
CHARACTERIZATION OF MICROFLUIDIC
SHEAR-DEPENDENT IMMUNOCAPTURE AND

ENRICHMENT OF CANCER CELLS FROM BLOOD
CELLS WITH DIELECTROPHORESIS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Chao Huang

August 2014



c© 2014 Chao Huang

ALL RIGHTS RESERVED



CHARACTERIZATION OF MICROFLUIDIC SHEAR-DEPENDENT

IMMUNOCAPTURE AND ENRICHMENT OF CANCER CELLS FROM BLOOD

CELLS WITH DIELECTROPHORESIS

Chao Huang, Ph.D.

Cornell University 2014

In this work, we investigate the effects of dielectrophoresis (DEP) on microfluidic im-

munocapture of prostate cancer and pancreatic cancer cells. We make novel measure-

ments of these cancer cells’ DEP response, and characterize the combination of DEP and

immunocapture techniques as a function of shear stress in a Hele-Shaw flow cell with

interdigitated electrodes. At the same applied electric field frequency, we demonstrate

enhanced capture of cancer cells by attracting them to immunocapture surfaces with

positive DEP and reduced nonspecific adhesion of peripheral blood mononuclear cells

(PBMCs) by repelling them from immunocapture surfaces with negative DEP. Using

an exponential capture model, we show that immunocapture performance is dependent

on the applied DEP force sign and magnitude, cell and immunocapture surface chem-

istry, and shear stress experienced by cells flowing in the capture device. These data

inform the simulation of cancer cell and blood cell capture probabilities to design fu-

ture hybrid DEP and immunocapture device geometries with improved rare cell capture

performance.



BIOGRAPHICAL SKETCH

Chao “Charlie” Huang was born in Nanjing, China in 1988, and at the age of 3, immi-

grated with his family to North America, where they eventually settled in Seattle, WA

after his father completed his Ph.D. and began a career as a telecommunications electri-

cal engineer. In 2002, Charlie enrolled in the University of Washington’s Early Entrance

Program, and completed his B.S. in Bioengineering with College Honors and a minor

in Mathematics from the University of Washington in 2008. During his undergraduate

studies, Charlie worked on silver nanostructure synthesis and osteocyte network mod-

eling research projects with Professors Younan Xia and Ted S. Gross, respectively, and

also developed an interest in microfluidics through coursework with Professors Albert

Folch and Paul Yager. Keen to design microfluidic technologies for biomedical appli-

cations, Charlie joined Professor Brian J. Kirby’s research group at Cornell University

in Ithaca, NY in late 2008 to pursue his Ph.D. in Biomedical Engineering, and in 2010,

was awarded a National Science Foundation Graduate Research Fellowship to support

his research on dielectrophoretic cancer cell capture.

Outside of his academic endeavors, Charlie has long had a deep passion for playing

and writing music. He has played guitar and keyboards in amateur rock bands, and more

recently, transitioned to working on music/video production with MIDI instruments on

his own YouTube channel, which has attracted a sizeable subscriber base. In addition,

having previously lived in Montreal, QC where he was effectively required by law to

play ice hockey, Charlie still enjoys lacing up the skates every once in a while.

After completing his doctorate, Charlie will join Lawrence Livermore National Lab-

oratory in Livermore, CA as a postdoctoral research staff member in the Materials Engi-

neering Division. He is looking forward to working on a wide range of exciting research

projects, as well as amazing weather and delicious Chinese food in California, as the

second Dr. Huang in his family.

iii



ACKNOWLEDGEMENTS

Above all, I need to thank my father, Jifu Huang, and mother, Jun Gao, for their unwa-

vering support and sacrifices made to provide me with the numerous opportunities that

I have had throughout my life. I am truly lucky to have such dedicated and hardworking

parents as mentors and role models.

I would like to thank my Ph.D. advisor, Professor Brian J. Kirby, for his academic

and professional guidance over the past 6 years. It has been an exciting, challenging,

and rewarding experience working in his lab, and he has made countless efforts to help

me grow and improve as an engineer, scientist, and academic professional. I would

also like to thank my thesis committee members, Professors Susan Daniel and Robert S.

Weiss, for their expertise and insight in clarifying scientific concepts and shaping the di-

rection of my research. I have been very fortunate to have such a supportive and reliable

thesis committee. In addition, I would like to thank Belinda Floyd, Marcia Sawyer, and

Professor Peter Doerschuk for making everything run smoothly on the administrative

side.

I would not have come close to completing my doctorate without the help and

friendship of my colleagues at Cornell. Nitya Arasanipalai, Alex Barbati, Mike Bono,

Tim Lannin, Erica Pratt, Steven Santana, Jim Smith, Fredrik Thege, and Professor Ben

Hawkins from the Kirby Lab have all contributed immensely to my research, education,

and professional development. Thank you for all of your brutally honest comments dur-

ing lab meeting presentations! I must also thank Mo Chen, Piku Ghosh, Meng Li, Ming

Li, Phong Nguyenle, Xavier Serey, Natasha Udpa, and Xiaohua Yang for commiserating

with me over how tough graduate school, life, and especially the job search can be.

Finally, I would not be who and where I am today without all of my professors,

advisors, and longtime friends from the University of Washington. I owe much gratitude

to the Early Entrance Program staff for offering me a once-in-a-lifetime opportunity, and

iv



to Professors Ted S. Gross, Benjamin Wiley, and Younan Xia for providing me a first

chance to pursue and grow my interest in scientific research. I would also like to thank

Monica Chang, YungChun Chen, Rozanna Fang, and Kimberly Tran for continuing to

share laughs from the West Coast and keeping me sane while I have been cooped up in

upstate New York.

v



TABLE OF CONTENTS

Biographical Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Introduction 1

2 Rare Cell Capture in Microfluidic Devices 5
2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Non-electrokinetic methods . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Immobilization via antibody or aptamer chemistry . . . . . . . 8
2.3.2 Size-based sorting . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.3 Sheathflow and streamline sorting . . . . . . . . . . . . . . . . 14

2.4 Electrokinetic methods . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.1 Electrode-based DEP . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 Insulative DEP . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.3 Prospects for DEP rare cell capture . . . . . . . . . . . . . . . 29

2.5 Performance criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Characterization of a Hybrid Dielectrophoresis and Immunocapture Mi-
crofluidic System for Cancer Cell Capture 38
3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Hele-Shaw flow cell design . . . . . . . . . . . . . . . . . . . . 42
3.3.2 Device fabrication . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.3 Antibody functionalization . . . . . . . . . . . . . . . . . . . . 46
3.3.4 Cell culture maintenance . . . . . . . . . . . . . . . . . . . . . 47
3.3.5 DEP characterization of LNCaPs . . . . . . . . . . . . . . . . . 47
3.3.6 Immunocapture of LNCaPs with DEP effects . . . . . . . . . . 51

3.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.1 DEP characterization of LNCaPs . . . . . . . . . . . . . . . . . 52
3.4.2 Immunocapture of LNCaPs with DEP effects . . . . . . . . . . 55

3.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

vi



4 Enrichment of Prostate Cancer Cells from Blood Cells with a Hybrid Di-
electrophoresis and Immunocapture Microfluidic System 63
4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.1 Device design, fabrication, and antibody functionalization . . . 66
4.3.2 Cell culture and preparation . . . . . . . . . . . . . . . . . . . 68
4.3.3 DEP characterization of cells . . . . . . . . . . . . . . . . . . . 69
4.3.4 DEP-guided enrichment of LNCaPs from PBMCs . . . . . . . 71

4.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Characterization of Microfluidic Shear-Dependent EpCAM Immunocap-
ture and Enrichment of Pancreatic Cancer Cells from Blood Cells with Di-
electrophoresis 80
5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.1 Device fabrication and antibody functionalization . . . . . . . . 84
5.3.2 Cell culture and preparation . . . . . . . . . . . . . . . . . . . 86
5.3.3 Characterization of pancreatic cancer cells’ DEP response . . . 87
5.3.4 Characterization of EpCAM immunocapture with DEP . . . . . 89
5.3.5 Derivation of exponential capture model . . . . . . . . . . . . . 91

5.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 Conclusions 104

Bibliography 108

vii



LIST OF TABLES

2.1 Non-electrokinetic cell fractionation and isolation studies . . . . . . . 33
2.2 Electrokinetic cell fractionation and isolation studies . . . . . . . . . . 35

3.1 Captured LNCaP densities as a function of shear stress under various
DEP experimental conditions . . . . . . . . . . . . . . . . . . . . . . 59

5.1 Ratios of captured pancreatic cancer cell capture probabilities with
DEP to without DEP . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Exponential capture model fit values for Capan-1, PANC-1, BxPC-3,
and PBMC capture data . . . . . . . . . . . . . . . . . . . . . . . . . 99

viii



LIST OF FIGURES

2.1 Examples of non-electrokinetic cell fractionation and isolation devices 9
2.2 Examples of electrokinetic cell fractionation and isolation devices . . . 19
2.3 Examples of insulative DEP devices . . . . . . . . . . . . . . . . . . . 28

3.1 Schematic of Hele-Shaw flow cell with interdigitated electrodes . . . . 43
3.2 Shear stress as a function of distance from the inlet in the Hele-Shaw

flow cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Trapping potential and proportionate DEP response of LNCaPs as a

function of applied electric field frequency . . . . . . . . . . . . . . . 53
3.4 Ratios of captured LNCaP densities with and without DEP . . . . . . . 57
3.5 Captured LNCaP densities as a function of shear stress under various

DEP experimental conditions . . . . . . . . . . . . . . . . . . . . . . 61

4.1 Schematic of the Hele-Shaw flow cell with interdigitated electrodes . . 67
4.2 Predicted DEP response of LNCaPs and PBMCs as a function of ap-

plied electric field frequency . . . . . . . . . . . . . . . . . . . . . . . 72
4.3 Captured cell densities of LNCaPs and PBMCs as a function of shear

stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4 Ratios of captured LNCaP and PBMC densities with and without DEP 75

5.1 Schematic of Hele-Shaw flow cell with interdigitated electrodes and
elongated inlet channel . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Predicted DEP response of Capan-1, PANC-1, BxPC-3, and PBMCs as
a function of applied electric field frequency . . . . . . . . . . . . . . 89

5.3 Capture probability of Capan-1, PANC-1, BxPC-3, and PBMCs as a
function of shear stress . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4 Exponential fits to BxPC-3 capture data as a function of shear stress . . 98

ix



CHAPTER 1

INTRODUCTION

The isolation of circulating tumor cells (CTCs) from cancer patient blood is of par-

ticular interest to cancer researchers, as the enumeration of CTCs can serve as a prog-

nostic indicator of cancer and predictor of patient survival [24, 55, 31, 28]. In addition,

genetic and pharmacological evaluation of CTCs can lead to a better understanding of

cancer metastasis as well as improved drug therapies [91, 156, 79, 132, 188]. Despite the

rarity of CTCs in blood—as few as 1–100 CTCs per 109 blood cells—microfluidic “im-

munocapture” methods that immobilize cells via antibody or aptamer chemistry have

reported high capture efficiencies; however, these methods are currently limited by low

capture purities due to nonspecific adhesion of leukocytes to capture surfaces [126]. A

high capture purity of CTCs is desirable because it can facilitate numerous subsequent

biological analyses by reducing the amount of time and money that is potentially wasted

on analyzing contaminating blood cells. For example, the yield from analyses that re-

quire single-cell sequencing, such as RNA sequencing to identify distinct CTC gene

expression patterns [131, 188, 10, 79] and copy number variation analysis to character-

ize CTC provenance [136, 114, 125], is improved proportionally with increasing purity.

Because existing immunocapture techniques, as well as others, are not able to deliver

high CTC capture purities [126], in this thesis, we explore dielectrophoretic phenomena

as an alternative or complementary method to isolate CTCs with high purity.

Dielectrophoresis (DEP) refers to the net electromigration of induced dipoles owing

to interactions with an electric field gradient [122]. The DEP force is a direct function of

particle or cellular properties such as size, charge, conductivity, and permittivity, and ac-

cesses a wide range of characteristics through the frequency-dependent dielectric prop-

erties of particle or cellular morphology and composition [72, 78]. For a more detailed
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description of DEP physics and modeling, the reader is referred to Chapter 3. Briefly,

when a particle is more polarizable than its suspending medium in a non-uniform elec-

tric field, positive DEP (pDEP) occurs, in which the particle is attracted to regions of

high electric field gradients. In contrast, when the particle is less polarizable than its sus-

pending medium, negative DEP (nDEP) occurs, in which the particle is repelled from

regions of high electric field gradients. As such, DEP enables electrically controllable

manipulation of particulate mineral, chemical, and biological analytes (e.g., mammalian

cells) within a fluid suspending medium [109]. DEP is particularly well suited for use

in microfluidic devices, as small electrodes that produce the electric field gradients may

be integrated easily by inexpensive fabrication methods [167]. These DEP-activated

devices have a wide range of research applications in the purification, enrichment, and

characterization of environmental, biological, and clinical components [52]. For can-

cer cell isolation applications, specifically, previous research has shown that in certain

applied electric field frequency ranges, a majority of cancer cell populations exhibit a

pDEP response whereas blood cells exhibit a nDEP response [7, 43, 149], which can

lead to high-purity separation. However, for rare cell capture applications, DEP meth-

ods are often limited by low capture efficiency and throughput, as it is difficult to bring

rare cells in close proximity to electrodes where the DEP response is strongest [126].

Given that existing immunocapture techniques typically report high capture efficien-

cies but low capture purities, and DEP methods have the potential for high-purity sep-

aration by cancer cells’ pDEP and blood cells’ nDEP responses but are limited by low

capture efficiencies in rare cell capture applications, we hypothesize that DEP can com-

plement existing immunocapture techniques by acting only near capture surfaces where

the electric fields are strongest and antibody interactions occur. Specifically, DEP can

act to attract cancer cells to immunocapture surfaces by pDEP and also repel contami-

nating blood cells by nDEP [7, 185, 63, 43], therefore potentially increasing the capture

2



purity. To assess the feasibility and outcomes of combining DEP and immunocapture

techniques, we design microfluidic DEP characterization devices to investigate and op-

timize relevant experimental parameters (e.g., electric field magnitude, frequency, anti-

body concentration, fluid flow conditions). The primary goals of this thesis are to (1)

make novel measurements of cancer cells’ DEP response to inform DEP separation pa-

rameters, and (2) characterize how DEP enhances or diminishes the immunocapture of

cancer cells and blood cells, respectively, as a function of shear stress. These data in-

form the design of future hybrid DEP and immunocapture devices for CTC capture with

high efficiency and purity, which will facilitate subsequent functional and genetic anal-

yses of captured CTCs to elucidate cancer progression and develop improved treatment

options.

In Chapter 2, we present a survey of literature of rare cell capture studies using

either DEP or non-electrokinetic techniques. We evaluate these studies based on a panel

of performance criteria, make suggestions for future improvements, and discuss how a

combination of these techniques can potentially lead to enhanced capture performance.

In Chapter 3, we make novel measurements of the DEP response of a cultured

prostate cancer cell line, LNCaP, and present a hybrid DEP and immunocapture Hele-

Shaw flow cell system to characterize the effects of DEP on immunocapture with a

highly prostate cancer-specific antibody, J591, as a function of antibody concentration,

DEP magnitude and electric field frequency, and shear stress experienced by cells flow-

ing in a typical immunocapture device geometry.

In Chapter 4, we extend our characterization work and demonstrate that LNCaPs

can be enriched from peripheral blood mononuclear cells (PBMCs) with DEP. Specif-

ically, we show that at the same applied electric field frequency, capture of LNCaPs is

enhanced by attracting them to immunocapture surfaces with positive DEP, and nonspe-
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cific adhesion of PBMCs is reduced by repelling them from immunocapture surfaces

with negative DEP.

Finally, in Chapter 5, we characterize shear-dependent immunocapture of a panel

of pancreatic cancer cell lines (Capan-1, PANC-1, and BxPC-3) that do not have an

organ-specific biomarker and are typically captured with anti-EpCAM [133, 161]. We

make novel measurements of pancreatic cancer cells’ DEP response, demonstrate their

enrichment from PBMCs with DEP, and use an exponential capture model to evaluate

immunocapture performance as a function of applied DEP force sign and magnitude,

cell surface EpCAM expression level, and shear stress experienced by cells flowing in

the capture device. Importantly, we show that DEP can enhance the capture of cancer

cells independent of their surface antigen expression levels, indicating that DEP methods

may be especially useful for isolating cancer cells that are less likely to be captured by

traditional immunocapture techniques.

The characterization data on combining DEP with immunocapture techniques pre-

sented in this thesis can be used in computational fluid dynamics studies [46, 153] to

predict capture probabilities of cancer and blood cells under the influence of DEP in ex-

isting immunocapture geometries [45, 79, 161]. These simulation results will inform the

design of future hybrid DEP and immunocapture rare cell capture devices with improved

capture performance.
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CHAPTER 2

RARE CELL CAPTURE IN MICROFLUIDIC DEVICES

2.1 Abstract

This article reviews existing methods for the isolation, fractionation, or capture of rare

cells in microfluidic devices. Rare cell capture devices face the challenge of maintaining

the efficiency standard of traditional bulk separation methods such as flow cytometers

and immunomagnetic separators while requiring very high purity of the target cell pop-

ulation, which is typically already at very low starting concentrations. Two major clas-

sifications of rare cell capture approaches are covered: (1) non-electrokinetic methods

(e.g. immobilization via antibody or aptamer chemistry, size-based sorting, and sheath

flow and streamline sorting) are discussed for applications using blood cells, cancer

cells, and other mammalian cells, and (2) electrokinetic (primarily dielectrophoretic)

methods using both electrode-based and insulative geometries are presented with a view

towards pathogen detection, blood fractionation, and cancer cell isolation. The included

methods were evaluated based on performance criteria including cell type modeled and

used, number of steps/stages, cell viability, and enrichment, efficiency, and/or purity.

Major areas for improvement are increasing viability and capture efficiency/purity of

directly processed biological samples, as a majority current studies only process spiked

cell lines or pre-diluted/lysed samples. Despite these current challenges, multiple strides

have been made in the development of devices for rare cell capture and the subsequent

The content of this chapter was published as a review article:
Erica D. Pratt*, Chao Huang*, Benjamin G. Hawkins, Jason P. Gleghorn, Brian J. Kirby. “Rare

cell capture in microfluidic devices,” Chemical Engineering Science, 66(7): 1508-1522, 2011 [126].
*Authors contributed equally to this work.

EDP independently wrote Section 2.3 and Table 2.1, and CH independently wrote Section 2.4 and
Table 2.2; the remaining sections were written in collaboration. BGH, JPG, and BJK provided technical
expertise and guidance on formatting and organization.
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elucidation of new biological phenomena; this article serves to highlight this progress as

well as the electrokinetic and non-electrokinetic methods that can potentially be com-

bined to improve performance in future studies.

2.2 Introduction

The isolation, fractionation, and capture of cells from suspensions has a wide range

of applications, from the detection of bacteria [95, 180] to the enumeration of cancer

cells [43, 14, 113]. The benefits and limitations of flow cytometers, immunomagnetic

separators and other macro-sized sorting equipment have been studied extensively in

experimentation and in review [117, 15, 84] when compared to the abilities of microde-

vices. This article focuses on devices and techniques with potential to analyze cells that

are typically found at low concentrations in suspension; such devices are currently used,

or have the potential to be used, for applications in environmental pathogen detection

[86, 187] and cancer cell isolation from patient blood samples [45]. The discussion is

divided into sections that detail two major classifications of microfluidic approaches,

non-electrokinetic and electrokinetic, followed by a summary of performance criteria

by which these methods are evaluated; studies that focused on quantifying these perfor-

mance specifications are highlighted in tables at the end of the article. While rare cell

capture is the ultimate motivation of this paper, many of the described methods exist

only as proof-of-concept studies. Thus, this article serves to highlight both the progress

made in using microfluidic devices for rare cell capture and the techniques that may

contribute to rare cell capture in the near future.
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2.3 Non-electrokinetic methods

This section focuses upon non-electrokinetic methods of cell isolation, capture, or frac-

tionation from a suspension. As such, it lends itself naturally to organization by sorting

technique. Each sorting methodology is further subdivided into cell separations of inter-

est: blood cell fractionation, cancer cells, other mammalian cells, and prokaryotes and

viruses.

Blood cell fractionation, as defined here, focuses on isolation of cell types native to

circulation. Most of the studies described here revolve around the capture or elimina-

tion of white blood cells (WBCs). WBCs are of value in many diagnostic assays and

studies of disease progression, but they must first be separated from the bulk blood sus-

pension. However, WBC concentrations are low as compared to red blood cells (RBCs),

roughly 1 to 1000 [112, 166]. Conversely, for the purpose of leukemia treatments, blood

transfusions, etc, it is vital to eliminate WBCs as a source of contaminantion [144].

Studies for the isolation of cancer cells focus upon approximating, or capturing,

circulating tumor cells(CTCs), which can be found in the circulation of cancer patients

[113, 45, 157]. CTCs have been used as prognostic indicators of patient survival [29] as

well as representative tissue for genetic analyses [157]. CTCs are 106 rarer than WBCs,

making their capture particuarly challenging [113, 1, 45].

Non-electokinetic microfluidic techniques have also been applied to study other

mammalian cells. Applications are quite disparate, ranging from sorting of cells based

on stages of cell cycle [19] to isolation of fetal nucleated red blood cells (nRBCs) from

maternal blood [61, 106, 107].
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2.3.1 Immobilization via antibody or aptamer chemistry

The microfluidic devices discussed in this section take advantage of biochemical in-

teractions to enhance rare cell capture or fractionation. Immunocapture is a technique

frequently used in the extraction of cells, viruses, and proteins from suspension. It

employs anti-sera to target biological agents of interest. In rare cell isolation, immuno-

capture presents an opportunity to separate cells with extremely high specificity from

a suspension, in a viable state. In practice, this technique is analogous to microscale

affinity chromatography for cells possessing unique markers or characteristics [120].

Blood cell fractionation

Chang et al. studied the effect of microfludic structures on white blood cell (WBC)

adhesion using different pillar geometries and orientations. They compared square and

rhombic arrays with square and ellipsoidal micropillars, respectively. The micropillars

were physisorbed with E-selectin to identify different leukocyte model cell lines (in

cell media) via adhesive rolling speeds. Cell rolling velocities were two times as high in

rhombic arrays, resulting in 130- to 160-fold enrichment, as opposed to 200-fold enrich-

ment in square arrays. By comparing microarray geometries under identical flow and

immunocapture conditions, Chang et al. demonstrated that the type of pillar geometry

alone influenced cell adhesion mechanics and, by extension, isolation [13].

In contrast, Murthy et al. focused upon the effects of shear stress on leukocyte ad-

hesion mechanics. They studied the effects of shear stress using a Hele-Shaw flow cell

with a device geometry that created a linear variation in shear stress along its axis (see

Figure 2.1C). The researchers used anti-CD5, anti-CD19, and PEG to isolate T- and

B-lymphocytes from a heterogeneous PBS suspension. Non-target cells were depleted

8



Figure 2.1: (A) Schematic of an micro-pillar device’s architecture. Adapted from [45].
(B) Schematic of a Weir microfilter’s operation. Adapted from [70]. (C) Example of a
Hele-Shaw flow cell where the dotted line is the region of linearly increasing shear. (D)
Schematic of a sheath-flow based separation system. Adapted from [180].

from heterogeneous mixtures, resulting in suspensions that were 97% pure [112]. Sin

et al. extended this work to blood, and studied the effects of suspension density on

cell binding and the time-scale of cell-antibody kinetics. Within three minutes they

obtained 100% and 75% pure suspensions of T-lymphocytes and B-lymphocytes, re-

spectively [151]. Wang et al. also captured T-lymphocytes using anti-CD3-coated mi-

cropillars. They surrounded their pillars with segmented curved walls to increase the

range of shear stresses experienced by the cells. Using this technique, they were able

to isolate T-lymphocytes spiked in blood with 80% efficiency [177]. These studies, in

combination, demonstrated that the fluid mechanics of microfluidic devices influence

efficient immobilization in addition to antibody/apatamer specificity.
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Cancer cells

Many microfludic devices take advantage of the 3D structure of channels to increase

the surface area available to be coated with the antibody or aptamer of choice. Du

et al. demonstrated the efficacy of this technique in straight microchannels by differ-

entially capturing human mammary epithelial cells and breast cancer cells by use of

epithelial membrane antigen (EMA) and epithelial growth factor receptor (EGFR) [37].

The sensitivity of capture to antibody dilution alone was also demonstrated using the

same device geometry. Using this isolation technique, their capture rates from a PBS

suspension ranged up to 30%. Xu et al. used DNA aptamers within an S-shaped mi-

crofluidic device [181] to capture cancer cells from PBS. Using aptamers targeted to

various leukemia and lymphoma cell lines lines, their device efficiencies ranged from

50-83% with 88-97% purity. Recent work by Wang, et al. on silicon nanopillars (SiNPs)

indicated that the topology of the microdevice itself may contribute greatly to the effi-

ciency of rare cell capture. Comparing EpCAM functionalized SiNPs and flat surfaces,

there was approximately 6-fold increase in capture efficiency, from 4-14% to 45-65%

[171].

Cancer cells have also been captured from blood-based systems. Liu et al. used

nickel micro-pillars to immobilize functionalized superparamagnetic beads to create a

capture zone within their microfludic devices. Using magnetic fields, they then immobi-

lized and released an immortalized lung cancer cell line mixed with human RBCs. This

method produced 133-fold enrichment with 62-74% capture efficiency [95]. Adams et

al. observed cell margination along the walls of linear channels when working with

whole rabbit blood. They hypothesized that this reduced the rate of cell-antibody in-

teractions in their devices [1]. This phenomenon was no longer seen when straight-

walled channels were exchanged for sinusoidally varying ones. In combination with
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anti-epithelial growth factor receptor (EpCAM) antibodies, Adams et al. achieved im-

mortalized breast cancer cell capture efficiencs of 97%. The device was translated to

the capture of model prostate cancer cells spiked in PBS, using anti-prostate specific

membrane antigen(PSMA) aptamers with an efficiency of 90% [34].

While the prior studies worked with model cell lines spiked in buffer solution

[37, 181, 34, 171] or blood systems [95, 1, 113, 45], this method has also been used

for cancer patient blood samples [113, 45]. Nagrath et al. used a dense array of micro-

pillars coated in EpCAM to increase the number of cell-antibody interactions for a given

suspension volume. Using this approach, they isolated lung, prostate, pancreatic and

other cell lines from blood samples with average effiency and purity of 65% and 50%

respectively [113]. Recently, Gleghorn et al. used computational modeling to design

micro-pillar arrays such that cell-antibody interactions were size-dependent. Using mi-

crodevices functionalized with anti-PSMA antibodies, prostate cancer cells were cap-

tured at efficiences of 85-97% with purities of 68% [45] (see Figure 2.1A).

Other mammalian cells

Plouffe et al. used previously discussed microfluidic devices [112, 151] to selectively

isolate endothelial cells (ECs) and smooth muscle cells (SMCs) from suspension. They

coated their devices with peptides (REDV and VAPG) targeted to ECs and SMCs, and

investigated binding to target cells as a function of shear stress. Using these peptide

sequences, they differentially isolated ECs and SMCs from homogenous and heteroge-

nous suspensions with purities of 86% and 83%, respectively [120]. Plouffe et al. further

demonstrated the feasibility of peptide-based capture systems by using a 3-stage isola-

tion system to deplete heterogenous suspensions of ECs, SMCs and fibroblasts [121].

Using this system, they were able to achieve 96% to 99% depletion of the three different
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cell types with over 97% viability of non-immobilized cells. Their work agreed with

results on shear-dependent cell capture discussed previously [112, 151], showing this

relationship to be true regardless of cell type.

2.3.2 Size-based sorting

Size-based sorting affords the ability to capture target cells without knowledge of the

target cell’s biochemical characteristics. This is an attractive option if the target cell’s

size is extreme in relation to its medium and also if the cell’s properties are not well

understood. Many approaches have been used to attempt size-sensitive isolation, rang-

ing from size-dependent transport through small geometries to size-dependent particle

pathlines in open obstacle arrays [68, 165, 166, 144, 151, 30, 70].

Blood cell fractionation

Much research has been done to develop microfludic platforms to fractionate blood com-

ponents, particuarly WBCs, based on size. Sethu et al. developed a microfluidic diffu-

sive filter for WBC depletion from whole human blood. The system allowed biconcave

red blood cells (RBCs) egress from the main device while larger WBCs were retained.

The filtration elements were placed on the sides of the main channel, to minimize clog-

ging by distributing RBC egress points along the length of the channel rather than focus-

ing it in one area. To maintain equivalent volumetric flow rates in each segment, they

used a flared geometry designed using Hele-Shaw analysis.Using this diffusive filter

technique, over 97% WBC depletion was achieved [144].

Ji et al. reviewed various other microfludic filtration techniques for the application
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of WBC depletion. They found that pillar filters and cross-flow filters had high WBC

depletion rates and could be used to process large sample volumes [70]. VanDelinder et

al. also investigated cross-flow filters for WBC depletion, but also observed that RBC

clogging hindered performance. They subsequently attempted WBC isolation using re-

peated microfluidic array geometries, achieving 98% WBC retention from human blood

with no RBC lysis [165, 166].

Davis et al. and Inglis et al. used microfludic devices featuring pillars. Rather

than using the pillars to create microfludic slits to obstruct larger cell flow, they used the

micropillars to create particle-size-dependent pathlines such that target cells were sorted

into predetermined outlet ports based on size alone [30, 68]. Using this technique, Davis

et al. depleted lymphocytes and monocytes from blood with 100% efficiency and Inglis

et al. were able to separate lymphocytes from diluted blood suspensions with 73%

effieciency.

Cancer cells

Zheng et al. developed paralyene microfilters for the isolation of immortalized prostate

cancer cell lines. Using pressure-driven flow to force cell suspensions through the filter,

their cell recoveries ranged from 87% to 89% [191]. Cells retained on the microfilters

were lysed for genomic analysis. Chen et al. used a combination of experimental results

and physical modeling to develop a weir filter to selectively isolate cancer cells based

upon their deformability [14] (see Figure 2.1B). Using a filter fabricated specifically for

their model lung adenocarcinoma cells, they were able to achieve over 99.9% capture

efficiency from diluted human blood samples.
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Other mammalian cells

Mohamed et al. also used pillar filters for the goal of isolating fetal nucleated red blood

cells (fNRBCs) from maternal blood [107].The pillars were placed to create succesively

narrower channels in the device such that cell capture between pillars was a function of

size and deformability. RBCs and fNRBCs were isolated from goose blood and cord

blood samples, respectively. Mohamed et al. reported no significant clogging using this

staged pillar technique; however, blood samples were diluted pre-isolation. Huang et al.

separated NRBCs based on size-dependent pathlines as described previously [30, 68].

Their device successfully eliminated over 99% of RBCs; NRBCs were further purified

from contaminating WBCs by use of magnetic separation. Huang et al. sucessfully

enriched NRBCs by a factor of 10- to 20 more than previously reported techniques [61].

2.3.3 Sheathflow and streamline sorting

These devices take advantage of the fluid flow associated with the imposition of certain

geometries or parallel fluid flows of different flow rates to passively sort or segregate tar-

get cells (see Figure 2.1D). This is another label-free and chemistry-free method of cell

isolation that is most commonly used when size differences between cells is significant.

Blood cell fractionation

SooHoo et al. used a microfluidics-based aqueous two-phase system (ATPS) to enrich

leukocytes from blood suspension. Using one stream of polyethylene glycol (PEG) and

one of dextran (DEX), with Zap-oglobin as the lysing agent, they achieved 100% RBC

depletion from human blood samples [154]. Zheng et al. developed devices based on
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T-shaped bifurcated channels to separate WBCs from RBCs. By adjusting the length of

the T-channel, and the vertical distance between upstream and downstream side walls,

cells were directed to different stream lines based on size alone. They were able to

separate WBCs from diluted blood with 97% efficiency. However, they found that RBC

orientation heavily influenced the segregation of small WBCs from RBCs [192].

Other mammalian cells

Kuntaegowdanahalli et al. used spiral microchannels to segregate cells based on size

across the width of their devices. Using a five-loop system, they sorted neuroblastoma

cells from glioma cells with 80% efficiency [85]. The cells were then placed in culture

and exhibited 90% viability after sorting. Lin et al. used multiple sheath flows in parallel

to sort yeast cells from suspension. They used two streams of unequal flow rate to

achieve a focusing effect and were able to separate yeast cells with 87.7% efficiency

and 94.1% purity [93].

In contrast, Choi et al. used a series of slanted microfluidic channels of periodically

varying heights to sort cells by cell-cycle phase. The slanted obstacles generated stream-

lines that diverted cells transverse to the flow, towards the wall of the device. There, the

cell-obstacle interactions diverted larger cells out of the transverse streamlines, keeping

them near the wall, while smaller cells diverged from the wall [19]. They achieved lat-

eral separation of G0/G1 phase and G2/M phase monocyte model cells with over 4-fold

G2/M cell enrichment.
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Prokaryotes and viruses

Wu et al. used sheath flows to sort E. coli from blood. High concentrations (greater than

108cells/ml) of E. coli cells were spiked into diluted human RBCs and were enriched

300-fold over the course of separation. They demonstrated a sorting efficiency of 62%

and purity of 99.87%. The bacteria were expanded in culture and exhibited over 95%

viability [180].

2.4 Electrokinetic methods

Electrokinetic methods comprise those methods that use electric fields to actuate cells.

In microfluidic devices, the two most widespread electrokinetic techniques for manipu-

lating cells are electrophoresis and dielectrophoresis. Electrophoresis refers to net mi-

gration due to the action of an electric field on the net fixed charge of a particle. This

technique has been used to study cells at the membrane level [104], and methods such

as capillary electrophoresis and microfluidic free-flow electrophoresis have been devel-

oped to separate different populations of biomolecules, viruses, bacteria, and eukaryotic

cells [81, 162]. However, as the net charge of a cell’s electrical phenotype is often not

specific enough to distinguish between a mixture of different cells, electrophoresis has

been used minimally as a cell separation technique and is not suited for applications in

rare cell capture. Thus, this review will focus primarily on dielectrophoretic techniques.

Dielectrophoresis (DEP) refers to the net migration of polarized particles owing to

interactions with an electric field gradient, and depends on cell wall, membrane, and

cytoplasmic electrical properties [72, 78]. The DEP force is a direct function of these

electrical properties as well as cell size, the electrical properties of the fluid medium,
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and the magnitude and frequency of the applied electric field; the dependence on this

wealth of parameters makes DEP an attractive tool for distinguishing between differ-

ent cell types [167, 52]. DEP response is classified into two regimes: when particles are

more polarizable than the medium, positive DEP results and the particles are attracted to

stronger field regions; conversely, when particles are less polarizable than the medium,

negative DEP results and the particles are repelled from stronger field regions; the fre-

quency at which the DEP force switches from one regime to the other (i.e. when the

force is zero) is termed the “crossover frequency” [72, 109]. The sign and magnitude of

the DEP force provides the basis for DEP cell separation techniques, and this review will

cover the most common device geometries used for these techniques. The scope of this

review on DEP methods will be limited to those used for capture, separation, or concen-

tration of bulk cell populations; DEP methods for single cell capture or manipulation are

covered in other reviews [167, 52, 5, 73, 189]. The DEP methods are organized by the

type of device geometry used; each section includes a brief description of the physics

associated with the technique and a summary of how it is applied to separate different

cell types with a view towards pathogen detection, blood fractionation, or cancer cell

isolation. Many DEP experiments have used model systems to characterize geometric

performance, or as mockups of rare cell capture experiments. Thus, this section includes

many devices that do not capture rare cells, but whose performance informs the potential

for rare cell capture with DEP.

2.4.1 Electrode-based DEP

Microfabricated electrodes are the most common and practical method for creating the

non-uniform electric fields necessary for DEP. While potential limitations to the use of

electrode-based DEP include fouling and electrolysis at low electric field frequencies as
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well as increased fabrication time and cost required for more complex electrode con-

figurations, a majority of DEP techniques use microfabricated electrodes owing to their

simplicity and flexibility in implementation. The following sections will cover the most

common and simple device geometries used for cell separation.

Interdigitated array (IDA) electrodes

Interdigitated arrays consist of spatially alternating sets of grounded and energized elec-

trodes that create non-uniform electric field regions and trap particles against a flow

via positive DEP (Figure 2.2A). IDA electrodes are one of the most commonly used

electrode configurations because their use entails minimal design parameters (electrode

length and width, inter-electrode distance, and channel depth) and experimental param-

eters (flow rate, electric field magnitude and frequency), and yields analytical solutions

for electric fields and particle motion [158]. IDA electrodes are typically used for “bi-

nary” cell separation; an electric field is applied to capture the target cells from a mixture

of two or more cell types via positive DEP, the non-target cells are minimally affected

by the field or repelled via negative DEP and are flushed out of the device, and finally

the field is turned off to release the target cells for separate collection. Through DEP

characterization, a frequency regime can be selected in which one cell type is attracted

to the electrodes (positive DEP) while another cell type is repelled into the regions sep-

arating the electrodes (negative DEP). Rare cell capture requires that all non-target cells

be repelled, which can be demanding if the suspension is complex.

IDA electrodes have been used to separate or concentrate bacteria for potential ap-

plications in pathogen sensing. Typical cell concentrations used for these studies lie in

the range of 105 to 109 cells/mL. Efforts to detect foodborne pathogens such as those

in the genus Literia include separation of live and heat-treated L. innocua with 90%
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Figure 2.2: (A) Interdigitated array (IDA) electrodes. (B) Electrosmear slide showing
fractionation tumor cells and blood components. Reproduced from [25]. (C) Castellated
IDA electrodes. (D) DEP field-flow fractionation operates by levitating cells against
gravity to different heights in the channel via negative DEP, allowing separation to be
achieved based on their differing flow velocities. (E) Configuration and forces in a
twDEP electrode array. (F) Summation of forces near an angled electrode.

efficiency; as the cell membrane becomes permeable upon death, large changes in con-

ductivity can result in differences in the DEP response of live and dead cells [92]. Re-

searchers have also used positive DEP to attract a mixture of Listeria and Escherichia

species to antibody-coated electrodes and selectively capture only L. monocytogenes

(i.e. immunocapture) with 87-92% efficiency [187, 80]. To aid efforts in detecting envi-

ronmental pathogens, researchers have demonstrated concentration of Bacillus subtilis

spores (a surrogate bacteria used for research on Bacillus anthracis, i.e., anthrax) from

airborne environmental samples containing diesel particulate matter with up to 60%
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purity; appropriate frequency ranges for separation were selected based on crossover

frequency measurements [39]. Additionally, Gadish et al. concentrated B. subtilis by

integration of a chaotic mixer to bring the spores into closer proximity with the IDA

electrodes and enrich the sample ninefold [41], and Liu et al. captured B. anthracis with

90% efficiency for impedance measurements in order to detect viable spores electrically

by their germination [97].

IDA electrodes have also been used for blood fractionation. Cristofanilli et al. used

an “electrosmear” slide that was coated to promote cell adhesion and patterned with IDA

electrodes to which different electric field frequencies were applied along the length of

the device [25]. Near the inlet port, a low frequency was applied to levitate all cells via

negative DEP to avoid adhesion to the slide, and as the blood sample obtained from a

murine aspiration biopsy was flowed further along the device, different constituents of

blood as well as biopsied tumor cells from a cancer line grown in nude mice were pulled

toward and adhered to the electrodes via positive DEP in different regions of the slide,

based on their previously characterized dielectric properties (Figure 2.2B) [25].

Castellated IDA electrodes

Castellated electrode arrays consist of interdigitated electrodes with width variation

along their length, which create alternating regions of high and low electric field magni-

tude at the tips of the electrodes and the regions separating each electrode, respectively

(Figure 2.2C). The advantage of castellated electrodes is the localization of high electric

field regions, which can be used to trap or concentrate flowing cells in the device effec-

tively. The procedure for cell separation using castellated electrodes is the same as that

used with straight IDA electrodes; this procedure has been used for binary separation

of a mixture of two bacteria types, including yeast, E. coli, and Micrococcus lysodeikti-
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cus [101], as well as for separation of viable and non-viable yeast cells [102]. Optical

absorbance of DEP trapping was measured to calculate the effective conductivity of the

cells and predict their DEP response.

Castellated IDA electrodes have been used for cell separation between bacteria and

blood cells for applications in pathogen detection, with typical cell concentrations of

106 to 107 cells/mL; researchers have demonstrated separation of M. lysodeikticus from

erythrocytes based on their differing dielectric properties [172]. Isolation of erythrocytes

infected with malaria pathogen from healthy erythrocytes was also achieved with 90%

efficiency owing to the sharp increase in membrane conductivity of erythrocytes hosting

malarial parasites [42]. In addition, Huang et al. demonstrated simultaneous separation

of multiple bacteria (Bacillus cereus, E. coli, L. monocytogenes) from diluted blood with

up to 97% efficiency using size-based DEP separation and post-separation PCR analysis

[64].

Castellated IDA electrodes have also been used for applications in cancer cell iso-

lation. Becker et al. characterized the dielectric parameters of cultured breast cancer

cells, lymphocytes, and erythrocytes using particle electrorotation techniques, and sub-

sequently trapped the breast cancer cells from a suspension of diluted blood, demonstrat-

ing up to 95% purity in captured cancer cells [7]. More recently, Tai et al. developed an

automatic platform for separation of viable and non-viable cultured human lung cancer

cells based on differing dielectric properties with 81-84% efficiency and nucleus collec-

tion for nuclear protein extraction [159]. While castellated IDA electrodes are similar

in function and application (e.g. binary sorting) to straight IDA electrodes, their abil-

ity to create alternating regions of high and low electric field magnitude makes them

better suited for concentrating samples or patterning particles at a specific location than

straight IDA electrodes. As is the case for straight IDA electrodes, the challenge associ-
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ated with castellated IDA electrodes is in finding a frequency or set of frequencies such

that only the rare cells are attracted to the electrodes.

IDA electrodes for flow-field fractionation

In DEP flow-field fractionation (DEP-FFF), IDA electrodes are fabricated on the bottom

of a device channel, and flowing particles of differing dielectric properties are levitated

against gravity via negative DEP. The levitated particles equilibrate to different heights

in the channel owing to the distinct DEP force on different types of particles, and these

differing heights allow separation to be achieved by sequential collection based on dif-

ferent flow velocities due to the parabolic velocity distribution of low-Reynolds-number

Poiseuille flow (Figure 2.2D). The velocities of different cells can be characterized by

measuring cell elution fractograms as a function of frequency [63]. The main advantage

of DEP-FFF is its ability to achieve continuous-flow separation of bioparticles with size

and/or dielectric differences under a constantly applied electric field, therefore avoiding

the need for activation and deactivation of the field as required by binary sorting devices.

DEP-FFF has been used often as a technique to separate different cell types in blood,

with cell concentrations ranging from 105 to 107 cells/mL. Researchers have demon-

strated separation of erythrocytes from latex beads and characterization of their differ-

ent levitation heights [135], as well as binary separation of human leukocyte subpopu-

lations (T-, B-lymphocytes, monocytes, and granulocytes) based on differing membrane

dielectric properties with 87-98% purity, which can be used for clinical applications in

differential analysis of leukocytes [184]. More recently, Hashimoto et al. performed se-

lective capture of neutrophils and eosinophils from a mixed leukocyte suspension with

80% efficiency by deflecting the target cells away from the IDA electrodes and toward

an antibody-coated layer on the opposite wall [51]. DEP-FFF also has been used ex-
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tensively for the separation and isolation of cancer cells. In particular, the Gascoyne

research group has demonstrated separation of cultured human leukemia cells from di-

luted blood after characterizing the cells by DEP levitation experiments [62], separation

of cultured human breast cancer cells from whole blood based on measured differences

in cell size and membrane capacitance [185, 43], and separation of cultured human

breast cancer cells from normal T-lymphocytes and hematopoietic CD34+ stem cells

[63, 176], all with efficiencies and/or purities over 90%.

In more recent years, DEP-FFF has been used for a larger variety of applications as

well as in different device geometries. These applications include separation of cells

with high and low embryogenic potential in suspension cultures of carrot based on their

differences in size and cytoplasm density [38], toxicity testing by dielectric characteri-

zation of cultured human leukemia cells with membrane dissimilarities due to exposure

to various toxic agents [127], and enrichment of a progenitor cell population in a mix-

ture of cell debris and erythrocytes from freshly harvested adipose tissue [168]. Finally,

vertical IDA electrodes have been fabricated on the sidewalls of the device channel

(as opposed to horizontal electrodes on the bottom of the channel) to achieve lateral

separation through separate outlets. This device geometry has been used to separate

mammalian cells of different sizes [171] and viable from non-viable yeast cells [9], as

well as to enrich Babesia bovis-infected erythrocytes sevenfold [9]. Unlike trapping on

straight or castellated IDA electrodes, DEP-FFF allows cells to be separated based on

the magnitude of the DEP response rather than just the sign of the response, and rare

cell capture can be achieved in theory if the DEP response of a cell can be distinguished

within the sensitivity of the device.
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IDA electrodes for traveling-wave DEP

IDA electrodes have been used for a technique called traveling-wave DEP (twDEP) to

fractionate bioparticles. The electrodes are independently driven with different electric

field phases, and particles are levitated against gravity owing to negative DEP (Fig-

ure 2.2E). Fractionation is achieved by varying the electric field phases to drive the

particles transverse to the direction of flow at different velocities. Cui and Morgan de-

tailed the design and fabrication of a twDEP device and demonstrated particle motion

using polystyrene latex particles [26]. The main advantage of twDEP is that fractiona-

tion may be achieved based on the particles’ differing velocities alone; there is no need

to drive fluid flow or to trap or concentrate particles via positive DEP.

Building on the successful implementation of twDEP on polystyrene beads, a num-

ber of biological separations have been achieved. Bacteria separation has been demon-

strated by use of viable and non-viable yeast cells [160, 83]; as well, blood fractionation

has been demonstrated by separating T-lymphocytes and erythrocytes by applying mul-

tiple frequencies to direct the cells to move in opposite directions such that they were

collected separately through different outlets [98]. twDEP has also been used for ap-

plications in pathogen detection; a spiral electrode array was characterized and used for

a 1000-fold enrichment of malaria-infected erythrocytes from normal erythrocytes with

90% purity [175, 42]. Application of the traveling field caused normal erythrocytes to

be trapped at the electrode edges via positive DEP, while infected cells were levitated

via negative DEP and carried to the center of the spiral [42]. More recently, Cheng et

al. developed a high-throughput 3D twDEP device used for focusing and sorting par-

ticles, and demonstrated its ability to separate bacteria and blood cells based on DEP

mobility magnitude as well as direction [17]. Other recent studies used twDEP for char-

acterization of cultured lymphoma and myeloma cells for potential applications in rare
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cell capture [12] and the development of a DEP pump for blood delivery in microfluidic

devices [90].

Angled electrodes

Angled electrodes are most often used for binary separation of bioparticles or to create

localized particle pathlines due to the particles’ negative DEP mobilities. As the parti-

cles approach an electrode, the negative DEP force that acts on them can exceed drag

forces, resulting in a net force parallel to the electrodes. Particles then travel along the

length of the electrode until drag forces exceed the DEP force, at which point the par-

ticles can flow past the electrodes (Figure 2.2F). Displacing particles transverse to the

direction of flow allows angled electrodes to preferentially direct particles to different

outlets or focus them into concentrated streams.

Angled electrodes have been used to sort and concentrate various bacterial samples.

Cheng et al. designed a device with 3D electrode gates to focus and separate yeast and

E. coli into different outlets, after which surface-enhanced Raman scattering was used to

detect bacteria concentration and evaluate efficiency [16]. Kim et al. tagged E. coli with

different sized microspheres and used angled electrodes to separate the two target cell

types into different outlets, after which capture efficiency and purity was evaluated using

flow cytometry [75]. More recently, a magnetic separation module was incorporated into

the device to capture magnetically-tagged cells and separate them from unlabeled non-

target cells, which improved the device’s ability to separate multiple cell types [77].

Vahey and Voldman developed a separation method termed “isodielectric separation,”

which uses a diffusive mixer to establish an electrical conductivity gradient across the

width of a channel containing angled electrodes [164]. DEP forces vary along the length

of the electrodes, which direct and separate viable and non-viable yeast cells across
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the device in the direction of decreasing conductivity until they reach their respective

isodielectric points, where there is no net force [164].

Angled electrodes have also been used for binary sorting of mammalian and blood

cells. To address the need for a noninvasive method for sorting cell populations accord-

ing to their cell-cycle phase, Kim et al. separated cultured human breast cancer cells

based on their differing sizes due to their cell cycle phase [?]. Angled electrodes were

also used to demonstrate a low-stress platelet size-based DEP separation technique by

separating platelets from diluted whole blood with 95% purity [124].

2.4.2 Insulative DEP

Insulative DEP techniques rely on constrictions or expansions in channel geometry to

generate electric field non-uniformities and deflect or trap bioparticles via negative DEP.

While this approach places limits on the frequencies and geometries used, the main

advantage of insulative DEP is that no internal electrodes are used. This leads to simpler

device fabrication, reduced propensity for fouling, and the possibility of using a DC field

for electrokinetic particle transport as well as trapping via DEP [87].

Angled and curved constrictions

The simplest geometry in an insulative DEP device is a perpendicular insulative con-

striction in the device channel. Kang et al. demonstrated size-based separation of live

cells by using rectangular constrictions to deflect larger cells (white blood cells and cul-

tured mammalian breast cancer cells) via negative DEP to a different trajectory than

smaller blood components (red blood cells, platelets) [74]. Binary sorting is achieved
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by fabricating two outlet channels for the separate trajectories.

Extending the basic principles of rectangular constrictions, angled constrictions have

also been used to separate and concentrate bioparticles. The DEP force acting perpen-

dicular to the constriction depends on the angle that the constriction forms with the

channel. If this DEP force is smaller than the drag force, then particles will flow past the

constriction unaffected; if, however, the DEP force exceeds the drag force, then the par-

ticles are stopped at and deflected parallel to the constriction. Angled constrictions have

been used to demonstrate size-based separation of B. subtilis from polystyrene particles

[6]. Curved constrictions, in which the angle of constriction varies continuously across

the channel, have also been used to separate different sized particles (Figure 2.3A) [54].

Post arrays

DEP trapping using an array of insulating posts was reported by Cummings and Singh,

who investigated various geometric variables that affect the electric field, including post

shape, distance between posts, and array angle to the applied field [27]. Using an array

of circular posts etched in a glass substrate, researchers at Sandia National Laboratories

have demonstrated trapping of polystyrene beads [105] and separation of live and dead

E. coli based on their differing magnitudes in negative DEP response (Figure 2.3B) [87].

The group later demonstrated separation and concentration of any two pairs of E. coli, B.

subtilis, B. cereus, and Bacillus megaterium [88], as well as tobacco mosaic virus [86].

A direct application of this technique is for the detection of microbes in drinking water,

which is hindered by current analytical instruments that require significant concentration

of microbes in order to detect them [86].
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Figure 2.3: (A) Schematic of curved constriction in channel depth. Inset: top view
of device fabricated in Zeonor 1020R polymer substrate. Reproduced from [54]. (B)
Trapping of live (green) and dead (red) E. coli with separation of populations using
insulative post array. Reproduced from [87].

Other geometries

A variety of other device geometries have been designed for bioparticle separation and

isolation using insulative DEP. Chou et al. used an array of constrictions to trap and

concentrate single- and double-stranded DNA [20]. Pysher et al. designed channel

walls with a sawtooth pattern to produce spatially resolved separation of live and dead

E. coli and B. subtilis [128]. More recently, Church et al. fabricated a serpentine chan-

nel to filter E. coli from yeast cells [22], Cho et al. positioned plastic membranes with
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honeycomb-shaped pores between electrodes to trap and release E. coli in the flow chan-

nel [18], and Shafiee et al. developed a “contactless” DEP technique to isolate live/dead

cultured human leukemia cells by using thin insulating barriers to separate the electrodes

used to apply the electric field from the sample channel, thus preventing potential issues

such as contamination and bubble formation [147].

2.4.3 Prospects for DEP rare cell capture

The preceding sections on electrode-based and insulative DEP techniques introduced the

most common device geometries that researchers have used to separate different pop-

ulations of cells. Those studies that focused on quantifying experimental performance

criteria such as efficiency, enrichment, and/or purity are summarized in Table 2. Over-

all, DEP methods are advantageous because they do not require a biochemical labeling

step to achieve continuous-flow separation. Additionally, it is possible to achieve DEP

cell separation without a priori knowledge of the different cells’ properties. For binary

separation using IDA electrodes, only the frequency range in which the cells experience

DEP forces opposite in sign needs to be known; for methods that use angled electrodes

or insulative constrictions and techniques such as DEP-FFF and twDEP, only the cells’

relative DEP response magnitudes is required to achieve separation of several cell types.

As such, DEP offers the ability to isolate single cells (because of its sensitivity to cel-

lular dielectric properties) as well as the possibility for separation of cell populations in

which not all cell types have been characterized. In the latter case, DEP potentially can

be used to screen for cells with unknown membrane phenotypes, which can facilitate

research on bacterial species such as Mycobacterium tuberculosis, whose pathogenicity

is closely tied to membrane composition [134].
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Using only DEP techniques for rare cell capture in pathogen detection or tumor

cell isolation, however, is challenging; studies have reported significant decreases

in cell capture efficiency or purity as target cell concentrations became more dilute

[43, 39, 42, 64]. While numerous DEP methods for cell separation of artificial sam-

ples have been reviewed in this article, we are not aware of a study that demonstrates

strictly dielectrophoretic capture of pathogens from environmental (air or water) sam-

ples or capture of viable tumor cells from whole blood of cancer patients. In the future

development of rare cell capture microfluidic devices, it may be beneficial to merge

DEP methods with techniques such as magnetic-activated cell sorting [75, 77] or im-

munocapture [187, 51]. Such hybrid techniques combine the actuation of DEP with

the chemical-specificity of immunocapture techniques; a system could be developed in

which the applied electric field is tuned low enough to cause no physiological harm

to target cells while inducing a strong enough DEP force to cause or prevent inter-

actions with immunocapture surfaces. These synergistic effects have the potential to

minimize problems associated with immunocapture techniques (e.g. nonspecific bind-

ing) and yield higher performance in rare cell capture efficiency and purity compared to

using DEP techniques alone.

2.5 Performance criteria

In the previous sections, we have described a variety of different methods to isolate a

multitude of rare cell types. In this section, we quantitatively compare these disparate

studies with a unified set of performance criteria. Comparing the literature systemati-

cally identifies the strengths and weakness of the field as a whole and provides insights

into future research directions. In the following paragraphs, we define performance

metrics by which the literature will be evaluated (see Tables 2.1 and 2.2) and draw con-
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clusions upon analyzing these criteria. Italics are used to highlight headings in these

tables.

When comparing different rare cell capture devices, it is important to distinguish

between the cell type modeled (e.g. cells obtained from biological samples) and the cell

type used (often an immortalized cell line). This is imperative when the target cell’s

biological characteristics are not well understood, e.g. circulating tumor cells. While

the use of well-understood model cell lines eases the characterization of device perfor-

mance, their relations to clinical samples are not always well defined. Likewise, the

carrier media used for experimentation is often chosen to simplify device characteriza-

tion. Many rare cells that are targeted for isolation exist in dense biological suspension

when in vivo, e.g. blood. However, many such fluids present other cellular material that

confound quantification of performance for example, changing viscous or conductivity

properties . For this reason, rare cells are often captured from diluted biological solu-

tions or even buffer solutions. For devices that use DEP methods, the conductivity of

the media and the cell concentrations used are also important as these parameters affect

the DEP force and capture efficiency or purity, respectively.

A number of qunatitative metrics can be used to describe device performance. Effi-

ciency is the most commonly used measure of performance in rare cell isolation litera-

ture. Efficiency is defined as the fraction of successfully isolated/fractionated cells with

respect to the total number of target cells introduced into the device. High-efficiency

microfludic cell isolation devices are often operated at higher volumetric flowrates than

high-purity ones, resulting in increased throughput [45, 144]. Another common metric

is enrichment, the multiplicative factor by which the number of rare cells per unit vol-

ume is increased. In contrast is depletion, where non-target cells are captured within the

device, leaving a more pure subpopulation at the outlet [121, 120]. Purity is the num-
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ber of target cells captured divided by the total captured cell population. Purity is an

important metric for measuring the selectivity of a device, but its optimization usually

results in lower efficiencies and throughputs. However, high purity samples are desir-

able for a variety of biomolecular assays and tools. Equally important is the viability

of cells post-capture. Some devices define viability as the percentage of cells left in a

functional state post-capture and others post-culture ex-vitro. When comparing results

from different methods, it is also important to compare the number of steps/stages in-

volved. The possibility of increased performance with multi-stage processing versus

the simplicity of device operation are major concerns for devices designed for clinical

applications. However, the number of steps/stages was not included for devices that

employ DEP methods, as a majority of those listed in Table 1 had similar procedures

that include dielectric characterization, cell staining, on-chip capture or fractionation,

and post-process cell counting. Given the data in Tables 2.1 and 2.2 organized under

the headings described in previous paragraphs, we can make a number of observations

about rare cell capture in microdevices.

32



Ta
bl

e
2.

1:
N

on
-e

le
ct

ro
ki

ne
tic

ce
ll

fr
ac

tio
na

tio
n

an
d

is
ol

at
io

n
st

ud
ie

s
(a

bb
re

vi
at

ed
ve

rs
io

n
fr

om
[1

26
])

.
A

cr
on

ym
s:

IC
=

Im
m

un
oc

ap
tu

re
,S

B
S

=
Si

ze
-b

as
ed

So
rt

in
g,

Sh
F

=
Sh

ea
th

Fl
ow

,S
tF

=
St

re
am

lin
e

Fo
cu

si
ng

,B
C

=
B

re
as

tC
an

ce
r,

C
C

=
C

er
vi

ca
lC

an
ce

r,
L

C
=

L
un

g
C

an
ce

r,
PC

=
Pr

os
ta

te
C

an
ce

r.

App
lic

ati
on

Cell
mod

ele
d

Cell
us

ed

M
ed

ia

Proc
ess

ing

Effi
cie

nc
y

Enri
ch

men
t

Puri
ty

Ana
lys

is

Refe
ren

ce

B
lo

od
ce

ll
fr

ac
tio

na
tio

n
B

-l
ym

ph
oc

yt
es

,T
-l

ym
ph

oc
yt

es
R

aj
i,

M
ol

t-
3

PB
S

st
ai

ni
ng

97
%

na
na

an
ti-

C
D

5,
an

ti-
C

D
19

,P
E

G
IC

[1
12

]

B
C

,P
C

,C
C

,L
ym

ph
ob

la
st

M
C

F7
,

PC
3,

H
eL

a,

D
au

di

D
M

E
M

,B
lo

od
st

ai
ni

ng
,e

nu
m

er
at

io
n

80
%

na
na

E
pC

A
M

IC
[1

77
]

B
-l

ym
ph

oc
yt

es
,T

-l
ym

ph
oc

yt
es

R
aj

i,
M

ol
t-

3
PB

S
st

ai
ni

ng
,e

nu
m

er
at

io
n

na
na

na
an

ti-
C

D
5,

an
ti-

C
D

19
IC

[1
51

]

M
ye

lo
id

ce
lls

H
L

-6
0,

U
-9

37
R

PM
I-

16
00

la
be

lin
g,

en
um

er
at

io
n

na
13

0–
20

0x
na

E
-s

el
ec

tin
IC

[1
3]

L
eu

ko
cy

te
s

L
eu

ko
cy

te
s

W
ho

le
hu

m
an

bl
oo

d
en

um
er

at
io

n,
ly

si
ng

na
na

97
%

SB
S

[1
44

]

L
eu

ko
cy

te
s

L
eu

ko
cy

te
s

W
ho

le
hu

m
an

bl
oo

d
la

be
lin

g,
en

um
er

at
io

n
98

%
na

na
SB

S
[1

66
]

L
eu

ko
cy

te
s

L
eu

ko
cy

te
s

D
ilu

te
d

hu
m

an
bl

oo
d

en
um

er
at

io
n

70
–9

5%
na

na
SB

S
[7

0]

L
eu

ko
cy

te
s

L
eu

ko
cy

te
s

D
ilu

te
d

hu
m

an
bl

oo
d

flo
w

cy
to

m
et

ry
,

st
ai

ni
ng

,

ly
si

ng
,e

nu
m

er
at

io
n

99
.6

%
na

na
SB

S
[3

0]

Ly
m

ph
oc

yt
es

,m
on

oc
yt

es
C

D
4+

ce
lls

,

C
D

14
+

ce
lls

,
J4

5

ly
m

ph
oc

yt
es

D
ilu

te
d

hu
m

an
bl

oo
d

la
be

lin
g,

en
um

er
at

io
n

73
%

na
na

SB
S

[6
8]

L
eu

ko
cy

te
s

L
eu

ko
cy

te
s

D
ilu

te
d

hu
m

an
bl

oo
d

ly
si

ng
,e

nu
m

er
at

io
n

na
10

0x
na

Sh
F

[1
54

]

L
eu

ko
cy

te
s

L
eu

ko
cy

te
s

D
ilu

te
d

hu
m

an
B

lo
od

di
lu

tio
n,

en
um

er
at

io
n

97
%

na
na

St
F

[1
92

]

C
an

ce
rc

el
ls

N
or

m
al

br
ea

st
ce

ll,
B

C
H

M
E

,T
T

U
-1

PB
S

en
um

er
at

io
n,

st
ai

ni
ng

30
%

na
na

E
M

A
,E

G
FR

IC
[3

7]

L
eu

ke
m

ia
,l

ym
ph

om
a

C
C

R
F-

C
E

M
,

R
am

os
,T

ol
ed

o

M
od

ifi
ed

PB
S

cy
to

m
et

ry
,

st
ai

ni
ng

,
en

u-

m
er

at
io

n

50
–8

3%
13

5x
88

-9
7%

Sc
g8

,T
D

05
,S

gd
5

IC
[1

81
]

B
C

M
C

F7
W

ho
le

ra
bb

it
bl

oo
d

ch
ec

k
97

%
na

na
E

pC
A

M
IC

[1
]

PC
L

N
C

aP
PB

S
en

um
er

at
io

n,
st

ai
ni

ng
90

%
na

na
PS

M
A

,E
pC

A
M

IC
[3

4]

B
C

M
C

F7
D

M
E

M
st

ai
ni

ng
,e

nu
m

er
at

io
n,

SE
M

45
-6

0%
na

na
E

pC
A

M
IC

[1
71

]

L
C

SP
C

-A
-1

D
ilu

te
d

hu
m

an
bl

oo
d

en
um

er
at

io
n

99
.9

%
na

na
SB

S
[1

4]

L
C

A
54

9
H

um
an

R
B

C
s

st
ai

ni
ng

,e
nu

m
er

at
io

n
62

–7
4%

13
3x

na
W

G
A

IC
[9

5]

L
C

,P
C

,B
C

,B
la

dd
er

ca
nc

er
N

C
I-

H
16

50
,

PC
3-

9,

SK
B

r-
3,

T-
24

PB
S

st
ai

ni
ng

,e
nu

m
er

at
io

n
65

%
na

na
E

pC
A

M
IC

[1
13

]

L
C

N
C

I-
H

16
50

W
ho

le
hu

m
an

bl
oo

d
st

ai
ni

ng
,e

nu
m

er
at

io
n

60
%

na
na

E
pC

A
M

IC
[1

13
]

PC
L

N
C

aP
PB

S
la

be
lin

g,
en

um
er

at
io

n
97

%
na

na
PS

M
A

IC
[4

5]

C
on

tin
ue

d
on

ne
xt

pa
ge

33



Ta
bl

e
2.

1
–

co
nt

in
ue

d
fr

om
pr

ev
io

us
pa

ge

App
lic

ati
on

Cell
mod

ele
d

Cell
us

ed

M
ed

ia

Proc
ess

ing

Effi
cie

nc
y

Enri
ch

men
t

Puri
ty

Ana
lys

is

Refe
ren

ce

PC
L

N
C

aP
W

ho
le

hu
m

an
bl

oo
d

la
be

lin
g,

en
um

er
at

io
n

85
%

na
68

%
PS

M
A

IC
[4

5]

PC
PC

C
T

C
s

W
ho

le
hu

m
an

bl
oo

d
la

be
lin

g,
en

um
er

at
io

n
na

na
62

%
PS

M
A

IC
[4

5]

L
C

,
PC

,
Pa

nc
re

at
ic

ca
nc

er
,

C
ol

on
ca

nc
er

L
C

,
PC

,
Pa

nc
re

at
ic

C
T

C
,C

ol
on

C
T

C

W
ho

le
hu

m
an

bl
oo

d
st

ai
ni

ng
,e

nu
m

er
at

io
n

na
na

42
–6

7%
E

pC
A

M
IC

[1
13

]

PC
L

N
C

aP
PB

S
la

be
lin

g,
en

um
er

at
io

n,
el

ec
-

tr
ol

ys
is

,P
C

R

87
–8

9%
na

na
SB

S
[1

91
]

PC
L

N
C

aP
W

ho
le

hu
m

an
bl

oo
d

la
be

lin
g,

en
um

er
at

io
n,

el
ec

-

tr
ol

ys
is

,P
C

R

89
%

na
na

SB
S

[1
91

]

O
th

er
m

am
m

al
ia

n
ce

lls
E

nd
ot

he
lia

lc
el

ls
,s

m
oo

th
m

us
-

cl
e

ce
lls

H
5V

,A
7r

5
PB

S
la

be
lin

g,
en

um
er

at
io

n,

st
ai

ni
ng

na
na

86
%

;8
3%

R
E

D
V

/V
A

PG
Pe

pt
id

e
IC

[1
20

]

E
nd

ot
he

lia
lc

el
ls

,s
m

oo
th

m
us

-

cl
e

ce
lls

,fi
br

ob
la

st
s

H
5V

,A
7r

5,
3T

3-
6

PB
S

la
be

lin
g,

en
um

er
at

io
n,

st
ai

ni
ng

na
na

96
-9

9%
R

E
D

V
/V

A
PG

/R
G

D
S

Pe
pt

id
e

IC
[1

21
]

N
eu

ra
ls

te
m

ce
lls

SH
-S

Y
5Y

,C
6

PB
S

st
ai

ni
ng

,
en

um
er

at
io

n,
flo

w

cy
to

m
et

ry

89
%

na
na

SB
S

[8
5]

G
2/

M
m

ye
lo

id
ce

lls
U

93
7

10
m

M
so

di
um

bo
ra

te
flo

w
cy

to
m

et
ry

na
4x

na
St

F
[1

9]

N
uc

le
at

ed
R

B
C

N
uc

le
at

ed
R

B
C

D
ilu

te
d

hu
m

an
bl

oo
d

fil
tr

at
io

n,
di

lu
tio

n,
st

ai
ni

ng
na

10
–2

0x
na

St
F

[6
1]

Pr
ok

ar
yo

te
s

&
vi

ru
se

s
E

.c
ol

i
E

.C
ol

i
D

ilu
te

d
hu

m
an

R
B

C
s

st
ai

ni
ng

,
en

um
er

at
io

n,
SD

S

pa
ge

62
%

30
0x

99
.8

7%
Sh

F
[1

80
]

34



Ta
bl

e
2.

2:
E

le
ct

ro
ki

ne
tic

ce
ll

fr
ac

tio
na

tio
n

an
d

is
ol

at
io

n
st

ud
ie

s
(a

bb
re

vi
at

ed
ve

rs
io

n
fr

om
[1

26
])

.

App
lic

ati
on

Cell
mod

ele
d

Cell
us

ed

M
ed

ia

Proc
ess

ing

Effi
cie

nc
y

Enri
ch

men
t

Puri
ty

Tec
hn

iqu
e

Refe
ren

ce

Pa
th

og
en

de
te

ct
io

n
L.

m
on

oc
yt

og
en

es
L.

in
no

cu
a

D
Iw

at
er

C
el

lc
ou

nt
in

g
90

%
na

na
ID

A
[9

2]

L.
m

on
oc

yt
og

en
es

L.
m

on
oc

yt
og

en
es

D
Iw

at
er

C
el

lc
ou

nt
in

g
87

–9
2%

na
na

ID
A

+
im

m
un

oc
ap

tu
re

[1
87

]

B
.a

nt
hr

ac
is

B
.s

ub
til

is
D

Iw
at

er
M

ea
su

re
ab

so
rb

an
ce

na
9x

na
ID

A
[4

1]

B
.a

nt
hr

ac
is

B
.s

ub
til

is
D

Iw
at

er
H

em
oc

yt
om

et
er

na
na

≤
60

%
ID

A
[3

9]

B
.a

nt
hr

ac
is

B
.a

nt
hr

ac
is

D
Iw

at
er

C
el

lc
ou

nt
in

g
90

%
na

na
ID

A
[9

7]

P
la

sm
od

iu
m

fa
lc

ip
ar

um
M

al
ar

ia
-i

nf
ec

te
d

er
yt

hr
oc

yt
es

Su
cr

os
e

bu
ff

er
C

el
lc

ou
nt

in
g

90
%

50
–2

00
x

na
C

as
te

lla
te

d
[4

2]

na
B

.c
er

eu
s,

E
.c

ol
i,

L.
m

on
oc

yt
og

en
es

M
an

ni
to

l+
PB

S
PC

R
am

pl
ifi

ca
tio

n
≤

97
%

na
na

C
as

te
lla

te
d

[6
4]

na
E

.c
ol

i
D

Iw
at

er
C

el
lc

ou
nt

in
g

90
+%

30
00

x
na

iD
E

P
[8

6]

na
E

.c
ol

i
PB

S
C

el
lc

ou
nt

in
g

66
%

na
na

iD
E

P
[1

8]

C
an

ce
rc

el
li

so
la

tio
n

L
un

g
ca

nc
er

A
54

9-
lu

c-
C

8
D

M
E

M
bu

ff
er

Fl
ow

cy
to

m
et

ry
81

–8
4%

na
na

C
as

te
lla

te
d

[1
59

]

B
re

as
tc

an
ce

r
M

D
A

23
1

Su
cr

os
e

bu
ff

er
C

el
lc

ou
nt

in
g

na
na

95
%

C
as

te
lla

te
d

[7
]

B
re

as
tc

an
ce

r
M

D
A

-4
35

Su
cr

os
e

bu
ff

er
C

el
lc

ou
nt

in
g

na
na

98
%

FF
F

[1
85

]

B
re

as
tc

an
ce

r
M

D
A

-4
35

,-
46

8,
-2

31
Su

cr
os

e
bu

ff
er

C
el

lc
ou

nt
in

g
≤

92
%

na
na

FF
F

[4
3]

B
re

as
tc

an
ce

r
M

D
A

-4
35

,C
D

34
+

st
em

ce
lls

Su
cr

os
e

bu
ff

er
Fl

ow
cy

to
m

et
ry

na
na

96
–9

9%
FF

F
[6

3]

B
re

as
tc

an
ce

r
M

D
A

-2
31

PB
S

Fl
ow

cy
to

m
et

ry
na

4.
4x

96
%

A
ng

le
d

el
ec

tr
od

es
[?

]

L
eu

ke
m

ia
T

H
P-

1
Su

cr
os

e
bu

ff
er

C
el

lc
ou

nt
in

g
90

+%
na

na
C

on
ta

ct
le

ss
D

E
P

[1
47

]

B
lo

od
fr

ac
tio

na
tio

n
or

en
ri

ch
m

en
t

L
eu

ko
cy

te
s

L
eu

ko
cy

te
s

Su
cr

os
e

bu
ff

er
Fl

ow
cy

to
m

et
ry

na
na

87
–9

8%
FF

F
[1

84
]

L
eu

ko
cy

te
s

L
eu

ko
cy

te
s

G
IT

m
ed

iu
m

C
el

lc
ou

nt
in

g
80

%
na

na
FF

F
+

im
m

un
oc

ap
tu

re
[5

1]

L
eu

ko
cy

te
s

L
eu

ko
cy

te
s

Su
cr

os
e

bu
ff

er
Fl

ow
cy

to
m

et
ry

55
–7

5%
na

92
–9

9%
FF

F
[1

76
]

M
al

ar
ia

E
ry

th
ro

cy
te

s
in

fe
ct

ed
w

ith
B

.b
ov

is
PB

S
C

el
lc

ou
nt

in
g

na
7x

na
FF

F
[9

]

M
al

ar
ia

E
ry

th
ro

cy
te

s
in

fe
ct

ed
w

ith
P.

fa
lc

ip
ar

um
Su

cr
os

e
bu

ff
er

C
el

lc
ou

nt
in

g
na

10
00

x
90

%
tw

D
E

P
[4

2]

Pl
at

el
et

s
C

on
ce

nt
ra

te
d

pl
at

el
et

s
+

w
ho

le
bl

oo
d

Su
cr

os
e

bu
ff

er
Fl

ow
cy

to
m

et
ry

na
5.

3x
95

%
A

ng
le

d
el

ec
tr

od
es

[1
24

]

35



2.6 Discussion and conclusions

Multiple strides have been made in the enrichment, fractionation, and capture of rare

cells. The devices outlined in this review have been successfully used for the enrich-

ment of bacteria to the genetic analyses of cancer cells [180, 157]. Microfluidic devices

for rare cell capture have elucidated new biological phenomena and afforded multiple

avenues of further scientific investigation. Current devices have been successfully im-

plemented in the enumeration of rare cells ranging from NRBCs to CTCs [61, 113, 45];

however the lack of a single microfluidic device that can isolate pure cell populations

with high efficiency limits the number of molecular and genetic tools that can be used

on these populations.

Additionally, few cell capture studies directly process biological samples [113, 45,

165, 166]. In contrast, most devices spike cell lines into buffer solution [13, 112, 151,

120, 191, 85, 19, 34, 181, 121], or pre-diluted/lysed blood samples [192, 30, 61, 180].

Importantly, in devices that employ DEP methods, efficiency and purity performance

is low when target cell concentrations are dilute [39, 42, 64, 43], thus making rare cell

capture using DEP techniques alone extremely difficult. In addition, many more cell

capture devices approximate the ex vivo target with a model equivalent [181, 34, 92, 41,

39, 7, 185, 63] rather than capture of the actual in vivo target [166, 144, 187, 97]. Most

use of undiluted ex vivo targets is for WBC fractionation, with few exceptions for other

rare cell types [113, 61, 45].

Similarly, the viability of cells after the capture process is not a well-quantified area,

but one that is a crucial performance evaluation metric for rare cell capture devices. Me-

chanical stresses from shear, either from electric-(i.e. DEP forces), contact- (i.e. from

pillar filters) or fluid-induced forces (i.e. obstacle-based arrays) can lead to gene upreg-
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ulation or even induce an apoptotic response [178, 115]. Directly tied to cell viability

is cell release and culture post-capture. Some attempts have been made to elute rare

cells from devices [181, 1, 34, 95, 190, 191, 180], especially those using affinity-based

methods (i.e. immunocapture) [1, 34]. Although a majority of devices that employ

DEP methods do not quantify post-process viability, other researchers have established

that exposure to electric fields from microfabricated electrodes used for DEP techniques

often does not alter cell viability [174, 57]. Electric field magnitudes and frequencies

used for these devices are listed in the Experimental Parameters column of Table 2.

Ultimately, in situations where the target cell can be as few as 1 per billion non-target

cells (e.g. bacteria, viruses, CTCs), cell expansion in culture will be a critical step in

obtaining enough material for further experimentation.

For future studies and biological applications, the major areas for improvement are

ability to elute cells in an undamaged state, increased cell survivability, and systems

capable of delivering both high capture efficiency and purity. The development of such a

platform could be facilitated by incorporating both electrokinetic and non-electrokinetic

methods to create hybrid systems, as in recent efforts [187, 51, 75, 77]. Combining

the sensitivity of DEP cell manipulation with the robustness of immunocapture has the

potential to improve rare cell capture efficiency and purity, and such hybrid systems

have scientific value and applicability across a variety of biological fields.
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CHAPTER 3

CHARACTERIZATION OF A HYBRID DIELECTROPHORESIS AND

IMMUNOCAPTURE MICROFLUIDIC SYSTEM FOR CANCER CELL

CAPTURE

3.1 Abstract

The capture of circulating tumor cells (CTCs) from cancer patient blood enables early

clinical assessment as well as genetic and pharmacological evaluation of cancer and

metastasis. Although there have been many microfluidic immunocapture and electroki-

netic techniques developed for isolating rare cancer cells, these techniques are often

limited by a capture performance tradeoff between high efficiency and high purity. We

present the characterization of shear-dependent cancer cell capture in a novel hybrid

dielectrophoresis (DEP)-immunocapture system consisting of interdigitated electrodes

fabricated in a Hele-Shaw flow cell that was functionalized with a monoclonal anti-

body, J591, which is highly specific to prostate-specific membrane antigen (PSMA)-

expressing prostate cancer cells. We measured the positive and negative DEP response

of a prostate cancer cell line, LNCaP, as a function of applied electric field frequency,

and showed that DEP can control capture performance by promoting or preventing cell

interactions with immunocapture surfaces, depending on the sign and magnitude of the

applied DEP force, as well as on the local shear stress experienced by cells flowing in the

device. This work demonstrates that DEP and immunocapture techniques can work syn-

The content of this chapter was published as a research article:
Chao Huang, Steven M. Santana, He Liu, Neil H. Bander, Benjamin G. Hawkins, Brian J. Kirby.

“Characterization of a hybrid dielectrophoresis and immunocapture microfluidic system for cancer
cell capture,” Electrophoresis, 34(20): 2970-9, 2013 [60].

CH performed the experiments, analyzed the data, and wrote the paper. CH, SMS, and BJK conceived
and designed the Hele-Shaw experiments. CH, BGH, and BJK conceived and designed the automated
DEP characterization experiments. HL and NHB provided the J591 antibody.
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ergistically to improve cell capture performance, and it will aid in the design of future

hybrid DEP-immunocapture systems for high-efficiency CTC capture with enhanced

purity.

3.2 Introduction

Circulating tumor cells (CTCs) are cells that have been shed into the circulatory system

from a tumor source, and are believed to contribute to cancer metastasis [3, 99]. The

enumeration of CTCs isolated from cancer patient blood samples can serve as a prog-

nostic indicator of cancer and predictor of patient survival [24, 55, 31, 28]. In addition,

genetic and pharmacological evaluation of CTCs can lead to a better understanding of

cancer metastasis as well as improved drug therapies [91, 156, 79, 132, 188]. However,

CTCs are rare—as few as one cell per 108 blood cells [129, 82]. The only system for de-

tecting CTCs that is approved by the U.S. Food and Drug Administration, CellSearch R©

(Veridex, LLC), requires immunomagnetic tagging and cell fixation, which inhibits fur-

ther biological analyses on captured CTCs. Given this drawback, the isolation of viable

CTCs from cancer patient blood presents a technical challenge for those who wish to

study them.

Researchers have developed a variety of techniques for isolating rare cancer cells

from blood [126, 99, 118]. Examples of microfluidic approaches include micropillar

arrays [113, 45, 79], chaotic mixers [155, 170], filters [191, 94], and devices with other

micro- and nanostructured surfaces [1, 35, 65, 66, 171]. Of those techniques that are ca-

pable of processing whole blood, immunocapture methods have shown the greatest po-

tential for capturing rare cancer cells with high efficiency (62–95%) [113, 155, 45, 170].

Studies that used the epithelial cell-adhesion molecule (EpCAM) to capture lung,
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prostate, pancreatic, and colorectal CTCs have reported a wide range of capture pu-

rities (9–67%) [113, 155, 170]. Our group has combined immunospecificity with opti-

mization of cell adhesion and transport mechanisms to create Geometrically Enhanced

Differential Immunocapture (GEDI) [152], and reported a capture purity of 62% with

prostate CTCs by use of a monoclonal antibody, J591, that is highly specific to prostate-

specific membrane antigen (PSMA) [45]. The main contributing factor to CTC capture

impurities is the nonspecific adhesion of leukocytes to immunocapture surfaces. Thus,

although immunocapture techniques typically produce high CTC capture efficiencies

from whole blood, capture purity can still potentially be improved to facilitate subse-

quent biological studies on the CTCs.

Whereas microfluidic immunocapture techniques rely on surface immunological in-

teractions to isolate rare cancer cells, electrokinetic techniques such as dielectrophoresis

primarily rely on differences in the cell populations’ electrical properties [52]. Dielec-

trophoresis (DEP) refers to the net migration of polarized particles due to interactions

with an electric field gradient, and operates in two regimes: when a particle is more po-

larizable than its suspending medium, positive DEP occurs and the particle is attracted

to stronger field regions; conversely, when a particle is less polarizable than the medium,

negative DEP occurs and the particle is repelled from stronger field regions [72, 109].

The sign and magnitude of the DEP force is dictated by the real part of the Clausius-

Mossotti factor, which describes the relationship between the electrical properties of the

particle and the medium as a function of the applied AC electric field frequency [78].

This relationship forms the basis for the majority of DEP cell separation and isolation

techniques [167].

Although numerous microfluidic DEP methods for cancer cell capture in artificial

samples exist, there has not been a study that demonstrates DEP capture of viable CTCs
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from whole blood of cancer patients [126]. A majority of DEP cancer cell isolation

techniques use model cancer cell lines spiked in buffer media or diluted blood; such

techniques include DEP flow-field fractionation (DEP-FFF) [43, 148, 48, 179], insu-

lative and contactless DEP [8, 147, 56, 137], and streamline separations using angled

electrodes [76, 2, 108, 182]. These studies separate cancer cells from other blood con-

stituents based on their differences in DEP response in a specific applied frequency

range. This binary separation mechanism makes DEP an attractive tool for cell sepa-

ration, as DEP requires no biochemical treatment or labeling to achieve high capture

efficiency and purity. However, to date, studies using DEP methods for CTC cap-

ture have only reported high capture performance for model cancer cell lines spiked

in preprocessed blood with concentrations ranging from one cancer cell per 104–106

blood cells [43, 148, 56, 137, 2, 182, 179]. The commercially licensed ApoStream
TM

(ApoCell) system, which uses DEP-FFF, has reported capture efficiencies in the range

of 50–80% for ovarian and breast cancer cell lines spiked in peripheral blood mononu-

clear cells (PBMCs) with concentrations as low as one cancer cell per 106 blood cells,

but noted that efficiency decreased after running samples through the system multiple

times to increase capture purity [48]. DEP capture performance has also been shown

to decrease drastically with concentrations lower than one cancer cell per 106 blood

cells [43]. Thus, although the use of DEP methods often produces high purities for cell

separation, their application for CTC capture from whole blood is currently limited by

low throughput and efficiency.

Given that DEP and immunocapture techniques both have unique advantages as well

as areas for improvement, the development of a platform capable of high capture effi-

ciency and purity could be facilitated by incorporating both methods [126]. In this study,

we characterized the performance of a hybrid DEP-immunocapture system by quanti-

fying cell adhesion to immunocapture surfaces as a function of the local shear stress
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experienced by cells. This characterization of the shear-dependence of immunocapture

was performed in a Hele-Shaw flow cell using a prostate cancer cell line, LNCaP, and

the monoclonal antibody, J591, which is highly specific to PSMA [96, 142]. We show

that, depending on the applied electric field frequency, DEP effects can control the cap-

ture performance of prostate cancer cells by attracting them to or repelling them from

immunocapture surfaces. To our knowledge, this is the first reported study of a hybrid

DEP-immunocapture characterization system for cancer cell capture, and our results

inform the design of future hybrid DEP-immunocapture devices for high-purity CTC

isolation.

3.3 Materials and methods

3.3.1 Hele-Shaw flow cell design

To optimize a microfluidic immunocapture system, the flow conditions that affect cell

capture performance must be characterized. Such characterization is often difficult or

expensive to perform in typical immunocapture devices, given their 3D topologies, cost

of fabrication, and sample processing time. A Hele-Shaw flow cell, depicted in Fig-

ure 3.1, was designed to facilitate the analysis of flow conditions, specifically shear

stress, and its effect on the immunocapture of LNCaPs. The device exhibits Stokes flow

owing to its small channel depth and attendant low Reynolds number. As the device’s

width and length are large, its velocity field is approximately equivalent to a solution of

a 2D irrotational, incompressible stagnation point flow [163].

Our Hele-Shaw flow cell is similar to but refined relative to previous designs [142,

145, 112, 163]. The device geometry includes sidewalls that are sections of rectangular
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Figure 3.1: Schematic of the Hele-Shaw flow cell and its interdigitated array (IDA) elec-
trodes with lead connections to an applied voltage (±V) and ground (GND). Inset im-
ages show details of the IDA electrode geometry and fluorescently labeled LNCaPs cap-
tured with and without DEP effects on the immunocapture surface immobilized with the
antibody J591 at various observation sites (corresponding to a range of shear stresses).
Captured cells in each pair of observation windows were enumerated and compared
at all observation sites. The main chamber was 30 mm long, with an initial width of
w0 = 5 mm at its entrance and a flat wall at its terminal end. The channel height was
48 µm, and the branching inlet and outlet channels were 156 µm wide. The width, w,
at any x along the curved channel was w = −(40 mm)w0/x, given a coordinate system
with an origin 40 mm to the right of the main chamber entrance. The shear stress in the
main chamber ranged from 0 to 0.029 Pa, as shown in Figure 3.2.
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Figure 3.2: Shear stress at the immunocapture surface of the Hele-Shaw flow cell’s
central axis as a function of distance from the entrance to the main chamber (solid
line). 2D variation in shear stress was calculated from a 2D potential flow simulation
using COMSOL Multiphysics R©, and a Poiseuille distribution was assumed in the height
coordinate. The bilinear variation in shear stress results from the transition between (1)
a stagnation flow defined by the sidewall hyperbolas with a theoretical stagnation point
40 mm from the main chamber entrance (dashed line), and (2) a stagnation flow defined
by the flat terminal wall with a stagnation point 30 mm from the main chamber entrance
(dotted line), as depicted in Figure 3.1.

hyperbolas [163], which replicate the far field of a stagnation flow impinging on the

coordinate origin of the hyperbolas. However, because the outlet boundaries of such a

stagnation flow are impractical to implement, we use two point outlets [145] and termi-

nate the hyperbolas 10 mm from their coordinate origin (Figure 3.1). On the device’s

central axis, this flow asymptotes to a different stagnation flow, one whose coordinate

origin is at the flat terminal wall. This geometry leads to a bilinear variation in shear

stress along the length of the device’s central axis. Figure 3.2 shows this variation in

shear stress as a function of distance from the entrance to the device’s main chamber

(i.e., the output of the branching inlet channels).

The Hele-Shaw flow cell allows for characterization of cell adhesion as a function

of shear stresses corresponding to those experienced by cells in immunocapture de-
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vices [112, 142, 79]. To compare immunocapture performance of LNCaPs with and

without DEP effects, interdigitated array (IDA) electrodes were fabricated along the

length of the Hele-Shaw flow cell on only one side of its central axis (Figure 3.1).

Branching inlet channels into the main chamber entrance ensure that entering cells are

uniformly distributed across the chamber width. Approximately half of LNCaPs in the

central axis region flow over the IDA electrodes and are affected by a DEP force when

the electrodes are energized, whereas the other half of the cell population is unaffected

by DEP. In this way, the immunocapture of LNCaPs with and without DEP effects can

be directly compared as a function of shear stress.

3.3.2 Device fabrication

The Hele-Shaw flow cell was fabricated by bonding a channel defined in polydimethyl-

siloxane (PDMS) to glass. All photolithography and thin-film deposition work was

performed at the Cornell NanoScale Science and Technology Facility (CNF). Device

masters were fabricated by spin-coating silicon wafers with MicroChem SU-8 2000

to create a film thickness of 48 µm. The photoresist was exposed at 12 mW/cm2 for

40 seconds using an EV620 Contact Aligner on soft-contact mode, then developed in

MicroChem SU-8 Developer for 2 minutes and rinsed with acetone, isopropyl alcohol

(IPA), and deionized water (DI H2O). The wafers were then coated with 1H,1H,2H,2H-

perfluorooctyltrichlorosilane (Sigma-Aldrich) to prevent PDMS adhesion.

IDA electrodes were fabricated using standard lift-off photolithography. Borofloat

glass wafers were cleaned with hot piranha solution for 10 minutes and vapor-primed

with hexamethyldisilazane (HMDS) for 30 minutes. The wafers were then spin-coated

with Microposit S1818 photoresist at 3000 RPM for 30 seconds and baked at 115 ◦C

45



for 90 seconds. The photoresist was exposed at 12 mW/cm2 for 60 seconds using the

EV620 Contact Aligner on soft-contact mode, then developed in Microposit MF-321

for 2 minutes. Wafers were treated with oxygen plasma at 150 W and 80 ◦C for 60 sec-

onds, then placed in a CVC SC4500 Combination Thermal/Electron-Gun Evaporator. A

250-nm layer of gold was deposited between 20-nm layers of chromium. Lift-off was

performed in Microposit Remover 1165 for 12 hours, after which wafers were diced

on a K&S 7100 Dicing Saw. The resulting IDA electrode devices were cleaned with

Cyantek Nano-Strip for 20 minutes immediately before bonding to PDMS.

PDMS was prepared using a Sylgard R© 184 Silicone Elastomer Kit with a 5:1 ratio

of elastomer base to curing agent, and baked with the Hele-Shaw device master in an

oven at 60 ◦C for 12 hours. The PDMS was then removed from the master, and inlet

and outlet holes were punched with a Harris Uni-Core 1.5-mm biopsy punch. Both the

patterned PDMS channel and glass with IDA electrodes were rinsed with acetone, IPA,

and DI H2O, dried with an air gun, cleaned in a Harrick Plasma Cleaner for 60 seconds,

bonded together, and baked in an oven at 60 ◦C for 12 hours. IDA electrodes were then

connected externally to wires with MG Chemicals 8331 Silver Conductive Epoxy, and

inlet and outlet ports were connected to Tygon S-54-HL Microbore tubing.

3.3.3 Antibody functionalization

Immunocapture experiments were conducted with the humanized monoclonal biotiny-

lated antibody J591 (manufactured by Lonza Biologics plc for BZL Biologics Inc.).

This antibody has been shown to have high specificity for PSMA [96], and its use in the

analysis of immunocapture performance of LNCaPs was characterized over a range of

concentrations and shear stresses [142]. Additionally, J591 has been used to demon-
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strate high-efficiency immunocapture of prostate CTCs from prostate cancer patient

blood samples [45, 79]. The glass surface of the Hele-Shaw flow cell was function-

alized to immobilize the antibody using MPTMS-GMBS-NeutrAvidin-biotin chemistry

following previously reported protocols [45, 142].

3.3.4 Cell culture maintenance

All experiments were conducted with LNCaPs, an immortalized PSMA-expressing

prostate cancer cell line, purchased from the American Type Culture Collection.

LNCaPs were cultured in Corning CellBIND T75 culture flasks at 37 ◦C in a 5% CO2

humidified environment. Cells were cultured in RPMI-1640 supplemented with 10% fe-

tal bovine serum and 1% penicillin-streptomycin (Mediatech). To prepare for experi-

ments, cells were trypsinized from the culture flasks, enumerated in a Hausser Scientific

hemacytometer, and resuspended in one of three buffer solutions to a specified cell sus-

pension density (see next section).

3.3.5 DEP characterization of LNCaPs

The expression for the time-averaged DEP force on a spherical particle in an infinite

domain with homogeneous and isotropic complex permittivities is [109, 78]:

〈FDEP〉 = πεma3
ℜ( f̃CM)∇(E0 ·E0) (3.1)

f̃CM =
ε̃p− ε̃m

ε̃p +2ε̃m
(3.2)

where a is the particle radius, E0 is the externally applied electric field magnitude, and

ℜ( f̃CM) denotes the real part of the Clausius-Mossotti factor. ε̃ = ε− iσ/ω is the com-
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plex permittivity, ε is the permittivity, σ is the electrical conductivity, ω is the angular

frequency of the applied electric field, i=(−1)1/2, and the subscripts p and m denote the

particle and the medium, respectively. When ℜ( f̃CM)> 0, positive DEP (pDEP) occurs;

conversely, when ℜ( f̃CM) < 0, negative DEP (nDEP) occurs. The frequency at which

ℜ( f̃CM) = 0, i.e., when the particle transitions from nDEP to pDEP (or vice versa), is

called the “crossover” frequency. In our fabricated devices, the electric field above a pair

of IDA electrodes (Figure 3.1) can be approximated by assuming that the gap between

the electrodes is differentially small. The resulting expressions for the electric field and

the DEP force on the particle are [139, 53]:

E =
V
π

θ̂

r
(3.3)

〈FDEP〉 =
a3εm

3πr3 ℜ( f̃CM)V 2r̂ (3.4)

where θ̂ and r̂ are unit vectors in cylindrical coordinates, r is the radial distance from

the center of the electrode gap, and V is the applied potential.

The most common DEP approach for isolating cancer cells from blood relies on

a binary separation mechanism in which cancer cells and blood cells are actuated in

different directions using pDEP and nDEP, respectively, in a specific applied frequency

range [43, 56, 48]. To determine what frequency range to use for DEP separation of

LNCaPs, we measured their crossover frequency and characterized their DEP response

as a function of applied frequency. These experiments used a separate device consisting

of IDA electrodes patterned on glass and bonded to a straight channel defined in PDMS

with a depth of 50 µm and a width of 250 µm. This device (henceforth referred to as the

IDA electrode device) was fabricated using the same protocol for the Hele-Shaw flow

cell as described in a previous section, and the IDA electrodes had the same dimensions

as detailed in Figure 3.1. The IDA electrode device was not functionalized with J591,

allowing for immediate release of trapped LNCaPs when the electric field was turned
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off, and for several DEP characterization experiments to be performed serially in the

same device.

In characterizing the DEP response of LNCaPs, three different buffer solutions were

used: (1) an isotonic sugar in DI H2O solution consisting of 9.5% sucrose, 0.3% dex-

trose, and 0.1% Pluronic F68 (Sigma-Aldrich) with σm = 0.7 mS/m (similar to that

used by other researchers [43, 48]), henceforth referred to as the low-conductivity sugar

solution, (2) the same sugar solution with KCl added to produce σm = 70 mS/m, hence-

forth referred to as the high-conductivity sugar solution, and (3) phosphate buffered

saline (PBS) diluted 20 times by volume in the low-conductivity sugar solution also to

produce σm = 70 mS/m, henceforth referred to as the diluted PBS solution. To deter-

mine the crossover frequency range of LNCaPs, the cells were labeled with Calcein AM

dye (Molecular Probes), resuspended in each of the three buffer solutions at a density

of 1×106 cells/mL, drawn into a plastic syringe (Becton Dickinson), manually flowed

through the IDA electrode device, and visualized on a Nikon LV100 upright microscope.

The electrodes were energized by an Agilent 33200A function generator at 6 V and fre-

quencies ranging from 10 kHz to 10 MHz. At each applied frequency, we observed

whether the LNCaPs were attracted to (pDEP) or repelled from (nDEP) the electrodes,

and determined the frequency range in which the cells were unaffected by the DEP force

(i.e., crossover frequency).

We measured the relative magnitude of the pDEP response of LNCaPs as a function

of frequency using a previously reported automated DEP characterization process [53].

To summarize, LNCaPs were labeled with Calcein AM, suspended at 1×106 cells/mL

in each of the three buffer solutions, and flowed through the IDA electrode device at a

rate of 0.2 mL/hr using a Chemyx Fusion 400 syringe pump. Voltages ranging from 2

to 8 V and frequencies ranging from 40 kHz to 10 MHz were applied, and cell trapping
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on the first five electrodes was visualized on the Nikon LV100 upright microscope and

quantified by fluorescence intensity using a custom LabVIEW (National Instruments)

interface. A “trapping potential” was extrapolated for each applied frequency using a

series of postprocessing analyses in MATLAB (MathWorks). This trapping potential,

Vtrap, was defined as the minimum voltage needed to trap a threshold number of cells (as

quantified by fluorescence intensity) to be considered a pDEP response, and was related

to the magnitude of the DEP force by C0ℜ( f̃CM) = 1/Vtrap
2 (following Equation 3.4),

where C0 denotes an arbitrary constant related to the flow rate and electrode geome-

try [53]. Therefore, we report our DEP characterization data in terms of C0/Vtrap
2 as a

function of frequency to describe the proportionate DEP response of LNCaPs.

The pDEP characterization data was fit to a function for ℜ( f̃CM) by modeling the

LNCaP cell as a single-shelled dielectric sphere. Because the interaction between the

electric field and the cell occurs primarily at the cell membrane [167], we modeled the

electrical properties of the cell in terms of a specific membrane capacitance, Cmembrane,

in addition to the cytoplasmic electrical properties [40]. The effective permittivity of

the particle, ε̃p, in Equation 3.2 is then replaced by an effective permittivity for the cell,

ε̃cell, that is a function of both Cmembrane and the cytoplasmic permittivity and conduc-

tivity [72]:

ε̃cell =
Cmembrane a ε̃cytoplasm

Cmembrane a+ ε̃cytoplasm
(3.5)

Under our experimental conditions (σm ≤ 0.7 mS/m and applied frequencies below

10 MHz), varying the cytoplasmic permittivity and conductivity did not significantly

change the magnitude of ℜ( f̃CM). Therefore, we fixed their values to 50ε0 (ε0 =

8.85× 10−12 F/m) and 1000 mS/m, respectively, which are within the range of pre-

viously reported values for cancer cells [7, 141]. The cell radius was fixed at 10 µm (the
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size of a typical LNCaP cell), leaving Cmembrane and C0 as the only free parameters in

the ℜ( f̃CM) fit for the C0/Vtrap
2 vs. applied frequency data.

3.3.6 Immunocapture of LNCaPs with DEP effects

To simulate the range of local shear stresses that cells experience in immunocapture de-

vices and to characterize cell adhesion as a function shear stress, LNCaPs were flowed

through the Hele-Shaw flow cell and captured cells were enumerated along the length

of the device. For all immunocapture experimental conditions, two separate concentra-

tions of antibody in solution were tested (i.e., incubated in the device): 5 µg/mL and

10 µg/mL. The cells were labeled with Calcein AM, suspended at 5× 105 cells/mL in

the diluted PBS solution (σm = 70 mS/m), and flowed through the device at 0.2 mL/hr

using a Chemyx Fusion 400 syringe pump for 10 minutes. Six separate conditions for

the applied DEP force were tested: 6 V at 10 kHz (where nDEP is expected), and 1 V,

3 V, 4.5 V, 6 V, and 10 V at 10 MHz (where pDEP is expected). After each capture

experiment, PBS was flowed through the device at 0.2 mL/hr for 10 minutes to wash

away any non-adherent cells.

Fluorescent images of captured cells were taken at a 20×magnification at a series of

predetermined observation sites along the length of the device, as shown in Figure 3.1.

Cell count values were collected for 11 unique shear stress regions with at least three

experimental replicates. For all shear stresses, the reported value corresponds to the

shear stress at the immunocapture surface of the device in the center of the imaged area.

Because streamlines in the Hele-Shaw flow cell diverge, the effective input density of

cells is variable and must be corrected for. Thus, the reported captured cell densities are

the number of cells imaged in a 1-mm2 region immediately to either side of the central
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axis of the device (i.e., with and without IDA electrodes) multiplied by a correction fac-

tor that is inversely proportional to the shear stress (shown in Figure 3.2) and streamline

density, which corrected for the diverging streamlines in the device. These normalized

captured cell densities of immunocapture with and without DEP effects were then com-

pared at each reported shear stress.

3.4 Results and discussion

3.4.1 DEP characterization of LNCaPs

To determine the AC electric field frequency-dependent DEP response of LNCaPs, we

characterized their relative DEP magnitude and crossover frequency regions in a low

and high-conductivity sugar solution as well as in PBS diluted in the low-conductivity

sugar solution. The trapping potential was measured and the proportionate DEP re-

sponse was calculated as a function of frequency, shown in Figures 3.3(a) and 3.3(b),

respectively. We found that for the applied electric fields that were tested (10 kHz to

10 MHz, up to 10 V), the cells exhibited no measurable pDEP response in both sugar

solutions and PBS with σm > 100 mS/m. Therefore, we minimally diluted both buffer

solutions to 70 mS/m, which is two to seven times higher than conductivities used in

the majority of DEP cancer cell capture studies [7, 63, 43, 141]. We obtained simi-

lar DEP characterization data for the high-conductivity sugar solution and diluted PBS

solution, which suggests that diluted PBS is an appropriate substitute for the isotonic

sugar solution. PBS was chosen as a model for whole blood because both have similar

osmolarities, ion concentrations, and conductivities (approximately σm = 1000 mS/m).

Although blood is generally classified as a shear-thinning fluid with a higher viscosity
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(a) (b)

Figure 3.3: Trapping potential (Vtrap), 3.3(a), and proportionate DEP response
(C0/Vtrap

2), 3.3(b), as a function of applied cyclic frequency for LNCaPs suspended
in three buffer solutions: (1) an isotonic sugar solution with σm = 0.7 mS/m (squares),
(2) the same sugar solution with KCl added to produce σm = 70 mS/m (diamonds),
and (3) PBS diluted 20 times by volume in the low-conductivity sugar solution to also
produce σm = 70 mS/m (triangles). Each value represents the mean of 3 to 7 experi-
mental replicates. Error bars are omitted for clarity; standard error of the mean values
ranged from 0.2 to 4.6 V for Vtrap and 0.008 to 0.2 V−2 for C0/Vtrap

2. Curve fits for
ℜ( f̃CM) in 3.3(b) were calculated using Equations 3.2 and 5.3. Fit parameters were
Cmembrane = 0.15 mF/m2 and C0 = 0.13 for the low-conductivity sugar solution (solid
line), Cmembrane = 5 mF/m2 and C0 = 0.05 for the high-conductivity sugar solution
(dashed line), and Cmembrane = 4 mF/m2 and C0 = 0.04 for the diluted PBS solution
(dotted line).

than PBS, we expect that these hydrodynamic differences will discernibly impact the

capture performance on a 2D immunocapture surface (e.g., Hele-Shaw flow cell), but

minimally impact a 3D immunocapture device (e.g., GEDI [45, 79]) that more heavily

relies on cell-to-post collisions for high-efficiency capture. Because we have demon-

strated that cancer cells can be actuated by DEP in minimally diluted PBS, we expect to

obtain similar results in minimally diluted blood, which can potentially result in a sig-

nificantly higher throughput than current DEP devices used for rare cancer cell capture

from blood.

The DEP response of LNCaPs measured in this work is qualitatively similar to

that of cancer cells measured by other research groups [43, 141, 179]. Figure 3.3(a)
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shows that in the tested frequency range, the trapping potential decreased with increas-

ing frequency, i.e., less voltage was needed to trap cells at higher frequencies. This

trend suggests that the DEP response of the cells was stronger at higher frequencies,

as confirmed in the proportionate DEP response data shown in Figure 3.3(b). A de-

crease in solution conductivity corresponded to a shift to lower frequencies in both the

Vtrap data and the ℜ( f̃CM) curve fits; this shift was most clearly demonstrated in our

crossover frequency measurements: approximately 300 kHz for σm = 70 mS/m and

100 kHz for σm = 0.7 mS/m. Despite this shift in frequency response, the trapping po-

tential remained in the same range for both conductivities (Figure 3.3(a)), suggesting

that the maximum value of ℜ( f̃CM) was comparable in both cases. Wu et al. reported

similar trends in their capture voltage spectrum data for colorectal cancer cells, and

obtained crossover frequencies in the same range using sucrose buffer solutions with

σm = 50 mS/m and σm = 100 mS/m [179].

The curve fits for ℜ( f̃CM) in Figure 3.3(b) were calculated by modeling the LNCaP

cell as a single-shelled dielectric sphere with a frequency-dependent DEP response

primarily dictated by a specific membrane capacitance, Cmembrane [40]. In the high-

conductivity cases, the pDEP response and crossover frequency regions were fit well;

the magnitude and frequency dependence, as well as the fit value for Cmembrane, were

similar to those previously reported for other cancer cells [63, 141, 110]. Yang et al.

reported on DEP separation of LNCaPs from colorectal cancer cells, but used a higher

conductivity media (σm = 300 mS/m) at which LNCaPs experienced nDEP even in the

MHz range [182]. Although we did not perform DEP characterization experiments at

this conductivity, our model does predict similar nDEP behavior in those high conduc-

tivity and frequency ranges.

In the low-conductivity sugar solution, however, the best fit for Cmembrane and the

54



measured crossover frequency resulted in a predicted ℜ( f̃CM) that was lower in magni-

tude than the other curve fits; this difference was not seen in the trapping potential values

measured for both conductivities. Thus, the single-shell dielectric model seems able to

describe only some aspects of the data. Despite this drawback, the model accurately pre-

dicted the DEP response of cancer cells suspended in media with σm > 1 mS/m (as ex-

perimentally verified in this study and others [43, 56, 141]), a range that includes whole

blood, the suspending medium of most direct relevance for any CTC capture system.

In this study, we measured the proportionate frequency-dependent pDEP response of

LNCaPs, their crossover frequency, and predicted nDEP frequency range. Importantly,

we obtained the strong pDEP response of LNCaPs by only diluting PBS by 20 times

(in contrast to typical 100–1000 fold dilutions done by other researchers [43, 56, 48]).

These results inform the design of future hybrid DEP-immunocapture systems for CTC

isolation that, if multiplexed, have the potential to produce comparable capture efficien-

cies to existing immunocapture techniques (e.g., GEDI [45, 79]), with enhanced capture

purity from the addition of DEP effects.

3.4.2 Immunocapture of LNCaPs with DEP effects

To study the effect of antibody concentration on immunocapture with and without DEP,

we performed capture experiments in a microfluidic device of uniform, shallow depth

(i.e., a Hele-Shaw flow cell) that was functionalized with two J591 incubating solu-

tion concentrations: 5 µg/mL and 10 µg/mL. In both cases, a range of voltages and

frequencies were applied, and captured LNCaPs in regions up to 1 mm to either side

of the device’s central axis (i.e., regions with and without IDA electrodes) were enu-

merated across a range of shear stresses. Figure 3.4 shows the calculated mean ratio

of captured cell density with and without DEP effects across the entire range of shear
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stresses. As expected, there were fewer cells captured when a nDEP force was applied

(ratio lower than 1), and more cells captured with an increasing pDEP force (ratio close

to 1 when 1 V was applied, and growing with increasing applied voltage). In com-

paring the two antibody incubating solution concentrations, when nDEP was applied at

10 kHz, fewer cells were repelled from the immunocapture surface in the 10 µg/mL

case, thus resulting in a higher ratio of captured cell density with and without DEP. Fur-

thermore, DEP-enhanced immunocapture at 10 MHz saturated for voltages above 4.5 V

with 10 µg/mL, whereas capture performance continued to improve up to 6 V with

5 µg/mL. These results suggest that the immunocapture surface was saturated with an-

tibody in the 10 µg/mL case (consistent with our previously reported results [142]). Al-

though we demonstrated that the two antibody concentrations resulted in similar trends

of immunocapture with and without DEP effects, the difference in capture performance

is more evident with the lower concentration. Therefore, we only further analyzed and

present data from the 5 µg/mL case.

The captured cell density was quantified over a range of shear stress values for two

applied frequencies (one of each chosen to induce pDEP or nDEP) and a series of in-

creasing applied voltages; these values are listed in Table 3.1. We also performed ex-

periments at 10 MHz with 10 V, but found that the pDEP force was so strong that nearly

all LNCaPs were captured at the first few electrodes nearest to the inlet, invalidating

the weak-capture assumption required to interpret the data. The 10 V data is thus omit-

ted. Figure 3.5 shows representative cases of captured cell density with pDEP (10 MHz,

6 V), nDEP (10 kHz, 6 V), and no DEP applied. The observed trend of immunocapture

with no DEP effects as a function of shear stress is consistent with those previously

reported for LNCaPs [142]. In general, the number of captured cells increased with in-

creasing applied voltage (i.e., pDEP force), and decreased with increasing shear stress.

Immunocapture was enhanced by pDEP at 10 MHz, and was diminished by nDEP at
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Figure 3.4: Ratio of captured cell density (normalized for streamline divergence) with
and without DEP effects under various applied electric field frequency and voltage
conditions for two J591 incubating solution concentrations: 5 µg/mL (circles) and
10 µg/mL (triangles). Ratios were averaged over captured cell density values across
all shear stresses listed in Table 3.1. The no-DEP condition had 22 experimental repli-
cates for the 10 µg/mL case and 15 replicates for the 5 µg/mL case; all other conditions
had 3 to 7 replicates. Error bars represent standard error of the mean of ratios calculated
at 11 shear stress values. The abscissa is plotted as ℜ( f̃CM)V 2, which is proportional to
the DEP force (Equation 3.4), to differentiate between nDEP and pDEP conditions. V
was the applied voltage, and the values of ℜ( f̃CM) =−0.5 at 10 kHz and ℜ( f̃CM) = 0.8
at 10 MHz were obtained from the curve fits shown in Figure 3.3(b).

10 kHz. This trend is observed over nearly the entire shear stress range; at the two high-

est shear stress values, however, the captured cell densities with and without DEP were

comparable, suggesting that immunocapture performance was both poor and unaffected

by DEP above a threshold shear stress. Although we present a quantitative comparison

of immunocapture with and without DEP effects as a function of shear stress, the un-

derlying mechanisms of shear-dependent cell adhesion and rolling have been described

using more complex models by other researchers [49, 11].

To our knowledge, this is the first reported study of DEP effects on the immunocap-

ture of cancer cells. Our results provide insight on the experimental conditions (e.g.,

applied voltage range, antibody concentration, flow parameters and device geometries

that control shear stress) needed to optimize DEP-guided immunocapture performance.
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From a technology standpoint, this work was completed with a device that was de-

signed to generate shear-dependent adhesion data [142]; we focused on characterization

of cell physicochemical response rather than clinical and translational implementation

of high-efficiency rare cell capture, which we have reported previously [79]. Our data

on shear-dependent cell adhesion with the addition of DEP effects can be incorporated

into computational fluid dynamics simulations of cancer and blood cell trajectories in

3D immunocapture devices to better predict capture performance and inform the de-

sign of future high-purity CTC capture systems that can facilitate subsequent clinical

studies [45, 152].
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Previous studies have also reported the combination of DEP with a variety of

other techniques to enable cell capture, separation, or characterization. Yang et al.

combined DEP and immunocapture to detect and concentrate Listeria and Salmonella

cells [187, 186], Kim et al. demonstrated DEP-magnetic activated sorting of bacte-

ria and cancer cells [76, 77], Hashimoto et al. selectively captured leukocytes using

nDEP to direct cells to antibody-immobilized regions [51], and Cristofanilli et al. used

DEP to separate cancer cells on an “electrosmear” slide with adhesive coating [25].

In addition, DEP has been used for anticancer drug screening [58], detection of can-

cer markers [130], and impedance sensing of cancer cells [21]. For applications in

rare CTC capture from whole blood, however, DEP may best complement existing ro-

bust immunocapture techniques that demonstrate antigen specificity and high-efficiency

capture [45]. A hybrid DEP-immunocapture system in which DEP is tuned to promote

CTC interactions (by pDEP) and prevent leukocyte interactions (by nDEP) with cap-

ture surfaces can minimize problems associated with immunocapture techniques, such

as nonspecific leukocyte adhesion. Such a DEP-guided immunocapture system has the

potential to be used in high-impact clinical studies (e.g., genetic and pharmacological

evaluation of CTCs [79]) that benefit from the platform’s improved CTC capture effi-

ciency and purity relative to either DEP or immunocapture techniques alone.

3.5 Concluding remarks

This work characterizes shear-dependent cancer cell adhesion in a novel hybrid DEP-

immunocapture microfluidic system. We measured the frequency-dependent pDEP re-

sponse of LNCaPs, as well as their crossover frequency and nDEP frequency ranges. We

showed that, depending on the applied frequency, DEP can control the capture perfor-

mance of prostate cancer cells by attracting them to or repelling them from immunocap-
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Figure 3.5: Captured cell density (normalized for streamline divergence) as a function
of shear stress under representative cases of pDEP (10 MHz, 6 V; black bars), nDEP
(10 kHz, 6 V; gray bars), and no DEP (white bars). Bars represent the mean captured
cell density for the corresponding data listed in Table 3.1. The no-DEP condition had
15 experimental replicates; the pDEP and nDEP conditions had 3 replicates each. Error
bars represent standard deviation.

ture surfaces, and that this phenomenon is dependent on local shear stresses experienced

by the cells. In designing future CTC capture devices, we expect that DEP and immuno-

capture techniques will work synergistically to yield higher capture performance and

facilitate subsequent biological studies.
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CHAPTER 4

ENRICHMENT OF PROSTATE CANCER CELLS FROM BLOOD CELLS

WITH A HYBRID DIELECTROPHORESIS AND IMMUNOCAPTURE

MICROFLUIDIC SYSTEM

4.1 Abstract

The isolation of circulating tumor cells (CTCs) from cancer patient blood is a technical

challenge that is often addressed by microfluidic approaches. Two of the most prominent

techniques for rare cancer cell separation, immunocapture and dielectrophoresis (DEP),

are currently limited by a performance tradeoff between high efficiency and high purity.

The development of a platform capable of these two performance criteria can poten-

tially be facilitated by incorporating both DEP and immunocapture. We present a hy-

brid DEP-immunocapture system to characterize how DEP controls the shear-dependent

capture of a prostate cancer cell line, LNCaP, and the nonspecific adhesion of periph-

eral blood mononuclear cells (PBMCs). Characterization of cell adhesion with and

without DEP effects was performed in a Hele-Shaw flow cell that was functionalized

with the prostate-specific monoclonal antibody, J591. In this model system designed to

make nonspecific PBMC adhesion readily apparent, we demonstrate LNCaP enrichment

from PBMCs by precisely tuning the applied AC electric field frequency to enhance im-

munocapture of LNCaPs and reduce nonspecific adhesion of PBMCs with positive and

negative DEP, respectively. Our work shows that DEP and immunocapture techniques

The content of this chapter was published as a research article:
Chao Huang, He Liu, Neil H. Bander, Brian J. Kirby. “Enrichment of prostate cancer cells from

blood cells with a hybrid dielectrophoresis and immunocapture microfluidic system,” Biomedical
Microdevices, 15(6): 941-8, 2013 [59].

CH performed the experiments, analyzed the data, and wrote the paper. CH and BJK conceived and
designed the experiments. HL and NHB provided the J591 antibody.
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can work synergistically to improve cancer cell capture performance, and it informs

the design of future hybrid DEP-immunocapture systems with improved CTC capture

performance to facilitate research on cancer metastasis and drug therapies.

4.2 Introduction

The isolation of circulating tumor cells (CTCs)—cells that have been shed into the cir-

culatory system from a tumor source—enables genetic and pharmacological evaluation

of cancer [91, 156, 79, 132, 188]. Oftentimes, such studies require extremely pure

samples of captured CTCs; this necessity presents a technical challenge, as CTCs are

extremely rare—as few as one cell per 108–109 blood cells, depending on the definition

of CTCs [129, 82]. Microfluidic immunocapture devices have been used successfully

to capture CTCs from cancer patient blood with high efficiency, although capture pu-

rity can still potentially be improved by reducing the nonspecific adhesion of leukocytes

[113, 45, 155, 170, 79]. Dielectrophoresis (DEP) is an alternative technique to using

surface immunological interactions for cell capture [167, 52]; previous work on DEP

separation of cancer cells is covered in other reviews [126, 67]. Examples of recent

DEP techniques for isolating rare cancer cells include flow-field fractionation (DEP-

FFF) [48, 150], contactless DEP [56, 137], and streamline separations by use of unique

geometric features [4, 69]. Despite the advantage of not requiring biochemical labeling

to achieve separation, the use of DEP techniques for CTC capture is currently limited

by low throughput and efficiency owing to the rarity of CTCs in whole blood, and also

by restrictions of electrode design and DEP physics [126]. Given that DEP and im-

munocapture techniques both have unique advantages and limitations, a combination of

both techniques (e.g., applying DEP effects near immunocapture surfaces where electric

fields are strongest and antibody interactions occur) can potentially lead to a platform
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capable of high capture efficiency and purity to facilitate subsequent biological analyses

of captured CTCs.

A majority of DEP separation methods rely on differences in the electrical properties

of cancer cells and blood cells, which lead to distinct DEP responses as a function of

applied AC electric field frequency. In frequency ranges where positive DEP (pDEP)

occurs, cells are attracted to stronger electric field regions; conversely, when negative

DEP (nDEP) occurs, cells are repelled from stronger field regions. Because cancer cells

and blood cells transition from nDEP to pDEP at a different frequency (i.e., they have

different “crossover” frequencies), DEP separation is typically achieved by selecting a

frequency range in which cancer cells undergo pDEP and blood cells undergo nDEP

to actuate the cells in different directions [43, 56, 48]. Researchers have characterized

the DEP response of erythrocytes and peripheral blood mononuclear cells (PBMCs),

as well as a wide variety of cultured cancer cells as a function of frequency [141, 60,

50, 138]. Of note, Shim et al. characterized the DEP crossover frequency of each

NCI-60 cancer cell line and showed that all cancer types except leukemia have crossover

frequencies in a range that is distinct from those of blood cells [149]. These results

suggest that for solid tumors, the applied frequency can potentially be tuned to guide

CTCs toward immunocapture surfaces with pDEP while repelling leukocytes and other

blood contaminants with nDEP, leading to an improved capture purity [126, 60].

We have previously shown that the immunocapture of LNCaPs, a prostate cancer

cell line, can be augmented by DEP; our work was the first to demonstrate DEP as a

complement to existing cancer cell immunocapture techniques for improved cell cap-

ture [60]. In the current study, we characterized the adhesion of LNCaPs and PBMCs to

immunocapture surfaces with and without DEP effects as a function of the local shear

stress experienced by cells. This characterization was performed in a Hele-Shaw flow
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cell that was functionalized with the monoclonal antibody, J591, which is highly specific

to the prostate-specific membrane antigen (PSMA) expressed on LNCaPs [96, 60]. We

enriched LNCaPs from PBMCs using DEP by tuning the applied frequency to differen-

tially separate the two populations; this result demonstrates that DEP and immunocap-

ture techniques can work synergistically to improve cancer cell capture performance.

Our work informs the design of future hybrid DEP-immunocapture devices with im-

proved CTC capture purity, which has the potential to facilitate subsequent genetic and

post-translational modification studies for the development of personalized therapies for

cancer patients based on analyses of their own CTCs [79, 36].

4.3 Materials and methods

4.3.1 Device design, fabrication, and antibody functionalization

A Hele-Shaw flow cell was designed to facilitate the characterization of DEP-guided

immunocapture as a function of shear stresses corresponding to those experienced by

cells in immunocapture devices [112, 142, 60]. Figure 4.1 depicts the Hele-Shaw flow

cell with branching inlet channels to distribute entering cells uniformly across the main

channel width. The sidewalls are sections of rectangular hyperbolas that replicate the

far field of a stagnation flow impinging on the coordinate origin of the hyperbolas; this

geometry produces a monotonically decreasing shear stress distribution along the length

of the device’s central axis [163]. The device geometry also generates diverging stream-

lines, which change the local incident cell density; these nonuniformities are known, and

are corrected for when the data is analyzed. Interdigitated electrodes were fabricated on

only one side of the device’s central axis to directly compare cell adhesion with and
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Figure 4.1: Schematic of the Hele-Shaw flow cell and its interdigitated electrodes
with lead connections to an applied voltage (±V) and ground (GND). Inset images
show fluorescently labeled LNCaPs (green) and PBMCs (red) adhered to the antibody-
functionalized surface with and without DEP effects. These example images show that
at an applied AC electric field frequency of 350 kHz, more LNCaPs and fewer PBMCs
are captured with DEP as compared to without DEP. Captured cells in each pair of 1-
mm2 observation windows were enumerated and compared at a series of observation
sites corresponding to a range of shear stresses. Details of the device geometry and
shear stress distribution are described in our previous work [60].

without DEP effects [60].

The Hele-Shaw flow cell was fabricated with standard photolithography and thin-

film deposition techniques; details of these processes are described in our previous work

[60]. To summarize, the channel was defined in polydimethylsiloxane (PDMS) by use

of an SU-8 master, and bonded to glass that was patterned with interdigitated elec-

trodes. The electrodes were fabricated by depositing a 250-nm layer of gold between

20-nm layers of chromium, cleaned with Cyantek Nano-Strip, and connected externally
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to wires with silver conductive epoxy. Inlet and outlet holes were created with a biopsy

punch and connected to external tubing. The fully constructed Hele-Shaw flow cell was

then functionalized with the humanized monoclonal biotinylated antibody, J591 (man-

ufactured by Lonza Biologics plc for BZL Biologics Inc.), which we have previously

characterized [96, 142, 60] and used for immunocapture of prostate CTCs [45, 79].

The antibody was immobilized on the device’s glass surface at an incubating solution

concentration of 5 µg/mL by use of MPTMS–GMBS–NeutrAvidin–biotin chemistry

following previously reported protocols [45, 142].

4.3.2 Cell culture and preparation

LNCaPs, an immortalized, PSMA-expressing prostate cancer cell line, were pur-

chased from the American Type Culture Collection, and cultured in Corning cellgro R©

RPMI 1640 supplemented with 10% fetal bovine serum and 1% penicillin-streptomycin

in CellBIND T75 culture flasks at 37 ◦C in a 5% CO2 humidified environment. To

prepare for experiments, LNCaPs were trypsinized from their flask, resuspended in

phosphate-buffered saline (PBS), labeled with CellTrackerTM Green CMFDA (Invit-

rogen), and incubated for 30 minutes.

PBMCs were isolated from the blood of healthy donors with approval from the In-

stitutional Review Board for Human Participants. Whole blood was collected in BD

Vacutainer R© CPTTM Cell Preparation Tubes with Sodium HeparinN, and centrifuged at

1700×g for 15 minutes. PBMCs above the polyester gel were then collected in a sep-

arate conical tube, washed with PBS by centrifuging at 300×g for 15 minutes twice,

resuspended in PBS, labeled with CellTrackerTM Orange CMRA (Invitrogen), and in-

cubated for 30 minutes.
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After incubation with their respective fluorescent probes, LNCaPs and PBMCs were

washed twice and resuspended in PBS diluted 20 times by volume in an isotonic sugar in

deionized (DI) H2O solution consisting of 9.5% sucrose and 0.3% dextrose with conduc-

tivity 0.07 S/m. This sugar solution is similar to that used by other researchers studying

DEP separation of cancer cells [48, 150, 60], and was chosen because of the distinct

DEP response that cancer cells and blood cells exhibit at the given conductivity (see

next section). The final cell densities were 5×105 LNCaPs per mL and 2×106 PBMCs

per mL; the two populations were mixed together before injection into the Hele-Shaw

flow cell.

4.3.3 DEP characterization of cells

The sign and magnitude of the time-averaged DEP force, 〈FDEP〉, on a spherical par-

ticle in an infinite domain with homogeneous and isotropic complex permittivities is

determined by the real part of the Clausius-Mossotti factor, ℜ( f̃CM):

〈FDEP〉 = πεma3
ℜ( f̃CM)∇(E0 ·E0) (4.1)

f̃CM =
ε̃p− ε̃m

ε̃p +2ε̃m
(4.2)

where a is the particle radius, E = E0cos(ωt) is the externally applied AC electric field,

ω is the angular frequency of the electric field, ε̃ = ε− iσ/ω is the complex permit-

tivity, i = (−1)1/2, ε is the electrical permittivity, σ is the electrical conductivity, and

the subscripts p and m denote the particle and the medium, respectively [109, 78]. The

frequency at which ℜ( f̃CM) = 0, i.e., when the particle transitions from nDEP to pDEP,

or vice versa, is termed the crossover frequency. Although the cells under study are

neither spherical, homogeneous, nor isotropic, this analysis can still be used to a good

approximation because effective particle properties can be defined, facilitated by the
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mathematical properties of the spherical harmonic solutions used in eigenfunction ex-

pansion approximations for the DEP force. In this case, ε̃p becomes an extrinsic particle

property rather than an intrinsic material property [52, 78].

To determine the crossover frequency range of LNCaPs and PBMCs, the two popu-

lations were manually flowed through the Hele-Shaw flow cell and their DEP responses

were observed above the interdigitated electrodes region on a Nikon LV100 upright mi-

croscope. The electrodes were energized by an Agilent 33200A function generator at

6 volts peak-to-peak (Vpp) and frequencies ranging from 100 kHz to 1 MHz. At each

applied frequency, we recorded whether each cell population was attracted to or repelled

from the electrodes by pDEP and nDEP, respectively, and we determined the frequency

range in which the cells were unaffected or affected nonuniformly by the applied elec-

tric field (i.e., crossover frequency). After determining each cell population’s crossover

frequency, we predicted the magnitude of its DEP response as a function of frequency

by modeling the cell as a single-shelled dielectric sphere [109, 78]. The effective per-

mittivity of the particle, ε̃p, in Equation 5.2, was replaced by an effective permittivity

of the cell, ε̃cell, that describes its electrical properties in terms of a specific membrane

capacitance, Cmembrane, and the cytoplasmic permittivity and conductivity [78, 60]:

ε̃cell =
Cmembrane a ε̃cytoplasm

Cmembrane a+ ε̃cytoplasm
(4.3)

Interactions between the cell and the electric field occur primarily at the cell membrane,

although the physical and electrical properties of the membrane are often difficult to

infer from experimental measurements [167, 78]. Thus, it is common to use the single-

shelled dielectric model and extrapolate a specific membrane capacitance to describe

the extrinsic properties of the cell [7, 43, 141]. Figure 4.2 shows the predicted DEP

response of LNCaPs and PBMCs as a function of frequency using this shell model. Un-

70



der our experimental conditions, varying the cytoplasmic permittivity and conductivity

did not significantly change the magnitude of ℜ( f̃CM), and thus their values were fixed

to 50ε0 (ε0 = 8.85×10−12 F/m) and 1 S/m, respectively, which are within the range of

previously reported values for cancer cells and blood cells [7, 141, 50, 149]. The av-

erage cell radius was measured to be approximately 10 µm for LNCaPs and 5 µm for

PBMCs. Through detailed characterization of LNCaPs’ DEP response [60] and analysis

of measured and predicted crossover frequencies, we selected 250 kHz and 350 kHz as

the frequencies to apply in characterizing pDEP and nDEP effects on cell adhesion as

a function of shear stress. As shown in Figure 4.2, both LNCaPs and PBMCs exhibit

a nDEP response at 250 kHz; however, at 350 kHz, LNCaPs exhibit a pDEP response

whereas PBMCs exhibit a nDEP response.

4.3.4 DEP-guided enrichment of LNCaPs from PBMCs

To characterize cell adhesion of LNCaPs and PBMCs as a function of shear stress, a

mixture of the two cell populations was flowed through the Hele-Shaw flow cell and

captured cells were enumerated along the length of the device. The cell mixture was

drawn into a BD plastic syringe and flowed through the device at 0.2 mL/hr with a

Chemyx Fusion 400 syringe pump for 5 minutes. The interdigitated electrodes were en-

ergized by an Agilent 33200A function generator at 6 Vpp and two different frequencies:

250 kHz and 350 kHz, with six experimental replicates each. After each capture experi-

ment, PBS was flowed through the device at 0.2 mL/hr for 10 minutes to wash away any

non-adherent cells. Fluorescent images of captured LNCaPs and PBMCs were taken at

a 20× magnification with FITC and Texas Red R© / Cy3.5TM Chroma filter cubes, re-

spectively, at a series of observation sites along the length of the device, as shown in

Figure 4.1. Reported captured cell densities correspond to the number of captured cells
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Figure 4.2: Predicted DEP response, as described by ℜ( f̃CM), of LNCaPs (solid line)
and PBMCs (dashed line) as a function of applied electric field frequency. Cells were
modeled as single-shelled dielectric spheres, described by Equations 5.2 and 5.3. In a di-
luted PBS suspending medium with σm = 0.07 S/m, the crossover frequency was experi-
mentally determined to be approximately 300 kHz for LNCaPs and 400 kHz for PBMCs.
These empirical measurements, combined with Equation 5.3, corresponded to specific
membrane capacitance values of Cmembrane = 5 mF/m2 and Cmembrane = 7.5 mF/m2 for
LNCaPs and PBMCs, respectively, in the dielectric shell model. At 250 kHz, both cell
populations exhibit a nDEP response; at 350 kHz, however, LNCaPs exhibit a pDEP
response whereas PBMCs still exhibit a nDEP response. Comparisons of the two fre-
quencies’ effects on DEP-guided immunocapture are shown in Figures 4.3(a) and 4.3(b).

multiplied by a correction factor (to normalize for streamline divergence in the device)

in an observation window with a shear stress at the immunocapture surface in the cen-

ter of the imaged area [60]. Captured cell densities of both LNCaPs and PBMCs were

compared between either side of the Hele-Shaw flow cell’s central axis to characterize

the effect of DEP on cell adhesion at each shear stress value.
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4.4 Results and discussion

The DEP-guided immunocapture performance of LNCaPs and nonspecific adhesion

of PBMCs to antibody-functionalized surfaces was characterized as a function of

shear stresses corresponding to those experienced by cells in immunocapture devices

[142, 79, 60]. A mixture of LNCaPs and PBMCs was flowed through the Hele-Shaw

flow cell and captured cells were enumerated under three experimental conditions: no

DEP, 250 kHz, and 350 kHz. Figures 4.3(a) and 4.3(b) show the captured cell densities

as a function of shear stress for LNCaPs and PBMCs, respectively, under these experi-

mental conditions. Of note, the solution used for these experiments was purposely free

of factors known to suppress nonspecific adhesion, which include Pluronic R© surfactants

[54, 53, 60] and bovine serum albumin [45, 142]. This omission maximizes nonspecific

adhesion, which would be problematic for rare cell capture but is required in this study

to make PBMC capture measurable at cell counts comparable to LNCaP cell counts. In

rare cell capture applications, surfactants or blocking proteins are used, and the PBMC

capture rate is typically much lower, but the ratio of PBMCs to target cells is still high

enough that PBMCs are the primary contaminant [126]. Our experiments inform the rel-

ative capture of PBMCs but, because of the solutions and cell densities used, purposely

study a condition that overestimates the absolute magnitude of PBMC capture.

At 250 kHz, LNCaPs exhibit a weak nDEP response whereas PBMCs exhibit a

stronger nDEP response (as predicted in Figure 4.2); thus, it is expected that as the

magnitude of the nDEP response increases, cells flowing past regions with energized

interdigitated electrodes (as depicted in Figure 4.1) will be repelled further from the

antibody-functionalized surface. Figures 4.3(a) and 4.3(b) show that under this DEP

condition, LNCaP capture via immunological interactions with the antibody was not

significantly affected, while significantly fewer PBMCs were captured by nonspecific
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(a)

(b)

Figure 4.3: Captured cell density of LNCaPs, 4.3(a), and PBMCs, 4.3(b), as a function
of shear stress under experimental conditions of no DEP (black bars; n = 12), 6 Vpp
at 250 kHz (light gray bars; n = 6), and 6 Vpp at 350 kHz (dark gray bars; n = 6).
Bars represent the mean captured cell density normalized for streamline divergence in
the Hele-Shaw flow cell, and error bars represent standard deviation. A Kruskal-Wallis
ANOVA test was used to compare between the experimental conditions. For the LNCaP
data, asterisks (*) indicate significance of differences (P < 0.05) between the 350 kHz
and no-DEP conditions and between the 350 kHz and 250 kHz conditions. For the
PBMC data, asterisks indicate significance of differences (P < 0.05) between the no-
DEP and 250 kHz conditions and between the no-DEP and 350 kHz conditions.
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Figure 4.4: Ratios of captured LNCaP and PBMC densities with DEP to without DEP
effects averaged across all reported shear stresses shown in Figure 4.3. Error bars repre-
sent standard error of the mean of ratios. Predicted ℜ( f̃CM) values were taken from the
single-shelled dielectric model plotted in Figure 4.2. At 250 kHz, LNCaPs and PBMCs
both exhibit a nDEP response, resulting in a calculated ratio less than 1 (i.e., fewer cells
were captured with DEP as compared to without DEP). In contrast, at 350 kHz, LNCaPs
exhibit a pDEP response that resulted in a ratio much larger than 1 (i.e., more LNCaPs
were captured with DEP as compared to without DEP), whereas PBMCs still exhibit a
nDEP response that resulted in a ratio less than 1.

adhesion as compared to conditions without DEP at a majority of reported shear stresses.

The ratio of captured cell densities with DEP to without DEP averaged across all shear

stresses was calculated to be 0.91 for LNCaPs and 0.45 for PBMCs under the 250 kHz

condition, as shown in Figure 4.4. The ratio for LNCaPs is marginally less than 1,

indicating that the cells exhibited a minimal nDEP response that resulted in negligibly

fewer cells being captured as compared to without DEP. In contrast, the ratio for PBMCs

is much smaller than 1, indicating that the cells exhibited a strong nDEP response that

resulted in significantly fewer cells being captured as compared to without DEP. The

conclusions drawn from these comparisons of captured cell densities are supported by

tests of statistical significance (Figure 4.3).

At 350 kHz, LNCaPs exhibit a pDEP response whereas PBMCs exhibit a nDEP re-
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sponse (as predicted in Figure 4.2); under this condition, it is expected that LNCaPs

will be attracted to energized electrodes on the antibody-functionalized surface and that

PBMCs will be repelled. Figures 4.3(a) and 4.3(b) show that at a majority of shear

stresses, significantly more LNCaPs and fewer PBMCs were captured with DEP as

compared to conditions without DEP. The ratio of captured cell densities with DEP

to without DEP averaged across all reported shear stresses was calculated to be 2.94 for

LNCaPs and 0.48 for PBMCs under the 350 kHz condition, as shown in Figure 4.4. The

ratio for LNCaPs is much larger than 1, indicating that the cells exhibited a strong pDEP

response that resulted in significantly more cells being captured as compared to without

DEP. In contrast, the ratio for PBMCs remains smaller than 1, indicating that the cells

continued to exhibit a nDEP response that resulted in significantly fewer cells being

captured as compared to without DEP. Once again, the conclusions drawn from these

comparisons of captured cell densities are supported by tests of statistical significance

(Figure 4.3). In summary, DEP-guided immunocapture of LNCaPs was diminished at

250 kHz and enhanced at 350 kHz, whereas the nonspecific adhesion of PBMCs with

DEP was reduced at both 250 kHz and 350 kHz. Therefore, we have shown that by

precisely selecting an appropriate frequency, LNCaPs can be enriched from PBMCs

with DEP to improve immunocapture performance. Although the ratios presented here

do not in themselves justify rare cell capture or enrichment, the device geometry and

experimental conditions were chosen to purposely augment nonspecific PBMC adhe-

sion; implementation of DEP conditions in a typical rare cell immunocapture device is

expected to lead to significant improvement [126, 60].

Cell adhesion was not only affected by the addition of DEP, but also by the shear

stress experienced by cells in the Hele-Shaw flow cell. Without DEP, captured cell den-

sities generally decreased with increasing shear stress. When a nDEP force was applied

to PBMCs, nonspecific adhesion was lower at high shear stresses, resulting in statisti-
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cally insignificant differences between the no-DEP and nDEP conditions (Figure 4.3(b)).

However, when a pDEP force was applied to LNCaPs, captured cell densities were

consistently and statistically greater than the no-DEP condition across the entire shear

stress range (Figure 4.3(a)). This result suggests that in designing future hybrid DEP-

immunocapture devices for CTC capture [126, 152, 60], shear stress (as controlled by

flow rate) is an adjustable parameter that can be optimized. For example, flow rate can

be increased to minimize interactions between leukocytes and immunocapture surfaces,

and the addition of DEP can further reduce nonspecific leukocyte adhesion and promote

interactions between CTCs and immunocapture surfaces.

DEP is an advantageous technique because, in many cases, the applied frequency

can be tuned to separate cell populations based on differences in their electrical proper-

ties. We have previously characterized the DEP response of LNCaPs [60] and, in this

study, have shown that prostate cancer cells exhibit a distinct response as compared to

PBMCs. Furthermore, in this study, we used a diluted PBS media that is 5–50 times

less dilute and 2–7 times more conductive than media used in previous DEP studies

[7, 43, 56, 140, 48, 4]. We used PBS as a model for whole blood and expect to demon-

strate similar cancer cell capture and enrichment results in minimally diluted blood,

which can potentially result in improved throughput and efficiency as compared to cur-

rent DEP devices. Recently, Shim et al. introduced a media-deionizing region to the

previously reported DEP-FFF device [43, 48]; depleting ions in the sample decreases the

medium conductivity to a level at which differential DEP separation of cancer and blood

cells is possible, and serves an alternative technique to diluting whole blood [150, 149].

Our characterization data of DEP-guided immunocapture of cancer cells as a func-

tion of shear stress can also be incorporated into computational fluid dynamics simula-

tions of cancer cell and blood cell trajectories in a 3D immunocapture device to better
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predict differential capture performance [45, 79, 152]. These simulations will inform the

design of future hybrid DEP-immunocapture systems that have the potential to improve

CTC capture purity while retaining the capture efficiency of previous immunocapture

devices [113, 45, 155, 170]. The capability of producing a highly pure sample will in

turn facilitate subsequent biological studies on captured CTCs, cancer metastasis, and

drug therapies [91, 156, 79, 188].

4.5 Conclusions

This work characterizes the DEP-enhanced immunocapture of LNCaPs and nonspecific

adhesion of PBMCs to antibody-functionalized surfaces as a function of shear stress.

In a model system designed to make nonspecific PBMC adhesion readily apparent, we

showed that LNCaPs can be enriched from PBMCs by precisely tuning the frequency

of the applied electric field to attract cancer cells to and repel leukocytes from immuno-

capture surfaces. This result is dependent on local shear stresses experienced by cells,

and informs the design (e.g., geometric features) and optimization (e.g., flow rate, ap-

plied frequency) of future hybrid DEP-immunocapture devices for rare cell capture. We

expect that such a combination will lead to improved capture performance relative to

either technique alone, which will facilitate subsequent biological analyses of captured

CTCs.
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CHAPTER 5

CHARACTERIZATION OF MICROFLUIDIC SHEAR-DEPENDENT EPCAM

IMMUNOCAPTURE AND ENRICHMENT OF PANCREATIC CANCER

CELLS FROM BLOOD CELLS WITH DIELECTROPHORESIS

5.1 Abstract

Current microfluidic techniques for isolating circulating tumor cells (CTCs) from can-

cer patient blood are limited by low capture purity, and dielectrophoresis (DEP) has the

potential to complement existing immunocapture techniques to improve capture perfor-

mance. We present a hybrid DEP and immunocapture Hele-Shaw flow cell to charac-

terize DEP’s effects on immunocapture of pancreatic cancer cells (Capan-1, PANC-1,

and BxPC-3) and peripheral blood mononuclear cells (PBMCs) with an anti-EpCAM

antibody. By carefully specifying the applied electric field frequency, we demonstrate

that pancreatic cancer cells are attracted to immunocapture surfaces whereas PBMCs

are repelled. Using an exponential capture model to interpret our capture data, we

show that immunocapture performance is dependent on the applied DEP force sign and

magnitude, cell surface EpCAM expression level, and shear stress experienced by cells

flowing in the capture device. Our work suggests that DEP can not only repel con-

taminating blood cells, but also enhance capture of cancer cell populations that are less

likely to be captured by traditional immunocapture methods. This combination of DEP

The content of this chapter was submitted as a research article for peer review:
Chao Huang, James P. Smith, Trisha N. Saha, Andrew D. Rhim, Brian J. Kirby. “Characteriza-

tion of microfluidic shear-dependent EpCAM immunocapture and enrichment of pancreatic cancer
cells from blood cells with dielectrophoresis,” submitted, 2014.

CH performed the experiments, analyzed the data, and wrote the paper. JPS wrote Section 5.3.5,
performed curve fitting analysis using the exponential capture model, and provided data for Figure 5.4
and Table 5.2. CH and BJK conceived and designed the experiments. TNS and ADR provided blood
samples from consenting donors.
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and immunocapture techniques to potentially increase CTC capture purity can facilitate

subsequent biological analyses of captured CTCs and research on cancer metastasis and

drug therapies.

5.2 Introduction

Circulating tumor cells (CTCs) are cells that have been shed into the circulatory system

from a tumor source, and it is hypothesized that a subpopulation contributes to cancer

metstasis by forming secondary tumors elsewhere in the body [3]. Genetic and phar-

macological evaluation of captured CTCs can lead to a better understanding of cancer

metastasis as well as improved drug therapies [91, 156, 79, 132]. In particular, a high

CTC capture purity—the percentage of all captured cells that are actually CTCs—can

facilitate numerous subsequent biological analyses by reducing the amount of time and

money that is potentially wasted on analyzing contaminating blood cells. For example,

the yield from analyses that require single-cell sequencing, such as RNA sequencing

to identify distinct CTC gene expression patterns [131, 188, 10, 79] and copy number

variation analysis to characterize CTC provenance [136, 114, 125], is directly propor-

tional to purity; a higher sample purity leads to more CTCs per sample that are analyzed,

which results in less time and money spent per analysis of a single CTC.

Microfluidic techniques have been used successfully to capture rare CTCs from

whole blood with high efficiency, although reported purities are often relatively low

because of the nonspecific adhesion of leukocytes to capture surfaces [113, 45, 155,

170, 79]. A majority of immunocapture techniques use the epithelial marker EpCAM,

which has been reported to have oncogenic potential [111], is correlated with prolif-

eration in cancer cell lines [47], and has been used to identify CTCs in many cancers
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[113, 146, 29, 31, 155, 161, 133, 126, 118]. However, EpCAM varies in expression

level between cancers and potentially fails to capture more invasive CTCs that have un-

dergone the epithelial-to-mesenchymal transition [103, 99, 116]. Despite differences in

cell surface antigen expression levels, a majority of cancer cells are vastly different from

blood cells in cellular composition and morphology, which leads to their distinct elec-

trical properties and dielectrophoretic response [149]. Therefore, we hypothesize that

dielectrophoresis can potentially be used to capture cancer cells that are less likely to be

isolated by traditional immunocapture methods with epithelial markers such as EpCAM.

In this work, we aim to study how cancer cell capture performance can be improved by

(1) characterizing EpCAM capture as a function of flow conditions (e.g., shear stress)

and cancer cell surface expression levels, and (2) incorporating dielectrophoretic effects

to enhance cancer cell capture while reducing nonspecific adhesion of leukocytes.

Dielectrophoresis (DEP) is widely used in microfluidics to separate cell populations

based on differences in their electrical properties [167, 52, 126]. Within certain applied

electric field frequency ranges, cancer cells exhibit a positive DEP (pDEP) response,

are attracted to regions of high electric field gradients, and can be separated from blood

cells, which exhibit a negative DEP (nDEP) response and are repelled from regions of

high electric field gradients [7, 43, 56, 48, 138, 149, 59, 44]. For applications in CTC

capture, however, the use of DEP techniques alone have typically been limited by low

capture efficiency and throughput owing to the rarity of CTCs in whole blood, as well as

by restrictions of device and electrode design and difficulties with applying large enough

electric field gradients near rare cells to capture them [126].

Given that existing immunocapture techniques typically report high capture efficien-

cies but low capture purities, and DEP methods have the potential for high-purity sep-

aration by cancer cells’ pDEP and blood cells’ nDEP responses but are limited by low
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capture efficiencies in rare cell capture applications, we hypothesize that DEP may work

best as a complement to existing immunocapture devices to act only near immunocap-

ture surfaces where electric fields are strongest and antibody interactions occur to im-

prove capture purity. We previously characterized how a hybrid DEP-immunocapture

approach can enrich prostate cancer cells from blood cells by attracting cancer cells to

immunocapture surfaces while repelling contaminating peripheral blood mononuclear

cells (PBMCs) [60, 59]. However, these studies used an antibody, J591, that is highly

specific to the prostate-specific membrane antigen (PSMA) expressed on the surface of

prostate cancer cells [96]. As many cancers (e.g., pancreatic) do not have an organ-

specific biomarker and therefore are more difficult to capture with EpCAM [161, 133],

CTC immunocapture can be further optimized by characterizing capture performance

as a function of EpCAM expression level and evaluating the potential benefits of incor-

porating DEP effects. We have also recently reported on a capture probability model

that can be used to inform simulations of capture as a function of shear stress in existing

immunocapture device geometries [153]; by characterizing immunocapture with DEP

effects, we can predict enhanced CTC capture performance in a future hybrid DEP-

immunocapture system.

In the current study, we characterized the DEP response of a panel of pancreatic

cancer cell lines (Capan-1, PANC-1, BxPC-3)—which, to our knowledge, has not been

described before—with varying levels of EpCAM expression and measured their im-

munocapture performance as a function of the local shear stress experienced by the cells.

This work was performed using a Hele-Shaw flow cell and a protocol designed to make

nonspecific adhesion of PBMCs readily apparent [59]. In addition, by precisely tuning

the applied electric field frequency, we enriched the pancreatic cancer cells from blood

cells by attracting cancer cells to and repelling PBMCs from immunocapture surfaces

with pDEP and nDEP, respectively. In comparing immunocapture performance with and
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without DEP effects, we also evaluated capture probability as a function of shear stress,

cell surface chemistry, and normal force using the previously reported capture probabil-

ity model [153]. We demonstrate that DEP can enhance immunocapture of cancer cells

with lower EpCAM expression and that immunocapture purity can potentially be im-

proved by repelling PBMCs with nDEP; this work informs the design of future hybrid

DEP-immunocapture devices with increased CTC capture purity, which will facilitate

subsequent functional and genetic analyses to elucidate cancer progression and develop

more effective treatment options.

5.3 Materials and methods

5.3.1 Device fabrication and antibody functionalization

A Hele-Shaw flow cell with interdigitated gold electrodes, depicted in Figure 5.1, was

used to characterize immunocapture with DEP effects as a function of shear stress. The

design and fabrication of this Hele-Shaw DEP device is detailed in our previous work

[60, 59, 142]. One major change to the device geometry from previous iterations is an

elongation of the straight inlet channel to 45 mm, which allows for all cancer cells and

PBMCs to settle to the bottom of the channel before entering the main chamber, and

ensures that all cells are rolling on the immunocapture surface in the shear stress range

where data is taken. This condition allows for cell capture to be quantified as a fraction

of total cells entering the main chamber in subsequent data analysis steps.

The bottom surface of the Hele-Shaw DEP device was functionalized with NeutrA-

vidin (Thermo Fisher Scientific) following previously reported protocols [45, 142], then

incubated with 10 µg/mL biotinylated goat anti-mouse antibody (Santa Cruz Biotech-

84



Figure 5.1: Schematic of the Hele-Shaw flow cell and its interdigitated electrodes with
lead connections to an applied voltage (±V) and ground (GND), and elongated straight
inlet channel compared to previous designs [60, 59]. The elongated straight inlet channel
was 500 µm wide, the smaller branching channels were 156 µm wide, and all channels
were 48 µm tall. The main chamber geometry leads to a monotonically decreasing
shear stress along the device centerline, which allows for cell capture to be measured
as a function of shear stress [163, 112, 142]. Inset images show fluorescently labeled
PANC-1 cells (green) and PBMCs (red) adhered to the antibody-functionalized surface
with and without DEP effects. These example images show that at an applied AC elec-
tric field frequency of 200 kHz, more PANC-1 cells and fewer PBMCs were captured
with DEP compared to without DEP. Captured cells in each pair of 1-mm2 observation
windows were enumerated and compared at a series of observation sites corresponding
to a range of shear stresses found in typical immunocapture devices [45, 79, 152, 153].
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nology) for 1 hour, followed by incubation with 10 µg/mL anti-EpCAM antibody

(Clone 158206, R&D Systems) for 1 hour [161]. All antibodies were prepared in

1% BSA in PBS.

5.3.2 Cell culture and preparation

Pancreatic cancer cell lines Capan-1, PANC-1, and BxPC-3 were purchased from the

American Type Culture Collection and cultured at 37◦C in a 5% CO2 humidified en-

vironment. Capan-1 cells were cultured in 20% FBS in IMDM, PANC-1 cells were

cultured in 10% FBS in DMEM, and BxPC-3 cells were cultured in 10% FBS in RPMI.

All culture media was also supplemented with 1% penicillin-streptomycin. To prepare

for experiments, cancer cells at >80% confluency were trypsinized from their culture

flasks and incubated with 5 µM CellTrackerTM Green CMFDA (Invitrogen) for at least

30 minutes.

PBMCs were isolated from the blood of consenting colonoscopy screening pa-

tients with IRB approval from the University of Michigan School of Medicine. Whole

blood was collected in BD Vacutainer R© CPTTM Cell Preparation Tubes with Sodium

HeparinN, and PBMCs were isolated after centrifugation and incubated with 5 µM

CellTrackerTM Orange CMRA (Invitrogen) for at least 30 minutes.

After incubation with their respective fluorescent probes, pancreatic cancer cells and

PBMCs were washed twice and resuspended in PBS diluted 20 times by volume in an

isotonic sugar in DI H2O solution consisting of 9.5% sucrose and 0.3% dextrose with

conductivity 0.07 S/m; this medium was chosen because of the distinct DEP response

that cancer cells and blood cells exhibit at the given conductivity [60, 59]. The final

cell densities were approximately 5×105 cancer cells per mL and 2×106 PBMCs per
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mL; the two populations were mixed together before injection into the Hele-Shaw DEP

device for all experiments except for those with BxPC-3 cells and an applied electric

field frequency of 200 kHz, in which blood samples were unavailable and only cancer

cell capture was characterized.

5.3.3 Characterization of pancreatic cancer cells’ DEP response

In order to separate cancer cells from blood cells, the DEP response of both populations

must be characterized as a function of applied electric field frequency. In this study,

as with our previous characterization of prostate cancer [60, 59], we measured the ap-

proximate DEP crossover frequency of each pancreatic cancer cell line and extrapolated

electrical properties to predict their DEP responses. The sign and magnitude of the

time-averaged DEP force, 〈FDEP〉, on a spherical particle in an infinite domain with a

weakly varying electric field and homogeneous and isotropic complex permittivities is

determined by the real part of the Clausius-Mossotti factor, ℜ( f̃CM):

〈FDEP〉 = πεma3
ℜ( f̃CM)∇(E0 ·E0) (5.1)

f̃CM =
ε̃p− ε̃m

ε̃p +2ε̃m
, (5.2)

where a is the particle radius, E = E0cos(ωt) is the externally applied AC electric field,

ω is the angular frequency of the electric field, ε̃ = ε− iσ/ω is the complex permittivity,

i = (−1)1/2, ε is the electrical permittivity, σ is the electrical conductivity, the subscripts

p and m denote the particle and the medium, respectively, and bolded letters denote

vectors [78]. The frequency at which ℜ( f̃CM) = 0, i.e., when the particle transitions

from nDEP to pDEP, or vice versa, is termed the crossover frequency.

To determine the crossover frequency range of the pancreatic cancer cell lines, each
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cell population was manually flowed through the Hele-Shaw DEP device and observed

above the interdigitated electrodes region on a Nikon LV100 upright microscope. The

electrodes were energized by an Agilent 33200A function generator at 6 volts peak-to-

peak (Vpp) and frequencies ranging from 100 kHz to 1 MHz, and the DEP response

was determined at each applied frequency by observing if the cells were attracted to or

repelled from the electrodes by pDEP and nDEP, respectively. The DEP response of

PBMCs in our setup was characterized in a previous study [59]. After determining each

cell population’s crossover frequency, we predicted the magnitude of its DEP response

as a function of frequency by modeling the cell as a single-shelled dielectric sphere; this

approach facilitates the description of a cell’s extrinsic electrical properties, as they are

often difficult to infer directly from experimental measurments [167, 7, 43, 141]. The

effective permittivity of the particle, ε̃p, in Equation 5.2, was replaced by an effective

permittivity of the cell, ε̃cell, that describes its electrical properties in terms of a specific

membrane capacitance, Cmembrane, and the cytoplasmic permittivity and conductivity

[78, 60, 59]:

ε̃cell =
Cmembrane a ε̃cytoplasm

Cmembrane a+ ε̃cytoplasm
. (5.3)

Figure 5.2 shows the predicted DEP responses of Capan-1, PANC-1, BxPC-3 and

PBMCs as a function of frequency as described by the dielectric shell model. We

fixed the cytoplasmic permittivity and conductivity to 50ε0 (ε0 = 8.85×10−12 F/m)

and 1 S/m, respectively, because these values are within previously reported ranges

[7, 141, 50, 149] and varying them did not significantly change the magnitude of

ℜ( f̃CM) under our experimental conditions. The average cell diameters of Capan-1,

PANC-1, and BxPC-3 were previously measured to be 15.8±3.2 µm, 17.3±2.7 µm,

and 13.3±2.9 µm, respectively [161], and PBMCs were measured to have an average

diameter of 10.1±2.1 µm. We selected 50 kHz and 200 kHz as the frequencies to ap-

ply in characterizing nDEP and pDEP effects on cell adhesion as a function of shear
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Figure 5.2: Predicted DEP response, as described by ℜ( f̃CM), of Capan-1 (solid line),
PANC-1 (dashed line), BxPC-3 (dash-dotted line), and PBMCs (dotted line) as a func-
tion of applied electric field frequency. Cells were modeled as single-shelled dielectric
spheres, described by Equations 5.2 and 5.3. In a diluted PBS suspending medium
with σm = 0.07 S/m, the crossover frequency was experimentally determined to be ap-
proximately 140 kHz for Capan-1, 120 kHz for PANC-1, 140 kHz for BxPC-3, and
400 kHz for PBMCs. These empirical measurements, combined with Equation 5.3,
corresponded to specific membrane capacitance values of Cmembrane = 13.5 mF/m2 for
Capan-1, Cmembrane = 14.5 mF/m2 for PANC-1, and Cmembrane = 15 mF/m2 for BxPC-3,
and Cmembrane = 7.5 mF/m2 for PBMCs in the dielectric shell model. At 50 kHz, cancer
cells and blood cells both exhibit a nDEP response; at 200 kHz, however, cancer cells
exhibit a pDEP response whereas PBMCs still exhibit a nDEP response.

stress. As shown in Figure 5.2, both cancer cells and PBMCs exhibit a nDEP response

at 50 kHz, whereas at 200 kHz, cancer cells exhibit a pDEP response while PBMCs

exhibit a nDEP response.

5.3.4 Characterization of EpCAM immunocapture with DEP

Capan-1, PANC-1, and BxPC-3 cells were each mixed with PBMCs and each mixture

was flowed through the Hele-Shaw DEP device in separate experiments at 0.2 mL/hr
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for 10 minutes using a Chemyx Fusion 400 syringe pump. The electrodes were en-

ergized at 6 Vpp and two frequencies (50 kHz and 200 kHz), with 3–4 experimental

replicates each. Fluorescent images of cancer cells and PBMCs were taken with FITC

and Texas Red R© / Cy3.5TM Chroma filter cubes, respectively, at the observation win-

dow closest to the main chamber entrance every minute to quantify the amount of cells

coming into the device (that are all rolling on the immunocapture surface). The total

number of cells that entered the main chamber over the course of an experiment lasting

t minutes was estimated as∫ t

0

# of cells at time t
area of observation window

dt× (width of observation window)

×(velocity in the channel at cell height),
(5.4)

where the width of an observation window was 1 mm, the area of an observation win-

dow was 1 mm2, and the integral was evaluated as a Riemann sum with the difference

between upper and lower bounds equal to the number of subdivisions (i.e., the number

of cells was counted at every minute):∫ t

0
f (t) dt =

t

∑
i=0

f (ti). (5.5)

After each capture experiment, non-adherent cells were washed away with PBS, and

images of captured cancer cells and PBMCs were taken at each observation window

pair along the Hele-Shaw DEP device’s central axis to directly compare capture with

and without DEP as a function of shear stress. Captured cells were enumerated in each

observation window and multiplied by a correction factor that was a function of shear

stress to normalize for streamline divergence in the device [60, 59]. The number of

cells captured in spaces between two adjacent capture windows was estimated as the

average number of captured cells in the two adjacent windows and also multiplied by the

correction factor. The local capture probability was calculated by dividing the number of

cells captured in a capture window (i.e., at a given shear stress value) by the number of
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cells that entered that particular window, which in turn was calculated by subtracting the

number of cells captured in previous windows and those in the spaces between windows

from the total number of cells that entered the device (determined by Equations 5.4 and

5.5).

5.3.5 Derivation of exponential capture model

An exponential fit was used to convert experimental data collected in the Hele-Shaw

DEP device into a probabilistic model, suitable for use in immunocapture simulations.

This model predicts the probability of adhesion, Pcapture, as a function of receptor and

ligand surface densities, mr and ma; the receptor–ligand association constant at zero

load, K0
a ; the contact area, Ac; the characteristic receptor–ligand bond length, λ ; the

thermal energy, kBT ; and the dislodging force, Fdislodge [32, 169]:

Pcapture = mrmlK0
a Acexp

(
− λ

kBT
Fdislodge

mrAc

)
. (5.6)

As values for these terms are often unavailable for rare cells in circulation, we grouped

them into two lumped parameters, A and B, took Fdislodge as proportional to the shear

stress τ , and discretized the equation as reported previously [153]:

dPcapture (τ) = A exp(−Bτ) dt. (5.7)

We identified values for A and B as a function of cell type and the frequency of the

applied electric field by integrating the discrete equation over the length of each Hele-

Shaw observation window:

Pcapture (τ) =
∫ x2

x1

A exp(−Bτ) dt. (5.8)

Noting the relationship between distance x, characteristic velocity U , shear stress τ , and

characteristic time t as t = x/U = x/τa (where a is the cell radius), and discretizing as
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dt = dx/τa, we found:

Pcapture (τ) =
∫ x2

x1

A
τa

exp(−Bτ) dx. (5.9)

Integrating over each observation window with τ approximated as uniform yielded

Pcapture (τ) =
A∆x
τa

exp(−Bτ) , (5.10)

where ∆x is the length of each observation window (i.e., 1 mm) and Pcapture (τ) is the

fraction of cell captured that roll through each observation window. We fit our capture

fraction versus shear stress data to a simple exponential model of the form

Pcapture (τ)τ = A′ exp(−Bτ) , (5.11)

calculating B directly from our fit, and deriving A algebraically as A = A′a/∆x. Inserted

into Equation 5.10, A and B provide a fit to our experimental data; used in Equation 5.7,

A and B can be used to predict capture as cells are advected along a simulated capture

surface [153].

5.4 Results and discussion

The immunocapture of pancreatic cancer cells and PBMCs was characterized with and

without DEP effects as a function of shear stresses corresponding to those experienced

by cells in typical immunocapture device geometries [79, 152, 153, 142, 60, 59]. We

chose to characterize the cell lines Capan-1, PANC-1, and BxPC-3 because of dif-

ferences in their tumor origin (Capan-1 from liver metastasis; PANC-1 and BxPC-3

from primary pancreatic tumors), differentiation state (Capan-1 is well differentiated;

PANC-1 and BxPC-3 are moderately to poorly differentiated) [33], and EpCAM ex-

pression as measured by antibodies bound per cell [161]. In addition, although Pethig et
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al. previously measured the membrane capacitance and conductance of pancreatic beta

cells [119] and Shim et al. recently made DEP crossover frequency measurments of all

NCI-60 cell lines [149], to our knowledge, the DEP response of these pancreatic cancer

cells has not been characterized before. Therefore, in contrast to our previous work with

prostate cancer and the highly organ-specific biomarker PSMA [142, 60, 59], we aim to

study in this work how DEP and normal forces affect immunocapture of pancreatic can-

cer cells that have no organ-specific biomarker and varying levels of EpCAM expression

with an exponential capture model.

Shear-dependent immunocapture was characterized in a Hele-Shaw flow cell, and

cell concentrations were chosen to be high enough to make nonspecific adhesion of

PBMCs readily apparent and facilitate comparison with cancer cell capture [59]. In

addition, elongation of the straight inlet channel from previous designs [60, 59] led to

all cells entering the main chamber to be rolling in contact with the immunocapture

surface (Figure 5.1). This initial condition allowed for cell capture along the length of

the device to be quantified as a fraction of the number of cells that entered a particular

shear stress region (here termed the “capture probability”), which normalizes the data

for variations in cell densities between experimental replicates. Figures 5.3(a), 5.3(b),

5.3(c), and 5.3(d) show the capture probability of cells at the Hele-Shaw DEP device’s

central axis (along which the shear stress is monotonically decreasing and observation

windows are located) for Capan-1, PANC-1, BxPC-3, and PBMCs, respectively. With

no DEP applied, capture across all cell types generally decreased with increasing shear

stress; these trends are in line with our previous characterization work in a Hele-Shaw

flow cell [142, 60, 59] as well as in a three-dimensional immunocapture device geometry

[153, 161]. In addition, more Capan-1 cells were captured than PANC-1 and BxPC-3

cells at a majority of shear stress values. Previously measured EpCAM antibodies bound

per cell (ABC) values by Thege et al. [161], as listed in Table 5.1, show that Capan-1
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(a) (b)

(c) (d)

Figure 5.3: Capture probability of Capan-1 cells, 5.3(a), PANC-1 cells, 5.3(b), BxPC-3
cells, 5.3(c), and PBMCs, 5.3(d), at the central axis of the Hele-Shaw DEP device as a
function of shear stress under experimental conditions of no DEP (black bars), 50 kHz
(light gray bars), and 200 kHz (dark gray bars). Bars represent the mean capture of
the indicated number of experimental replicates (n), and error bars represent standard
deviation. A Wilcoxon rank-sum test was used to compare between each pair of DEP
conditions, and asterisks (*) indicate significance of differences (P < 0.05).

cells have a higher expression of EpCAM, which explains the current study’s higher

Capan-1 capture without DEP effects.

At an applied electric field frequency of 50 kHz, pancreatic cancer cells and PBMCs

both exhibit a nDEP response (Figure 5.2). For PBMCs, whose nonspecific adhesion

to the immunocapture surface was purposely amplified by the device’s geometric de-

sign and high input cell concentration to facilitate relative comparisons between capture

with and without DEP, fewer cells were captured with nDEP at 50 kHz repelling them

from the capture surface as compared to without DEP at a majority of shear stresses

94



Table 5.1: Ratios of pancreatic cancer cell capture probabilities with DEP to without
DEP effects averaged across all reported shear stresses shown in Figure 5.3. Ratios
are reported as mean ± standard error of the mean. EpCAM antibodies bound per cell
(ABC) data were previously reported in [161].

Cell line EpCAM ABC nDEP (50 kHz) : no DEP pDEP (200 kHz) : no DEP
Capan-1 71,807 0.33 ± 0.17 2.58 ± 1.04
PANC-1 21,247 0.63 ± 0.69 12.72 ± 7.59
BxPC-3 28,197 0.38 ± 0.55 15.21 ± 8.09

(Figure 5.3(d)). Similarly for the cancer cells, capture with nDEP was lower at a major-

ity of shear stresses, as cells were repelled from immunocapture surfaces (Figure 5.3).

Table 5.1 lists the ratios of cancer cell capture probabilities with DEP to without DEP

averaged across all reported shear stresses shown in Figure 5.3. The ratio of capture

with nDEP to without DEP was less than 1 for all three cell lines, although the errors

were larger for PANC-1 and BxPC-3 cells, which indicate that in these cell lines, there

were smaller differences between capture with nDEP and without DEP; this result can

be explained by PANC-1 and BxPC-3 cells’ low EpCAM expression, which already led

to a low amount of capture without DEP.

At an applied electric field frequency of 200 kHz, pancreatic cancer cells exhibit a

pDEP response whereas PBMCs exhibit a nDEP response (Figure 5.2). For PBMCs,

there was a general trend of less capture with nDEP at 200 kHz repelling cells from the

immunocapture surface compared to without DEP. For cancer cells, capture with pDEP

attracting cells to the immunocapture surface was higher compared to without DEP (Fig-

ure 5.3). Interestingly, for PANC-1 and BxPC-3 cells, the magnitude of capture with

pDEP was higher than that of Capan-1 cells. Table 5.1 shows that the ratio of capture

with pDEP to without DEP is much higher for PANC-1 and BxPC-3 cells compared to

Capan-1 cells, which is expected, as Capan-1 cells have a higher EpCAM ABC count

and therefore higher capture without DEP. However, the magnitude of Capan-1 capture

with pDEP is much lower than that of PANC-1 and BxPC-3 cells, which cannot be
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attributed to differences in EpCAM ABC counts or DEP response magnitude, as our di-

electric model predicts similar magnitudes of ℜ( f̃CM) for all three cell lines (Figure 5.2).

We hypothesize that differences in Capan-1 cells’ tumor origin, differentiation state, and

mutation status of key oncogenes [33] from those of PANC-1 and BxPC-3 cells may

contribute to its observed weaker pDEP response that cannot be inferred from crossover

frequency measurements alone. A more robust technique for measuring the magnitude

of a cell’s DEP response and magnitude is electrorotation [71, 173, 183, 143, 23], which

can potentially be used to investigate the precise, absolute magnitudes of each cell line’s

DEP response as a function of frequency but is beyond the scope of this study. Nev-

ertheless, our results show that pDEP enhances capture of all three pancreatic cancer

cell lines, especially for PANC-1 and BxPC-3 cells, which are less differentiated; this

suggests that DEP can potentially be used to enhance immunocapture of CTCs that (1)

have lower EpCAM expression and are thus less likely to be captured without DEP, and

(2) are less differentiated and metastatic, possibly leading to earlier detection of CTCs.

In comparing cancer cell capture with pDEP at 200 kHz to capture with nDEP at

50 kHz, there were more cancer cells captured across a majority of shear stresses for

all three cell lines (Figures 5.3(a), 5.3(b), 5.3(c)), showing that DEP can be tuned to

enhance or diminish cancer cell immunocapture by pDEP and nDEP, respectively. For

PBMCs, capture with nDEP at 200 kHz and capture with nDEP at 50 kHz were sim-

ilar across all shear stresses (Figure 5.3(d)), indicating that there was not a sigificant

difference in the magnitude of the nDEP force experienced by PBMCs at 200 kHz and

50 kHz, as confirmed by the predicted ℜ( f̃CM) magnitudes in Figure 5.2 and calculated

〈FDEP〉 values in Table 5.2.

To further characterize capture probability as a function of shear stress, we fit our

shear-dependent capture data for pancreatic cancer cells and PBMCs (Figure 5.3) to an
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exponential capture model described in Section 5.3.5 and previously published work

[153]. Curve fits to BxPC-3 capture data with no DEP, nDEP at 50 kHz, and pDEP at

200 kHz are shown in Figure 5.4; fit values for the other cell types are listed in Table 5.2.

In the capture model, A represents the magnitude of capture and B represents the shear

dependence. In our analysis, we found that fitting B as a free parameter under each sep-

arate DEP condition did not significantly change the quality of the fit (as measured by

residual sum of squares and coefficient of determination calculations) when compared

with fixing B to the same value for every DEP condition. Therefore, for each cell type,

we fixed B for all DEP conditions to the same value obtained from fitting the capture data

with no DEP effects applied (Table 5.2). This result suggests that although our capture

data can be described by an exponential function that has a unique decay (determined

by B) for each cell type, the decay was not significantly affected by DEP effects in the

shear stress range that we tested, and therefore does not require further characterization

for our purposes of rare cell capture applications. In this work, we characterize DEP’s

effect on the relative magnitudes of immunocapture and translate these data to capture

probabilities that decay exponentially with increasing shear stress; this exponential cap-

ture model can then be used in simulations of a hybrid DEP-immunocapture device to

predict capture performance as a function of applied DEP force and shear stress [153].
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(a) (b)

(c)

Figure 5.4: Exponential fits (solid line) to shear-dependent BxPC-3 capture data (sym-
bols) shown in Figure 5.3(c) for experimental conditions with no DEP, 5.4(a), nDEP at
50 kHz, 5.4(b), and pDEP at 200 kHz, 5.4(c). The exponential capture model deriva-
tion is detailed in Section 5.3.5. A [Pa] and B [Pa−1] values are calculated from the
exponential fit described by Pcapture (τ) =

A∆x
τa exp(−Bτ) (Equation 5.10), and 50% con-

fidence interval upper and lower bounds for the A values are plotted as dashed lines.
These fit values for Capan-1, PANC-1, BxPC-3, and PBMC capture data are also listed
in Table 5.2.

98



Ta
bl

e
5.

2:
E

xp
on

en
tia

lc
ap

tu
re

m
od

el
fit

va
lu

es
fo

rA
[P

a]
an

d
B

[P
a−

1 ],
de

sc
ri

be
d

by
P c

ap
tu

re
(τ
)
=

A
∆

x
τ

a
ex

p
(−

B
τ
)

(E
qu

at
io

n
5.

10
),

as
a

fu
nc

tio
n

of
ce

ll
ty

pe
an

d
no

rm
al

fo
rc

e,
F

[N
],

to
th

e
im

m
un

oc
ap

tu
re

su
rf

ac
e.

In
a

ty
pi

ca
lo

bs
ta

cl
e-

ar
ra

y
im

m
un

oc
ap

tu
re

ge
om

et
ry

,
th

e
no

rm
al

fo
rc

e
(S

to
ke

s’
dr

ag
,

F S
to

ke
s
=

6π
µ

aU
,

w
he

re
µ

is
th

e
flu

id
vi

sc
os

ity
,

a
is

th
e

ce
ll

ra
di

us
,

an
d

U
is

th
e

ve
lo

ci
ty

of
th

e
ce

ll
no

rm
al

to
th

e
ob

st
ac

le
)

on
a

ce
ll

in
co

nt
ac

tw
ith

th
e

ob
st

ac
le

va
ri

es
fr

om
ap

pr
ox

im
at

el
y

ze
ro

to
a

m
ax

im
um

va
lu

e
re

po
rt

ed
in

th
e

ta
bl

e.
W

ith
no

D
E

P
ef

fe
ct

s
ap

pl
ie

d
in

th
e

H
el

e-
Sh

aw
D

E
P

de
vi

ce
,t

he
on

ly
no

rm
al

fo
rc

e
pr

es
en

ti
s

gr
av

ita
tio

na
l,

F g
.

W
ith

D
E

P
ef

fe
ct

s
ap

pl
ie

d,
ho

w
ev

er
,t

he
no

rm
al

fo
rc

e
is

do
m

in
at

ed
by

th
e

tim
e-

av
er

ag
ed

D
E

P
fo

rc
e,
〈F

D
E

P
〉,

de
sc

ri
be

d
by

E
qu

at
io

ns
5.

1
an

d
5.

2,
w

ith
pr

ed
ic

te
d

ℜ
(

f̃ C
M
)

va
lu

es
ta

ke
n

fr
om

Fi
gu

re
5.

2
at

50
kH

z
an

d
20

0
kH

z
an

d
th

e
gr

ad
ie

nt
of

th
e

el
ec

tr
ic

fie
ld

ca
lc

ul
at

ed
by

C
O

M
SO

L
si

m
ul

at
io

n
at

a
he

ig
ht

eq
ui

va
le

nt
to

th
e

ce
ll

ra
di

us
ab

ov
e

th
e

im
m

un
oc

ap
tu

re
su

rf
ac

e
an

d
el

ec
tr

od
es

.
A

po
si

tiv
e

fo
rc

e
re

pr
es

en
ts

at
tr

ac
tio

n
to

th
e

im
m

un
oc

at
ur

e
su

rf
ac

e,
w

he
re

as
a

ne
ga

tiv
e

fo
rc

e
re

pr
es

en
ts

re
pu

ls
io

n.
N

o
D

E
P

50
kH

z
20

0
kH

z
C

el
lt

yp
e

F S
to

ke
s

F g
A

B
〈F

D
E

P
〉

A
B

〈F
D

E
P
〉

A
B

C
ap

an
-1

1.
40
×

10
−

11
2.

10
×

10
−

11
2.

58
×

10
−

5
10

8.
97

-1
.4

8
×

10
−

9
1.

99
×

10
−

6
10

8.
97

1.
25
×

10
−

9
4.

21
×

10
−

5
10

8.
97

PA
N

C
-1

1.
62
×

10
−

11
2.

75
×

10
−

11
5.

53
×

10
−

6
76

.2
9

-1
.7

6
×

10
−

9
1.

44
×

10
−

6
76

.2
9

9.
70
×

10
−

10
5.

97
×

10
−

5
76

.2
9

B
xP

C
-3

1.
06
×

10
−

11
1.

25
×

10
−

11
1.

80
×

10
−

5
13

0.
46

-1
.3

1
×

10
−

9
3.

83
×

10
−

6
13

0.
46

5.
44
×

10
−

10
2.

29
×

10
−

4
13

0.
46

PB
M

C
6.

66
×

10
−

12
5.

43
×

10
−

12
1.

24
×

10
−

5
73

.9
8

-1
.1

4
×

10
−

9
3.

93
×

10
−

6
73

.9
8

-7
.4

5
×

10
−

10
3.

96
×

10
−

6
73

.9
8

99



Figure 5.4 shows representative capture model fits to cancer cell (BxPC-3) capture

data as a function of shear stress. For experimental conditions without DEP and espe-

cially with pDEP at 200 kHz (Figures 5.4a and 5.4c), cancer cell capture was generally

high across the length of the device, resulting in good exponential fits to the data. The

capture data with nDEP at 50 kHz (Figure 5.4b) was also fit well by an exponential

function, but was noisier because there was comparatively lower capture compared to

the other two experimental conditions (nDEP repelled cells across a majority of shear

stresses). The magnitude of cancer cell capture with and without DEP effects is repre-

sented by A in the capture model, listed for each cell type under each DEP condition

in Table 5.2. In general, A values were highest for cancer cell capture with pDEP at

200 kHz and lowest for cancer cell capture with nDEP at 50 kHz, as expected. For

PBMCs, A was highest for capture with no DEP and similar for capture with nDEP at

both 50 kHz and 200 kHz. In addition, we found that B values were unique for each

cell type, indicating that the capture performance of each cell type was different and

dependent on EpCAM expression levels and electrical properties.

To interpret our capture data as a function of normal force to an immunocapture sur-

face (which is the key information needed for future simulation work on capture prob-

ability in a hybrid DEP-immunocapture device), we calculated the Stokes drag on each

cell type when in contact with an obstacle in a typical obstacle-array immunocapture de-

vice (such as the one described in [45, 79, 46, 153]) from the normal component of the

cell’s velocity. In addition, we calculated each cell type’s weight (gravitational force, Fg,

with no DEP effects) and predicted DEP response, 〈FDEP〉; these normal forces are all

listed in Table 5.2. Although the equation for 〈FDEP〉 (Equation 5.1) assumes a linearly

varying electric field (which is not the case near the electrodes in our device geometry)

and is derived by only retaining the first term of a linear multipole expansion, Equa-

tion 5.1 provides a reasonable first-order approximation of the DEP force if the electric
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field is approximately axisymmetric on the length scale of the cell and if the characteris-

tic length scale of the electric field non-uniformity is large compared to the cell size [52].

For simplicity and to only compare normal forces directly, we also ignored tangential

DEP forces that are present in the system, but acknowledge that such forces can poten-

tially change immunocapture’s shear dependence. The calculated 〈FDEP〉 values for all

cell types were approximately 1–2 orders of magnitude larger than FStokes and Fg, sug-

gesting that under similar experimental conditions, DEP can be made the predominant

normal force in a hybrid DEP-immunocapture geometry and actuate cell motion toward

or away from immunocapture surfaces in the presence of other weaker fluid mechanical

forces.

Interestingly, the cell size (whose cube is proportional to 〈FDEP〉 magnitude) does

not appear to correlate with the amount of capture increase with pDEP or decrease with

nDEP. For example, BxPC-3 cells are the smallest of the three cancer cell lines, had the

lowest predicted 〈FDEP〉 magnitude, and expressed lower EpCAM levels than Capan-1

cells (Table 5.1), but had the highest A and B values with DEP (Table 5.2). These re-

sults show that BxPC-3 cells had higher capture with pDEP on average (which was

unexpected given its lower EpCAM expression), but that this capture performance de-

cayed faster with increasing shear stress compared to other cell lines, suggesting that

pDEP enhancement may only work optimally at lower shear stresses and also depend

on other factors such as differences in tumor origin, differentiation state, and mutation

status of key oncogenes whose effects on DEP response are difficult to infer from our

current measurements. Importantly, however, our data demonstrate that DEP can en-

hance the immunocapture of cancer cells regardless of their surface antigen expression

levels, and therefore DEP has the potential not only to increase capture purity when

used in combination with traditional immunocapture methods, but also to isolate cancer

cells that are less likely to be captured by these immunocapture methods with epithelial
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markers. DEP-enhanced capture of cancer cells that have undergone the epithelial-to-

mesenchymal transition (EMT), for example, can provide access to a subpopulation of

CTCs that is currently difficult to isolate and facilitate studies on EMT’s role in cancer

progression [100, 123].

5.5 Conclusions

This work characterizes shear-dependent EpCAM immunocapture of pancreatic cancer

cells enhanced by pDEP and nonspecific adhesion of PBMCs reduced by nDEP. We

interpret our capture data using an exponential capture model, and show that capture

performance is dependent on the applied DEP force magnitude, cell surface EpCAM

expression level, and shear stress experienced by cells flowing in the capture device.

Importantly, our results show that DEP enhances immunocapture of cancer cells regard-

less of their surface epithelial antigen expression levels. Our characterization of DEP-

controlled immunocapture inform the simulation of cancer cell and blood cell capture

probabilities in a proposed hybrid DEP-immunocapture system for CTC capture, which

we expect will increase capture purity and facilitate subsequent biological analyses of

captured CTCs to better understand cancer metastasis and improve drug therapies.
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CHAPTER 6

CONCLUSIONS

In this work, we used microfluidic devices to investigate and optimize relevant ex-

perimental parameters for DEP separation and immunocapture techniques operating in

concert. In Chapter 2, we reviewed the state-of-the-art devices—both electrokinetic

and non-electrokinetic—for microfluidic rare cell capture applications, and found that

a majority of these devices have a performance tradeoff between high-efficiency and

high-purity capture. We noted that DEP and immunocapture techniques have comple-

mentary strengths, and hypothesized that a combination of the two can potentially result

in improved rare cell capture performance.

To test our hypotheses, we designed and fabricated a hybrid DEP and immunocap-

ture microfluidic system to characterize adhesion of cancer cells and blood cells to im-

munocapture surfaces. In Chapter 3 and Chapter 4, we made novel measurements of

the DEP response of prostate cancer cells, and demonstrated that DEP and immunocap-

ture techniques can work synergistically to enrich prostate cancer cells from PBMCs; at

the same applied electric field frequency, immunocapture of prostate cancer cells was

enhanced by positive DEP, and nonspecific adhesion of PBMCs was reduced by negative

DEP. To our knowledge, these were the first reported studies of DEP effects on enhanc-

ing immunocapture of prostate cancer cells with a highly organ-specific biomarker.

In Chapter 5, we extended our characterization work to cancers with no organ-

specific biomarkers, and investigated DEP’s effects on anti-EpCAM immunocapture of

pancreatic cancer cells. We made novel measurements of pancreatic cancer cells’ DEP

response, and showed that capture performance is dependent on the applied DEP force

sign and magnitude, cell surface EpCAM expression level, and shear stress experienced

by cells flowing in the capture device. Importantly, we demonstrated that DEP can en-
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hance capture of cancer cells regardless of their surface antigen expression levels, there-

fore indicating that DEP has the potential to isolate cancer cells that are less likely to be

captured by traditional immunocapture methods with epithelial markers. We concluded

that DEP experimental parameters can be tuned and optimized to enhance capture of

cancer cells and reduce nonspecific adhesion of blood cells, although precise measure-

ments of factors affecting DEP response and capture performance (e.g., tumor origin,

differentiation state, mutation status of key oncogenes) are difficult to infer from our

current measurements and require further characterization.

The work presented in this thesis are the first reported studies of a hybrid DEP and

immunocapture microfluidic system for characterization of cancer cell capture. To date,

there has not been a reported study on isolation of CTCs from whole blood using DEP

techniques alone; however, recent work has shown that DEP is capable of isolating

cultured cancer cells from PBMCs in a low-conductivity solution similar to that used in

this thesis [48, 150]. DEP techniques’ limited ability to deliver high capture efficiencies

at low cell concentrations remains a technical challenge [43, 150], and thus we believe

that DEP may work best to increase CTC capture purity as a complement to existing

immunocapture geometries that are already capable of high-efficiency capture. The

need to use a low-conductivity solution to induce a pDEP response in cancer cells and

nDEP response in blood cells at the same applied electric field frequency also introduces

extra preparation steps to the CTC isolation protocol that hinders the simple, single-step

capture of CTCs from whole blood that current state-of-the-art immunocapture devices

employ.

To address the limitations of current DEP methods for rare cell capture applications,

we believe that future work in this field should focus on incorporating DEP effects into

existing immunocapture device geometries to increase CTC capture purity while re-
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taining the immunocapture techniques’ high capture efficiencies. Therefore, immediate

future work should focus on two key areas: (1) characterization of cancerous and non-

cancerous cells’ DEP response with electrorotation techniques, and (2) simulation of

DEP effects in immunocapture geometries to inform the design of future hybrid DEP-

immunocapture devices.

Precise measurement of cells’ DEP response can be made with electrorotation tech-

niques [71, 173, 183, 143, 23] to precisely quantify differences in DEP force magnitudes

as functions of applied frequency and other biological and experimental factors. In par-

ticular, if DEP is to be used in whole blood (a highly conductive medium), then the

DEP response of cancer cells needs to be carefully measured in high-conductivity so-

lutions. In unpublished data, we found that the predicted DEP response of cancer cells

in these high-conductivity solutions (on the order of 1 S/m) is negative across the same

applied frequencies tested with low-conductivity solutions. Therefore, it is important to

verify these predictions (made using dielectric models) with biophysical measurements

to confirm cancer cells’ nDEP response in high-conductivity media such as blood; if the

nDEP response is confirmed, then a frequency range must be selected in which cancer

cells exhibit a weak nDEP response whereas blood cells exhibit a strong nDEP response

to improve capture purity only with repulsion of contaminating blood cells from im-

munocapture surfaces using nDEP and no enhancement of cancer cell capture using

pDEP.

Furthermore, precise measurements of DEP response with electrorotation techniques

can elucidate the differences in DEP force magnitudes and electrical properties between

cell populations that are difficult to measure in our current devices. By characterizing

these differences between non-cancerous epithelial cells (e.g., hTERT-HPNE [89]) or

cancer cells in various stages of the epithelial-to-mesenchymal transition, for example,
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we can not only precisely tune the applied electric field for better separation perfor-

mance from blood cells, but also make biophysical measurements and comparisons of

cellular morphology and composition between cancerous and non-cancerous cells, cells

in various differentiation states, or cells under physiological stress to better characterize

and define CTCs and its subpopulations.

These precise DEP characterization data combined with the shear-dependent im-

munocapture data presented in this thesis can be incorporated into further computational

fluid dynamics simulations of cancer cell and blood cell capture probabilities [46, 153]

with DEP effects in an immunocapture device geometry. These simulations can not

only inform experimental parameters for optimized CTC capture, but also the geometric

design and fabrication of a first-generation hybrid DEP and immunocapture rare cell

capture device capable of high capture efficiency and purity. We expect that such a de-

vice can eventually be used by clinical technicians to produce highly pure captured CTC

samples to facilitate functional and genetic analyses for the development of improved

cancer treatment options.
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