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Abstract

One of the key benefits of XML is its ability to represent a mix of structured and unstructured (text)
data. Although current XML query languages such as XPath andXQuery can express rich queries
over structured data, they can only express very rudimentary queries over text data. We thus propose
TeXQuery, which is a powerful full-text search extension toXQuery. TeXQuery provides a rich set of
fully composable full-text search primitives, such as Boolean connectives, phrase matching, proximity
distance, stemming and thesauri. TeXQuery also enables users to seamlessly query over both structured
and text data by embedding TeXQuery primitives in XQuery, and vice versa. Finally, TeXQuery supports
a flexible scoring construct that can be used to score query results based on full-text predicates. TeX-
Query is one of the proposals submitted to the W3C Full-Text Task Force, whose charter is to extend
XQuery with full-text search capabilities.

1 Introduction

One of the key benefits of XML is its ability to represent a mix of structured and unstructured (text) data.
One can already find many real XML data repositories that contain such a mix of structured and text data.
For example, the IEEE INEX data collection [16] contains IEEE papers in XML form, including structured
information such as the names of authors, date of publication, sections, sub-sections, and references, and
also unstructured information such as the text content of the paper. Other examples of such XML repositories
are Shakespeare’s plays in XML [5], DBLP in XML [10], SIGMOD Record in XML [23], and the Library
of Congress documents in XML [17]. Furthermore, application domains such as Library Science have a
growing need to seamlessly query over both the structured and text parts of XML documents.

While current XML query languages such as XPath [26] and XQuery [25] can express powerful struc-
tured queries over XML documents, they can only express a very rudimentary full-text search. For instance,
full-text search in XQuery is expressed using the function:contains($e, keywords) which returns
true iff the XML element bound to the variable$e contains all the keywords inkeywords (see [31] for
a precise definition ofcontains). While this function is sufficient for simple substring matching, it is
woefully inadequate for more complex searches. For instance, consider the following example in the W3C
XPath and XQuery Full-Text Use Cases Document [27].

Example 1 (Use Case 10.2.8 Q8): Consider an XML document that contains books. Find the titles and
contents of books whose content contains the phrases “usability”, “Web site” and “is” in that order, in the
same paragraph, using stemming if necessary to match the tokens.

The XQuerycontains function is obviously too limited to express the above search, which includes
phrase matching, order specifications, paragraph scope, and stemming. Thecontains function also can-
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Figure 1: XQuery and TeXQuery Composability

not express other full-text operations specified in the Use Cases Document, such as general Boolean con-
nectives, distance predicates, synonyms, and thesauri. Finally, thecontains function cannot score or rank
results, such as returning the top 10 results for a given search.

Integrating sophisticated full-text search in XQuery introduces many challenges. First, we need to iden-
tify a set of full-text primitives that are natural to querying XML; these primitives should not only be pow-
erful, but should also be composable with each other so that arbitrarily complex full-text searches can be
specified (such as using stemming with distance predicates and Boolean connectives). Second, we need to
seamlessly integrate regular XQuery with full-text searchso that users can query over both structured and
full-text data; this is non-trivial because structured XMLqueries operate on XML nodes, while by their very
nature, full-text queries operate on keyword search tokensand their positionswithin XML nodes. Finally,
we need to introduce the notion of ranked results in order to support threshold and top-K queries.

TeXQuery is designed to address the above issues. TeXQuery provides a set of powerful full-text search
primitives calledFTSelections. FTSelections are fully composable, and arbitrarily complex full-
text queries can be created by combining the basic�FTSelections. The key that makes this possible (and one
of the main contributions of this paper) is a formal underlying data model calledFullMatch.

The FullMatch data model contains sufficient information about search tokens and their positions in
an XML document such that allFTSelections are closed under this data model. In other words, each
�FTSelection can be formally defined as taking in zero or moreFullMatches as input and produces aFull-
Matchas output. ThusFTSelections can be arbitrarily composed, as shown in the right part of Figure 1.
We are not aware of any previous data model that is closed for the same wide variety of full-text primitives.

TeXQuery can also combine full-text queries with XML queries on structure. This is achieved by two
new XQuery expressions:ftcontainsand ftscore (we call these the TeXQuery expressions). TeXQuery
expressions specify a well-defined mapping between theFullMatchdata model and the XQuery data model
(sequence of XML items/nodes) as shown in Figure 1. Consequently, TeXQuery queries can be embedded
in XQuery and vice-versa. Theftscoreexpression also enables users to score full-text search results.

TeXQuery has been submitted to the W3C Full-Text Task Force (FTTF) whose charter is to extend
XQuery with full-text search capabilities [21]. TeXQuery satisfies all of the FTTF Requirements specified
in [28], and is powerful enough to express every use case in the FTTF Use Cases document [27] (see [3] for
the complete list of solutions).

The rest of the paper is organized as follows. In Section 2, weoutline some design principles for XML
full-text search languages. In Section 3, we describe the TeXQuery language, and in Section 4, we formally
define the semantics of TeXQuery. In Section 5, we discuss related work, and in Section 6, we present some
concluding thoughts.
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2 Design Goals and Alternative Approaches

We now motivate and describe a set of design goals that we believe any full-text search extension to XQuery
(or any XML query language in general) should satisfy. We then show why some simple extensions to the
XQuerycontains function fail to satisfy the design principles due to some fundamental limitations of the
function-based approach. This motivates the need for a morepowerful approach such as TeXQuery, which
we describe in the next section.

We use the following terminology for the rest of this paper. Alinguistic tokenis a sequence of characters
that corresponds to a token in a given human language. In Western languages and many other languages, a
linguistic token corresponds to a word. Leaf nodes in an XML document tree may contain multiple linguistic
tokens. Asearch tokenis a sequence of characters defining a pattern for matching linguistic tokens. We
assume that XML documents aretokenizedby a language-dependent tokenizer to identify linguistic tokens.

2.1 Design Goals

We now describe our design goals based on the following categories.

2.1.1 Searching over Semi-Structured Data

DG1: Users should be able to specify the search context, or the context over which the full-text search
is to be performed: In traditional full-text search [22], the search context is usually the entire document
collection. However, in the case of structured or semi-structured XML documents, it is often desirable to
narrow the search to a sub-set of the documents, or to fragments of documents. For instance, in the example
given in the introduction, the search context is limited to books (and excludes papers, articles, etc.), and
even within books, it is limited to the book content (insteadof the whole book).

DG2: Users should be able to specify the return context, or the part of the document collection that is to be
returned. In traditional full-text search [22], the return context is usually the entire document that satisfies
the full-text search condition. However, in the case of structured or semi-structured XML documents, it
is often desirable to return specific fragments of documents. For instance, in the example given in the
introduction, the return context is limited to the title andcontent of books (and not other fragments of the
book, such as author names, etc.).

2.1.2 Expressive power and Extensibility

DG3: Users should be able to express complex full-text searches. Users should be able to use sophisticated
full-text primitives such as Boolean connectives, distance predicates, phrase matching, stemming, and the-
sauri. Further, they should be able to compose these primitives to express complex searches, such as the
example in the introduction.

DG4: The language should be extensible with respect to new full-text primitives. Unlike the relational
model, there is no general notion of “completeness” in full-text search languages. The language should thus
be extensible so that new primitives (such as synonyms) can be added based on new user requirements.

2.1.3 Scores and Ranking

DG5: Users should be able to obtain relevance scores for the results of full-text searches. When searching
over text, it is often desirable to rank the results based on their relevance to the search [22]. Many measures
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such as TF-IDF and keyword proximity can be used to obtain therelevance scores.

DG6: Users should be able to control how scores are computed. When issuing full-text searches, users may
wish to specify that certain search tokens are more important than other search tokens [22]. For example,
when searching for “XML books”, the search token XML may be more important than book, and users
should be able to specify this in some way (e.g., using weights).

DG7: Users should be able to obtain the top-K results based on their relevance score. Since users are often
interested only in the top few results, they should be able tospecify this explicitly.

DG8: Users should be able to specify a scoring condition, which ispossibly different from the full-text
search condition. Users may wish to search based on one full-text search condition, and score the results
based on another condition. For example, a user may need to find all books on “software developers” and
score them based on their relevance to “usability testing”.The FTTF Use Cases Document [27] contain
other examples of such queries.

2.1.4 Integration with XQuery

DG9: Users should be able to embed full-text searches in XQuery expressions. This will enable users to
query seamlessly over both structured data (using XQuery) and full-text data (using full-text search). This
requires that full-text search expressions be fully composable with XQuery expressions.

DG10: Users should be able to embed XQuery expressions in full-text searches. Users should be able to use
XQuery expressions to specify the search tokens for full-text search. For example, a user may wish to search
for all articles that mention the title of one of Richard Dawkin’s books. Here, the search tokens are the titles
of Richard Dawkins books, which are themselves the result ofa XQuery query (and not just constants).

DG11: XQuery’s query capabilities should be leveraged wherever possible. XQuery provides a powerful
way to select, and manipulate XML documents, and this shouldbe leveraged so that there is no duplication of
functionality. Some obvious ways where XQuery query capabilities can be leveraged are in the specification
of the search and return contexts (DG1 and DG2).

DG12: There should be no extensions to the XQuery data model. Support for full-text search should have
no impact on the XQuery “sequence of items” data model. The main reason is that XQuery expressions are
fully compositional, and each expression takes zero or moresequences of items as input, and produces a
sequence of items as output. Changing this data model (such as adding scores to items, or adding positions
of search tokens) would require changing the definition ofeveryXQuery expression, including those that
are not full-text search expressions. Further, in the interest of extensibility, it is unlikely that the XQuery
W3C Working Group will be open to changes to the XQuery data model for every new extension (such as
full-text search, spatial search, etc.).

2.1.5 Language Syntax and Efficiency

DG13: It should be possible to statically verify that a query is syntactically correct. This is a simple
requirement that states that we should be able to detect syntax errors statically (at compile time). For
instance, in full-text search, we should be able to statically determine whether the Boolean operator ’and’
has two operands. The main advantage, of course, is to build robust applications.

DG14: The language syntax should allow for static type checking and inference. Static type checking and
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inference are especially important when applications (rather than humans) interpret query results. Further,
static type checking is already achieved by XQuery and this property should be preserved for full-text search.

DG15: The language should allow for an efficient implemention. While functionality is important, the
language should not be designed in a way that precludes an efficient implementation.

2.2 Limitations of Function-Based Approaches

We now consider two extensions to the XQuery language, whichattempt to extend the basiccontains
function with more expressive full-text search capabilities. Our main goal is to illustrate that these function-
based approaches have some fundamental limitations that preclude them from achieving all of the above
design goals; this in turn motivates the need for a more powerful language such as TeXQuery, which we
describe in the next section.

We consider two different function-based approaches. In the first approach, we create a newcontains-
like function for each full-text primitive (such as Booleanconnectives, distance predicates, etc.). In the sec-
ond approach, we extend thecontains function so that this single function is used to express all full-text
primitives, similar to SQL/MM [18]. Both of these approaches can be viewed as end-points in a spec-
trum, and there are certainly hybrid approaches that fall inbetween. However, the limitations of these two
end-points also carry over to the hybrid approaches.

2.2.1 One Function Per Full-Text Primitive

Thecontains function checks for the occurence of search tokens in an XML node. One can thus cre-
ate other functions for other full-text operations such as Boolean connectives and distance predicates, and
compose these functions to create complex full-text queries. As an example, consider the following query.

Example 2: Find all XML nodes (bound to variable $n) that contain the search token “usability” and either
the search token “testing” or the search token “analysis”. Further, the search tokens should be within a
window of size 10 (i.e., a window of at most 10 tokens should contain all the search tokens).

Using a function for each Boolean connective and distance predicate, the above query can be written as:

distance(contains($n,’usability’) and (contains($n,’testing’) or
contains($n,’analysis)),10)

The functioncontains($n,’usability’) returns true iff $n contains the search token ’usability’,
and similarly forcontains($n,’testing’) and contains($n,’analysis’). The XQuery
’and’ and ’or’ functions are used for the Boolean connectives. Finally, a distance function operates on
this result to return true only if the search tokens occur within a distance of 10.

The main problem with using this approach in the context of XQuery is that it requires an extension of
the XQuery data model (thereby violating DG12). To see why this is the case, consider the return type of
the first parameter of thedistance function. The return type is Boolean becausecontains returns a
Boolean value, and the Boolean connectives also return a Boolean value. But given just a Boolean value as
input, how can thedistance function determine if the search tokens are within a distance of 10 from each
other? This will not be possible unless some extra information about search token positions is somehow
“carried around” with the Boolean value - this is essentially a fundamental extension to the XQuery data
model, violating DG12. The above problem can be avoided by disallowing distance predicates, but this
would then limit the expressive power of the language, violating DG3.
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2.2.2 Single Function for Full-Text Search

The main problem with the previous approach was that it isolated the full-text primitive into separate func-
tions. By doing so, it had to extend the XQuery data model withposition-related information so that
distance-based searches can be composed. This problem can be solved by embedding the entire full-text
search into a singlecontains function, such as the approach taken in SQL/MM [18]. By doingso, all the
processing related to full-text search (including distance-based predicates) is expressed entirely within the
contains function, and the XQuery data model would not have to be extended. For instance, Example 2
above can be written as follows in SQL/MM-like syntax:

contains($n, ’usability and (testing or analysis) distance 10’)

The main problem with this approach is that the full-text search is specified in an uninterpreted string
that is opaque to the rest of the XQuery language. This causesa problem when we wish to embed XQuery
within full-text searches, as in the following example.

Example 3: Find all articles that mention the title of one of Richard Dawkin’s books.

Here, the search tokens (the titles of Richard Dawkin’s books) are themselves the result of an XQuery
expression, and there is no natural way to embed these results into the full-text search string (thereby violat-
ing DG10). One could conceivably think of generating the full-text search string “on the fly”, using string
concatenation on the results of XQuery expressions as follows.

contains($n, concat(//book[author = ’Dawkins’]/title, ’and’))

However, this implies that the full-text search string willnot be created until runtime, which means that
even simple syntax errors in the string cannot be checked until runtime (such as an ’and’ operator with only
one operand in the above example). This violates DG13.

2.2.3 Discussion

As illustrated in the previous sections, the function-based languagesyntaxhas some fundamental limitations
in meeting the design goals. This is unusual because, in language design, the precise syntax often does not
significantly impact the expressive power or semantics. However, in our case, the syntax makes a significant
difference because we are proposing an extension to an existing language (XQuery), and the syntax should
fit within the framework of that language.

Of course, the syntax is just one aspect of the language. The other important aspect is its formal se-
mantics. Even using a function-based syntax, the SQL/MM extensions do not provide the desired level of
composability and semantics as outlined in our design goals(a more detailed comparison with SQL/MM
can be found in Section 5). In the next two sections, we define the syntax and semantics of TeXQuery, which
satisfies all of the above design goals.

3 TeXQuery Language Specification

We now describe and illustrate the TeXQuery full-text search extensions to XQuery. TeXQuery satisfies all
the design goals presented in Section 2, satisfies all the requirements in the the W3C Full-Text Requirements
document [28], and is powerful enough to express all the W3C Full-Text Use Cases [27] (see [3] for the full
list of solutions to the use cases).
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3.1 High-Level Overview

At its core, TeXQuery introduces two new XQuery expressions, which we call TeXQuery expressions.
These expressions are just like other XQuery expressions - they take zero or more sequences of items as
input, and produce a sequence of items under which XQuery expressions are closed (left part of Figure 1 in
the Introduction). Consequently, TeXQuery seamlessly integrates with XQuery.

TeXQuery expressions support powerful full-text search byusing a set of fully composable full-text
primitives calledFTSelections.FTSelections are closed under a data model that we callFullMatch
(right part of Figure 1). TheFullMatch model is different from the XQuery model because full-text search,
by its very nature, has to deal with linguistic tokens and their positionswithin XML nodes. We describe
FullMatch in detail in Section 4.

It is important to note that theFullMatch data model is not an extension to the XQuery data model
(DG12). Rather,FullMatch is internal to TeXQuery expressions. TeXQuery expressions still return a
sequence of items, and are thus fully composable with other XQuery expressions (DG9 and DG10). Having
a different data modelwithin an XQuery expression is not specific to TeXQuery. In fact, oneof the core
XQuery expressions - FLWOR - has an internal model of tuples,which is not present in the XQuery data
model [29].

3.2 TeXQuery Expressions

We now introduce the two TeXQuery expressions,FTContainsExpr andFTScoreExpr.

3.2.1 FTContainsExpr

TheFTContainsExpr has the following syntax.

FTContainsExpr ::= Expr ‘‘ftcontains’’ FTSelection

Expr is any XQuery expression that specifies the search context, which is the sequence of XML nodes
over which the full-text search is to be performed.FTSelection specifies the full-text search condition.
TheFTContainsExpr returns a Boolean value that is true iff some node in the search context satisfies
the full-text search condition. An example of anFTContainsExpr is given below.

//book ftcontains ’usability’ && ’testing’

The above expression returns true iff some book in the searchcontext//book (which is an XQuery
expression) contains the search tokens ’usability’ and ’testing’. Here’usability’ && ’testing’ is
a simple example of anFTSelection. More complexFTSelections can be specified, but we defer
this discussion to a later section.

The simple example above illustrates several key points. First, it shows howFTContainsExpr can
limit the search context, thereby satisfying DG1. Second, since FTContainsExpr always returns a
Boolean value, it can be easily type-checked (DG14). Third,sinceFTContainsExpr returns a result
in the XQuery data model (a Boolean value), it can be arbirarily nested within other XQuery expressions
thereby satisfying DG9. A concrete instantiation of this isshown in the example below.

//book[.//section ftcontains ’usability’ && ’testing’]/title
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The above query returns the titles of those books in which some section contains the search tokens ’us-
ability’ and ’testing’. Note how theFTContainsExpr (.//section ftcontains ’usability’
&& ’testing’) is nested within the XQuery expression//book[ ]/title.

There are two other points to note about the above example. First, it shows how TeXQuery can specify
a return context, or the part of the selected XML items that are to be returned (DG2). In the example, the
return context is only the titles of the selected books, not the contents of these books. Second, it shows
how TeXQuery leverages existing XQuery constructs such as path expressions to specify the search context
(.//section) and the return context (/title), thereby satisfying DG11.

3.2.2 FTScoreExpr

FTContainsExpr returns true iff some node in the search context satisfies theFTSelection. However,
it does not specify how relevant the search context nodes areto theFTSelection. FTScoreExpr
addresses this issue by returning a score or measure of relevance for each node in the search context (thereby
satisfying DG5).FTScoreExpr has the following syntax.

FTScoreExpr ::= Expr ‘‘ftscore’’ FTSelectionWithWeights

Expr is an XQuery expression that specifies the search context.FTSelectionWithWeightsspeci-
fices the full-text search condition and is similar toFTSelection, with the added notion of weights for
computing scores.FTScoreExpr returns a sequence of scores corresponding to each XML node in the
search context sequence.

FTScoreExpr provides the framework for supporting different scoring mechanisms, but does not
dictate the exact scoring mechanism to be used. This decision was made because it is unlikely that different
implementations will agree to use the same scoring techniques. In fact, scoring for XML is an active area
of research (e.g., see [9, 12, 14, 15, 19, 24]) and many vendors view their scoring technique as one of
their prime differentiators.FTScoreExpr thus only specifies two high-level properties that every scoring
mechanism should satisfy, as required in [28].

• The score of a node in the search context should be 0 iff the node does not satisfy the full-text condition
specified inFTSelectionWithWeights. Otherwise, its score should be in the interval (0,1].

• For the nodes in the search context, a higher value of the score should imply a higher degree of
relevance toFTSelectionWithWeights.

An example ofFTScoreExpr is given below.

//book ftscore ’usability’ && ’testing’

The above expression returns a sequence of scores for each book in the search context. The scores are
computed using theFTSelectionWithWeights ’usability’ && ’testing’. The following
example shows how the user can specify weights in theFTSelectionWithWeights to control how
scores are computed (DG6).

//book ftscore ’usability’ weight 0.8 && ’testing’ weight 0.2
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The above expression returns a sequence of scores for each book in the search context, but the score
is computed using a weight of 0.8 for the search token ’usability’ and a weight of 0.2 for the search token
’testing’. The exact means by which the scoring mechanism uses these weights is implementation-defined,
andFTScoreExpr just provides the necessary language framework for specifying the weights.

Since the result ofFTScoreExpr is a sequence of floating-point items, it can be easily type-checked
(DG14). Further, since the result type is an instance of the XQuery data model, it can be arbitrarily embedded
in other XQuery expressions. In particular,FTScoreExpr can be used in conjunction with FLWOR to
compute top-K search results (DG7 and DG11). The following example illustrates how to compute the
top-10 results for the previous query.

for $result at $rank in
for $node in //book
let $score := $node ftscore ’usability’ weight 0.8 && ’testing’ weight 0.2
order by $score descending
return <result score={$score}> {$node} </result>

where $rank <= 10
return $result

Finally, FTContainsExpr andFTScoreExpr can be combined to search based on one condition
and score based on another condition (DG8). The following example illustrates how books can be filtered
based on’usability’ && ’analysis’ and scored based on’usability’ && ’testing’.

for $book in //book[. ftcontains ’usability’ && ’analysis’]
let $score := $book ftscore ’usability’ weight 0.8 && ’testing’ weight 0.2
return <result score={$score}> {$book} </result>

3.3 FTSelections

As mentioned above, the full-text search conditions inFTContainsExpr andFTScoreExpr are ex-
pressed in terms of anFTSelection. An FTSelection can either be a single search token (such as
’usability’), or can express more complex full-text searchincluding Boolean connectives (and, or, not),
scope of search tokens (whether they occur in the same sentence, paragraph, or node), window predicates,
and number of occurences of search tokens. In addition,FTSelectionWithWeights can also specify
weights used for scoring. We now illustrate some importantFTSelections through examples. We spec-
ify their formal semantics in the next section. The full grammar production rules forFTSelections can
be found in [1].

Consider the followingFTContainsExpr.

//book ftcontains ’usability’ && ’testing’ same sentence window 5

The above expression returns true iff some book in the searchcontext contains the search tokens ’us-
ability’ and ’testing’ in the same sentence within a window of 5. Note how the simpleFTSelections
(’usability’) and (’testing’) are composed using a Boolean connective (&&) to get a more com-
plexFTSelection (’usability’ && ’testing’). ThisFTSelection is then composed with a
scope selection (same sentence) and a window selection (window 5) to create the finalFTSelection
used in the above expression. This example thus illustrateshow relatively complexFTSelections can be
constructed by composing basic full-text primitives.

The following example illustrates another important feature ofFTSelections.
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//article ftcontains //book[./author = ’Richard Dawkins’]/title any

The above expression returns true if some article in the search context contains a reference to a title of
one of Richard Dawkin’s books. Note how an XQuery expression(//book[./author = ’Richard
Dawkins’]/title) is used to specify the search tokens. This shows how an XQuery expression can be
embedded inside full-text search (DG10).

3.4 FTContextModifiers

FTContextModifiers can be applied on anyFTSelection to modify how the full-text search is
performed.FTContextModifiers specify aspects such as stemming, stop words, regular expressions,
case (upper case or lower case), diacritics, special characters, synonyms, languages, and ignoring specified
XML subtrees [4]. Again, we illustrate some of the key context modifiers through examples, and refer the
reader to [2] for the full details.

//book ftcontains ’usability’ && ’testing’ with stems

The above expression returns true iff some book in the searchcontext contains the search tokens ’us-
abilility’ and ’testing’, using stemming (anFTContextModifier) to match the search tokens. Therefore,
a book that contains ’user’ and ’tests’ will also satisfy thefull-text search condition because both ’usability’
and ’user’ have the same stem (’use’), while ’testing’ and ’tests’ have the same stem (’test’). Note that
theFTContextModifier (with stems) applies to the entireFTSelection (’usability’ &&
’testing’) it is applied on.

A more complex example is given below.

//book ftcontains ’usability’ && ’testing’ with stems window 5 without stop words

The above expression returns true iff some book in the searchcontext contains the search tokens ’us-
abilility’ and ’testing’, using stemming to match the search tokens. Further, the search tokens should appear
within a window of 5, ignoring stop words (anotherFTContextModifier) when computing this win-
dow. Note howFTSelections andFTContextModifiers can be seamlessly composed.

4 TeXQuery Semantics

We now specify the formal semantics of the TeXQuery language. Our main contribution here is theFull-
Match data model. FullMatch contains enough information to guarantee that full-text search primitives
(FTSelections) can be closed under this model. In other words, the semantics of eachFTSelection
can be specified as a transformation of zero or more inputFullMatches to an outputFullMatch. Therefore,
FullMatchcan serve as the formal foundation for specifying and reasoning about full-text search, much like
the relational model is the foundation for relational querying. We are not aware of a previously published
data model that has this closure property for the same wide variety of full-text primitives.

The definition ofFullMatch has the following benefits. First, it ensures thatFTSelections are fully
composable (DG3). Second, it makes TeXQuery extensible with respect to adding newFTSelections,
because each new primitive only needs to specify its semantics in terms ofFullMatch, and does not impact
the semantics of existing primitives (DG4). Third,FullMatchpresents a clean and elegant way to specify the
semantics ofFTSelections. Finally, although beyond the scope of this paper, we expect thatFullMatch
will provide a principled framework for the optimization offull-text search (DG15).
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<book(1) id(2)="1000(3)">
<author (4)>Elina(5) Rose(6)</author(7)>
<content(8)>

<p(9)> The(10) usability(11) of(12) software(13) measures(14) how(15)
well(16) the(17) software(18) provides(19) support(20) for(21)
quickly(22) achieving(23) specified(24) goals(25). </p(26)>

<p(27)>The(28) users(29) must(30) not(31) only(32) be(33) well-served(34),
but(35) must(36) feel(37) well-served(38).</p(39)>

</content(40)>
</book(41)>

Figure 2: Positions Example

FullMatchhas a hierarchical structure. Thus, aFullMatchcan be represented in XML. Consequently, the
semantics of eachFTSelection can be specified as a transformation from zero or more input XML Full-
Matches into an output XMLFullMatch. This XML-to-XML transformation can be specified in XQuery.
Thus, the semantics ofFTSelections can be specified in XQuery itself! XQuery is suitable for defin-
ing the formal semantics ofFTSelections because XQuery itself has a formal definition [30]. Further-
more, specifying the semantics ofFTSelections in XQuery may enable the joint optimization of XQuery
queries and full-text search.

4.1 TheFullMatch Data Model

XQuery is based on the “sequence of items” data model [29], where an item is an XML node (or an atomic
value). Since this model is defined at the granularity of XML nodes, it is inadequate for the full composabil-
ity of FTSelections (see Section 2.2). We have thus developed theFullMatch data model based on the
positions of linguistic tokenswithin XML nodes. We first introduce positions, before describingFullMatch.

4.1.1 Positions

A position represents the occurrence of a linguistic token in an XML document. It contains the following:

• The linguistic token
• A unique identifier that captures the relative position of the linguistic token in document order
• The XML node directly containing the linguistic token
• The relative position of the sentence containing the linguistic token
• The relative position of the paragraph containing the linguistic token
• The context of the linguistic token (e.g., tag name, attribute name, attribute value, element content)

A position can thus be modeled as an XML element conforming tothe following DTD.

<!ELEMENT Position (Token, Identifier, Node, Sentence, Para, Context)>

The XML document in Figure 2 has been annotated to illustratethe position of each linguistic token (the
positions are within parenthesis). For readability, only the unique identifier part of positions is shown.

4.1.2 FullMatch Description

A FullMatch is essentially a first-order logic disjunctive normal form (DNF) predicate specified using XML
positions. The predicate captures the precise condition that an XML node needs to satisfy in order to be a
result for a full-text search. We now illustrateFullMatch using examples.
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Figure 5: FullMatch
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Consider theFTSelection (’usability’ with stems) evaluated over the XML document in
Figure 2. TheFullMatch corresponding to thisFTSelection is shown in Figure 3. Here, theFullMatch
corresponds to the entire DNF formula, eachSimpleMatchcorresponds to one of the disjuncts in the DNF
formula, and eachStringIncludecorresponds to an atom in the DNF formula.

Intuitively, eachSimpleMatchin Figure 3 represents one possible “solution” to theFTSelection. The
“solution” described by the firstSimpleMatchare those nodes that contain (represented asStringInclude) the
linguistic token ’Usability’ in position 10. The “solution” represented by the secondSimpleMatchare those
nodes that contain the linguistic token ’users’ in position20. Note that ’users’ has the same stemmed form
as ’usability’ (namely ’use’) and is hence included in aSimpleMatch. Figures 4 and 5 show theFullMatches
corresponding to theFTSelections (’software’) and (’Rose’), respectively.

Note that aFullMatch does not directly list the nodes that satisfy anFTSelection. Rather, it spec-
ifies a position-based predicate that XML nodes need to satisfy in order to satisfy anFTSelection. By
specifying aFullMatch in terms of positions, rather than XML nodes, there is sufficient information in a
FullMatch to achieve full composability amongFTSelections. At the same time, the interpretation of a
FullMatch as a predicate on XML nodes enables the mapping to the XQuery data model. In Figure 6, if an
XML node in the search context satisfies any of theSimpleMatches, it qualifies as an answer.

Let us now consider a more complex example. Consider theFTSelection (’usability’ with
stems && ’software’). The correspondingFullMatch is shown in Figure 6. There are four possible
“solutions” to thisFullMatch, and they are represented by the fourSimpleMatches. The firstSimpleMatch
matches ’usability’ at position 11and’software’ at position 13. The secondSimpleMatchmatches ’usability’
at position 11 and ’software’ at position 18, and so on.

As a final example, consider theFTSelection (’usability’ with stems && ’software’
&& !’Rose’). Here “!” is the Boolean ’not’ operator used to specify the absence of a search token (in this
case’Rose’). The correspondingFullMatch is shown in Figure 7. As in the previous example, there are
four possible “solutions” (SimpleMatches). However, besidesStringIncludes, eachSimpleMatchalso has a
StringExcludecorresponding to the negated search token. AStringExcludespecifies a position thatshould
not occur in an XML node for it to be a result; this corresponds to anegated atom in the DNF formula.

4.1.3 RepresentingFullMatch in XML

SinceFullMatchhas a hierarchical structure, it can be represented as XML. As mentioned earlier, this allows
us to specify the semantics ofFTSelections using XQuery itself. The DTD of the XML representation
of a FullMatch is given below.
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Figure 6:FullMatch for ’usability’ with stems && ’software’
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Figure 7:FullMatch for ’usability’ with stems && ’software’ && !’Rose’

<!ELEMENT FullMatch (SimpleMatch)*>
<!ELEMENT SimpleMatch (StringInclude|StringExclude)*>
<!ELEMENT StringInclude Position>
<!ELEMENT StringExclude Position>

4.2 Semantics of TeXQuery Expressions

We now specify the formal semantics ofFTContainsExpr andFTScoreExpr. In specifying the se-
mantics, we make use of the following two implementation-defined functions.

function fts:containsPos($node as node, $position as fts:Position) as xs:Boolean
function fts:score($node as node, $ftselection as fts:FTSelectionWithWeights)

as xs:double

The functionfts:containsPos returns true iff the node$node contains the position$position.
The functionfts:score returns a floating point score in the interval (0,1] for the node$nodewith respect
to theFTSelectionWithWeights ($ftselection). These implementation-defined functions are
designed to provide flexibility to a TeXQuery implementation, while still ensuring precise semantics.
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4.2.1 Semantics of FTContainsExpr

As described in Section 3.2.1, aFTContainsExpr specifies a search context and anFTSelection,
and returns true iff some node in the search context satisfiestheFTSelection. Since the search context
is an XQuery expression, it returns a sequence of XML nodes. TheFTSelection returns aFullMatch.
We now specify the semantics ofFTContainsExpr, which provides the “glue” between the sequence of
items and theFullMatch to produce a Boolean result. Since theFullMatch can be represented as XML, we
use an XQuery function to specify this transformation.

function FTContainsExpr($searchContext as node*,
$fullMatch as fts:FullMatch) as xs:Boolean {

some $node in $searchContext
satisfies some $simpleMatch in $fullMatch/simpleMatch

satisfies every $stringInclude in $simpleMatch/stringInclude
satisfies fts:containsPos($node, $stringInclude/position)
and
every $stringExclude in $simpleMatch/stringExclude
satisfies not fts:containsPos($node, $stringExclude/position)

}

The above function returns true iff some node in the search context satisfies at least one of theSim-
pleMatches. A node is said to satisfy aSimpleMatchiff it satisfies all of theStringIncludes, and
satisfies none of theStringExcludes.

In the example in Figure 2, theFTContainsExpr (//book ftcontains ’usability’ with
stems && ’software’) will return true because thebook node satisfies at least one of theSim-
pleMatches in Figure 6 (in fact, it satisfies all of theSimpleMatches in this particular example). However,
theFTContainsExpr (//book ftcontains ’usability’ with stems && ’software’
&& !’Rose’) will return false because thebook node does not satisfy any of theSimpleMatches in Fig-
ure 7 (due to the presence of theStringExcludes).

4.2.2 Semantics of FTScoreExpr

As described in Section 3.2.2, aFTScoreExpr returns a score for every node in the search context, which
is computed based on anFTSelectionWithWeights. Its semantics is specified below.

function FTScoreExpr($searchContext as node*, $fullMatch as fts:FullMatch,
$ftselection as fts:FTSelectionWithWeights) as xs:Boolean {

for $node in $searchContext
return if FTContainsExpr($node, $fullMatch)

then fts:score($node, $ftselection)
else 0

}

The function returns a score of 0 for a node in the search context if the node does not satisfy the
FTSelectionWithWeights. Else it returns a score in the interval (0,1] using a call to the implementation-
defined functionfts:score.

4.3 Semantics ofFTSelections

In specifying the semantics ofFTSelections, we use the following implementation-defined functions.
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function fts:getPositions($searchContext as node*, $searchToken as xs:string)
as fts:Position*

function fts:posDistance($pos1 as Position, $pos2 as Position, $ignorepos as Position*)
as xs:integer

The functionfts:getPositions returns the positions in which a search token appears in the search
context; this is usually implemented using inverted lists [22]. The functionfts:posDistance returns
the distance between two positions; this distance is the number of other search tokens that occur between
the two positions plus one. In computing this distance, someintervening token positions are ignored if they
appear in$ignorepos.

We now specify the semantics of some keyFTSelections. The details of the otherFTSelections
can be found in [2]. It is important to note that these definitions in terms ofFullMatch DNF formulae is
primarily for expressing the precisesemanticsof FTSelections. An implementationcan (and probably
should be) more efficient so long as it preserves this semantics.

4.3.1 Semantics ofFTStringSelection

FTStringSelection is the basicFTSelection that specifies search tokens. Its syntax is:

FTStringSelection ::= Expr

Expr is an XQuery expression that returns a sequence of string items. These items are used as the
search tokens in theFTStringSelection. For ease of exposition, we limit ourselves to the case where
Expr is a string literal that corresponds to a single search token(other cases are discussed in [2]). The
semantics of howFTStringSelection transforms a search token into aFullMatch is specified by the
following XQuery function.

function fts:FTStringSelection($searchContext as node*, $searchToken as xs:string,
$contextModifiers as fts:ContextModifier*) as fts:FullMatch {

<fullMatch>
{for $newSearchToken in fts:expandSearchToken($searchToken, $contextModifiers),

$position in fts:getPositions($searchContext, $newSearchToken)
return <simpleMatch>

{$position}
</simpleMatch>}

</fullMatch>
}

First, thefts:expandSearchToken function (defined precisely in [2]) takes in the given search
token and the relevant context modifiers, and produces an expanded set of search token based on the con-
text modifiers. For example, consider theFTSelection ’usability’ with stems. The context
modifier (with stems) applies to theFTStringSelection (’usability’). Therefore, the search
token’usability’ is expanded to include all search tokens that have the same stem as’usability’
(including’usability’,’users’, ’useful’, etc.).

Given the new (expanded) set of search tokens, the position of each of these search tokens in the search
context is determined using thegetPositions implementation-defined function. Finally, aSimpleMatch
is created for each such position, and these are nested underthe resultFullMatch.

As an illustration, theFTSelection (’usability’ with stems) produces theFullMatchshown
in Figure 3. TheFTStringSelections (’software’) and (’Rose’) produce theFullMatches in
Figures 4 and Figure 5, respectively.
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Besides the stemming context modifier (discussed above), thefts:expandSearchToken function
is also defined for other modifiers such as regular expressions, case, diacritics, special characters, and the-
sauri (see [2]). It is important to note that the notion of expanding search tokens is only used for specifying
the semanticsof anFTStringSelection. An actualimplementationmay not actually expand search
tokens, so long as it produces the same results as the formal semantics. For example, stemming may be
implemented by building inverted lists on stemmed forms of search tokens.

4.3.2 Semantics ofFTNegation

FTNegation is anFTSelection that is used to specify Boolean negation. It can be applied onany
FTSelection and has the following syntax.

FTNegation ::= ‘‘!’’ FTSelection

The semantics ofFTNegation can be specified as a transformation of theFullMatch associated with
the inputFTSelection into the outputFullMatch. This transformation is performed by negating the DNF
formula of the inputFullMatch, and producing the resulting outputFullMatch. This transformation can be
expressed naturally in XQuery, but since this specificationis straightforward but tedious and not particularly
illustrative in the current context, it is omitted here (see[2] for details). Instead, we illustrate the main idea
using an example.

Consider theFTNegation !’Rose’. TheFullMatch corresponding to theFTStringSelection
’Rose’ (Figure 5) is negated to produce the resultingFullMatch in Figure 8. Note howStringIncludes
becomeStringExcludes (and vice versa); this corresponds to the negation of atomsin the DNF formula
corresponding to aFullMatch.

4.3.3 Semantics ofFTAndConnective

TheFTAndConnective combines twoFTSelections with the semantics of a Boolean ’and’. It has
the following syntax.

FTAndConnective ::= FTSelection ‘‘&&’’ FTSelection
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The following function specifies the semantics ofFTAndConnective in terms of how it transforms
the two inputFullMatches into the outputFullMatch.

function fts:FTAndConnective ($fm1 as fts:FullMatch, $fm2 as fts:FullMatch)
as fts:FullMatch {

<fullMatch>
{for $simpleMatch1 in $fm1/simpleMatch,

$simpleMatch2 in $fm2/simpleMatch
return <simpleMatch>

{$simpleMatch1/* $simpleMatch2/* }
<simpleMatch>}

</fullMatch>
}

EachSimpleMatchin the resultingFullMatch is a combination of oneSimpleMatchfrom the first in-
put FullMatch and oneSimpleMatchfrom the second inputFullMatch. The intuition is that each input
FullMatch is satisfied iff at least one of itsSimpleMatches is satisfies. Therefore, an ’and’ of the inputFull-
Matches is satisfied iff at least one of theSimpleMatches from the first inputandone of theSimpleMatches
from the second input is satisfied.

TheFullMatch for theFTAndConnective (’usability’ with stems && ’software’) is
shown in Figure 6. ThisFullMatch is obtained by combining theFullMatches for’usability’ with
stems (Figure 3) and for’software’ (Figure 4). Similarly, theFullMatch in Figure 7 is obtained by
combining theFullMatches in Figures 6 and 8.

4.3.4 Semantics ofFTScopeSelection

FTScopeSelection limits the scope of anFTSelection to a node, sentence, or paragraph. It has the
following syntax.

FTScopeSelection ::= FTSelection(‘‘same’’|‘‘different’’)(‘‘node’’|‘‘sentence’’|‘‘para’’)

TheFTScopeSelection takes theFullMatch corresponding to its inputFTSelection, and re-
stricts theSimpleMatches so that only those that have positions in the same (or different) node, sentence
or paragraph are selected for the outputFullMatch. The semantics for theFTScopeSelection (’same
para’) is given below.

function fts:FTParaScopeSelection ($fullMatch as fts:FullMatch) as fts:FullMatch {
<fullMatch>

{for $simpleMatch in $fullMatch/simpleMatch
where every $stringInclude1 in $simpleMatch,

$stringInclude2 in $simpleMatch
satisfies $stringInclude1/position/para = $stringInclude2/position/para

return <simpleMatch>
{$simpleMatch/stringInclude}
{for $stringExclude in $simpleMatch/stringExclude
where every $stringInclude in $simpleMatch/stringInclude

satisfies $stringInclude/position/para =
$stringExclude/position/para

return $stringExclude}
</simpleMatch>}

</fullMatch>
}
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As shown above, only theSimpleMatches in which all theStringIncludes are in the same paragraph
are selected for the outputFullMatch. Further, theStringExcludes in the selectedSimpleMatches are also
restricted to be in the same paragraph as theStringIncludes in the outputFullMatch.

Figure 9 shows theFullMatch for the FTScopeSelection (’usability’ with stems &&
’software’ same para). This FullMatch is obtained by transforming the inputFullMatch corre-
sponding to’usability’ with stems && ’software’ (Figure 6). Note how theStringExcludes
do not appear in the resultFullMatchbecause they do not appear in the same paragraph as theStringIncludes.

4.3.5 Semantics ofFTWindowSelection

FTWindowSelection specifies the maximum window size for anFTSelection. Its syntax is:

FTWindowSelection ::= FTSelection ‘‘window’’ xs:integer

TheFTWindowSelection takes theFullMatch corresponding to its inputFTSelection, and re-
stricts theSimpleMatches so that only those that fit in the specified window size are selected for the output
FullMatch. This semantics is specified below.

function fts:FTWindowSelection ($fullMatch as fts:FullMatch, $windowSize as xs:integer,
$contextModifiers as fts:ContextModifier*) as fts:FullMatch {

<fullMatch>
{let $ignorePos := fts:getIgnorePos($contextModifiers)
for $simpleMatch in $fullMatch/simpleMatch
where every $stringInclude1 in $simpleMatch,

$stringInclude2 in $simpleMatch
satisfies fts:posDistance($stringInclude1/position, $stringInclude2/position,

$ignorePos) < $windowSize
return <simpleMatch>

{$simpleMatch/stringInclude}
{for $stringExclude in $simpleMatch/stringExclude
where every $stringInclude in $simpleMatch/stringInclude

satisfies fts:posDistance($stringInclude/position,
$stringExclude/position,
$ignorePos) < windowSize

return $stringExclude}
</simpleMatch>}

</fullMatch>
}

As shown above, only theSimpleMatches in which all theStringIncludes occur within the specified
window size are selected. Further, theStringExcludes in the selectedSimpleMatches are also restricted to
occur within the specified window size in the outputFullMatch. Certain search tokens positions ($ignore-
Pos) are ignored when computing the distance between two positions in aSimpleMatch. The positions to
be ignored depend on the stop word and ignore XML sub-tree context modifiers; this is computed using the
fts:getIgnorePos function (details are in [2]).

Figure 10 shows theFullMatch for theFTScopeSelection (’usability’ with stems &&
’software’ same para window 5 without stop words). This FullMatch is obtained by
transforming theFullMatch for ’usability’ with stems && ’software’ same para (Fig-
ure 9), and ignoring the positions of stop words when computing the window size.
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5 Related Work

The topic of combining full-text search with structured querying has recently been receiving a lot of atten-
tion, both in research and in the industry. In research, manyefforts have focused on extending XML query
languages with full-text search. However, unlike TeXQuery, previous solutions explore only a few full-text
search primitives at a time (e.g., Boolean keyword retrieval [11, 20], keyword similarity [8, 24], proximity
distance [7, 18], relevance ranking [6, 12, 15, 24]). Further, previous techniques do not develop a fully
compositional model for full-text search (such asFullMatch), and also do not provide a seamless integration
with the XQuery language and data model.

In the industry, the W3C Full-Text Task force (FTTF) has beenspecifically created to enhance XQuery
and XPath with full-text search [27, 28]. SQL/MM [18] was designed to extend SQL to express queries
on text, images and spatial data. Full-text queries are expressed in a sub-language embedded in a function
call. As discussed in Section 2, the function call approach has some fundamental limitations when used in
the context of XQuery. Further, SQL/MM does not provide a fully compositional data model for full-text
queries, and does not consider integration with the XQuery data model.

6 Conclusion

We have presented TeXQuery, which is a full-text search extension to XQuery. TeXQuery supports a pow-
erful set of fully composable full-text search primitives,which can be seamlessly integrated into the XQuery
language. We have also developed theFullMatchdata model for formally reasoning about full-text searches.
Using FullMatch we have formally specified the semantics of TeXQuery in termsof XQuery itself. TeX-
Query has been submitted to the W3C Full-Text Task Force (FTTF), whose charter is to extend XQuery
with full-text search capabilities. TeXQuery satisfies theFTTF Requirements [28] and is able to express all
the use cases in the FTTF Use Cases Document [27].

In this paper, we have focused on the TeXQuery language design and underlying formal model. We are
currently developing a reference implementation of TeXQuery in Galax [13]. We are also exploring efficient
query optimization and evaluation techniques based on the interactions between the XQuery andFullMatch
data models.
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