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Mathematical models can serve as useful tools to better understand physiology 

and biological phenomena. This work outlines several mathematical models and their 

connection with various types of cortical microvascular topology and blood flow data 

obtained with various imaging modalities. Three models are proposed. The first is a 

model based on electrical circuit ideas that describes the relationship between cortical 

neural activity and space-resolved and time-resolved blood flows in the ensuing 

hemodynamic response. The second model, also based on electrical circuits, seeks to 

predict blood flows in a network of blood vessels based on topological network data 

and experimental blood flow measurements taken on a subset of vessels in the 

network. Finally, random graph ideas are used to propose two related models to 

represent the cortical microvasculature topology. The first is a Poisson process 

approach in which a vessel network is modeled by randomly positioning nodes in a 

three-dimensional space and randomly placing an edge between pairs of nodes based 

on various hard and soft constraints. The second related model is based on a Gibbsian 

Markov Random Field approach in which a vessel network is created using a 

Hamiltonian that favors or penalizes certain network features according to physiologic 

observations of vessel network topology. A wide range of applications of these types 

of models are demonstrated.
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CHAPTER 1 

 

INTRODUCTION 

 

 Blood flow in the cerebral cortex plays a crucial role in providing tissue with 

oxygen and other molecules required to maintain proper function of the cortex, as well 

as clearing metabolites created from neuronal and glial activity. The cerebral 

vasculature and its topology are therefore of key importance as they provide the 

platform through which blood flow is regulated. For over a century, a relationship 

called the hemodynamic response has been experimentally observed, in which blood 

flow increases in response neuronal activity in a localized region of cortex [1]. Despite 

the longstanding awareness of this phenomenon, details regarding the underlying 

mechanisms linking neuronal activity to increased blood flow remain unresolved.  

 Models of various levels of the hemodynamic response, as well as models of 

the physical topology of the cortical vasculature can be helpful in elucidating 

information about the cortex and its behavior. Mathematical models can also be of 

importance when experimental limitations restrict an investigator’s ability to collect 

certain types of data on a particular subject. While perturbations to the experimental 

subject can be difficult or impossible, the parameters of a mathematical model can be 

easily manipulated to mimic a particular experiment. This work proposes a variety of 

such models with a variety of goals, given the unique problems that each model is 

constructed to address. 
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 The remainder of this work is organized as follows. Chapters 2 and 3 propose a 

mathematical model with the goal of interpreting intrinsic optical spectroscopy 

imaging (OISI) data in which space- and time-varying cerebral blood flow, cerebral 

blood volume, and blood oxygenation levels are the output. The model is “end-to-

end”, meaning that several interacting model compartments are connected to form a 

complete picture of the hemodynamic response. Chapter 2 is concerned mainly with 

the organization of the vascular and metabolic components of the model. Chapter 3 

discusses the layer of the model that simulates neuronal activity, referred to as the 

electrical layer. The model presented in these chapters is constructed to connect to 

OISI data, but using a similar framework the model could easily be extended to 

connect to other types of data such as blood oxygenation level dependent (BOLD) 

signals gathered using functional magnetic resonance imaging (fMRI). 

 Chapter 4 presents a model which interprets imaging data gathered using an 

entirely different modality from Chapters 2 and 3. Developments in two-photon 

scanning laser microscopy (2PSLM) have enabled researchers to image blood vessels 

on a micron scale up to 1mm into the cortex, as well as record blood flow information 

by tracking the speed of individual red blood cells in a vessel [2]. Practical 

experimental limitations, such as the duration of time under which a subject can 

remain anesthetized, result in network data where topologically is fully mapped out, 

but blood flow information is incomplete and only determined for a subset of vessels 

in the network. The model in Chapter 4 can be used to predict blood flows in every 

blood vessel in a network, given topology (vessel lengths, widths, and connectivity) as 

well available experimentally measured blood flows. The model borrows electrical 
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engineering principles, such as Kirchhoff’s Current Law and Ohm’s Law, to construct 

a set of linear equations whose least-squares solution is the output of the model. 

 Chapter 5 introduces ideas for modeling the vascular topology using two 

different approaches. The first approach is a spatial Poisson process approach that is 

based loosely on the Erdős-Rényi model [3] where the nodes of the network represent 

vessel bifurcations and the edges of the network represent vessels. The model is 

constructed by employing an algorithm that distributes network nodes in a three-

dimensional space according to (1) a Poisson process to randomly determine the 

number of nodes in the network, then (2) a uniform distribution in three dimensions to 

assign each of the nodes a particular location in the coordinate space. A decision is 

then made for every pair of nodes (vessel bifurcations) whether to connect them with 

an edge (vessel) according a binary random variable. The binary random variable is 

weighted by placing constraints on the Euclidean distance between two nodes in a 

network (to prevent vessels from being physiologically unreasonable in length) and 

the angle with respect to the cortical surface between the two nodes (to reflect 

physiology by favoring vessels that are more parallel to the cortical surface). Ideas 

from the model are applied to 2PLSM data to predict cortical layer boundaries based 

on expectation maximization methods.  

 A second generative model is discussed in Chapter 5 based on Gibbsian-

Markov Random Fields. Two or three-dimensional space is discretized and each 

discrete space element is assigned either a one, meaning a vessel is present at that 

location, or a 0, meaning a vessel is not present. The binary assignment is made 
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randomly based on a Hamiltonian that places constraints on the network such as 

favoring nodes with edge degree three. 

 Chapter 6 is the final chapter of the thesis in which concluding remarks are 

made and possible directions for future research are discussed. 
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CHAPTER 2 

 

A MODEL OF THE CORTICAL MICROVASCULATURE AND METABOLISM 

 

2.1 Introduction 

Despite extensive study, the mechanisms of the local control of cerebral blood 

flow and cerebral blood volume by neuronal activity are not completely resolved [1–

6]. A mathematical model is described whose purpose is to relate cortical electrical 

activity to flows and volumes of cerebral oxygenated and deoxygenated hemoglobin. 

While parts of the model are completely specified, e.g., by conservation laws, other 

parts have flexibility that can be used to describe alternative mechanisms. Therefore 

many different models can be constructed by these methods, analogous to the 

flexibility of the models of Ref. [7]. To provide a concrete connection to at least one 

class of experimental result, the basic model is augmented with an optical model that 

allows it to describe optical intrinsic signal imaging (OISI) [8], essentially space-

resolved and time-resolved optical reflectance spectroscopy measurements on 

surgically exposed cortex. An alternative choice would be to connect with BOLD and 

functional magnetic resonance imaging (fMRI). 

An important goal is to describe both cerebral blood flow and cerebral blood 

volume. Therefore, when described in terms of an electrical circuit analog, the model 

has both resistors and capacitors. A second goal is to describe behavior when the space 

resolution is 10μm x 10μm implying that blood that enters the microvasculature in one 

pixel might exit in a different pixel. A third goal is to have a model that incorporates 
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physical constraints. Therefore, Kirchhoff’s current and voltage laws are obeyed 

throughout and Laplace’s and Poiseuille’s laws are used to describe flow through a 

vessel where the contractile state of the vessel is described by the Young’s Modulus of 

the vessel wall which is controlled by other quantities in the model. A fourth goal is to 

model both oxygenated and deoxygenated hemoglobin, including the conversion of 

oxygenated to deoxygenated. This requires a generalization of the usual Kirchhoff’s 

laws to the situation where two types of current (oxygenated and deoxygenated) flow 

in the circuit. The neurovascular interaction is not completely understood and a fifth 

goal is to provide a model that is sufficiently flexible such that different interactions 

can be included in the model. A sixth goal is that the model be sufficiently simple that 

the parameters in the model can be determined for individual subjects rather than for 

populations of subjects. A seventh goal is to demonstrate the presence or absence of an 

initial decrease in HbO2 in response to an excitation is not necessarily due to a 

different structure for the mathematical model but rather could be due to the choice of 

parameters in a mathematical model of fixed structure. An eighth goal is to connect 

the model, with a typical spatial scale of roughly 10μm, to the macroscopic world 

which is done by deriving Grubb’s law (a macroscopic relationship between cerebral 

blood volume and flow derived from whole-body medical imaging) from the model. 

Grubb’s law can be interpreted as specifying the effective exponent in Poiseuille’s 

law. 

Because the model is nonlinear, it describes total signals and not perturbations 

in signals superimposed on an unmodeled baseline signal. Therefore, especially when 
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modeling the neurovascular interaction, the focus is on feedback models (the 

“metabolic hypothesis” [8]) in order to achieve long term homeostasis. 

Because the model is connected to an OISI measurement model, the model is a 

2-D array of pixels. Generalization to a 3-D array of voxels, suitable for a 3-D 

measurement modality, would be relatively straightforward, although it would likely 

be desirable to modify the neuroscience contained in the model for the depth direction 

relative to the two lateral directions. 

Because (1) spatial resolution is too coarse to show cells, (2) the OISI data [8] 

is two dimensional rather than three dimensional, and (3) the goal is a simple model 

that can be personalized, the emphasis is on continuum models rather than models 

constructed of interacting cellular submodels. While the models are continuum 

models, spatially discretized versions of the continuum models are emphasized where 

the discretization is pixel-by-pixel. In the mathematics of the models, the spatially 

discretized model is a set of ordinary differential equations for each pixel and, if the 

pixel size is allowed to approach zero, the set of ordinary differential equations 

becomes a set of partial differential equations which is what is typically meant by a 

continuum model. 

The cortical vasculature has a complicated 3-D structure [10, Figures 1 and 3]. 

While such a network could possibly be modeled as some form of random network, 

such a choice would make it difficult to determine the parameters in the model for 

individual subjects. Therefore, in Section 2.2, very simple deterministic networks are 

used. 
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The model has four interacting components, electrical, metabolic, vascular, and 

optical. The components are interconnected as is shown in Figure 2.1. The focus of 

this chapter is on the metabolic and vascular components.  

Models of the neurovascular system typically involve many components and 

different components are modeled by different investigators with different levels of 

physical fidelity. For instance, the network topology of Ref. [10] is based on x-ray 

synchrotron images of 2.8mm3 volumes of rat cortex and networks of similar fidelity 

are probably also available via 2-photon laser scanning microscopy (2PLSM) [9,11]. 

The networks used in the numerical examples shown in Chapter 3 are much more 

idealized, but the circuit ideas could be used in much more complicated and realistic 

networks. Some investigations focus on flows use purely resistive models [10] while 

other models based on Balloons [12] and Windkessel [13] ideas combine resistors and 

capacitors. In addition, some models describe input-output phenomenological 

behavior [7,14-16] while others focus on individual vessels [10,17]. The model 

described in this chapter is focused on individual vessel segments and describes the 

segments with circuits including both resistance and capacitance. Some investigators 

include extensive biochemistry in their models [18]. While the biochemistry described 

in this chapter is limited to the conversion of HbO2 to HbR, additional molecules that 

are transported by the entering blood and metabolized dependent on brain activity 

could be included (Section 3.3). 

The remainder of the model is presented in the following fashion. The four 

components of the model are described in the order vascular (Section 2.2.) and 

metabolic (Section 2.3), and electrical and optical (Section 3.2). Comparisons with 
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two sets of experimental data are described in Section 3.3 and example calculations 

demonstrating the spatial features of the model are also described in Section 3.3. The 

model makes it possible to compute many quantities related to cerebral blood volume 

and cerebral blood flow. As an example of such a calculation, in Section 3.4 the 

model’s predictions for Grubb’s Law [19] relating cerebral blood volume and flow are 

presented. Finally, the next chapter concludes with a discussion (Section 3.5). 

2.2 Model: Vascular Component 

For the cortex visualized in each pixel, the model includes vascular 

connections to the arterial supply, venous return, and to the adjacent four pixels. Each 

connection is a tube that can contribute to blood volume in that pixel and to flow 

through that pixel. Two types of tubes are used in the model. The simpler type has a 

fixed volume and resistance to flow. The more complicated type has wall that is 

described as a linear isotropic elastic material with a Young’s Modulus which is 

denoted by E. When pressure in the tube increases the tube expands in diameter so that 

the volume increases and the resistance to flow decreases. Alternatively, when E 

increases (“stiffer”) the diameter decreases and the resistance to flow increases and 

when E decreases (“floppier”) the diameter increases and the resistance to flow 

decreases. The vascular system is thought of as being controlled by controlling the 

value of E. In a rough way, this corresponds to controlling the tone of the smooth 

muscle in the wall of small vessels. While it is not fundamental to the model, the 

model described in this manuscript uses the simpler fixed type of tube to describe the 

larger arterial vessels that connect a pixel to the arterial supply and the more 

complicated variable modulus type of tube to describe the smaller vessels that connect 
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a pixel (1) to the larger supply vessels, (2) to the smaller vessels in adjacent pixels, 

and (3) to the vascular return.  

A diagram of the vascular component including the placement of the two types 

of tubes is shown in Figure 2.2. This figure is a simplification since it is one-

dimensional, i.e., for any given pixel there is a pixel to the “left” and the “right” of the 

given pixel but there should also be a pixel “above” and “below” of the given pixel in 

order to create a two-dimensional image and the “above” and “below” pixels are not 

shown. In Figure 2.2, blocks labeled T0 are the larger arterial vessels that connect the 

tissue in a pixel to the arterial supply. They have a fixed volume and resistance to 

flow. The blocks labeled Ta are the arterioles that connect larger vessels to capillaries 

and have elastic walls described by a Young’s Modulus which is controlled by the 

metabolic component of the model. The control of the Young’s Modulus models the 

control of tone in the smooth muscle cells of arterioles which modulate the resistance 

to flow and the volume of the arteriole. The blocks labeled Tl and Tv are the capillaries 

connecting small arterial vessels to the venous return either directly within one pixel 

or indirectly via an adjacent pixel. These vessels also have elastic walls described by a 

Young’s modulus but the value of the Young’s Modulus is fixed rather than controlled 

since these vessels have little smooth muscle. It is only in the tubes modeling 

capillaries, i.e., tubes labeled Tl or Tv, that conversion of HbO2 to HbR occurs. The 

network of Figure 2.2 could be generalized, as is shown in Figure 2.3, to allow longer 

range interactions. The analysis of such a network is similar to what is done in this 

chapter.  
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The goal is to transform Figure 2.2 into an electric circuit analog so that a 

complete set of equations relating events in all pixels can be easily determined. In the 

electrical circuit analogy, fluid flow is electrical current and fluid pressure is electrical 

voltage. In reality, each of the blocks in Figure 2.2 represents a complicated network 

of vessels. The model described in this chapter describes the network as a parallel 

connection of identical branches. If there are N parallel branches then, looking ahead 

to Section 2.2.1, the T0 block has resistance Rs/N where Ra is the resistance of one 

branch and volume NQa where Qa is the volume of one branch. To simplify notation, 

the factor of N is not included in any of the formulas in this chapter. Before describing 

similar relationships for the other blocks, the details of the other blocks must be 

described and therefore the relationships are postponed until the end of Section 2.2.1. 

The number of parallel branches depends on the size of the pixels. If the pixels 

are small, then most capillaries will start in one pixel and end in a different pixel. 

Therefore, in this case, the number of parallel branches in the Tl (“l” for “lateral”) 

block is much greater than the number of parallel branches in the Tv (“v” for “venous”) 

block. The use of small pixels in this optical experiment is one of the important 

contrasts with the fMRI experiment which uses relatively larger voxels. 

2.2.1 Tubes with variable Young’s Modulus 

The tube with variable modulus is simultaneously described from two different 

points of view. In the first point of view, the tube is in equilibrium with a constant 

pressure throughout and the radius of the elastic wall is determined by the pressure 

and Young’s Modulus (denoted by E). Let the Young’s Modulus be described as E(t) 

= E0 + δE(t) where E0 is the nominal Young’s Modulus and δE(t) is the perturbation in 
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the Young’s Modulus due to control. Let tw be the thickness of the wall. Let a0 be the 

nominal and a the actual radius of the tube. Let P be the pressure in the tube. Then, the 

cylindrical form of the Law of Laplace [20, p. 71] is 

0

0
0 )(

a

aa
E

t

aP
E

w


                                                      (2.1) 

(the units are P: [Pressure]=[Force/Area2]; E0 and δE: [Force/Area2]; a, a0, and tw: 

[Length]). Solving this equation for a gives a as a function of P and δE (as well as the 

nominal values E0 and a0 which are suppressed in the notation), specifically, 

w

E

E

E

t

P

a

Pa







0

0

0

E

E
),(




 .                                                    (2.2) 

 Let l denote the length of the tube and Q denote the volume of the tube. Then 

standard geometry (the volume of a cylinder) implies that Q as a function of P and δE 

is 

lPaPQ EE

2)],([),(                                                   (2.3) 

l

t

P

a w

E

E

2

0

0

0

E

E




























.                                                   (2.4) 

Q(P, δE) is the tube’s contribution to the blood volume of the cortex imaged in this 

particular pixel. In the eventual electric circuit, changes in Q(P, δE) with time are the 

charging and discharging of a capacitor with time.  

In the second point of view, the tube is in the steady state with a difference of 

pressure between its ends and a fixed radius of the elastic wall and the fluid undergoes 

laminar flow through the tube. Poiseuille’s formula [12] states that the pressure drop 
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from one end of the tube to the other end is proportional to the volume flow through 

the tube. Arbitrarily label the ends of the tube by 1 and 2. Let V1 and V2 be the 

pressures at End 1 and End 2, respectively, of the tube and let I be the volume flow 

into End 1. (If I < 0 then the flow is, in fact, out of End 1.) Let η be the dynamic 

viscosity of the fluid. Then Poiseuille’s formula [20, p. 94] is 
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Since the difference of pressures (P1 - P2) is linearly related to the flow (I), it is 

natural to define a resistance which is denoted by R(P, δE) and defined by 
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In the eventual electric circuit, R(P, δE) is a resistor. Note that the dependence 

of viscosity η on radius a (e.g., Ref. [22,23]) could be included but is only included in 

Section 3.4. Except for Section 3.4, including this effect would complicate the time 

derivatives because a depends on time and, therefore, η would also depend on time.  

The two points of view are incompatible because the equilibrium point of view 

has a constant pressure throughout the entire tube and no flow while the steady state 

point of view has a varying pressure along the tube and flow. To merge these two 

points of view requires further modeling as is described in the remainder of this 

paragraph. Continue to label the two ends of the tube by 1 and 2. It is assumed that 



15 

one half of the resistance occurs at End 1 of the tube and one half at End 2, that no 

volume is stored in the resistive parts of the tube, and that all of the volume is stored 

between the resistive parts in an infinitesimal length of tube which has no resistance 

and whatever pressure is implied by the flows through the resistive parts of the tube. 

With these assumptions, a tube with variable modulus is exactly equivalent to a 

fragment of an electric circuit which is shown in Figure 2.6. 

It is important to note that the capacitor in Figure 2.6 does not have a 

capacitance value. Instead, it is labeled by the amount of charge (i.e., fluid volume), 

denoted by Q(P, δE), that it stores. The reason for this is that the capacitor in this 

model stores charge at zero voltage (i.e., pressure) which is not possible in the 

standard capacitor in which charge is proportional to voltage. Therefore, the form of 

Kirchhoff’s Current Law (KCL) at the node labeled by P is Figure 2.6 is 
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Eqs. 2.8 and 2.9 imply a differential equation for P(t) which depends on P1(t) and 

P2(t), specifically, 
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The Tv, Ta, and Tl blocks of Figure 2.2 represent complicated networks of 

capillaries and other small vessels. The model described in this chapter describes the 

network as a parallel connection of identical branches. If there are N parallel branches 

then the block contains N parallel instances of the circuit of Figure 2.6, i.e., all N 

instances of the node with voltage (pressure) P1 are one node and likewise for the node 

with voltage (pressure) P2 and the ground node. Since all resistors and all capacitors 

are identical, including identical time variation, if the capacitors all start with the same 

charge (volume), which is what is assumed in this model, then the voltages (pressures) 

labeled P in all circuits are identical. Therefore, the parallel combination of N circuits 

is identical to the original circuit with new parameter values: R(P, δE)/(2N) and NQ(P, 

δE). To simplify notation, the factor of N is not included in any of the formulas. 

2.2.2 Fixed Tubes 

The fixed tubes have a fixed volume, denoted by Qa, which is always full and a 

fixed resistance to flow. Therefore, they are analogous to an electrical resistor of fixed 

value, denoted by Ra. The fixed volume, or equivalently charge, Qa is outside of the 

electrical circuit model and does not enter the calculations until Section 2.2.5. 

2.2.3 Electrical circuit and the solution for all voltages (i.e., pressures) 

By combining the electrical circuit fragments for the two types of tubes (Figure 

2.5-6 the electrical circuit corresponding to the diagram of Figure 2.2 can be drawn. 

The analogy between the mechanical flow system and the electrical circuit is not 

perfect. In particular, for the analogy to be correct it must be that the initial conditions 

and the inputs to the circuit are such that the capacitor voltages are always positive. 

Failure to achieve this is equivalent to moving negative volumes of fluid in the 
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mechanical flow system, which is nonphysical. While no theorem has been proven 

about this situation, it is anticipated that maintaining positive capacitor voltages will 

not be difficult because Pa, the arterial supply pressure, is high and approximately 

constant and the changes in Young’s Modulus, i.e., the functions δE(t), are small 

changes. Note that the fundamental mechanical ideas based on linear elastic materials 

are themselves only valid for small changes. Less problematic than negative capacitor 

values are incorrect directions of flow. The direction of flow through the resistor 

labeled R(a) and the two resistors labeled 2/))(),((
,

)(

, ttPR
jiE

a

ji   should be toward the 

node labeled )0(

, jiP . Possibly the flow through the two resistors labeled 
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v

ji   should be toward the ground. On the other hand, the flow 

through the two resistors labeled 2/))(),((
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R

ji  can be in either direction. The 

same ideas used to avoid negative capacitor voltages will be sufficient to avoid 

incorrect flow directions also although, at the cost of increased complexity, the 

directions can be constrained by adding diodes to the circuit. Note the importance of 

limiting the size of the changes in capacitance; since the charge on a capacitor cannot 

change instantaneously, a decrease in capacitance leads to an increase in voltage 

which, if too great, could cause flow in the reversed direction.  

Using standard circuit techniques, a system of ordinary differential equations 
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, tP U

ji , )()(

, tP D

ji , and )()(

, tP a

ji  can be derived. Then the 

solution for )()0(

, tP ji can be determined by computing a linear combination of the four 

differential equation solutions. Solution of this system, which requires the functions 
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)(
,

t
jiE  as input (Section 2.3), determines all of the voltages (i.e., pressures) in the 

image. From the voltages and the functions )(
,

t
jiE , all of the currents (i.e., fluid 

flows) can be determined. 

2.2.4 Flows are composed of two charge carriers (HbO2 and HbR) 

Two types of charge flow in the electric circuit created by combining Figures 

2.2 and 2.5-6, specifically, HbO2 and HbR. Furthermore, HbO2 is converted to HbR by 

metabolism. Depending on the neuroscience included in the metabolism component of 

the model, there may be additional charge carriers which could also be treated by the 

methods of this section. 

The part of the circuit in Figure 2.2 that connects the venous return node with 

the arterial node has not yet been explicitly discussed. A simple choice is a voltage 

source which represents the right heart, lungs, and left heart and which both sets both 

the arterial pressure and the arterial oxygen saturation (i.e., the fraction of Hb that is 

HbO2). In addition, in order to simplify the circuit equations, NaNb diodes are inserted, 

one diode in series with each without-capacitor tube T0 with the forward direction in 

the direction of the Ta tubes as is shown in Figure 2.4 which ensures that all currents 

entering node A have arterial oxygen saturation. 

Returning to the tube description of Figure 2.2 (rather than continuing with the 

circuit description achieved by inserting Figure 2.5-6 into Figure 2.2), the key idea is 

that pressures and total flow (HbR plus HbO2) are determined by Kirchhoff’s Laws 

and that additional principles, described in this section, determine what fraction of the 

total flow is HbO2. The basic principle is that of well mixing which occurs in two 

situations. First, the ratio of HbR to HbO2 that flows out of a node is the result of 
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instantaneous well mixing of the flows into that node. For example, if there are two 

flows into a node, one flow of 2 l/s with .9 of the flow being HbO2 and the second 

flow of 3 l/s with .8 of the flow being HbO2 then the flow out of the node has a 

fraction (2 ﾗ .9 + 3 ﾗ .8)/(2 + 3) of HbO2. This calculation takes advantage of the fact 

that the total flows are known since knowledge of the total flows determines which 

flows are into versus out of the node of interest. Second, well mixing occurs in tubes 

that contribute to total blood volume, i.e., tubes that contain capacitors. Specifically, 

for every capacitor, the ratio of HbR to HbO2 that flows out of the capacitor is the 

result of integrated well mixing of the flows into that capacitor. In addition to well 

mixing, the only additional principle that is required is a principle for the conversion 

of HbO2 to HbR, which is assumed to occur only in capacitors corresponding to 

capillaries and, in such capacitors, is a function of the amount of HbO2 present in the 

capacitor.  

In order to present sample equations resulting from the principles of the 

previous paragraph, let fα(t) be the fraction of the flow out of the αth node that is 

HbO2, let u(x) be the unit step function (u(x)=1 for x ≥ 0 and = 0 for x < 0), and let r(x) 

be the unit ramp function (r(x) = xu(x)). In order to avoid more complicated notation, 

assume that the network has only one path between any pair of nodes. Let the set Tα 

contain the names of the with-capacitor tubes connected to the αth node. Let the set Tα 

be the names of the nodes connected by a without-capacitor tube T0 to the αth node. 

Instantaneous well mixing at the αth node is described by the equation 
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where, as defined previously, Qα’ (t) and )(2

' tQ
HbO

  are the amount of Hb and HbO2 

stored in the capacitor at the α’th node, respectively, and iα’, α (t) is the flow from the 

α’th to the αth node. This is instantaneous well mixing because all quantities are 

measured at the same time t and there are no derivatives or integrals.  

Suppose a with-capacitor tube (index α) is the only path between two nodes 

(indexes α’ and α’’). Then the amount of HbO2 in the well-mixed compartment of the 

αth with-capacitor tube is described by the differential equation 
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where the conversion from Eq. 2.12 to Eq. 2.13 depends on the result that [1 - u(x)]x = 

-r(-x) and where the term ))(/)(( 22 tQtQG
HbO

  describes the conversion of HbO2 to 

HbR in the αth well-mixed compartment where )(/)()( 22 tQtQtc
HbOHbO

   is the 

volume fraction of HbO2. The conversion term has a constant with units, i.e., ν (units 

[Volume]/[Time]), multiplying a function, i.e., ))(/)(( 2 tQtQG
HbO

 , and the function G 

is described in Section 2.2.6. This is integrated well mixing because all quantities are 
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measured at the same time t but it is the derivative with respect to time of the amount 

of HbO2 in the capacitor (i.e., dttdQ
HbO

/)(2

 ) rather than the amount of HbO2 in the 

capacitor (i.e., )(2 tQ
HbO

  ) that is determined. Finally, note that masses are proportional 

to volumes. In particular, in terms of the number of hemoglobin molecules per 

erythrocyte (nHb), the molecular weight of hemoglobin (wHb), the volume of an 

erythrocyte (vRBC), and the hematocrit (f, 0 < f < 1), the mass (denoted by μ) is related 

to the volume (denoted by Q) by μ = (Qf/vRBC)nHbwHb = QκQ→ μ which defines κQ→ μ. 

Therefore the concentration of HbO2 is κQ→ μ )(2 tc
HbO

 . 

2.2.5 HbO2 and HbR per pixel 

The value of )(2 tQ
HbO

  determines )(tQHbR

  by  

)()()( 2 tQtQtQ
HbOHbR

                                          (2.14) 

When computing the volume of oxygenated, deoxygenated, or total hemoglobin at a 

pixel (i,j) (denoted by )(, tQHbR

ji , )(2

, tQ
HbO

ji , and )(, tQ ji ) rather than in the capacitor at 

node α (denoted by )(tQHbR

 , )(2 tQ
HbO

 , and )(tQ ), it is necessary to divide the 

volume in a tube that crosses pixel boundaries between the pixels. In the calculations 

reported here, the partitioning is in equal parts. 

2.2.6 Conversion of HbO2 to HbR 

A simple description of the conversion of HbO2 to HbR is used: HbO2 is 

converted to HbR plus energy and, because the conversion is enzymatic, it has a 

limited maximum rate. The description assumes that substrate other than HbO2 is 

available in excess. Let the volume fraction of HbO2 in capacitor α at time t be 
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denoted by )(2 tc
HbO

 . Let the volume fraction of HbO2 such that the rate is one-half the 

maximum rate be denoted by 2HbO
c . Then the Michaelis-Menten rate [13, pp. 192–

194] is proportional to the quantity 

 
)()(

)(
)(

22

2

2

tctc

tc
tcG

HbOHbO

HbO
HbO











                                            (2.15) 

which is a pure number (i.e., no units). 

 Potentially, the maximum rate, ν (Eq. 2.12) and/or the volume fraction at the 

half maximal rate, 2HbO
c  (Eq. 2.15), might be controlled. In this model, ν is controlled 

but 2HbO
c  is not controlled and the control law for ν is described as a part of the 

metabolic component in Section 2.3.2. 

2.3 Model: Metabolic Component 

The metabolic component fits between the electrical and vascular components 

and is essentially a control law. (1) Because the components are nonlinear, the 

metabolic component is a model for total signals not perturbations in signals around 

some baseline signal. Therefore, the metabolic component’s control law is responsible 

for homeostasis as well the response to fluctuations, which is the response that is most 

often measured in experiments. (2) The goal is to model optical measurements that are 

sensitive to HbO2 and HbR and so oxygenation is an important focus. If desired, other 

molecules can be given similar focus. (3) Because it fits between two other 

components, the metabolic component is constrained in terms of its inputs and outputs 

which must match those of the other two components. The output of the electrical 

component is S(x, t) (Eq. 3.1) which is also the input to the metabolic component. In 

spite of the obvious dependence of the electrical activity in the electrical component 
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on sufficient oxygenation, an output from the metabolic component as an input to the 

electrical component has not been included. The vascular component has one input 

from the metabolic component which is the Young’s Modulus of the vessel wall, 

denoted by )()(
,0 tEtE
jiE , which therefore must be an output of the metabolic 

component. Due to the focus on oxygenation, the metabolic component has one input 

from the vascular component which is the amount of HbO2 present in the pixel. 

Additional inputs from the vascular component could be included if desired. 

2.3.1 A feedback controller for energy homeostasis 

A coupling process based on the “metabolic hypothesis” [5,8,14], in particular, 

a feedback process to achieve energy homeostasis, is described in this section. As is 

described in Section 2.3.3, to achieve homeostasis of some other molecular mediator 

by feedback would involve the same type of mathematics. Specifically, at each pixel 

[(i, j)] there is a time varying [t] energy budget variable denoted by ei,j(t) (units 

[Energy]) and a target value denoted by by e∗ (units [Energy]). The energy budget 

variable ei,j(t) is at the core of a feedback loop. (1) Suppose ei,j(t) decreases. (2) Then 

the Young’s Modulus )()(
,0 tEtE
jiE  in the vascular component decreases so that 

the vessel wall becomes more floppy and therefore the vessel dilates. (3) Vessel 

dilation brings additional blood to the pixel and therefore additional HbO2 which is 

converted into HbR in order to create energy thereby increasing ei,j(t). Optionally, the 

conversion process itself could also be made more efficient which would also increase 

ei,j(t). 
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The mathematics to implement this feedback loop has two key components 

which are equations for the time variation of ei,j(t) and )()(
,0 tEtE
jiE . The 

equation for ei,j(t) is a first-order differential equation saying that the rate of change of 

ei,j(t) with respect to time is the difference between production and consumption. 

Specifically, the equation is 

)()()(
,,

,
ttt

dt

de

jiji ee

ji                                               (2.16) 

where )(
,

t
jie

  is production and )(
,

t
jie

 is consumption.  

The production of energy is proportional to the total rate of conversion of 

HbO2 to HbR plus energy. The conversion of HbO2 to HbR is described by the term 

 )(2 tQG
HbO

  of Eq. 2.12. The proportionality constant ν, which is the maximal rate, 

describes conversion of HbO2 to HbR which has different units and potentially a 

different efficiency than the conversion of HbO2 to ei,j(t). Therefore, a different 

proportionality constant, which is denoted by b'  (units [Energy]/[Time]) and 

describes the efficiency of the conversion of HbO2 (and other substrates which are 

assumed to be in excess) into energy is needed. Therefore, the production of energy 

based on the HbO2 in one particular capillary capacitor (the HbO2 in non-capillary 

capacitors is not available for energy production) is  )(' 2 tQG
HbO

b   where )(2 tQ
HbO

  is 

the oxygenated hemoglobin present in the αth capacitor which is a capillary capacitor. 

In addition, as before, R, L, U, and D tubes have equal values for their pressures and 

volumes and the equal values are denoted by variables with l index. Therefore, 

    )()(4')( 22

, ,,,, tQGtQGt
HbO

vji

HbO

ljibe ji
  .                                   (2.17) 
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The consumption of energy is proportional to the power dissipated in the 

corresponding pixel of the electrical component plus a term for basal metabolism 

denoted by 

0,, jie . In order to quantify this dissipation let pi,j(t) (units [Energy]/[Time]) 

denote the power which is defined by 

  yxji tStp  ,)(, x                                                    (2.18) 

 

where S(x,t) is the output of the electrical layer (Eq. 3.1), Δx and Δy are the sampling 

intervals in the x and y directions, and x=(i Δx, j Δy). The consumption is 

  0,, ,,
)()(

jiji ejie tpt                                                 (2.19) 

 

where γ (pure number) describes the efficiency of the electrical component, that is, 

how many units of metabolic energy are consumed in order to dissipate one unit of 

energy in the electrical component. This completes the description of the equation for 

ei,j(t). 

 The second key equation in the feedback loop is the equation for Young’s 

Modulus )()(
,0 tEtE
jiE . Because the pressure (voltage) equations depend on the 

derivative of δEi,j(t) with respect to time t (e.g. Eq. 2.10), it is essential that )(
,

t
jiE  be 

smooth. For that reason, it is assumed that E(t) obeys a critically-damped second order 

differential equation. The driving term for the differential equation and the single time 

constant of the differential equation differ depending on whether the budget variable 

ei,j(t) is above or below its threshold. When above threshold, there is a time constant τc 

for constriction of vessels and the steady state value of the Young’s Modulus is E0. 

When below threshold there is a time constant τd for dilation and the steady state value 

of the Young’s Modulus is αE0. In mathematical form, 
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Since )()(
,0 tEtE
jiE  and E0 is constant with respect to time, Eqs. 2.20 and 2.21 

imply that  
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 The equations presented concern the case where a budget is either above 

(desirable) or below (undesirable) a threshold. However, it might be the case that it is 

desirable to keep the budget between two thresholds rather than above a single 

threshold. This can be done by generalizing Eqs. 2.22 and 2.23 to have three rather 

than two cases. 

2.3.2 Control of ν 

A controller for the maximal rate of conversion of HbO2 to HbR, i.e., ν, is 

described in this section. The ideas are essentially the same as those used in Section 

2.3.1. However, for Ei,j in Section 2.3.1, it is necessary to have a smooth derivative 

with respect to time so Eqs. 2.20 and 2.21 are second order differential equations. For 

ν, it is not necessary to have a smooth derivative so first order differential equations 

are used:  

bji

ji

dt

d



  ,

,
 if  ee ji,                                                  (2.24) 
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bji

ji

dt

d



  ,

,
 if  ee ji, .                                              (2.25) 

 

2.3.3 Non-energy feedback controllers 

In order to describe the optical measurements, this model has a detailed 

description of HbO2 and HbR and the description includes the idea of an energy 

budget which controls the conversion of HbO2 to HbR. As described in section 2.3.1, 

the same energy budget can control the Young’s Modulus which controls the vascular 

component. But that is not necessary. If feedback still exists, then there is some other 

molecule X and its metabolite X’ which are delivered by the vascular system and a 

budget related to X denoted by )(, te X

ji with a target value denoted by Xe . Then, 

depending on whether XX

ji ete )(,  or XX

ji ete )(, , the metabolic component sets the 

new value of the perturbation δEi,j(t) in the Young’s Modulus. The methods of this 

model can be directly applied to this case. First in order to include X and X’, the 

approach for HbO2 and HbR of Sections 2.2.4 and 2.2.6 is duplicated for X and X’. 

Second, the differential equation for the energy budget (Eq. 2.16) is duplicated for the 

X budget, specifically 

)()()(
,,

,
ttt

dt

de
X

ji
X

ji ee

X

ji                                                  (2.26) 

where )(
,

tX
jie

  is the increase in )(, te X

ji  due to the vascular system bringing new X to 

the (i,j)th pixel and )(
,

tX
jie

 is the decrease in )(, te X

ji  due to the electrical activity 

described by the voltage )(, tvm

ji . Third, the relationship between )(, te X

ji  and δEi,j(t) 

must be defined and the ideas of Section 2.3.1 can be used unaltered. Therefore as 
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soon as X is decided upon and the decrease in the X budget due to electrical activity, 

i.e., )(
,

tX
jie

  is determined, the new model is determined. The difference between 

depletion of a desired quantity and a buildup of an undesired quantity is whether 

)(
,

tX
jie

  is positive or negative and whether XX

ji ete )(,  causes a decrease in the 

Young’s Modulus (leading to dilation) or increase in the Young’s Modulus (leading to 

constriction).  

 If more than one budget contributes to the control of the Young’s Modulus 

then the simplest situation is if the control law is a linear combination of effects from 

the different budgets. The linear combination could occur at the budget variables. 

Alternatively, the linear combination could occur after the budget variables are 

transformed into perturbations of δEi,j(t) on the Young’s Modulus. In the latter case 

each perturbation could be generalized using the ideas of section 2.3.1 with time 

constants unique to that perturbation. Finally, and most generally, the transformation 

from budgets to the total perturbation δEi,j(t) on the Young’s Modulus could be a 

general multiple-input signal-output linear dynamical system with the budgets as 

inputs. 

2.3.4 Feedforward Ideas 

 A coupling process based on the “neurogenic hypothesis” [2,3,8], in particular, 

a feedforward process, is sketched in this section. The goal of the metabolism 

component is to transform the signal S(x, t) from the electrical component into the 

perturbation )(
,

t
jiE  of the Young’s Modulus which controls the vascular component. 

A possible biological mechanism is that a glial cell in contact with both one or more 
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neuronal synaptic clefts and spatially-local vascular smooth muscle cell senses the 

frequency with which a neurotransmitter is in the synaptic clefts and adjusts the tone 

of the smooth muscle cells. The adjustments last for a finite period of time and the 

adjustments are larger for higher frequency neuronal activity. One approach is to base 

the transformation on time-averaged second moments of S(x,t) and its temporal 

derivative, i.e., 

   dtxS
T

t
t

Tt
ji

2
)0(

, ),(
1

)(                                           (2.27) 
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These moments are related to Sobolev norms of S(x, t) which have proven useful in 

signal and image processing problems. In particular, if )()0(

, tji  is greater than a 

threshold, denoted by  , then the perturbation )(
,

t
jiE  has an amplitude that is a 

linear regression of )()0(

, tji  and )()1(

, tji : 

      )()()()( )0(

,

)1(

,1

)1(

,01,
tuttt jijijiE ji

.                  (2.29) 

As is discussed in Section 2.3.1, the perturbations in Young’s Modulus due to oxygen 

homeostasis, any desired non-oxygen feedback controller, and the feedforward 

controller could be combined in a variety of ways. The simplest way is through a 

linear combination, specifically 

)()()()(
,,

2

,

2

,
tttt FF

E

FFX

E

XHbO

E

HbO

E jijijiji
                      (2.30) 

where the ω variables are constant weights and FF stands for feedforward. 
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Figure 2.1: The four components of the model and their interactions shown as arrows which indicate 

the direction of the interaction. 

 

 

 

 

 

Figure 2.2: The simplest interconnection. The dashed lines enclose the part of the component which 

describes the cortex in a single pixel. Connections to pixels in front and behind are not shown for 

clarity. Half of the blood volume of each Tl block is attributed to each of the two pixels to which it is 

connected. Tubes labeled Tl and Tv model the capillary bed and so include conversion of HbO2 to HbR 

while tubes labeled T0 and Ta model pre-capillary vessels and so do not include the conversion. 
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Figure 2:3: A more sophisticated interconnection allowing longer range interactions. The notation is 

identical to that of Figure 2.2. The duplication in each pixel of the triple of two Tl and one Tv block 

achieves the longer range interactions and additional duplications could be used to further increase the 

range. 

 

 

 

 

 

 

Figure 2.4: A complete version of Figure 2.2 which includes the sources and diodes to insure 

unidirectional flow. 
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.  

Figure 2.5: A purely resistive elementary component with fixed modulus (T0) in block form as an 

electrical circuit.  

 

 

 

 

 

 

 

 

 

Figure 2.6: An elementary component with both resistive and capacitive characteristics and a variable 

modulus (Ta, Tl, or Tv) in block form as an electrical circuit. The resistor between P1 and P (P2 and P) in 

the electrical circuit might alternatively have the value R(P1, δE)/2 (R(P1, δE)/2). 

 

 



33 

REFERENCES 

 

[1] David Kleinfeld, Pablo Blinder, Patrick J. Drew, Jonathan D. Driscoll, Arnaud 

Muller, Philbert S. Tsai, and Andy Y. Shih. A guide to delineate the logic of 

neurovascular signaling in the brain. Frontiers Neuroenergetics, 3(1), 25 Apr. 

2011. doi:10.3389/fnene.2011.00001. 

[2] David Attwell, Alastair M. Buchan, Serge Charpak, Martin Lauritzen, Brian A. 

MacVicar, and Eric A. Newman. Glial and neuronal control of brain blood flow. 

Nature, 468:232–243, 11 Nov. 2010. 

[3] Bruno Cauli and Edith Hamel. Revisiting the role of neurons in neurovascular 

coupling. Frontiers Neuroenergetics, 2(9), 23 June 2010. 

doi:10.3389/fnene.2010.00009.  

[4] Nicola B. Hamilton, David Attwell, and Catherine N. Hall. Pericyte-mediated 

regulation of capillary diameter: a component of neurovascular coupling in health 

and disease. Frontiers Neuroenergetics, 2(5), 21 May 2010. 

doi:10.3389/fnene.2010.00005.  

[5] Olaf B. Paulson, Steen G. Hasselbalch, Egill Rostrup, GitteMoos Knudsen, and 

Dale Pelligrino. Cerebral blood flow response to functional activation. J. Cerebral 

Blood Flow & Metabolism, 30:2–14, 2010. 

[6] Costantino Iadecola and Maiken Nedergaard. Glial regulation of the cerebral 

microvasculature. Nature Neuroscience, 10:1369–1376, 2007.  



34 

[7] Matthew J. P. Barrett, Merryn H. Tawhai, and Vinod Suresh. Arteries dominate 

volume changes during brief functional hyperemia: Evidence from mathematical 

modelling. NeuroImage, 62:482–492, 2012.  

[8] Anna Devor, Sava Sakadzic, Vivek J. Srinivasan, Mohammad A. Yaseen, Krystal 

Nizar, Payam A. Saisan, Peifang Tian, Anders M. Dale, Sergei A. Vinogradov, 

Maria Angela Franceschini, and David A. Boas. Frontiers in optical imaging of 

cerebral blood flow and metabolism. J. Cerebral Blood Flow & Metabolism, pages 

1–18, 18 Jan. 2012. 

[9] Nozomi Nishimura, Nathanael L. Rosidi, Constantino Iadecola, and Chris B. 

Schaffer. Limitations of collateral flow after occlusion of a single cortical 

penetrating arteriole. J. Cerebral Bloof Flow & Metabolism, 30:1914–1927, 2010.  

[10] Johannes Reichold, Marco Stampanoni, Anna Lena Keller, Alfred Buck, 

Patrick Jenny, and Bruno Weber. Vascular graph model to simulate the cerebral 

blood flow in realistic vascular networks. J. Cerebral Blood Flow and Metabolism, 

29:1429–1443, 2009.  

[11] Andy Y. Shih, Jonathan D. Driscoll, Patrick J. Drew, Nozomi Nishimura, 

Chris B. Schaffer, and David Kleinfeld. Two-photon microscopy as a tool to study 

blood flow and neurovascular coupling in the rodent brain. J. Cerebral Bloof Flow 

& Metabolism, 32:1–33, 2012.  

[12] Richard B. Buxton, Eric C. Wong, and Lawrence R. Frank. Dynamics of blood 

flow and oxygenation changes during brain activation: The Balloon model. 

Magnetic Resonance in Medicine, 39:855–864, 1998. 



35 

[13] Joseph B. Mandeville, John J. A. Marota, C. Ayata, Greg Zaharchuk, Michael 

A. Moskowitz, Bruce R. Rosen, and Robert M. Weisskoff. Evidence of a 

cerebrovascular postarteriole Windkessel with delayed compliance. J. Cerebral 

Blood Flow and Metabolism, 19(6):679–689, 1999. 

[14] Ying Zheng, Yi Pan, Sam Harris, Steve Billings, Daniel Coca, Jason Berwick, 

Myles Jones, Aneurin Kennerley, David Johnston, Chris Martin, Ian M. 

Devonshire, and John Mayhew. A dynamic model of neurovascular coupling: 

Implications for blood vessel dilation and constriction. NeuroImage, 52:1135–

1147, 2010.  

[15] Theodore J. Huppert, Monica S. Allen, Heval Benav, Phill B. Jones, and David 

A. Boas. A multicompartment vascular model for inferring baseline and functional 

changes in cerebral oxygen metabolism and arterial dilation. J. Cerebral Blood 

Flow and Metabolism, 27:1262–1279, 2007.  

[16] Jinyuan Zhou, David A. Wilson, John A. Ulatowski, Richard J. Traystman, and 

Peter C. M. van Zijl. Two-compartment exchange model for perfusion 

quantification using aterial spin tagging. J. Cerebral Blood Flow and Metabolism, 

21:440–455, 2001. 

[17] David A. Boas, Stephanie R. Jones, Anna Devor, Theodore J. Huppert, and 

Anders M. Dale. A vascular anatomical network model of the spatio-temporal 

response to brain activation. NeuroImage, 40:1116–1129, 2008.  

[18] Agnes Aubert and Robert Costalat. A model of the coupling between brain 

electrical activity, metabolism, and hemodynamics: Application to the 

interpretation of functional neuroimaging. NeuroImage, 52:1162–1181, 2002.  



36 

[19] Robert L. Grubb, Jr., Marcus E. Raichle, John O. Eichling, and Michel M. Ter 

Pogossian. The effects of changes in PaCO2 cerebral blood volume, blood flow, 

and vascular mean transit time. Stroke, 5:630–639, 1974.  

[20] George A. Truskey, Fan Yuan, and David F. Katz. Transport Phenomena in 

Biological Systems. Pearson Prentice Hall, 2 edition, 2009. 23  

[21] Edward W. Washburn. The dynamics of capillary flow. The Physical Review, 

17(3):273–283, March 1921. Second series. 

[22] A. R. Pries, T. W. Secomb, T. Gessner, M. B. Sperandio, J. F. Gross, and P. 

Gaehtgens. Resistance to blood flow in microvessels in vivo. Circulation Research, 

75(5):904–915, November 1994. 

[23] A. R. Pries and T. W. Secomb. Microvascular blood viscosity in vivo and the 

endothelial surface layer. Am. J. Physiol. Heart Circ. Physiol., 289:H2657–H2664, 

December 2005. 



37 

CHAPTER 3 

 

A MODEL OF CORTICAL ELECTRICAL ACTIVITY AND ITS CONNECTION 

TO THE VASCULAR AND METABOLIC LAYERS 

 

3.1 Introduction 

 In this chapter two different electrical layers are proposed which can connect 

to downstream metabolic and vascular components described in the previous chapter. 

The purpose of the electrical layer is to provide a framework which represents neural 

activity in the cortex. Because the spatial resolution of interest in the model is too 

large to resolve individual neuronal activity, the electrical layers presented are meant 

to represent a simplified and aggregated signal produced by many neurons. 

Experimentally, this electrical activity is commonly induced via direct stimulation by 

electrode or via indirect stimulation by inducing a sensory response (e.g., whisker 

flicks or forepaw stimulation). 

 Numerical results, a mathematical relationship between this model and a 

previously described empirically observed relationship called Grubb’s law, and a 

discussion are presented in the chapter’s remaining sections. 

3.2 An electrical layer 

Cortex is an electrochemically active region of the body in which neurons 

produce electrical signals when induced to fire action potentials. In proper functioning 

cortex, electrical activity (energy expenditure) is met with a metabolic response in 

tissue in which ATP are created (energy replenishment) and used to restore ion 
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gradients. This section proposes two models of cortical electrical activity for the 

electrical layer. The first proposed layer is represented using a purely mathematical 

Sobolev norm-based framework which is usually nonlinear based on the parameter 

values chosen. The second proposed layer is based on a 2-dimensional linear circuit in 

which power and energy consumption can be directly computed as a function of the 

circuit’s stimulus and resistances. 

3.2.1 A Sobolev norm-based electrical layer  

Suppose that there are multiple concurrent stimulations, in particular, let s(x, t) 

be the stimulation at position x and time t. The electrical component combines these 

stimulations to determine the total stimulation of the pixel at location x and time t 

(denoted by S(x, t)) by including a special oscillation and decay factor z, a propagation 

speed c, and a potentially nonlinear superposition parameterized by the value of p 

according to the equation 
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where z is a complex constant, Re{·} is the real part operation, and || · ||2 is the 

Euclidian norm. If z=1/λ and λ is real and negative then this equation represents 

exponential decay with space constant –λ. If  '/1/1  z  and λ is real and λ’ is 

real and positive then this equation represents an oscillatory exponential decay with 

space constant –λ for decay and period λ’ for oscillation. Double stimulus experiments 

are considered in Section 3.3 in which case 

)()()()(),( 2211 xxxxx   tststs                                            (3.2) 
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where δ(·) is the Dirac delta-function in 2-D. In this case,  
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In order to better understand the role of p, consider the case wehre the two stimuli are 

identical, z=0, and c=∞. Then,  

    )(2)(2, 1

/1
/1

1 tststS p
pp
x .                                         (3.4) 

For ∞ > p > 1 the superposition is sublinear since 21/p
  < 2, for p=1 the superposition is 

linear since 21/1 = 2, and for 1 > p > 0 the superposition is supralinear since 21/p > 2. 

 Many investigators report masses or concentrations of HbO2 and HbR, which 

are the output of the vascular component of the model rather than the absorption 

spectra of light at each pixel. If, however, the absorption results are desired, the key 

tool is the Beer-Lambert Law which describes absorption of light. Since the cortical 

material is scattering, a portion of the light illuminating the cortex, after a path of 

length b through the cortex during which absorption occurs, is reradiated from the 

surface of the cortex and measured. This application of Beer-Lambert involves two 

types of scatterers, HbO2 and HbR, and therefore two absorption cross sections 2HbO  

and HbR . Let I0 be the incident radiation intensity and I be the re-radiated radiation 

intensity. The Beer-Lambert law for two types of scatterers is 

  ))()()(exp()()( 22

0  bNNII HbRHbRHbOHbO
                          (3.5) 
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where 2HbO
N  and HbRN  are the number of particles of HbO2 and HbR, respectively, 

present per unit volume in the volume through which the beam propagates and path 

length, both cross sections, and both intensities depend of the wavelength λ. In Section 

2.3, 2HbO  and HbR  are defined to be the mass of HbO2 and HbR, respectively, in a 

pixel and 2HbO  and HbR  are the corresponding values after incorporating the effect 

of the point spread function. Effectively add the missing third dimension of the model 

by assuming that the pixel has a third dimension Δz. Then 

)/( 222

zyx

HbOHbOHbO
wN    and )/( zyx

HbRHbrHbR wN    where )(2 HbRHbO
ww  

converts )(2 HbRHbO   with units of [Mass] to number of molecules which is 

dimensionless. 

3.2.2 An Alternative Electrical Layer Using Linear Circuit Elements 

 At spatial scales greater than one neuron but still microscopic                       

(i.e., 10-3–10-5m), the paths of electrical excitation of the cortex are complicated. 

Perhaps models analogous to those developed for cardiac fibrillation could be used but 

such models describe phenomena at higher spatial resolution than can be seen in the 

optical data. Therefore, a simple model, a 2-D analog of the 1-D cable equation, can 

be used as an alternative model for the electrical layer already proposed in the 

previous section. While the motivation for the 2-D electrical circuit model are the 

same as for a 1-D cable model,  the parameters of the 2-D model are not related to the 

10-6m spatial scale parameters used in a 1-D cable model to describe propagation of an 

action potential in an individual neuron. The circuit diagram depicting the electrical 

component is shown in Figure 3.1. As is described previously, this circuit is the 2-D 
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analog to the 1-D cable equation. A resistive planar outer cortical layer and a resistive 

planar inner cortical layer are connected by capacitive and conductive components. An 

electrical depolarization wave is generated at the current source Ke, and propagates 

radially outwards. Unlike the 1-D Hodgkin-Huxley cable model for axonal 

depolarization propagation and related models, there are no regenerative components 

in this proposed model. Hence the depolarization wave eventually dies away as it 

travels outwards from the source. The input to the electrical component is )()(

, tK e

ji  and 

the output is )()(

, tv m

ji  both for each pixel which is indexed by (i,j). The relationship 

between the input and output is determined in the remainder of this section. 

 Using KCL, Ohm’s Law (i.e., the v-i characteristics of a resistor), the v-i 

characteristics of a capacitor, and the definition 
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a set of equations can be derived for ),,()(

, tyxv m

ji  where the set of equations treats time 

t as a continuous variable but space (x,y) is discretized, where each set of rin, rout, C, 

and gm in Figure 3.1 belong to a single pixel. Beginning with the KCL equations, the 

current traveling through the membrane, yx

m tyxK ),,( , is represented by a 

combination of four currents traveling form the four neighboring pixels to the pixel of 

interest on the inner layer. Likewise, the current exiting to the ground at a given pixel 

of interest is the excitation current, yx

e tyxK ),,( , minus the membrane current, 

yx

m tyxK ),,( , which equals a combination of the currents traveling along the outer 

layer from the neighboring pixels to the pixel of interest. The resulting equations are 
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where the set of indices for the four neighbors of the (i,j)th pixel are denoted by Ni,j = 

{(i+1,j), (i-1,j), (i,j+1), (i,j-1)} and Δ is defined by Δ = Δx for 

)}1,(),1,{()','(  jijiji  and = Δy for )},1(),,1{()','( jijiji  . Using Ohm’s 

law, the relationships between currents, voltages, and resistances along the inner and 

outer layers can be expressed in the following pair of equations: 
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Combining Eqs. 3.7 and 3.9 and Eqs. 3.8 and 3.10 provides relationships between 

inner and outer voltages and the membrane and excitation currents:  
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As described in Eq. 3.6, membrane voltage at the (i,j)th pixel, denoted by m

jiv , , is the 

difference between the voltage of the inner layer and the voltage of the outer layer at 

that pixel, i.e., 
out

ji

in

ji vv ,,  . Using the definition of vm gives 
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From Eqs. 3.11 and 3.12 it follows that 
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Substituting Eqs 3.14 and 3.15 into Eq. 3.13 gives a relationship strictly between 

membrane voltage and membrane current, excitation current, and inner and outer 

resistances: 
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The membrane current at the (i,j)th pixel flows through a resistor and capacitor in 

parallel, so it can be expressed in terms of membrane conductance, g, and membrane 

capacitance, C. Since the current through the conductance m

jiyx vg ,  is and the current 

through the capacitance is 
dt
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C
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Combining Eqs. 3.17 and 3.18 gives 
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which can be rearranged to the form 
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Eq. 3.20 is a system of coupled ordinary differential equations, one equation for each 

pixel, for the membrane voltage as a function of the excitation e
jiK , . In the limit as 

0 x  and 0 y , this system becomes a partial differential equation in two space 

variables and time, which will be described in the following section. For the ease of 

software development that links this electrical layer to the vascular layer, it is 

advantageous to use the ordinary differential equations described for each discrete 

pixel rather than partial differential equations. 

 The reason the electrical layer proposed in the previous section, rather than the 

2-D planar electrical circuit layer proposed in this section, is used to drive the vascular 

and metabolic layers is purely phenomenological. Electrode recordings of rodent 

cortex in response to whisker stimulation have shown to produce a “center-surround” 

response in which electrical activity in the cortical area corresponding to the flicked 

whisker increases, while activity in the surrounding regions is suppressed due to 

lateral inhibition [1]. This leads to qualitative behavior which the 2-D circuit discussed 

in this section cannot replicate. For example, because of the center-surround 

phenomenon observed experimentally, it has been shown that simultaneously 

stimulating multiple whiskers results in a sublinear electrical response compared to the 

response achieved by linearly superpositioning the activity produced by flicking 

whiskers individually. Because the circuit is purely linear with passive components 

(resistors and capacitors), it is impossible to achieve an electrical response that is 

anything other than purely additive when multiple sources of stimulation are present 

[2]. The electrical layer described in the previous section, however, is advantageous in 

that sublinear behavior can be attained with proper selection of the exponent p. 
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 While the layer described in the previous section is better suited to achieve 

nonlinearity, it can be viewed as a less physical way of representing electrical activity 

in cortex. One of the attractive features of the 2-D planar circuit presented in this 

section is that energy dissipated in a pixel can be computed based on the current 

flowing through that pixel and the impedance values of the resistors within the pixel. 

Therefore a less abstract value for the energy that has been dissipated in a specific 

pixel can be input to the downstream metabolic and vascular layers.  

3.2.3 The case of an impulsive excitation 

 In the limit as 0 x  and 0 y , Eq. (3.20) becomes the partial differential 

equation: 
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Letting the excitation be 0, the PDE can be represented more simply in the form 
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which allows a separation of variables by assuming vm=X(x)Y(y)T(t) so that the PDE 
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Solving gives the general solution where 
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which is valid for any p and q. Therefore it is possible to linearly suppose all 

possibilities of p and q using a function H(p,q) to get 



46 

dqdpeeeqpHtyxv
tpq

b
y

a

q
jx

a

p
j

m

 











)1(

1 22

),(),,( .                   (3.25) 

Setting t to 0 and rearranging gives.  
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which is simply the 2-D Fourier transform of H(p,q). If vm at t=0 is impulsive, i.e., 

vm(x,y,0)=δ(x,y), then 
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where A=b/(8π2), b=c/g, and a2=1/(g(rin+rout)). Therefore vm takes the form related to a 

circularly symmetric 2-D Gaussian distribution which has variance that increases as 

time t increases. The function broadens spatially and shrinks in amplitude as time goes 

on. 

3.3 Numerical Results 

 Much OISI data is published in terms of the time-course of hemoglobin 

concentrations, often at a single location. Therefore, no optics is included in the 

model. In addition, when only a single location is considered, the model is further 

simplified to a model of a single pixel which implies that no electrical layer is 

included. The predictions of the mathematical model are computed by a program 

written in the Matlab programming language [5].  

 The stimulus in Ref. [9] is forepaw stimulation of the rat while the stimulus in 

Ref. [10] is stimulation of the whisker pad of the rat. In both cases, the resulting signal 

in the cortex is not known. For this reason, some of the signals in the model have an 

arbitrary energy unit. This unit eventually cancels out when computing quantities of 
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interest such as μHbT. In the metabolic component of the model, signed energy terms 

are used so that e , the target value for the energy budget (See Section 2.3.1, Eqs. 2.20 

and 2.21) can be taken to be zero which needs no unit. Also in the metabolic 

component of the model, the Michaelis-Menten conversion of HbO2 to HbR and 

energy has the same arbitrary unit for the energy. 

 Although it is not fundamental to the modeling approach, in this model it is 

assumed that the hematocrit is constant. Therefore in some standard volume, the sum 

of the masses of oxygenated and deoxygenated hemoglobin ( HbRHbO  2 ) is 

constant; the sum of the concentrations ( HbRHbO
cc 2 ) is constant; and, since 

hemoglobin only occurs in the two forms, the sum of the fractions ( HbRHbO
ff 2 ) is 

one. Because fractions are restricted to the interval from 0 to 1, which is not true for 

concentrations or masses, the computer program generally uses fractions. 

Figure 3.3 shows the response of the model using the nominal parameters. The 

parameters chosen result in a moderate initial dip in the concentration of HbO2 in 

these noise-free curves. 

Figures 3.8 and 3.9 show how key responses of the model change as a function 

of changes in six of the parameters in the model. The responses that are displayed are 

(1) concentration of oxygenated hemoglobin (QHbO2 (t)/QHbT(t)), (2) concentration of 

deoxygenated hemoglobin (QHbR(t)/QHbT(t)), (3) total mass of hemoglobin (μHbT(t)), 

and (4) cerebral blood flow (CBF). By changes in parameters only, a wide range of 

amplitude changes occur, including changes in the amplitude of the initial dip in the 
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concentration of HbO2. Changes in duration are much more moderate, because the 

input is the same for all 30 choices of parameter values.  

Figure 3.4 shows the hemoglobin curves for an example modeled on Ref. [9, 

Figure 3] which describes the response in a rat to forepaw stimulation at 3Hz for 10s. 

This is a longer duration stimulation than the 2s duration of the stimulation in Figures 

3.3, 3.5–3.9 and therefore the duration of the response is longer. More interestingly, 

and similar to the experimental data in Ref. [9, Figure 3], the decay from the peak 

signals is in two phases with an intermediate plateau. The initial peak in HbO2 is due 

to the presence of the temporal derivative of the Young’s modulus, i.e., dδE/dt, in Eq. 

2.10. 

Figure 3.5 shows hemoglobin and cerebral blood flow curves for an example 

modeled on Ref. [10, “Awake” panels of Figure 6, p. 39]. While the example in Figure 

3.4 considered an input of long duration, this considers an input of various 

frequencies, including higher frequencies up to 40Hz, of a rat whisker pad by 

electrical stimulation. As in the experimental data, there is a strong frequency 

dependence in the response amplitude of the model.  

Figure 3.6 demonstrate the nonlinearity of the system with two examples. The 

inputs are the linear superposition of signals of different amplitudes or different 

frequencies and both the actual output and the linear superposition of the individual 

outputs are shown. The actual outputs are substantially smaller in amplitude than the 

linear superpositions of the individual outputs.  

Much of the quantitative published data concerns the response at a single point, 

i.e., a single pixel, to a stimulus at a single point, e.g., a whisker pad stimulation. But 
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the model describes a 2 D array of pixels responding to a 2-D input signal. Figure 3.7 

shows the 2-D response of the model as an image at various times in response to a 

single spatially-restricted stimulation and in response to a pair of spatially-restricted 

stimulations. The major point is the sublinear superposition of the responses to the pair 

of stimuli. 

3.4 Grubb’s Law 

As was demonstrated in Section 2.3.3, the model can fit experimental data. 

However, it can also describe abstract relationships. To demonstrate this ability, in this 

section the model’s predictions for Grubb’s Law [6] relating cerebral blood volume 

and flow are presented. 

 Denote cerebral blood volume by CBV and cerebral blood flow by CBF. 

Grubb’s Law [6, Eq. 5, p. 631] is the relationship 

38.0

00 )/(8.0/ CBFCBFCBVCBV                                        (3.28) 

where, in the units of Ref. [6, Eq. 5, p. 631] (CBV in milliliters of blood per 100gm 

and CBF in milliliters of blood per 100gm per minute), the constants CBV0 and CBF0 

have numerical value 1. 

 The model described in this manuscript includes temporal and spatial 

dynamics which are not present in Grubb’s Law. Therefore, to connect between the 

model and Grubb’s Law it is assumed that the model is spatially homogeneous and in 

the steady state. Spatial homogeneity implies that the flows between pixels via Tl in 

Figure 2.2 are zero. Furthermore, Grubb’s Law comes from imaging studies with 

voxels that are large compared to the length of a capillary so that, even in an 

inhomogeneous situation, the flow between pixels is small. Being in the steady state 
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implies that the capacitors are open circuit. Therefore the entire behavior of the model 

is determined by the serial connection of the five resistors )(aR , 2/))(),((
,

)(

, ttPR
jiE
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ji  , 

2/))(),((
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ji   between Pa and 

ground in the path T0, Ta, and Tv of Figure 1(b) after the electrical circuits of Figure 

2.5-6 are inserted into Figure 2.2. CBF is then the ratio of Pa divided by the sum of 

these five resistors. The voltages at the four nodes between the five resistors can all be 

computed by voltage divider calculations. Since now current flows through the 

resistors in Tl in Figure 1(b), it follows that )()( )0(
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, tPtP ji
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ji  . From the voltages 
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ji   can be computed and the sum of these charges is CBV. Since there 

is no time dependence, the “(t)” can be removed and since there is no special 

dependence the “i,j” can be removed. 

 Rather than using the circuit ideas of Section 2.2.3, outlined in the previous 

paragraph, to derive the equivalent of Grubb’s Law for the model described in this 

manuscript, the underlying tube ideas of Section 2.2.1 and 2.2.2 are used. The 

contribution of ))(),((
,

)(

, ttPR
jiE

v

ji  , corresponding to arterioles is ignored since it is 

much smaller than the contribution from capillaries. The two contributions from 

capillaries, ))(),((
,

)(

, ttPR
jiE

v

ji   and ))(),((
,

)(

, ttPR
jiE

v

ji   are combined in terms of a total 

length lc of capillaries. In the tube approach, if the length of the tube is lc and the 

radius of the tube is ac then 

2

cc alCBV  .                                                           (3.29) 
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Furthermore, if the pressure from end-to-end of the tube is Pc and the resistance to 

flow through the tube is Rc then 

4
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 .                                           (3.30) 

where the second equality is due to Poiseuille’s formula (Eq 2.5). Solving Eq. 3.30 for 

2

ca  and using the result in Eq. 3.29 gives 
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which is the equivalent of Grubb’s Law for the model described. 

 A more sophisticated resistance formula than Poiseuille’s formula (Eq. 2.5) 

would alter the 4

ca  term in Eq. 3.30 which would alter the 0.5 exponent in Eq. 3.31. 

Therefore it may be possible to move the exponent closer to the value in Ref.[6, Eq. 5, 

p.631]. An alternate point of view is that viscosity η depends on radius ac via a power 

law with unknown exponent, i.e., w

ca2

0   for some value of w [7,8], and use 

Grubb’s law to estimate w. With this point of view, Eq. 3.30 becomes 
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resulting in 
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which implies that 
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In order to match the exponent value of 0.38 in Ref.[6, Eq. 5, p.631], it is necessary to 

have 1/(2-w) = 0.38 which implies that w = -0.63. 

 Pc can be expressed in terms of Pa and the fundamental properties of tubes, 

specifically E0, δE, a0, t, and l, and the fundamental property of blood, specifically, η. 

First solve a 2-component vector fixed point equation constructed from two voltage 

divider formulas, specifically,  
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where R(P,δE) is defined bye Eq. 2.7 and the solution for P(a) and P(v) is denoted by 

)(aP  and )(vP , respectively. If the constant R(a) is also expressed in terms of the 

diameter of the arteriole by Poiseuille’s formula then the constant η is not needed 

because it occurs in every resistance term and therefore cancels from the ratios. Then 

)(2 v

c PP  . Using this value for Pc gives the constant for Eq. 3.31 in terms of system 

blood pressure Pa. 

3.5 Discussion 

 This chapter presents a set of tools for modeling the cerebral microvasculature 

and demonstrates a complete model. Important goals that have been achieved are to 

describe both blood flow and cerebral blood volume, leading to use of both resistors 

and capacitors; to include the possibility that blood might enter the microvasculature 

in one pixel but exit from a different pixel; and to describe the flows and volumes of 

both oxygenated hemoglobin and deoxygenated hemoglobin and the conversion of 
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oxygenated into deoxygenated hemoglobin. Part of the model is closely based on 

physical principles, such as Kirchhoff’s current and voltage laws, and Laplace’s and 

Poiseuille’s laws, while other parts are phenomenological, such as control laws. As 

demonstrated in Section 3.3, changing the parameters in the complete model described 

leads to quite different behaviors, e.g., the presence or absence of an initial decrease in 

HbO2 in response to an excitation. Finally, in Section 3.4, the model is connected to 

the macroscopic world by deriving Grubb’s law.  

The model built out of the components described above could be generalized 

in several ways. For instance, a voltage source (pressure source) is used to describe the 

heart. However, use of a current source would probably make it easier to describe 

blood “stealing” [11] where an area that is stimulated has increased flow and volume 

and surrounding areas have decreased flow and volume. Most general among linear 

models would be to use a Thévenin equivalent circuit for the heart, i.e., a voltage 

source (pressure source) in series with a resistor.  

Also related to blood “stealing” is the control law for the Young’s modulus of 

the vessel walls. In Eqs. 20 and 21, Young’s modulus is constrained to be between αE0 

and E0 where E0 is the resting value. Therefore, under no circumstances will the 

Young’s modulus be greater than E0, i.e., in no cases will the vessel further constrict. 

This could be changed to introduce a resting Young’s modulus Erest such that αE0 < 

Erest < E0 in which case vessels could constrict relative to the resting state which 

would cause blood “stealing”.  

A major issue is the overall topology of the microvascular network. An 

increasing number of network topologies are becoming available from 2-photon laser 
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scanning microscopy (2PLSM) [3, 4]. A challenge is that they tend to fragment at 

depth, and so an estimation strategy that can determine a fully-connected network is a 

necessary and challenging part of using such networks in models of the type described 

above.  

Linear systems are used to describe the phenomenological control laws. 

However, delays may provide more parsimonious descriptions. Delay-differential 

equations are usually not finite dimensional. However, if the equations are solved by a 

forward-Euler approach and all delays are an integral multiple of the step size in the I-

Euler approach then it is still possible to solve the resulting equations in a 

straightforward manner.  

Models constructed with these tools reproduce single-pixel OISI data from two 

different laboratories (Figures 3.4 and 3.5) and reproduce the sublinear superposition 

seen with multiple stimuli (Figure 3.7).  

The methods described are really a toolbox for the construction of 

mathematical models rather than a single unique mathematical model. After having 

been validated on an initial set of experiments, such models can be used to predict the 

response to yet unperformed experiments. For example, predict the response of a 

mouse with polycythemia vera from the response of a normal mouse by changing just 

the blood dynamic viscosity parameter in Eq. 2.5 or predict the response of a mouse in 

an experiment done in a second laboratory with a second stimulus paradigm from the 

response of a mouse in the first laboratory with the first stimulus paradigm (by 

modification of Eq. 2.18) thereby aiding in the comparison of results between 

laboratories. The range of prediction is likely limited to situations with fundamentally 
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the same neurovascular physiology, e.g., the response of a subject undergoing 

spreading depression or an epileptic seizure is probably poorly predicted by a model 

validated with normal data. Finally, models of this type may be useful ways to 

summarize intra-operative clinical data [12]. 
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Figure 3.1: A diagram of the two-dimensional planar electrical layer circuit.  

 

 
Figure 3.2: 2-D electrical layer output using the Sobolev norm-based model. The top two panels show 

individual normalized stimulation in two different areas of cortex. The bottom left panel shows linear 

superposition of the top two panels (i.e., p=1). The bottom right panel shows the sublinear superposition 

of the top two panels with p=1.6. The same color map is used for the top two panels, and the same color 

map is used for the bottom two panels. 
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Figure 3.3: Behavior of the model with nominal parameters. Time course (units of seconds) of 

fractional changes in (1) concentration of oxygenated hemoglobin, (2) concentration of deoxygenated 

hemoglobin, (3) total mass of hemoglobin, (4) arteriolar diameter, and (5) Young’s modulus. In the 

absence of the electrical layer, the input to the budget equation (Eq. 2.16) is directly controlled. The 

excitation (p(t) in Eq. (2.19) lasts 2s and is a sequence of positive-going pulses where the time interval 

between the leading edges of sequential pulses is 0.05s (i.e., 20Hz).The budget (e(t)) starts at threshold 

and is driven below the threshold by the pulses, which results in dilation. 

 

 

 

 
 
Figure 3.4 Simulated trajectories (time unit of seconds) of oxygenated, deoxygenated, and total 

hemoglobin concentrations (Q ratios) or masses (μ) in response to a 10s stimulation demonstrating a 

plateau midway through the response which is similar to experimental data from Ref. [9, Figure 3] 

which describes the response in a rat to forepaw stimulation at 3Hz for 10s. In the absence of the 

electrical layer, the input to the budget equation (Eq. 2.16) is directly controlled. The excitation (p(t) in 

Eq. (2.19) lasts 10s and is a sequence of positive-going pulses where the time interval between the 
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leading edges of sequential pulses is (1/3)s (i.e., 20Hz).The budget (e(t)) starts at threshold and is driven 

below the threshold by the pulses, which results in dilation. 

 

 

 
 
Figure 3.5 Simulated trajectories (time unit of seconds) of oxygenated, deoxygenated, and total 

hemoglobin concentrations (Q ratios) or masses (μ) in response to stimulations of varying frequencies 

which are similar to experimental data from Ref. [10, Figure 6] which describes the response in a rat to 

electrical stimulation of a whisker pad at 1-40Hz for 2s. In order of increasing amplitudes, the curves 

are for stimuli at 1, 2, 5, 10, 20, or 40Hz. In the absence of the electrical layer, the input to the budget 

equation (Eq. 2.16) is directly controlled. The excitation (p(t) in Eq. 2.19) lasts 2s and is a sequence of 

positive-going pulses where the time interval between the leading edges of sequential pulses 1s, 0.5s, 

0.2s, 0.1s, 0.05s, or 0.025s (i.e. 1, 2, 5, 10, 20, or 40Hz) in the six different curves. The budget (e(t)) 

starts at threshold and is driven below the threshold by the pulses, which results in dilation.  
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Figure 3.6: Nonlinearity with respect to amplitude and frequency of the excitation signals based on the 

model of Figure 3.3 with the excitations of Figure 3.5. The solid curves show the response of the system 

when excited by the sum of two excitations while the dotted curves show the sum of the responses to 

the individual excitations. The excitations for the amplitude example in the left column are both the 

10Hz excitation from Figure 3.5 so the double excitation is the same as either single excitation with an 

amplitude scaled by a factor of 2. The excitations for the frequency example in the right column are the 

10Hz and 20Hz excitations of Figure 3.5. 
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Figure 3.7: Images from the response of the 2-D model at the indicated times (units of seconds). The 

parameters are the nominal parameters of Figure 3.3. with the additional parameters (Eq. 3.1) of c=∞, 

z=4[Pixel]-1, and p=1.6 except for Panel I where p=1. The temporal characteristics of the input are 

unchanged from the input of Figure 3.3 and the pulse amplitude is 5. The same color map is used in all 

images of Panel (a) and in all images of Panel (b) and (c). 
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Figure 3.8: Sensitivity of the time course (units of seconds) of fractional changes in (1) concentration 

of oxygenated hemoglobin (Row 1), (2) concentration of deoxygenated hemoglobin (Row 2), (3) total 

mass of hemoglobin (Row 3), and (4) cerebral blood flow (Row 4) to changes in three of the parameters 

relative to the nominal values (Figure 3.3). The parameters that are perturbed are (1) the ratio between 

the two values of the maximum rate for the conversion of HbO2 to HbR (Column 1), (2) the number of 

capillaries (Column 2), and (3) the half maximum rate for the conversion of HbO2 to HbR (Column 3). 

The input is unchanged from the input of Figure 3.3. The curves in the second and third rows of the 

third column superimpose so accurately that only one curve is visible. 
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Figure 3.9: Sensitivity of the time course (units of seconds) of fractional changes in (1) concentration 

of oxygenated hemoglobin (Row 1), (2) concentration of deoxygenated hemoglobin (Row 2), (3) total 

mass of hemoglobin (Row 3), and (4) cerebral blood flow (Row 4) to changes in three of the parameters 

relative to the nominal values (Figure 3.3). The parameters that are perturbed are (1) the ratio of the 

steady state value of the Young’s modulus in the dilated versus constricted states (Column 1), (2) the 

time constant for the decrease of the Young’s modulus toward the dilated steady state (Column 2), and 

(3) the ratio of the baseline masses of HbO2 to HbT (Column 3). The input is unchanged from the input 

of Figure 2. 
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CHAPTER 4 

 

ESTIMATING CORTICAL MICROVASCULAR BLOOD FLOWS FROM 

PARTIAL 2-PHOTON MICROCSOPY DATA BY COMPUTATION WITH A 

CIRCUIT MODEL  

 

4.1 Introduction 

 The cortical microvasculature is comprised of a complicated network of 

arterioles, capillaries, and venules in which blood flow transports molecules to and 

from the cortical tissue. Since molecular transport across the blood-brain barrier 

primarily occurs in the microvasculature (especially in capillaries), these vessels are 

crucial to the metabolism, energetics, and functionality of the cortex. Occlusions, such 

as small stroke, are thus damaging to cortical health as they impede microcirculation. 

 Two photon laser scanning microscopy (2PLSM) allows in vivo imaging of the 

microvasculature to depths of 1mm, as well as blood flow measurements in vessels by 

tracking the time-varying position of individual red blood cells. While all vessels are 

within the microscope’s imaging range (typically a 1mm3 volume) can be resolved, 

blood flow measurements can be made on only a subset of these vessels due to 

experimental limitations, such as the practical duration of anesthesia for a rat. The goal 

of the research is to use computational tools to estimate the blood flows in all the 

vessels. A model is thus needed to relate the measured and unmeasured blood flows. 

Inputs to the model are vessel diameter, length, interconnection topology, and the 

measured blood flows. The output of the model is predictions for flow velocity in 

every imaged vessel. 
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4.2 Methods and Materials 

 Methods for the two-photon microscopy data acquisition on anesthetized rats 

are described in [1]. The microvasculature is modeled as a resistive circuit in which 

current, q, is blood flow, and voltage, V, is blood pressure. Each vessel in the network 

represents a resistive branch that connects two nodes, or vessel bifurcation points, in 

the microvasculature. The circuit obeys Kirchhoff’s current law (KCL), Kirchhoff’s 

voltage law (KVL), and Ohm’s law so that current is conserved at nodes and the 

voltage drop across a branch is proportional to the current through the branch and the 

branch’s resistance. The resistance, R, of each branch is computed using Poiseuille’s 

Law, assuming that the vessel is straight, which describes a relationship between 

length, l, radius, a, and blood viscosity, η, for nonturbulent flow. The formula is 

.
l8

),,(
4a

alR



                                                       (4.1) 

In reality blood exhibits non-Newtonian flow characteristics because of its slurry-like 

composition of cells and plasma. To correct for non-Newtonian effects a diameter-

dependent viscosity, η(d), described by [2], [3] is used. As shown in Figure 6 of [2], 

the viscosity at hematocrit 45% varies by a factor of three over the range of vessel 

diameters greater than 10μm. 

 The microvasculature extends outside of the volume of brain that is imaged, as 

demonstrated in Figure 4.1 which shows a z-projection of 2PSLM topology data of 

surface vessels and penetrating arterioles. Therefore there are branches of the circuit 

that connect a node within the image to a node outside the image, and thus the circuit 

is incomplete. The circuit is completed by placing an unknown voltage source at each 
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cut branch. These voltages are referred to as boundary voltages. To the cut ends that 

are on the surface vessel side of the vascular system a voltage source of unknown 

value is attached whose other terminal is connected to ground. Voltage sources are 

used rather than a current source because the heart is more nearly a voltage source. To 

the cut ends that are on the capillary side of the vascular system, i.e., to cut penetrating 

arterioles, each penetrating arteriole is lengthened by 1mm. Then, at the capillary end 

of the penetrating arterioles, a large common resistance of known value (representing 

the resistance of the capillary bed) is attached and connected to a ground.  

Because of the many cut branches, the circuit has many input and many output 

nodes. Vessel bifurcations where vessels split or join are called internal nodes. 

Voltages at these nodes are called internal voltages. Figure 4.2 shows a small scale 

example of an imaged microvasculature topology and its corresponding circuit model. 

Figure 4.3 shows the region inside the rectangle in Figure 4.1, labeled with 

experimental flows and speeds and speeds. 

Since the resistance values are known, once the voltage source values are 

known, the entire circuit is known and flows can be computed in any branch of the 

circuit. Therefore, the key computation is to estimate these voltage source values. 

The mouse is anesthetized for multiple hours making it challenging to avoid 

alteration in its physiological state. Therefore it is assumed that the boundary voltages 

vary with time in the simplest possible manner, specifically, that the voltages vary 

linearly with time at a single rate common to all pressures. Therefore, for the ith 

pressure which is denoted by Vi(t), the equation )1()( )0( tVtV ii   is used where t is 

time and )0(

iV  and ε are constants. 
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For any set of values for the boundary pressures, the flows in any set of 

branches can be computed. Therefore the values of the boundary pressures can be 

determined by minimizing a weighted least squares criteria which measures the 

weighted squared distance between the optically-measured flows and the computed 

flows. The weight balances the importance of the flows in large and in small vessels 

(flows vary by more than 100 to 1) and the function )1log(/1 measured

iq  is used to 

weight the square of the difference between the optically-measured and the computed 

flows in the ith branch where )0(

iV  is the optically-measured flow. The presence of 

both )0(

iV  and ε means that the least squares problem is not linear. However, the 

problem is bi-linear, that is, if the value of ε is known then to determine the values of 

)0(

iV  for all values of I is a linear vector weighted least squares problem while if the 

values of )0(

iV  for all values of I are known, determining the value of ε is a linear 

scalar weighted least squares problem. This bi-linear problem is solved with an 

algorithm that takes advantage of the bi-linear structure. The algorithm is iterative and 

one iteration has two steps. First, for the current value of ε, compute a new set of 

values for )0(

iV  for all values of I by the Moore-Penrose pseudoinverse which is 

computed in Matlab [4]. Second, using the values for )0(

iV  from the first step as fixed, 

determine a new value for ε by the Moore-Penrose pseudoinverse. The algorithm 

iteratively progresses until convergence is achieved. 

It is assumed that the times at which individual measurements are made are 

known exactly. If the flow in a particular vessel is measured multiple times, all 

measurements can be used in the weighted least squares problem if so desired. 
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 The mathematics are described in the following paragraphs. Let In be the nn  

identity matrix. Let Nin be the number of internal nodes and Nbnd be the number of 

boundary nodes. Let positive integers I,j{1,…,Nin+Nbnd} index the nodes. Let 

indexes {1,…,Nin} represent internal nodes, let indexes {Nin+1,…, Nin+Nbnd-1} 

represent boundary nodes where the boundary voltage sources are placed, and let 

index Nin + Nbnd represent the ground node.  

For simplicity in the equations, it is assumed that every pair of internal nodes is 

connected, with Ri,j=Rj,I >0. Currents between nodes are represented by qi,j, where 

qi,j=-qj,i. Branches between nodes in the model that do not exist in the 

microvasculature will have resistance value of infinity. Thus current in these branches 

is zero, which in effect represents the absence of a connection between these nodes. 

Let the voltages at node I be denoted Vi. Define internal voltages,   Vin=(V1,…,VNin)
T, 

boundary voltages Vbnd =(VNin+1,…,VNin+Nbnd-1)
T, and ground voltage Vg=(VNin+Nbnd). 

The vector containing both internal and boundary voltages (but not ground) is defined 

as V=(Vin
T

, Vbnd
T)T. The choice of the definition of ground has no effect on the results 

because the measurements are exclusively currents which depend solely on voltage 

differences. 

At each of the Nin internal nodes, write KCL, i.e., the sum of the currents entering (or 

leaving) the node is zero. For n{1,…,Nin}, the form of the equations is 

0
,1 ,









bndin NN

nmm mn

mn

R

VV
                                                  (4.2) 

which is equivalent to 
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Subdivide the second sum to get 
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Use the fact that 
bndin NNV  = 0 since it is ground to get 
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Move terms that involve the boundary condition voltage sources to the right hand side 

of the equations to get 
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Define two matrices of conductances, denoted by inin NN
G


 and

)1( 
 bndin NN
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mn

mn
R

B
,

,

1
 .                                                         (4.8) 

The negative of (4.7) can be written in the form 

bndin BVGV                                                              (4.9) 

which implies 

bndin BVGV 1 .                                            (4.10) 

Finally, 
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All currents can be computed by 
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Let α=(I,j), for (I,jξ={1,…,Nin+Nbnd}), be an index describing a flow by giving the 

nodes at either end of the branch. Let i=φ(α) and j=ψ(α) be the node indices. Let 
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Then 
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where L bndNN 
   is defined by 
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Therefore, the predictor of the vector of currents, denoted by )()(

bndVq  , is 

bndbnd VLVq  )()( .                                                      (4.16) 

 Notice that it is perfectly reasonable to have the same current appear twice, in 

which case the corresponding two rows of C will be equal. Multiple appearances is the 
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way in which multiple measurements of the same current can be fit into the least 

squares problem. 

 As mentioned above, the experiment lasts 2-6 hours during which time there 

are both systematic and nonsystematic variations in the experimental subject’s 

physiology. It is therefore necessary to account for at least the systematic variations. 

The systematic variations are conceived of as time-dependent boundary voltages. 

Three different types of time dependence are considered: (1) no dependence, (2) 

dependence of all voltages on time with the same proportionality constant, and (3) 

dependence of one subset of voltages on time with the complimentary subset of 

voltages independent of time. In this chapter, the subsets of boundary voltages that are 

considered in Case (3) are only surface arterioles versus penetrating arterioles. Cases 

(1) and (2) are subcases of Case (3) so in the remainder of this section, Case (3) is 

described. 

 Only affine dependence for the boundary voltages is considered so the ith 

boundary voltage, denoted by (Vbc)i is described by 

)1()())(( )0( tVtV ibndibnd                                               (4.17) 

where ε is the same for all of the boundary voltages that are time dependent. Because 

the boundary voltages now depend on time, so do the predicted currents, specifically, 
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where )()0(

0 tVbnd  are the boundary voltages that depend on time and )()0(

1 tVbnd  are the 

boundary voltages that are independent of time. In Eq. 4.21, all components of )()( tq   

are evaluated at the same time. However, in the experiment, different components are 

measured at different times. Therefore, the predictor for the experimental 

measurements is 
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Therefore, the predictor of the vector of currents, denoted by ),( )0()(

bndt Vq  , is 

)0()0()( )(),( bndtbndt VLVq                                                    (4.23) 

where 
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The times 
Ntt ,,1   are known but neither ε nor )0(

bndV  are known. This is a nonlinear 

predictor equation because it involves products of ε and )0(

bndV . 

A weighted least squares approach is used to predict the boundary voltages as a 

function of measured currents. Specifically, 
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where ./ indicates component-by-component division of one vector by another vector. 

If the problem is underdetermined, then there are many Vbnd that exactly achieve the 

global minimum described in Eq. 4.25. In this case, the particular Vbnd solution that 

has the minimum Euclidean norm is the one taken. In the case of predicting flows in 

the network shown in Figure 4.1, the problem is overdetermined because 

dimensionality is reduced drastically by connecting the arterioles to a common resistor 

which is connected to a ground. 

4.3 Results 

Computations were performed on the traced network depicted in Figure 4.1. 

Figure 4.3 shows an enlarged portion of the network inside the rectangle in Figure 4.1 

with measured red blood cell speed measurements, diameter measurements, blood 

flow measurements extrapolated from a known flow profile, and measurement times. 

In Figure 4.4, the flow in one of the vessels was measured at 14 different time 

points spread throughout the duration of a 2:20 hour experiment. Only the first of 

these time points is used in any of the estimates described in this chapter. Therefore, as 

shown in Figure 4.4, it is impressive that the time variation predicted by the model so 

accurately matches the additional 13 measurements, implying that a linear time 

dependence of boundary pressures is sufficient in the model.  

The simplest validation is to test if the computation reproduces the measured 

results. For the sub-network imaged in the rectangle of Figure 4.1, such results are 

shown in Figure 4.5. Figure 4.6 shows a histogram of fractional error for all measured 

vessels compared to their corresponding flow predictions. For most vessels, error is 

between 0 and 1. 
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An important issue is how many and which flow measurements should be 

taken during the experiment so as to be able to compute an accurate estimate of the 

unmeasured flows. Suppose the voltage source values computed by this algorithm are 

correct. Then all flows can be computed. With a complete set of flows, it is possible to 

take subsets of the flows, solve a weighted least squares problem to estimate new 

voltage source values, use the new voltage source values to predict all flows, and 

compare this second set of predictions with the original set of computed values. 

Furthermore, the effect of Signal to Noise Ratio (SNR) can be studied because the 

values of the flows in the subset of flows can be degraded synthetically to arbitrary 

SNR before the weighted least squares problem is solved. Due to the large number of 

vessels in the network, there is an impractically large number of subsets with, for 

example, 30 vessels. Therefore, Monte Carlo calculations are performed where the 

number of vessels in the subset is constant but vessels in the subset are chosen at 

random. For each number of vessels in the subset 500 trials were included in the 

Monte Carlo calculation. The results of these calculations are shown in Figure 4.7. As 

expected, the higher noise levels in the synthetic measurements mean that the errors in 

the predictions grow faster as a function of the number of measurements that are 

deleted from the complete set of measurements.  

A central motivation for studying the neurovascular system is to understand the 

cause and effect of strokes. In the models of this chapter, an embolic stroke in which 

one vessel is blocked can be described by setting the resistance of that vessel to 

infinity. If only one or a few vessels are blocked then it is natural to assume that the 

voltage source values do not change. Under these two assumptions (infinite resistance 
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in the involved vessel(s) and no change in voltage source values), it is straightforward 

to compute the flows in all branches of the circuit. The effect of the stroke on flows in 

other vessels can be described in a variety of ways. 

Consider the case where only one vessel is blocked by a stroke. Figure 4.8 

contains one example in which a penetrating arteriole is occluded and one example 

and a surface arteriole is occluded. In these particular examples, the effect of 

occluding a surface arteriole has a more widespread effect on the rest of the network. 

The effect of a single occlusion on a non stroke vessel can also be categorized 

in terms of its topological location relative to the blocked vessel. Three positions are 

considered: n nodes downstream of the blockage, n nodes upstream of the blockage, or 

parallel to the blockage where a branch x is defined to be parallel to the blocked 

branch b if there is a parent branch p upstream to x such that both b and x are the same 

number of nodes downstream to p. Results are shown in Figure 4.9. The model results 

are qualitatively consistent with experimental findings. In particular, there are limited 

effects of an occluded arteriole on any surrounding vessels, however occluding a 

surface arteriole results in substantial flow decrease in nearby neighboring vessels 

along with a less noticeable change in flow in vessels farther away. 

4.4 Discussion and Conclusions 

A key component of this approach is the computation of the resistance of each 

vessel. Challenges include (1) no account is taken of the vessel tortuosity in 

computing the resistance because standard formulas do nut include such inputs 

(however, the vessel length is accounted for), and (2) experimental validation of the 

resistance formulas for vessels less than 10μm in diameter is not extensive [3]. If 
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improved resistance values become available, incorporating the improved values into 

the computations described in this chapter is straightforward.  

Kirchhoff’s Current and Voltage laws are used in order to write equations for 

the circuit and, therefore, the predicted flows exactly satisfy these laws. However, the 

experimental flow measurements violate Kirchhoff’s Current Law. This could be due 

to several phenomena, including measurement errors and changes in the physiology of 

the animal during the experiment. By tracking physiology data on the animal during 

the experiment and developing regression models based on repeated flow 

measurements of the same branch, it was possible to decrease the effect of changes in 

physiology on the results. 

Some measurements are much more important than others in terms of 

achieving accurate prediction of flows throughout the network, and in future work the 

hope is to characterize relative importance based on the topology of the network and 

the diameter of vessels in the network. Because error in a Monte Carlo run typically 

increases monotonically with number of omitted measurements, the higher variability 

in error in the central and right portions of the graph in Figure 4.7 means that certain 

sequences of omitted measurements can result in low error for a large number of 

vessel omissions, while other sequences result in high error very early on. This is 

important for the design of experiments, since measuring certain vessels is crucial to 

accurately estimating the behavior of the rest of the network. The tradeoff between 

number of measurements and accuracy of the measurements may be useful in guiding 

measurement development work.  
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Figure 4.2: Z-projection of data from 2PEF. The traced vessels in color depict the entirety of the 

network. Vessel topology (lengths and diameters) is known for the entire network. Experimentally 

measured flow information is known for vessels in red. No flow information is known for vessels in 

blue. 

 

 

 

 
Figure 4.1: A small-scale example of a vessel topology with three internal nodes and five cut branches, 

and the corresponding circuit model shown below with voltage sources attached to the cut branches. 
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Figure 4.3: The region in the white rectangle from Figure 4.2 is enlarged and shown with 

experimentally measured red blood cell speeds and vessel diameters in the left panel, and extrapolated 

experimental flows and measurement times in the right panel. Arrows indicate the direction of flow. 

Red colored vessels correspond to vessels in which experimental flow speed measurements are known, 

and blue colored vessels correspond to vessels in which flow speeds are not known. The thickness of 

the line is proportional to the vessel’s diameter.  

 

 

 
Figure 4.4: Linear dependence of flows on time determined by taking 13 measurements at the same 

location over the course of a 2:20 hour experiment.  
 

 

 
Figure 4.5: Topology and predicted flows from the model. The left panel shows predicted flows 

adjusted to t=0 in the experiment, and the right panel shows predicted flows at the time they were 

measured. Arrows indicate the direction of flow. 
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Figure 4.6: Histogram of fractional errors in the predicted flows compared to measured flows. 

 

 

 
Figure 4.7: Error as a function of total number of vessel measurements missing.. 

 

 

 
Figure 4.8: Effects of occlusions on flows. The left panel shows an occlusion to a penetrating arteriole, 

and the right panel shows an occlusion to a surface arteriole. 
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Figure 4.9: Box plots of fractional changes in blood flow from a simulated occlusion as a function of 

branches away from the occlusion. The left panel shows data for the number of branches away from an 

occluded penetrating arteriole, the middle for the number of branches upstream from an occluded 

surface arteriole, and the right panel for the number of branches downstream from an occluded surface 

arteriole.  
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CHAPTER 5 

 

RANDOM NETWORKS AND THEIR APPLICATION TO THE CORTICAL 

MICROVACULATURE 

 

5.1 Introduction 

 The goal of this chapter is to present generative models of the cerebral 

vasculature rather than a set of statistics which might be sensitive to changes in the 

vasculature between two different types of subjects, e.g., wild-type versus Alzheimer’s 

susceptible mice. 

 A graph is a set of nodes N and edges E between nodes. A random graph is a 

probabilistic law for E. The phrase “random networks” will be used to mean a random 

graph plus geometry, meaning that the location of nodes in the graph and the existence 

of an edge between two nodes in the graph are based on random functions. 

 In order to model the cerebral vasculature, there are constraints on the random 

graph even before the geometry is added. For instance, since bifurcations of vessels 

are binary, it is necessary for nodes to be of degree three. In particular nodes of degree 

one (dead end branches of the vasculature) are forbidden. 

 Once geometry is added, there are still more constraints to address. For 

instance, the length of a branch is bounded above and below due to physiological 

limitations. In addition, the direction of a capillary vessel is roughly within a layer of 

the cortex so roughly horizontal. Arterioles and venules behave differently in that 

arterioles “dive” into the cortex while venules “ascend” out. Therefore constraints 

must also be placed on the maximum angle these vessels are allowed to deviate from 

perpendicularity to the cortical surface.  

 Constraints might be applied as hard constraints or soft constraints. 
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 Three goals are defined for developing models that represent the cortical 

microvasculature. 

1. Define stochastic generative models. 

2. Develop statistical estimators for the parameters in the model from data. 

3. Develop tests of differences, i.e., are the parameters from one dataset 

significantly different from the parameters from a second dataset. 

This chapter mainly concerns the first step. 

Applications using these random network models can be developed within 

individual datasets as well. For example, as demonstrated in Section 5.5, it may be 

possible to predict cortical layer boundaries in mouse cortex using parameter 

estimation techniques based on the models. 

5.2 Spatial Poisson Process Approach 

 This section defines a model that is constructed based loosely on the Erdős-

Rényi model [1]. Consider a volume of cortex (denoted by V) with a surface (the true 

cortical surface, not the surface created by cutting V out of the entire brain) S. A 

microvasculature model can be created according to the following algorithm: 

1. Create sites on S of penetrating arterioles: let the sites be located at the arrivals 

of a homogenous 2-D spatial Poisson process with rate λA. 

2. The penetrating arterioles flow approximately straight and approximately 

normal to S and have many branches. Let the sites of branches be the arrivals 

of a homogenous 1-D Poisson process with rate λa. 

3. Describe ascending venules in a similar manner but with rates λV and λv. (In 

some species, it has been experimentally shown that the number of ascending 

venules is somewhat larger than the number of penetrating arterioles so that λV 

> λA.) 
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4. Let branch points in the cortical parenchyma V be located at the arrivals of a 

homogenous 3-D spatial Poisson process with rate λc. 

5. Connect the branch points (the nodes of the graph) by vessels (the edges of the 

graph) by making independent decisions at each pair of branch points in the 

spirit of Ref. [2]. However, the decisions are not identically distributed, i.e., 

independent but not i.i.d. The reason for not i.i.d. is that branches should have 

appropriate length, neither too long nor too short, and appropriate direction, 

tending to stay within one cortical layer, or equivalently, to flow roughly 

parallel to the surface S. 

Let .Vx  Let 1x  and 2x  be the locations of the two branch points. Let 

212,1 xx   and 2,12,1   . For each Vx , let )(ˆ xn  be the local normal to 

the cortical surface S which is also the local normal to the layered structure of 

the cortex. Let )(ˆ)(ˆ/))(ˆ)(ˆ( 21212,1 xnxnxnxn  . In simple situations, 

these definitions are straightforward. Suppose that V is small enough such that 

its surface is planar. Using a rectangular coordinate system such that x̂  and ŷ  

are the coordinates in the plane and ẑ  is the coordinate normal to the plane. 

Then zxn ˆ)(ˆ   for all x  and therefore ẑ  always. 

For any two vectors x  and y , the dot product is )cos(xxyx   where θ 

is the angle between x  and y . Therefore, )/arccos( yxyx   which is 

unique on [0, π]. Therefore the angle between 2,1  and 2,1  is 

)/ˆarccos( 2,12,12,12,1    since 2,1  is a unit vector. Continuing with the 

simple situation of the previous paragraph, )/ˆarccos( 2,12,12,1  z . 

Let the probability that an edge occurs between branch points 1x  and 2x  be 

denoted by )(0 p  have value 
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The simplest 

situation is when 

fm() and fz() are 

constant. In that case 

  Eq. 5.2 

 

In the simplest situation, the model has the following parameters: λA, λa, λV, λv, 

λc, d1, d2,  , and p . 

 Figure 5.1 shows an example of a model created using the above approach in a 

100x100μm cube. Values for the parameters are: λA=5, λa=10, λV=5, λv=10, λc=150, 

d1=10μm, d2=30μm,  =π/6, and p =0.5.  

 Figure 5.2 shows a histogram of the number of edges connected to individual 

nodes. It is clear form the histogram that many of the nodes contain a number of edges 

that violate empirical observations of the microvasculature. In particular, nodes with 

degree one (dead ends) should not exist. Likewise nodes with degree greater than three 

should not exist. It is possible to enforce decision rules to ensure that each node has 

degree of either 0 (nodes floating in space which can be ignored), 2 (passing nodes), or 

3 (bifurcation points), but many of these decision rules result in nodes that are no 

longer independent from one another. For example, enforcing a nearest neighbor rule 

in which an edge is established between a given node and its three nearest nodes in 

terms of Euclidean distance (resulting in a node with degree three) creates a 

dependence on the order in which the nodes are chosen. Establishing rules for edge 

deletion to pare down the network and enforce node degrees of 0, 2, or 3 result in 

similar dependency issues on order. 
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 The distributions of the edge lengths, 2,1 , and edge angles, 2,1 , from the 

same example of Figure 5.1 are shown in Figure 5.3. 

5.6 Spatial Poisson Approach with Different Parameters and a Deletion Rule 

 The statistics of networks generated using the Poisson process model outlined 

above can differ vastly based on the parameters selected for the model. For example, 

consider a network N that, for simplicity, contains only capillaries (i.e., λV and λA are 

both 0). Now assume this network has a very high capillary node rate, λc, but a very 

low probability of an edge occurring between nodes, (i.e. small p ). For a network of 

N nodes, the expected number of edges at each node is  pN )1( . If p  is chosen 

small enough, the number of nodes with degree greater than 3 will probabilistically be 

very low, so that most nodes will have degree of either 0 (lone nodes which can be 

ignored), 1 (dead ends), 2 (passing nodes), or 3 (bifurcation points). 

 The existence of nodes with degree of one remains problematic. However, it is 

possible to sequentially delete these nodes and their corresponding edges until nodes 

of degree 1 no longer exist. Furthermore, the sequence in which these nodes and edges 

are deleted has no dependence on order.  

 An example of such a network prior to the deletion of degree 1 nodes is 

demonstrated in Figure 5.4. Values for the parameters are: λc=1000, d1=10μm, 

d2=30μm,  = π/6, and p =0.05. This particular network has 1003 nodes and 923 

edges. The same network, with degree 1 nodes clipped off is shown in Figure 5.5. This 

network has been pared down to 365 nodes and 518 edges. Figure 5.6 shows a 

histogram of nodes with their degree number of the network in Figure 5.5. Nodes with 

degree 0 are ignored and not present in the histogram.  

 Deriving a formula to estimate number of nodes of a certain degree in a 

networks with sequentially deleted nodes of degree 1 is mathematically challenging. 

Therefore Monte Carlo simulations can be useful to gather statistics on the behavior of 
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these types of networks. Figure 5.6 shows a plot of the ratio of the number of nodes of 

degree 3 (bifurcation nodes) to the number of nodes of degree 4 or greater 

(physiologically unrealistic nodes) as a function of the probability that an edge occurs 

between two nodes. As the probability increases, the ratio moves towards zero since 

many nodes are of high degree compared to relatively few nodes of degree three, 

indicating that a low edge probability gives a more realistic model of a vascular 

network. Values for the parameters are: λc=1000, d1=10μm, d2=30μm,  = π/6, and 

p  varies from 0.05 to 0.5. Each data point was taken from the mean of 25 Monte 

Carlo simulations with that particular probability.  

5.5 Predicting Cortical Layer Boundaries 

 The Poisson approach to modeling a random network can be used in a variety 

of applications. Datasets can be analyzed based on the many different parameters of 

the model. For example, it may be possible to examine datasets based on the 

distribution of capillary lengths. Capillary lengths may be empirically observed to 

behave according to a particular distribution, such as a gamma or exponential 

distribution, whose parameters can be established using estimation techniques. Or 

perhaps capillary lengths can be assumed to be a member of one of two or more 

classes of Gaussians, and each class and membership can be determined by estimating 

the parameters of the Gaussian mixture.  

 Other model parameters such as node rates can also be of interest. In this 

section, a method of predicting cortical layer boundaries based on node rates within 

one vascular network dataset is proposed. Assume each layer of cortex is a striation 

parallel to the cortical surface and assume that nodes in each layer are Poisson 

distributed according to a node rate unique to that layer. Assume that z=0 at the 

cortical surface and z increases with depth into the cortex, and Z is the maximum 

depth. Proceed according to the following maximum likelihood estimation algorithm. 



 

89 

1. Select a number, N, of layer boundaries to estimate, (b1, b2,…,bi,…,bN), 

where bi is a positive scalar in the z-direction and 

0<b1,<b2<…<bi<…<bN<Z. 

2. Choose a discretezation step for the z-direction, Δz, large enough that it 

contains several nodes, but small enough to maintain adequate spatial 

resolution in the z-direction. 

3. Compute the Poisson likelihood (or log-likelihood) function, for every 

combination of boundaries at each discrete step in the z-direction, 

maintaining that 0<b1<b2<…<bi<…<bN<Z. 

4. The set of layer boundaries where the maximum of these likelihood 

function values occurs corresponds to the optimal cortical layer boundary 

choices. 

 An example of one such dataset in which three cortical layers (two layer 

boundaries) are predicted is shown in Figure 5.7. This particular dataset contains 814 

nodes in a cube imaged to a depth of 255μm. 

5.6 Markov Random Field Approach 

 The idea is to create a field in which space is discretized and, at each location 

in space, have a random variable that is either a 0 (no vessel present) or 1 (vessel 

present). With a sufficiently small discretization step, a broad range of vessels and 

trajectories can be described. 

A binary bifurcations requirement is included as a soft constraint. A restriction 

on dead end vessels is also included as a soft constraint. Difficulties arise in 

introducing rules to enforce upper and lower bounds on branch lengths. Directionality 

constraints can possibly be included by favoring horizontal over vertical branches. The 

algorithm used to construct the field is discussed in the following paragraphs. 
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Let μ be the dimension of the problem, which is likely to be 2 or 3. Let    

be the size of the lattice. Let 

}1,...,0{...}1,...,0{ 1  N                                         (5.3)  

be the lattice. Let Nn  be an index into the lattice. Let  

}1,0{: N                                                          (5.4) 

be the binary lattice variables where “unoccupied” and “occupied” are equivalent to 

taking value 0 and 1, respectively. 

 Let Nn be the sites that are neighbors of the site n , defined by 
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except at the boundary of the lattice where adjustments are needed in order to impose 

free or toroidal boundary conditions. Let ),(  n  be the number of neighbors of site n  

in the lattice that are occupied, i.e.,    
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 The Hamiltonian has several parts. Generally, terms are included twice since if 

'n  is a neighbor of n  there is one contribution from n  and a second from 'n . 

1. A sufficient number of occupied sites is desired. Therefore,  

)()( 11 nH
Nn

 


                                                  (5.8) 

where α1>0. Alternatively, there might be a target value, denoted by ρ, for 

the density of the vascular system (e.g., μ length per μ3 volume). In this 

case,  

2

11 )(')(' 
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
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
 



nH
Nn

                                           (5.9) 

where '01  . '1H  seems undesirable since it connects all sites in the 

lattice. 

2. A sufficient number of nodes is desired in the random graph. A node is to 

be defined as an occupied site which has three or more occupied neighbor 

sites. Therefore, 

3),,(2 )()(2  n

Nn

nH 


                                  (5.10) 

where α2>0. 

3. Nodes of order three, representing vessel bifurcations, are of particular 

interest. Therefore, occupied sites should have either two occupied 

neighbors (in which case it is not a node in the bifurcation sense), or three 

occupied neighbors (in which case it is a node in the bifurcation sense). 

Define the Kronecker delta function }1,0{:, ji  by 
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Therefore, 
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where α2>0. 

4. Consider just μ=3. Define 
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which is the number of occupied neighbor sites above or below. Note that 

}2,1,0{),(  . Mostly horizontally-directed branches are desired. 

Therefore 
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where the function ),(   is really only three numbers since the range space 

of ),(   is limited. An interplay exists between the level of “rewarding” 

ν=0 versus “penalizing” ν=1,2.  

A fairly general Hamiltonian might be 
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where the function γ is really just 1  numbers because the range of ),(   is just 

},...,1,0{  . 
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 In preparation for approximations, it is common to write the Hamiltonian as a 

polynomial even though the lattice variables are binary. Suppose that j is fixed. In 

order to write δi,j as a polynomial of minimal order in i, it is necessary to know the 

range of i. In the previous expressions, },...,1,0{),(   ni  . An expression for δi,j 

that is polynomial in i is 
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For μ=2 this specializes to 
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which specializes to 
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To achieve expressions, such as δi,2+ δi,3, it is possible to add the polynomials for the 

two delta functions to get a new polynomial of (typically) the same order.  

 An example of a two-dimensional Gibbsian Markov Random Field model is 

shown in Figure 5.8. The example shows a network that is clearly physiologically 

unrealistic. Firstly, connectivity in Figure 5.8 is too low to represent a network of 

vessels. The network shown is a collection of many vessel “islands” that are separate 

from each other. Secondly, as in the Poisson process model described in Section 5.2, 

dead end vessels and nodes with degree greater than three still exist, despite being 

probabilistically unfavorable in the Hamiltonian. Gibbsian Markov Random Field 

models of this type are powerful in areas such as percolation theory, however 

additional ideas are required to more realistically represent vessel networks in the 

cortical microvasculature.  
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Figure 5.1: An example of a microvascular network computer using the Poisson model approach. 

Pictured are four ascending venules (red vertical lines), six diving arterioles (blue vertical lines), and 

605 capillaries (black lines). Nodes sites on ascending venules are red x’s, node sites on diving 

arterioles are blue x’s, and capillary nodes are green +’s. In total there are 244 nodes.  

 

 
Figure 5.2: A histogram of nodes and their degree. 

 

 
Figure 5.2: A histogram of capillary length (left) and capillary angle with respect to the cortical surface 

(right). In the model, parameters for d1=10 μm, d2=30 μm, and  =π/6. 
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Figure 5.3: An example of a network with a high node rate, but low probability of edge success. This 

particular example is of only capillaries and has 1003 nodes and 923 edges. 

 

 
Figure 5.4: The same network as shown in Figure 5.3 except nodes with degree 0 are deleted, and 

nodes with degree 1 (and connecting edges) are sequentially deleted until only nodes of degree 2 or 

more remain. In this network, 365 nodes and 518 edges remain. 

 

 
Figure 5.5: A histogram of nodes and their degree number following sequential deletion of nodes with 

degree 0 or 1.  
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Figure 5.6: A plot of the ratio of the number of nodes with degree 3 to the number of nodes with degree 

4 and greater as a function of edge probability. As the probability that an edge exists between two nodes 

is increased, the ratio goes towards zero because the number of nodes with degree 3 is relatively few 

compared to the number of nodes with degree 4 or greater. 

 

 

 

 
Figure 5.7: A plot of node rate as a function of z-depth in the cortex. The red horizontal lines represent 

locations where cortical layer boundaries are predicted to occur based on maximum likelihood 

estimators using node rates as a function of z-depth. 
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Figure 5.8: A sample network computed using a Gibbsian Markov Random Field approach. 
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CHAPTER 6 

 

CONCLUSION 

 

 As advancements in imaging and microscopy progress, higher quality data will 

be produced to further elucidate functionality of the brain. Currently, several 

modalities exist to image cortical function on multiple levels and multiple time scales. 

This work has proposed models which connect mainly to OISI and 2PSLM data, but it 

should be emphasized that these models are presented as simply a toolbox and can be 

extended to connect to data from modalities such as positron emission tomography 

(PET), laser spectral contrast imaging (LSCI), and fMRI. 

 The first model presented in Chapters 2 and 3 is a multi-compartment model 

constructed to achieve the goal of interpreting OISI data. Each compartment in the 

model contains a multitude of parameters, each of which can be manipulated to 

produce a unique output to reflect a high variability of blood flow, volume, and 

oxygenation level image data. The compartments are designed to be modular so that a 

particular set of ideas or physiological representations can be used, depending on 

information available regarding the physiological behavior of a particular 

compartment. For example, a Michaelis-Menten model is currently used in the 

metabolic layer, but this is just one choice of many pharmacokinetic models that can 

be used to describe metabolism. Furthermore, a feedback system for the energy budget 

is used in the current metabolic layer and vascular layer to create a dynamic 

interaction between the two layers, but feedforward ideas can instead be implemented 

to reflect data which may suggest that, for example, vessel dilation occurs as a 

feedfoward response to the presence of neurotransmitters (a proxy for neural activity) 

in the local tissue. The current model also uses a Sobolev norm-based electrical layer, 
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but other unique layers can be constructed to represent electrical activity in the cortex, 

such as the circuit model presented in Section 3.2.2. 

 Many challenges were present in developing the end-to-end model, one in 

particular being computational difficulties in solving many nonlinear ordinary 

differential equations in time and space. The simple approach to computing the model 

output is using a forward Euler method in which differential equations are solved at 

each time instant and each pixel. Limits are therefore imposed on temporal and spatial 

resolution based on computational power and memory. Furthermore, improper 

handling of the differential equations leads to machine error propagating into the 

output of the model. Possible development and/or implementation of more 

sophisticated ordinary differential equation solving techniques as well as increased 

computer processing power and memory could mitigate these difficulties, resulting in 

increased spatial resolution and reduced computation time. 

 The second model of this work, presented in Chapter 4, offers a framework for 

estimating time-varying blood flows in a network based on blood flow measurements 

from a subset of vessels in the network. One possible extension of this model would 

be to attach a Thévenin equivalent circuit to the cut branch of each surface arteriole. 

Similarly, a model could be proposed in which a unique unknown resistor is attached 

to each of the cut surface arteriole branches, and these unknown resistors are then 

attached to a common unknown voltage source. This model could be considered more 

physiologically realistic in that only one voltage source representing the heart is 

present, and the upstream resistance between each surface arteriole and the voltage 

source (heart) is accounted for. Both models increase in complexity compared to the 

current model because nonlinearities arise in estimating both voltages and resistances. 

 Chapter 5 outlines random graph models for neurovascular topology based on 

both a Poisson approach and a Gibbsian Markov Random Field approach. Future work 
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involving the Poisson approach can be especially useful in better understanding 

network topologies, partly due to the simplicity of the model as well as the simplicity 

of the network statistics. In Section 5.5 one application of this model is shown by its 

ability to predict cortical layer boundaries using maximum likelihood estimators. A 

multitude of other applications can be proposed based on the availability of certain 

types of data. One potentially useful investigation using this model would be 

comparing two different types of vascular network datasets. One types of dataset 

could, for example, be from mice predisposed to Alzheimer’s disease, while the other 

could be from wild type mice. Statistics regarding node rates, capillary lengths, 

capillary angles, arteriole and venule densities, etc. could all be analyzed to determine 

if a meaningful difference exists between the two types of mice, possibly leading to a 

better understanding of the causes and/or effects of Alzheimer’s. 

 For other future work, an obvious undertaking would be to merge parts of 

multiple models to create a more complete representation of blood flow and the 

hemodynamic response in the neural microvasculature. For example, the end-to-end 

model from Chapters 2 and 3 could contain a vascular layer which is constructed in a 

physiologically realistic way, rather than a geometrically simplified way, by 

introducing vessel network topologies from data used in the blood flow prediction 

model of Chapter 4. A diameter dependent viscosity is used in the model of Chapter 4, 

but not in the end-to-end model of Chapters 2 and 3 mainly because of mathematical 

difficulties arising from taking time derivatives of complicated diameter-dependent 

equations. A challenge in merging these models would be to find a mathematically 

tractable equation to represent time-varying diameter-dependent viscosity in diameters 

relevant to the data being modeled.  
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