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ABSTRACT

In the Reliable Broadcast Problem, a processor disseminates a value
to all other processors in a distributed system where both processors
and communication components are subject to failures. Solutions to
this Reliable Broadcast problem are at the heart of most fault-
tolerant applications. We characterize the execution time of Reliable
Broadcast protocols as a function of the properties of the underlying
communication network. The class of networks considered includes
familiar communication structures constructed out of fully-connected
point-to-point graphs, linear chains, rings, broadcast networks (such
as Ethernet) and buses. We derive a protocol that implements Reli-
able Broadcast for any member within this class. The execution time
of the protocol is a linear function of the two parameters that charac-
terize each network instance. The hardware-software tradeoffs that
are revealed between performance, resiliency and network cost offer
many new alternatives previously not considered in designing fault-
tolerant systems.
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1. Introduction

A distributed (computing) system is a collection of autonomous proces-
sors that share no memory, do not have access to a global clock, and com-
municate only by exchanging messages. This model of computing matches
the geographic distribution that is inherent in a large number of applica-
tions better than centralized systems. The lack of shared memory and ran-

dom communication delays make programming such systems difficult.

Continued and correct operation are important requirements for many
computing systems engaged in process control [Spe] and database applica-
tions [Kim]. Unfortunately, given a finite amount of hardware, it is impossi-
ble to construct a computing system that never fails. - The best we can hope
to achieve are systems that continue correct operation with respect to some
specification such as “with high probability” or “as long as the number of
faulty components during some time interval is small.” Replication is a
common technique to realize such goals. The fault tolerance requirements
usually dictate that the replicated system not rely on the correctness of any
single component for its correct operation. Consequently, when viewed at an
appropriate level of abstraction, the replicated system has the same proper-
ties as a distributed system—replicated processors with no shared resources
that communicate through a network. The presence of failures adds to the

difficulty of programming fault-tolerant distributed systems.



Recently, much effort has gone into identifying primitives that simplify
implementing fault-tolerant distributedAapplications [Lam, SL, CAS, Svol.
One such primitive is the Reliable Broadcast (also called Byzantine Agree-
ment [LSP, Fis]). Formally, a protocol implements Reliable Broadcast (RB)

if it guarantees the following two conditions:

RBA: (Agreement) In response to a broadcast, all correct processors acceptt

the same message.

RBV: (Validity) If the broadcasting processor, called the sender, is correct,

then all correct processors accept the message that was broadcast.

Given an implementation for this protocol, we can use the following metho-
dology for designing fault-tolerant distributed applications [Lam, SL, CAS,
GMP1

(i) Program the application assuming that each processor has direct access

to the (same) global system state at all times.
(i) Use a RB protocol to realize this assumption as follows:

 Each processor maintains a local copy of the information that con-
stitutes the global state and updates it as instructed by incoming

messages.

+ We distinguish between a processor “receiving” and "accepting” a message. “Receive”
is the general communication primitive supported by the network whereas "accept” is im-
plemented by the reliable broadcast protocol. Therefore, it is possible for a processor to re-
ceive a message but not to accept it.



«  Whenever the processor performs a local computation that modifies
the global state, it disseminates the change to all other processors
using RB.

For many applications, correct processors are not only required to accept
the same messages but accept them in the same order. The required primi-
tive is called an atomic broadcast [CAS] and can be implemented on top of a

reliable broadcast protocol by using timestamps.

This design methodology places RB at the heart of a fault-tolerant dis-
tributed application implementation. Consequently, the overall performance
of the application will be determined primarily by the performance of the RB
protocol implementation. In systems with point-to-point communication
structures, proposed RB protocol implementations are expensive in execution
time. More significantly, lower bound results prove that faster execution
times are impossible [Had, DS, FL]. We note that randomization can be
used to speed up the expected (but not the worst case) execution time of RB
protocols [Bral. In [BD], we described fast RB protocols that exploited com-
munication architectures other than point-to-point networks. This was the
first result suggesting that performance could be “bought” by investing in
the appropriate communication hardware. In this paper, we explore general
tradeoffs between execution time, resiliency, and the properties of the under-

lying communication network with respect to RB protocols.
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2. Models and Assumptions

A processor is said to be correct if its behavior conforms to an abstract
specification (usually in the form of an algorithm). Each time that the
behavior of a processor differs from its specification, a failure is said to occur;
the processor is called faulty after the first failure. In our system both pro-
cessors and communication components can fail. Note that a single faulty
component can generate many failures. In this paper, we consider systems
subject to omission failures [Had], where a faulty processor may fail to send
some of the messages prescribed by its protocol, but messages it does send
are always correct. Failures in the communication components cause mes-
sages to be lost; all messages that are delivered are delivered unchanged.
Simple network protocols that approximate this behavior of the communica-

tion media are well known [Tan].
We make the following additional assumptions about the system:

NA: (Network Assumption) Despite processor and communication com-
ponent failures, the network remains connected and guarantees a

bounded delivery time for all messages.

CA: (Clock Assumption) Correct processors have local clocks that differ by
at most € units and have bounded drift with respect to (unobservable)

absolute time.

NA requires that the network have redundant paths. Protocols that achieve

CA in the presence of faulty components are known [HSS, LMS, STI.
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For clarity, we present our protocols as distributed computations execut-
ing in lockstep units called rounds (i.e., assuming € =0). Informally, a round
is the minimum length of time required for each processor to send messages
to all other processors, receive any messages destined for it and perform a
given amount of local computing. In Section 7 we show how to transform
such round-based protocols into equivalent ones that work in a system where

e>0.

3. Broadcast Networks

A common architecture for a distributed system consists of several pro-
cessor clusters on a common network where the intra-cluster communication
takes place over shared, multiple-access media that support broadcasts [Stal.

Figure 1 illustrates such an architecture with three clusters of sizes n,, ng

Fig. 1. A broadcast network-based distributed system with three clusters



and ng processors. This broadcast network-based architecture encompasses
a wide range of designs. For example, the clusters in Figure 1 could
represent geographically distant local area networks connected through
gateways (such as the Xerox Internet comprising a large number of Ether-
nets [MB]). Alternatively, each cluster could be a single, tightly-coupled
multiprocessor with an internal bus interconnect and inter-cluster links

implemented as bus adaptors.

Regardless of the physical realization of the architecture, we can

abstract the behavior of communication in such systems as follows:

BNP: (Broadcast Network Property) In response to a broadcast, all pro-

cessors that receive a message receive the same message.

BNP ensures that for all possible failures, a processor cannot send
conflicting messages to other processors in a single broadcast. For a given
broadcast network, the set of processors that receive the (same) message in
response to a broadcast is called the receiving set. The broadcast degree of a
network is defined to be a lower bound on the size of the receiving sets for
all broadcasts in the network. The receiving sets may vary from one broad-
cast message to another as well as from one sender to another. For a net-
work to have broadcast degree b, all we require is that each of these sets
contain at least 6 processors. We assume that every processor receives its
own broadcasts regardless of failures. Note that communication failures

manifest themselves in defining a particular broadcast degree for the net-



work. For the example depicted in Figure 1, if we assume that communica-
tion failures can occur only in the gateways (or whatever physical com-
ponent the two circles are modeling), it is easy to see that the broadcast

degree of the network is b =min(n ,ng,n3).

It is clear that a single communication failure anywhere in the network
is sufficient to partition the system in Figure 1. In general, satisfying the
Network Assumption (NA) requires replication of the network components.
A redundant broadcast network interconnects processors through a sufficient
number of broadcast networks, each exhibiting the Broadcast Network Pro-
perty, such that NA is satisfied. The broadcast degree of the entire redun-
dant network is defined to be the minimum of the broadcast degrees of its
constituents. We assume that the broadcast primitive, when invoked by a
correct processor, functions by broadcasting the message over all of the net-
work replicas which the processor is connected to. However, no assumptions
are made regarding the order in which networks are selected or the possibil-
ity of omitting messages from certain networks by faulty processors. Multi-
ple rings, Ethernets or buses can be used to construct redundant broadcast
networks. In the rest of the paper, we will consider only redundant broad-

cast networks and refer to them simply as broadcast networks.



4. From Broadcasts to Point-to-Point Communication

We will initially use the broadcast degree of a network as its characteri-
zation. Clearly, for a system with n processors, 1=b=n. Note that for
b=n, every broadcast is guaranteed to be received by every other processor.
Therefore, a protocol in which the sender simply issues a broadcast and
other processors accept any message received suffices to achieve RB since
BNP with b=n trivially guarantees the agreement and validity require-
ments. At the other extreme, when b =1, there can be isolated processors
and the network cannot be guaranteed to remain connected. Consequently,

the smallest value of b for which assumption NA can be satisfied is 2.

Consider a broadcast network with b=2. In this case, the network can
only guarantee that for some broadcast during the protocol execution, the
message will be received by at most one other processor. In other words, for
some communications the broadcast networks degenerate into point-to-point
links between two processors. As this can happen arbitrarily often, the
broadcast network becomes functionally equivalent to a point-to-point net-
work. The “logical links” that are formed in the network result in a fully-

connected communication graph.

Summarizing, in a broadcast network where no communication failures
occur such that b=n can be attained, there exists a trivial 1-round protocol
that implements RB. On the other hand, a broadcast network with 6=2 is

logically equivalent to a point-to-point network where we know that ¢(+1



rounds are necessary and sufficient to achieve RB [FL, DS, Had]. What
remains to be resolved is the execution time required for a RB protocol in
networks where the broadcast degree is between these two extremes. We

will call such a limited broadcast capability a partial broadcast.t

5. Reliable Broadcast Protocols Through Partial Broadcasts

Initially, in addition to NA, we will assume that a broadcast per-
for;'ned by a correct processor reaches all other processors in the same round,
regardless of the broadcast degree of the network. Consequently, any proto-
col where processors simply echo the messages received in the previous
round will guarantee that all correct processors receive a message one round
after the first correct processor receives a message. As the processor failures
are restricted to omission, all of the messages generated by such a protocol
can only contain the sender’s value. What we have to demonstrate is an
upper bound on the number of rounds by which time all correct processors
can accept some default value (denoted as §) if they have not received any

messages.

Consider a broadcast network where t+1<b<n-—1. In this case, the
initial broadcast by the sender, with local value v, is received by at least one
but not necessarily all correct processors. By the above observations, all

processors are guaranteed to receive the sender’s message by the end of the

+ The term multicast has also been used for such limited broadcasts.
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Round 1:

For s (the sender with local value v)
broadcast(v);
accept v;

Round i, 2<i<=m:
For all p that have not yet accepted a value
if p received a message in round i —1 then
let p denote the message received in round i —1
broadcast(p);
accept u;
fi;

At the conclusion of round m:
For all p that have not yet accepted a value
if p received a message in round m then
let u denote the message received in round m
accept u;
else
accept §;
fi;

Fig. 2. Protocol P1 with parameter m:
Reliable Broadcast for partial broadcast networks

networks with broadcast degrees in the range 2=b=¢+1.

second round. They accept v if a message is received in the first or second
round. Otherwise they accept the default value. In [BD], we have presented
such two-round protocols for various processor and communication failure

models and showed their optimality with respect to the number of rounds.

We now consider the remaining range of broadcast degrees.

parameterized protocol displayed in Figure 2 implements RB for broadcast

-11-
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protocol closely resembles the one presented in [Had]l. The following

theorem establishes its correctness.

Theorem 1. For a broadcast network with broadcast degree b such that

2<b<=¢+1 protocol P1 implements RB in m =¢—b6+3 rounds.

Proof- Let v denote the sender’s local value. We proceed by case
analysis. If the sender is correct, all processors receive v by the end of the
first round and accept it in the following round. Therefore agreement and

validity conditions are satisfied.

In the remaining cases the sender is faulty. If it sent no messages at
all, no processor ever receives a message and they all accept & by the end of
round m. If the sender broadcasts over a channel whose degree is n, then

all processors receive the message and accept v in the second round.

Finally, if the sender is faulty and broadcasts some message and a
correct processor q receives it in round i, for i<m, then g will echo v in
ro@d i+1. By our assumption, all processors receive v in round :+1 and
by round min(m,i+2) they all will have accepted v. Thus agreement can be
violated only if the first correct processor to receive v does so at round m
while some other correct processors do not receive v. For contradiction sup-
pose this situation occurs. According to the protocol, a processor can only
broadcast at round ¢ if it has received its first message at round :—1.

Therefore, for the above scenario to occur there must be a chain of m faulty
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processors spqr - - -z such that s is the sender and the kth processor
receives its first message from its immediate predecessor in the chain in
round 2—1 and echoes it in round k. Some but not all correct processors
receive their first message from processor z at round m. Given that the net-
work has broadcast degree b, we show that at least b+m —2 faulty proces-
sors are necessary for this scenario to occur. First, the broadcast of s has to
be received by b faulty processors including p but none of gr - - - z. In the
subsequent rounds (2 through m —1) the b faulty processors receiving the
broadcast must contain at least one previously unaccounted faulty processor.
Consequently, at least b+m —2 faulty processors are needed: b in the first
round and m —2 in the remainder of the protocol. This contradicts the state-

ment of the theorem requiring m=¢t—6+3. [

Note that execution time of the protocol increases linearly from 2
rounds to £+1 rounds as the broadcast degree decreases from (+1 to 2

(corresponding to the point-to-point case).

6. Coping with Networks of Arbitrary Diameter

Recall that within a round, each processor can communicate with all
other processors. We define a phase to be the interval of time necessary for
all processors to communicate only with their immediate neighbors in the
current system connectivity graph. Note that during the execution of the

protocol, the original system graph will dynamically evolve as processor and
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communication failures occur. Consequently, the set of immediate neighbors
of a processor can change from phase to phase. The assumption we made in
the previous section, whereby a broadcast by a correct processor is received
by all other processors in the same round implies a system where phases and

rounds are equivalent.

In this section we relax this assumption and consider systems where a
single phase is no longer sufficient to implement a round. In such systems,
let the survivor diameter, denoted as d, be the maximum number of phases

required to achieve a round under all permissible failure scenarios [BDF].

- The diameter of a gra_ph, denoted as d, is defined to be the number of
edges in the longest of the shortest paths between pairs of vertices. Using
our terminology, the diameter of a network is the maximum number of
phases necessary to implement a round in the absence of failures. It is
important to note that whereas dj, has a purely static definition, the sur-
vivor diameter of a system is defined dynamically. Consider a network with-
survivor diameter d. Such a network can be actually partitioned during
some phases but still be connected when viewed over the entire d phases. In
fact, in systems where the communication components fail and recover fre-
quently, it is conceivable that at any given time, the network may contain
processor pairs that cannot communicate. For a network to have survivor
diameter d, all that is required is that the failures in the system be such

that no processor is prevented from receiving a message broadcast by any
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other correct processor within d phases. Thus, we can relax the Network
Assumption by replacing the connectivity requirement with the survivor

diameter specification.

Protocol P1 of the previous section was presented in terms of rounds.
Given that in general d phases are required to implement a round, protocol
P1 could be used for networks with arbitrary d provided that the broadcast
primitive is viewed as the invocation of a d-phase delivery protocol. In this
approach, the total execution time of the protocol is clearly d(t—6+3)
phases. However, as the next result shows, we can achieve RB in a number
of phases that is an additive (rather than a multiplicative) function of d by
“pipelining” the communication in the network. Dolev and Strong present a
similar result for arbitrary processor failures in fully reliable, point-to-point

networks [DS].

In protocol P1, we simply replace rounds with phases such that m now
is the number of phases and the broadcast primitive, when executed by a
correct processor, distributes the message to its current immediate neighbors

(as before).

Theorem 2. For a broadcast network with survivor diameter d and broad-
cast degree b such that 2<b=t+1 protocol Pl implements RB in

m =t —b+d+2 phases.
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Proof: Let v denote the sender’s local value. We proceed by case
analysis. If correct processors receive no messages by the end of phase m
they all accept §. In the remaining cases some correct processors receive v

during the execution of the protocol.

If the first correct processor receives v at phase i, for i=<¢—b+2, then
all correct processors will receive v within the next d phases. Since
i+d=m for all allowed values of i, all correct processors receive and accept
v Qithin m phases. Note t%hat this case applies for correct senders, and

therefore the validity condition is satisfied.

We claim that this represents the latest phase by which a correct pro-
cessor can receive the message. For contradiction, suppose the first correct
processor to receive v does so at phase i>¢t—b+2. A chain of { faulty pro-
cessors spqr - - - w with the same properties as the one introduced in the
proof of Theorem 1 is required. Also the & —1 processors that receive the
sender’s initial broadcast must all be faulty and different from qr - - - w.
Thus the total number of faulty processors necessary for this scenario is

i+b6—2. But this exceeds ¢ for any value of i, a contradiction.

In summary, either a correct processor receives v by phase ¢{—b+2 and
all correct processors accept v, or no correct processor receives a message
and all accept 8§ at phase m. Therefore the agreement condition is satisfied,

concluding the proof. []
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Now, we notice that the execution time of the protocol increases linearly

with either decreasing broadcast degree or increasing survivor diameter.

7. Coping with Clocks that are not Perfectly Synchronized

Here, we briefly sketch how any protocol that requires perfectly syn-
chronized local clocks can be modified to work in a system that only guaran-
tees the Clock Assumption. Recall that under this assumption, local clocks
of non-faulty processes differ by at most & units (known a priori by all

processes) and local times have bounded drift with respect to absolute time.

Let L be a constant known to all processes that denotes the duration of
each phase. Since all processes know when the protocol is to be initiated,
they progress through phases in lockstep. Let 7 be the starting time of an
arbitrary phase, known to all processes. If local clocks are allowed to be at
most & units apart, a (slow) process could receive messages from (fast)
processes as early as time T—g, as measured on its local clock. Conversely,
a (fast) process could receive messages from (slow) processes as late as local'
time r+L +¢. Therefore, the duration of a phase could be redefined to be
L +2¢ such that messages received within the interval [r—e, T+L +¢€]
belong to the current phase. This interval consists of the two passive seg-
ments [r—e, 7] and [r+L, 7+L +¢] where processes simply wait for arriv-
ing messages, and the active segment [r, 7+L] during which they execute

the protocol.
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Using this simple construction, a protocol requiring m phases would
take m(L +2¢) time units. By overlapping the passive segments of two adja-
cent phases, we can reduce this time to m(L +¢&)+e&. All that is required is
that messages be identified with the appropriate phase number so that late
messages from the previous phase and early messages from the current

phase can be distinguished.

8. Discussion

We note that the utility of any fault-tolerant protocol is inherently pro-
babilistic, even if the protocol itself is deterministic and correct. For exam-
ple, consider some protocol IT that implements an operation { in a system
subject to failures described by ®. The probability with which IT correctly
achieves Q is the probability that actual failures during the protocol execu-
tion conform to ®. Clearly, as the description of failures that a protocol
must tolerate becomes less specific, the design has to become more conserva-
tive (and probably more expensive). For instance, a protocol designed to
tolerate the requirement “at most 3 faulty processors” can in all likelihood
tolerate many more than 3 faulty processors provided they occur in
configurations that are not “worst case.” If one can quantify the probability
with which such configurations occur, the same protocol may be acceptable

as the solution to more demanding fault-tolerance requirements.
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For the systems we have been considering, the failure description ® con-
sists of the triple (¢, b, d). Given a description of the system components
and the static communication topology, for most cases, one can derive upper
bounds for ¢ and d and a lower bound for 6 to base the design on. However,
this approach will result in designs that are overly conservative. We are
working on deriving the joint probability distribution for the system to exhi-
bit a given number of faulty processors, broadcast degree and survivor diam-
eter during an execution of the RB protocol [Dru]. With this characteriza-
tion, one can select an instance of the RB protocol from the entire design

space based on the desired confidence level for correct execution.

9. Conclusions

We have studied the reliable broadcast problem in distributed systems
where the communication network is characterized by its broadcast degree
and survivor diameter. Conventional network topologies such as fully con-
nected point-to-point graphs, simple linear chains and rings correspond to'
the special cases (b=2, d=1), (b=2,d=n—-1) and (b=2, d=[(n—-1)/2)),
respectively, of this characterization. In general, the class of networks that
are generated for arbitrary 6 and d correspond to common architectures con-
sisting of a collection of (possibly non-homogeneous) broadcast networks that
are interconnected through gateways where any of the network components

may fail.
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We have exhibited a simple protocol to implement reliable broadcast in
systerﬁs based on such communication networks. The protocol degenerates
into the familiar solutions for RB at the extreme points of the
characterization—fully connected point-to-point networks and full broadcast
networks. In both cases, our protocol matches the established execution

time lower bounds for RB [Had, BD].

Given that ring, Ethernet and bus type communication structures,
wl;ich support varying degrees of partial broadcasts, are extremely common
in practical distributed systen.ns, our results have wide applicability. When
synthesizing a fault-tolerant application within one of these environments, a
designer now has the option to trade performance and resiliency for network
hardware costs. For a desired fault tolerance, a spectrum of performances

can be “bought” by investing in the appropriate network structure.
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