TeXQuery: A Full-Text Search Extension to XQuery

Sihem Amer-Yahia Chavdar Botev Jayavel Shanmugasundaram
AT&T Labs—Research Cornell University Cornell University
sihem@research.att.com cbotev@cs.cornell.edu jai@cs.cornell.edu
Abstract

One of the key benefits of XML is its ability to represent a mixstsuctured and unstructured (text)
data. Although current XML query languages such as XPathXXQdery can express rich queries
over structured data, they can only express very rudimgmfaeries over text data. We thus propose
TeXQuery, which is a powerful full-text search extensiorXQuery. TeXQuery provides a rich set of
fully composable full-text search primitives, such as B@ol connectives, phrase matching, proximity
distance, stemming and thesauri. TeXQuery also enables tesseamlessly query over both structured
and text data by embedding TeXQuery primitives in XQuerg, @ne versa. Finally, TeXQuery supports
a flexible scoring construct that can be used to score qusnftsebased on full-text predicates. TeX-
Query is one of the proposals submitted to the W3C Full-TeskTForce, whose charter is to extend
XQuery with full-text search capabilities.

1 Introduction

One of the key benefits of XML is its ability to represent a mixstructured and unstructured (text) data.
One can already find many real XML data repositories thatainrguch a mix of structured and text data.
For example, the IEEE INEX data collection [16] contains Egapers in XML form, including structured
information such as the names of authors, date of publitagections, sub-sections, and references, and
also unstructured information such as the text contentegpétper. Other examples of such XML repositories
are Shakespeare’s plays in XML [5], DBLP in XML [10], SIGMODeBord in XML [23], and the Library

of Congress documents in XML [17]. Furthermore, appligatitomains such as Library Science have a
growing need to seamlessly query over both the structurddext parts of XML documents.

While current XML query languages such as XPath [26] and X§{25] can express powerful struc-
tured queries over XML documents, they can only expressyarugiimentary full-text search. For instance,
full-text search in XQuery is expressed using the functioont ai ns($e, keywor ds) which returns
true iff the XML element bound to the variabfe contains all the keywords ikeywor ds (see [31] for
a precise definition o€ont ai ns). While this function is sufficient for simple substring roling, it is
woefully inadequate for more complex searches. For instazmnsider the following example in the W3C
XPath and XQuery Full-Text Use Cases Document [27].

Example 1 (Use Case 10.2.8 Q8 onsider an XML document that contains books. Find thegitind
contents of books whose content contains the phrases fitgaliWeb site” and “is” in that order, in the
same paragraph, using stemming if necessary to match teegok

The XQuerycont ai ns function is obviously too limited to express the above deanhich includes
phrase matching, order specifications, paragraph scodestamming. The&ont ai ns function also can-

Convert a FullMatch to
a sequence of items

5 N\

Evaluate to a XQuery ; Evaluate to
sequence of ite Expression FTSelection a FullMatch

N~

Convert a sequence of
items to a FullMatch

Figure 1: XQuery and TeXQuery Composability

not express other full-text operations specified in the UaseS Document, such as general Boolean con-
nectives, distance predicates, synonyms, and thesauaillf;ithecont ai ns function cannot score or rank
results, such as returning the top 10 results for a giverckear

Integrating sophisticated full-text search in XQueryagimces many challenges. First, we need to iden-
tify a set of full-text primitives that are natural to quergi XML; these primitives should not only be pow-
erful, but should also be composable with each other so thétaxily complex full-text searches can be
specified (such as using stemming with distance predica8aolean connectives). Second, we need to
seamlessly integrate regular XQuery with full-text seasohthat users can query over both structured and
full-text data; this is non-trivial because structured XMjleries operate on XML nodes, while by their very
nature, full-text queries operate on keyword search tolealstheir positionsvithin XML nodes. Finally,
we need to introduce the notion of ranked results in ordeuppsrt threshold and top-K queries.

TeXQuery is designed to address the above issues. TeXQumiiges a set of powerful full-text search
primitives calledFTSel ect i ons. FTSel ect i ons are fully composable, and arbitrarily complex full-
text queries can be created by combining the bB3iBelections. The key that makes this possible (and one
of the main contributions of this paper) is a formal undewydata model calleBullMatch.

The FullMatch data model contains sufficient information about searclenskand their positions in
an XML document such that alfiTSel ect i ons are closed under this data model. In other words, each
FTSelection can be formally defined as taking in zero or nflaéMatches as input and producesFall-
Matchas output. ThuETSel ect i ons can be arbitrarily composed, as shown in the right partgpdiféi 1.

We are not aware of any previous data model that is closedhésame wide variety of full-text primitives.

TeXQuery can also combine full-text queries with XML querin structure. This is achieved by two
new XQuery expressionsftcontainsand ftscore (we call these the TeXQuery expressions). TeXQuery
expressions specify a well-defined mapping betweelfrthidlatch data model and the XQuery data model
(sequence of XML items/nodes) as shown in Figure 1. ConselyudeXQuery queries can be embedded
in XQuery and vice-versa. THescoreexpression also enables users to score full-text searahses

TeXQuery has been submitted to the W3C Full-Text Task FAr@E F) whose charter is to extend
XQuery with full-text search capabilities [21]. TeXQuemtisfies all of the FTTF Requirements specified
in [28], and is powerful enough to express every use caseifrTITF Use Cases document [27] (see [3] for
the complete list of solutions).

The rest of the paper is organized as follows. In Section 2outkne some design principles for XML
full-text search languages. In Section 3, we describe tJleery language, and in Section 4, we formally
define the semantics of TeXQuery. In Section 5, we discuaseatvork, and in Section 6, we present some
concluding thoughts.

2 Design Goals and Alternative Approaches

We now motivate and describe a set of design goals that weveddiny full-text search extension to XQuery
(or any XML query language in general) should satisfy. Wentbleow why some simple extensions to the
XQuerycont ai ns function fail to satisfy the design principles due to somadamental limitations of the
function-based approach. This motivates the need for a pmserful approach such as TeXQuery, which
we describe in the next section.

We use the following terminology for the rest of this papelinguistic tokenis a sequence of characters
that corresponds to a token in a given human language. IneWelsinguages and many other languages, a
linguistic token corresponds to a word. Leaf nodes in an XMtuwment tree may contain multiple linguistic
tokens. Asearch tokeris a sequence of characters defining a pattern for matchiggiitic tokens. We
assume that XML documents amkenizedy a language-dependent tokenizer to identify linguisiiens.

2.1 Design Goals

We now describe our design goals based on the following oeteg

2.1.1 Searching over Semi-Structured Data

DGL1: Users should be able to specify the search context, or theexpover which the full-text search
is to be performedIn traditional full-text search [22], the search contextuisually the entire document
collection. However, in the case of structured or semiestmed XML documents, it is often desirable to
narrow the search to a sub-set of the documents, or to fragroédocuments. For instance, in the example
given in the introduction, the search context is limited twks (and excludes papers, articles, etc.), and
even within books, it is limited to the book content (insteddhe whole book).

DG2: Users should be able to specify the return context, or thé gfathe document collection that is to be

returned In traditional full-text search [22], the return contegtuisually the entire document that satisfies
the full-text search condition. However, in the case ofdtited or semi-structured XML documents, it

is often desirable to return specific fragments of documemigr instance, in the example given in the
introduction, the return context is limited to the title acwhtent of books (and not other fragments of the
book, such as author names, etc.).

2.1.2 Expressive power and Extensibility

DG3: Users should be able to express complex full-text seardhssrs should be able to use sophisticated
full-text primitives such as Boolean connectives, distapmedicates, phrase matching, stemming, and the-
sauri. Further, they should be able to compose these prewito express complex searches, such as the
example in the introduction.

DG4: The language should be extensible with respect to newekilgrimitives Unlike the relational
model, there is no general notion of “completeness” in et search languages. The language should thus
be extensible so that new primitives (such as synonyms) eatlded based on new user requirements.

2.1.3 Scores and Ranking

DGS5: Users should be able to obtain relevance scores for the tesiifull-text searchesVhen searching
over text, it is often desirable to rank the results basedein televance to the search [22]. Many measures

3

such as TF-IDF and keyword proximity can be used to obtaimdlevance scores.

DG6: Users should be able to control how scores are compuféiaen issuing full-text searches, users may
wish to specify that certain search tokens are more impotteam other search tokens [22]. For example,
when searching for “XML books”, the search token XML may berenomportant than book, and users

should be able to specify this in some way (e.g., using wsjght

DG7: Users should be able to obtain the top-K results based on thielvance scoreSince users are often
interested only in the top few results, they should be abspaxify this explicitly.

DG8: Users should be able to specify a scoring condition, whichadssibly different from the full-text
search condition Users may wish to search based on one full-text search ttamdand score the results
based on another condition. For example, a user may needitalfihooks on “software developers” and
score them based on their relevance to “usability testingie FTTF Use Cases Document [27] contain
other examples of such queries.

2.1.4 Integration with XQuery

DG9: Users should be able to embed full-text searches in XQugmessions This will enable users to
guery seamlessly over both structured data (using XQuey)all-text data (using full-text search). This
requires that full-text search expressions be fully corapteswith XQuery expressions.

DG10: Users should be able to embed XQuery expressions in fulséexchesUsers should be able to use
XQuery expressions to specify the search tokens for futigearch. For example, a user may wish to search
for all articles that mention the title of one of Richard Dam& books. Here, the search tokens are the titles
of Richard Dawkins books, which are themselves the reswdtX®uery query (and not just constants).

DG11: XQuery's query capabilities should be leveraged wherewssiple XQuery provides a powerful
way to select, and manipulate XML documents, and this shioelléveraged so that there is no duplication of
functionality. Some obvious ways where XQuery query cdjias can be leveraged are in the specification
of the search and return contexts (DG1 and DG2).

DG12: There should be no extensions to the XQuery data m@lghport for full-text search should have
no impact on the XQuery “sequence of items” data model. Thia neason is that XQuery expressions are
fully compositional, and each expression takes zero or reegeiences of items as input, and produces a
sequence of items as output. Changing this data model (suatiding scores to items, or adding positions
of search tokens) would require changing the definitiomvary XQuery expression, including those that
are not full-text search expressions. Further, in the @steof extensibility, it is unlikely that the XQuery
W3C Working Group will be open to changes to the XQuery datdehtor every new extension (such as
full-text search, spatial search, etc.).

2.1.5 Language Syntax and Efficiency

DGL13: It should be possible to statically verify that a query istagtically correct This is a simple
requirement that states that we should be able to detectsyntors statically (at compile time). For
instance, in full-text search, we should be able to stdyiacdtermine whether the Boolean operator "and’
has two operands. The main advantage, of course, is to lmlildst applications.

DG14: The language syntax should allow for static type checkirgjiaference Static type checking and

inference are especially important when applicationshéathan humans) interpret query results. Further,
static type checking is already achieved by XQuery and ttpgrty should be preserved for full-text search.

DG15: The language should allow for an efficient implementidhile functionality is important, the
language should not be designed in a way that precludes arepffimplementation.

2.2 Limitations of Function-Based Approaches

We now consider two extensions to the XQuery language, waitdmpt to extend the basiont ai ns
function with more expressive full-text search capaleiitiOur main goal is to illustrate that these function-
based approaches have some fundamental limitations teelude them from achieving all of the above
design goals; this in turn motivates the need for a more polviEnguage such as TeXQuery, which we
describe in the next section.

We consider two different function-based approaches.diitkt approach, we create a neant ai ns-
like function for each full-text primitive (such as Booleannnectives, distance predicates, etc.). In the sec-
ond approach, we extend thent ai ns function so that this single function is used to expressugiitéxt
primitives, similar to SQL/MM [18]. Both of these approashean be viewed as end-points in a spec-
trum, and there are certainly hybrid approaches that fdlleiiveen. However, the limitations of these two
end-points also carry over to the hybrid approaches.

2.2.1 One Function Per Full-Text Primitive

The cont ai ns function checks for the occurence of search tokens in an Xelden One can thus cre-
ate other functions for other full-text operations such aslBan connectives and distance predicates, and
compose these functions to create complex full-text ggeAs an example, consider the following query.

Example 2 Find all XML nodes (bound to variable $n) that contain tharsk token “usability” and either
the search token “testing” or the search token “analysisirtier, the search tokens should be within a
window of size 10 (i.e., a window of at most 10 tokens shouldtaim all the search tokens).

Using a function for each Boolean connective and distanedipate, the above query can be written as:

di stance(contai ns($n,’ usability’) and (contains($n,’ testing’) or
cont ai ns($n, ' anal ysi s)), 10)

The functioncont ai ns($n, ' usabi | i ty’) returns true iff $n contains the search token 'usability’,
and similarly forcont ai ns($n, ' testing’) andcont ai ns($n, anal ysis’). The XQuery
'and’ and ’or’ functions are used for the Boolean connedivé-inally, a distance function operates on
this result to return true only if the search tokens occuhiwifa distance of 10.

The main problem with using this approach in the context olu¥(is that it requires an extension of
the XQuery data model (thereby violating DG12). To see wiy iththe case, consider the return type of
the first parameter of théi st ance function. The return type is Boolean becausent ai ns returns a
Boolean value, and the Boolean connectives also return eeBo&alue. But given just a Boolean value as
input, how can theli st ance function determine if the search tokens are within a distafcl0 from each
other? This will not be possible unless some extra inforomagéibout search token positions is somehow
“carried around” with the Boolean value - this is essentiallfundamental extension to the XQuery data
model, violating DG12. The above problem can be avoided bglidwing distance predicates, but this
would then limit the expressive power of the language, ViiotpDG3.

2.2.2 Single Function for Full-Text Search

The main problem with the previous approach was that it isdléhe full-text primitive into separate func-
tions. By doing so, it had to extend the XQuery data model ibition-related information so that
distance-based searches can be composed. This problene caivbd by embedding the entire full-text
search into a singleont ai ns function, such as the approach taken in SQL/MM [18]. By dangall the
processing related to full-text search (including distabhased predicates) is expressed entirely within the
cont ai ns function, and the XQuery data model would not have to be eleddnFor instance, Example 2
above can be written as follows in SQL/MM-like syntax:

contains($n, 'usability and (testing or analysis) distance 10')

The main problem with this approach is that the full-textrebds specified in an uninterpreted string
that is opaque to the rest of the XQuery language. This caupesblem when we wish to embed XQuery
within full-text searches, as in the following example.

Example 3: Find all articles that mention the title of one of Richard kitis books.

Here, the search tokens (the titles of Richard Dawkin’s Bpake themselves the result of an XQuery
expression, and there is no natural way to embed theseg@sialtthe full-text search string (thereby violat-
ing DG10). One could conceivably think of generating thé-fetkt search string “on the fly”, using string
concatenation on the results of XQuery expressions asisllo

contai ns($n, concat(//book[author = 'Dawkins']/title, "and))

However, this implies that the full-text search string wiidit be created until runtime, which means that
even simple syntax errors in the string cannot be checkebruntime (such as an 'and’ operator with only
one operand in the above example). This violates DG13.

2.2.3 Discussion

As illustrated in the previous sections, the function-blds@guagesyntaxhas some fundamental limitations
in meeting the design goals. This is unusual because, indgygdesign, the precise syntax often does not
significantly impact the expressive power or semantics. ¢l@w in our case, the syntax makes a significant
difference because we are proposing an extension to aingxishguage (XQuery), and the syntax should
fit within the framework of that language.

Of course, the syntax is just one aspect of the language. fhee onportant aspect is its formal se-
mantics. Even using a function-based syntax, the SQL/MMresibns do not provide the desired level of
composability and semantics as outlined in our design g@ataore detailed comparison with SQL/MM
can be found in Section 5). In the next two sections, we defieasyntax and semantics of TeXQuery, which
satisfies all of the above design goals.

3 TeXQuery Language Specification

We now describe and illustrate the TeXQuery full-text seaxtensions to XQuery. TeXQuery satisfies all
the design goals presented in Section 2, satisfies all théreegents in the the W3C Full-Text Requirements
document [28], and is powerful enough to express all the WBICText Use Cases [27] (see [3] for the full
list of solutions to the use cases).

3.1 High-Level Overview

At its core, TeXQuery introduces two new XQuery expressiomBich we call TeXQuery expressions.
These expressions are just like other XQuery expressioney-take zero or more sequences of items as
input, and produce a sequence of items under which XQuemgssions are closed (left part of Figure 1 in
the Introduction). Consequently, TeXQuery seamlesshgrstes with XQuery.

TeXQuery expressions support powerful full-text searchubing a set of fully composable full-text
primitives calledFTSel ecti ons.FTSel ect i ons are closed under a data model that we [eallMatch
(right part of Figure 1). Th&ullMatch model is different from the XQuery model because full-teedirgh,
by its very nature, has to deal with linguistic tokens andrtpesitionswithin XML nodes. We describe
FullMatchin detail in Section 4.

It is important to note that thE&ullMatch data model is not an extension to the XQuery data model
(DG12). RatherFullMatch is internal to TeXQuery expressions. TeXQuery expressions still netur
sequence of items, and are thus fully composable with otigarey expressions (DG9 and DG10). Having
a different data modekithin an XQuery expression is not specific to TeXQuery. In fact, ohthe core
XQuery expressions - FLWOR - has an internal model of tupldsch is not present in the XQuery data
model [29].

3.2 TeXQuery Expressions
We now introduce the two TeXQuery expressiof$Cont ai nsExpr andFTScor eExpr .

3.2.1 FTContainsExpr

TheFTCont ai nsExpr has the following syntax.

FTCont ai nsExpr ::= Expr ‘‘ftcontains’’ FTSel ection

Expr is any XQuery expression that specifies the search contéithvis the sequence of XML nodes
over which the full-text search is to be performéf@.Sel ect i on specifies the full-text search condition.
The FTCont ai nsExpr returns a Boolean value that is true iff some node in the bezontext satisfies
the full-text search condition. An example of BMCont ai nsExpr is given below.

/1 book ftcontains 'usability && 'testing’

The above expression returns true iff some book in the seaotext/ / book (which is an XQuery
expression) contains the search tokens 'usability’ argliftg’. Here’ usabil ity && 'testing’ is
a simple example of aRTSel ecti on. More complexFTSel ect i ons can be specified, but we defer
this discussion to a later section.

The simple example above illustrates several key pointst,Hi shows howFTCont ai nsExpr can
limit the search context, thereby satisfying DG1. SecolngesFTCont ai nsExpr always returns a
Boolean value, it can be easily type-checked (DG14). Thindge FTCont ai nsExpr returns a result
in the XQuery data model (a Boolean value), it can be arlyraested within other XQuery expressions
thereby satisfying DG9. A concrete instantiation of thishewn in the example below.

/I book[.//section ftcontains "usability' && 'testing’]/title

The above query returns the titles of those books in whichessaation contains the search tokens 'us-
ability’ and 'testing’. Note how th&TCont ai nsExpr (. // section ftcontains "usability’
&& 'testing’)is nested within the XQuery expressibhbook[]/title.

There are two other points to note about the above exampigt, Eishows how TeXQuery can specify
a return context, or the part of the selected XML items thattarbe returned (DG2). In the example, the
return context is only the titles of the selected books, hetdontents of these books. Second, it shows
how TeXQuery leverages existing XQuery constructs suclatsgxpressions to specify the search context
(. /1 section)and the return context i t | e), thereby satisfying DG11.

3.2.2 FTScoreExpr

FTCont ai nsExpr returns true iff some node in the search context satisfieSTisel ect i on. However,

it does not specify how relevant the search context nodedoatiee FTSel ecti on. FTScor eExpr
addresses this issue by returning a score or measure adimekefor each node in the search context (thereby
satisfying DG5)FTScor eExpr has the following syntax.

FTScoreExpr ::= Expr ‘‘ftscore’’ FTSel ecti onWthWights

Expr is an XQuery expression that specifies the search cork@8el ect i onW t h\Wi ght s speci-
fices the full-text search condition and is similari®Sel ect i on, with the added notion of weights for
computing scoresFTScor eExpr returns a sequence of scores corresponding to each XML motthe i
search context sequence.

FTScor eExpr provides the framework for supporting different scoringcimmisms, but does not
dictate the exact scoring mechanism to be used. This decigis made because it is unlikely that different
implementations will agree to use the same scoring techksiqgln fact, scoring for XML is an active area
of research (e.g., see [9, 12, 14, 15, 19, 24]) and many vendew their scoring technigue as one of
their prime differentiatorsFTScor eExpr thus only specifies two high-level properties that everyiago
mechanism should satisfy, as required in [28].

e The score of a node in the search context should be 0 iff the dods not satisfy the full-text condition
specified inFTSel ecti onW t h\Wei ght s. Otherwise, its score should be in the interval (0,1].

e For the nodes in the search context, a higher value of thee sfmuld imply a higher degree of
relevance td-TSel ecti onW t hWei ght s.

An example ofFTScor eExpr is given below.

/I book ftscore '"usability’ && 'testing’

The above expression returns a sequence of scores for eakhnbiie search context. The scores are
computed using theTSel ecti onWt hWeights ' usability’ && 'testing’ . The following
example shows how the user can specify weights inkfRigel ecti onW t hWei ght s to control how
scores are computed (DG6).

!/ book ftscore 'usability’ weight 0.8 & 'testing’ weight 0.2

The above expression returns a sequence of scores for eakhirbthe search context, but the score
is computed using a weight of 0.8 for the search token 'uigbéind a weight of 0.2 for the search token
'testing’. The exact means by which the scoring mechanises tleese weights is implementation-defined,
andFTScor eExpr just provides the necessary language framework for spagitye weights.

Since the result oFTScor eExpr is a sequence of floating-point items, it can be easily typeeked
(DG14). Further, since the result type is an instance of ety data model, it can be arbitrarily embedded
in other XQuery expressions. In particul&TScor eExpr can be used in conjunction with FLWOR to
compute top-K search results (DG7 and DG11). The followirgneple illustrates how to compute the
top-10 results for the previous query.

for $result at $rank in
for $node in //book
l et $score : = $node ftscore "usability’ weight 0.8 & 'testing’ weight 0.2
order by $score descendi ng
return <result score={$score}> {$node} </result>
where $rank <= 10
return $result

Finally, FTCont ai nsExpr andFTScor eExpr can be combined to search based on one condition
and score based on another condition (DG8). The followiragrgxde illustrates how books can be filtered
based onusability’ && ’'analysis’ andscored based orusability && 'testing’ .

for $book in //book[. ftcontains 'usability’ && 'analysis’]
| et $score : = $book ftscore 'usability’ weight 0.8 & 'testing’ weight 0.2
return <result score={$score}> {$book} </result>

3.3 FTSelections

As mentioned above, the full-text search condition$irCont ai nsExpr andFTScor eExpr are ex-
pressed in terms of aRTSel ecti on. An FTSel ecti on can either be a single search token (such as
'usability’), or can express more complex full-text seainbluding Boolean connectives (and, or, not),
scope of search tokens (whether they occur in the same senfggragraph, or node), window predicates,
and number of occurences of search tokens. In addiii®®el ecti onW t hWei ght s can also specify
weights used for scoring. We now illustrate some imporkrel ect i ons through examples. We spec-
ify their formal semantics in the next section. The full graar production rules foFTSel ect i ons can
be found in [1].

Consider the followindg=TCont ai nsExpr .

/1 book ftcontains "usability’ && 'testing’ sanme sentence w ndow 5

The above expression returns true iff some book in the seamotext contains the search tokens 'us-
ability’ and 'testing’ in the same sentence within a windof/5o Note how the simplé-TSel ecti ons
(Cusability')and (testing’)are composed using a Boolean connect&®)(to get a more com-
plexFTSel ection(usability’ && 'testing’). ThisFTSel ecti onisthen composed with a
scope selectiors@ne sent ence)and a window selectiomf ndow 5) to create the findFTSel ect i on
used in the above expression. This example thus illustheneselatively compleXTSel ect i onscan be
constructed by composing basic full-text primitives.

The following example illustrates another important featof FTSel ect i ons.

[larticle ftcontains //book[./author = 'Richard Dawkins’']/title any

The above expression returns true if some article in thecheantext contains a reference to a title of
one of Richard Dawkin’s books. Note how an XQuery expres§idrbook|[. / aut hor = ' Ri chard
Dawki ns’]/titl e)is used to specify the search tokens. This shows how an XQuxg@ression can be
embedded inside full-text search (DG10).

3.4 FTContextModifiers

FTCont ext Modi fi er s can be applied on angTSel ect i on to modify how the full-text search is
performed.FTCont ext Modi fi er s specify aspects such as stemming, stop words, regulaessipns,
case (upper case or lower case), diacritics, special deasasynonyms, languages, and ignoring specified
XML subtrees [4]. Again, we illustrate some of the key comtexodifiers through examples, and refer the
reader to [2] for the full details.

/1 book ftcontains "usability’ && 'testing’ with stens

The above expression returns true iff some book in the seamatext contains the search tokens ’us-
abilility’ and 'testing’, using stemming (aRTCont ext Modi f i er)to match the search tokens. Therefore,
a book that contains 'user’ and 'tests’ will also satisfy thi-text search condition because both 'usability’
and 'user’ have the same stem ('use’), while 'testing’ arebt$’ have the same stem (‘test’). Note that
the FTCont ext Modi fi er (Wi t h st ens) applies to the entir€TSel ecti on (usability’ &&
"testing')itis applied on.

A more complex example is given below.

/1 book ftcontains "usability’ && 'testing’ with stens wi ndow 5 wi thout stop words

The above expression returns true iff some book in the seamatext contains the search tokens 'us-
abilility’ and ’testing’, using stemming to match the sdatokens. Further, the search tokens should appear
within a window of 5, ignoring stop words (anothef Cont ext Modi f i er) when computing this win-
dow. Note howFTSel ecti onsandFTCont ext Modi fi er s can be seamlessly composed.

4 TeXQuery Semantics

We now specify the formal semantics of the TeXQuery languddar main contribution here is tHeull-
Match data model. FullMatch contains enough information to guarantee that full-texrae primitives
(FTSel ect i ons) can be closed under this model. In other words, the secsasttieach-TSel ecti on
can be specified as a transformation of zero or more iRpliMatches to an outpuFullMatch. Therefore,
FullMatch can serve as the formal foundation for specifying and raagabout full-text search, much like
the relational model is the foundation for relational quegy We are not aware of a previously published
data model that has this closure property for the same widetyaf full-text primitives.

The definition ofFullMatch has the following benefits. First, it ensures thdSel ect i ons are fully
composable (DG3). Second, it makes TeXQuery extensible regpect to adding newTSel ect i ons,
because each new primitive only needs to specify its segsaimiterms ofFullMatch, and does not impact
the semantics of existing primitives (DG4). ThifejlIMatch presents a clean and elegant way to specify the
semantics oFTSel ect i ons. Finally, although beyond the scope of this paper, we expatFullMatch
will provide a principled framework for the optimization ffil-text search (DG15).

10

<book(1) id(2)="1000(3)">
<aut hor (4)>Elina(5) Rose(6)</author(7)>
<content (8) >
<p(9)> The(10) usability(11l) of (12) software(13) neasures(14) how(15)
wel | (16) the(17) software(18) provides(19) support(20) for(21)
qui ckl y(22) achi eving(23) specified(24) goal s(25). </p(26)>
<p(27)>The(28) users(29) nust(30) not(31) only(32) be(33) well-served(34),
but (35) must (36) feel (37) well-served(38).</p(39)>
</ content (40) >
</ book(41) >
Figure 2: Positions Example

FullMatch has a hierarchical structure. Thug;@lMatchcan be represented in XML. Consequently, the
semantics of eachTSel ect i on can be specified as a transformation from zero or more input XMl-
Matches into an output XMLFullMatch. This XML-to-XML transformation can be specified in XQuery.
Thus, the semantics &fTSel ect i ons can be specified in XQuery itself! XQuery is suitable for wlefi
ing the formal semantics ¢fTSel ect i ons because XQuery itself has a formal definition [30]. Further
more, specifying the semanticsieTSel ect i onsin XQuery may enable the joint optimization of XQuery
gueries and full-text search.

4.1 TheFullMatch Data Model

XQuery is based on the “sequence of items” data model [2%revan item is an XML node (or an atomic
value). Since this model is defined at the granularity of XMides, it is inadequate for the full composabil-
ity of FTSel ect i ons (see Section 2.2). We have thus developed-tiitMatch data model based on the
positions of linguistic tokenwithin XML nodes. We first introduce positions, before descritfugMatch.

4.1.1 Positions

A position represents the occurrence of a linguistic tokearn XML document. It contains the following:

e The linguistic token

A unique identifier that captures the relative position @ linguistic token in document order

The XML node directly containing the linguistic token

The relative position of the sentence containing the listiuitoken

The relative position of the paragraph containing the listititoken

The context of the linguistic token (e.g., tag hame, attélmame, attribute value, element content)

A position can thus be modeled as an XML element conformirtgedollowing DTD.

<! ELEMENT Position (Token, ldentifier, Node, Sentence, Para, Context)>

The XML document in Figure 2 has been annotated to illustiagoosition of each linguistic token (the
positions are within parenthesis). For readability, ohky tinique identifier part of positions is shown.
4.1.2 FullMatch Description

A FullMatchis essentially a first-order logic disjunctive normal foriNF) predicate specified using XML
positions. The predicate captures the precise conditianah XML node needs to satisfy in order to be a
result for a full-text search. We now illustraeilliMatch using examples.

11

FullMatch
- 1 FullMatch
‘ SimpleMatch ‘ ‘ SimpleMatch

‘ ‘ ‘ SimpleMatch‘ ‘ SimpIeMatch‘

FullMatch
SimpleMatch
\ \ -
StringInclude StringInclude Stnnglr.\clude
Token: software] | Token: softwar Token: Rose

5 &

Figure 3: FullMatch for Figure 4. FullMatch for Figure 5: FullMatch
"usability’ with stens "sof tware’ for’ Rose’

Stringinclude
Token: usability

StringInclude
Token: users

Consider thé=TSel ection (" usability’ with stens)evaluated over the XML document in
Figure 2. TheFullMatch corresponding to thisTSel ect i on is shown in Figure 3. Here, thHeullMatch
corresponds to the entire DNF formula, e&impleMatchcorresponds to one of the disjuncts in the DNF
formula, and eacltringincludecorresponds to an atom in the DNF formula.

Intuitively, eachSimpleMatchn Figure 3 represents one possible “solution” toffi&el ect i on. The
“solution” described by the firs§impleMatchare those nodes that contain (representesti@sgincludé the
linguistic token 'Usability’ in position 10. The “solutidnrepresented by the seco&impleMatchare those
nodes that contain the linguistic token 'users’ in positkih Note that 'users’ has the same stemmed form
as 'usability’ (namely 'use’) and is hence included iSiapleMatch Figures 4 and 5 show tHaullMatches
corresponding to thETSel ecti ons(sof t war e’)and (Rose’), respectively.

Note that aFullMatch does not directly list the nodes that satisfyRnSel ect i on. Rather, it spec-
ifies a position-based predicate that XML nodes need tofgatiorder to satisfy alFTSel ecti on. By
specifying aFullMatch in terms of positions, rather than XML nodes, there is suffitinformation in a
FullMatch to achieve full composability amorfgT'Sel ect i ons. At the same time, the interpretation of a
FullMatch as a predicate on XML nodes enables the mapping to the XQuayndodel. In Figure 6, if an
XML node in the search context satisfies any of 8impleMatchest qualifies as an answer.

Let us now consider a more complex example. ConsideFiifgel ecti on (" usability with
stems && ' software’). The correspondingullMatchis shown in Figure 6. There are four possible
“solutions” to thisFullMatch, and they are represented by the f@impleMatcks. The firsiSimpleMatch
matches 'usability’ at position 1ldnd’software’ at position 13. The seco®impleMatchmatches 'usability’
at position 11 and ’'software’ at position 18, and so on.

As afinal example, consider thRdSel ection(usability’ with stenms && ’'software’

&& !’ Rose’). Here “!” is the Boolean 'not’ operator used to specify thsance of a search token (in this
case’ Rose’). The correspondingullMatch is shown in Figure 7. As in the previous example, there are
four possible “solutions” $impleMatchs). However, besidestringinclude, eachSimpleMatchalso has a
StringExcludecorresponding to the negated search tokerstdngExcludespecifies a position thahould
notoccur in an XML node for it to be a result; this corresponds tegated atom in the DNF formula.

4.1.3 Representing-ullMatch in XML

SinceFullMatch has a hierarchical structure, it can be represented as XMméntioned earlier, this allows
us to specify the semantics BrSel ect i ons using XQuery itself. The DTD of the XML representation
of aFullMatchis given below.

12

FullMatch

\ \ |
SimpleMatch SimpleMatch SimpleMatch SimpleMatch
StringInclude StringInclude StringInclude StringInclude Stringinclude StringInclude StringInclude StringInclude
[Token: usability Token: software | Token: usabilit Token: software Token: users | | Token: softwarg Token: users Token: softwarg

Figure 6:FullMatchfor’ usability’ with stens && ’'software’

FullMatch

SimpleMatch SimpleMatch SimpleMatch SimpleMatch

_| _| . . ‘ __| : .
StringInclude StringInclude || StringInclude StringInclude StringInclude StringInclude || StringInclude StringInclude
Token: usability Token: softwarg| Token: usabilit; [Token: software | Token: users| Token: softwarg Token: users Token: softwar

StringExclude StringExclude StringExclude StringExclude

Token: Rose Token: Rose Token: Rose Token: Rose

Figure 7:FullMatchfor’ usability’ with stens &% 'software’ && !’ Rose’

<! ELEMENT Ful | Mat ch (Si npl eMat ch) *>

<! ELEMENT Si nmpl eMatch (Stringlncl ude| StringExcl ude) *>
<I ELEMENT Stri ngl ncl ude Position>

<! ELEMENT StringExcl ude Position>

4.2 Semantics of TeXQuery Expressions

We now specify the formal semantics BT Cont ai nsExpr andFTScor eExpr . In specifying the se-
mantics, we make use of the following two implementatiofire functions.

function fts:containsPos($node as node, $position as fts:Position) as xs:Bool ean
function fts:score($node as node, $ftselection as fts:FTSel ecti onWthWei ghts)
as xs:double

The functionf t s: cont ai nsPos returns true iff the nod&node contains the positioiposi ti on.
The functionf t s: scor e returns a floating point score in the interval (0,1] for the@®node with respect
to the FTSel ecti onW t hWei ght s ($ft sel ecti on). These implementation-defined functions are
designed to provide flexibility to a TeXQuery implementatiavhile still ensuring precise semantics.

13

4.2.1 Semantics of FTContainsExpr

As described in Section 3.2.1,FTCont ai nsExpr specifies a search context and EhSel ect i on,
and returns true iff some node in the search context satisfedsSTSel ect i on. Since the search context
is an XQuery expression, it returns a sequence of XML nodé& FTSel ect i on returns aFullMatch.

We now specify the semantics BT Cont ai nsExpr , which provides the “glue” between the sequence of
items and thé-ullMatch to produce a Boolean result. Since thaélMatch can be represented as XML, we
use an XQuery function to specify this transformation.

function FTCont ai nsExpr ($sear chCont ext as node*,
$full Match as fts: Full Match) as xs: Bool ean {
some $node in $sear chCont ext
satisfies some $sinpleMatch in $ful | Mat ch/ si nmpl eMat ch
satisfies every $stringlnclude in $sinpleMatch/stringlnclude
satisfies fts:containsPos($node, $stringlnclude/position)
and
every $stringExclude in $sinpl eMatch/stringExcl ude
satisfies not fts:containsPos($node, $stringExcl ude/position)

The above function returns true iff some node in the searcitegb satisfies at least one of tlém-
pleMatches. A node is said to satisfy SimpleMatchiff it satisfies all of theSt ri ngl ncl udes, and
satisfies none of th8tringExcluds.

Inthe example in Figure 2, tHeTCont ai nsExpr (/ / book ftcontains "usability’ with
stems && ' software’) will return true because thbook node satisfies at least one of tBém-
pleMatches in Figure 6 (in fact, it satisfies all of ttf&mpleMatchks in this particular example). However,
theFTCont ai nsExpr (// book ftcontains "usability’ with stens &% ’'software’
&& !’ Rose’) will return false because tHeook node does not satisfy any of tis@mpleMatcks in Fig-
ure 7 (due to the presence of tBaingExcluds).

4.2.2 Semantics of FTScoreExpr

As described in Section 3.2.2F8 Scor eExpr returns a score for every node in the search context, which
is computed based on &TSel ecti onW t hWei ght s. Its semantics is specified below.

function FTScor eExpr ($searchContext as node*, $full Match as fts: Full Match
$ftselection as fts:FTSel ecti onWthWeights) as xs: Bool ean {
for $node in $searchCont ext
return if FTCont ai nsExpr ($node, $full Match)
then fts:score($node, $ftselection)
else 0

The function returns a score of 0 for a node in the search xbiftehe node does not satisfy the
FTSel ecti onW t hWei ght s. Else itreturns a score in the interval (0,1] using a calh&iimplementation-
defined functiorf t s: scor e.

4.3 Semantics oFTSel ecti ons

In specifying the semantics &fTSel ect i ons, we use the following implementation-defined functions.

14

function fts: getPositions($searchContext as node*, $searchToken as xs:string)
as fts:Position*

function fts: posDi stance($posl as Position, $pos2 as Position, $ignorepos as Position*)
as Xxs:integer

The functionf t s: get Posi t i ons returns the positions in which a search token appears iretirels
context; this is usually implemented using inverted li&8][The functionf t s: posDi st ance returns
the distance between two positions; this distance is thebeurof other search tokens that occur between
the two positions plus one. In computing this distance, soneevening token positions are ignored if they
appear irfsi gnor epos.

We now specify the semantics of some k&ySel ect i ons. The details of the oth&TSel ect i ons
can be found in [2]. It is important to note that these definisi in terms ofFullMatch DNF formulae is
primarily for expressing the precisemanticof FTSel ect i ons. Animplementatiorcan (and probably
should be) more efficient so long as it preserves this senganti

4.3.1 Semantics oFTSt ri ngSel ecti on
FTStri ngSel ecti onisthe basid=TSel ect i on that specifies search tokens. Its syntax is:
FTStringSel ection ::= Expr

Expr is an XQuery expression that returns a sequence of stringsiteThese items are used as the
search tokens in thETSt r i ngSel ect i on. For ease of exposition, we limit ourselves to the case where
Expr is a string literal that corresponds to a single search tqk#rer cases are discussed in [2]). The
semantics of how TSt ri ngSel ect i on transforms a search token intd-allMatch is specified by the
following XQuery function.

function fts: FTStringSel ecti on($searchContext as node*, $searchToken as xs:string,
$context Modi fiers as fts: ContextMdifier*) as fts: Full Match {
<ful | Mat ch>
{for $newSearchToken in fts:expandSearchToken($searchToken, $context Mdifiers),
$position in fts:getPositions($searchContext, $newSear chToken)
return <sinpl eivat ch>
{$posi tion}
</ si npl eMat ch>}
</ful | Mat ch>

}

First, thef t s: expandSear chToken function (defined precisely in [2]) takes in the given search
token and the relevant context modifiers, and produces aanebgal set of search token based on the con-
text modifiers. For example, consider th&€Sel ecti on’ usability’ with stens. The context
modifier M t h st ens) applies to thé=TSt ri ngSel ecti on(usabi lity’). Therefore, the search
token’ usabi l i ty’ is expanded to include all search tokens that have the sameast usability’
(including’ usability’ ,” users’,’ useful’,etc.).

Given the new (expanded) set of search tokens, the positieaoh of these search tokens in the search
context is determined using tiget Posi t i ons implementation-defined function. FinallySaimpleMatch
is created for each such position, and these are nested tedersult-ullMatch.

As anillustration, th&TSel ection(usability’ w th stens)produces th&ullMatchshown
in Figure 3. TheFTStri ngSel ections (software’) and (Rose’) produce the~ullMatches in
Figures 4 and Figure 5, respectively.

15

FullMatch
‘ FullMatch
[
FullMatch | - |
SimpleMatch SimpleMatch SimpleMatch
SimpleMatch (AAAAALAAAAAT
StringInclude StringInclude StringInclude StringInclude StringInclude StringInclude

StringExclude Token: usability [Token: software Token: usability |Token: softwarg |Token: usability |Token: software

Token: Rose ‘ ‘ ‘
@

Figure 8:FullMatch Figure 9:FullMatchfor’ usability’ wi th Figure 10: FullMatch for

for!’ Rose’ stems && 'software’ sane para "usability’ with stens
&& ’'software’ sane
para wi ndow 5 wi t hout
stop words

Besides the stemming context modifier (discussed abowe},tth: expandSear chToken function
is also defined for other modifiers such as regular expressaase, diacritics, special characters, and the-
sauri (see [2]). It is important to note that the notion ofaxging search tokens is only used for specifying
the semanticof an FTSt ri ngSel ect i on. An actualimplementatiormay not actually expand search
tokens, so long as it produces the same results as the foemmntics. For example, stemming may be
implemented by building inverted lists on stemmed formsaafrsh tokens.

4.3.2 Semantics oFTNegat i on

FTNegati onis anFTSel ecti on that is used to specify Boolean negation. It can be appliedrgn
FTSel ect i on and has the following syntax.

FTNegation ::= “‘!'" FTSel ection

The semantics dfFTNegat i on can be specified as a transformation of FudiMatch associated with
the inputFTSel ect i on into the outpuFullMatch. This transformation is performed by negating the DNF
formula of the inputFullMatch, and producing the resulting outplatiliMatch. This transformation can be
expressed naturally in XQuery, but since this specifica@traightforward but tedious and not particularly
illustrative in the current context, it is omitted here (§2ffor details). Instead, we illustrate the main idea
using an example.

Consider th&=TNegat i on!’ Rose’ . TheFullMatch corresponding to thETSt ri ngSel ecti on
" Rose’ (Figure 5) is negated to produce the resultfgiMatch in Figure 8. Note howstringinclude
becomeStringExclude (and vice versa); this corresponds to the negation of atorttsee DNF formula
corresponding to &ullMatch.

4.3.3 Semantics oFTAndConnecti ve

The FTAndConnect i ve combines twd-TSel ect i ons with the semantics of a Boolean 'and’. It has
the following syntax.

FTAndConnective ::= FTSelection ‘‘&&% ' FTSel ection

16

The following function specifies the semanticsFffAndConnect i ve in terms of how it transforms
the two inputFullMatches into the outpuullMatch.

function fts: FTAndConnective ($fml as fts: Full Match, $fn2 as fts: Full Match)
as fts:Full Match {
<ful | Mat ch>
{for $sinpleMatchl in $fml/sinpl eMatch,
$si npl eMat ch2 in $f n2/ si npl eMat ch
return <sinpl eMat ch>
{$si npl eMat chl/* $si npl eMat ch2/* }
<si mpl eMat ch>}
</ful | Mat ch>
}

EachSimpleMatchin the resultingFullMatch is a combination of on&impleMatchfrom the first in-
put FullMatch and oneSimpleMatchfrom the second inpuullMatch. The intuition is that each input
FullMatch is satisfied iff at least one of iSimpleMatcks is satisfies. Therefore, an 'and’ of the inputl-
Matches is satisfied iff at least one of tis@mpleMatchs from the first inpuaind one of theSimpleMatcks
from the second input is satisfied.

TheFullMatchfor theFTAndConnective(usability’ with stens &% ’'software’)is
shown in Figure 6. ThisullMatchis obtained by combining thEullMatches for’ usabi lity’ wi th
st errs (Figure 3) and for sof t war e’ (Figure 4). Similarly, thé=ullMatch in Figure 7 is obtained by
combining theFullMatches in Figures 6 and 8.

4.3.4 Semantics oFTScopeSel ecti on

FTScopeSel ect i onlimits the scope of aRTSel ect i onto a node, sentence, or paragraph. It has the
following syntax.

FTScopeSel ection ::= FTSelection(‘‘sane’’|‘‘different’’)('‘node’’'|‘‘sentence’’|‘'‘para’’)

The FTScopeSel ect i on takes theFullMatch corresponding to its inpuETSel ecti on, and re-
stricts theSi npl eMat ches so that only those that have positions in the same (oreliffenode, sentence
or paragraph are selected for the outbuiMatch. The semantics for thETScopeSel ecti on (' samne
para’) is given below.

function fts: FTParaScopeSel ection ($full Match as fts: Full Match) as fts: Full Match {
<ful | Mat ch>
{for $sinpleMatch in $full Mat ch/si npl eMat ch
where every $stringlncludel in $sinpleMatch,
$stringlnclude2 in $sinpl eMatch
sati sfies $stringlncludel/ position/para = $stringlnclude2/position/para
return <sinpl evatch>
{$si npl eMat ch/ stringl ncl ude}
{for $stringExclude in $sinpleMtch/stringExcl ude
where every $stringlnclude in $sinpleMatch/stringlnclude
satisfies $stringlnclude/position/para =
$stringExcl ude/ posi ti on/ para
return $stringExcl ude}
</ si npl eMat ch>}
</ful |l Mat ch>
}

17

As shown above, only th8impleMatcks in which all theStringIinclude are in the same paragraph
are selected for the outp&ullMatch. Further, theStringExclude in the selecte@impleMatchs are also
restricted to be in the same paragraph asStimglinclude in the outpufullMatch.

Figure 9 shows thé&ullMatch for the FTScopeSel ection (usability’ with stenms &&
"sof tware’ same para). This FullMatch is obtained by transforming the inp&ullMatch corre-
sponding td usability’ with stenms && 'software’ (Figure 6). Note how th&tringExclude
do not appear in the resitullMatchbecause they do not appear in the same paragraph 8sitiginclude.

4.3.5 Semantics oFTW ndowSel ecti on

FTW ndowSel ect i on specifies the maximum window size for BiiSel ect i on. Its syntax is:

FTW ndowSel ection ::= FTSel ection ‘‘w ndow ' Xxs:integer

The FTW ndowSel ect i on takes theFullMatch corresponding to its inpuETSel ect i on, and re-
stricts theSimpleMatchks so that only those that fit in the specified window size dextsl for the output
FullMatch. This semantics is specified below.

function fts: FTWndowSel ection ($full Match as fts: Full Match, $w ndowSi ze as xs:i nteger,
$contextModifiers as fts: ContextMdifier*) as fts: Full Match {
<ful | Mat ch>
{l'et $ignorePos := fts:getlgnorePos($cont ext Mbdi fiers)
for $sinpleMatch in $full Match/sinpl eMatch
where every $stringlncludel in $sinpleMatch,
$stringlnclude2 in $sinpl eMatch
satisfies fts:posDi stance($stringlncludel/position, $stringlnclude2/position,
$i gnor ePos) < $wi ndowSi ze
return <sinpl evatch>
{ $si npl eMat ch/ st ri ngl ncl ude}
{for $stringExclude in $sinpleMtch/stringExclude
where every $stringlnclude in $sinpleMatch/stringlnclude
satisfies fts: posDi stance($stringlnclude/position,
$stringExcl ude/ posi tion,
$i gnor ePos) < wi ndowSi ze
return $stringExcl ude}
</ si npl eMat ch>}
</ ful |l Mat ch>
}

As shown above, only th8impleMatcks in which all theStringincludes occur within the specified
window size are selected. Further, tBingExcluds in the selecte&impleMatcks are also restricted to
occur within the specified window size in the outputliMatch. Certain search tokens positions ($ignore-
Pos) are ignored when computing the distance between twbgnssin a SimpleMatch The positions to
be ignored depend on the stop word and ignore XML sub-tretegbmodifiers; this is computed using the
fts: getl gnorePos function (details are in [2]).

Figure 10 shows th&ullMatch for the FTScopeSel ecti on (usability’ with stenms &&
"software’ same para wi ndow 5 without stop words). This FullMatch is obtained by
transforming the~ullMatch for * usability’ with stens & ’'software’ same para (Fig-
ure 9), and ignoring the positions of stop words when conmgutie window size.

18

5 Related Work

The topic of combining full-text search with structured guieg has recently been receiving a lot of atten-
tion, both in research and in the industry. In research, nedflayts have focused on extending XML query
languages with full-text search. However, unlike TeXQuergvious solutions explore only a few full-text
search primitives at a time (e.g., Boolean keyword rettigMh, 20], keyword similarity [8, 24], proximity
distance [7, 18], relevance ranking [6, 12, 15, 24]). Furtipeevious techniques do not develop a fully
compositional model for full-text search (suchFadiMatch), and also do not provide a seamless integration
with the XQuery language and data model.

In the industry, the W3C Full-Text Task force (FTTF) has bspecifically created to enhance XQuery
and XPath with full-text search [27, 28]. SQL/MM [18] was g®ed to extend SQL to express queries
on text, images and spatial data. Full-text queries areesgpd in a sub-language embedded in a function
call. As discussed in Section 2, the function call approaahsome fundamental limitations when used in
the context of XQuery. Further, SQL/MM does not provide dyfegbmpositional data model for full-text
gueries, and does not consider integration with the XQuats chodel.

6 Conclusion

We have presented TeXQuery, which is a full-text searchnsite to XQuery. TeXQuery supports a pow-
erful set of fully composable full-text search primitiveghich can be seamlessly integrated into the XQuery
language. We have also developedfuiMatch data model for formally reasoning about full-text searches
Using FullMatch we have formally specified the semantics of TeXQuery in teomsQuery itself. TeX-
Query has been submitted to the W3C Full-Text Task Force Bj,TWwhose charter is to extend XQuery
with full-text search capabilities. TeXQuery satisfies BIeTF Requirements [28] and is able to express all
the use cases in the FTTF Use Cases Document [27].

In this paper, we have focused on the TeXQuery languagerasigy underlying formal model. We are
currently developing a reference implementation of TeX@ueGalax [13]. We are also exploring efficient
guery optimization and evaluation techniques based omtkesictions between the XQuery ardlIMatch
data models.

7 Acknowledgements

Jonathan Robie gave valuable suggestions and feedbaakliregacoring and other aspects of TeXQuery.
Mary Fernandez provided detailed and insightful commentan earlier draft of this paper.

References
[1] S. Amer-Yahia, C. Botev, J. Robie and J. ShanmugasundareeXQuery: A Full-Text Search Extension to
XQuery. Part I: Language Specification. http:/www.cs.efiradu/database/TeXQuery/.

[2] S. Amer-Yahia, C. Botev, J. Robie and J. ShanmugasundarBeXQuery: A Full-Text Search Extension to
XQuery. Part Il: Formal Semantics. http:/www.cs.cormell/database/TeXQuery/.

[3] S. Amer-Yahia, C. Botev, J. Robie and J. ShanmugasundareeXQuery: A Full-Text Search Extension to
XQuery. Part 11l: Use Cases Solutions. http:/www.cs.ctre@u/database/TeXQuery/.

[4] S. Amer-Yahia, M. Fernandez, D. Srivastava, and Y. XaraBe Matching in XML. VLDB 2003.

19

[5] J. Bosak. The plays of Shakespeare in XML. http://wwwisapen.org/cover/bosakShakespeare200.html.
[6] J. M. Bremer, M. Gertz. XQuery/IR: Integrating XML Doclent and Data Retrieval. WebDB 2002.
[7] E. W. Brown. Fast Evaluation of Structured Queries fdoimation Retrieval. SIGIR 1995.

[8] T. T.Chinenyanga, N. Kushmerick. Expressive and EffitRanked Querying of XML Data. SIGIR Workshop
on XML and Information Retrieval, 2001.

[9] W.W. Cohen. Integration of Heterogeneous DatabasefalfitCommon Domains Using Queries Based on
Textual Similarity. SIGMOD 1998.

[10] DBLP in XML. http://dblp.uni-trier.de/xml/.

[11] D. Florescu, D. Kossmann, I. Manolescu. Integratingerd Search into XML Query Processing. WWW
2000.

[12] N. Fuhr, K. Grossjohann. XIRQL: An Extension of XQL fanformation Retrieval. SIGIR Workshop on XML
and Information Retrieval, 2000.

[13] Galax. http://db.bell-labs.com/galax/.

[14] L. Guo, F. Shao, C. Botev, J. Shanmugasundaram. XRAN&iked Keyword Search over XML Documents.
SIGMOD 2003.

[15] Y. Hayashi, J. Tomita, G. Kikui. Searching Text-rich XNDocuments with Relevance Ranking. SIGIR Work-
shop on XML and Information Retrieval, 2000.

[16] Initiative for the Evaluation of XML Retrieval. httguwww.is.informatik.uni-duisburg.de/projects/inex03/
[17] The Library of Congress. http://lcweb.loc.gov/cisitxml/.
[18] J. Melton, A. Eisenberg. SQL Multimedia and ApplicatiBackages (SQL/MM). SIGMOD Record 30(4), 2001.

[19] S.-H.Myaeng, D.-H. Jang, M.-S. Kim, Z.-C. Zhoo. A Flblé Model for Retrieval of SGML Documents. SIGIR
1998.

[20] J. Naughton, et al. The Niagara Internet Query Systé&&H Data Engineering Bulletin 24(2), 2001.

[21] M. Rys. Full-Text Search with XQuery: A Status Report.lhtelligent Search on XML, Springer-Verlag, 2003.
[22] G. Salton and M. J. McGill. Introduction to Modern Infoation Retrieval. McGraw-Hill, 1983.

[23] Sigmod Record in XML. http://www.acm.org/sigmod/oed/xml/.

[24] A. Theobald, G. Weikum. Adding Relevance to XML. WebDB8®.

[25] The World Wide Web Consortium. XQuery 1.0: An XML Queryahguage. W3C Working Draft.
http://www.w3.org/TR/xquery/.

[26] The World Wide Web Consortium. XML Path Language (XBath.O. W3C Working Dratft.
http://www.w3.0org/TR/xpath20/.

[27] The World Wide Web Consortium. XQuery and XPath FulkifdJse Cases. W3C Working Draft.
http://www.w3.org/TR/xmlquery-full-text-use-cases/.

[28] The World Wide Web Consortium. XQuery and XPath FulkiT&equirements. W3C Working Dratft.
http://www.w3.org/TR/xmlquery-full-text-requiremesit

[29] The World Wide Web Consortium. XQuery 1.0 and XPath 2.a@tdDModel. W3C Working Draft.
http://www.w3.0org/TR/xpath-datamodel/.

[30] The World Wide Web Consortium. XQuery 1.0 and XPath 2dnfral Semantics. W3C Working Draft.
http://www.w3.0org/TR/xquery-semantics/.

[31] The World Wide Web Consortium. XQuery 1.0 and XPath 2u@¢tions and Operators. W3C Working Draft.
http://www.w3.0org/TR/xquery-operators/.

20

