Let P be a stochastic matrix and F (x), G (x) be vectors of distribution $n \times 1$ $k \times 1$ functions. The Mendelian inheritance model of genetic experiments is

$$F(x) = P \quad G(x), \qquad k \leq n$$

$$n \times 1 \qquad n \times k \quad k \times 1$$

where P then represents a matrix of Mendelian segregation probabilities specified by the genetic hypothesis for n different crosses, $G_j(x)$ is the probability distribution of phenotypes for progeny having the jth genotype, $j = 1, \dots, k$, and $F_i(x)$ is the mixed distribution formed when the distributions $G_j(x)$ are compounded with the ith row of P,

$$F_{i}(x) = p_{i1}G_{1}(x) + \cdots + p_{ik}G_{k}(x)$$
.

The genetic experiment produces m_i independent observations X_{i1} , \cdots , X_{i2} from the distribution $F_i(x)$, $i = 1, \cdots$, n, and the observations from the n different crosses are independent.

The genetic hypothesis specifies P but not G (and hence not F), and the statistical problem is to test the "goodness of fit" of the specified P. Equivalently, if P is of rank r, $r \leq k$, the problem is to test goodness of fit for r linearly independent rows of

$$(I - P(P'P)^{-}P')F(x) \equiv O_{x}$$

where $(P'P)^{-}$ is a generalized inverse of P.

Biometrics Unit, Department of Plant Breeding and Biometry, Cornell University, Ithaca, New York 14850.