → π
4 radians, the uncertainty of the estimator using the model defined around the
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second operating point, x2 = [0,0,0.82], decreases because the linearization remainder

for this estimator becomes smaller. The same can be said as ψr → π
2 for the estimator

using the third model around the operating point, x3 = [0,0,1.35].
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Figure 2.2: Estimate and bounds on the orientation ψr,k for estimators run with constant
plant models ψ1,2,3 = 0.22, 0.82, and 1.35 radians and the trace of the uncertainty for
systems with these models. In the upper figure the location of the operating points is
shown by horizontal dashed lines. Model switches are marked by vertical dashed lines
in the upper and lower plot.

Figure 2.3 compares two types of switching criteria: the full state uncertainty, or

tr(Σk,k), and the bounded remainder bound, or tr(Q̂k,k). As the heading changes from

0 to π
2 , each of the metrics selects which estimator (model and operating point) is more

appropriate. As seen in Figure 2.3, switching between models using
(
Σk,k

)
occur later,

but is relatively similar in profile to the other two switching metrics. The vertical dashed

line in this figure marks the time at which a switch first occurs for estimators based on

using Q̂k,k for model selection. Switching occurs earlier compared to the switching pro-
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file found using tr(Σk,k). The effects of the linearization are somewhat masked in the

tr(Σk,k) cost by the sensor update, which is why the switch times are delayed. However,

tr(Q̂k,k) is more sensitive to noise as some jittering is observed in the transition from

model 1 to model 2 (0.8 < t1.2 sec)compared to the
(
Σk,k

)
switching profile. The sen-

sitivity of using tr(Q̂k,k) is also caused by not using the update portion of the estimator

when evaluating the switching logic. For the entire switching trajectory, 0.0 < t < 3.0

sec, switching based on tr(Q̂k,k) results in a total of 10 mode changes. Figure 2.3 also

shows the results of the hybrid estimator using the bounded remainder as the switching

metric and a memory of L = 3, which is designed to counteract the sensitivity near the

model switching. In this case, the number of intermediate switches are reduced from 10

in the case of L = 1 to 3 in the case L = 3.

2.4 A Priori Selection of the Base Piecewise Linear Models and Op-

erating Points

The size of the uncertainty in the hybrid estimator, as defined by any of the metrics in

Section 2.3.2, is a function of the number of operating points N as well as their location,

xi. Thus, the designer can select either the number of individual estimators N or the size

of uncertainty (Section 2.3.2) of the bounded hybrid estimator prior to implementation.

A procedure is developed here to find the location of N operating points used in the

hybrid estimator by minimizing the system uncertainty. Inside the operating range X ,

N operating points are defined as xi for i = {1, ...,N} As mentioned in Section 2.3.4,

to minimize the number of plant models used in estimation it is necessary to define an

operating region in which the system is expected to operate. If such operating region, X ,

is not known a priori or becomes invalid, then the estimation accuracy of the switched

linear estimator is not guaranteed and other estimation methods should be considered.
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Figure 2.3: Constant plant models ψ1,2,3 = 0.22, 0.82, and 1.35 chosen by considering
the trace of the state ellipsoid and the trace of combined process noise ellipsoid. Model
switching with memory, L = 3, is shown in the lower plot. The vertical dashed lines
show the time at which a switch from the first to second model occurs based on using
the tr(Q̂k,k) uncertainty metric.

Based on the dynamics in Equation (2.1), a Hessian-like term for jth component of f (xk)

and the ith operating point is (with the subscript k dropped for clarity):

H j
i (x,xi) = (x−xi)T ∂2 f j(x)

∂x2

∣∣∣∣
x=xi

(x−xi). (2.60)

This Hessian-like term is proportional to the size of the linearization remainder as de-

scribed in Equation (2.21). The goal is to place the N operating points, xi, such that

the term in Equation (2.60) is minimized throughout the operating range defined by X .

Said another way, the location of the operating points should be chosen such that the

maximum uncertainty achieved by the set of N operating points is minimized.

Consider the following cost which defines the maximum value of the Hessian-like
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term (Equation (2.60) ) over the operating range for the ith operating point:

J∗i (x∗i ,xi) = max
x∈X

J
(

S ·diag
[
H j

1(x,xi), . . . ,H
j

N(x,xi)
]
·ST

)
, (2.61)

where the state that denotes this maximum is defined as x∗i , and S is a scaling matrix,

and J (·) is an uncertainty metric (both defined in Section 2.3.2). Note that optimization

must be used to evaluate 2.61 as the value of x ∈ X must be varied to find the maximum

values of the terms H j
1 , . . . , H j

N .

Using the cost given in Equation (2.61) as the basis, the following optimization is

defined to find the operating points,

J∗MODEL = min
xi∈X

{
max

i
(J∗1 [x∗1,x1], . . . ,J∗N [x∗N,xN])

}
. (2.62)

The inner maximization in Equation (2.62) selects the worst case uncertainty (largest

remainder bound in X ) among the N operating points, while the outer minimization

attempts to minimize the worst case uncertainty by changing the location of the operat-

ing points, [x1, . . . ,xN]. The same optimization procedure can be defined for the output

equation of the system.

The optimization defined in Equation (2.62) focuses on minimizing the worst case

higher order terms of the system dynamics (Equation (2.39), which obviously affects

the prediction step). A similar optimization of course can be performed for the higher

order terms of the output (Equation (2.49), which obviously affects the update step). A

procedure is developed here based on the steady state uncertainty, which then combines

the effects of the higher order uncertainty from both the system dynamics and output.

The approach here is to use the Bersekas formulation of the set-membership filter [20] as

opposed to the Schweppe formulation presented in Section 2.2, because the state uncer-

tainty matrix Σk,k does not depend on the observation and will converge to a steady state

value, i.e. limk→∞ Σk,k = Σss [20]. It is noted that both approaches are outer bounding
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and related. The Bertsekas formulation differs in how the state matrix is propagated,

Σk,k =
[
(1−ρk+1)Σ−1

k,k +ρk+1CT
k+1R̂−1

k+1Ck+1

]−1
(2.63)

δk = (1−βk−1)(1−ρk)δk−1 +(zk−CkAk−1x̂k−1)
T (2.64)

with the initial condition, δ0 = 0. In the Bertsekas based ESMF, Equations (2.50,2.51)

are replaced by Equations (2.63,2.64) respectively. The actual state xk is bounded by

Ω(x̂k+1,k+1,(1−δk+1)Σ−1
k+1,k+1).

The model selection process is proposed as follows. Define a diagonal matrix, Σmax,

which defines a maximum allowable ellipsoid uncertainty bound in the state estimate.

The procedure to find the location and minimum number of N operating points to satisfy

the uncertainty described by Σmax is the following:

Choose Σmax based on a desired level of uncertainty, and N = 0:

1. Solve the steady state linear SMF, Equations (2.40,2.50,2.63,2.64), with no round-

off uncertainty, or Q̂k,k = Q, to find the smallest steady state uncertainty, Σss =

limk→∞ Σk,k. For j ∈ [1, . . . ,n], if Σ j, j
max > [Σss] j, j ∀ j then go on to step 2; else

redefine Σmax because the current Σmax is infeasible.

2. Add one operating point within X , for a total N = N +1 operating points .

3. Solve the nonlinear minimax optimization problem, Equation (2.62), for N operat-

ing points, [x1, . . . ,xN], and the maximum higher order term uncertainty, J∗MODEL.

4. Find the process noise bound, Q̂ss, by adding maximum roundoff uncertainty for

N operating points, QN
max and original process noise, Q̂ss = Ωs

(
QN

max,Q,βQ

)
. It

should be noted that the k subscript has been dropped from the process noise

ellipsoid as for this algorithm it must be constant or the maximum (worst case)

value of the noise ellipsoid must be considered. To compute QN
max, define the
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interval [X ] j =
[
[x∗i ]

j±
√

[Σmax] j, j
]
, evaluate Qk,k using a bounding method sim-

ilar to Equations (2.32,2.37). By replacing Q̂k,k with Q̂ss in Equations (2.40,2.50,

2.63,2.64), find the steady state uncertainty, ΣN
ss.

5. If [ΣN
ss]

j, j > Σ j, j
max for any j, then go to step 2, else the location xi and number N of

operating points that meet the desired uncertainty Σmax has been found.

Referring back to the system presented in Equation (2.58), the nonlinear minimax

optimization problem, Equation (2.62), relates the location and number of the operating

points with a given level of uncertainty. The cost function is in general nonconvex due to

the structure of the objective function; therefore convergence to a global minimum is not

guaranteed [21]. Sequential quadratic programming is used to minimize Equation (2.62)

in MATLAB. The algorithm is initialized by selecting F points from a uniform distribu-

tion spanning X . The insert of Figure 2.4 shows the cost, J∗MODEL(·)/(T v1), (Equation

(2.62) for N = 3 normalized by T v1) for F = 1000 initial starting points. For compar-

ison purposes, an exhaustive search over X yields the “smallest” uncertainty cost to be

J∗MODEL(·)/(T v1) = 0.006. Figure 2.4 also presents the percentage of optimized solu-

tions that converge to a given percentage threshold of J∗MODEL(·)/(T v1). The extreme

nonlinear nature of the optimization makes it very difficult to find optimal solutions,

and as shown in Figure 2.4, the algorithm indeed does find suboptimal solutions. The

points below the dashed line in the inset figure are the points that are within 10% of the

J∗MODEL(·)/(T v1) found from the exhaustive search. However, Figure 2.4 suggests that,

for a desired solution to be within 10% of J∗MODEL(·)/(T v1), the algorithm can be solved

p times and p
2 of the solutions will be within the bound. Figure 2.5 shows the tr

(
Σk,k

)

cost for N = 2,3,5 operating points. Comparing these curves, the uncertainty metric

decreases quickly with N. While indirect, the a priori model selection process attempts

to minimize the peaks shown in Figure 2.5. As more operating points are added, the

uncertainty of the system decreases and approaches the uncertainty of the full ESMF.
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Figure 2.4: Percentage of solutions that are within a percentage of the minimum value
of the objective function for the example in Equation (2.58).

2.5 Algorithm Summary

The implementation of the linear switched estimator is shown in Figure 2.6 is di-

vided in two parts: 1) the off-line optimization to find the number and location of op-

erating points, and 2) the on-line model selection and estimation. Optimizing the cost

function defined in Equation (2.62) must be done off-line as finding a solution (even if

suboptimal) is computationally expensive. The set of operating points is found using

the procedure proposed in 2.4 and the set becomes an input to the on-line portion of

the algorithm. The lower part of Figure 2.6 shows the on-line linear switched estimator

algorithm that has as inputs the set of operating points found off-line as well as the cur-

rent: 1) state estimate, x̂k,k, 2) state ellipsoid, Σ̂k,k, 3) discrete state (model with the least
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in Equation (2.58).

uncertainty), q̂k, 4) the control input, uk, and 5) measurement, yk+1. The linear switched

estimator then bounds the higher orders terms for the N models, Equations (2.32-2.38).

The N models are then propagated for one step, Equations (2.39-2.40), and the resulting

uncertainty is evaluated using any of the metrics proposed in 2.3.2. The model with

the least uncertainty is selected and the estimate and state ellipsoid at time k +1 is then

calculated.

2.6 High Performance Aircraft Simulation Example

To evaluate the proposed hybrid estimator and its design tools, an aircraft example is

used that considers the longitudinal dynamics of a high-performance F-16-like aircraft.

The longitudinal nonlinear dynamics of a high performance F-16-like model are consid-
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Figure 2.6: The cycle of the linear switched estimator. The off-line optimization used
to find the number and location of operating points is shown in the upper portion and
the on-line model selection and estimation process is shown in the lower portion of the
figure.

ered here because the uncertainty is multi-dimensional and a function of four variables.

Also, there is a large body of work in gain scheduled control for aircraft that could be

utilized by this switched linear estimator concept.
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The nonlinear continuous dynamics of the aircraft are given by:

ẋp = V cos(θ−α) = f 1

ḣ = V sin(θ−α) = f 2

θ̇ = q = f 3

V̇ = −gsin(θ−α)+ (T+Fx)cosα+Fz sinα
m = f 4

α̇ = q+ g
V cos(θ−α)+ Fz cosα−(T+Fx)sinα

mV = f 5

q̇ = 1
JAC

[
QSc

(
Cm + 2c

V Cmqq
)
+Fz (xac− xcg)

]
= f 6

(2.65)

where the state is x = [xp h θ V α q]T , which includes the aircraft’s relative position,

altitude, pitch, speed, angle of attack, and pitch rate [22]. The two control actuators are

the thrust, T , and elevator deflection angle, δe. The aeroforces Fx and Fz are assumed

to have the following form: Fx = Q̃S̃
(
Cx + c

2V Cxqq
)
, Fz = Q̃S̃

(
Cz + c

2V Czqq
)
, where S̃ is

the wing area, c is the chord length, JAC is the moment of inertia, xac is the aerodynamic

center, xcg is the center of gravity. The dynamic pressure, Q̃(V,h), is obtained from a

look-up table based on altitude, and Cm, Cmq, Cz, Czq, Cx, and Cxq are stability derivatives

and are functions of the angle of attack and elevator deflection angle.

The Hessians, H f j = ∂2 f j(·)
∂x2 , are obtained analytically by using the nonlinear equa-

tions of motion and are found to have the following variable dependence: H f 1(θ,V,α),

H f 2(θ,V,α), H f 3 = 0, H f 4(θ,V,α,q), H f 5(θ,V,α,q), and H f 6(V,q).

The sensor and process noise for the system has the following form: η = g(η), where

η∼N (0,σ2) and g(·) is a transformation function that passes only values within±σ of

the mean. The result is a mixed random variable, η, that does not violate the assumptions

of the ESMF because ηk ∈Ω(0,σ2) for all k. The output measurements are composed of

the following, which are typical for aircraft, y = [xp h θ V α q]T +v. The parameters

for this simulation are as follows: T = 0.01, Qk = 0.01I where I is the identify matrix

∈ R6,6, Rk = diag(10,10,0.075,1,0.075,0.075), Σmax (3,3) < 10◦, Σmax (5,5) < 10◦.

For this example, the simulation parameters are listed in Table 2.1.
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Table 2.1: Longitudinal Dynamics of a High Performance Aircraft System Parameters.

Parameter Value
T 0.01
Qk diag(0.01,0.01,0.01,0.01,0.01,0.01)
Rk diag(10,10,0.075,1,0.075,0.075)
Σmax(3,3) < 10◦
Σmax(5,5) < 10◦

Selection of Operating Points: The operating region, X , is defined by the following

inequalities: −24◦≤ θ≤ 24◦, 400 ft/sec≤V ≤ 650 ft/sec,−24◦≤α≤ 24◦,−20◦/sec≤
q ≤ 20◦/sec. As mentioned in 2.4, if the system is not in the operating region, x ∈ X ,

then the accuracy of the switched linear estimator is not guaranteed and other estimation

methods must be considered.

The trajectory that the aircraft follows consists of three pieces: 1) flying at a constant

altitude and speed, 2) performing a climbing maneuver, and 3) settling to a constant

altitude and speed flight; the altitude and speed for this trajectory are shown in Figure

2.7(a),(b). If a trim condition is defined as aircraft motion where θ̇ = q = α̇ = 0, then

the three sections of the trajectory in this example are ideal trim conditions. Three LQR

controllers at each of the three trim conditions are implemented to allow the aircraft to

follow the desired trajectory. It is noted that the number and location of the operating

points are calculated to minimize the uncertainty within the operating region and are

independent of the particular trajectory the system follows.

The design specifications require that the uncertainty for the pitch and angle of attack

are less than 10.0◦, resulting in the matrix: Σmax = diag(κ, κ, 102, κ, 102, κ ), where

κ = 1×106 because these states are not part of the design.

1. The first step of the design procedure described in 2.4 solves the ESMF equa-

tions with roundoff error, Qk,k = 0 and Q̂k,k = Q, to determine whether the design

specifications can be met in this system. Equations (2.40,2.50,2.63,2.64) yield the
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following steady-state uncertainty ellipsoid,

Σss = diag
(
3.62, 3.62, 9.32, 1.12, 9.32, 9.32) . Examining Σss shows that the

uncertainty in θ and α satisfy the design requirements, or [Σss]
j, j < Σ j, j

max for

j = [3,5]. Therefore it is not necessary to redefine the specifications, Σmax, or

to reconfigure the system (such as sensor changes).

2. Add one operating point within X , N = N +1.

3. The solution of a nonlinear minimax optimization problem, Equation (2.62), is

required using N operating points. For this example, sequential quadratic pro-

gramming was implemented in MATLAB and initialized at 1000 different points

randomly selected within X . The value of the objective function, J∗MODEL (·) in

Equation (2.62), decreases as operating points are added as shown in Table 2.2.

4. For N = 1, substituting Q1
max into Equation (2.40) and solving Equations (2.50),

(2.63), (2.64) reveals that the uncertainty for θ is
√

[Σ1
ss]

3,3 = 9.61◦ and for α is√
[Σ1

ss]
5,5 = 10.92◦.

5. Because the uncertainty in α violates the design specification, [Σ1
ss]

5,5 > Σ5,5
max, the

procedure iterates back to step 2 with additional operating points added. Table 2.2

shows that N = 3 operating points must be used in order to satisfy the specification
[
ΣN

ss
]5,5

< Σ5,5
max. The operating points found from optimization which guarantee

that the design specifications are met are: x1 = [0, 0, 24.0, 538, 14.1, 0.0]T ,

x2 = [0, 0, 22.9, 450, 19.2, 13.8]T , x3 = [0, 0, 24.0, 568, 0.5, 5.1]T . The

units for the variables in the operating points are feet, feet, degrees, feet/sec, de-

grees, and degrees/sec respectively. For this example, the operating points that

minimize the uncertainty in Equation (2.62) are particularly dominated by the air-

craft velocities of 538, 450, and 568 feet/sec. It can be shown that the x1 and

x2 operating points are not at or near a trim condition because q 6= 0. The third

operating point, x3 is close to a trim condition of level flight at a speed of 568
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Table 2.2: Longitudinal Dynamics of a High Performance Aircraft Design Iteration.

N xi J∗MODEL (·) ΣN,3,3
min ΣN,3,3

min <

Σ3,3
max =

102

ΣN,5,5
min ΣN,5,5

min <

Σ5,5
max =

102

1 [0,0,20,580,12.5,6.9]T 8.19×1015 9.61 Yes 10.92 No
2 [0,0,20,542,12.2,12.6]T , 5.88×106 9.51 Yes 10.06 No

[0,0,20,600,10.3,9.2]T

3 [0,0,24,538,14.1,20.0]T , 5.41×105 9.45 Yes 9.82 Yes
[0,0,23,450,19.2,13.8]T ,
[0,0,24,568,0.5,5.1]T

feet/sec. Because the uncertainty minimization (Equation (2.62)) did not con-

straint q = 0, it is not surprising that resultant vectors are not trim conditions.

Following the notation defined in Section 2.3, each piecewise linear model is de-

fined by the operating points, Φ1(x1),Φ2(x2), Φ3(x3). The iterations to meet the

design requirements are summarized in Table 2.2.

Implementation and Evaluation of the Hybrid Estimator:
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Figure 2.7: Altitude and speed of the F-16 considered in Section 2.6.

The first metric used for model selection in the hybrid estimator is tr(Σk,k). Figure

2.9(a) shows the estimators selected as the aircraft completes its maneuvers. For t < 50,
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Figure 2.8: System trajectory for V and α and the bounding ellipsoids for the transitions
from level flight at 650 ft/sec to climb (50 sec < t < 70 sec) and climb to level-flight
(120 sec < t < 135 sec). The ellipsoid line type corresponds to the model used.

the uncertainty is dominated by the velocity V and the third estimator is selected. When

the aircraft switches to a steady climb maneuver (t > 50), the uncertainty is dominated

by both V and α. Interestingly, after a few intermediate estimator switches the first

estimator is selected. When the aircraft levels off towards level flight (t > 125), the

uncertainty is dominated by V only. Again, several switches occur and the estimator

settles to the first estimator.

Also shown is a close-up of the time where the aircraft transitions from a constant

speed, altitude to a steady climb maneuver. The close-up shows that the hybrid ESMF

switches between estimator 2 and 1 several times. There are several factors that con-

tribute to this behavior. First, the presence of random measurement noise can force a

model switch. Second, the base hybrid estimator operating points found from minimiz-

ing the uncertainty in the range X and are not necessarily trim conditions. In fact, it

appears that estimator 2 is only used as a transition between the other two estimators.

During the transition from level-flight and climbing, it is not surprising that the hybrid

ESMF switches between estimators. Figure 2.8 shows in detail the evolution of two

important states α, V , and their projected ellipsoid uncertainties. In Figure 2.8(a), the
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system starts its climbing maneuver at t = 50 seconds and 650 ft/sec and slows down to

500 ft/sec at t = 70 seconds. The transition from climbing to level-flight (120 seconds

< t < 135 seconds) is shown in Figure 2.8(b).

For controller design and implementation minimizing model switching is much more

important than it is for estimation. It is advantageous for control if the linear switched

estimator reduces the number of model switches as that minimizes the complexity as-

sociated with guaranteeing performance during a controller switch. In order to evaluate

the effects of the hybrid estimator implementation on switching, the switching metrics

are varied to include different functions, parameters, and scaling. The use of tr(·) and

max[eig(·)] did not affect the performance of the hybrid estimator appreciable, and both

resulted in over 100 switches in the hybrid estimator. Scaling was implemented in the

model switching guard, Equation (2.57), to evaluate how a balanced set of uncertainty

affects model switching. If the diagonal elements of Q̂k,k are normalized by the follow-

ing transformation:

S1 = diag(0.0071, 0.0071, 1.545, 0.039, 0.0071, 1.693), the number of estimator

switches increased dramatically. This is a result of increased sensitivity of the x, h

states and their sensor noise, in the estimator switching. However, if the scaling S2

was changed so that the element corresponding to α was dominant, S2 =
(
1×10−10)I,

where I is the identity matrix, I ∈ R5,5, then the number of switches is reduced signif-

icantly. A summary of the effects of the metrics implemented and scaling on model

switching and the 2-norm of the sum of the residuals, ||x̂k,k−xk,true||2, is presented in

Table 2.3. The trace
(
Σk,k

)
metric has the best performance based on the sum of the

residuals. However, as expected, the ESMF performs the best at the expense of lin-

earizing the system dynamics at each step. It should be noted that the linear switched

estimator finds the optimal location and number of operating points off-line and there-

fore it is computationally cheaper to implement on-line that the ESMF. Table 2.3 also
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Table 2.3: Number of model switches for the longitudinal dynamics example using
several metrics and scaling.

Metric Number of Switches ∑ ||x̂−xtrue||2
trace(Σk,k) 71 9.62×103

max [eig(Σk,k)] 159 3.11×104

trace(Q̂k) 122 2.18×104

max [eig(Q̂k,k)] 105 4.32×104

trace(S1Q̂k,kST
1 ) 662 5.54×104

trace(S2Q̂k,kST
2 ) 7 6.44×104

ESMF 17501 3.66×103

lists the sum of the residuals for each of the elements of the state for the same met-

rics and scaling. The sum of the residuals for the first, second, and fourth elements are

largest since their relative magnitude is much larger than the other elements.

Another remedy for minimizing the number of estimator switches is to change the

switching logic to include a memory of L discrete steps; said another way, the estimator

must be selected for L straight instances before an estimator switch is allowed. The in-

sert of Figure 2.9(b) shows that by restricting a switch to occur after 5 steps (L = 5), the

intermittent selection of estimators observed in the insert of Figure 2.9(a) is eliminated.

The number of switches for memory sizes of L = 0,5,15 are 71,23,15 respectively. The

2-norm of the residuals, ||x̂k,k−xk,true||2, is about ∼ 9.62x103 for all memories. By

increasing L to as little as 5 steps the number of switches is reduced dramatically at little

expense in terms of accuracy. At the expense of using more models (17501 switches),

the ESMF performance is the best (||x̂k,k−xk,true||2 = 0.17x104) . This shows that im-

parting memory onto the hybrid estimator does not significantly change its performance.

The importance of minimizing switching depends on the application of the estimator; for

closed-loop control, where stability and performance are the driving issues, the number

of model switches can be important and therefore a metric and scaling that minimizes

switching should be selected.
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Figure 2.9: Models selected for the aircraft longitudinal dynamics example using the
tr(Σk,k) as a switching metric (left). Model selection using the tr(Σk,k) as a switching
metric and by using a memory of L = 5 in the switching logic (right).

2.7 Conclusion

A switching piecewise linear switched (or hybrid) estimator that guarantees a bound

on the state uncertainty was developed. The hybrid estimator bounds the uncertainty

from higher order terms of the nonlinear dynamics, thus allowing the use of a piecewise

linear estimator and guaranteed bounds even as the estimators switch. In order to guar-

antee that the higher order terms are bounded, the system must be twice differentiable

and smooth for all states and inputs in the operating range. Several switching metrics

were examined. Although minimizing model switching is advantageous in estimation,

it is even more beneficial in control as it reduces the number of times that complications

associated with controller switching must be addressed. Estimator model switching

based on the linearization uncertainty was quick to react, but sensitive. Switching based

on the state uncertainty was less sensitive and had a similar profile, but slightly delayed

in time. Imparting memory on the hybrid estimator reduced switching, but did not sig-

nificantly affect performance. The estimation error of the hybrid estimator, defined as

the difference between the center of the ellipsoidal set and the true value, is bounded if
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the nonlinear system is observable and the linearization remainder is bounded. An ap-

proach to determining the minimum number and location of operating points required to

guarantee a desired level of uncertainty was presented. Implementation of the switched

piecewise linear observer requires a priori knowledge of a region in which the system

is expected to operate (if this assumption is violated the accuracy of the algorithm can-

not be guaranteed). This requirement is not overly restrictive as a priori information

about the speed and agility of a system is often used in estimation and tracking to define

models and to tune noise parameters. The successful implementation of the proposed

linear switched estimator depends on adequately finding “good” operating points in the

operating region. This is accomplished by solving an optimization problem and select-

ing an appropriate switching metric. The examples presented can be adequately solved

by using sequential quadratic programming algorithms, initialized at different points

within the operating region. If the optimization converges to a local minimum, the lin-

ear switched estimator still functions well, albeit at reduced performance because the

uncertainty bound is more conservative.
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CHAPTER 3

HYBRID MODE DETECTION USING PERTURBATION SIGNATURES FOR

MULTI-VEHICLE SYSTEMS

3.1 Introduction

The use of unmanned vehicles, such as aerial and underwater vehicles [23], [24],

[25], is attractive in civilian and military applications where the environment is too dan-

gerous and/or it is too expensive to use a human operator. “Swarms” of small versions

of these vehicles are now being envisioned because of the ability to build strong, ro-

bust small scale electronics and smart sensors, economies of scale, and robustness that

accompanies large numbers. Implementation of swarms, or “active networks” is non-

trivial, and involves a coordinated effort to address control, sensing of the environment,

distributed and collaborative processing, and decision making [26], [27], [28], [29].

Cooperative control approaches, such as those addressed in Refs. [30] and [31], have

been shown to work well in a variety of missions such as cooperative reconnaissance

and coordinated strikes. Creating and maintaining an intra-vehicle communication net-

work is critical to the end performance and robustness of the cooperative nature of these

teams of vehicles. Cooperative control algorithms for these teams of vehicles acting

in the presence of a communication network must be robust to communication fail-

ures, outages, or blackouts, and must also scale well with the numbers of vehicles. The

work here focuses on non-traditional means of enabling inter-vehicle communications

for the problem of cooperative control,where partner vehicles are considered part of the

environment. The goal is to improve collaborative performance using minimal com-

munications. Applications where this work would be enabling include: 1) stealth like

missions, where communications are forbidden, 2) multi-vehicle systems where com-

munications are “expensive” (i.e. power), such that short broadcasts or multi-hop are
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required, 3) multi-vehicle networked systems where faults have occurred, 4) and active

sensor networks with actions that are decided locally, but global behavior is desired.

More specifically, this paper investigates the problem of locally estimating (on each

vehicle) the behavior of the environment, with specific focus on partner vehicles, in

order to improve performance and decision making. Partner vehicles are described with

behaviors defined by a finite number of operating modes. For example, in the case

of cooperative reconnaissance, the partner vehicle’s operating modes could include: 1)

search an area, 2) identify a target, and 3) locate a target. This mode-based behavior of

each vehicle is modelled as a hybrid system [32]. A hybrid estimation/mode detection

algorithm is used to determine the current operating mode of each partner vehicle from

sensor measurements, thus enabling vehicles to probabilistically know what their partner

vehicles are doing even with no communications.

Because of the wide applicability of hybrid systems, the problem of state (some-

times referred to as the base-state) and mode (sometimes referred to as the modal state)

estimation in hybrid systems has been addressed in the literature. The Interacting Mul-

tiple Model (IMM) estimator developed in Ref. [7] fuses the estimates from N models

in order to efficiently compute a high quality state estimate. The fusion process is based

on computing a probability of each estimator using their innovations or residuals. Each

estimate is then weighted into the final estimate using these residuals. In Ref. [8], the

IMM was modified to include measurements of the operating mode. For nonlinear sys-

tems which have unknown but bounded uncertainties, a hybrid estimator is derived in

Ref. [33]. Mode switching occurs based on a metric to minimize the uncertainty in the

state estimate.

In contrast to the previously described estimators, Ref. [34] proposes a moving-

horizon estimation (MHE) algorithm for hybrid systems modeled in the mixed logic dy-

namical form. The implementation of MHE relies on solving a mixed-integer quadratic
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program as a function of a set of penalties which can be used to improve the estimate in

the presence of noise.

This paper develops two schemes to detect the mode of a partner vehicle whose be-

havior is modelled as a hybrid system. Each mode of the hybrid system not only includes

a model that describes the vehicle’s dynamics, but also includes a unique motion-based

signature. These mode signatures are designed as Gold Codes, which are a type of pseu-

dorandom noise with the desireable properties in signal processing: 1) they are unique

and can be differentiated from random noise, 2) they have large auto-correlation peaks,

and 3) they have small cross-correlation peaks. The correlation properties of the sig-

natures are used in this work for synchronization and for mode detection. Two mode

detection algorithms are derived based on: 1) an optimal detector which uses detection

and estimation theory, and 2) a suboptimal approximation that requires less compu-

tations. Both methods are derived and simulations are used to show the benefits and

limitations of each.

The paper is presented as follows. Section 3.2 describes the logistics of using

motion-based signatures to transmit information between vehicles. In Section 3.3, de-

tection and estimation theory are used to derive an optimal mode detector under the pres-

ence of measurement Gaussian noise. The probability of false alarm given a threshold

is also derived. Due to the high computational cost of the optimal detector, a suboptimal

detector is then derived in Section 3.4. The performance of both detectors are tested in

two examples using Monte Carlo methods, first in a linear model in which a Kalman

Filter (KF) is used for estimation, Section 3.6, and then in a two-dimensional exam-

ple with nonlinear radar-like output equations in which the Sigma Point Filter (SPF) is

used, Section 3.7. Both examples include detailed descriptions of how the model-based

estimators are tuned.
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3.2 Mode Estimation Method

The motivation for assigning a unique signature to each of the i modes is to facilitate

mode estimation and thus enable the exchange of vehicle information in the absence of

a formal communication system. By knowing which mode a partner vehicle is operating

in, a higher quality of cooperation can be realized. Figure 3.1 shows each component

of this mode estimation process for a two vehicle system. The method presented here

applies to more than two vehicles. The first vehicle transfers information by choosing a

corresponding operating mode, i, which is then encoded into a mode perturbation sig-

nature, zi
sig. The scalar mode perturbation signature is transformed by the controller into

a vehicle perturbed reference, ri
sig, and combined with the nominal vehicle reference,

r, to define the total reference, ri. The controller calculates the total control input ui
sig

as a function of its vehicle state estimate, x̂, and ri
sig. The total control input drives the

nonlinear vehicle dynamics, and its response, y, is fed into a vehicle state estimator for

use by the first vehicle for its controller.

A mode detection method is used on the second vehicle to detect the operating mode

of the first vehicle. The mode detector block uses the measurements of the second

vehicle’s monitoring sensors, denoted as y, and the stored mode perturbation signatures

replica, z̃i,τ
sig, to detect the mode which was transmitted by the first vehicle, î. The mode

estimate î is used by the planner on the second vehicle to modify the behavior of the

second vehicle in order to maximize a performance metric. In this section, the logistics

of transmitting information through vehicle dynamics are explained.

3.2.1 Signature Generation

Consider a rectangular pulse composed of mρ points defined at T time intervals and

chip duration Tc = mρT with value ρ0 or ρ1 corresponding to the 0 or 1 respectively
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Figure 3.1: A block diagram of how information is exchanged via movements between
two vehicles.

(other values could be used). Let the sequence of such nρ nonoverlapping rectangular

chips (or pulses) for the ith signature be defined as

pi =
[
bi,1,bi,2, . . . ,bi,nρ

]
(3.1)

where pi ∈ Rnρ and b(·) ∈
[
ρ0,ρ1]. For example, consider a sequence pi of nρ = 6

where bi,1 = 1, bi,2 = 0, bi,3 = 1, bi,4 = 1, bi,5 = 1, and bi,6 = 1 in which this bit pattern

is infinitely repeated. If each rectangular pulse (bi,1,bi,2,bi,3,bi,4,bi,5,bi,6) is composed

of mρ = 1 points then for the first six time samples Table 3.1 lists the time index k, the

sample times occurring every T seconds, the first six bits of the sequence pi, and the

sequence delayed by τ = 1.

The ith mode perturbation signature, zi
sig, is formally defined at time k as the product
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Table 3.1: The relationship between the time index k, the sample times, the sequence pi,
and pi delayed by τ = 1.

Quantity Sequence
k 1 2 3 4 5 6
Sample Times t1 t2 t3 t4 t5 t6
pi 1 0 1 1 1 1
pi [τ = 1] 1 1 0 1 1 1

of the chip sequencepi and a sinusoidal carrier:

zi
sig,k = pi

k cos [2π fctk +θk] , (3.2)

where fc, the carrier frequency, and θ is the carrier phase. By combining nρ chips,

a mode signature, zi
sig is defined. As an example, consider bipolar-phase shift keying

(BPSK), where the 0 chip (off ) is represented by ρ0 =−1, while the 1 bit (on) is ρ1 = 1.

For a system with three operating modes, N = 2, the corresponding mode signatures

with fc = 1 Hz and θ = 0 is multiplied by scaling factor, asig = 0.1 and is shown in

Figure 3.2. This signature formulation scales well because more chips can be added to

the signature sequence, Equation (3.2), as the number of modes increases.
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Figure 3.2: Mode signatures for a system with N = 2 modes using bipolar-phase shift
keying.
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Pseudonrandom noise (PRN) is a known sequence of bits that, when added to a

base signal, results in a signal which has statistical properties similar to noise [35]. An

observer could recover the base signal only through correlation with a known sequence

which is an exact replica of the original PRN. Certain PRN sequences have desirable

properties, particularly in auto and cross-correlation. The discrete time cross-correlation

function for any two sequences ds and es is defined as follows:

S [τd] =
Tp

∑
k=1

ds,kes,k [τd] , (3.3)

where Tp is the number of samples in a period of the sequences and τd is a delay. Maxi-

mal length sequences or m-sequences are a special type of periodic PRN sequences with

useful properties in communications [36]. In the late 1960’s, Gold published the con-

struction of two preferred pair m-sequences [35], yielding a family of sequences called

Gold Codes. Ref. [37] presents a thorough discussion of the special properties of PRN

sequences such as m-sequences and Gold Codes, a summary of the implementation of

PRN sequences in communications and navigation, and a large bibliography.

Applying Equation (3.3) to two signals with Gold Codes encoded into the carrier

can be used to determine: 1) how well the two signals are correlated, and 2) if there

exists a delay between the signals. Because of their favorable properties, Gold codes

are used in communications applications such as in Code Division Multiple Access

(CDMA) systems [38, 36]. For these reasons, Gold Codes are chosen to define the

mode signatures in this paper.

The signature estimate at time k is given as:

ẑi
sig,k = zi

sig,k + ek, (3.4)

where zi
sig,k is the transmitted signature and ek is the error in the estimate. Because each

mode perturbation signature zi
sig is defined using the observed vehicle’s internal time

clock, the observing vehicle must determine if there a clock offset, τ, with its stored
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mode signature replica, z̃sig. This problem is also encountered in the global positioning

system (GPS) where the signal traveling time is determined by the time shift required

for a match between the received code from the satellite and the receiver replica [38, 16].

To determine the clock offset, a correlation test (similar to Equation (3.3)) is performed

on z̃i
sig (embedded on the vehicle position) and the expected signature time shifted by

the clock offset, z̃sig(τ), stored on the vehicle. To find the delay, τ is varied over a range,

τ ∈ Γ =
[
0, . . . ,nρTc

]
, which is used so that all possible delays can be tested. The range

Γ is divided into b equally-sized intervals or cells. Each cell, defined by the discrete

time offset τ [m] = mnρTc
b for m ∈ {

0, . . . ,b−1
}

, is equally probable of being the correct

delay. The value of m which maximizes S (τm [m]), Equation (3.3), is the estimated clock

offset or delay and is denoted as τ̂.

To illustrate the concept of a correlation test, Figure 3.3(a) shows that the vehicle

signature, zsig, and the expected signature replica, z̃sig (τ = 0), are not in phase (only the

first 1.5 seconds of the signals is shown). Figure 3.3(b) shows a plot of the correlation

S (τ [m]) for m ∈ [1, . . . ,31]. The maximum of the correlation S (τ [m]) yields the best

estimate of the delay, which is shown to be m̂ = 14 in Figure 3.3(b). Thus, the estimated

clock offset is then given as τ̂ = 14nρTc

b
.

In summary, for a direct-sequence system with phase modulation, the mode pertur-

bation signature with scaling factor asig received is modeled as:

asig,kzi
sig,k = asig,k pi

k [τ]cos
[
2π fctk +2π fd,k +θk

]
, (3.5)

where at time k pi
k is the ith spreading waveform (Gold code with ρ0 = −1 and ρ1 =

1) with phase τ, fc is the carrier frequency, and θk is the random carrier phase. The

variables τ and fd are the code phase delay and carrier frequency offset, respectively,

which must be estimated at the receiver. Equation (3.5) is the signal model that would

be used at the vehicle observing (receiving) the mode perturbation signature. Gold code

phases are designed so that they coincide with chip boundaries. The Gold Code phase
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Figure 3.3: The clock offset between the vehicle and expected signature and the time
shift correlation.

is discretized and defined as τ = mTc. The variable m is an integer since by design, the

transmitter will only transmit the code phase delays which are integer multiples of the

chip duration. The frequency offset, fd , may be due to a Doppler shift, or to a drift or an

instability in the transmitter’s oscillator.

3.2.2 Controller

Each mode, denoted the ith mode, is correlated with a signature; there are N modes

or mode perturbation signatures defined. The approach here is to express the signature

using favorable signal processing properties, and then use this signature as an input

to the vehicle system dynamics as shown in Figure 3.1. Therefore, each vehicle can

be thought of as a system with a plant and controller with a nominal and perturbed

referenced command input. To begin, consider at time k a nominal reference input

signal, rk, and a small perturbation to the signal, ri
sig,k. The total reference signal with

the perturbation, ri
k, is then

ri
k = rk + ri

sig,k. (3.6)
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In physical terms, this nominal reference rk is typically the required vehicle state trajec-

tory for the vehicle to complete its task. Let tr
z (·) denote the mapping from the scalar

signature to the reference:

ri
sig = asigtr

z

(
zi

sig

)
. (3.7)

The function tr
z (·) maps the scalar signature zi

sig to the physical reference coordinates,

rk, to form ri
sig. If elements in the reference vector have a differential relationship with

the scalar mapping of zi
sig, then tr

z (·) must preserve the relationship when building ri
sig.

For example, if the reference vector is composed of one dimensional position, xp and its

derivative, rk =
[
rx, ṙẋp

]
, then the mapping is:

ri
k = rk +asigtr

z

(
zi

sig

)
, (3.8)

=




rxp

ṙxp


+asig




∫
zi

sigdt

zi
sig


 . (3.9)

Another example to consider is an aircraft where the reference vector includes the alti-

tude. In this case tr
z (·) would a rotational matrix which maps the states of the aircraft to

the altitude.

The reference perturbation, ri
sig, must be small enough so that the performance of

the vehicle is not compromised, yet large enough to be detected in the presence of pro-

cess and measurement noise. Ideally, the reference perturbations (ri
sig, i ∈ [1, . . . ,N])

are designed to also be uncorrelated with each other to also aid in the mode detection

schemes.

A feedback controller is required to assure that the vehicle tracks the desired total

reference ri
k. In the absence of a perturbation signature, the nominal controller is a

function of the state and nominal reference,

uk = c(xk,rk) , (3.10)

and is designed such that the state xk tracks the nominal reference rk. The controller in

Equation (3.10) typically represents any linear or nonlinear controller which minimizes
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the tracking error, ||rk−xk||, in the presence of noise and disturbances. For the vehicle

to follow the total reference, ri
sig, the total control input ui

k becomes:

ui
k = c

(
xk,rk + ri

sig,k

)
. (3.11)

3.2.3 Hybrid Model

The behavior of a vehicle in a team of vehicles is defined by a finite set of N operating

modes. The system is described using a hybrid automaton as shown in Figure 3.4. Each

node in the automaton, qi, corresponds to one of the N operating modes. The vehicle

dynamics and state evolution for the ith mode are governed by:

xk+1 = f i
(

xk,ui
k,z

i
sig,k,wk

)
(3.12)

yk = hi
(

xk,ui
k,z

i
sig,k,vk

)
, (3.13)

where at time k, xk ∈ Rnx is the state, yk ∈ Rny the measurement, uk ∈ Rnu the control

input from Equation (3.11), and zi
sig,k ∈ R is a scalar signature which represents the ith

mode. The process noise wk and sensor noise vk are zero-mean white Gaussian signals

with covariances,

E
[
wkwT

k
]
= Qk, (3.14)

E
[
vkvT

k
]
= Rk. (3.15)

In contrast to most hybrid system formulations, the state evolution governed by mode i is

not only influenced by the control input uk, process noise wk, but also by the perturbation

signature, zi
sig.

3.3 The Locally Most Powerful Mode Detector

Having described how a vehicle embeds a mode perturbation signature in its trajec-

tory to transmit information, it is necessary to formulate an optimal method for mode
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detection. In this section, a locally most powerful mode detector is derived. An optimal

test statistic is derived which is based on detection theory that consists of solely correlat-

ing the measured movements of the vehicle with mode perturbation signature replicas.

However, it is advantageous to derive an equivalent mode detection test statistic which

integrates a model-based estimator used to handle noisy measurements. The results in

this section show that the sum of the innovations of the model-based estimator is an

equivalent way to evaluate the locally most powerful mode detector.

Consider a signal detection problem which has two hypotheses:

H0 : y = n, (3.16)

H1 : y = asigzi,τ,θ, fc
sig +n, (3.17)

where y ∈Rnm is a vector containing nm scalar measurements and n ∈Rnm is zero-mean

Gaussian noise, with covariance P ∈ Rnm×nm . The variable zi,τ,θ, fc
sig is a stacked vector of

nm scalar signatures zi,τ,θ, fc
sig , or

zi,τ,θ, fc
sig =




zi,τ,θ, fc
sig,1

zi,τ,θ, fc
sig,2

...

zi,τ,θ, fc
sig,nm




, (3.18)

where

zi,τ,θ, fc
sig,k = pi

k [τ]cos [2π fctk +θk] . (3.19)

Given the measurements y, the hypothesis H0 represents the belief that there was no

signal present, while the hypothesis H1 represents the belief that a signal was present.

The term zi,τ,θ, fc
sig ∈ Rnm defines the mode perturbation history for the ith mode, as a

function of the Gold Code with phase τ, carrier sinusoid phase θ, and carrier frequency

fc. The frequency offset term, fd , is omitted from zi,τ,θ, fc
sig without loss of generality. The

parameter asig is the unknown scalar amplitude of the mode perturbation history. The
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measurement probability density functions, or likelihoods, under both hypotheses are

written as:

p(y|H0) =
1

2π
nm
2 |P| 1

2
exp

[
−1

2
yT P−1y

]
, (3.20)

p(y|H1) =
1

2π
nm
2 |P| 1

2
exp

[
−1

2

(
y−asigzi,τ,θ, fc

sig

)T
P−1

(
y−asigzi,τ,θ, fc

sig

)]
.(3.21)

The corresponding Newman-Pearson hypothesis test statistic [39] for evaluating

whether to accept H1 (a signature is present) is then written as a likelihood ratio:

λ(y) =
p(y|H1)
p(y|H0)

≥ λthresh, (3.22)

where λthresh is a threshold that if exceeded, determines whether hypothesis H1 should

be accepted. It is noted that λthresh can be chosen as to minimize a probability of false

alarm.

It is desirable to remove the dependence of p(y|H1), Equation (3.21), on the carrier

phase θ, since it would simplify the formulation and reduce the number of computations

required in the evaluation of the detection test statistic. A random carrier phase delay θ

is assumed in this formulation, and can be modeled as a uniformly distributed random

variable from 0 to 2π radians. This represents the belief that all phases are equally likely

to occur. The marginal probability density for the probability density function, Equation

(3.21), can be computed to remove its dependency on the carrier phase delay:

pθ (y|H1) =
∫ 2π

0

1
2π

p(y|H1)dθ. (3.23)

The likelihood ratio is reformulated by substituting Equation (3.23) into Equation (3.22)

which results in:

λθ(y) =
pθ (y|H1)
p(y|H0)

. (3.24)

By expanding the terms in Equation (3.24) and the moving the terms corresponding to

p(y|H0) inside the integral, the Newman-Pearson hypothesis test statistic can then be
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rewritten as:

λθ(y) = cλ

∫ 2π

0
exp

{
−1

2

[
y−asigzi,τ,θ, fc

sig

]T
P−1

[
y−asigzi,τ,θ, fc

sig

]
+

1
2

yT P−1y
}

dθ,

(3.25)

and furthered simplified to:

λθ(y) = cλ

∫ 2π

0
exp

{
asigyT P−1zi,τ,θ, fc

sig − 1
2

a2
sig

(
zi,τ,θ, fc

sig

)T
P−1zi,τ,θ, fc

sig

}
dθ. (3.26)

where cλ = 1
2π .

Because asig is unknown and must be estimated, a Neyman-Pearson locally most

powerful test statistic is formulated. First, in hypothesis H1 it is assumed that asig is

known. Equation (3.26) is used to derive a Neyman-Pearson locally most powerful test

in the limit of small, but known asig. The locally most powerful (LMP) test is derived

by expanding Equation (3.26) into a Taylor series around asig that yields:

λθ (y)≈ λθ (y)|asig=0 +
∂λθ (y)
∂asig

∣∣∣∣
asig=0

asig +
1
2

∂2λθ (y)
∂a2

sig

∣∣∣∣∣
asig=0

a2
sig. (3.27)

The locally most powerful tests consists of taking the limit of small, but known asig. The

LMP theory shows that this limits minimizes the probability of missed detection for a

given probability of false alarm for all small asig [39]. The first term in the Taylor series

in Equation (3.27) is a constant, or:

λθ (y)|asig=0 = cλ

∫ 2π

0
dθ (3.28)

= cλ2π (3.29)

= cλ0. (3.30)

Evaluating the second term of the series in Equation (3.27) requires differentiating the

likelihood ratio, Equation (3.26), with respect to asig,

∂λθ(y)
∂asig

= cλ

∫ 2π

0

(
yT P−1zi,τ,θ, fc

sig −asig

(
zi,τ,θ, fc

sig

)T
P−1zi,τ,θ, fc

sig

)

exp
{

asigyT P−1zi,τ,θ, fc
sig − 1

2
a2

sig

(
zi,τ,θ, fc

sig

)T
P−1zi,τ,θ, fc

sig

}
dθ. (3.31)
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The substitution of asig = 0 into Equation (3.31) yields:

∂λθ(y)
∂asig

∣∣∣∣
asig=0

= cλ

∫ 2π

0
yT P−1zi,τ,θ, fc

sig dθ. (3.32)

In order to compute the integral with respect to θ, it is necessary to expand the expression

for the mode perturbation signature, zi,τ,θ, fc
sig . At time k, the discrete time version of the

mode perturbation signature in Equation (3.2) has the form:

zi,τ,θ, fc
sig,k = pi

k (τ)cos [2π fctk−θk] , (3.33)

where the unknown carrier phase delay, θk, is subtracted to simplify the derivation.

Using trigonometric identities Equation (3.33) can be written as:

zi,τ,θ, fc
sig,k = pi

k (τ){cos [2π fctk]cos [θk]}+ pi
k (τ){sin [2π fctk]sin [θk]} , (3.34)

or to simplify the notation:

zi,τ,θ, fc
sig,k = zi,τ, fc

cos,k cos [θk]+ zi,τ, fc
sin,k sin [θk] , (3.35)

where

zi,τ, fc
cos,k = pi

k (τ)cos [2π fctk] , (3.36)

zi,τ, fc
sin,k = pi

k (τ)sin [2π fctk] . (3.37)

Substituting Equation (3.35) into Equation (3.32) and computing the integral with re-

spect to θ results in:
∂λ(y)
∂asig

∣∣∣∣
asig=0

= 0. (3.38)

Therefore no useful locally most powerful detector is found from the second term since

it vanishes for small asig.

Moving onto the third term in the series, the likelihood ratio, Equation (3.26), can

be differentiated with respect to asig. The differentiation of Equation (3.26) twice with
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respect to asig yields:

∂2λθ(y)
∂a2

sig
= cλ

∫ 2π

0

{
−

(
zi,τ,θ, fc

sig

)T
P−1zi,τ,θ, fc

sig +

(
yT P−1zi,τ,θ, fc

sig −asig

(
zi,τ,θ, fc

sig

)T
P−1zi,τ,θ, fc

sig

)

(
yT P−1zi,τ,θ, fc

sig −asig

(
zi,τ,θ, fc

sig

)T
P−1zi,τ,θ, fc

sig

)}

exp
{

asigyT P−1zi,τ,θ, fc
sig − 1

2
a2

sig

(
zi,τ,θ, fc

sig

)T
P−1zi,τ,θ, fc

sig

}
dθ, (3.39)

The substitution of asig = 0 into Equation (3.39) yields:

∂2λθ(y)
∂a2

sig

∣∣∣∣∣
asig=0

= cλ

∫ 2π

0

{
−

(
zi,τ,θ, fc

sig

)T
P−1zi,τ,θ, fc

sig +
(

yT P−1zi,τ,θ, fc
sig

)2
}

dθ. (3.40)

For clarity, the terms inside the integrals are computed separately. The first term is de-

rived by realizing that
(

zi,τ, fc
cos

)T
P−1zi,τ, fc

cos ≈
(

zi,τ, fc
sin

)T
P−1zi,τ, fc

sin for a diagonal P (uncor-

related noise), and a long time interval, and then computing the integral over θ yielding:

−
∫ 2π

0

(
zi,τ,θ, fc

sig

)T
P−1zi,τ,θ, fc

sig = −2
∫ 2π

0

(
zi,τ, fc

cos

)T
P−1zi,τ, fc

cos dθ, (3.41)

= czT P−1z. (3.42)

The second term is computed by substituting the signature definition in Equation (3.35)

into Equation (3.40) and computing the integral over θ yielding:

∫ 2π

0

(
yT P−1zi,τ,θ, fc

sig

)2
dθ =

∫ 2π

0

(
yT P−1

{
zi,τ, fc

cos,k cos [θk]+ (3.43)

zi,τ, fc
sin,k sin [θk]

})2
dθ (3.44)

= π
(

yT P−1zi,τ, fc
cos

)2
+π

(
yT P−1zi,τ, fc

sin

)2
. (3.45)

Substituting the two terms, Equations (3.42) and (3.45), into Equation (3.40) results in:

∂2λθ(y)
∂a2

sig

∣∣∣∣∣
asig=0

= cλ

{
czT P−1z +π

(
yT P−1zi,τ, fc

cos

)2
+π

(
yT P−1zi,τ, fc

sin

)2
}

. (3.46)
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Finally by substituting Equations (3.42) and (3.46) into Equation (3.27) results in the

following definition of the LMP test statistic:

λLMP (y)≈ cλ0 +
1
2

cλ

{
czT P−1z +π

(
yT P−1zi,τ, fc

cos

)2
+π

(
yT P−1zi,τ, fc

sin

)2
}

a2
sig. (3.47)

As stated in Equation (3.22), λLMP (y) can be compared to λthresh to determine the ac-

ceptance of hypothesis H1.

cλ0 +
1
2

cλ

{
czT P−1z +π

(
yT P−1zi,τ, fc

cos

)2
+π

(
yT P−1zi,τ, fc

sin

)2
}

a2
sig ≥ λthresh (3.48)

The inequality in Equation (3.48) can be manipulated to yield the following:

(
yT P−1zi,τ, fc

cos

)2
+

(
yT P−1zi,τ, fc

sin

)2
≥ 1

π

(
2

λthresh− cλ0

cλa2
sig

− czT P−1z

)
, (3.49)

or

λLMP ≥ λLMP,tresh. (3.50)

The left-hand side of the inequality can be evaluated independent of asig.

The test statistic in Equation (3.50) indicates, to a particular level of probability of

false alarm, a signal is present. In the proposed application more information is required,

namely that the correct signal has been detected. Because the signatures vary over i, τ,

fc,

λ
i,τ, fc
LMP (y) =

(
yT P−1zi,τ, fc

cos

)2
+

(
yT P−1zi,τ, fc

sin

)2
, (3.51)

The approach is to use λ
i,τ, fc
LMP both as a signal detector and as an optimization tool over

i, τ, fc, or

λ
∗
LMP = max

i,τ, fc

{
λ

i,τ, fc
LMP

}
(3.52)

= max
i,τ, fc

{(
yT P−1zi,τ, fc

cos

)2
+

(
yT P−1zi,τ, fc

sin

)2
}

(3.53)

= max
i,τ, fc

{
ηi,τ, fc

LMP,cos +ηi,τ, fc
LMP,sin

}
(3.54)

where ηi,τ, fc
LMP,cos and ηi,τ, fc

LMP,sin are the square of the correlations between the measure-

ments y and the mode perturbation signatures with in-phase and quadrature carriers.
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Equation (3.53) consists of correlating the measurements, y, with in-phase (zi,τ, fc
cos ) and

quadrature (zi,τ, fc
sin ) replicas of the mode perturbation signature, squaring the results, and

finally summing them. The test statistic in Equation (3.54) is a function of the ith mode,

Gold Code phase τ, and frequency fc, but it is not a function of the carrier phase delay

θ. These parameters are estimated by maximizing λ
i,τ, fc
LMP , or

î, τ̂, f̂c = argmaxλ
i,τ, fc
LMP . (3.55)

The LMP statistic in Equation (3.54) was developed by assuming that asig is known. But

in practice, asig is estimated. Thus, the terms on the right-hand side of Equation (3.54)

must be related to the estimator.

Consider the alternate hypothesis,

H1,cos : y = asigzi,τ, fc
cos +n, (3.56)

where Equation (3.56) differs from H1, Equation (3.17), by the fact that the mode per-

turbation signature is expressed in terms of the in-phase (zi,τ, fc
cos ) signature replica. The

likelihood for H1,cos is written as:

p(y|H1,cos) =
1

2π
nm
2 |P| 1

2
exp

[
−1

2

(
y−asigzi,τ, fc

cos

)T
P−1

(
y−asigzi,τ, fc

cos

)]
. (3.57)

Assuming that the hypothesis H1,cos is satisfied, an estimate of asig can be found by

maximizing the likelihood p(y|H1,cos) given in Equation (3.57) or:

âsig = argmax
asig

p(y|H1,cos) =

max
asig

{
1

2π
nm
2 |P| 1

2
exp

[
−1

2

(
y−asigzi,τ, fc

cos

)T
P−1

(
y−asigzi,τ, fc

cos

)]}
. (3.58)

Define L as the log likelihood, or

L [y|H1,cos] =− log [p(y|H1,cos)] . (3.59)
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Because the natural logarithm function is monotonically increasing, it can be used to

simplify Equation (3.58):

L∗ [y|H1,cos] = min
asig

L [y|H1,cos] (3.60)

= min
asig

[
clog− 1

2

(
y−asigzi,τ, fc

cos

)T
P−1

(
y−asigzi,τ, fc

cos

)]
(3.61)

= min
asig

[
−1

2

(
y−asigzi,τ, fc

cos

)T
P−1

(
y−asigzi,τ, fc

cos

)]
, (3.62)

where clog = log
(

2π−
m
2 |P|− 1

2

)
is a constant and can be removed from the optimization

in Equation (3.61) with no loss in generality.

The optimal maximum likelihood estimate of asig can be found by differentiating

Equation (3.62) with respect to asig, setting the result to zero, and solving for asig:

L [y|H1,cos]
∂asig

= 0 = yT P−1zi,τ, fc
cos −asig

(
zi,τ, fc

cos

)T
P−1zi,τ, fc

cos , (3.63)

âsig,H1,cos =
yT P−1zi,τ, fc

cos(
zi,τ, fc

cos

)T
P−1zi,τ, fc

cos

. (3.64)

Substituting Equation (3.64) into Equation (3.62) results in:

L∗ [y|H1,cos, âsig
]
=

1
2


yT P−1y−

[
yT P−1zi,τ, fc

cos

]2

(zi,τ, fc
cos )T P−1zi,τ, fc

cos


 , (3.65)

where L∗ [y|H1,cos, âsig
]

is defined as the likelihood when the optimal value of the esti-

mate of asig is used.

Equation (3.65) is very similar to ηi,τ, fc
LMP,cos in Equation (3.54). as a LMP test statistic

similar to Equation (3.54) to determine the transmitted signal parameters. Noting that

the yT P−1y term in Equation (3.65) is not a function of asig or the optimization variables

i, τ, and fc, and

ci,τ, fc
sig =

(
zi,τ, fc

sig,cos

)T
P−1zi,τ, fc

sig,cos (3.66)
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is known, the in-phase test statistic can be written as:

ηi,τ, fc
LMP,cos =

{−L
[
y|H1,cos, âsig

]
+L [y|H0]

}
ci,τ, fc

sig , (3.67)

=




−1

2


yT P−1y−

[
yT P−1zi,τ, fc

cos

]2

(zi,τ, fc
cos )T P−1zi,τ, fc

cos


+

1
2

yT P−1y





ci,τ, fc
sig , (3.68)

=
1
2

[
yT P−1zi,τ, fc

cos

]2
. (3.69)

where L [y|H0] is the likelihood for H0 or asig = 0. Note that adding L [y|H0] to the

negative value of L
[
y|H1,cos, âsig

]
, does not modify the solution to the optimization

problem over i, τ, and fc.

Consider another hypothesis,

H1,sin : y = asigzi,τ, fc
sin +n, (3.70)

where Equation (3.70) differs from H1, Equation (3.17), by the fact that the mode per-

turbation signature is expressed in terms of the quadrature (zi,τ, fc
sin ) signature replica. The

likelihood for H1,sin is written as:

p
(
y|H1,sin

)
=

1

2π
nm
2 |P| 1

2
exp

[
−1

2

(
y−asigzi,τ, fc

sin

)T
P−1

(
y−asigzi,τ, fc

sin

)]
. (3.71)

Define the optimization of the likelihood for hypothesis, H1,sin, as:

L∗ [y|H1,sin
]
= min

asig
L

[
y|H1,sin

]
. (3.72)

In the same way as shown in Equation(3.63), the optimal maximum likelihood estimate

of asig is

âsig,H1,sin =
yT P−1zi,τ, fc

sin(
zi,τ, fc

sin

)T
P−1zi,τ, fc

sin

. (3.73)

Substituting âsig,H1,sin into Equation (3.72) results in:

L∗ [y|H1,sin, âsig
]
=

1
2


yT P−1y−

[
yT P−1zi,τ, fc

sin

]2

(zi,τ, fc
sin )T P−1zi,τ, fc

sin


 . (3.74)
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As was done in Equation (3.67), a L [y|H0] term is added to Equation (3.74) multiplied

by −1 in order to remove the yT P−1y term:

ηi,τ, fc
LMP,sin =

{−L
[
y|H1,sin, âsig

]
+L [y|H0]

}
ci,τ, fc

sin , (3.75)

where for a large interval

(
zi,τ, fc

sig,sin

)T
P−1zi,τ, fc

sig,sin ≈
(

zi,τ, fc
sig,cos

)T
P−1zi,τ, fc

sig,cos (3.76)

≈ ci,τ, fc
sig . (3.77)

Equation (3.75) simplifies to:

ηi,τ, fc
LMP,sin =




−1

2


yT P−1y−

[
yT P−1zi,τ, fc

sin

]2

(zi,τ, fc
sin )T P−1zi,τ, fc

sin


+

1
2

yT P−1y





ci,τ, fc
sig (3.78)

=
1
2

[
yT P−1zi,τ, fc

sin

]2
. (3.79)

Substituting Equations (3.67) and (3.75) into Equation (3.54) produces the following

optimization:

î, τ̂, f̂c = argmax
i,τ, fc

[
ηi,τ, fc

LMP,cos +ηi,τ, fc
LMP,sin

]
, (3.80)

= argmax
i,τ, fc

{
2 ·L [y|H0]−L

[
y|H1,cos, âsig

]−L
[
y|H1,sin, âsig

]}
ci,τ, fc

sig (3.81)

= argmax
i,τ, fc

{
2 ·L [y|H0]−L

[
y|H1,cos, âsig

]−L
[
y|H1,sin, âsig

]}
(3.82)

where the constant ci,τ, fc
sig is removed from Equation (3.81) as it is inconsequential to the

optimization.

With the proposed optimization of the test statistic in Equation (3.54), the likelihoods

in Equations (3.69) and (3.79) are now related to the KF which is used to recursively

estimate âsig.

It is proposed that the amplitude of the perturbation signature, asig, is estimated from

noisy measurements using a model-based estimator. Consider the discrete time linear

system:

xk+1 = Akxk +Buuk +wx
k, (3.83)
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where xk ∈ Rnx is the system state, uk ∈ Rnu is the control input and wx
k ∈ Rnx is zero-

mean Gaussian process noise with covariance Qk . Consider a full-state feedback control

law with gain K based on

uk = K
(−xk + ri

k
)
, (3.84)

where the objective of the controller is to make the system track a reference (that in-

cludes a mode perturbation signature or Gold Code), ri
k ∈ Rnx using a linear full-state

feedback controller. By substituting the expression for the total reference, Equation

(3.6), into Equation (3.84), the following expression that includes the amplitude of the

perturbation signature is derived:

uk = K
(
−xk + rk +asigtr

z

(
zi,τ, fc

sig

))
. (3.85)

The evolution of the nominal reference is expressed by the following expression:

rk+1 = Arrk +wr
k, (3.86)

where Ar ∈ Rnx,nx and wr
k is zero-mean Gaussian process noise with covariance Qr

k.

Stacking xk, rk, and asig into a vector, the following system is derived:



xk+1

rk+1

asig,k+1




=




Ak−BuK BuK BuKtr
z

(
zi,τ, fc

sig

)

0 Ar 0

0 0 1







xk

rk

asig,k




+wk, (3.87)

where 0 are matrices of zeros of appropriate dimensions and wk =
[
wx

k wr
k wa

k

]T is

a stacked vector containing the process noise for the state, the reference, as well as

the process noise perturbing the amplitude of the perturbation signature, wa
k . Let xk =

[
xk rk asig

]T be the stacked state vector used in Equation (3.87). The measurement

output equation is defined as:

yk =
[

C 0 0

]



xk

rk

asig,k




+vk, (3.88)
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where vk is zero-mean Gaussian noise with covariance Rk.

Consider a KF implemented to estimate the augmented state vector, xk, of Equation

(3.87) given the noisy measurements, Equation (3.88). The KF computes the minimum

mean square error estimate of xk which is the mean of xk conditioned on all the mea-

surements up to yk, or

x̂k = E
[
xk|Yk

]
, (3.89)

where

Yk =
{

y j
}k

j=1 , (3.90)

is the sequence of measurements available at time k. Also define the KF innovation,

νk+1, as:

νk+1 = yk+1−E
[
yk+1|Yk

]
(3.91)

= yk+1−C ·E
[
xk+1|Yk

]
(3.92)

= yk+1− ŷk+1 (3.93)

The next step is to relate the KF estimate of the system from Equation (3.87) to

the LMP detector. The form of the LMP in Equation (3.54) is related to the KF by

considering the negative log likelihood cost conditioned on measurements up to sample

k. The joint probability distribution of the measurements (Equation (3.90)) up to k

conditioned on the hypothesis H{·}, where H{·} is either H0 (the signal is absent), H1,cos

(the in-phase component of the signal is present), or H1,sin (the quadrature component

of the signal is present), can be written as:

p
[
Yk|H{·}

]
= p

[
yk,Yk−1|H{·}

]
(3.94)

The distribution can be furthered simplified using Bayes’ Rule:

p
[
Yk|H{·}

]
= p

[
yk|Yk−1,H{·}

]
p
[
Yk−1|H{·}

]
(3.95)

=
k

∏
j=1

p
[
y j|Y j−1,H{·}

]
. (3.96)
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Although not shown explicitly, p
[
Yk|H{·}

]
is conditioned not only on the hypothesis

H{·}, but also on the system model and the a priori information about x0. Because a

KF is used to estimate the augmented state, xk, the distributions in Equation (3.96) are

Gaussian, or

p
[
y j|Y j−1,H{·}

]
= N

[
y j− ŷ j;0,S j|H{·}

]
(3.97)

= p
[
νi|H{·}

]
, (3.98)

where ν j = y j − ŷ j is the estimator’s innovation at sample j, and S j is its covariance.

Substituting Equation (3.98) into Equation (3.96) equals:

p
[
Yk|H{·}

]
=

k

∏
j=1

p
[
ν j|H{·}

]
(3.99)

Since p
[
Yk|H{·}

]
is conditioned on the system model, Equation (3.99), is actually the

likelihood of the measurement sequence. In other words, p
[
Yk|H{·}

]
, Equation (3.99),

is equivalent to the likelihood function derived in Equation (3.65) or Equation (3.74).

The negative log likelihood function, Equation (3.99), is also related to the Kalman

Filter innovations:

LKF

(
Yk|H{·}

)
= − log p

[
Yk|H{·}

]
, (3.100)

= − log
k

∏
j=1

p
[
ν j|H{·}

]
, (3.101)

=

[
1
2

k

∑
j=0

νT
j S−1

j ν j

]

H{·}

. (3.102)

The log likelihood function for the KF for each hypothesis is the sum of the innovations

up through sample k conditioned on the hypothesis H{·} [16]. Since L
(
Yk|H{·}

)
is the

likelihood function of the KF, the following substitutions can be made:

L [y|H0] = LKF

(
Yk|H0

)
(3.103)

L
[
y|H1,cos, âsig

]
= LKF

(
Yk|H1,cos

)
(3.104)

L
[
y|H1,sin, âsig

]
= LKF

(
Yk|H1,sin

)
(3.105)
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in Equations (3.67) and (3.75). Equations (3.103), (3.104), and (3.105) can be rewritten

in terms of the KF innovations Equation (3.102) yielding:

L [y|H0] =

[
1
2

k

∑
j=0

νT
j S−1

j ν j

]

H0

(3.106)

L
[
y|H1,cos, âsig

]
=

[
1
2

k

∑
j=0

νT
j S−1

j ν j

]

H1,cos

(3.107)

L
[
y|H1,sin, âsig

]
=

[
1
2

k

∑
j=0

νT
j S−1

j ν j

]

H1,sin

(3.108)

It is now possible to relate the KF innovations to the original LMP statistic in Equation

(3.51) and the associated optimization problem in Equation (3.54). Equations (3.106),

(3.107), and (3.108), can be substituted into Equation (3.82) to rewrite the signal detec-

tion optimization problem over i, τ, and fc in terms of the KF innovations:

î, τ̂, f̂c =

max
i,τ, fc



2 ·

[
1
2

k

∑
j=0

νT
j S−1

j ν j

]

H0

−
[

1
2

k

∑
j=0

νT
j S−1

j ν j

]

H1,cos

−
[

1
2

k

∑
j=0

νT
j S−1

j ν j

]

H1,sin



 .

(3.109)

In summary, for each ith mode, τ Gold Code phase, and fc carrier frequency, the

locally most powerful test statistic in Equation (3.109) requires the evaluation of:

1. A KF under hypothesis H0 that assumes no perturbation signature is present,

asig = 0.

2. A KF under the hypothesis, H1,cos, that there is a perturbation signature present,

with an in-phase carrier, cos(·), that has the form tr
z

(
zi,τ, fc

cos

)
.

3. A KF under the hypothesis, H1,cos, that there is a perturbation signature present,

with a quadrature carrier, sin(·), that has the form tr
z

(
zi,τ, fc

sin

)
.

The values of i, τ, and fc which maximize Equation (3.109) are declared under the LMP

test as the detected parameters.

63



3.4 Suboptimal Detector

The optimal detector derived in Section 3.3 has two significant disadvantages: 1) the

complexity of the model-based estimator (the magnitude of the perturbation signature

must estimated), and 2) the computational cost. Although the Neyman-Pearson Lemma

guarantees the optimally of the LMP for linear systems [39], a suboptimal detector might

be more feasible for real-time implementation by providing comparable performance

with less computations. The suboptimal detector uses a model-based estimator to re-

construct, from noisy measurements, the full reference
[
ri = r+asigtr

z

(
zsigi

)]
. The es-

timate is then correlated with replicas of the mode perturbation signatures, as a function

of i, τ, fc and fd . If the total reference is a vector, then only the component in which the

mode perturbation signature was embedded is correlated with the signature replica. This

suboptimal method, referred to as the Suboptimal Cascading Approach (SCA), detects

a particular mode based on signal correlation in contrast to the LMP, which uses a KF’s

innovations.

In the SCA, a lower order model-based estimator (compared to the estimator for

the LMP on Equation (3.87) is required to reconstruct the combined reference signal.

Consider the linear discrete time system in Equation (3.83) and the corresponding linear

full state feedback controller, ui
k = K

(−xk + ri
k
)
, where xk and ri

k are stacked into a state

vector yielding the following augmented state space model:



xk+1

ri
k+1


 =




Ak−BuK BuK

0 Ar







xk

ri
k


+wSCA

k , (3.110)

where wSCA
k =

[
wx

k wr,i
k

]T
. The estimate of the total reference at time k is denoted as r̂i

k.

The augmented system equations for the LMP, Equation (3.87) and the SCA, Equation

(3.110), differ in that the SCA does not require the direct estimation of the signature

amplitude, asig, thus reducing the dimension of the state vector.
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The test statistic for the SCA relies on calculating the correlation of one the com-

ponents of the KF estimated total reference of the KF, r̂i, j and the mode perturbation

signature. The term r̂i, j is written to emphasize that if the total reference is a vector,

only the jth component will be used in the test statistic. Define r̂i, j
as the stacked vector

of nm scalar r̂i, j (typically over a block of time), or

r̂i, j
=




r̂i, j
1

r̂i, j
2
...

r̂i, j
nm




. (3.111)

Having calculated an estimate of the total reference, results for detection under carrier

phase uncertainty or noncoherent detection are applied. The optimal noncoherent de-

tector correlates a set of measurements with in-phase and quadrate Gold Code replicas

[39], [40], [41]. For the SCA the optimal noncoherent detector test statistic for the ith

mode, correlates r̂i, j
with the in-phase and quadrature components of the perturbation

signature replicas,

λSCA =
([

r̂i, j
]T

P−1zi,τ, fc
sin

)2

+
([

r̂i, j
]T

P−1zi,τ, fc
cos

)2

. (3.112)

In similar form to the LMP test statistic, Equation (3.112) replaces the measurements yk

with r̂i, j
.

In this application, the detector is used to optimize over the unknown i, τ, and fc to

find the optimal value of the SCA test statistic, or

î, τ̂, f̂c = argmax
i,τ, fc

λSCA. (3.113)

It should be noted that the SCA test statistic does not consider the optimality of the KF

estimate.

The motivation for a suboptimal SCA detector is to reduce the complexity and the

computational cost of the LMP detector. The SCA simplifies the detector by relying on
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Table 3.2: Computational cost per sample comparison between the optimal detector
(LMP) and a suboptimal formulation (SCA). This table assumes that the dimension of
the augmented state is larger than the dimension of the output vector of the augmented
system.

Optimal Detector Suboptimal Detector

Kalman Filter Cost nsig ·nτ ·nF · (2nx +1)3 (2nx)
3

Correlations 0 nsig ·nτ ·nF

Total Computational Cost 3nsig ·nτ ·nF · (2nx +1)3 nsig ·nτ ·nF +(2nx)
3

a lower order KF and on discrete time correlation calculation for detection. In general,

the computational cost of the KF is approximately proportional to the cube of the larger

dimension between the state vector or measurement vector, max(nx,ny)[16]. Let nsig, nτ,

and nF denote the number of mode signatures, mode signature phases, and sinusoidal

carrier frequency offsets that compose the detection search space. The LMP requires

the KF to estimate an augmented vector,
[
xk rk asig

]T ∈ R2nx+1, which is composed

of the state, reference, plus the mode signature amplitude. However, three KFs must

be run for each condition in the search space (for hypotheses: H0, H1,cos, and H1,sin).

Therefore, the computational cost for the LMP is: 3nsig ·nτ ·nF · (2nx +1)3 which scale

as nsig · nτ · nF · n3
x . In contrast to the LMP, the SCA only requires one computation of

the KF with an augmented state vector of dimension [xk rk]
T ∈ R2nx and nsig · nτ · nF

correlation computations. This analysis shows that the computational cost reduction of

the SCA is proportional to nsig ·nτ ·nF and thus makes its implementation more feasible

in real-time. Table 3.2 summarizes the computational cost for the LMP and SCA.

3.5 Probability of False Alarm

The derived test statistic in Equation (3.49) can be used to calculate the false alarm

probability based on a detection threshold, λLMP,thresh. As shown in Equation (3.49),
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the test statistic is a function of the observations, y, and the in-phase and quadrature

components of the mode perturbation signature. As defined in Equation (3.50), λLMP, is

the value of the test statistic,

λLMP =
(

yT P−1zi,τ, fc
cos

)2
+

(
yT P−1zi,τ, fc

sin

)2
. (3.114)

If βcos, βsin are defined as the correlation of the measurements and the in-phase and

quadrature components of the mode perturbation signatures, then Equation (3.114) can

be written as:

λLMP = β2
cos +β2

sin. (3.115)

It should be noted that λLMP is a random variable as it depends on the measurements. A

signal is declared present if:

λLMP > λLMP,thresh. (3.116)

The probability of false alarm is the cumulative distribution of λLMP under hypothesis

H0 evaluated from λLMP,thresh to infinity and written as:

PF =
∫ ∞

λLMP,thresh

pλLMP

(
λLMP

∣∣∣H0

)
dλLMP, (3.117)

where pλLMP
is the probability distribution of the test statistic.

The probability distribution for λLMP is found by deriving the probability distribu-

tions of the its components. Because βcos is a linear transformation of the zero-mean

Gaussian vector y with covariance P under hypothesis H0, then βcos is also Gaussian

[42]. Therefore, only the first two moments of βcos need to be calculated. The expecta-

tion of βcos is:

E [βcos] = E
[
yT P−1zi,τ, fc

cos

]
, (3.118)

= E
[
yT P−1]zi,τ, fc

cos , (3.119)

= 0, (3.120)
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where in Equation (3.119) the linearity of the expectation operator, E [·], is used and

Equation (3.120) is zero because the noise elements have a Gaussian distribution with

zero mean. The covariance of βcos defined as Pβcos is:

Pβcos = E
[(

yT P−1zi,τ, fc
cos −E [βcos]

)(
yT P−1zi,τ, fc

cos −E [βcos]
)T

]
(3.121)

= E
[(

yT P−1zi,τ, fc
cos

)(
yT P−1zi,τ, fc

cos

)T
]
. (3.122)

= E
[(

zi,τ, fc
cos P−1y

)(
yT P−1zi,τ, fc

cos

)]
, (3.123)

where the expression in Equation (3.123) is derived because the scalar βcos is equal to

its transpose and by substituting the following expression:

(
yT P−1zi,τ, fc

cos

)T
=

(
zi,τ, fc

cos

)T
P−1y. (3.124)

By substituting the definition of the hypothesis H0, Equation (3.16), into Equation

(3.122), the covariance Pcos is then calculated:

Pβcos = E
[(

zi,τ, fc
cos P−1n

)(
nT P−1zi,τ, fc

cos

)]
(3.125)

=
(

zi,τ, fc
cos

)T
P−1E

[
nnT ]

P−1zi,τ, fc
cos (3.126)

=
(

zi,τ, fc
cos

)T
P−1zi,τ, fc

cos . (3.127)

Therefore βcos has a zero-mean Gaussian distribution with covariance Pβcos . The same

analysis yields that other component of the test statistic, βsin, has a zero-mean Gaussian

distribution with covariance,

Pβsin =
(

zi,τ, fc
sin

)T
P−1zi,τ, fc

sin . (3.128)

Using Equation (3.77) it can be shown that

Pβcos ≈ Pβsin , (3.129)

therefore βcos and βsin both have zero-mean Gaussian distributions with covariance Pβcos .
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The probability distribution of the sum of the squares of two Gaussian distributed

random variables, βcos and βsin, with mean of zero, and covariance of Pβcos is a chi-

squared distribution [40]. The chi-squared distribution of λLMP is:

pλLMP

(
λLMP

)
=

1
2Pβcos

exp

(
− λLMP

2Pβcos

)
. (3.130)

To compute the probability of false alarm, Equation (3.130) is substituted into Equation

(3.134) resulting in:

PF =
∫ ∞

λLMP,thresh

1
2Pβcos

exp

(
− λLMP

2Pβcos

)
dλLMP (3.131)

= −exp

(
− λLMP

2Pβcos

)∣∣∣∣∣
∞

λLMP,thresh

(3.132)

= 0−
[
−exp

(
−λLMP,thresh

2Pβcos

)]
(3.133)

= exp

(
λLMP,thresh

2Pβcos

)
. (3.134)

The threshold necessary to detect the presence of a signal to a probability of false alarm,

αLMP, is derived from Equation (3.134) by substituting Equation (3.127) and solving for

λLMP,thresh yielding:

λLMP,thresh =−2
(

zi,τ, fc
cos

)T
P−1zi,τ, fc

cos logαLMP. (3.135)

3.6 Linear Numerical Example

The mode detection methodology, including mode detection based on the Neyman-

Pearson locally most powerful statistic (LMP) and the sub-optimal approach (SCA) are

numerically evaluated in this section using a two-state linear system with linear output

equations. The goal is to test the performance of both detection methods and gain in-

sights into the tuning the corresponding model-based state estimators. Because of its
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Table 3.3: Simulation parameters for the Monte Carlo runs.

Parameter Value
K

[
30 8.0

]
T 0.01

optimality for linear systems with Gaussian noise and well known equations, the dis-

crete time Kalman Filter is used for state estimation. Since its publication by Rudolph

Kalman in [43], the KF has been applied to estimation problems in various fields that

include tracking, navigation, physics, and economics. The reader interested in a more

detailed derivation and explanation of the KF is referred to the following references [16],

[44], [45].

3.6.1 Two State Linear Model with Linear Output Equations

The dynamics of motion in one dimension are modeled using a linear point mass

model to describe the motion in an inertial plane, resulting in:

xk+1 = Akxk +Buuk +wk, (3.136)

xk+1 =




1 T

0 1


xk +




0

T


uk +wk, (3.137)

where the state, xk = [xk, ẋk] ∈ R2, contains the position and velocity of the vehicle in

the x direction, wk is zero-mean Gaussian process noise with covariance Q, and T is

the sampling time. The controller in Equation (3.11) is a full state feedback controller,

given as

uk = K (−xk + rk) , (3.138)

is used for tracking the reference rk, Equation (3.6). Constants used in the model and

the controller are shown in Table 3.3.
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Table 3.4: Operating modes and corresponding mode signatures with nρ = 31.

Mode Behavior Signature
1 A [1100001010111001011011000011011]
2 B [1100100001011101110111001110100]
3 C [1010110110110010111101110101010]
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Figure 3.5: Position reference of amplitude equal to 1 meter and frequency 0.01 Hz.
The corresponding velocity reference is also shown.

The position trajectory of the simplified vehicle motion, is described by three oper-

ating modes: 1) behavior A, 2) behavior B, and 3) behavior C. These modes are defined

with the signatures (Gold Codes) shown in Table 3.4 [36]. Since the mode perturba-

tion signature is embedded in the position reference, its derivative must be embedded

in the tracking reference. Therefore, the function which maps from the scalar mode

perturbation signature zi
sig to the perturbation reference ri

sig has the following form:

ri
sig,k = asigtr

z

(
zi

sig,k

)
, (3.139)

= asig




zi
sig,k

d
dt zi

sig,k


 . (3.140)

The nominal reference, rk, for the vehicle is shown in Figure 3.5. Figure 3.6 shows the

combined reference composed of the addition of the nominal reference and the mode

71



0 2 4 6 8 10 12 14
10

10.2

10.4

10.6

10.8

11

11.2

11.4

11.6

Time (sec)

S
ig

na
tu

re
 P

os
iti

on
 (

m
)

Figure 3.6: The combined position reference composed of the position reference and
the mode perturbation signature.

perturbation signature. The closed-loop response of the two-state linear system to a

combined position reference is shown in Figure 3.7.

The output equation is scalar with the form:

yk = Cxk + vk =
[

1 0

]
xk + vk, (3.141)

where vk is zero-mean Gaussian noise with covariance Rk.

3.6.2 Estimator Setup

In the LMP, the KF uses replicas of the perturbation signatures as known inputs and

estimates the system’s nominal reference, r̂k, and perturbation signature amplitude, âsig.

The system has a full-state feedback controller gain, K, and the control input has the

form:

uk = K
(

rk +asigtr
z

(
zi,τ

sig,k

)
−xk

)
. (3.142)
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Figure 3.7: The response of the two state linear model to the combined position refer-
ence shown in Figure 3.6.

The carrier frequency of the carrier fc is known and therefore dropped from the notation,

while the frequency offset fd is not considered here as its uncertainty is small for the

system in this example.

An augmented state is defined for use with the estimation model,



xk+1

rk+1

asig,k+1




=




Ak−BuK BuK BuKtr
z

(
zi,τ

sig,k

)

0 Ar 0

0 0 1







xk

rk

asig,k




+wk. (3.143)

where wk is the process noise for the augmented with covariance Qk. The matrix Ar will

be used for tuning the estimator.

The output equation of the system is linear and has the position as the sole measure-

ment:

yk =
[

1 0 0 0

]



xk

rk

asig




+ vk, (3.144)

where vk is zero-mean Gaussian noise with covariance R.

The SCA KF formulation is similar and the only difference is that it is not necessary
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to estimate asig. The SCA augmented system has the form shown in Equation (3.110),

or 


xk+1

ri
k+1


 =




Ak−BuK BuK

0 Ar







xk

ri
k


+wSCA

k , (3.145)

where the matrix Ar will be determined in the next section.

3.6.3 Estimator Tuning

The effectiveness of the mode detection methods proposed in this chapter rely sig-

nificantly on the performance of the KF. In mode detection, great care must be given to

tuning the process and noise covariances of the KF in order to not only minimize the

effects of noise disturbances, but also to aid in detection. In this section, the KF tuning

procedure for the augmented systems formulated in Section 3.6.2 is summarized and the

resulting estimates are used for mode detection using the LMP and the SCA detection

algorithms.

Kalman Filter Tuning for the LMP Test Statistic

Consider the two-state linear model, Equation (3.87), that has as a nominal reference

of the form:

rk = ar cos [2π frtk] , (3.146)

where ar is the sinusoid amplitude and fr = 0.1 Hz is its frequency. The mode perturba-

tion signature associated with behavior B (see Table 3.4) has magnitude, asig. Initially

to better understand the behavior of the estimator, both the process and measurement

noise are set to small values
(
Q = R = 10−5). In Equation (3.143), rk is modeled as a

second order Markov process. The corresponding Ar is::

Ar =




1 T

0 1


 , (3.147)
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where T is the sampling time. As T → 0 the model for rk becomes a random walk.

Expanding the second order Markov process model yields the following equations for

the elements of rk,

rk+1 = rk +T ṙk, (3.148)

ṙk+1 = ṙk +Twk. (3.149)

However, the second term in the right side of Equation (3.149) implies that the acceler-

ation of the reference can change instantaneously and could violate a physical or mod-

eling constraint. To impart memory into the integration of the acceleration, a (−ωr ṙk)

term can be added to Equation (3.149) such that it becomes:

ṙk+1 = ṙk +T (wk−ωr ṙk) , (3.150)

where ωr ∈ R0,+ delays the integration of the acceleration. Figure 3.8 shows the ve-

locity reference (ar = 1.0, fr = 0.01 Hz) as well as four KF estimates corresponding to

different values of ωr. The covariance matrices for the process and measurement noise

are:

Qk = diag
([

10−2, 10+1, 10−1, 10+1]) , (3.151)

and

Rk = 10−5. (3.152)

Progressing from Figure 3.8(a) to (b), (c), and (d) it is observed that increasing ωr

decreases the amplitude of the estimated velocity reference sinusoid. This makes sense

as ωr was introduced in order to slow the integration of the reference velocity term. The

value of ωr can be used in tuning to control the magnitude of the KF’s estimate of the

velocity reference.

Tuning the elements of the diagonal process covariance matrix, Qk, is critical for

the optimal performance of the KF. The parameters used for this example are shown in

Table 3.5. Using an estimation horizon less than one Gold Code period can be problem-
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Figure 3.8: The effects of increasing the memory term, ωr, in the estimation of the
velocity reference.
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Table 3.5: Simulation parameters for a 1-D Kalman Filter example with a linear output
equation.

Parameter Value
Perturbation Mode Behavior B
Gold Code Period 77.5 seconds
Estimation Horizon 38.8 seconds
Cold Code Phase 8
Carrier Frequency 1 Hz
Carrier Phase 0 degrees
Bit Length 2.5 seconds
ar 1.0 meter
asig 0.5 meters
fr 0.10 Hertz
Sampling Time, T 0.01 seconds
Measurement Noise 1x10−5 meters2

ωr 0

atic as the auto and cross correlation properties of the sequences are not fully exploited.

However, in this investigation it is essential to minimize the time (or number of measure-

ments) needed to make a decision, thus justifying the need to explore the performance

of the approach with small time horizons. Figure 3.9 shows KF estimates for different

values of the element in the process noise covariance matrix corresponding to the ve-

locity reference, denoted as Qṙ. In Figure 3.9, the accuracy in the estimate is shown

to decrease with a decrease in Qṙ. Although a larger process noise covariance element

improves accuracy, it also produces an inevitable larger initial estimation error transient

(see Figure 3.10). However, since the estimation horizons considered in this investiga-

tion extend well beyond the initial transients the effects of the initial estimation error

transient are inconsequential as they are shared by all test statistics.

In the estimate of a constant perturbation signature amplitude, asig, the correspond-

ing process noise covariance element, denoted as Qasig
, determines the estimate’s settling

time. Figure 3.11 shows how different values of the perturbation signature amplitude
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process noise element, Qasig
, affect the settling time of the estimate. It should be noted

that a priori statistical information about the state, P0, also influences the settling time

of the estimate. Given that for these numerical studies the truth model was available,

the P0 used was common to all simulations and had the value 10−2 along its diagonal

given th. When using real data, various techniques can be used to correctly initialize

the estimator [16] or use the information form of the KF in defining P0 is not necessary.

Define the sum of squares of the estimation errors (SSE) defined as

SSE =
kmax

∑
k=1

(υ̂k−υk)
T (υ̂k−υk) , (3.153)

where k is a time index, kmax is the number of samples considered, υk is the truth value

for the variable, and υ̂k is the estimate of the variable. For this example, the SSE,

Equation (3.153), is calculated for the state element corresponding to asig and for three

values of the associated process noise covariance element of: 10−2, 1, and 102 and

kmax = 250. Simulation studies show that the optimal value of the SSE is found process

noise covariance element is Qasig
= 1.0. as this value yields the best tradeoff between

settling time and insensitivity to noise. Similar tradeoffs between faster response and

increased sensitivity to error were observed in the tuning of the other estimated signals.

Equations (3.154) and (3.155) show the process noise covariances found to result in the

best estimates for the KFs the corresponding to the hypotheses that no signal is present,

QH0
k , and a mode perturbation signature is present, QH1

k .

QH0
k = diag

([
10−3, 10+2, 10−1, 10+1]) . (3.154)

QH1
k = diag

([
10−3, 10+2, 10−1, 10+1, 100]) . (3.155)

It is important to analyze how the LMP test statistic, Equation (3.51), reacts to in-

creased noise intensity and its effect on mode detection. In the evaluation of the LMP

test statistic the simulation parameters from Table 3.6 are used. Figure 3.12 shows the

evaluation of the LMP test statistic as a function of mode behavior and Gold Code phase.
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(a) Qṙ = 10−5 (b) Qṙ = 10−3
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(c) Qṙ = 10−1 (d) Qṙ = 10+1

Figure 3.9: Estimating the derivative of the position reference by tuning the process
noise covariance.
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Figure 3.10: Effects of increasing the Qr element of process noise covariance matrix
and its effects on the initial estimation error for the position reference.

0 0.5 1 1.5 2 2.5
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (sec)

a si
g

 

 

a
sig

 = 0.5

Q(5,5) = 1x10−2

Q(5,5) = 1x100

Q(5,5) = 1x10+2

Figure 3.11: Estimation of the perturbation signature magnitude, asig.
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As mentioned earlier, because Doppler effects are unlikely in this type of system, fre-

quency offsets are not considered. In this investigation, the amplitude-to-noise ratio

(ANR) is defined as:

ANR =
a2

sig

2Rmax
, (3.156)

where Rmax is maximum element of the measurement noise covariance matrix, or

Rmax = max
l

R(l, l) , (3.157)

for l = 1, . . . ,ny. The relationship between the ANR and the signal-to-noise ratio (SNR)

commonly used in detection is:

SNR = ANR× kmax, (3.158)

where as defined previously kmax is the number of samples considered [39]. The ANR

was defined independent of the number of samples in order to isolate its influence on

the performance of the algorithm. Equation (3.158) clearly shows that either the ANR

or SNR can be easily computed from the other. In Figure 3.12, the evaluation of the

LMP test statistic for the three different amplitude-to-noise ratios expressed in decibels

(10log(·)) is: 1) 94.3, 2) 48.3, and 3) 25.3 are shown. In Figure 3.12(a), the test statis-

tic correctly detects the mode and phase, while Figures 3.12(b) and (c) show that the

increased noise level leads to incorrect detections.

The measurement noise covariance matrix can be tuned to reduce the effects of mea-

surement noise and increase the detection parameter separation in the LMP. The term

detection parameter separation refers to the difference in value that exists when the test

statistic is calculated for the correct and incorrect parameters (mode or Gold Code and

Gold Code phase). In this one dimensional example, increasing the KF measurement

noise covariance leads to the estimator which behaves as a low-pass filter by reducing

the Kalman Gain [46]. Figure 3.13 shows the evaluation of the LMP test statistic when

the KF measurement noise covariance is R = cr ·R0 where cr =
[
1,102,104] and R0 is
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(a) ANR = 94.3 (b) ANR = 48.3
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(c) ANR = 25.3

Figure 3.12: The effects of measurement noise on the LMP test statistic, λ
i,τ
LMP. Each

row depicts the evaluation of the test statistic for the three amplitude-to-noise ratios
in decibels: 1) 94.3, 2) 48.3, and 3) 25.3. The truth mode and Gold Code phase are
Behavior B at a phase of 8. The frequency of the position reference is 0.10 Hertz.

82



cr = 1 cr = 102 cr = 104

5 10 15 20 25 30
0

1

2

3

4

5

6

7

Gold Code Phase

LM
P

 T
es

t S
ta

tis
tic

 

 

Behavior A
Behavior B
Behavior C

5 10 15 20 25 30
0

1

2

3

4

5

6

7

Gold Code Phase
LM

P
 T

es
t S

ta
tis

tic

 

 

Behavior A
Behavior B
Behavior C

5 10 15 20 25 30
0

1

2

3

4

5

6

7

Gold Code Phase

LM
P

 T
es

t S
ta

tis
tic

 

 

Behavior A
Behavior B
Behavior C

(a) ANR = 94.3 (b) ANR = 94.3 (c) ANR = 94.3

5 10 15 20 25 30
0

2

4

6

8

10

Gold Code Phase

LM
P

 T
es

t S
ta

tis
tic

 

 

Behavior A
Behavior B
Behavior C

5 10 15 20 25 30
0

2

4

6

8

10

Gold Code Phase

LM
P

 T
es

t S
ta

tis
tic

 

 

Behavior A
Behavior B
Behavior C

5 10 15 20 25 30
0

2

4

6

8

10

Gold Code Phase

LM
P

 T
es

t S
ta

tis
tic

 

 

Behavior A
Behavior B
Behavior C

(e) ANR = 48.3 (f) ANR = 48.3 (g) ANR = 48.3
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(h) ANR = 25.3 (i) ANR = 25.3 (j) ANR = 25.3

Figure 3.13: Multiplying the process noise covariance of the KF by factor of 100, 102,
and 104 and and its effect on the LMP test statistic, λ

i,τ
LMP. Each row depicts the eval-

uation of the test statistic for the three amplitude-to-noise ratios in decibels: 1) 94.3,
2) 48.3, and 3) 25.3 (from the top). The columns correspond to the LMP evaluation in
which the KF measurement noise covariance is multiplied by cr =

[
1,102,104]. The

frequency of the position reference is 0.10 Hertz.
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Table 3.6: Simulation parameters used to analyze the LMP test statistic for a 1-D
Kalman Filter example with a linear output equation.

Parameter Value
Perturbation Mode Behavior B
Gold Code Period 77.5 seconds
Cold Code Phase 8
Carrier Frequency 1 Hz
Carrier Phase 2.9 radians
Bit Length 2.5 seconds
ar 1.0 meter
asig 0.5 meters
fr 0.10 Hz
Estimation Horizon 38.8 seconds
Sampling Time, T 0.01 seconds
ωr 0

the covariance matrix for each ANR value. The figures shows that decreasing the band-

width of the estimator reduces the value of the LMP test statistic for signals with the

incorrect parameters. For the figures with ANR of 48.3 and 25.3, it can be seen that if

the measurement noise covariance is not multiplied by a factor detection is not possible.

For the parameters in this example, an ANR ≤ 48.3 requires that the KF measurement

covariance is increased by a factor of cr = 102 for robust detection parameter separation.

Increasing the measurement noise covariance allows the detector to perform better by

reducing the test statistic value for the incorrect parameters. However, Figure 3.13(c)

shows that as the KF measurement noise covariance increases, the value of the LMP test

statistic reduces for the signal with the correct parameters. For this example, the best

tradeoff is found when KF measurement noise covariance is multiplied by a factor of

102 as shown in Figure 3.13. As expected, the noise disturbance rejection achieved by

lowering the bandwidth of the estimator can also be seen in the state estimate. Figure

3.14 compares the estimation of asig when the KF measurement covariance matrix is

multiplied by a factor of cr = 0 and cr = 102. Similar results are observed in the esti-
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Figure 3.14: The estimate of the mode perturbation signature amplitude and the effects
of using different values in the measurement covariance in the KF. The position refer-
ence has a frequency of fr = 0.10 Hz and the measurement noise is R = 10−3. The
KF estimate of the magnitude of the mode perturbation signature is shown with a mea-
surement noise covariance that is equal to the one used in the truth-model (left) and a
measurement noise covariance that is cr ·R or 102 ·R (right).

mates of the other state variables. Although, Figures 3.12 and 3.13 consider the effects

of measurement noise for a position reference of 0.10 Hz, simulations at references fre-

quencies of 0.01 and 1.00 Hertz shared similar characteristics. It should be noted that

the ωr factor described previously could also be used to reduce the effects of noise on

the estimates. Simulation studies, however, showed that multiplying the KF measure-

ment noise covariance by a factor of cr = 102 was a more effective way to reduce the

effects of noise and increase detection parameter separation (the difference between the

value of the test statistic for correct and incorrect signal parameters).

Kalman Filter Tuning for the SCA Test Statistic

The procedure of tuning the KF for use for detection based on correlation is similar

to the one presented for the LMP. It should be noted that the KF used for correlation-

based detection is trying to estimate the summation of the position reference and the

mode perturbation signature. As discussed for the LMP, the elements in the process
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noise covariance matrix define the tradeoff between speed of response and sensitivity to

noise. Simulation of the linear system in Equation (3.137) and parameters summarized

in Table 3.5 showed that for position reference frequencies between 0.01 and 1.0 Hz,

the following KF process covariance matrix produced the best results:

Qk = diag
([

10−1,10+3,10+1,10+6
])

. (3.159)

One advantage of the detection based on correlation approach is that the matrix in Equa-

tion (3.159) has one less element to tune compared to the KF used for the LMP test

statistic. By having to estimate the summation of the position reference and the mode

perturbation signature, the terms corresponding to the position and velocity references

in the KF process covariance matrix are larger. This is unavoidable as the KF must react

quickly to bit changes in the embedded mode perturbation signature. Simulation studies

were also done to determine if adding pseudo measurement noise improved the perfor-

mance of the detector. However, it was found that adding pseudo measurement noise

did not improve the performance of the detector (it did not hurt performance either).

3.6.4 Monte Carlo Simulations

This section compares the results for the optimal detection method (the LMP pre-

sented in Section 3.3) and a suboptimal test statistic (the SCA presented in Section 3.4)

using Monte Carlo methods. Simulations were repeated for at least a total of 31 trials

with Gaussian process and measurement noise in order to obtain meaningful simula-

tion statistics. In order to incorporate realistic maneuvers, the system tracked sinusoidal

references with ar = 10 at three frequencies: 1) 0.01 Hz, 2) 0.10 Hz, and 3) 1.00 Hz.

Four amplitude-to-noise ratios in decibels were also considered: 1) 2.2, 2) 25.3, 3) 48.3,

and 4) 94.3. The performance of the detector was measured by considering the percent-

age of times the correct parameter (i and τ) were detected. The correct mode detection

percentage results with error bars can be found in Appendix C.
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Figure 3.15 shows the performance of the LMP detector, Equation (3.109), with the

system tracking a reference of 0.01 Hz. As would be expected, the performance of

the detector improves as the estimation horizon and ANR increase. It can be seen that

even for ANR = 1.58 acceptable performance of about 80% can be achieved if the esti-

mation horizon is extended beyond 40 seconds. Figure 3.16 shows how increasing the

frequency of the tracking reference to 0.10 Hz affects detection. The percentage perfor-

mance is primarily not effected by this increase in the reference frequency in areas of

large estimation horizon (> 40 seconds) and ANR (> 48.3). Most of the degradation

in performance occurs for low ANRs. However, a tracking reference with frequency of

1.00 Hz deteriorates the performance of the detector. This effect is evident when Figure

3.17 is compared to Figures 3.15 and 3.16. For this condition, the nominal reference

and the mode perturbation signature share the same frequency ( fc = fr = 1.0 Hz) de-

creasing the performance of the LMP detector, Equation (3.109). However, as Figure

3.17 shows that a detection rate higher than 90% is attainable if the estimation horizon

is large (> 60 seconds) and the ANR is large (≥ 94.3). Figures 3.15, 3.16, and 3.17

have sufficient information to select an estimation horizon and ANR and predict a rate

of correct parameter detection.

Consider now the performance of the SCA detector, Equation (3.113). The same

conditions in terms of the mode perturbation signature amplitude, the tracking reference

frequency, and the ANR were simulated using the SCA. Figures 3.18, 3.19, and 3.20

show the same trend as seen with the LMP test statistic in terms of estimation horizon

and ANR. However when compared to the LMP, there is a significant drop in perfor-

mance seen in Figure 3.20 for a tracking reference of 1.00 Hz.

Insight is gained by evaluating the separation between the values of the SCA detec-

tor statistic, Equation (3.113), for the correct and the incorrect modes and Gold Code

phases. Figure 3.21 shows the evaluation of the SCA detector for the three mode per-
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Figure 3.15: Correct mode detection percentage for the LMP detector, Equation (3.109),
with a mode perturbation signature amplitude of asig = 0.5 tracking a reference with
frequency of 0.01 Hz.
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Figure 3.16: Correct mode detection percentage for the LMP detector, Equation (3.109),
with a mode perturbation signature amplitude of asig = 0.5 tracking a reference with
frequency of 0.10 Hz.
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Figure 3.17: Correct mode detection percentage for the LMP detector, Equation (3.109),
with a mode perturbation signature amplitude of asig = 0.5 tracking a reference with
frequency of 1.00 Hz.
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Figure 3.18: Correct mode detection percentage for the SCA detector, Equation (3.113),
with a mode perturbation signature amplitude of asig = 0.5 tracking a reference with
frequency of 0.01 Hz.
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Figure 3.19: Correct mode detection percentage for the SCA detector, Equation (3.113),
with a mode perturbation signature amplitude of asig = 0.5 tracking a reference with
frequency of 0.10 Hz.
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Figure 3.20: Correct mode detection percentage for the SCA detector, Equation (3.113),
with a mode perturbation signature amplitude of asig = 0.5 tracking a reference with
frequency of 1.00 Hz.
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Figure 3.21: The evaluation of the SCA detector, Equation (3.113), for the three modes
and Gold Code phases with an estimation horizon of 50 seconds. The frequency of the
tracking reference is equal to 0.10 Hz and the ANR is 48.3.

turbation signatures and Gold Code phases under an estimation horizon of 50 seconds.

In the simulation, the ANR and tracking reference frequency were equal to 48.3 and

0.10 Hz respectively. The parameters used to generate the truth-model for this example

were: 1) Behavior B, and 2) Gold Code phase of 14. It can be seen that the figure lacks

a single peak significantly separated from the other evaluations. However, for Behavior

B there is a cluster of points around the truth value. If the estimation horizon increased,

the SCA detector would detect more energy at the correct parameters and Figure 3.21

would resemble the LMP detector evaluations shown in Figure 3.12(a).

However, since in this investigation it is more important to detect the correct mode

behavior, i, rather than the correct Gold Code phase, τ, the detection requirements can be

relaxed. The dependence of the SCA detector on the Gold Code phase can be removed

by summing the energy detected at each Gold Code phase. The reformulated SCA

detector for the ith mode is then:

λ
i, fc
SCA =

Nτ

∑
τ=0

[([
r̂i, j

]T
P−1zsin,i,τ,fc

sig

)2

+
([

r̂i, j
]T

P−1zcos,i,τ,fc
sig

)2
]

, (3.160)
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where Nτ is the number of phases in the Gold Code. The modified SCA detector then

chooses the largest λ
i, fc
SCA, or

î, f̂c = argmax
i, fc

λ
i, fc
SCA. (3.161)

The Gold Code phase is still part of the parameter search space as the evaluation of the

modified SCA test statistic, λ
i, fc
SCA, is dependent on the energy at each Gold Code phase.

The conditions of the Monte Carlo simulations are then simulated using the modi-

fied SCA detector, Equation (3.161), and shown in Figure 3.22, 3.23, and 3.24. It is to

be tested whether the correct detection percentage would increase if the requirement of

detecting the correct Gold Code phase is relaxed. Comparing Figures 3.23 and 3.24 with

Figures 3.18 and 3.19 it is apparent that the performance of the detector has improved

dramatically. However, for a tracking reference with a frequency of 1.00 Hz (Figure

3.24) the modified SCA detector, Equation (3.161), improved for small estimation hori-

zons, it could not match percentages greater than 80% seen in Figure 3.20. Simulation

data showed that a reference frequency of 1.00 Hz significantly reduced the parameter

separation, thus making the modified SCA detector ineffective. At a tracking reference

frequency of 1.00 Hz, the performance of the LMP detector, Equation (3.109), (Figure

3.15) was better. The Monte Carlo simulations suggest that the modified SCA detector

is effective for tracking references with a frequency less than 1.00 Hz.

Relaxing the Gold Code phase detection requirement was investigated for the LMP

test statistic, however Monte Carlo simulations showed that the performance of the de-

tector did not improve. This can be explained by looking at difference in the test statistic

evaluation for the LMP (Figure 3.12(a)) and the SCA (Figure 3.21). As shown in Figure

3.12(a) in the LMP there is a clear peak at the correct mode and Gold Code phase. If a

test statistic similar to λ
i, fc
SCA was used for this linear example, it would not improve the

parameter separation of the peak at the correct parameters since the statistic is already

robust.
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Figure 3.22: Correct mode detection percentage for the modified SCA test statistic,
Equation (3.160), with a mode perturbation signature amplitude of asig = 0.5 tracking a
reference with frequency of 0.01 Hz.
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Figure 3.23: Correct mode detection percentage for the modified SCA test statistic,
Equation (3.160), with a mode perturbation signature amplitude of asig = 0.5 tracking a
reference with frequency of 0.10 Hz.
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Figure 3.24: Correct mode detection percentage for the modified SCA test statistic,
Equation (3.160), with a mode perturbation signature amplitude of asig = 0.5 tracking a
reference with frequency of 1.00 Hz.

The probability of false alarm derived in Section 3.5 was calculated for LMP in order

to compare it to the simulation correct detection percentage. Figure 3.25 shows the value

of the test statistic under the following conditions: 1) estimation horizon of 4 seconds

and ANR = 2.2, and 2) estimation horizon of 80 seconds and ANR = 94.3. As can be

seen in the Figure 3.25(a), at this small estimation horizon and ANR, the probability

of false alarm must be increased to 40% for 98% of the samples points to have a value

greater than the threshold. However, if the estimation horizon and ANR are increased

as shown in Figure 3.25(b) then a probability of false alarm of only 10% is needed for

all points to be above the threshold. As expected for higher estimation horizons and

ANRs the value of the test statistic is higher which enables for a lower probability of

false alarm to be selected.

The results of the Monte Carlo simulations in this section showed the tradeoff be-

tween the estimation horizon, the ANR, and the performance of the LMP and SCA de-

tector. The data showed that the performance of both detectors suffered as the tracking
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Figure 3.25: The probability of false alarm as derived in Section 3.5 calculated for the
LMP.

reference frequency increased. For a tracking reference frequency of 1.00 Hz, the per-

formance of the LMP was significantly better than the SCA. Simulation results showed

that for a tracking frequency of less than 1.00 Hz the SCA detector yielded results sim-

ilar to the LMP detector. The performance of the SCA detector can be further improved

by relaxing the Gold Code phase detection requirement by summing up the energy at

the Gold Code phases for each mode, Equation (3.161).

3.7 Nonlinear Numerical Example

The performance of the LMP and SCA detectors for a simple linear model with

a linear output equation was evaluated in Section 3.6. In this section, the LMP and

SCA detectors are applied to a more complex linear model with nonlinear radar output

equations. It is of interest to investigate how the nonlinearities of the measurement

equations affect the relationship between the estimation horizon, ANR, and resulting

performance. Another factor to evaluate is how sensitive is the larger order estimator

required by the LMP.
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The nonlinear radar measurements proposed in this investigation require the use of a

nonlinear estimator. For accuracy and for numerical stability, the square-root implemen-

tation of the Sigma Point Filter (SPF) is chosen [47]. The SPF or Unscented Kalman

Filter consists of using the system model to sample specific points which can be used

to numerically reconstruct the probability distribution of the state. Some excellent ref-

erences that present derivations and explanations of the SPF include: [48], [49], and

[50].

3.7.1 Four State Linear Model with Nonlinear Radar-Like Equa-

tions

Motion in two dimensions is described by the following linear discrete time model:

xk+1 = Akxk +Bkui
k, (3.162)

xk+1 =




1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1




xk +




0 0

T 0

0 0

0 T




ui
k +wk, (3.163)

where the state, xk is composed of the position and velocity along the x-axis and the

position and its derivative along the y-axis, or xk = [xk ẋk yk ẏk]
T ∈ R4. The control

input has components for each axis, ui
k =

[
ux,i

k uy,i
k

]T
∈R2, and is calculated using full-

state feedback:

ui
k = K

(−xk + ri
k
)
, (3.164)

where ri
k = rk +asigtr

z

(
zi

sig

)
is the total reference for the ith mode. The variable wk ∈R4

is zero-mean white Gaussian noise with covariance Qk.

The nonlinear output equations are composed of radar-like measurements: the range,

κk, and an angle, χk, relative to the x-axis, as shown in Figure 3.26. The nonlinear
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measurement equations are the following:

yk = h(xk,vk) , (3.165)



κk

χk


 =




√
x2

k + y2
k

tan−1
(

yk
xk

)


+vk, (3.166)

where vk is zero-mean white Gaussian measurement noise with covariance Rk.

3.7.2 Estimator Setup

In this example, the setup of the estimator is similar to the one described in Sec-

tion 3.6.2, the only differences coming from the fact that motion in the y-axis must be

considered. The augmented state equations are defined as follows:



xk+1

rk+1

asig,k+1




=




Ak−BuK BuK BuKtr
z

(
zi,τ

sig

)

0 Ar 0

0 0 I







xk

rk

asig,k




+wk. (3.167)

where wk is zero-mean Gaussian process noise for the augmented system with covari-

ance Qk. The matrix Ar has the form:

Ar =




1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1




, (3.168)

and the vector of mode perturbation amplitudes is:

asig =




ax
sig

ay
sig


 . (3.169)

The function tr
z (·) computes the mode perturbation reference by mapping the scalar

mode perturbation signature to the position reference and also computing its derivative

97



−10 0 10 20 30 40 50 60 70 80 90
−20

−15

−10

−5

0

5

10

15

20

x (m)

y
 (

m
)

 

 

System Trajectory

Radar

χ

 κ

Figure 3.26: Trajectory of the system with initial position [70,−20] (the initial speed
for both directions is zero) with a mode perturbation signature frequency of 0.10 Hz and
ANR of 94.3 dB. The red diamond symbolizes the location of the radar that takes range,
κk, and angle measurements, χk, of the system. The mode perturbation signature can be
seen embedded in the sinusoidal trajectory of the vehicle. The frequency of the mode
perturbation signature is faster than the frequency of the reference, therefore the ripples
observed in the figure are caused by the mode perturbation signature.
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(see Equation (3.140)). The function tr
z (·) maps the mode perturbation signature to the

reference in the following way:

tr
z

(
zi,τ

sig,k

)
= T r

z




zi,τ
sig,k 0

0 d
dt zi,τ

sig,k


 . (3.170)

The matrix T r
z maps the elements of the scalar perturbation signature and its derivative

accordingly,

T r
z =




1 0

0 1

1 0

0 1




. (3.171)

For the SCA estimator setup, it is not necessary to estimate the mode perturbation

signature amplitudes for either direction. The SCA augmented system has the form:



xk+1

ri
k+1


 =




Ak−BuK BuK

0 Ar







xk

ri
k


+wSCA

k , (3.172)

where wSCA
k is zero-mean Gaussian process noise for the SCA augmented system.

The nonlinear output equations of the system have the same form as in Equation

(3.166) where the range, κk, and the angle, χk, are the measurements.

3.7.3 Estimator Tuning

As in the linear case, Section 3.6, the performance of either detector is neccessarily

dependent on the performance of the model-based estimator. Tuning the underlying

estimator is more challenging for this example as the model is of larger dimension and

the measurement equations are nonlinear. In this section, the strategy used to tune the

SPF is summarized.

99



Sigma Point Filter Tuning for the LMP

Tuning the SPF for the system was challenging because small changes in the process

and measurement covariance matrices affected the performance of both the estimator

and the subsequent mode detector. Although there is not a single best way to tune the

estimator, simulation studies showed that it is most effective to start by tuning the esti-

mator to minimize the error in the velocity elements of the reference in both the x and

y directions and then to continue with the other elements. Therefore, the corresponding

elements in the process covariance matrix were tuned until the accuracy of the refer-

ence velocity estimate was maximized. As seen in Section 3.6, increasing the process

covariance element for the velocity element improved the accuracy of the estimate, but

increased its sensitivity to noise. As the elements corresponding to the reference velocity

were tuned, the reference position elements of the process covariance matrix was also

adjusted. Once tuning produced acceptable estimates of the reference and mode per-

turbation signature amplitude , it was found that the SPF was slightly less sensitive to

variations in the process covariance elements corresponding to the position and velocity

in the x and y direction.

For the LMP detector, the process covariance matrices found to produce the best

estimates for the SPF in terms of maximizing the value of the test statistic for the correct

parameters under hypothesis H0 were the following:

QH0
k = diag

([
10−1,10−3,10−1,10−3,10−1,10+4,10−1,10+4]) , (3.173)

where QH0
k is the process noise covariance matrix of the SPF for the hypothesis that no

signal is present, H0, and

QH1
k = diag

([
10−1,10+2,10−1,10+1,10−2,10+2,10+2,10+3,10−1,100]) , (3.174)

where QH1
k is the process noise covariance matrix of the SPF for the hypothesis that a

signal is present, H1, either with a cosine or sine carrier.
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Monte Carlo simulations showed that multiplying the covariance matrix by a factor,

R = cr ·R0, (as described in Section 3.6.3) hurt the performance of the LMP detector.

Also, imparting memory in the integration of the position reference, as described in

Equation (3.150), did not improve performance and therefore ωr was set to zero.

Sigma Point Filter Tuning for the SCA

A similar procedure as the one described for the LMP was used to tune the covari-

ance matrices of the SPF for the SCA test statistic. The process covariance matrix that

was found to produce the best performance for the SCA test statistic was:

Qk = diag
([

10−1,10−3,10−1,10−3,10+0,10+6,10+0,10+6
])

. (3.175)

The elements corresponding to the reference in Equation (3.175) are larger than the

same elements in Equation (3.174) for the LMP because the estimator for the SCA must

estimate ri which is a fast varying signal as opposed to the estimate for the LMP which

estimates the nominal reference, r, and asig which is a constant. The larger magnitude

of these elements in the SCA suggests that the estimator for the SCA would be more

sensitive to noise. The performance of the SPF for the SCA for this nonlinear example

did not improve if the measurement covariance matrix of the KF was multiplied by a

factor, R = cr ·R0, (as described in Section 3.6.3) or if memory was imparted, as shown

in Equation (3.150), in the position reference integration (ωr 6= 0).

3.7.4 Monte Carlo Simulations

This section compares the results for the optimal detection method (the LMP pre-

sented in Section 3.3) and the suboptimal test statistic (the SCA presented in Section

3.4 and modified in Section 3.6.4) using Monte Carlo methods. In the simulations, the

radar sensor was located at the origin of an x− y coordinate system while the motion
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of the vehicle started at the coordinates (70,−20) with an initial speed of zero for both

directions. The trajectory of the vehicle tracking a reference with amplitude ar = 10

and frequency of fr = 0.01 Hz and mode perturbation signature amplitude of asig = 0.5

was previously shown in Figure 3.26. As with the linear numerical example in Section

3.6, the simulations were repeated for a total of 31 trials with Gaussian process and

measurement noise. In order to incorporate realistic maneuvers, the system tracked si-

nusoidal references at three frequencies: 1) 0.01 Hz, 2) 0.10 Hz, and 3) 1.00 Hz. Since

in this example there are two measurements the measurement noise covariance used in

the simulation was:

Rk = cR×diag([0.5,0.0305]) , (3.176)

where cR =
[
10−5,10−3,10−2,10−1] is a factor that scales the measurement noise. Us-

ing the definition of ANR, Equations (3.156-3.157), the ratio is computed for the ele-

ment of largest element in Rk, 0.5, resulting in the following ANRs in dB: 1) 9.2, 2)

32.2, 3) 55.2, and 4) 101.3. If the ANR was computed based on the other element of

Rk the values would be: 1) 37.1, 2) 60.2, 3) 83.2, and 4) 129.2. The performance of the

detector was measured by considering the percentage of correct parameter detections

(the ith mode and Gold Code phase τ) for at least 62 trials. More trials were conducted

until the standard error (standard deviation of the samples) was below 12%. The correct

mode detection percentage results with error bars can be found in Appendix C.

The Monte Carlo simulations results in Figure 3.27 show that the performance of the

LMP detector, Equation (3.109), dropped off significantly for ANRs of less than 101.3.

Figure 3.27 shows the simulation results, for a ANR= 101.3 the relationship between

the estimation horizon and the performance is similar to the one seen in the simpler

one dimensional numerical example, Section 3.6. However, the performance does not

smoothly decrease for smaller ANRs as the performance degrades quickly when the

ANR is lowered to 55.2.
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Figure 3.27: Correct mode detection percentage for the LMP detector for the nonlinear
simulation example with a mode perturbation signature amplitude of asig = 0.5 tracking
a reference with frequency of 0.01 Hz.

It is of interest to determine whether the performance of the algorithm is more sen-

sitive to measurement noise in one of the measurement variables. Figure 3.28 shows the

LMP test statistic evaluated when the two dimensional linear model, Equation (3.163), is

used with nonlinear radar measurement equations. Figure 3.28(a) shows the test statis-

tic evaluated with the measurement noise covariance defined in Equation (3.176) when

cR = 10−5. The corresponding ANRs for the range and angle are 101.3 and 129.2 re-

spectively. The evaluation of the test statistic in Figure 3.28(a) shows that the algorithm

is able to detect the correct signature parameters (Gold A, Gold Code phase 17). Fig-

ure 3.28(c) shows the evaluation of the test statistic as the measurement noise increases

(cR = 10−3, ANR: κ = 55.2 and χ = 83.2). As it is evident from Figure 3.28(c), the al-

gorithm is not able to detect the correct mode signature parameters at this measurement

noise level. However, it is not clear if the algorithm is more sensitive to measurement

noise in one of the variables. Figure 3.28(b) shows the evaluation of the test statistic

for ANRs of: κ = 101.3 and χ = 83.2. In this case the ANR for the range has been
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Figure 3.28: The evaluation of the LMP detector as a function of Gold Code phase for
the 2D model, Section 3.7, with nonlinear radar measurements. The ANRs in decibels
for both the range, κ, and the angle, χ, are also shown. The estimation horizon for
the plots was 80 seconds.The parameters of the mode perturbation signature simulated
in the truth-model were: Behavior A and Gold Code phase 17. The test statistics as
computed by the algorithm at the truth-model parameters are shown inside a gray circle.
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kept constant while the ANR for the angle has decreased when compared to the noise

levels for Figure 3.28(a). Figure 3.28(d) also shows the evaluation of the test statistic

for different noise levels. When compared to Figure 3.28(a), the ANR for the range has

decreased while the ANR for the angle is kept constant. The value of the ANRs for

Figure 3.28(d) are: κ = 55.2 and χ = 129.2. The evaluation of the test statistic shows

that the algorithm is able to detect the correct signatures parameters in Figure 3.28(d),

but not in Figure 3.28(b). These results propose that the algorithm when applied to the

model in Equation (3.163) with nonlinear output measurements is much more sensitive

to the noise level of the angle measurement than the range measurement.

The LMP formulation requires the SPF to have two extra states as the mode per-

turbation signatures magnitudes in the x and y directions must be estimated. However,

simulation studies for the SPF when the mode perturbation signature amplitudes were

not estimated did not yield significantly better results in terms of the percentage of times

that the algorithm detects the correct signature parameters. These studies along with the

data shown in Figure 3.28 suggest that the increased noise in the angle measurement

explains why the LMP detector’s performance decreases for lower ANRs. In the simu-

lation studies presented in this chapter, the noise for both variables is changed simulta-

neously using the definition of the measurement noise covariance in Equation (3.176).

The ANR for both measurements variables decreases as cR increases. For this nonlinear

example the performance of the estimator, in this case the SPF, plays a more significant

factor in the performance of the detector because the estimation problem is harder.

Although the Neyman-Pearson Lemma guarantees the optimality of the LMP detec-

tor [39], the analysis presented in Section 3.3 does not consider several factors that can

affect detection. As shown in Figure 3.28, the nonlinearity of the output equation plays

a significant factor in the performance of the detector, yet it is not considered in the LMP

analysis. Since minimizing the time to detect the signal parameters is essential in this
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application, it is necessary to attempt detection for estimation horizons that are less than

one Gold Code period. By using less than a complete Gold Code period for detection, it

is not possible to fully utilize the favorable cross-correlation properties of Gold Codes.

Another factor to consider is that in any set of Gold Codes, there is inevitably some

cross-correlation. The limitations of the LMP analysis motivate relaxing the detection

requirements by modifying the detectors. As was done for the modified SCA detector,

Equation (3.161), consider summing up the energy at each Gold Code phase for each of

the ith Gold Codes, or

î, f̂c = argmax
i, fc

{
Nτ

∑
τ=0

maxλ
i,τ, fc
LMP

}
. (3.177)

The LMP detector in Equation (3.177) effectively averages the energy over all Gold

Codes phases. Another variation to the LMP detector is to relax the detection require-

ments. In the simulation studies, it was required for the detector to correctly detect both

the mode î and corresponding Gold Code phase τ̂ in order to declare a correct detection.

However, in this application it is most important to detect the mode î, while detecting τ̂

is not essential. This detector, referred to as the relaxed LMP detector, has the form:

î, τ̂, f̂c,= argmax
i,τ, fc

λ
i,τ, fc
LMP , (3.178)

where the optimization is still performed over τ, however when evaluating the detec-

tion performance only the estimates of î and f̂c are compared to the truth values. Said

another way, the detector is said to have detected the correct signal parameters if î = i

and f̂ c = fc, even if τ̂ 6= τ. Figures 3.29 and 3.30 plot the percentage of correct de-

tection over 31 trials as a function of the estimation horizon and ANR. Figures 3.29

and 3.30 demonstrate that by modifying the LMP detector, the detection performance

improves. In particular, the LMP detector based on Equation (3.177) achieves the best

performance. Figures 3.31, 3.32, and 3.33 show the detection performance for the three

variations of the LMP detector for a reference frequency of 0.10 Hz. Finally Figures

3.34, 3.35, and 3.36 show the detection performance for a reference frequency of 1.00
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Figure 3.29: Correct mode detection percentage for the modified LMP detector, Equa-
tion (3.177), for the nonlinear simulation example with a mode perturbation signature
amplitude of asig = 0.5 tracking a reference with frequency of 0.01 Hz.

Hz. As the frequency of the reference increases, the detection performance of the LMP

detectors degrades. The modifications to the LMP, Equation (3.177) and (3.178), do im-

prove the detection performance, however an increasing reference frequency inevitably

reduces detection performance. Under both reference frequencies, the LMP detector

based on summation, Equation (3.177), is able to achieve the best performance.

In contrast to the LMP detector, Figure 3.37 shows that the SCA detector is more

robust to smaller ANRs, although its overall correct detection percentage is lower. For

a tracking reference frequency of 0.10 Hz, the same trend is observed in Figures 3.31

and 3.39 where the LMP test statistic exhibits a significant dropoff in performance for

smaller ANRs while the SCA test statistic does not. However, for a high ANR (≈ 101.3)

the data does show that the LMP test statistic outperforms the SCA test statistic.

Consider relaxing the detection requirements, so that similar to the modified LMP
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Figure 3.30: Correct mode detection percentage for the modified LMP detector based on
only estimating i, Equation (3.178), for the nonlinear simulation example with a mode
perturbation signature amplitude of asig = 0.5 tracking a reference with frequency of
0.01 Hz.

101.266
55.2146

32.1888
9.162910

20

40

60

80

0

20

40

60

80

100

 

ANR (dB)
Estimation Horizon (sec)

 

C
or

re
ct

 D
et

ec
tio

n 
%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Figure 3.31: Correct mode detection percentage for the LMP test statistic for the non-
linear simulation example with a mode perturbation signature amplitude of asig = 0.5
tracking a reference with frequency of 0.10 Hz.
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Figure 3.32: Correct mode detection percentage for the modified LMP detector, Equa-
tion (3.177), for the nonlinear simulation example with a mode perturbation signature
amplitude of asig = 0.5 tracking a reference with frequency of 0.10 Hz.
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Figure 3.33: Correct mode detection percentage for the modified LMP detector based on
only estimating i, Equation (3.178), for the nonlinear simulation example with a mode
perturbation signature amplitude of asig = 0.5 tracking a reference with frequency of
0.10 Hz.
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Figure 3.34: Correct mode detection percentage for the LMP detector for the nonlinear
simulation example with a mode perturbation signature amplitude of asig = 0.5 tracking
a reference with frequency of 1.00 Hz.
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Figure 3.35: Correct mode detection percentage for the modified LMP detector, Equa-
tion (3.177), for the nonlinear simulation example with a mode perturbation signature
amplitude of asig = 0.5 tracking a reference with frequency of 1.00 Hz.
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Figure 3.36: Correct mode detection percentage for the modified LMP detector based on
only estimating i, Equation (3.178), for the nonlinear simulation example with a mode
perturbation signature amplitude of asig = 0.5 tracking a reference with frequency of
1.00 Hz.

detector in Equation (3.178), the SCA detector is not required to correctly estimate î, or

î, τ̂ f̂c = argmax
i,τ, fc

λSCA. (3.179)

Figures 3.37 and 3.38 plot the percentage of correct detections for 62 trials for the SCA

detector that averages the energy over τ, Equation (3.160), and the SCA detector that

is not required to correctly estimate τ̂, Equation (3.179). Figure 3.38 shows that by

only estimating î, Equation (3.179), the detection performance improves significantly

compared to the SCA detector in Equation (3.160). For reference frequencies of 0.10

and 1.00 Hz, Figure 3.37, 3.38, 3.39, 3.40, 3.41, and 3.42 show that both SCA detectors

produce very similar results. It can be concluded the SCA detector in Equation (3.179)

produces better detection results for a reference frequency of 0.01, but for reference

frequencies of 0.10 and 1.00 Hz the performance of both SCA detectors is comparable.

It should be noted that the performance of the LMP detector is better than either SCA

detector at high ANRs.
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Figure 3.37: Correct mode detection percentage for the modified SCA detector, Equa-
tion (3.160), for the nonlinear simulation example with a mode perturbation signature
amplitude of asig = 0.5 and tracking a reference with frequency of 0.01 Hz.
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Figure 3.38: Correct mode detection percentage for the modified SCA detector based on
only estimating î, Equation (3.179), for the nonlinear simulation example with a mode
perturbation signature amplitude of asig = 0.5 and tracking a reference with frequency
of 0.01 Hz.
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Figure 3.39: Correct mode detection percentage for the modified SCA detector, Equa-
tion (3.160), for the nonlinear simulation example with a mode perturbation signature
amplitude of asig = 0.5 tracking a reference with frequency of 0.10 Hz.
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Figure 3.40: Correct mode detection percentage for the modified SCA detector based on
only estimating î, Equation (3.179), for the nonlinear simulation example with a mode
perturbation signature amplitude of asig = 0.5 and tracking a reference with frequency
of 0.10 Hz.
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Figure 3.41: Correct mode detection percentage for the modified SCA detector, Equa-
tion (3.160), for the nonlinear simulation example with a mode perturbation signature
amplitude of asig = 0.5 tracking a reference with frequency of 1.00 Hz.
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Figure 3.42: Correct mode detection percentage for the modified SCA detector based on
only estimating î, Equation (3.179), for the nonlinear simulation example with a mode
perturbation signature amplitude of asig = 0.5 and tracking a reference with frequency
of 1.00 Hz.
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Figure 3.43: The probability of false alarm as derived in Section 3.5 calculated for the
LMP.

The probability of false alarm derived in Section 3.5 was calculated for LMP in order

to compare it to the simulation correct detection percentage. Figure 3.43 shows the value

of the test statistic under the following conditions: 1) estimation horizon of 4 seconds

and ANR = 9.2, and 2) estimation horizon of 80 seconds and ANR = 101.3. As can be

seen in the Figure 3.43(a), at this small estimation horizon and ANR, even a probability

of false alarm of 40% does not yield any points that are above the threshold. When the

estimation horizon and ANR are increased as shown in Figure 3.43(b), the simulation

samples are still not above the threshold corresponding to a probability of false alarm

of 40%. As the simulation results in this section have shown, it is very difficult for the

algorithm to detect the correct signature parameters. The results shown in Figure 3.43

show that the inferior performance of the algorithm compared to the linear example

also leads to lower values of the test statistic. However, it should be emphasized that

the optimization problem for mode detection, Equation (3.109), relies on the values of

the test statistic as a function of the mode signature parameters. Said another way, the

algorithm finds the signature parameters that maximize the test statistic regardless of the

absolute value of the test statistic.
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The Monte Carlo simulation studies in this section explored the robustness of the

LMP and SCA detectors with nonlinear output equations to different levels of ANRs and

their relationship to the estimation horizon. Two modifications to the detectors were also

considered: 1) summing the energy for the ith mode each Gold Code phase, and 2) only

requiring the detector to estimate î correctly. Although the LMP detector formulation

requires that the SPF estimate an extra two states (compared to the SCA test statistic),

this was not the major factor in limiting its performance. The results showed that for

a reference frequency of 0.01 Hz, the decreasing the ANR for the angle measurement

below 129.2 dB limited the ability of the LMP detector to maintain acceptable parameter

separation. In contrast, the SCA detector showed a more consistent performance for the

ANRs and estimation horizons tested. However, simulation results for both detectors

showed that the detection performance (measured as the percentage of times the correct

signal parameters were detected) for a tracking reference frequency of 1.00 Hz had

detection percentage below 50% suggesting that neither detector should be used under

the conditions tested.

3.8 Summary and Conclusion

The problem of receiving information using movements instead of direct radio com-

munication was investigated. A hybrid system model was formulated under the assump-

tion that the behavior can be described by a finite set of operating modes. Each mode

consists of a model that describes the vehicle’s dynamics as well as a mode perturba-

tion signature. The signatures were designed as Gold codes since they are differentiable

from noise and have favorable correlation properties. A locally most powerful detector

(LMP) was presented that uses principles from detection and estimation theory to derive

an optimal test statistic. In order to minimize computations and to facilitate real-time

implementation a suboptimal detector (SCA) was also formulated. Monte Carlo simu-
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lations of a one dimensional linear model and a more complicated two-dimensional ex-

ample with nonlinear radar measurements were presented. For the simulations studies,

the KF and the SPF were the model-based estimators used for the linear and nonlin-

ear examples respectively. A detailed summary of how the process and measurement

covariance matrices of the estimators were tuned to maximize the performance of the

detector was also presented.

Monte Carlo simulations showed the detection performance, defined as the percent-

age of times the correct mode perturbation signature parameters are detected, is a func-

tion of the estimation horizon (number of measurements used to compute the test statis-

tic) and the ANR. In the linear example, the LMP is shown to outperform the SCA for

similar estimation horizons and ANRs. The data also shows that for the linear case, the

performance of the LMP is significantly more robust to a tracking reference frequency

of 1.00 Hz. However, there is a tradeoff to the superior performance of the LMP as the

formulation requires a factor of nsig ·nτ ·nF more computations than the SCA.

The example with nonlinear radar measurements shows different results for the LMP

and SCA compared to the linear case. By computing the evaluation of LMP detector for

the same two dimensional linear model with nonlinear output equations, it is shown that

the signature detection algorithm is much more sensitive to changes in the measurement

noise level of the angle measurement. The evaluation of the test statistic for different

range and angle ANRs showed that for angle ANRs lower than 129.2, the mode per-

turbation detection parameter separation (the difference in the value of the test statistic

for the correct and incorrect singature parameters) is lost in the LMP. In other words

for an angle measurement ANR < 129.2, the LMP detector has difficulties detecting

the correct signal parameters. This causes a drastic drop off in performance for smaller

ANRs. Analysis showed that this is not caused by the larger order state in the esti-

mator (compared to the SCA), but rather by how the noise in the angle measurement
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affects the LMP. The SCA did not exhibit a drastic detection performance degradation

for angle ANRs < 129.2. However, the detection performance of both detectors for a

reference frequency of 1.00 Hz was marginal (the percentage of times that the correct

signal parameters were detected was below 50%) for the conditions considered.

The two detectors derived are able to detect the transmitted mode and their perfor-

mance is dependent on the estimation horizon, ANR, and the frequency of the tracking

reference. The results for the linear and nonlinear should be used as a reference to design

for a desired detection performance. Numerical studies showed that for the nonlinear

case, the SCA test statistic achieves results that are in the same range as the much more

computationally costly LMP test statistic. For lower ANRs, the simulations show that

SCA test statistic performs better than the LMP test statistic. The inferior performance

of the LMP detector for low ANRs can be attributed to characteristics of the problem that

were not considered in the analysis. These unmodeled characteristics include the non-

linearities of the measurement equation and the cross-correlation between Gold Codes

which is exacerbated by the short estimation horizons.
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CHAPTER 4

HYBRID COOPERATIVE RECONNAISSANCE WITH LIMITED

COMMUNICATION USING THE SEASCAN UAV

4.1 Introduction

The advantages of unmanned vehicles are well documented and include: significant

weight savings, low risk for human operators, and potential for superior coordination

[51]. Aerial, ground, and underwater unmanned vehicles, are also an alternative for

civilian and military applications where the environment is too dangerous and/or too

expensive to use a human operator. “Swarms” of smaller versions of these vehicles

are now being envisioned because of the advantages of building small scale electronics

and integrating smart sensor and software technologies on board, economies of scale,

and robustness. However, creating and maintaining a communication network (intra-

vehicle) would not scale well with the numbers of vehicles. The work here focuses

on the problem of cooperative reconnaissance and planning with strict radio communi-

cation constraints often encountered in stealth like reconnaissance missions in enemy

territory.

Inherent to cooperative missions without communication is the need of each vehicle

to estimate the behavior of its environment in order to improve its performance and de-

cision making. This environment includes partner vehicles whose behavior is critical to

the cooperative missions. The work here assumes the vehicle behavior can be described

using a finite number of operating modes. In principle, optimal control can be used for

cooperative reconnaissance and planning [52], however high computational costs and

numerical problems make it challenging for real-time implementation. Reduction of the

complexity of the mission is achieved by quantizing the behavior of partner vehicles

into finite operating modes, which could also be used for intra-vehicle communication.
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In contrast to Ref. [53], where vehicle maneuvers are quantized into motion primitives,

the approach here is to associate the reconnaissance operating mode to the vehicle’s tar-

gets. This paper presents a two vehicle, leader/follower, configuration, although more

complex configurations when more vehicles are present can be realized. Assuming the

behavior of each vehicle is described by a finite set of operating modes, then the envi-

ronment can be modelled using a hybrid automaton. A hybrid system can loosely be

defined as a system in which there is an interaction of discrete (the operating modes)

and continuous dynamics (the vehicle’s state) [32]. A detection scheme must then be

used to determine the current operating mode of the hybrid system from measurements

of the environment.

The problem of state (sometimes referred to as the base-state) and mode (some-

times referred to as the modal state) estimation in hybrid systems has been addressed in

literature. The marginal performance of the Extended Kalman Filter (EKF) in certain

tracking/recognition problems led to the development of the interacting multiple model

(IMM) estimator [7]. The IMM estimator developed in fuses N models to efficiently

compute a high quality state estimate. Fusion is based on computing the probability

of the modes based on their residuals; the mode with the smaller residual is weighted

more in the estimate. For smooth nonlinear systems that have unknown but bounded

uncertainties, Ref. [54] derives in an estimator in which mode switching occurs based

on metrics to minimize the uncertainty in the state estimate. In contrast to the previ-

ously mentioned estimators, Ref. [34] proposes a moving-horizon estimation (MHE)

algorithm for hybrid systems modelled in the mixed logic dynamical form. The imple-

mentation of MHE relies on solving a mixed-integer quadratic program that depends on

initial penalties, which improve the estimate in the presence of noise. In Ref. [55], the

authors propose defining operating modes using the system dynamics as well as per-

turbation signatures. When these signatures are chosen such that they have favorable
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cross-correlation properties, the estimates can be correlated with the signatures, thus en-

abling mode estimation. The use of mode perturbation signatures is further developed

and a a Neyman-Pearson most locally powerful detector is derived in Chapter 3 of this

dissertation.

This paper investigates the use of mode perturbation signatures to achieve cooper-

ative reconnaissance and planning with limited communication between two SeaScan

unmanned aerial vehicles (UAVs) searching a random enemy environment. The cooper-

ative reconnaissance performance of the system (leader/follower) under strict commu-

nication constraints is tested in two ways: 1) by measuring the length of time it takes for

the vehicles to collect information from an area, and 2) by the amount of information

collected in a fixed time interval. The mode perturbation signature method proposed in

[55] and furthered developed in Chapter 3 of this dissertation is implemented to corre-

late reconnaissance operating modes with Gold codes. A correlation based test is then

used to detect the mode of operation. Monte Carlo simulations are used to analyze the

cooperative reconnaissance performance of the vehicles using perturbation signatures.

The performance of the system is compared to a decentralized system in which there is

no cooperation and a centralized system with full communication.

The paper is presented as follows. Section 4.2 defines the cooperative reconnais-

sance and the two ways to gauge performance based on the time to complete the mission

and the information collected. The nonlinear model, control, sensor suite, estimation,

and mode perturbations for the SeaScan UAV are described in Section 4.3. In Section

4.4, the mode detection algorithm used to detect reconnaissance operating modes is de-

veloped. Finally, Section 4.5 presents Monte Carlo simulation results for the cooperative

reconnaissance and planning of two vehicles in random environments.
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4.2 Problem Statement

The proposed cooperative reconnaissance problem consists of assigning two un-

manned aerial vehicles the task of searching an area containing (2M) target points. One

of the vehicles is named the leader while the other is the follower. Initially, each vehicle

is assigned a set of M target points. Each vehicle proceeds by flying to each target point,

and orbits about the point with radius, R, until a level of information, Ithresh, is collected

or a time constraint is met, Tthresh. When the vehicle reaches the target point, in addition

to locating the target, it also identifies the target as: 1) empty, 2) an adversary, or 3)

an obstacle. Then while orbiting the target, the UAV communicates the identification

information back to the other vehicle by the means of a mode perturbation signature or

trajectory perturbation. The three possible identities of the target points are associated

with three operating modes. Figure 4.1 shows a search area with three targets and the

trajectory the leader would follow to collect information about Target 1.

Both vehicles are equipped with sensors which can locate and identify targets. The

localization sensor has an associated uncertainty, such that it is beneficial to cooperate.

The identification sensor is assumed to be instantaneous once the vehicle begin orbit-

ing the target point. One of the vehicles, the leader, flies over its assigned set of target

points collecting information. If a target is identified as an adversary, the leader noti-

fies the second vehicle by using to the corresponding mode signature. As the vehicles

traverse the target field, the follower monitors the movements of the leader. If a switch

by the leader to a mode signaling the presence of an adversary is sensed, the follower

evaluates a cost function in order to decide whether to leave its current target and fly to

collect information about the leader’s target. This cost is influenced by factors such as

location, detection time, and rate of cooperative information collection, the combination

of which could make vehicle collaboration necessary or unnecessary. Two metrics are

used to evaluate switching to cooperation. The first metric looks to minimize the time
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Figure 4.1: Search area with three targets and the trajectory of the leader to collect
information about Target 1.

necessary to collect a certain level of information. The second metric, aims to maximize

the amount of information collected in a fixed time interval. Once enough informa-

tion is collected or a time constraint is met, the follower returns to its assigned targets.

The follower continues to monitor the movements of the leader, and evaluates whether

cooperation would improve mission performance.

4.2.1 Information Collection and Cost

The mission objective for the cooperating vehicles is to collect information while

orbiting about and sensing a target.

In this work, a simplified cost metric for information is desired in order to study the
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effect of the mode signature approach on cooperating vehicles. Emphasis here is on the

time constant of the information collection, i.e. how fast a vehicle or group of vehicles

can collect information. Consider a scalar continuous time, random walk model for the

target location,

ẋ = Ax+w, (4.1)

ẋ = w, (4.2)

where x ∈ R is the target state and w ∈ R is a zero-mean white noise process with

intensity Q. The sensor measurement from the UAV is given as:

y = C1x+ v, (4.3)

where v ∈ R is a zero-mean white noise process with intensity R1. The continuous time

information filter, which can be used to estimate the information collected about the

target state x is written as:

Ẏ =−2AY −Y 2Q+CT
1 R−1

1 C1, (4.4)

where Y is the information collected. It can be seen from Equation (4.2) that A = 0 , and

thus Equation (4.4) is equal to:

Ẏ =−Y 2Q+CT
1 R−1

1 C1. (4.5)

Assuming no a priori information, Y (0) = 0, solving for Y (t) then yields;

Y (t) =
[√

CT
1 R−1

1 C1
√

Q−1
]

tanh
[√

CT
1 R−1

1 C1
√

Qt
]
. (4.6)

Note that the information starts at time t = 0 and Y (0) = 0, and then increases to a

steady-state, Y (t → ∞) =
[√

CT
1 R−1

1 C1
√

Q−1
]

. Associated with this information col-

lection is a time constant. Equation (4.6) can be fitted with an exponential function

yielding:

Y (t) ≈
[√

CT
1 R−1

1 C1
√

Q−1
](

1− exp
[
−1.5

√
CT

1 R−1
1 C1

√
Qt

])
(4.7)

≈ I0 (1− exp [−λt]) , (4.8)
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where λ is the information collection time constant when a single vehicle collects infor-

mation about the target.

In the event that there is cooperation, Equation (4.3) must be modified to account for

two measurements, or

y =




C1

C2


x+v, (4.9)

= Cx+v, (4.10)

where v ∈ R2 is a zero-mean white noise process with intensity R ∈ R2. The matrix R

has the form:

R =




R1 0

0 R2


 , (4.11)

where R1 and R2 are the noise intensities for the first and second vehicle’s measurement

noise. Since A = 0, Equation (4.5) can be rewritten for cooperation scenario yielding:

Ẏ =−Y 2Q+CT R−1C, (4.12)

As for the single vehicle case, if the assumption is made that there is no a priori infor-

mation, Y (0) = 0, solving for Y (t) then yields:

Y (t) =
[√

CT R−1C
√

Q−1
]

tanh
[√

CT R−1C
√

Qt
]
. (4.13)

Equation (4.13) can be fitted with an exponential function yielding:

Y (t)≈ Ic
0 (1− exp [−λct]) , (4.14)

where

Ic
0 =

√
CT R−1C

√
Q−1, (4.15)

and the time constant for cooperation is:

λc = 1.5
√

CT R−1C
√

Q. (4.16)
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The ratio of the time constants for the single and two vehicle case is:

λc

λ
=

1.5
√

CT R−1C
√

Q

1.5
√

CT
1 R−1

1 C1
√

Q
(4.17)

=

√
C2

1R−1
1 +C2

2R−1
2

C2
1R−1

1
(4.18)

In the event that the white-noise intensity for the process noise in Equation (4.3) is equal

for both the single and two vehicle cases, the measurement noise intensities in Equation

(4.9) are equal R1 = R2, and C1 = C2 (the measurement is related to the state in the same

way), the ratio between λ and λc and I0, Ic
0 is:

Ic
0

I0
=

λc

λ
=
√

2. (4.19)

In this investigation, the collection of information for a single vehicle is modeled

using an exponential function of the form:

Ii = I0 (1− exp [−λiti]) , (4.20)

where Ii is the information for the ith target, I0 is a constant, and λi is the information

collection time constant. If two vehicles are cooperatively collecting information about

the ith target, the information collection model is:

Ii = Ic
0 (1− exp [−λc

i ti]) , (4.21)

where Ic
0 and λc

i are the respective constants for cooperation. The information curves,

defined by Equation (4.20) for the case of collecting information with one (I0 = 1, λ = 1)

or two (Ic
0 = 1, λc = 1.5) vehicles respectively are shown in Figure 4.2. The advantage

of collecting information cooperatively is shown as the information curve for the two

vehicles has a steeper slope.

When the leader identifies the presence of an adversary, the follower must detect

this through the use of detection theory, and then decide whether collecting informa-

tion cooperatively will improve the mission objectives (information or time) through
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Figure 4.2: Information curves when one and two vehicles collect information about a
target. The dashed line represents the desired amount of information for the target.
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cooperation. A mission cost function is defined by: 1) maximizing the amount of infor-

mation given a time constraint, or 2) minimizing the mission time given an amount of

information is collected.

4.2.2 Minimize Mission Time Given Information Constraints

Consider the case where the goal is to minimize the total mission time given enough

information is collected about each of the targets. First, consider the cost function when

there is no cooperation, Jnc, between the leader and the follower. The cost function is

composed of the time it would take the leader, Jnc
t,l and the follower, Jnc

t, f , to complete

collecting information about their assigned targets:

Jnc
t = min

(
Jnc

t,l + Jnc
t, f

)
, (4.22)

such that

I0 (1− exp [−λiti]) > Imin,i, (4.23)

where Ii
min, i ∈ [1, . . . ,2M] is the minimum amount of information that must be collected

for the ith target. Of the total 2M targets, the leader is assigned the first M targets yielding

a cost with the form:

Jnc
t,l =

M

∑
i=1

ti +
M−1

∑
j=1

t j, j+1, (4.24)

where ti is the time spent collecting information about the ith target and t i, j is the travel

time between targets i and j. Similarly, given that the follower is assigned targets M +1

to 2M, the cost function for the follower vehicle without cooperation is:

Jnc
t, f =

2M

∑
i=M+1

ti +
2M−1

∑
j=M+1

t j, j+1. (4.25)

In the absence of cooperation and for known target point locations, all terms in Equations

(4.24) and (4.25) are known and can be calculated a priori. Therefore, the total cost for
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no cooperation is:

Jnc
t =

M

∑
i=1

ti +
M−1

∑
j=1

t j, j+1 +
2M

∑
i=M+1

ti +
2M−1

∑
j=M+1

t j, j+1. (4.26)

It should be noted that the order in which each vehicle visits its targets is predetermined.

In other words, optimizing the target assignment is not part of the investigation.

Define the target point p as a a target in the list of targets assigned to the leader, or

p∈ [1, . . . ,M], while target point r is a target in the list of targets assigned to the follower,

r ∈ [M +1, . . . ,2M]. In the event that the follower detects that the leader is orbiting

about target point p, and that target point is an adversary, the cost in Equation (4.22)

must be reevaluated continuously as the mission proceeds in order to decide whether the

cooperation cost, Jc
t = Jc

t, f + Jc
t,l , would improve the mission cost without cooperation,

Jnc
t , i.e. Jc

t < Jnc
t . Given that target point p is an adversary and the follower is currently

orbiting about target point r, the the cooperation cost for the remainder of the mission

must be computed. The cost for the follower vehicle would be identical to the cost

shown in Equation (4.25), however extra terms are necessary to account for the travel

time between target points r and p. Denote the travel time from target point r to p as

tr,p, and the time spent cooperatively collecting information about target point p as tc
p.

Therefore, the time cost for the follower is the sum of the cost, Jnc
t, f , of going through all

its assigned targets (M + 1 through 2M), the travel time to and from the leader’s target

(tr,p), and the time spent cooperatively collecting information about target point p (tc
p),

or:

Jc
t, f = Jnc

t, f +2tr,p + tc
p. (4.27)

The cost in Equation (4.27) is valid under the assumption that if an adversary is detected,

the follower will immediately leave its current target and cooperate with the leader. The

information collected at target point p is equal to the sum of the information collected

by the leader before the follower arrives, Ic,−
p , and the information collected by both
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vehicles cooperatively, Ic,+
p ,

Ic
p = Ic,−

p + Ic,+
p . (4.28)

Because the target information is transmitted through the leader’s movements, the fol-

lower requires time to collect measurements (estimation horizon) for mode detection,

denoted as a detection delay, tdet. Therefore, the time until the follower arrives at target

point p is:

tdet + tr,p. (4.29)

By using Equation (4.29), the information that the leader collects before the follower

arrives is:

Ic,−
p = I0 (1− exp [−λp (tdet + tr,p)]) . (4.30)

Once the follower arrives, both vehicles orbit about target point p collecting information

cooperatively. The information constraint, Equation (4.23), must still be met before the

leader can move its next target. The information constraint at target point p takes the

form:

Ic,−+
(
Ic
0− Ic,−)(

1− exp
[−λc

ptc
p
])

> Imin,p, (4.31)

where Ic
0 is the information constant for cooperation at target point p (see Equation

(4.21)). Under cooperation, the total time spent by the leader at target point p is:

Jc
t,l

∣∣∣ p = tdet + tr,p + tc
p. (4.32)

Finally, the updated total time cost for the leader when cooperating at target point p

is the sum of the time cost from target 1 to p−1, the time cost at target point p, and the

time cost from target p+1 to M:

Jc
t,l = Jnc

t,l

∣∣∣
p−1

1
+ Jc

t,l

∣∣∣ p+ Jnc
t, f

∣∣∣
M

p+1
(4.33)

= Jnc
t,l

∣∣∣
p−1

1
+ tdet + tr,p + tc

p + Jnc
t, f

∣∣∣
M

p+1
. (4.34)
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Using Equation (4.27) and (4.34), the updated total time cost of the mission when the

vehicles cooperate at target point p is:

Jc
t = Jc

t,l + Jc
t, f (4.35)

= Jnc
t,l

∣∣∣
p−1

1
+ tdet + tr,p + tc

p + Jnc
t, f

∣∣∣
M

p+1
+ Jnc

t, f +2tr,p + tc
p. (4.36)

Information about target point p is collected cooperatively if

Jc
t < Jnc

t . (4.37)

Since both sides of the inequality in Equation (4.37) share common elements, the in-

equality can be simplified yielding:

tdet +3tr,p +2tc
p < tp, (4.38)

where tp is the time leader would need to spend orbiting about target point p without

cooperation before meeting the information constraint Imin,p.

4.2.3 Maximizing Information Given a Time Constraint

In the case where the objective is to maximize the amount of information collected

given a time constraint without cooperation, the cost function is written as follows:

Jnc
I =

(
Jnc

I,l + Jnc
I, f

)
, (4.39)

where

Jnc
I,l = max

ti

{
M

∑
i=1

Ii (1− exp [−λiti])

}
, (4.40)

such that

T =
M

∑
i=1

ti +
M−1

∑
j=1

t j, j+1. (4.41)

The optimization problem in Equations (4.40) and (4.41) is solved analytically by solv-

ing for tM in Equation (4.41), substituting the result into Equation (4.40), and setting
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∂Jnc
I,l

∂ti
= 0. The optimal values of ti are:

[t1 . . . tM−1]
T = (λMU +diag([λ1 . . .λM−1]))

−1




ln I1λ1
IMλM

+λMT
...

ln Iiλi
IMλM

+λMT

ln IM−1λM−1
IM

λMT




, (4.42)

where U ∈ R(M−1)×(M−1) is a matrix whose elements are all 1’s and

T = T −
M−1

∑
j=1

t j, j+1. (4.43)

For the leader, define the current optimal value of the cost, J∗I,l , and time schedule, t∗l ,

from the solution of the optimization problem in Equations (4.40) and (4.41). t∗l is

stacked vector that contains optimal times for the leader to spend at each target, or:

t∗l =




t∗1,l

t∗2,l

. . .

t∗M,l




. (4.44)

The same approach is implemented with the information cost of the follower, Jnc
I, f .

The optimization problem for the follower is:

Jnc
I, f = max

ti

{
2M

∑
i=M+1

Ii (1− exp [−λiti])

}
, (4.45)

such that

T =
2M

∑
i=M+1

ti +
2M−1

∑
j=M+1

t j, j+1. (4.46)

For the follower, denote the optimal value of the cost as J∗I, f , and the optimal time

schedule as t∗f =
[
t∗M+1, f , . . . , t

∗
2M, f

]T
. The current optimal total mission cost is then:

J∗I = J∗I,l + J∗I, f . (4.47)
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If the leader declares that an adversary was found, then in a similar way as was done

with the case of minimizing mission time given information constraints, Section 4.2.2,

the follower evaluates whether cooperation would improve the mission cost. The infor-

mation cost for cooperation for the leader at target point p is the sum of the information

before, Ic,−
p , and after, Ic,+

p , the follower arrives, or:

Jc
I,l

∣∣∣ p = Ic,−
p + Ic,+

p . (4.48)

The information collected before the follower arrives is a function of the detection time,

tdet, and the travel time from target points r to p:

Ic,−
p = I0 (1− exp [−λp (tdet + tr,p)]) . (4.49)

The information collected during cooperation at target point p is:

Ic,+
p =

(
Ic
0− Ic,−

p
)(

1− exp
[
λc

ptc
p
])

, (4.50)

where tc
p is the time the two vehicles collect information cooperatively. Having calcu-

lated the cost for cooperation at the pth target point, the cost for the remainder of the

mission must be re-evaluated because: 1) the travel time to fly to and from the leader’s

adversary target must be considered in the cost function, and 2) the time saved by coop-

eration can be reallocated to improve the overall mission cost. Said another way, each

time cooperation takes place the optimization problem in Equation (4.40) must be re-

computed for both the leader and the follower. For the leader, the time schedule and

associated cost will be recalculated from target points p after the follower arrives to

target point M. The leader’s cost function for cooperation used for optimization from

target point p is:

Jc
I,l

∣∣∣
M

p
=

(
Ip− Ic,+

p
)(

1− exp
[−λc

ptc
p
])

+
M

∑
i=p+1

Ii (1− exp [−λiti]) , (4.51)

where the first term in the right side of Equation (4.51) represents the information that

the leader and follower would collect cooperatively and the summation represents the
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information that would be collected in the remainder of the mission. It should be noted

that the term Ic,−
p , is not included in Equation (4.51) since this term is a function of tdet

and tr,p and cannot be optimized.

The updated time constraint is:

T̃l = Tl + tdet + tr,p + tc
p +

M

∑
i=p+1

ti +
M−1

∑
j=p

t j, j+1, (4.52)

where Tl represents the time spent by the leader before reaching target point p. Equation

(4.42) is used to solve the new optimization problem for the leader (Equations (4.51)-

(4.52)) and calculate the new cost Jnew
I,l and time schedule tnew

l =
[
tnew
p , . . . , tnew

M
]T . The

updated total information mission cost for the leader is then:

Jc,new
I,l = J∗I,l

∣∣p
1 + Ic,−

p + Jnew
I,l , (4.53)

where J∗I,l
∣∣∣

p

1
is the information cost of the leader before reaching target point p.

The time schedule and information cost must also be updated for the follower to

account for cooperation. If the follower is orbiting about target point r, the information

cost is a function of the time it has spent collecting information before flying to target

point p, t−r , as well as the time spent after returning from target point p, t+r . It should be

noted that it is possible for the optimization to yield a value of t+r = 0 in which case the

follower would proceed to its next target. The information cost for the follower at target

point r is:

Jnc
t, f

∣∣∣r = I−r + I+
r , (4.54)

where

I−r = I0
(
1− exp

[−λt−r
])

, (4.55)

I+
r =

(
I0− I−r

)(
1− exp

[−λt+r
])

(4.56)

The cost function that will be used to compute a new time schedule for the follower

is:

Jc
I, f

∣∣∣
2M

r
=

(
I+
r − I−r

)(
1− exp

[−λrt+r
])

+
2M

∑
i=r+1

Ii (1− exp [−λiti]) . (4.57)
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The updated time constraint for the follower is:

T̃f = Tf + t−r +2tr,p + tc
p + t+r +

2M

∑
i=r+1

ti +
2M

∑
j=r+1

t j, j+1, (4.58)

where Tf represents the time spent by the follower before reaching target point r. An-

alytically solving the updated optimization problem for the leader in Equations (4.57)-

(4.58) yields the updated information cost Jnew
I, f and the associated time schedule tnew

f =
[
tr∗, . . . , tnew

2M

]T . The updated total information mission cost for the follower is then:

Jc,new
I, f = J∗I, f

∣∣r
M+1 + I−r + Jnew

I, f , (4.59)

where J∗I, f

∣∣∣
r

M+1
is the information collected by the follower before reaching target point

r. Having calculated the updated information cost for both the leader and follower, it is

now possible to evaluate the total mission information cost:

Jnew
I = Jc,new

I,l + Jc,new
I, f . (4.60)

The follower flies to collect information about the leader’s target point if cooperation

would improve the total information mission cost. If Jnew
I > J∗I , then: 1) the follower

flies to the leader’s target, 2) the total mission information cost is updated:

J∗I = Jnew
I , (4.61)

and 3) the optimal time schedules t∗l , t∗f are updated by replacing the elements corre-

sponding to the updated values from tnew
l and tnew

f .

The algorithm to maximize information given a time constraint can be summarized

by the following steps:

1. Solve the optimization problem in Equations (4.40)-(4.41) and (4.45)-(4.46) yield-

ing the optimal time schedules for the vehicles t∗l , t∗f and the associated mission

information cost J∗I , Equation (4.47).
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2. If both vehicles finished collecting information about their targets then the mission

is over. Else continue.

3. If the leader has identified an adversary, then the updated cost Jnew
I , Equation

(4.60), with cooperation is evaluated, Equations (4.51)-(4.52) and (4.57)-(4.58).

Else go back to step 2.

4. If Jnew
I > J∗I , then let J∗I = Jnew

I and update the optimal time schedules t∗l , t∗f by

replacing the elements corresponding to the updated values from tnew
l and tnew

f .

The follower cooperatively collects information about the leader’s current target

point. The vehicles then continue visiting their assigned targets with the new time

schedule. Else the vehicles continue collecting information about their targets.

5. Go back to step 2.

4.3 The SeaScan UAV

SeaScan is an unmanned aerial vehicle platform developed by the Insitu Group and

is now a key component in Boeing’s UAV strategic plan [56]. The SeaScan was de-

veloped for a variety of applications that include fishing reconnaissance, coastal patrol,

and search-and-rescue. It is a robust platform with over fifteen years of development

and operations in weather reconnaissance [57], crossing the Atlantic Ocean [58], and

deployment in Iraq [59].

4.3.1 Mode Perturbation Signatures

Consider a rectangular pulse composed of mρ points with amplitude, ρ0, or ρ1 corre-

sponding to the 0 or 1 chip (or bit) respectively and let the sequence of such nρ nonover-

lapping rectangular pulses for the ith signature be defined as

pi =
[
bi1,bi2, . . . ,binρ

]
(4.62)
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where pi ∈ Ruι and b(·) ∈
[
ρ0,ρ1]. A chip is defined as the duration of a symbol or bit

such as bi,{·} in Equation (4.62). This investigation adopts bi-phase shift keying where

the 0 chip (off ) is represented by ρ0 =−1, while the 1 bit (on) is ρ1 = 1. The ith mode

perturbation signature at time k, zi
sig, is formally defined as product of pi and a sinusoid

carrier:

zi
sig,k = pi

k cos [2π fctk +θk] , (4.63)

where fc, the carrier frequency, and θ is the carrier phase. By combining nρ chips, a

mode signature, zsig is defined.

Pseudorandom noise (PRN) is a known sequence of bits that, when added to a base

signal, results in a signal that has statistical properties similar to noise [35]. An observer

could recover the base signal only through correlation with a known sequence which is

an exact replica of the original PRN. Certain PRN sequences have desirable properties

in terms of auto and cross-correlation. The discrete time cross-correlation function for

two binary sequences ds and es is defined as follows:

S [τd] =
Tp

∑
k=1

ds,kes,k(τd), (4.64)

where Tp is the number of samples in a period of the sequences and τd is a delay. Max-

imal length sequences or m-sequences are a special kind of periodic PRN sequences

whose properties are useful in communications [36]. In the late 1960’s, Gold published

a construction that takes two preferred pair of m-sequences yielding a family of se-

quences called Gold Codes, that have cross-correlation functions (or auto-correlation,

es = ds) that are three-valued [35]. Ref. [37] presents a thorough discussion on the spe-

cial properties of PRN sequences such as m-sequences and Gold Codes. A summary of

the implementation of PRN sequences in communications and navigation as well as a

large bibliography is also provided.

Applying Equation (4.64) to two Gold Codes determines whether two signals are

correlated and if there exists a delay between the signals. Because of their favorable
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properties Gold codes are used in communications applications such as in Code Division

Multiple Access (CDMA)[38, 36]. Gold Codes are also chosen to define the mode

perturbation signatures in this paper because of their favorable correlation properties.

Because each mode perturbation signature zi
sig is defined using the ith observed ve-

hicle’s internal time clock, the observing vehicle also estimates this clock offset, τ, in

order to synchronize its stored signature replica, z̃sig, with zi
sig. This problem is also

encountered in the global positioning system (GPS) where the signal traveling time is

determined by the time shift required for a match between the received code from the

satellite and the receiver replica [38, 16]. To determine the clock offset, a correlation

test is performed on zi
sig and the expected signature replica time shifted by the clock

offset, z̃sig(τ). The correlation test consists of correlating zi
sig,k and the stored signatured

shifted by the clock offset z̃i
sig(τ),

S [τ] =
Tt

∑
k=1

zi
sig,kz̃i

sig,k(τ), (4.65)

where Tt is the number of samples in the testing interval. To find the delay, τ is varied

over a range, Γ, from 0 to twice the signature period, Γ ∈ [0, . . . ,2Tp]. Γ is divided

into b equally-sized intervals or cells. Each cell, τ(m) = m2T
b

for m ∈ {
0, . . . ,b−1

}
,

is equally probable of being the correct delay. Under the assumption of the absence of

noise, the value of m that maximizes S (τ [m]), Equation (4.65), is the estimated clock

offset or delay, τ̂.

4.3.2 Continuous and Discrete Time Modeling

The reconnaissance behavior of each vehicle is defined by a finite set of N reconnais-

sance operating modes. Using a hybrid automaton, the system is described in a hybrid

framework as shown in Figure 4.3. Each node in the automaton, qi, corresponds to one

of the N operating modes. The vehicle dynamics and state evolution for the ith mode are
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Figure 4.3: Hybrid automaton with 3 reconnaissance operating modes corresponding to:
1) an empty area, 2) an enemy, and 3) an obstacle.

governed by:

xk+1 = f i (xk,uk,zi
k,wk

)
(4.66)

yk = hi (xk,uk,zi
k,vk

)
(4.67)

where at time k, xk ∈ Rnx is the state, yk ∈ Rny the measurement, uk ∈ Rnu the control

input, and zi
sig,k ∈ R is a signature correlated to the ith mode. In contrast to most hybrid

system formulations, the state evolution while inside mode i is not only influenced by

the model ( f i (x,u)), but also by a perturbation, zi
sig, to the control input. The process

noise wk and sensor noise vk are zero-mean white Guassian noise with covariance,

E
[
wkwT

k
]
= Qk, (4.68)

E
[
vkvT

k
]
= Rk. (4.69)

A feedback controller is needed to assure that the nonlinear system in Equation

(4.66) tracks a desired reference rk. The reference rk is the necessary vehicle trajectory
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to complete its task. A controller, c(·, ·), computes the nominal control input uk given

xk such that rk is tracked:

uk = c(xk,rk) . (4.70)

The controller in Equation (4.70) represents any linear or nonlinear controller that min-

imizes the tracking error, ||rk−xk||, in the presence of disturbances.

Now consider a small reference perturbation, ri
sig,k, to the nominal reference signal

of the system, rk,

ri
k = rk + ri

sig,k, (4.71)

where ri
k is the total reference to be tracked by the system. Let tr

z (·) denote the mapping

from the scalar signature to the reference:

ri
sig = asigtr

z

(
zi

sig

)
, (4.72)

where asig is the mode perturbation signature scaling factor. The function tr
z (·) considers

the element of the system that the mode perturbation signature will be embedded and

builds the corresponding mode perturbation vector, ri
sig. If others elements in the ref-

erence vector have a differential relationship with the element in which the signature is

embedded, tr
z (·) preserves this relationship when building ri

sig. For example, if the ref-

erence vector is composed of position and its derivative and the perturbation signature

is embedded in the position reference then the output of tr
z (·) is:

ri
k = rk +asigtr

z

(
zi

sig

)
, (4.73)

= rk +asig




zi
sig

d
dt zi

sig


 . (4.74)

The reference perturbation, ri
sig, must be small enough so that the performance of the

vehicle is not compromised, yet large enough to be detected in the presence of process

and measurement noise.
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For the vehicle to follow the perturbed reference, ri
sig is added to rk such that the

perturbed control input uk becomes:

ui
k = c

[
xk,rk +asigtr

z

(
zi

sig

)]
. (4.75)

4.3.3 Vehicle Dynamics and Control

The nonlinear equations of motion of the SeaScan are expressed in standard form:

ẋ = f (x,u)+w (4.76)

where x ∈ R9 is the SeaScan state vector, u ∈ R5 is the control input state vector, and w

is a process noise vector with covariance Q. The SeaScan state vector has nine states:

x =
[

φ θ ψ p q r V α β
]T

(4.77)

which includes the roll, pitch, yaw (rad) in reference from Earth to the aircraft-body-

centered (ABC) coordinate frame, the roll, pitch, yaw rates (rad/sec) in ABC, the vehi-

cle velocity (m/s) in the wind axis coordinate frame, the angle of attack (rad), and the

sideslip angle (rad). The vector control input, u, is composed of seven controls surfaces:

u =
[

δeis δeip δeos δeop δws δwp FT

]T

, (4.78)

which respectively are starboard and port inner elevons (rad), the starboard and port

outer elevons (rad), the starboard and port winglets (rad), and the throttle (N). The seven

control surface are shown in Figure 4.4. The nonlinear function, f (x,u), represents

both the nonlinear kinematics and aerodynamics. A complete nonlinear aerodynamic

simulation, f (x,u), was developed by The Insitu Group based on years of wind tunnel

and flight tests of the SeaScan, and is used here for algorithm validation.

Although the SeaScan equations of motion are nonlinear, the system is stabilized

about the rth trim condition, x̃, using the linear quadratic regular (LQR). The linear trim

model(s) Φx̃r = (A,B,C,D) near x̃r are found using numerical methods.
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Wing
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Elevons

Figure 4.4: The SeaScan unmanned aerial vehicle is shown with its seven control sur-
faces (2 pair of inner and outer elevons, a pair of winglets, and thruster) and its camera
turret (Courtesy of The Insitu Group).

4.3.4 Sensor Suite

The SeaScan is equipped with a digital color video camera with 25x zoom, 640x480

pixel sensor, and collecting 30 frames per second [56]. The video camera is attached

to a turret gimbal, see Figures 4.4 and 4.5, and allows rotation in pan, λ ∈ [0,2π], tilt,

µ ∈ [−π
4 , π

4

]
, and scan, ν ∈ [−0.12,+0.12] where all the units are in radians. Testing

by The Insitu Group has shown that the camera is able to resolve objects such as small

boats and logs from at least 8 kilometers away [59].

The object measurement uncertainty is a function light conditions, weather condi-

tions, and distance. Although camera sensor uncertainty has been experimentally deter-

mined, it is not stated in this investigation due to International Traffic in Arms Regula-

tions restrictions. In this study, the assumption is that measurements are independent of

the distance to the object of interest, taken under ideal weather and lighting conditions,

and have a standard deviation of ±0.5 meter in the vertical and horizontal directions of

the captured images.

Objects found in the images of the camera are described in a screen coordinate sys-
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Figure 4.5: The SeaScan video digital camera and turret (Courtesy of The Insitu Group).

tem (SCR) fixed at the upper left hand side of the image where (·)SCR denotes a vector

in this coordinate system. To relate camera measurements, ySCR, must be converted to

a camera-turret-centered coordinate system (CAM) to relate them to other state vari-

ables of the vehicles. The CAM coordinate system is centered on the camera’s field

of view and fixed to the camera with x-axis forward, y-axis right, z-axis down where

(·)CAM denotes a vector in CAM coordinates. The conversion from SCR to CAM is the

following:

yCAM = ζ
[
ySCR−CSCR

]
, (4.79)

where CSCR is the location of the center of the screen axis in pixels and ζ = diag(ζx,ζy)

is the pixel to length scaling factor matrix determined by the field of view angle,

ζx =
tan(0.5f)

Pmaxx

(4.80)

ζy =
tan(0.5f)

Pmaxy

. (4.81)
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where f is the field of view and Pmaxx , Pmaxy is the maximum pixels of the camera in the

x and y directions [60].

The follower vehicle determines the leader’s mode of operation by correlating cam-

era measurements to expected behavior. Reconstructing the leader’s state from camera

measurements would be ideal, however it is an intractable problem due to observabil-

ity. Instead, the follower uses a simplified model (lower order) to track the behavior of

the vehicle. Since the camera is not able to accurately measure range, only the vertical

and horizontal movements of the object of interest can be detected in the camera plane.

Therefore, a simple kinematic model of the following form is used:

xkin
k+1 = xkin

k +T




V kin cosψkin

V kin sinψkin

ωkin




+wkin
k , (4.82)

where xkin
k =

[
xkin

k ykin
k ψkin

k

]T

and xkin
k and ykin

k are the position in the follower’s

camera plane (m), V kin the speed (m/s), ψkin the heading (rad), ωkin the heading rate of

the vehicle (rad/sec), and wkin
k is a zero mean process noise vector with covariance Qkin.

The output equations for the follower are:

ySCR
k = h

(
xkin

k

)
+vkin

k , (4.83)

where vkin
k is the measurement noise vector with covariance Rkin.

Although a video camera mounted on a UAV is used as the sensor to acquire infor-

mation for mode detection, the formulation presented in [55] could be implemented with

other sensor configurations or types of sensors. Instead of using one articulated video

camera, the UAV could be equipped with an array of smaller, lighter, and cheaper cam-

eras each aimed in different directions. Even though the camera array implementation

would require sensor fusion, it would allow the reception of information from multiple

vehicles, thus facilitating communication when more than two vehicles are present. A
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Laser Imaging Detection and Raging (LIDAR) sensor could also be used. LIDAR sen-

sors have been used in various applications that include seismology, forestry, and atmo-

spheric physics. In autonomous navigation of uncertain environments, LIDAR sensors

has been proven to be a robust solution and are experimentally tested in References [61]

and [62]. A third option is to use to use passive devices such as infrared sensors (IRs)

to reduce the chance of enemy detection. References [63] and [64] develop methods

to acquire ship velocity information from IR sensors mounted on an autonomous flying

vehicle.

4.3.5 Tracking and Estimation of the Mode Perturbation Signatures

It is important to show the proposed mode perturbation signatures can be tracked by

the SeaScan and they do not compromise its ability to navigate. Figure 4.6 shows the

trajectory of two SeaScan UAVS with and without a perturbation signatures in the pitch

rate (ABC coordinates). In both trajectories, wind is modeled as a zero-mean Gaussian

process noise with covariance Qwind = 0.1 N/s2. As the figure shows, the perturbation

signature does not significantly affect the trajectory of the vehicle. The normalized

altitude plotted in Figure 4.7 shows that SeaScan tracking a perturbation signature has

a larger peak-to-peak normalized altitude value compared to the other vehicle, but as

expected the motion appears random.

Now consider how the follower estimates the trajectory of the leader using the

lower order model in Equations (4.82) and (4.83). Since the simplified vehicle dy-

namics are nonlinear the sigma-point filter (SPF) is implemented. The estimator on

the follower uses digital camera measurements with measurement noise covariance

R = diag
([

0.12,0.12]). Figure 4.8 shows the pitch rate of the leader SeaScan vehicle

while tracking a perturbation signature in pitch rate.
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Figure 4.6: Two SeaScan vehicles travelling at a speed of 30 m/s and altitude of 100 m.
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m/s and altitude of 100 m. The trajectory is shown with and without tracking a mode
perturbation signature in the pitch rate.
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Figure 4.8: The pitch rate of the leader SeaScan vehicle while tracking a perturbation
signature in pitch rate is shown. A nonlinear estimator on the follower uses digital
camera measurements to estimate the signature using noisy data.

4.4 Mode Detection Methods

The purpose of assigning a unique signature to each of the modes qi is to facilitate

mode estimation. By knowing which mode a partner vehicle is operating, a higher qual-

ity of cooperation can be realized. Information in the form of encoded signatures is

passed through the dynamics of the aircraft to be observed by a receiver vehicle. This

process is shown in Figure 4.9. The trajectory of the leader which includes an embedded

mode perturbation signature is measured by the follower using a digital camera. These

noisy measurements along with the mode perturbation signature replicas are used to de-

tect the leader’s current mode. This mode estimate is then used to evaluate the mission

cost, Section 4.2.1, and determine whether collecting information cooperatively would

improve mission performance. In this section, the problem of transmitting a message

through movements is considered from an estimation perspective. Estimation and detec-

tion theory are combined to derive an optimal mode detector as well as an approximation
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that is more feasible for real-time implementation.
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Figure 4.9: A block diagram of the leader/follower SeaScan configuration for coopera-
tive reconnaissance in low communication environments.

4.4.1 The Locally Most Powerful Mode Detector

In this section, a summary of a locally most powerful (LMP) mode perturbation

signature detector is presented. The detector consists on evaluation a test statistic as

a function of the Kalman Filter (KF) innovations, denoted ν with covariance S, con-

ditioned on hypotheses which are a function of the ith mode, Gold Code phase τ, and

carrier phase fc.
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In summary, the LMP test statistic is:

î, τ̂, f̂c =

max
i,τ, fc



2 ·

[
1
2

k

∑
j=0

νT
j S−1

j ν j

]

H0

−
[

1
2

k

∑
j=0

νT
j S−1

j ν j

]

H1,cos

−
[

1
2

k

∑
j=0

νT
j S−1

j ν j

]

H1,sin



 .

(4.84)

where for each ith mode, τ Gold Code phase, and fc carrier frequency, the locally most

powerful detector requires the evaluation of:

1. A KF under hypothesis H0 that assumes no perturbation signature is present.

2. A KF under the hypothesis, H1,cos, that there is a perturbation signature present,

with an in-phase carrier, cos(·), that has the form tr
z

(
zi,τ, fc

cos

)
.

3. A KF under the hypothesis, H1,cos, that there is a perturbation signature present,

with a quadrature carrier, sin(·), that has the form tr
z

(
zi,τ, fc

sin

)
.

The values of i, τ, and fc which maximize the LMP test statistic, Equation (4.84), are

declared under the LMP test as the detected parameters. As already mentioned a detailed

derivation and explanation of the LMP detector is found in Chapter 3 of this dissertation.

4.4.2 Suboptimal Detector

Although the Neyman-Pearson Lemma guarantees the optimally of the LMP for lin-

ear systems [39], a suboptimal detector might be more feasible for real-time implemen-

tation by providing comparable performance with less computations. The suboptimal

detector uses a model-based estimator to reconstruct, from noisy measurements, the full

reference
(

ri = r+asigtr
z

(
zsigi

))
. The estimate is then correlated with replicas of the

mode perturbation signatures, as a function of i, τ, fc and fd . If the total reference is a

vector, then only the component in which the mode perturbation signature was embed-

ded is correlated with the signature replica. This suboptimal method referred to in this
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paper as the Suboptimal Cascading Approach (SCA), detects a particular mode based

on correlation in contrast to the LMP which uses a test statistic as a function of the

estimator’s innovations.

Consider the linear discrete time system,

xk+1 = Akxk +Buuk, (4.85)

and the corresponding linear full state feedback controller, ui
k = K

(−xk + ri
k
)
. The

variables xk and ri
k are then stacked into a state vector yielding the following augmented

state space model:



xk+1

ri
k+1


 =




Ak−BuK BuK

0 Ar







xk

ri
k


+wSCA

k , (4.86)

where wSCA
k =

[
wx

k wr,i
k

]T
. The estimate of the total reference at time k is denoted as r̂i

k.

The test statistic for the SCA relies on calculating the correlation of one the com-

ponents of the KF estimated total reference of the KF, r̂i, j and the mode perturbation

signature. The term r̂i, j is defined to emphasize that if the total reference is a vector,

only one of its components will be used in the test statistic. Define r̂i, j
as the stacked

vector of nm scalar r̂i, j, or

r̂i, j
=




r̂i, j
1

r̂i, j
2
...

r̂i, j
nm




. (4.87)

Having calculated an estimate of the total reference, results for detection under carrier

phase uncertainty or noncoherent detection are applied. The optimal noncoherent detec-

tor correlates a set of measurements with in-phase and quadrate Gold replicas [39], [40],

[41]. For the SCA, the optimal noncoherent detector test statistic for the ith mode re-

places the measurements yk with r̂i, j
, and correlates them with the in-phase and quadra-
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ture components of the perturbation signature replicas,

λSCA =
([

r̂i, j
]T

P−1zi,τ, fc
sin

)2

+
([

r̂i, j
]T

P−1zi,τ, fc
cos

)2

. (4.88)

In this application, the detector is used to optimize over the unknown i, τ, and fc to find

the optimal value of the SCA test statistic is then:

î, τ̂, f̂c = argmax
i,τ, fc

λSCA. (4.89)

It should be noted that the SCA test statistic does not consider the optimality of the KF

estimate.

A more detailed derivation of the SCA detector is found in Chapter 3 of this disser-

tation.

4.4.3 Real-Time Implementation on Nonlinear Systems

The motivation for the suboptimal detector is to reduce the complexity and the com-

putational cost of the detector. The SCA simplifies the detector by relying on a lower

order KF and relies on correlation calculations for detection. In general, the computa-

tional cost of the KF is approximately proportional to the cube of the larger dimension

between the state vector or measurement vector, max(nx,ny)[16]. Let nsig, nτ, and nF

denote the number mode signatures, mode signature phases, and sinusoid carrier fre-

quency offsets that compose the detection search space. The LMP requires the KF to

estimate an augmented vector,
[
xk rk asig

]T ∈ R2nx+1, which is composed of the state,

reference, plus the mode signature amplitude. However, three KFs must be run for

each condition in the search space. Therefore, the computational cost for the LMP is:

3nsig · nτ · nF · (2nx +1)3 which is roughly nsig · nτ · nF · n3
x . In contrast to the LMP, the

SCA only requires one computation of the KF with an augmented state vector of di-

mension [xk rk]
T ∈R2nx and nsig ·nτ ·nF correlation computations. This analysis shows
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that the computational cost reduction of the SCA is proportional to nsig ·nτ ·nF and thus

makes its implementation in real-time more feasible.

Monte Carlo simulations of linear and nonlinear systems in Chapter 3 showed that

the detection performance of the SCA was comparable to the LMP. As described in

Section 4.3.4, the output equations used by the follower for noisy camera measurements

are nonlinear. Furthermore, it was observed that if the dependence of the SCA test

statistic on the Gold Code phase can be removed by summing the energy detected at

each Gold Code phase:

λ
i, fc
SCA = max

τ

Nτ

∑
τ=0

[([
r̂i, j

]T
P−1zsin,i,τ,fc

sig

)2

+
([

r̂i, j
]T

P−1zcos,i,τ,fc
sig

)2
]

, (4.90)

the performance of the detector improves. The detector chooses the largest λ
i, fc
SCA for all

the i modes. However, another detector was studied, which chooses the mode pertur-

bation signature corresponding to the largest correlation value for all mode signatures,

Gold Code phases, and carrier frequencies, or:

î, τ̂, f̂c = argmax
î,τ̂, f̂c

λi,τ, fc
SCA . (4.91)

The detection is deemed correct if the detector chooses the correct mode perturbation

even if the selected Gold Code phase is incorrect. For the nonlinear systems tested in

Chapter 3 in which the estimation horizon is small (less than twice the period of the

Gold Code) and the nominal reference was at least an order of magnitude less than

the frequency of the mode perturbation, Equation (4.91) proved to perform better than

λ
i, fc
SCA, Equation (4.90). As either the estimation horizon increases or the frequency of

the reference increases the performance of both detectors become similar. It should be

emphasized that reducing the estimation horizon is very important in this application as

it is beneficial for the cost of the mission, Section 4.2.1, for the mode detection time to

be as small as possible.

The modified SCA, Equation (4.91), is chosen as the preferred method for mode
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detection for the SeaScan because: 1) it reduces the computational cost compared to the

LMP, and 2) it provides acceptable detection performance for nonlinear systems.

4.5 Numerical Study

In this section the performance of two vehicles in terms of the cost functions de-

scribed in Section 4.2.1 will be evaluated. Two vehicles are assigned the task of search-

ing a grid of (4 x 2) target points. There are four obstacles or adversaries randomly

distributed between each row of the grid. The leader and follower vehicles start their

trajectories at x0 and y0 respectively. Each vehicle collects information about a target

by circling it with radius R. The follower vehicle only flies to help the leader when the

leader detects an adversary and the evaluated costs shows cooperation is beneficial.

In order to quantify the performance benefits of cooperation using mode perturba-

tion signatures, two other communication scenarios are also considered. As a baseline,

consider a fully decentralized vehicle strategy where each vehicle separately explores

one side of the search area. In this scenario, there is no cooperation between the ve-

hicles, thus no communication is required. Next consider a fully centralized solution

where the leader has a continuous communication link to the follower. In this case,

the follower will be receive immediate notification if the leader detects an enemy. This

strategy reduces the total time required to complete the mission because of the improved

utility through cooperation (Figure 4.2). Examples of trajectories for both decentralized

and centralized strategies are shown in Figure 4.10. As shown in the figure, when the

leader reaches its third target, the leader detects an adversary and communicates with

the follower. The follower leaves its current target and circles the leader’s third target.

Once the information collected on the target is greater than the required threshold or a

time limit has expired, the leader continues to its next target and the follower returns to

its assigned targets.
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Figure 4.10: Trajectories for the leader and follower with and without cooperation.

4.5.1 Estimator

The SCA mode detection algorithm proposed in Section 4.4.2 requires an estima-

tor to reconstruct the state of the leader. The nonlinear model, Equation (4.82), based

on camera measurements proposed in this investigation require the use of a nonlinear

estimator. It is documented that the Sigma-point filter (SPF) in certain cases is better

able to handle nonlinearities than the Extended Kalman Filter (EKF) [65, 66, 67]. It can

be said that the EKF addresses nonlinearities with a first-order accuracy while the SPF

achieves at least second-order accuracy [49]. Compared to the EKF, the SPF has similar

computational complexity and does not require an analytic derivation of the Jacobian.

For these reasons and for numerical stability, the square-root implementation of the SPF

is chosen as the nonlinear estimator [47].

4.5.2 Discrete Modes

The mode perturbation signatures embedded in the trajectory of the leader are depen-

dent on the target its encircling and are described by three operating modes: 1) sensing

an empty target, 2) sensing an adversary in target, and 3) sensing a neutral target. These
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Table 4.1: Operating modes and corresponding mode signatures.

Mode Behavior Signature
1 Empty [1100001010111001011011000011011]
2 Enemy [1100100001011101110111001110100]
3 Obstacle [1010110110110010111101110101010]

modes are defined with the corresponding Gold Codes shown in Table 4.1.

4.5.3 Algorithm Implementation
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Figure 4.11: A block diagram of the leader/follower SeaScan configuration for cooper-
ative reconnaissance in low communication environments.
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The motivation for embedding mode perturbation signatures on the trajectory of an

aircraft is to enable the exchange of low-level information in order to more efficiently

gather information about an area. As shown in Figure 4.11, the first vehicle associates

a target with one of the operating modes, i, listed in Table 4.1. The vehicle’s encoder

converts the sequence of bits into a continuous mode perturbation signature, zi
sig that is

sent to the controller. The controller then computes a control sequence, ui
sig, based on

the reference r, and the current state of the vehicle y. Figure 4.12 shows the desired

trajectory of the vehicle with the mode perturbation, ri, and the SeaScan response. Al-

though tracking error with an LQR controller is not zero, the frequency content of the

mode perturbation signature is preserved as at t ≈ 5 a change of bit (1 →−1) occurs.

The mode perturbation algorithm is robust to tracking error (which could be considered

process noise) and it is not essential to eliminate the tracking error by the use of integra-

tors or other control techniques. The movements of the first vehicle, y, are then captured

by the digital camera of the second vehicle as shown in Figure 4.13. Along with the

low-order kinematic model, Equation (4.82), the SPF uses the camera measurements,

y, to estimate ωkin, which is the signal that includes the perturbation signature. Figure

4.14 shows the pitch angular rate of the first vehicle and the SPF estimate. It is noted

that the process noise covariance of the SPF requires tuning as the second vehicle’s SPF

uses a simpler model for estimation. The mode perturbation signature estimate, r̂i
sig, of

the SPF is then used by the mode detection block to estimate the operating mode of the

first vehicle.

A limitation on the performance of using mode perturbation signatures is the es-

timation horizon or detection time needed for the follower to detect information from

the movements of the leader. As shown in Section 4.2.1, the detection time, tdet, is the

main difference between a centralized system where the vehicles have direct communi-

cation and cooperation using mode perturbation signatures. As shown in Figure 4.10,
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Figure 4.12: The desired trajectory of the vehicle with the mode perturbation, ri =
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Figure 4.14: Comparison of the first vehicle’s pitch angular rate and the SPF estimate.

the vehicles will fly in parallel collecting information about a (4x2) grid of targets. For

this target configuration, the observability of the mode perturbation signatures is max-

imized by embedding the signatures in the leader’s pitch rate (the response is similar

to the one shown in Figure 4.14). The camera can only measure movements that have

non-zero projections onto the camera plane. In other words, the distance to an object

is an observable measurement for a digital camera. For implementation, it is necessary

to determine what is the detection time and amplitude-to-noise ratio (ANR) needed to

achieve an acceptable detection performance. The ANR is defined as:

ANR =
a2

sig

2Rcam
, (4.92)

where asig is the amplitude of the perturbation signature and Rcam = 0.52 is the noise co-

variance for the camera for both the horizontal and vertical directions. The performance

of the detector was measured by calculating the percentage of times the correct mode

was detected using Equation (4.91). Figure shows the detection percentage as a func-

tion of ANR in decibels and the estimation horizon or tdet. Since a detection percentage
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Figure 4.15: The correct detection percentage using the detector in Equation (4.91) for
the SeaScan with the mode perturbation signature embedded in the rate of change of
pitch. The vehicle is flying at an altitude around 300 meters and moving at a speed of
25 meters per second.

of above 95% is desired, a ANR of 0 (which corresponds to asig = 1) and an estima-

tion horizon of tdet = 75 seconds were chosen. Although a shorter estimation horizon

could have been chosen, tdet = 75 was selected in order for the detector to have greater

robustness for unaccounted disturbances.

4.5.4 Monte Carlo Simulations

Monte Carlo simulations are used to gauge the performance of the vehicles in col-

lecting information about the targets. The mission performance was measured based

on minimizing mission time (Section 4.2.2) or maximizing information (Section 4.2.3).

The centralized, decentralized, and mode perturbation signature communication sce-

narios were also tested. Each scenario was simulated 50 times in order to compute
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Table 4.2: Simulation parameters for the Monte Carlo runs.

Parameter Value
asig 1.00 meter
tdet 75 seconds
ω 1

2π rad/sec
vAUV 30 meters per second
R 500 meters
M 4
N 3
QSPF diag(0.012,0.012,0.012,0.012,0.012,0.012)
RSPF diag(0.12,0.052)
λ 10−3

λc 1.73×10−3

ζx = ζy 1.0
Iempty 70
Ienemy 70
Iobstacle 70
Tmax 9000 seconds

significant statistics. The simulation parameters used in the simulations are shown in

Table 4.2 where depending on whether the target is identified as empty, an adversary, or

an obstacle, different thresholds of information must be collected: Iempty, Ienemy, Iobstacle

respectively. In the scenario in which information is maximized, the time constraint is

Tmax. The speed at which the UAV travels, vAUV, is constant throughout the simulation.

Table 4.3 compares the decentralized and the average mission time results (Section

4.2.2) for the mode perturbation strategies for the 25 cases, where the results are normal-

ized by the minimum time (with full communication) required by the best decentralized

strategy. Also shown is the 95% confidence boundary. As shown in Table 4.3, the mode

estimation strategy performs better than the centralized strategy.

Table 4.4 compares the decentralized and the average information collected (Sec-

tion 4.2.3) for the mode perturbation strategies for the Monte Carlo simulations, where

the results are normalized by the maximum information (with full communication) col-
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Table 4.3: Normalized time average results.

Strategy Average Normalized Time Communication
Decentralized 1.00 ±0.01 None
Centralized 0.86 ±0.01 Full
Mode Signature 0.88 ±0.01 None

Table 4.4: Normalized average information results.

Strategy Average Normalized Information Communication
Decentralized 0.96 ±0.01 None
Centralized 1.00 ±0.01 Full
Mode Signature 0.99 ±0.01 None

lected by the best centralized strategy. The 95% confidence boundary is also shown.

The simulation results presented in Table 4.4 show that the mode perturbation strategy

performs better than the decentralized strategy.

The performance results for this example (Tables 4.3 and 4.4) show that implement-

ing mode perturbation signatures allow the vehicles to approach the performance of a

centralized strategy without the use of direct communication (as in the decentralized

strategy). The performance of the mode perturbation signature strategy is limited by

various variables that include the distance between the leader and follower targets, and

the information collection curves for the vehicles. These variables determine whether

cooperation significantly improves performance. However, the simulations show that in

certain cases mode perturbation signatures can effectively be used to transfer informa-

tion between vehicles, thus enabling cooperation without the need of direct communi-

cation.
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4.6 Summary and Conclusion

A strategy using hybrid mode estimation has been developed and integrated into a

UAV leader/follower cooperative reconnaissance problem in order to minimize commu-

nication between vehicles. The behavior of the leader was modelled as a hybrid system.

Each node of the hybrid system was defined by the vehicle’s dynamics as well as a

mode perturbation signature. Truth-model simulations showed that the SeaScan’s per-

formance is not significantly affected by the addition of mode perturbation signatures.

The cooperative performance of the system was defined by one of two metrics: 1) the

length of time required by the two vehicles to collect a level of information, and 2) the

total information collected in a fixed time interval. As the follower traverses the target

random environment, it evaluates a performance metric to decide whether cooperation

is beneficial. The results of Monte Carlo simulations showed that the performance of

the system was better than the performance of a decentralized system with no coopera-

tion, where both cases (time or information) required no communication. Although the

necessary detection time makes exchanging target information slower than direct radio

communication, most of the benefits of cooperation are recovered. The performance

in terms of the time and information metrics of the system that cooperated using mode

perturbation is close to the performance of the system with full communication.
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APPENDIX A

PROOFS FOR CHAPTER 2

Showing that the state ellipsoid and the estimation error are bounded follows from

nonlinear observability. This derivation is similar to stability analysis of the EKF in Ref.

[68] and the error dynamics analysis in Ref. [69]. Consider the nonlinear systems of

Equations (2.1-2.2), the following two definitions are made.

Definition 1 The nonlinear observability test is satisfied if the following matrix has rank

n:

O
(
x(·),k

)
=




∂h
∂x

(
x(·),k

)

∂h
∂x

(
x(·),k+1

) ∂ f
∂x

(
x(·),k

)

...

∂h
∂x

(
x(·),k+n−1

) ∂ f
∂x

(
x(·),k+n−2

)
. . . ∂ f

∂x
(
x(·),k

)




, (A.1)

where x(·),k ∈ xi,k, i ∈ [1, . . . ,N] can take on values of any of the operating points.

Lemma 1 If the nonlinear system, Equations (2.1-2.2), satisfies nonlinear observability

on a compact subset K ⊂ Rn, then ∃ m, m, 0 < m ≤ m < ∞ and µ1 > 0 such that,

m · I ≤ O
(
x(·),k

)T O
(
x(·),k

)≤ m · I, for all µ1 such that ‖xk−x(·),k‖ ≤ µ1.

Proof 1 See Ref. [70].

Definition 2 For the nonlinear system, Equations (2.1-2.2), the observability Gram-

mian is defined as

Mk+q,k =
k+q

∑
j=k

ΦT
j,kC jCT

j Φ j,k (A.2)

where Φ j,k = Πk
q= j−1Aq and Φk,k = I and Aq = ∂ f

∂x
(
xi,q

)
and Cq = ∂h

∂x
(
xi,q

)
. Then

the pair (Ak,Ck) is uniformly observable if there exists m and m > 0 such that m · I ≤
Mk+i,k ≤ m · I [69].
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Lemma 2 Consider the nonlinear system, Equations (2.1-2.2), without process noise.

Let K be a compact subset of Rn and assume the nonlinear system is observable in the

nonlinear sense ∀xk ∈K. Then ∃µ2 > 0 such that

Ak =
∂ f
∂x

(x̂k) , Ck =
∂h
∂x

(x̂k) (A.3)

satisfy the uniform observability test if ‖xk− x̂k‖ ≤ µ2.

Proof 2 See Reference [70].

When noise is present (as it is in the switched estimator case since the combined noise

terms, ŵk, v̂k, must be used) Lemma 2 holds if the combined process noise is small

enough. If ‖xk−xk‖ ≤ µw and µw > 0, where xk is the solution for the system without

the combined process noise, then the following must be satisfied: ‖xk− x̂k‖ ≤ ‖xk−
xk‖+‖xk− x̂k‖ [69].

Theorem 1 When

1. q≤ ‖Qk‖, r ≤ ‖Rk‖

2. the pair (Ak,Ck) is uniformly observable

3. Σ0 is a positive definite matrix

then there are real numbers s and s such that, s · I ≤ Σk ≤ s · I, for all k ≥ 0.

Proof 3 See Reference [71].

Hence, the state ellipsoid Σ
(
x̂k,Σk,k

)
is bounded if the nonlinear observability condition

is satisfied for all (combinations of) operating points. Under the assumptions of the

existence of a bound on the process and measurement noise ellipsoids, it can be shown

that the nonlinear switched SMF gives an ellipsoidal estimate where the error dynamics

are bounded [69].
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APPENDIX B

NOMENCLATURE FOR CHAPTER 3

i Operating mode

zi
sig ith mode perturbation signature

ri
sig Vehicle perturbed reference

r Nominal vehicle reference

ri Total vehicle reference, r+asigtr
z

(
zi

sig

)

ui
sig Perturbed control input

y First vehicle’s output

y Second vehicle’s sensor measurements of the first vehicle

z̃i,τ, fc
sig Store mode perturbation signature replicas as function of τ and fc

mρ Number of points in the rectangular pulses, ρ0 or ρ1

Tc Chip duration

ρ0 0 (off ) bit

ρ1 1 (on) bit

nρ Number of nonoverlapping rectangular chips in the pi sequence

pi Sequence of nonoverlapping rectangular pulses for the ith mode pertur-

bation signature

fc Carrier frequency, Hz

θ Carrier phase in radians

N Number of operating modes

asig Amplitude of the mode perturbation signature

ˆ(·) Estimate of (·)

S (·) Continuous time correlation function
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τd Time delay, seconds

ẑi
sig Estimate of the ith mode perturbation signature

e Estimation error

τ Sequence time offset expressed as number of bits

Γ Range of time over which sequence time offsets are tested

τm Sequence time offset in seconds

fd Carrier frequency offset

k Discrete time index

tr
z (·) Mapping from the scalar signature to the reference

qi Node in the hybrid automaton corresponding to the ith mode

xk State vector of the system at time k

nx Dimension of xk

ny Dimension of yk

nu Dimension of the uk

wk Zero-mean Gaussian process noise with covariance Qk

vk Zero-mean Gaussian measurement noise with covariance Rk

H0 Hypothesis that the signal (mode perturbation signature) is absent or

asig = 0

nm Number of measurements used for detection

H1 Hypothesis that the signal (mode perturbation signature) was present

zi,τ,θ, fc
sig Stacked vector of the scalar mode perturbation signatures, zi,τ,θ, fc

sig

p(y|H0) Measurement probability density function, or likelihood, under hypoth-

esis H0

p(y|H1) Measurement probability density function, or likelihood, under hypoth-

esis H1

166



λthresh Threshold to accept hypothesis H1

LMP Locally most powerful test

zi,τ, fc
cos,k Mode perturbation signature with an in-phase carrier (cos) as function

of i, τ, and fc

zi,τ, fc
sin,k Mode perturbation signature with a quadrature carrier (sin) as function

of i, τ, and fc

λLMP (y) Test statistic for the LMP derived around asig = 0

H1,cos Hypothesis that the signal with an in-phase (cos) mode perturbation sig-

nature was present

p(y|H1,cos) Measurement probability density function, or likelihood, under hypoth-

esis H1,cos

H1,sin Hypothesis that the signal with a quadrature (sin) mode perturbation

signature was present

p
(
y|H1,sin

)
Measurement probability density function, or likelihood, under hypoth-

esis H1,sin

K Full-state feedback control gain

Y k Sequence of measurements from [1, . . . ,k]

KF Kalman Filter

νk+1 KF innovation at time k +1

LKF (·) Log likelihood function of the KF

SCA Suboptimal Cascading Approach

ri, j Component of the total reference, r̂i
, that is used to compute the SCA

test statistic

λSCA Test statistic for the SCA

ar Sinusoid amplitude of the reference
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fr Sinusoid reference frequency in Hz

r̂i
k Estimate of the total reference, ri

SPF Sigma Point Filter

βcos Correlation of the measurements and the in-phase component of the

carrier

βsin Correlation of the measurements and the quadrature component of the

carrier
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APPENDIX C

STATISTICS OF THE SIMULATION RESULTS FOR CHAPTER 3

The simulation results in Chapter 3 calculated the percentage of times the algorithm

was able to detect the correct mode perturbation signature parameters. The results pre-

sented in the form of bar graphs in Chapter 3 showed the average correct detection per-

formance. In this appendix, standard deviation of the simulation results are presented.

In the figures the results are also presented as bar graphs. However, the average correct

detection performance percentage corresponds to the middle of the bar while the lower

and upper values correspond to the average correct detection performance percentage

plus and minus one standard deviation respectively.
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Figure C.1: The correct mode detection percentage shown with error bars for the LMP
detector, Equation (3.109), with a mode perturbation signature amplitude of asig = 0.5
tracking a reference with frequency of 0.01 Hz. The results correspond to the bar graph
in Figure 3.15.
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Figure C.2: The correct mode detection percentage shown with error bars for the LMP
detector, Equation (3.109), with a mode perturbation signature amplitude of asig = 0.5
tracking a reference with frequency of 0.10 Hz. The results correspond to the bar graph
in Figure 3.16.
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Figure C.3: The correct mode detection percentage shown with error bars for the LMP
detector, Equation (3.109), with a mode perturbation signature amplitude of asig = 0.5
tracking a reference with frequency of 1.00 Hz. The results correspond to the bar graph
in Figure 3.17.
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Figure C.4: The correct mode detection percentage shown with error bars for the SCA
detector, Equation (3.113), with a mode perturbation signature amplitude of asig = 0.5
tracking a reference with frequency of 0.01 Hz. The results correspond to the bar graph
in Figure 3.18.
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Figure C.5: The correct mode detection percentage shown with error bars for the SCA
detector, Equation (3.113), with a mode perturbation signature amplitude of asig = 0.5
tracking a reference with frequency of 0.10 Hz. The results correspond to the bar graph
in Figure 3.19.
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Figure C.6: The correct mode detection percentage shown with error bars for the SCA
detector, Equation (3.113), with a mode perturbation signature amplitude of asig = 0.5
tracking a reference with frequency of 1.00 Hz. The results correspond to the bar graph
in Figure 3.20.
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Figure C.7: The correct mode detection percentage shown with error bars for the modi-
fied SCA test statistic, Equation (3.160), with a mode perturbation signature amplitude
of asig = 0.5 tracking a reference with frequency of 0.01 Hz. The results correspond to
the bar graph in Figure 3.22.
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Figure C.8: The correct mode detection percentage shown with error bars for the modi-
fied SCA test statistic, Equation (3.160), with a mode perturbation signature amplitude
of asig = 0.5 tracking a reference with frequency of 0.10 Hz. The results correspond to
the bar graph in Figure 3.23.
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Figure C.9: The correct mode detection percentage shown with error bars for the modi-
fied SCA test statistic, Equation (3.160), with a mode perturbation signature amplitude
of asig = 0.5 tracking a reference with frequency of 1.00 Hz. The results correspond to
the bar graph in Figure 3.24.
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Figure C.10: The correct mode detection percentage shown with error bars for the LMP
detector for the nonlinear simulation example with a mode perturbation signature ampli-
tude of asig = 0.5 tracking a reference with frequency of 0.01 Hz. The results correspond
to the bar graph in Figure 3.27.
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Figure C.11: The correct mode detection percentage shown with error bars for the mod-
ified LMP detector, Equation (3.177), for the nonlinear simulation example with a mode
perturbation signature amplitude of asig = 0.5 tracking a reference with frequency of
0.01 Hz. The results correspond to the bar graph in Figure 3.29.
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Figure C.12: The correct mode detection percentage shown with error bars for the mod-
ified LMP detector based on only estimating i, Equation (3.178), for the nonlinear sim-
ulation example with a mode perturbation signature amplitude of asig = 0.5 tracking a
reference with frequency of 0.01 Hz. The results correspond to the bar graph in Figure
3.30.
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Figure C.13: The correct mode detection percentage shown with error bars for the LMP
test statistic for the nonlinear simulation example with a mode perturbation signature
amplitude of asig = 0.5 tracking a reference with frequency of 0.10 Hz. The results
correspond to the bar graph in Figure 3.31.
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Figure C.14: The correct mode detection percentage shown with error bars for the mod-
ified LMP detector, Equation (3.177), for the nonlinear simulation example with a mode
perturbation signature amplitude of asig = 0.5 tracking a reference with frequency of
0.10 Hz. The results correspond to the bar graph in Figure 3.32.
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Figure C.15: The correct mode detection percentage shown with error bars for the mod-
ified LMP detector based on only estimating i, Equation (3.178), for the nonlinear sim-
ulation example with a mode perturbation signature amplitude of asig = 0.5 tracking a
reference with frequency of 0.10 Hz. The results correspond to the bar graph in Figure
3.33.
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Figure C.16: The correct mode detection percentage shown with error bars for the LMP
detector for the nonlinear simulation example with a mode perturbation signature ampli-
tude of asig = 0.5 tracking a reference with frequency of 1.00 Hz. The results correspond
to the bar graph in Figure 3.34.
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Figure C.17: The correct mode detection percentage shown with error bars for the mod-
ified LMP detector, Equation (3.177), for the nonlinear simulation example with a mode
perturbation signature amplitude of asig = 0.5 tracking a reference with frequency of
1.00 Hz. The results correspond to the bar graph in Figure 3.35.
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Figure C.18: The correct mode detection percentage shown with error bars for the mod-
ified LMP detector based on only estimating i, Equation (3.178), for the nonlinear sim-
ulation example with a mode perturbation signature amplitude of asig = 0.5 tracking a
reference with frequency of 1.00 Hz. The results correspond to the bar graph in Figure
3.36.
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Figure C.19: The correct mode detection percentage shown with error bars for the mod-
ified SCA detector, Equation (3.160), for the nonlinear simulation example with a mode
perturbation signature amplitude of asig = 0.5 and tracking a reference with frequency
of 0.01 Hz. The results correspond to the bar graph in Figure 3.37.
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Figure C.20: The correct mode detection percentage shown with error bars for the mod-
ified SCA detector based on only estimating î, Equation (3.179), for the nonlinear simu-
lation example with a mode perturbation signature amplitude of asig = 0.5 and tracking
a reference with frequency of 0.01 Hz. The results correspond to the bar graph in Figure
3.38.
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Figure C.21: The correct mode detection percentage shown with error bars for the mod-
ified SCA detector, Equation (3.160), for the nonlinear simulation example with a mode
perturbation signature amplitude of asig = 0.5 tracking a reference with frequency of
0.10 Hz. The results correspond to the bar graph in Figure 3.39.
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Figure C.22: The correct mode detection percentage shown with error bars for the mod-
ified SCA detector based on only estimating î, Equation (3.179), for the nonlinear simu-
lation example with a mode perturbation signature amplitude of asig = 0.5 and tracking
a reference with frequency of 0.10 Hz. The results correspond to the bar graph in Figure
3.40.
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