One-Way Functions, Robustness,

and the Non-Isomorphism
of NP-Complete Sets

*
Juris Hartmanis
Lane A. Hemachandrat

TR 86-796
December 1986

Department of Computer Science
Cornell University
Ithaca, New York 14853-7501

“Work supported by NSF Research Grant DCR-8520597
*Work supported by a Fannie and John Hertz Fellowship and NSF Research Grant
DCR-8520597

One-Way Functions, Robustness, and the
Non-Isomorphism of NP-Complete Sets

Juris Hartmanis*
Lane A. Hemachandra'

Department of Computer Science
Cornell University

Ithaca, NY 14853

Abstract
This paper

1. gives a relativized counterexample to the conjectured connection
between the existence of one-way functions and the existence of

non-isomorphic NP-complete sets,

2. establishes that in relativized worlds there are NP-complete sets

that are non-isomorphic in a strong sense.

3. proves that robust machines squander their powerful nondetermin-

istic oracle access in all relativizations.

(1) resolves an open question. (2) extends our knowledge about non-
isomorphic NP-complete sets. (3), sharing the proof techniques of (1)
and (2), enriches the nascent theory of robustness and presents a conse-

quence of the limited combinatorial control of machines.

*Work supported by NSF Research Grant DCR-8520597.
tWork supported by a Fannie and John Hertz Fellowship and NSF Research Grant DCR-8520597.

1 Introduction

1.1 Overview of Results: p-Isomorphisms

The Berman-Hartmanis Conjecture states that all NP-complete sets are p-isomorphic!
[BH77]. Thus it asserts that there is only one NP-complete set, which appears in
many guises. As evidence, Berman and Hartmanis prove that all NP-complete sets
known at the time of their paper, and indeed all paddable NP-complete sets, are
p-isomorphic.

A rival view is championed by Joseph and Young [JY85]. Buoyed by possibly
unpaddable NP-complete sets, they conjecture that all NP-complete sets are not
p-isomorphic. They suggest the following coupling between the Berman-Hartmanis
Conjecture and the nonexistence of one-way functions, which is upgraded to a con-

jecture in the recent FOCS paper of Kurtz, Mahaney, and Royer [KMR86].

(One-way Conjecture)
One-way functions exist if and only if there are non-p-isomorphic NP-complete

sets.

Here, a one-way function is a polynomial time computable, honest (i.e., it shrinks
inputs at most polynomially), one-to-one function whose inverse can not be com-
puted in polynomial time. Selman [Sel85] notes that one-way functions exist if and
only if P # UP, where UP (Valiant [Val76]) is the class of languages accepted by an
NP machine that never has more than one accepting path per input (i.e., a cate-
gorical machine). Intuitive support for the One-way Conjecture comes from these

observations:

e If one-way functions do not exist, the NP-complete sets constructed by Joseph

and Young are isomorphic to SAT [JY85].

ISets A and B are p-isomorphic if and only if there exists a polynomial time computable, onto,

one-to-one reduction of A to B whose inverse is also polynomial time computable.

e If a one-way function f exists, the image f(SAT) will be NP-complete. How-
ever, an isomorphism between f(SAT) and SAT conceivably would let us

invert f.

We call an oracle 4 reasonable if P4 # NP*. Since both the Berman-
Hartmanis Conjecture and the One-way Conjecture imply that P # NP, it follows
that in all unreasonable relativized worlds the two conjectures are trivially refuted.

Until now, no known reasonable oracle has refuted the One-way Conjecture. We
construct such an oracle. Our key result, which states that there is a relativized
world where the One-way Conjecture fails, is that there is an oracle so one-way
functions do not exist yet non-p-isomorphic NP-complete sets exist.

Theorem 2.1 There is a reasonable (i.e., P4 # NP#) oracle A for which P4 =
UP# (that is, there are no one-way functions) yet there are sets that are <P
complete for NP# and are non-p“-isomorphic.

A key open question about isomorphisms has been: Are there reasonable rel-
ativized worlds in which the Berman-Hartmanis Conjecture fails? A recent result
along this line is work by Goldsmith and Joseph [GJ86] that shows there is an oracle
A for which some <P:#-complete sets for NP4 are not p-isomorphic. A subtle point
is that though their sets are complete with respect to reductions accessing the ora-
cle, their sets are non-isomorphic with respect to reductions forbidden access to the
oracle (i.e., p-isomorphic as opposed to p*-isomorphic). Since their non-isomorphic
sets are complete with respect to reductions that access the oracle, a fair relativized
model must allow the isomorphisms to also access the oracle. This strong result

follows from our theorem.

An unpublished paper by Stuart Kurtz also proves this strong relativized refu-

tation of the Berman-Hartmanis Conjecture [Kur83].

Corollary 2.2 There is an oracle 4 for which some <E;“#-complete sets for NP4

are not p“-isomorphic.

Indeed, our techniques not only prevent p#-isomorphism but also defeat more pow-

3

erful isomorphisms.
Theorem 2.3 There is an oracle A for which some <P;#-complete sets for NP4
are not isomorphic via any primitive recursive isomorphism.

Other important work related to the isomorphism conjecture has been done by
Allender [All86], Hartmanis [Har83], Ko, Long, and Du [KLD86], Kurtz, Mahaney,
and Royer [KMR86], Mahaney and Young [MY85], and Watanabe (Wat85].

In particular, the work of Kurtz, Mahaney, and Royer [KMR86] shows that some
bounded-truth-table complete sets for exponential time have m-degrees (equivalence
classes under many-one polynomial time reductions) that collapse (contain a single

p-isomorphic type), and some have m-degrees that fail to collapse.

1.2 Overview of Results: Robustness

The same combinatorics that underlie our isomorphism theorem yield strong
results about robustness. Informally, a robustness property of a machine is a prop-
erty that a machine has with every oracle. For example, if two machines accept
complementary languages for every oracle ((V A) [L(N{) = WD we say that
the machines are robustly complementary.

Schoening [Sch84] considers deterministic machines M that accept some lan-
guage robustly (i.e., there is a language L so that for all oracles A, L(M*) = L).
He shows that the machines of this sort that for some oracle 4’ run in polynomial
time accept exactly the NP] coNP languages.

In this paper, we ask what price a machine pays to have properties robustly.
Throughout the paper, all robust machines (with names like N, Ny, Na, ..., N;)
are assumed to be nondeterministic polynomial time Turing machines. We discuss
robustly categorical machines (machines that for no oracle and no input have more
than one accepting path), robustly S*-accepting machines (machines that for every

oracle accept all inputs), robustly complementary machines (pairs of machines that

accept complementary languages for every oracle), and robustly ¥*-spanning ma-

4

chines (sets of machines whose languages union to L* for every oracle). In each case
we show, if P equals NP, that a machine having a property robustly is emasculated.

That is, if P equals NP we conclude that, in some cases for all oracles 4 and in

some cases for all sparse oracles A,

e robustly categorical machines accept trivial (P#) languages.
e robustly complementary machines accept trivial (P#) languages.

e robustly £*-accepting machines have feasibly computable functions that de-

termine why they accept.

e robustly ¥*-spanning machines have feasibly computable selector functions.
(Selman [Sel79,Sel82] defines a P-selector function over a set of NP machines
to be a polynomial time function that, if at least one of the machines accepts

an input x, chooses one of the machines that does accept the input.)

Another way of looking at our robustness results is as a study of the complexity
of pulling NP from P. If P = NP, we are interested in knowing how oracles can pull
NP from P. In general, even if P = NP, there will be oracles A that separate NpA4
from PA. Indeed, Hartmanis and Hemachandra completely characterize, in terms
of Kolmogorov complexity, the sparse oracles that pull NP® from P¥ when P = NP
[HH86b)].

However, the machines that pull NP4 from P# are wild machines that make
extensive use of their oracles. Our robustness theorems (e.g., Corollary 4.4) say
that if P equals NP, no robust machine (say, no machine that has a machine that
is robustly complementary to it) will be able to pull NP from P.

Corollary 4.4 IfP = NP and N, and N; are robustly complementary (i-e., (VA) [L(N2) =
E(—NJ‘-“—)}), then for every oracle 4

L(N*) € PA.

)

Yet another way of looking at these results is as “machine-based” lowness results.

A set A is extended low [Sch83] if
Np# C pNPo4,

This says we can get by with a surprisingly weak form of access to A; though
NP# might access 4 exponentially often, PNP®4 {5yches A at most polynomially
often and has a far weaker acceptance mechanism. Our robustness results (e.g.,
Theorem 4.1) say that any language accepted by a robust (e.g., robustly categorical)
machine can be accepted with exactly such weak access to A.

For example, the following theorem shows that if nondeterministic machine N;
is robustly categorical, then for every oracle A the powerful nondeterministic access
to the oracle N4 can make is squandered; a weak (polynomial time) machine with
NP @ A as its oracle can accept the same language.

Theorem 4.1 (VA)[NA is categorical] = (VA)[L(N?) € PNPO4].

We have mentioned general interpretations of our robustness theorems in terms
of the difficulty of separating NP from P when P = NP, and in terms of lowness.
Some of the results have special individual meaning, as they extend our knowledge
about some intriguing facets of structural complexity theory.

One example of this is the study of why Y*-accepting NP machines accept.
Borodin and Demers [BD76] show that P # NP () coNP implies there is an NP
machine N so L(N) = £*, yet there is no polynomial time machine that computes
accepting paths of N. Simply put, they prove that if P # NP coNP there is a
machine that always accepts, but we can’t easily determine why it accepts.

Furthermore, even if P = NP, there will be many sparse oracles S and nondeter-
ministic polynomial time machines N for which L(N%) = £* yet we cannot easily
find why N3(-) accepts. Nonetheless, we show that if P equals NP and nondeter-
ministic polynomial time Turing machine N accepts ¥* for all sparse oracles 5,
then for all sparse oracles it will be obvious why N® accepts. (This is true even for

sparse oracles S for which P® # NP%)

Corollary 4.8 If P = NP and L(N®) = £* for every sparse oracle S, then for
every sparse set .S there is a machine in PS that on input ¢ computes an accepting
path of N5(z).

Simply put, we show that machines that please all the oracles all the time must

be trivial in all worlds.

1.3 Methods Overview

The crucial method used in our “there exist one-way functions <#= there exist
non-p-isomorphic NP-complete sets” result is that of density. We form two NP-
complete sets that are of vastly differing densities (on certain prefixes), and show
that their disparate densities preclude p-isomorphism.

Our disproof of the One-way Conjecture starts with a relativization that achieves
P4 = UP# # NP with an oracle 4 of a very special format. Rackoff [Rac82]
essentially does this via a priority construction, and we sketch an alternate proof
that directly diagonalizes. Both our proof and Rackoff’s are patterned after the
ground-breaking work of Baker, Gill, and Solovay [BGST5|.

Given this underlying relativization, we display two NP-complete sets with vastly
differing density properties. They can not be p-isomorphic or even p“-isomorphic; a
purported p-isomorphism would have to map some elements in the more dense set on
to tremendously large elements of the less dense set—larger than the p-isomorphism
can get to in polynomial time. Indeed, by making the densities radically different,
we can defeat even powerful isomorphisms. For example, Theorem 2.3 shows that
we can prevent all primitive recursive isomorphisms.

In summary, the inspiration for our disproof of the One-way Conjecture is the
simple statement “P = NP.” When P = NP, there are NP-complete sets (e.g., {€}
and ©*—{e}) of vastly different densities that are thus not p-isomorphic. In our
proof, P4 is almost equal to NP4 (just a sparse slice of the oracle keeps P4 and

NP4 apart), thus we can create NPA-complete sets of immensely different densities,

7

which are necessarily non-p#-isomorphic.

The same techniques used in our underlying P = UP # NP relativization are
crucial in our robustness proofs. Simply, if we know that (P = NP and) for every
oracle (“robustly”) two machines are, e.g., complementary, we can iteratively either
find a true accepting path of one machine, or greatly reduce the number of plausible
accepting paths. It follows that the languages accepted by robust machines are

trivial.

2 Results

2.1 One-Way Functions and the Berman-Hartmanis Con-

jecture

In this section we show that there is a reasonable (i.e., P* # NP#) oracle A for
which the One-way Conjecture is contradicted.

As corollaries, we show that there are relativized worlds, 4, in which there are
NP4-complete sets that are not pA-isomorphic and, indeed, are not isomorphic even

under tremendously powerful isomorphisms.

Theorem 2.1 (Main Theorem) There is an oracle A that is

1. reasonable (i.e., P4 # NP*),
2. allows no one-way functions (i.e., P4 = UP#), and

3. contradicts the Berman-Hartmanis Conjecture (i.e., there are <P 4 _complete

sets for NP4 that are not p#-isomorphic).

We use the following theorem discussed in Section 3.

Theorem 3.1 Thereis a set A = PSPACE @ B so

1. PA = UP* # NP#, and

2. B has only strings of lengths from the widely spaced set E. E = U iso &

el
22"

2
22 .
eo = 101°, ¢; = 22 for 2 > 0.

Proof of Theorem 2.1 The canonical complete set for A, Univy, is quite dense.
We construct a second complete set, U4, that has huge stretches over which it
contains no strings. From this, it follows that the two sets can not be p?-isomorphic.

Let A be the set constructed in Theorem 3.1. Thus P4 = UP* # NP#, and 4
has the special form described in Theorem 3.1. Let

Univy = {1#a# N, #padding | N/ (z) accepts in at most |padding| steps
U {0#yly e}

Universal set Univ, is a canonical complete set for A.
Our second complete set [74 will, at lengths [“near” an element of E, code all
strings of Univ, of length less than . At lengths [“far” from an element of E, Uy

will contain no elements. We say a length [is “near” an element of E if for some

z € E we have

1 € [log z, 2%].

We must now show (Claim 1) that U4 and Univ, are not pA-isomorphic and
(Claim 2) that Uy is NP“-complete with respect to <P:# reductions.
Claim 1: U, and Univ, are not p*-isomorphic.
Figure 1 shows a picture of /niv, and U4. It should be clear that Uy and Unwvy
are not pA-isomorphic. Why? Look at a length, such as y in the figure, that lives
deep inside the black holes of I/4. There will be over 2¥/2 strings in Univy of length
< y. Now what strings in U4 can a p*-isomorphism map these strings to? With
y properly chosen, y is far less than the log of the e; immediately greater than y,
so the isomorphism can’t reach the strings in U4 clustered around e;. But with
y properly chosen, y will be so much bigger than €;_, that the total number of

strings in the blocks up to e;_; is much less than 2¢¥/2. Thus our pA-isomorphism

9

is faced with the impossible task of making a one-to-one mapping from more than
2¥/2 strings to less than 2¥/2 strings, which is impossible.
More precisely, let f be a purported p#-isomorphism of Univ, and Uy, w.lo.g.

f is computable in DTIME#[n*]. Choose j so large that

25 -1 1 i
22 < (loglog €;)* = Oie]

Set y = logloge;. Now Univy has > 2¥/2 = (log e;)/2 strings of length < y, since
Univ, is more then 50% dense at each length. Since y* < loge; the strings of
length < y can not map to strings in U4 clustered around e; (as these are all of
length > log e;). Thus our p#-isomorphism must map the (log e;)/2 strings onto the
patches of U4 clustered around ey, ..., e;_;. Since the largest such patch extends
to length 2297' there are less than 222':]._1 strings in U, that can be reached by the
isomorphism. So our purported p“-isomorphism must map over (log e;)/2 strings
in a one-to-one fashion on to fewer than 92277 strings. But since we’ve assumed
that 227" < (log €;)/2, this is impossible. So our assumption that there is a
pA-isomorphism between U, and [/niv, is contradicted and Claim 1 is established.
Claim 2: U, is ng;A -complete for NPA4.

Clearly U,y € NP4, since Univy € NP4 and U, just codes in Univy strings at
certain lengths. Let L € NP*. We show L <%4U,. Given z we must reduce
“r € L?” to a question of membership in Uy.

Simply put, if « is close to an e; (Case 2 below) we can reduce to a nice universal
string coded into Uy, and if z is not close to any e; (Case 1 below), we can discover
by brute force all relevant strings of B and then use PPSPACE _ NPFSPACE 4,
determine if z € L.

More precisely, assume L is accepted by machine NA running w.l.o.g. in NTIMEA[n'].
Here is our reduction. For all small z’s (i.e., those for which neither Case 1 nor
Case 2 holds) use table lookup to see if ¢ € L and map to an appropriate element
of U,. For all sufficiently large z either Case 1 or 2 will hold.

Case 1: (3i)[e;_; < log|z| and |z|' < e;] (Figure 2a).

10

Since e;_; < log|z|, we can by brute force find all the strings in B of length up to
ei—1 (by querying the oracle; recall that A = PSPACE & B and B has strings only
at lengths ey, e, ...). Now we're in great shape. Let N; be the machine defined
by: NfSPACE(w#list) simulates NPSPACE®lst(3) " that is, whenever N queries the
second component of its oracle in the simulation we answer yes to the query exactly
when the query is a member of lzst. L(NJPSPACE) € NPPSPACE _ pPSPACE "5nd
when the list correctly includes all elements of B that could be accessed during
the run of N4(z), as it does here, N*4(z) accepts if and only if N]-PSPACE(a:#list)
accepts. Thus our p“4-reduction actually determines if z € L(N4). Ifz € L(N*)
we map to a fixed string known to be in Uy, otherwise we map to a fixed string
known to be out of Uy,.
Case 2: (Je;)[|z| < 2% A |z|' > e; A loge; < [z#N#|z|'| < 2*7] (Figure 2b).
The string in Univ4 coding the action of N4(z) is z# N#|z|'. By the assumption
of Case 2, |e#N#|z|!| € [loge;, 22*). The strings of this length of Univ, are coded
into U4 at length 1 + |z#N#|z|'|. So we simply reduce z to the location of Uy,
that z# N#|z|' has been coded to. Thus we’ve reduced “z € L?” to a membership
question about U4, and proved Claim 2.

We’ve shown claims 1 and 2 and thus proved our Main Theorem. QED

We can extract from our Main Theorem strong results about non-isomorphism
of NP-complete sets.

Stuart Kurtz [Kur83] in an unpublished paper has also obtained the following

corollary.

Corollary 2.2 There is an oracle A for which there are <P 4 _complete sets for

NP“ that are not p4-isomorphic.

Indeed, if we choose the set E of Theorem 3.1 to be even more widely spaced, we
can get NP-complete sets of vastly different densities and defeat powerful types of

isomorphism.

Theorem 2.3

11

1. There is an oracle A for which there are <P;4-complete sets for NP that are

not isomorphic via any primitive recursive isomorphism.

2. There is an oracle A for which there are <P, -complete sets for NP“ that are

not exponential-time#-isomorphic.

3 An Oracle for P =UP # NP

In this section we show that there is an oracle A making P4 = UP* # NP# that

is the disjoint union of PSPACE and a set with strings at widely spaced lengths.

Theorem 3.1 (An Oracle for P=UP#NP)
There is a set A = PSPACE @ B so

1. PA = UP* £ NP*, and

2. B has only strings of lengths from the widely spaced set E. E = U i>o €,

e
-1
22t

co = 1010, ¢; — 22" for i > 0.

Baker, Gill, and Solovay [BGST75| show that there is an oracle A for which
P4 = NP% (] coNP# # NP“. Rackoff [Rac82] modifies their construction to show
that there is an oracle A for which P4 = UP# # NP#; Rackoff’s proof can be easily
modified to prove Theorem 3.1. However, both [BGS75] and [Rac82] use explicit
priority constructions. We now give a direct diagonalization proof of Theorem 3.1.
Also, we suggest an approach to the combinatorial part of the proof that gives
new insight into the structure of the family of potential accepting paths of robustly
categorical machines. Our proof exploits the techniques of [BGS75], of [Rac82],
of Cai and Hemachandra’s relativizations of the counting hierarchy [CH86|, and of
Hartmanis and Hemachandra’s proof that there is an oracle for which P # UP # NP
yet UP has complete languages [HH86a).

Proof Sketch for Theorem 3.1 At stage 1 we take the 2’th NP machine and try

to make it noncategorical. Failing this we insure that it does not accept a certain

12

NP# language L4. At the end, we know P4 £ NP, because no categorical Turing
machine (thus no polynomial time Turing machine) accepts L € NP#. We also
give two methods of proving that P4 = UP#; both methods exploit combinatorial
limitations of the family of accepting paths of categorical machines.

The next few pages sketch the details. First time readers are encouraged to skip
to Section 4.

More precisely, at stage i we work on the i’th NP machine N, which w.l.o.g.
runs in NTIME[n® + ¢]. At the start of stage ¢, B has all strings up to a certain
length already determined; call this oracle B;_1. Our final oracle B will be U ;>0 B;-
Case 1: there is an extension B’ of B;_; satisfying condition 2 of the theorem
and a string z (of any length) so NPSPACE®B' (1) is noncategorical. In this case, set
B; = B’ and consider all strings of length < |z| +1 in B; to be fixed. Thus we have

assured that NFSPACE®B

is noncategorical.

Case 2 Since Case 1 fails to hold we know that for every extension B’ of Bi_;
satisfying condition 2 of the theorem, (Vz) [NI-PSPACE@B'(:L‘) is categorical|. We use
this later to insure that P4 = UP*. For now, choose an z (1) bigger than the
biggest string fixed in B;_i, (2) equal to e, for some m, and (3) big enough so

|z|* + ¢ << 2/*I-2. We wish to insure that

L(NFPSPACE®BY 4 [, — (2| (3y)[y €B A |yl = [=]]} € NP4,

Case 2a: NZPSPACE@B'“I(:B) accepts. Set B; = B;_, and freeze B; up to length

2| +i. Now, @ € L(NFSPACE®P) _ [, so L(NFSPACE®R) £ L.

. . ACE i !
Case 2b: NiPSPACE@B"l(m) rejects. Consider running NiPSPAC (B Uy)(z), for
each y' 5 |y'| = |z|.
Case 2bi: Some v, say y”, causes rejection. We are are done; set B; = Bi_1 U y"
and freeze B; up to length |z|*+i. z € LAAL(N,-PSPACE@B), S0 L(N})SPACE@B) # La.
Case 2bii: All ¥’ cause acceptance. We argue that we never fall through to this

case. For this case to occur, every ¥ must have a unique accepting path (we are

robustly categorical as Case 1 failed) that gets a ‘yes’ answer from querying y' (as

13

Case 2a didn’t hold). But this situation is impossible! If for some pair of paths, say

the paths associated with ¥} and yj), we have
Y1 Y2

yy & pathy, and y, ¢ pathy,,

PSPACE i ! ! . . .
then N; oB Uni U yz)(m) has two accepting paths and is noncategorical, a

contradiction. Each query along one of the 2=l paths can destroy one potential pair
(e.g., if ¥} is queried on the path associated with y3;, the pair (y%,y,5) is destroyed),
so we can eliminate at most (|z|* + 1) 2/°/ pairs. However, there are far more pairs

than this; there are (ZT) pairs, and (2.[;‘) > (|z|* + i) 2*l by our choice of z. So

y"") making NiPSPACE@(B'_I Uy Uy)(w) noncategorical,

there will be some pair (y",
which contradicts the fact that Case 1 didn’t hold.
End of Construction

Clearly P4 # NP4, as no categorical machine (and thus no P4 machine) accepts
the NP“ language L. Why is UP? = P4? Let N/ categorically accept a UpP4
language. Here is how to accept L(N/) in P4. For all small strings (say up to the
biggest string fixed in B at stage i + 1 of the above construction) use table lookup
to determine if z € L(NA). We call an oracle C valid if it meets condition 2 of
Theorem 3.1. For big strings , consider the family of all possible accepting paths
of NPSPACE®B' (1) over all valid B'. This family may be huge. Our task is to prune
it down in a polynomial number of steps. We sketch two methods. Method 2, which
follows [Rac82], is given in greater detail.
Method 1- Sketch A combinatorial argument shows that either the family F
of accepting paths of NZPSPACE@BI(:B), taken over all valid B’, is either (1) small
(polynomial) in size or (2) contains a string c so that a respectable (l—mll—‘:?q%) portion
of F’s paths explicitly ask “c € B” and demand a yes answer and a respectable
(l—ml'%%,—%) portion of F’s paths explicitly ask “c € B” and demand a no answer. In
case (1) we use PSPACE to find all of F and ask all the queries of all the paths
of F to see if any path agrees with B. In case (2), we use PSPACE to compute

the nifty string ¢, and then ask our oracle 4 if ¢ is in B. Regardless of the answer,

14

we've eliminated a reasonable portion of F’s size. Repeat this, finding a ¢’ that

further reduces F’s size by a respectable portion. This is a slow divide and conquer

that reduces F, but we reduce, instead of by 1/2 each time (in which case we’d

be done in log |F| steps), by a fraction dependent on |z|. Fortunately, we still will

shrink F down to polynomial size in a polynomial number of steps. Noting that
|F| < 20("k), the process takes about
log | F|

log((|z[**1)/(l2[**1 — 1))

steps, i.e., polynomial in |z|. Thus in a polynomial number of rounds we have

— O(I$‘2k+2)

reduced F to a small size and Case 1 finishes us off.
Method 2 (After Rackoff)- Sketch Use PSPACE to find if for some valid value

of B’ there is an accepting computation of NPSPACE®B' ()

. if not, reject . Use
PSPACE to get the path, say pathg. Query all elements in the path, let So be all
elements queried on the path, and let Wy be the elements on which the path was
wrong (disagreed with B). If the path was never wrong, we have a true accepting
path, so accept z.

Similarly, use PSPACE to find if, for some valid value of B’ consistent with
our knowledge about the elements of So, there is an accepting computation of
N,-PSPACE@B‘(Z:); if not, reject z. Use PSPACE to get the path, say path;. Query all
elements in the path, let S be all elements queried on the path, and let W, be the
elements on which the path was wrong (disagreed with B). If the path was never
wrong, we have a true accepting path, so accept z.

Keep repeating this. The process finishes quickly. Why? Each path, must
conflict with each of the paths patho, pathy, ..., pathi_1, since we were robustly
categorical over all valid extensions. Note that (Vj, 1> 3 #)[W; N W, = @]. Thus
path, must conflict with pathy on some element that is both in Wy of pathg and
Sk — Wy of pathy. Similarly, it conflicts with path; on some element that is both in
W, of path, and in Sy — W of path, and so on. But since the W,’s are disjoint, we
take up k — 1 spaces of S, — W, just to disagree with the previous paths. Thus the

15

process goes on at most until we examine |z|*+ paths. At that point we either have
eliminated all paths (so N (z) rejects) or we have found a path consistent with our
oracle (so NA(z) accepts). Thus we have accepted an arbitrary UP“ language in
P4, so P4 = UPA.

We have shown P4 = UP* £ NP4, QED

4 Robustness

4.1 Robustness Theorems

This section proves a number of new robustness results. Simply put, machines
pay a heavy price for maintaining robustness properties.

Below are a number of Theorem/Corollary pairs. The theorems emphasize a
“lowness” approach: an NP# machine satisfying a robustness property is repeatedly
shown to be understandable via the far weaker access method of PNP®4. The

corollaries emphasize that if P = NP, machines satisfying a robustness property

can not separate P4 from NP or be too complex.

Theorem 4.1 (Robustly categorical machines accept simple languages)

(VA)[NA is categorical] = (VA)[L(N?) € pNPo4)

Corollary 4.2 If P = NP and N; is robustly categorical (i.e., (VA) [NA is categor-
ical]), then for every oracle 4,

L(N#) € PA.

Theorem 4.3 (Robustly complementary machines accept simple languages)

(VA)[L(NA) = L(N})] = (YA)[L(N) € PRPeA].

Corollary 4.4 If P = NP and N; and N; are robustly complementary (i.e., (VA) [L(N#) =
L(N))), then for every oracle 4

L(N#) € PA.

16

We can restrict our attention to sparse® sets and get similar results (with easier

proofs).

Theorem 4.5 (Machines robustly Y*-spanning on sparse oracles have sim-
ple selector functions)

(V sparse S) [L(NS) U --- U L(N?) = ©*] = (Vsparse 5) (3 f computable in
PNP®3) (Vz) [z € L(N;,,,)]-

Corollary 4.6 If P = NP and for every sparse oracle S, L(NS)U--- U L(N?) =
Y*. then for every sparse oracle S there is a selector function f computable in P*®

that for every input z selects one of the machines that indeed accepts. That is,

(V sparse S) (3f computable in P¥)(Vz)

S
z € L(Nim))

Theorem 4.7 (Machines robustly *-accepting on sparse oracles accept
for transparent reasons)

(V sparse §) [L(N) = £*] = (V sparse S)(3 f computable in PNPOS) (Vz)(f(z)
prints an accepting path of N7 (z)].

Corollary 4.8 If P = NP and N, robustly accepts ©* on sparse oracles (i.e., (V sparse S')
[L(N5) = £*]), then for every sparse oracle S, there is a function f computable in

PNP®5 55 that on any input z

f(z) prints an accepting path of N7 (z).

Theorem 4.9 (Machines robustly complementary on sparse oracles ac-
cept simple languages)

(V sparse §) [L(NF) = L(N?)] = (V sparse §)[L(N?) € pNPes).

Corollary 4.10 If P = NP and N; and N, are robustly complementary on sparse
oracles (i.e., (V sparse S)[L(N7) = L(N;')]), then for every sparse oracle S

L(N?) e P°.

2A set S is sparse if for some k, there are at every length n at most n¥ 4+ k strings in S.

17

Those who find the sight of “P = NP” unsettling will be pleased to know that we
can trade off strength of structural assumptions for strength of robustness properties

as shown below.

Theorem 4.11 (Machines robustly complementary and categorical on sparse
oracles accept simple languages)

(V sparse §) [N and N} are categorical and complementary] = (V sparse S)
[L(Nis) = p(UP N coUP)@S].

Corollary 4.12 If P = UP N coUP and N/ and N]S are categorical and comple-

mentary for all sparse oracles S, then for all sparse oracles S,
L(N?) € P°.

A final point is that all of the above results hold uniformly. Taking Corol-
lary 4.2 as an example, not only is each L(N#) in P4, but there is a single polyno-
mial time Turing machine that works for all A! That is, there is a polynomial time

machine M so that for every A, L(M*) = L(N#).

4.2 A Note on Weakening the Hypotheses

In Theorems 4.1 and 4.3 and Corollaries 4.2 and 4.4, we can restrict our hy-
potheses to sparse oracles. This follows from the easy observation that a machine

is, e.g., categorical for all oracles exactly when it is categorical for all sparse oracles.
Lemma 4.13

1. (VA)[N4 is categorical] <= (V¥ sparse S)[N? is categoricall.

2. (VA)[L(NA) = L(N)] = (¥ sparse §)[L(NF) = L(N))-

Proof Sketch for Lemma 4.13 The = directions are direct. The other di-
rections hold because if a machine is, e.g., noncategorical for (dense) oracle A4, it

fails to be categorical on some specific string . Thus for any sparse oracle S’ that

18

agrees with A’ on a prefix large enough to include all strings queried during the run
of N4'(z), we know that N5'(z) will be noncategorical. (Note that the definition
of sparseness allows oracles that are quite dense on a finite prefix.)

As an example, we can restate Theorem 4.1 as follows.

Theorem 4.14 (Robustly categorical machines accept simple languages)

(V sparse S) [N$ is categorical] = (VA)[L(N}) € pNP&A]

2

4.3 Proof Sketches for Robustness Theorems

Theorem 4.1 This exactly follows from the proof of Theorem 3.1. Theorem 3.1
just shows how to accept in PPSPACE®4 Yowever, the only way Method 2 of
the proof uses PSPACE is to guess paths of a certain form, and NP also can
do that just as well. QED

Theorem 4.3 This is like Theorem 4.1, but is a bit more involved. Recall we
have machines N; and N; that are robustly complementary. W.l.o.g. they are
respectively in NTIME[n® +] and NTIME[n? + j]. We consider the family F;
of paths, over all oracles A4’, on which NA'(z) accepts, and also consider the

family F; of paths, over all oracles A’, on which NJA'(a:) accepts.

Now we use NP to get an accepting path from F; and query in 4 all elements
along the path. Then we use NP to get a path from F; that is consistent with
our knowledge of A on all elements in the first path. Continue this, crucially

alternating between F; and F;.

If we ever fail to find a path we know that family has no accepting paths
and we are done (the machine of that family rejects). If we ever find a path
that agrees with A we have a true accepting path and again are done (the
machine the path belongs to accepts). Note that every pair of one path from
F; and one path from F; must explicitly conflict over the membership of some

element in A (or our machines would not be robustly complementary). But

19

now the argument of Method 2 of the proof of Theorem 3.1 applies. Each
path we take from F; conflicts with each previous path from F; on a different
element, so our whole process terminates after at most 2 max(|z|* +1, |z|” +7)

paths have been studied. QED

Theorems 4.9, 4.7, and 4.5 These are much easier to prove than the general
theorems discussed above. We use an iterative adaptation of the method of

Baker, Gill, and Solvay [BGS75] to prove, as an example, Theorem 4.7.

Let N, be the machine of the theorem. It robustly accepts ¥~ for sparse

oracles. Our goal is to, in P5, find an accepting path of N3 (z).

Use NP to find an accepting path of N?. Query S about all elements along
the path. If none are in S, then we have a true accepting path of N3(z) and
are done. If some are in S, then we’ve discovered some elements of S, call

them So.

Now use NP to find an accepting path of NP (there must be one, as N;
robustly accepts £*). Again, if no elements on the path are in S — So, we have
a true accepting path. Otherwise, we have discovered some new elements of

S. Let S; be the union of these elements and Sy. Keep repeating this.

How long can this go on? Well, we find new elements of S at each step (or
we have an accepting path and are done), but since § is sparse, it only has a
polynomial number of elements that can be touched by the run of N3(z). So
in a polynomial number of steps, we have found all the strings of S that N3(z)

can touch, and the next use of NP will give us a true accepting path. QED

5 Conclusions and Open Problems

By repeatedly reducing the sets of plausible accepting paths, we’ve shown that

if P equals NP robust machines are weak. With no oracle can they separate NP

20

from P, have mysterious accepting paths, or have hard selector functions.
Thus the tragedy of a machine N that has a robustness property is that for
every oracle A, N4 squanders its powerful access to its oracle. A mere polynomial

time machine with oracle NP & A can do as much as N4,

By repeatedly reducing sets of plausible accepting paths and using the fact that
sets with different density properties can’t be isomorphic, we’ve given relativized
refutations of two important conjectures.

The One-way Conjecture states that one-way functions exist if and only if there
exist NP-complete sets that are not isomorphic. We’ve refuted this by displaying
a reasonable (i.e., P4 # NP#) relativized world in which there are no one-way
functions but all NP-complete sets are not isomorphic.

The Berman-Hartmanis Conjecture says that all NP-complete sets are isomor-
phic. We’ve given an extremely strong relativized disproof of this conjecture. Our
construction yielded a relativized world A in which there are <P 4 _complete sets
for NP4 that not only are non-p-isomorphic, but also are non-p*-isomorphic.

An important open problem is: Are there relativized worlds in which (1) one-
way functions exist yet (2) all NP-complete sets are isomorphic? This would give
an interesting alternate refutation of the One-way Conjecture. Even (2) of our
question is an open problem. It is not yet known if there is an oracle A for which
all <P:4_complete sets for NP4 are pA-isomorphic. The nearest result to this is
a recent theorem of Goldsmith and Joseph [GJ86] that constructs an oracle A for

which all <P -complete sets for NP4 are p*-isomorphic.

References

[All86] E. Allender. Isomorphisms and 1-L reductions. In Structure in Com-

plezity Theory, pages 12-22, Springer-Verlag Lecture Notes in Computer
Science #223, 1986.

21

[BD76]

[BGST5]

[BHT77]

(CHS6)]

(GI86]

[Har83|

[HHS6a)]

[HHS6b)

A. Borodin and A. Demers. Some Comments on Functional Self-Re-
ducibility and the NP Hierarchy. Technical Report TR 76-284, Cornell
Department of Computer Science, July 1976.

T. Baker, J. Gill, and R. Solovay. Relativizations of the P=7NP question.
SIAM Journal on Computing, 4(4):431-442, 1975.

L. Berman and J. Hartmanis. On isomorphisms and density of NP and

other complete sets. STAM Journal on Computing, 6(2):305-322, 1977.

J. Cai and L. Hemachandra. The Boolean hierarchy: hardware over
NP. In Structure in Complezity Theory, pages 105-124, Springer-Verlag
Lecture Notes in Computer Science #223, 1986.

J. Goldsmith and D. Joseph. Three results on the polynomial isomor-
phism of complete sets. In Proceedings IEEE Symposium on Foundations

of Computer Science, pages 390-397, 1986.

J. Hartmanis. Generalized Kolmogorov complexity and the structure of
feasible computations. In Proceedings IEEE Symposium on Foundations

of Computer Science, pages 439-445, 1983.

J. Hartmanis and L. Hemachandra. Complexity classes without ma-
chines: on complete languages for UP. In Automata, Languages, and
Programming (ICALP 1986), Springer-Verlag Lecture Notes in Computer
Science, 1986.

J. Hartmanis and L. Hemachandra. On sparse oracles separating fea-
sible complexity classes. In STACS 1986: 3rd Annual Symnposium on
Theoretical Aspects of Computer Science, pages 321-333. Springer-Verlag
Lecture Notes in Computer Science #210, 1986.

22

[7Y85]

[KLD86]

[KMRS6]

[Kur83|

[MY85]

[Rac82]

[Sch83]

[Sch84]

[Sel79)

[Sel82]

D. Joseph and P. Young. Some remarks on witness functions for non-
polynomial and non-complete sets in NP. Theoretical Computer Science,

39:225-237, 1985.

K. Ko, T. Long, and D. Du. A note on one-way functions and polynomial-
time isomorphisms. In ACM Symposium on Theory of Computing,

pages 295-303, 1986.

S. Kurtz, S. Mahaney, and J. Royer. Collapsing degrees. In Proceedings
IEEE Symposium on Foundations of Computer Science, pages 380-389,
1986.

S. Kurtz. A relativized failure of the Berman-Hartmanis conjecture. 1983.

Unpublished manuscript.

S. Mahaney and P. Young. Reductions amoung polynomial isomorphism

types. Theoretical Computer Science, 39:207-224, 1985.

C. Rackoff. Relativized questions involving probabilistic algorithms.

Journal of ACM, 29(1):261-268, 1982.

U. Schoening. A low and a high hierarchy in NP. Journal of Comp. and
Sys. Sci., 27:14-28, 1983.

U. Schoening. Robust algorithms: a different approach to oracles. In
Automata, Languages, and Programming (ICALP 1984), pages 448-453,
Springer-Verlag Lecture Notes in Computer Science, 1984.

A. Selman. P-selective sets, tally languages, and the behavior of polyno-
mial time reducibilities on NP. Mathematical Systems Theory, 13:55-65,
1979.

A. Selman. Reductions on NP and P-selective sets. Theoretical Computer

Science, 19:287-304, 1982.

23

[Sel85] A. Selman. Complexity measures for public-key cryptosystems. Novem-
ber 1985. Unpublished manuscript.

[Val76] L. Valiant. The relative complexity of checking and evaluating. Informa-
tion Processing Letters, 5:20-23, 1976.

[Wat85] O. Watanabe. On one-one P-equivalence relations. Theoretical Computer

Science, 38:157-165, 1985.

24

Strings

Univa
Length: 01 .. 20 e1
E.g., all o\the}2eo -1 strings of
length lessthgn eg in Univa
are coded ingd length eg
of Ua ¢
No Strings No strings here Strings
. I
Ua strings
here
Length: 01.. logeg eg 22%0 y loger eg
Figure 1: Location of strings in Univa and Ua
Case 2 Strings
|
Length: 01.. (logei)/l < x < 28i
Figure 2b: Location of Case 2 Strings
Case 1Strings
I
Length: 01.. ei.1 = loglx < [x[! < e

Figure 2a: Location of Case 1Strings

Figure 2: String Locations

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif

