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ABSTRACT 

The technique of clustering uses the measurements on a 

set of elements to identify clusters or groups of elements, 

such that there is relative homogeneity within the groups and 

heterogeneity between the groups. Under the mixture model 

approach, the elements are assumed to be a sample from a 

mixture of several populations in various proportions. This 

technique, in particular the case when the density function 

in each underlying population is assumed to be normal, is 

discussed in relation to other clustering techniques in 

common use. 

It is suggested that this report be read in conjunction 

with the accompanying technical report "Illustrative examples 

of clustering using the mixture method and two comparable 

methods from SAS 11 by K. E . Basford, W. T. Federer and N.J. 

Miles-McDermott. There two real data sets are analysed 

using: 

KMM 

SAS {CLUSTER) 

SAS {CLUSTER) 

and the results compared. 
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1. INTRODUCTION 

A vast number of methods of clustering a set of elements 

into groups, such that there is relative homogeneity within 

the groups and heterogeneity between the groups, has been 

proposed. 

the use 

Recently, considerable emphasis has been placed on 

of mixture models where it is assumed that the 

elements have been sampled from a mixture of several 

populations in various proportions. This approach is 

considered here in the particular case where the underlying 

parametric form is the normal distribution. 

In this report, the basis for the mixture model approach 

to clustering is discussed. A brief review of the general 

classification problem is given to place this particular 

"' '~· technique in perspective. Then the formal definition of the 

mixture maximum likelihood method of clustering is given. 

The practical application is found in the accompanying 

technical report "Illustrative examples of clustering using 

the mixture method and two comparable methods from SAS 11 by 

K.E. Basford,. W.T. Federer and N.J. Miles-McDermott. Much of 

this current report is to appear in a detailed study of 

mixture models in the book Mixture Models: Inference and 

Applications to Clustering, by G.J. McLachlan and K.E. 

Basford. 
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2. MIXTURE MODELS IN CLUSTERING 

The technique of clustering uses the measurements on a set of 

elements to identify clusters or groups, in which the 

elements are relatively homogeneous, while they are 

heterogeneous between the clusters. The establishment of 

such clusters should enable a better perception and 

understanding of the information obtained on the elements, by 

observing th~ structure and relativities of these clusters. 

This method of analysis has been used in many scientific 

disciplines, including the biological sciences. There the 

situation is especially intricate because of the complex 

structure of the underlying biological mechanisms. Many 

interdependencies occur, and multidimensional measurement 

\;'~,,,:~ spaces are commonly encountered. Even if the elements being 

considered do not really consist of distinct groups, it still 

may be a useful and worthwhile exercise to cluster them into 

groups. A convenient labeling scheme may be all that is 

required, though usually, it is hoped that the particular 

grouping obtained may shed light on the phenomena of 

interest. 

Vast numbers of clustering techniques have been 

proposed, and recently, considerable emphasis has been placed 

on the use of mixture models. Under this approach, it is 

assumed that the observations can be considered as a sample 

from a mixture of several populations in various proportions. 

Estimates of the distributions of the underlying populations 

(components) can then be obtained using the likelihood 
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principle, and the elements can be allocated to these 

populations on the basis of their estimated posterior 

probabilities. The mixture method is model based, in that 

the form of the density of an observation in each of the 

underlying populations has to be specified. A common 

approach is to take the component densities to be 

multivariate normal. The estimates of the parameters 

obtained may not be reliable if the sample is not large, nor, 

if there are departures from normality. However, some 

empirical studies (Hernandez-Avila, 1979) suggest that the 

mixture method applied with normal component densities may be 

fairly robust from the clustering view-point of being able to 

separate data in the presence of multimodality. 

~\'~1~·~ The history of the problem of decomposing a mixture is a 

long one, and there are many references concerned with 

mixtures of distributions (Gupta and Huang, 1981). The 

initial approach to this problem in the context of two 

univariate normal populations was considered by Karl Pearson 

(1894), who put forward a solution based on moments. Current 

thinking and experience have shown that other methods of 

estimation, most notably maximum likelihood (first used by 

Rao, 1948), are superior to the method of moments; see, for 

example, Tan· and Chang (1972); Fryer and Robertson (1972); 

Holgersson and Jorner (1978). The maximum likelihood 

solution for a mixture of multivariate normal populations 

with a common covariance matrix was put forward by Day 

(1969). Wolfe (1970, 1971) studied mixtures of normal 
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distributions with unequal covariance matrices and mixtures 

of binomials. However, the parameter estimates cannot be 

obtained explicitly, and the convergence properties of the 

various iterative methods of solution were generally 

uncertain. It was not until Dempster, Laird and Rubin (1977) 

formalized this approach in a general context, through their 

EM algorithm, that the convergence properties were 

established on a theoretical basis. 

Since then, several authors have utilized the mixture 

maximum likelihood approach for clustering purposes. Aitkin 

(1980) studied this technique for both parameter estimation 

and clustering in the two group context. Aitkin, Anderson 

~''''t'~'-' and Hinde (1981) presented a detailed statistical modeling of 

an extensive body of research data on teaching styles, in 

which they clustered teachers into groups. They felt mixture 

models were an appropriate and useful tool, as "when 

clustering samples from a population, no cluster method is a 

pri.ori. believable without a statistical model". Also, as 

they pointed out, "cluster methods based on such mixture 

models allow estimation and hypothesis testing within the 

framework of standard statistical theory". 

Before proceeding with the formal definition of the 

mixture maximum likelihood method of clustering, a brief 

review of the general classification problem is given to 

place this particular technique in perspective. 
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3. BACKGROUND TO THE GENERAL CLASSIFICATION PROBLEM 

Firstly, it is important to establish a standard terminology 

to describe the data sets which will be considered. Carroll 

and Arabie (1980) introduced "a taxonomy of measurement 

data", in which, a mode is defined as a particular class of 

entities, and an N-way array is defined as the cartesian 

product of a number of modes, some of which may be repeated. 

Thus, if the data consist of the measurements of certain 

characteristics of the elements, then the appropriate 

description is two-mode two-way data; one mode being the 

elements and the other being the characteristics. If, 

however, the data are in the form of proximities between the 

·~·.. . elements, based on the above measurements, then it would be 

described as one-mode two-way data; the one mode being the 

elements. In both cases the data would be displayed in a 

two-way table, that is, rows by columns. The former is a 

more informative type of basic data set as it can be easily 

converted, if required, to the latter, by suitable definition 

of a similarity or dissimilarity measure. 

Consider such a two-mode two-way array, where p 

attributes have been measured on each of n elements. The 

problem is to classify these elements into g groups, such 

that the elements within a group are, in some sense, 

homogeneous. If existence of the groups is known, and there 

are available data of known origin from each of the groups 

for constructing estimates of the group densities, then a 

sample based allocation rule can be formed for assigning the 
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elements of unknown origin to the possible groups with the 

minimum probability of misclassification. This discriminant 

analysis problem has been well studied, and the reader is 

directed to Kshirsagar (1972), Lachenbruch (1975) and 

Lachenbruch and Goldstein (1979), and the references within. 

In contrast to this, cluster analysis is the multivariate 

technique used to create groups amongst the elements, where 

there is no prior information regarding the underlying group 

structure, or at least, where there are no available data 

from each of the groups if their existence is known. 

The need for cluster analysis has arisen in a natural 

way in many fields of study. In the last twenty years, the 

\Ml:'>~ quantity of literature on this topic has grown enormously, 

but unfortunately it has been mainly intra-disciplinary. 

This lack of inter-disciplinary communication has meant that 

large bodies of researchers appear to be unaware of one 

another (Anderberg, 1973). Noteworthy attempts at 

classifying and reviewing cluster methods appear in Cormack 

(1971), Das Gupta (1973), Anderberg (1973), Sneath and Sokal 

(1973), Everitt (1978, 1979, 1980) and Mezzich and Solomon 

(1980), while various appoaches to cluster analysis are 

considered in van Ryzin (1977). 

Most clustering techniques are appropriate to data that 

are in the form of a two-mode two-way array (p measurements 

on each of n elements), or a one-mode two-way array 

(proximities measured between n elements), as described 

earlier. Also, they assume that the initial sample is 
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unstructured, in the sense, that there are no replications of 

any particular element specifically identified as such, and 

that all elements are independent of one another. Within 

this framework, available methods of seeking clusters can be 

categorized broadly as being hierarchical or 

non-hierarchical. 

cluster obtained 

The former class is one in which every 

at any stage is a merger or split of 

clusters at other stages. Thus, it is possible to visualize 

not only the two extremes of clustering, that is n clusters 

with one element per cluster (weak clustering) and a single 

cluster with all n elements (strong clustering), but also a 

monotonically increasing strength of clustering as one goes 

\i!Hg~ from one level to another. A hierarchical strategy always 

optimizes a route between these two extremes (Williams, 

1976). The route may be defined by progressive fusions, 

beginning with n single element groups and ending with a 

single group of n elements (agglomerative hierarchy); or by 

progressive divisions, beginning with a single group and 

decomposing it into individual elements (divisive hierarchy). 

Agglomerative hierarchical clustering has been studied 

by Ward (1963), Sokal and Sneath (1963), Hartigan (1967), 

Johnson (1967), and Wishart (196S, 1969), among many others. 

There have been numerous investigations of the applicability 

of various agglomerative hierarchical techniques to simulated 

data with differing properties. Kuiper and Fisher (1975) and 

'1 Moj ena ( 1977) both recommended Ward's minimum variance 

method. Milligan and Isaac (1980) felt these investigations 
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were not generally valid because diagonal covariance matrices 

were used in generating the data. They performed an 

extensive simulation study to compare such methods, and found 

that Ward's method did not perform as well as some other 

algorithms, for example single linkage (nearest neighbour). 

Bayne et al. (1980) used non-diagonal covariance matrices, 

and came to the conclusion that non-hierarchical methods were 

only slightly better than some of the hierarchical 

techniques, in particular Ward's method. 

Williams (1976) noted that all agglomerative strategies 

suffer from two disadvantages, the first of which is 

computational. The user's interest is normally concentrated 

iw~''>' in the higher levels of the hierarchy, so that it is almost 

invariably necessary to establish the complete hierarchy from 

individual elements to a single group of all elements. 

Secondly, an agglomerative system is inherently prone to a 

small amount of misclassification, the ultimate cause of 

which is that the process begins at the inter-individual 

level, where the possibility of this type of error is 

greatest. Divisive classifications (Edwards and 

Cavalli-Sforza, 1965) are free of these disadvantages, but 

are not stra_ight forward to apply, save in the case of a 

monothetic system when a single attribute is used to cluster 

the elements (Williams, 1976). Carmer and Lin (1983) 

compared five univariate divisive clustering methods for 

grouping means in analysis of variance, and found them to be 

particularly dependent on the precision of the experiment, 
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rather than the stated significance level or clustering 

method used. In contrast, a polythetic system is one based 

on a measure of similarity or dissimilarity applied over all 

observed attributes, so that an element is grouped with those 

elements which, on the average, it most resembles. 

In non-hierarchical procedures, new clusters are 

obtained by both lumping and splitting of old clusters, and 

although the two extremes of clustering are still the same, 

the intermediary stages of clustering do not have the natural 

monotone character of strength of clustering. Thus with a 

non-hierarchical strategy, it is the structure of the 

individual groups which is optimized, since these are made as 

';rH•,ll homogeneous as possible (Williams, 1976}. No route is 

defined between the groups and their consitituent elements, 

so that the infrastructure of a group cannot be examined in 

this way. For those applications in which homogeneity of 

groups is of prime importance, the non-hierarchical 

strategies are very attractive. Marriott (1974, 1982), 

Gnanadesikan (1977) and Everitt (1978} have given excellent 

discussions of these procedures. A crucial question here is 

the computational feasibility of any specific algorithm. An 

examination of all possible partitions of the data, to 

determine a clustering or grouping that is optimal with 

respect to some criterion, is prohibitively expensive, and 

may be impossible despite the speed of today' s computers 

(Gnanadesikan, 1977). 

To illustrate criteria used in non-hierarchical cluster 

techniques, let T be the total scatter matrix initially 
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defined by Wilks (1962). Then for each partition of n 

elements into g groups, T can be expressed as the sum of W, 

the pooled within group scatter matrix, and B, the between 

group scatter matrix. For a given set of elements, T is 

fixed, so a natural criterion for grouping is to minimize W 

or equivalently maximize B (Edwards and Cavalli-Sforza, 1965} 

and Singleton (1965, as reported by Friedman and Rubin, 1967) 

achieved this by minimizing trace W. MacQueen (1967) and 

Hartigan (1975, 1978} used the so-called k-means procedure 

which is a special implementation of the trace W criterion. 

As mentioned earlier, many clustering procedures start with 

an nxn symmetric matrix of pairwise distances or similarities 

between elements. If the trace W criterion is chosen, then 

so implicitly is ordinary Euclidean distance, as trace W can 

be computed directly from these pairwise distances (Friedman 

and Rubin, 1967} • Wilks ( 1962) introduced I WI I IT I as a 

statistic, and Friedman and Rubin (1967) maximized its 

reciprocal ITI/IWI. Another related criterion function is 

the maximum of trace (W-1B) • This is sometimes called 

Hotel ling's Trace Criterion, and is equivalent to what Rao 

(1952) called the generalization to g>2 groups of the 

Mahalanobis distance between two groups. As stated by 

Friedman and Rubin (1967), both trace (W-1B) and ITI/IWI may 

be expressed in terms of the eigenvalues of w-1B, and 

Anderson (1958) showed that these eigenvalues are the only 

invariants of w and B under non-singular linear 

transformations of the original data matrix. While trace W 

-11-



r 

is only invariant under an orthogonal transformation, ITI/IWI 
is invariant under any non-singular transformation (Friedman 

and Rubin, 1967). Also, the trace W criterion does not take 

into account the within group covariance structure of the 

measurements, and though computationaly simpler, is less 

likely to identify elongated clusters than the lwl criterion 

(Marriott, 1971) . In addition, Friedman and Rubin (1967) 

found that the latter criterion demonstrated greater 

sensitivity to the local structure 'of data considered in 

their investigations. 

Scott and Symons (1971) showed that these common 

non-hierarchical clustering procedures were extensions of the 

likelihood ratio method of classification for normal 

populations, where the unknown indicator variables associated 

with the data are treated as unknown parameters to be 

estimated along with the other unknown parameters by maximum 

likelihood. In particular, for known equal spherical 

covariance matrices, the maximum likelihood partition 

corresponds to minimizing trace W, while for unknown equal, 

but not necessarily spherical covariance matrices, the 

maximum likelihood partition is equivalent to minimizing lwl. 

Symons (1981) discussed, in some detail, such criteria 

derived from maximum likelihood and Bayesian approaches 

corresponding to different assumptions about the covariance 

matrices of the underlying component populations. 

Hawkins, Muller and ten Krooden (1982, page 353) 

commented that most writers on cluster analysis "lay more 
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stress on algorithms and criteria in the belief that 

intuitively reasonable criteria should produce good results 

over a wide range of possible (and generally unstated) 

models". For example, the trace W criterion is predicated on 

normal data with spherical within-cluster covariance matrices 

as noted above, but as they pointed out, many users would 

apply this criterion even in the face of contrary evidence. 

They strongly supported the increasing emphasis on a model 

based approach to clustering. Mixture models have thus been 

the subject of recent attention for use in this context. In 

particular, the mixture maximum likelihood method provides a 

concise way of summarizing differences among the elements 

being considered. It is therefore worthwhile considering 

this approach, particularly in situations where there is some 

doubt about the validity of the clusters obtained by some 

other method (see Aitkin, Anderson and Hinde (1981) and the 

subsequent discussion, and Aitkin (1983) on the role of the 

mixture approach versus less ,complicated methods based on 

mean analysis). 

With the mixture maximum likelihood 

assumed that a p-dimensional observation 

approach, it 

is available 

is 

for 

each of n elements, assumed to have been drawn from a mixture 

of a specified number of populations (groups) in various 

proportions. By adopting some parametric form for the 

density function in each underlying population, a likelihood 

can be formed in terms of the mixture density, and the 

unknown parameters estimated by the likelihood principle. An 
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allocation rule based on the estimated posterior 

probabilities can then be formed for assigning th~ elements 

to their unknown population of origin. The properties of the 

mixture approach have been considered by Day (1969), Wolfe 

(1970), Hosmer (1973a), O'Neill (1978), Ganesalingam and 

Mclachlan (1978, 1980a, 1980b, 1981), Aitkin (1980), Mezzich 

and Solomon (1980), Aitkin, Anderson and Hinde (1981), Symons 

(1981), and Everitt and Hand (1981), among many others. In 

particular, Ganesalingam (1980) studied the mixture maximum 

likelihood approach to estimation and clustering in the two 

group context in a Ph. D. dissertation at the University of 

Queensland. Much of this and the associated work were 

essentially summarized by McLachlan (1982). More recently, 

Basford (1985) investigated cluster analysis via normal 

mixture models in the more general case of an unrestricted 

number of groups. 

The general problem of validating clustering results has 

become of increasing importance (Dubes and Jain, 1979; 

Murtagh, 1983), regardless of which clustering technique is 

employed. This is particularly difficult as, in cluster 

analysis, the origin of each element is unknown. Based on 

ideas developed in the discriminant analysis context, 

Ganesalingam (1980) showed that in the case of g=2, estimates 

of error rates can be obtained to assess the overall 

performance of the mixture maximum likelihood method of 

clustering. Such estimates are based on the maximum of the 

estimated posterior probabilities of the elements belonging 
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to the various populations. This facility for assessing 

performance is highly desirable, and is further developed in 

the cluster analysis context in Basford and McLachlan 

(1985a). 

The mixture approach has the potential to handle 

structured data because it is model based. The structure 

being referred to here is with respect to the collection and 

presentation of the data before a clustering technique is to 

be applied. It is not with reference to the underlying 

structure among the elements which the clustering technique 

is being used to identify. The structure of the data could 

be in the form of repeated observations on each element by 

observing them in some experimental design, or it could be 

the representation of the information on the elements in the 

three-way array. Most clustering techniques assume the data 

are in the form of a one-mode or two-mode two-way array with 

no repeated observations as such. Hence the data have to be 

reduced to this form before a clustering technique can be 

applied. To illustrate these points, consider how clustering 

methods are currently utilized in two relevant examples of 

biological data. 

In the first 

treatments of some 

example, suppose 

description are 

a 

being 

large number of 

compared in an 

experimental design suitable for analysis of variance. The 

researcher may decide that it would be useful, and perhaps 

even sufficient, to split these treatments into relatively 

homogeneous groups, rather than to compare each individual 
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treatment. Thus, here it is the treatments that are being 

considered as elements which are to be clustered into groups 

on the basis of a univariate attribute. A common approach is 

to reduce the observed data to information on the mean for 

each treatment before a cluster technique is applied. Scott 

and Knott (1974) and Carmer and Lin (1983) used hierarchical 

techniques to cluster such treatment means. Binder ( 197 8, 

1981) and Menzefricke (1981) adopted a Bayesian approach. 

Skillings (1983) considered a non-parametric approach to 

comparing means in a one-way analysis of variance, while Cox 

and Spjotvoll (1982) devised a method of partitioning means 

into groups based on standard F tests. Aitkin (1980} showed 

how the mixture method could be used to cluster treatment 

means from a one-way experimental design via the EM algorithm 

of Dempster, Laird and Rubin (1977). Because this is a model 

based technique, it can be used to analyze the data without 

necessarily reducing it to means (Basford and McLachlan, 

1985b). This could be relevant when more complicated 

statistical designs with non-independent observations have 

been employed. In this example only univariate data have 

been considered, but there appears no reason why multivariate 

data could not be considered similarly. 

The second example concerns data sets which are in the 

form of three-mode three-way arrays. Consider the results of 

a large plant improvement program expressed as a genotype by 

attribute by environment matrix (Basford, 1982). This is 

quite typical of experiments where various attributes are 
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measured on each of a large number of genotypes grown in 

several environments. The aim of the cluster analysis is to 

obtain a suitable grouping of the genotypes, as a convenient 

labeling scheme, and to shed light on the underlying 

relationships between the genotypes. As stated earlier, most 

clustering techniques require the data in the form of a 

two-way array; a genotype by attribute array, obtained by 

averaging over environments, or else, a genotype by 

environment array for each attribute may be used. In the 

latter case, a cluster analysis would have to be performed 

for each attribute of interest. Examples of such analyses 

are given by Burt et al. (1971), Mungomery, Shorter and Byth 

(1974) and Byth, Eisemann and DeLacy (1976). If, however, 

all the information collected was pertinent to the clustering 

of the genotypes, then it would seem to be an advantage if a 

clustering technique could handle the entire three-way array 

in a single analysis. 

It may be possible to combine attributes to produce a 

single measure which would then enable the data to be 

represented by a two-mode two-way array. For example, a new 

variable, energy yield, might be defined as the addition of 

protein percentage and oil percentage, each multiplied by 

seed yield. Another example would be the use of selection 

indices (Smith, 1936; Manning, 1956). However, a suitable 

combination of attributes connot always be determined, and it 

is then more appropriate to consider the attributes as 

individually contributing information to the formation of the 
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clusters. Similarly, variable reduction techniques, which 

convert the data to a two-way array, appear to be 

circumventing the problem of determining a method of 

clustering to analyze data directly in the form of a 

three-mode three-way array. 

Because of the perceived inability of methods of cluster 

analysis to handle three-way arrays, some researchers have 

turned to the technique of multidimensional scaling (MDS) to 

obtain a low dimensional spatial representation (Torgerson, 

1958). It has been widely used in the social and behavioral 

sciences as a descriptive model for elucidating data patterns 

(Kruskal and Wish, 1978), and was extended to cover three-way 

tables of the type described above (Tucker and Messick, 1963; 

Carroll and Chang, 1970). Using the individual differences 

model of Carroll and Chang (1970), Basford (1982) analyzed 

soybean data by postulating that an underlying pattern of 

genotype performance, as measured by an array of attributes 

across environments, existed, and that there was an 

underlying space of small dimension, in which the genotypes 

could be placed. Under this model, the position of the 

genotypes, as determined by the environments, may vary only 

because of change in the relative importance of these 

conceptual underlying axes. The relative position of the 

points (genotypes here) in this space was then used as an 

indication of similarity of response pattern. The MDS 

approach is not attempting to place the elements into 

discrete groups, but rather to obtain a low dimensional 
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spatial representation. It, therefore, is not a competing 

technique, but rather a complementary one to clustering 

(Kruskal, 1977). 

Recently, there have been some new developments in 

clustering techniques, which attempt to use the individual 

differences concept, as introduced in MDS by Carroll and 

Chang (1970), to enable the processing of three-way data. 

Carroll and Arabie (1983) devised a method for 

non-hierarchical overlapping clustering called INDCLUS, in 

which each of a number of subjects or individual data sources 

perceive a common set of clusters of elements, but these 

clusters are differentially weighted by subjects in order to 

portray individual differences. Carroll, Clark and DeSarbo 

(1984) developed a new methodology called !NOTREES for a 

hierarchical tree structure to obtain a discrete network 

representation of such three-way data. In their model, the 

individual differences generalization is one in which 

subjects or individual data sources are assumed to base their 

judgements on the same family of trees, but are allowed to 

have different node heights andjor branch lengths. 

Basford .and McLachlan (1985c) appear to have been the 

first to consider the mixture method of clustering in 

relation to data in the form of three-mode three-way arrays. 

As it is a model based technique, this approach to clustering 

does have the ability to handle such structure. In 

particular, the genotype by environment interaction, which is 

of considerable importance in large plant breeding trials, 
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can be directly incorporated into this model, as shown in the 

above paper. 

4. GENERAL DEFINITION OF THE MIXTURE MAXIMUM LIKELIHOOD 

APPROACH 

Multivariate 'observations on a set of n elements forming a 

two-mode two-way array can be represented as x1 , •••• ,x . In 
- -n 

applying the mixture method of clustering, it is assumed in 

the first instance that there is a specified number, say g, 

of underlying populations 11 1 , •••• ,rrg. It is then assumed 

that the sample x 1 , ..•• ,x has been drawn from the 
- -n 

superpopulation rr, a mixture of these underlying populations. 

The proportions in which the populations are represented in 

the mixture are unknown, and will be denoted by 

!=(~ 1 , •. ~.,~g> '· Let the density of an observation~ from Hi 

be given by f. (x; u) where u denotes the vector of unknown 
~ - -

parameters. The mixture method of clustering can be applied, 

at least in principle, provided the form of these densities 

is known. The most widely studied examples of this 

formulation concern random samples from a mixture of normal 

distributions; see Rao (1948), Hill (1963), Hasselblad 

(1966), Choi (1969a, 1969b), Day (1969), Wolfe (1970, 1971), 

Urbakh (1972), Dick and Bowden (1973), Hosmer (1973a, 1973b, 

1974) and Kazakos (1977). Hasselblad (1969) treated more 

general random sampling models, giving as examples mixtures 

of Poissons, binomials, and exponentials. Symons, Grimson 

and Yuan (1983) considered a mixture of Poisson 
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distributions, while Aitkin (1980) clustered multinomial 

observations. The special issue of Communications in 

Statistics on remote sensing, published in 1976, gives 

additional references, especially with regard to estimating 

mixing proportions. A summary of the work contained in most 

of these is given by James (1978). 

An observation x in rr has the mixture density given by 

g 
}; 1T.f.(x; v). 

i=1 1 ]. - -
( 4 .1) 

Anderson (1972) called this a compound distribution, so as to 

avoid the confusion that can arise in using the word mixture 

in the context of mixture sampling. The likelihood of the n 

observations· is given by 

n . g 
L = rr { }; 

j=l i=l 
1T . f. (X. i v) } • ]. ]. -J - ( 4 0 2) 

The vector!'=(~',~')' of unknown parameters can be estimated 

using the likelihood principle. Then each x. 
-J can be 

allocated on the basis of its estimated posterior 

probabilities of belonging to the various populations. The 

posterior probability that ~j , (really the element with 

observation x.), belongs torr. is given by -J ]. 
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i 
>;-

e.(x.; c.0) 
1. -J ];.. 

g 
= v. f. (x. ; v) 1 }; v f (x. ; v) , 

1. 1. -J - u u -J -u=l 
(i = l, ... ,g). 

( 4. 3) 

It is estimated by replacing the unknown parameter vector '£ 
A 

with the likelihood estimate '£ . Then x. is assigned to U -J u 

if 

"' "' e (x.; c.0) > e.(x.; c.0), (i =l, .... ,g; if. u). u -J ];.. 1. -J ];.. (4.4) 

-~-

For convenience, e. (x.; ~) is denoted by S .. whil~ e. (x.; c.0) 
1. -J ];.. l.J 1. -J J.. 

is denoted by e ... If'£ was known, the allocaton rule (4.4) 
l.J 

would be the optimal or Bayes rule (Anderson, 1958) which 

minimizes the overall error rate. 

The likelihood equation for p_, o log Ljop_ = Q, can be 

expressed as 

and 

g n A "' 

}; }; e .. 0 log f. (x.; v_)jov_ = 0 
1.) 1. -) i=l j=l 

7r. = 
1. 

n A 

}; e .. ;n, 
j =1 l.J 

(i =l, •.. ,g). 
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When the maximum likelihood estimates exist, the computation 

is facilitated by identifying these equations with the 

application of the EM algorithm of Dempster, Laird and Rubin 

(1977). They discussed this problem in a very general 

context where the populations are mixed with respect to a 

distribution whose parameters may be related to the 

population parameters. In the current model, the mixing 

proportions, v 1 , ••••• vg' are unrelated to the population 

parameters in v. For each x. , 
-) 

let the vector of indicator 

variables, !j= <~ 1j, ••• ,~gj)', be defined by 

= {1, ~J· € rri 
~j 

o, x. tt. rr. -J ~ 

The expectation of ~ij conditional 

(4.7) 

on x . is equal to e ... 
-J ~J 

Then it can be verified that equations (4.5) and (4.6) are 

obtained by differentiation of the expectation of the 

complete data log likelihood conditional on x 1 , .•• ,x. This - -n 
conditional expectation is effected here by replacing each 

indicator variable ~ij by its expectation conditional on ej; 

that is, 9. . • 
~J . 

The iterative process follows in two steps. First (the 

E step), given some initial value for the vector of 

estimates, say f(o), the ~ij are estimated by 
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( I . (o) E-r .• x., <b ) 
1) -J };,. = Pr (x. € rr . I X. ; <J) ( 0 ) ) 

-J 1 J };,. 

= 9.(x.; <J)(o)), (i = 1, ••• ,g). 
1 -J };,. ( 4 0 8) 

Second (theM step), for the estimated,.,. , '£.,say '£.( 1 ), is 
1) 

chosen to maximize the likelihood. The E and M steps are 

alternated repeatedly to give a sequence {'£.(q)}. It follows 

that 

(4.9) 

and so if bounded above, L(f.(q)) * . converges to some L wh1ch 

will be a local maximum, provided the sequence is not trapped 

at some saddle point (Wu, 1983; Boyles, 1983). Generally the 

convergence is slow, but may be improved using Aitken's 

acceleration process; see Louis (1982) for details of 

speeding up this algorithm. With mixture models, the 

likelihood often has multiple maxima, and so the EM algorithm 

should be repeated for several different sets of starting 

values of '£.. In McLachlan and Basford (1987) there is a 

discussion on the choice of suitable starting values during 

the search for all local maxima, and on the problem of which 

of these to choose. 
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With the solution of the likelihood equation under the 

mixture approach, there is no insistence on outright 

allocation of the elements to the groups at each stage of the 

iterative process, thus avoiding the inconsistent estimates 

as obtained with, say, the lwl criterion. Providing 

regularity conditions hold, the estimates so obtained have 

the desirable large sample properties of likelihood 

estimators; for example, consistency, asymptotic efficiency 

and normality. 
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