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Motivated by new and innovative rental business models, this paper develops a novel discrete-time model of

a rental operation with random loss of inventory due to customer use. The inventory level is chosen before

the start of a finite rental season, and customers not immediately served are lost. Our analysis framework

uses stochastic comparisons of sample paths to derive structural results that hold under good generality

for demands, rental durations, and rental unit lifetimes. Considering different “recirculation” rules — i.e.,

which rental unit to choose to meet each demand — we prove the concavity of the expected profit function

and identify the optimal recirculation rule. A numerical study clarifies when considering rental unit loss and

recirculation rules matters most for the inventory decision: Accounting for rental unit loss can increase the

expected profit by 7% for a single season and becomes even more important as the time horizon lengthens.

We also observe that the optimal inventory level in response to increasing loss probability is non-monotonic.

Finally, we show that choosing the optimal recirculation rule over another simple policy allows more rental

units to be profitably added, and the profit-maximizing service level increases by up to 6 percentage points.

Key words : Service Operations; Capacity Planning and Investment; Inventory Theory and Control; Supply

Chain Management; Stochastic Methods

1. Introduction

Advances in online commercial models have produced a new generation of innovative businesses

built upon renting goods. The flexibility and affordability promised by renting a wide array of

products have led to rental businesses specializing in just about every aspect of our business and
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personal lives. Besides the traditional rental products such as movies, cars, and hotel rooms, less

common goods available to rent range from bicycles to jets, cribs to coffins, and furniture to

camping gear. According to IBISWorld industry analysts, the annual revenue of fifteen different

rental industries in the United States each exceeded $1 billion in 2013, while the annual revenue of

each of the car, heavy equipment, and industrial equipment rental industries surpassed $25 billion.

Luxury goods have received particular attention as fertile ground for rental businesses that make

those goods available to new customer classes. For example, Rent the Runway is a company that

allows customers to rent high-fashion dresses for either four or eight days at approximately 10% of

the retail price of a dress (Wortham 2009). Customers can view the selection of dresses and their

availability through a website, and receive style and fit advice from Rent the Runway consultants

and customer reviews. Dresses are shipped to customers and returned by mail. However, the critical

decision about the number of dresses that will comprise Rent the Runway’s seasonal rental inventory

must be made shortly after pre-season fashion shows, which are several months in advance of the

rental season (Binkley 2011).

Choosing the number of rental units to procure before the start of a rental season without the

possibility of replenishment during the season is an important problem that many rental businesses

face. Despite the seemingly fundamental nature of this problem, operations management literature

offers very little analytical support when lost sales and discrete time periods — natural assumptions

for many rental systems — are considered. In this paper, we analyze a single-product rental system

using a discrete-time framework. We focus on the usage-based loss of rental units over a finite rental

horizon during which no additional rental units may be ordered, e.g., when long procurement lead

times prohibit in-season reordering. In particular, we consider each rental unit to have a random

lifetime, which is characterized by a general probability distribution on the number of times the

unit can be rented before its retirement from the rental inventory. Our goal is to understand the

role of this uncertainty arising from the usage-based loss of rental units on the management of

rental inventory.
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In addition to Rent the Runway, whose dresses are susceptible to both destructive incidents

and wearing out over time, other rental systems face the challenge of losing inventory that can be

difficult to replace in the middle of the rental season. For example, a Paris-based bicycle sharing

program that began with 20,600 bicycles in 2007 had more than 8,000 bikes stolen and another 8,000

bikes severely damaged and in need of replacement within two years (Erlanger and De La Baume

2009). Inventory loss can also occur when customers exercise an option to purchase a product.

Users of Redbox, an automated movie and game rental kiosk, rent a DVD for $1.20 a day. If the

DVD is not returned in 20 days, then the customer pays $24 for the accrued daily rental charge

and owns the DVD. Another example is Rent-A-Center, a company with over $3 billion in revenue

in 2012 and which rents furniture, appliances and electronics to customers who can own the item

if it is rented beyond a certain duration. In its 2012 annual report, Rent-A-Center states that

approximately 25% of its rental agreements result in customer ownership.

Existing work supporting capacity planning for rental businesses relies primarily on queueing

models. Although Poisson or compound Poisson arrival processes may adequately represent de-

mands for some rental businesses, better choices may exist for modeling demand in rental systems

characterized by discrete rental time slots. For example, business travelers occupy a hotel room

for a discrete number of days and are more likely to begin renting a hotel room on Monday night

than a Saturday night. At Rent the Runway, for example, whose customers primarily rent dresses

for events on Fridays and Saturdays, a discrete-time demand model with a period of one week

more accurately represents a customer demand pattern than a Poisson arrival process. Therefore,

extending the discrete-time inventory theory to include loss of rental inventory offers an advan-

tage for a rental system like Rent the Runway. We develop a model that makes no distributional

assumptions and captures (a) operational details such as random rental unit lifetimes (with con-

stant, increasing or decreasing failure rates) and random rental durations, (b) very general demand

models with features such as seasonality or auto-correlations and (c) recirculation rules that are

used in practice for choosing among available rental units to satisfy demands.

We make the following contributions regarding the inventory management of rental systems:
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1. Model and Framework. To the best of our knowledge, we are the first to consider the loss

of rental units according to distributions over the number of times that each unit can be rented

before loss. Thus, our model includes a state variable that represents the number of times that a

rental unit has been rented out (i.e., a “count-based” model) or a state variable that represents a

rental unit’s condition (i.e., a “condition-based” model). It also accommodates an arbitrary demand

process and general distributions for lifetime and duration of each rental unit.

2. Structural Results:

(a) We establish the concavity of the expected profit function in the initial inventory of

rental units for geometric lifetime distributions. Not surprisingly, this structural property holds

independent of the rental unit recirculation rules as the loss probability is constant over time.

(b) For general lifetime distributions, it becomes necessary to consider the rules that allocate

rental units to satisfy customer demand for both count-based or condition-based models.

(c) Count-Based Model: We establish the concavity of the expected profit function for the

“static priority” recirculation rule; i.e., the units to be rented are prioritized according to a list

that does not change over the rental horizon. We show that the concavity of the expected profit

function also holds for a policy that spreads the rental load evenly over all units, allocating the

rental unit that has been rented out the fewest number of times. Referring to this recirculation

rule as the “even spread” policy, we prove its optimality when rental unit loss probabilities are

non-decreasing in the number of times that the unit has been rented.

(d) Condition-Based Model. We demonstrate analogous results for the condition-based

model, showing the concavity of the expected profit function for the “best-first” policy in which

the rental unit in the best condition receives the highest allocation priority. Also, we prove that the

best-first policy is optimal when the state transition probability matrix is totally positive of order

2, a condition that implies that the rental unit failure rate is increasing as its condition worsens.

3. Managerial Insights from Numerical Study

(a) Failing to account for usage-based loss of rental inventory leads to a significant reduction

in the expected profit. For a 5% probability of loss each time a unit is rented, we find that ignoring
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the loss of rental units reduces the expected profit by 7.3% and 33.0% for a half-year and a full-year

rental horizon, respectively.

(b) The optimal response to the increasing loss probability is to first increase the number of

rental units, then decrease the number of rental units and finally stock zero rental units.

(c) For a rental unit lifetime distribution with increasing loss probability, the rental unit

recirculation rule plays an important role according to the rate at which the loss probability

increases. We focus on the count-based model, as similar results apply for the condition-based

model, and compare the even spread policy to the static priority recirculation rule. Choosing the

even spread policy increases the optimal initial inventory level with a corresponding increase of up

to 6 percentage points in the profit-maximizing service level.

The remainder of the paper is organized as follows. Section 2 reviews the rental inventory man-

agement literature. Section 3 introduces our rental inventory model. We establish the structural

properties of this model for geometric lifetime distributions in Section 4 and for general lifetime

distributions in Section 5, where we further identify the optimal rental unit recirculation rule under

certain conditions. The numerical analysis follows in Section 6. We conclude with a summary of

findings and future research directions in Section 7.

2. Literature Review

Early research on rental inventory management exclusively uses queueing models as a foundation

for analysis. The initial advances in queueing theory by Takács (1962) and Riordan (1962) for

the telephone trunking problem — finding the stationary probabilities of a multi-server pure loss

system — have sparked two seminal papers on the problem of sizing a fleet of rental equipment.

Tainiter (1964) formulates an optimization problem for M/G/c/c and G/M/c/c rental systems

based on the limiting distributions of the system states derived by Takács (1962). The decision

variable is the capacity of the rental system and the problem is studied both asymptotically and

over a finite horizon. Whisler (1967), on the other hand, shows that the optimal policy structure for

a rental system with lost sales, periodic reordering, and nonstationary state transition probabilities
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— as in Riordan (1962) — has upper critical values above which inventory should be discarded and

lower critical values below which inventory should be ordered. Our work differs from these studies

by its focus on the inventory decision prior to the rental season, the challenge of handling random

usage-based loss of rental units and stochastic rental duration, and the use of a discrete-time model

for demand representation.

The early research on rental inventory management with lost sales is followed by an extensive

study of the M/M/c queueing model with backlogged demands. Specifically, the problem is posed

as finding the optimal number of servers to employ in a multi-server queuing system, where servers

represent rental units and service time corresponds to the rental duration; see Huang et al. (1977),

Jung and Lee (1989), Green et al. (2001), and Zhang et al. (2012). Motivated by the time-specific

nature of customers’ rentals, however, we restrict our focus to lost sales models in this paper.

Table 1 compares our rental inventory model to the other rental inventory models that also make

the assumption of lost sales. In addition to the continuous-time rental inventory models of Tainiter

(1964) and Whisler (1967) tabulated here, Papier and Thonemann (2008) build on the M/M/c/c

queueing model in Harel (1988), where approximations, as well as lower and upper bounds, are

developed for the lost sales rate as a function of the system capacity. Extending this model to ac-

count for a compound Poisson arrival process, Papier and Thonemann (2008) conduct a stationary

queueing analysis to obtain structural results for a fleet sizing problem and provide an approxima-

tion suitable for implementation. The use of the M/M/c/c or M/G/c/c queueing model as a basis

for studying capacity management for rental systems further follows in Savin et al. (2005), Gans

and Savin (2007), Adelman (2008), Hampshire et al. (2009), and Levi and Shi (2011). However,

our work is different from this stream of research by our consideration of a discrete-time rental

model with a finite rental season, random usage-based inventory loss, and an arbitrary demand

model possessing the ability to capture any distributional characteristic.

In contrast to the continuous-time queueing models, Cohen et al. (1980) use a discrete-time model

to represent a return process to a blood bank with the goal of determining an optimal order-up-to
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Table 1 Comparison of lost sales rental inventory models.

Taniter (1964) Whisler (1967)
Papier and 

Thonemann (2008) Cohen (1980) Baron et al. (2011) Our Paper

Inventory Decision One Time Repeated One Time Repeated One Time One Time

Time Horizon Finite Finite Infinite Finite Finite Finite

Demand Process IID Interarrival Times IID Interarrival Times
Compound Poisson 

Stationary; Also 
Nonstationary

General IID Arbitrary Arbitrary

Rental Duration General IID General IID General IID Deterministic
General IID with a 
Restricted Return 

Process
General IID

Inventory Loss N/A N/A N/A Constant Decay N/A Usage-Based       
Random  Loss

CONTINUOUS TIME DISCRETE TIME

level in every period. Reflecting hospitals’ tendency to order significantly more units of blood than

needed, a constant percentage of the quantity rented by hospitals is returned to the blood bank and

the rest is consumed after a rental duration of a fixed number of periods. A constant percentage

of the inventory leftover at the blood bank is, on the other hand, considered to have decayed.

The problem of finding the optimal inventory level under a periodic review policy is formulated

as a dynamic program and an approximate solution is provided. In comparison, we examine the

one-time pre-seasonal ordering problem and consider the loss of inventory as random, instead of

being a constant proportion. Furthermore, we do not require the assumption of an independent

and identically distributed demand process, and we allow randomness in the rental duration.

Closest to our model is Baron et al. (2011), who determine the optimal pre-season order quantity

for a video rental store with lost sales but no inventory loss. In particular, Baron et al. (2011)

consider a return process that is monotone; i.e., the percentage of the rental units rented in period

t and returned by period n is always greater than or equal to the percentage of the units rented

in period t+ 1 and returned by the same period n. The key result is the concavity of the expected

number of rentals in the number of rental units procured. We are, on the other hand, the first to

establish this result for a rental system with random usage-based inventory loss. We also address

the issue of rental unit inventory allocation, which arises only in our rental inventory model as a

result of accounting for random lifetimes of the rental units.
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To analyze models in which rental unit lifetimes do not follow a geometric distribution, we use

sample path analysis in a very general setting to prove the two main results of our work: the concav-

ity of the expected profit function and the optimal rental unit recirculation rule. This approach has

been used in various settings to model complexities of production and inventory systems. Examples

include the number of customers and their utilities for a model with dynamic substitution by Ma-

hajan and van Ryzin (2001) and the processing times for multi-station production lines by Muth

(1979) and Tayur (1993). Also, our proofs of concavity bear similarities to that of Shanthikumar

and Yao (1987) in their study of systems with multi-server stations.

3. Rental Model: A Sample Path Approach

In this section, we describe a sample path approach to modeling a rental inventory system that

allows us to analyze the system — including rules for recirculating rental units — under general

assumptions about the demand process. Motivated by the problem of selecting the number of rental

units to procure before the start of a finite rental season, we begin our analysis with the following

two-stage model of a single-product, discrete-time rental inventory system with lost sales. In the

first stage, the size of the rental inventory is chosen to be y. Each rental unit is procured before the

start of the season and has a salvage value at the end of the rental season that depends on whether

the rental unit retires from the inventory before the end of the season. Hence, the unit procurement

cost accounts for not just the purchase price, but is adjusted to also include the salvage value for

a dress in “good” condition and the cost of holding the item for the duration of the rental season.

In the second stage, demands occur over N periods and the units purchased in the first stage are

rented to satisfy the customer demands. Each customer is assumed to rent a single unit, and for

simplicity we begin by considering the case in which each rental lasts for a deterministic duration of

A periods. Thus, fulfilling one unit of demand requires that one unit of the inventory is withdrawn

for the period in which the demand is received and for the A− 1 succeeding periods, resulting in

the rental having a deterministic duration of A periods.

A critical aspect of rental inventory planning is to account for the loss of rental units. Misuse

by customers, customer options to purchase rented items or simply the deterioration of the rental
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unit’s quality over time present reasons for why a unit would be retired from the rental inventory.

To account for random usage-based loss of inventory in our model, we assume that each rental unit

m ∈ {1,2, ..., y} fails after a random number of rentals, lm, characterized by a general probability

mass function. More precisely, upon completion of its lmth rental, unit m satisfies no further

demands, although it does have an expected salvage value that is earned at the end of the horizon.

In addition, the demand dn is received in period n ∈ {1,2, . . . ,N}. Taken together, the demands

d1, d2, . . . , dN and the rental unit lifetimes l1, l2, . . . , ly comprise a sample path, which we denote

by ξ; i.e., ξ = {d1, d2, . . . , dN , l1, l2, . . . , ly}. When rental unit loss probabilities change based on the

number of times rented, we must also specify the recirculation rule γ to fully characterize the

system’s operation.

We use Rγ
n(y,ξ) for the number of units rented and Lγn(y,ξ) for the number of sales lost in period

n as a function of the initial inventory of y rental units and the sample path ξ of demands and

rental unit lifetimes for a recirculation rule γ. For convenience, the total number of rentals and lost

sales over the entire horizon are defined as Rγ(y,ξ) :=
∑N

n=1R
γ
n(y,ξ) and Lγ(y,ξ) :=

∑N

n=1L
γ
n(y,ξ),

respectively. We also let W γ
n (y,ξ) denote the number of units that are successfully returned to the

system in the beginning of period n and available to be rented again in that period, and define

Zγn(y,ξ) :=Rγ
n−A(y,ξ)−W γ

n (y,ξ) as the number of rental units that would have been returned in

period n but were lost. A reward r is earned every time a unit is rented, and c is the unit cost of

a lost sale.

The rental system operates for period n of the second stage as follows: (1) Of all the items

rented in period n−A, W γ
n (y,ξ) units are returned while Zγn(y,ξ) retire from the rental inventory.

After returns are received but before rentals are made, the total inventory available to rent out in

period n is Iγn(y,ξ) := y−
∑n−1

t=1 R
γ
t (y,ξ) +

∑n

t=1W
γ
t (y,ξ). (2) The demand Dn is realized as dn. If

dn ≤ Iγn(y,ξ), then dn units are rented out. Otherwise, Iγn(y,ξ) units are rented out. More succinctly,

Rγ
t (y,ξ) := dn∧ Iγn(y,ξ), where a∧ b denotes the minimum of a and b. The rental unit recirculation

rule determines which rental unit is allocated to satisfy each unit of demand, and consequently
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(a) Illustration with two rental units (y = 2).
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(b) Effect of number of rental units y.

Figure 1 Number of rentals and lost sales for Example 1 with a rental duration of two periods (A = 2).

determines W γ
n (y,ξ) and Zγn(y,ξ). (3) Excess demand Lγn(y,ξ) := [Iγn(y,ξ)− dn]−, which can be

alternatively written as dγn −Rγ
n(y,ξ), is lost. Therefore, given the sample path ξ, the dynamics

of the rental system’s operation can be represented recursively as follows, where Iγ0 (y,ξ) = y and

Rγ
t (y,ξ) = 0 for t≤ 0:

Iγn+1(y,ξ) = Iγn(y,ξ)−Rγ
n(y,ξ) +W γ

n+1(y,ξ).

Rγ
n+1(y,ξ) = dn+1 ∧ Iγn+1(y,ξ).

Lγn+1(y,ξ) = dn+1−Rγ
n+1(y,ξ).

(1)

Example 1. Figure 1 illustrates this rental system with a demand sequence of {d1, . . . , d8} =

{1,0,2,0,3,1,2,1} for eight periods (N = 8). Each rental lasts for two periods (A= 2); i.e., a unit

that is rented in period n will next be available to be rented again in period n+ 2. If the system

would operate with only one rental unit (i.e., y = 1), then that unit would be rented in periods 1,

3, 5, and 7 for a total of four rentals, while six units of the demand would be lost. Figure 1a shows

how the demand is divided into rentals and lost sales for a system with y= 2 rental units. Thus, the

addition of the second rental unit allows an additional unit of demand to be satisfied in periods 3,

5, and 7, so that there are now 7 units of fulfilled demand and 3 units of lost sales. Figure 1b shows

how the number of rentals and lost sales change with the number of rental units y. We observe

that the number of rentals is concave in y and that the number of lost sales is convex in y on this
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sample path. In other words, the number of additional rentals produced by one additional rental

unit (i.e., the slope of the rentals curve) is decreasing in y.

As the return process depends on the specific recirculation rule γ, we will describe W γ
n+1(y,ξ) and

Zγn+1(y,ξ) as needed when referring to specific rules. To account for the return of rental units that

are rented in periods N−A+1,N−A+2, . . . ,N , we define W γ
N+1(y,ξ),W γ

N+2(y,ξ), . . . ,W γ
N+A(y,ξ)

as the returns and ZγN+1(y,ξ),ZγN+2(y,ξ), . . . ,ZγN+A(y,ξ) as the lost units in each of the correspond-

ing periods. The total number of lost rental units is denoted by Zγ(y,ξ) :=
∑N+A

n=A+1Z
γ
n(y,ξ).

One way to model rental unit loss is to consider geometrically distributed rental unit lifetimes.

The memorylessness of the geometric distribution leads to a constant probability of rental unit

loss over time. However, if a rental unit does indeed have a higher probability of wearing out over

time, then a rental unit lifetime distribution with an increasing failure rate (i.e., a loss probability

increasing with the number of times the unit has been rented) would be a suitable choice. Bikes, cars

and large equipment are examples of assets for which an increasing loss probability as a function of

the number of rentals could be used to model the rental unit lifetime. Furthermore, lifetimes that

are deterministic — when enforced by safety regulations that require their disposal after a certain

number of uses — can be analyzed as a special case of an increasing loss probability.

Next, we discuss how to incorporate the salvage value of a rental unit into our rental inventory

model. This is an important issue because the salvage value of a rental unit that retires from the

rental inventory during the rental season may differ from the salvage value of a unit that is still

functional at the end of the season. In that case, we separately define the procurement cost sg for

the unit that can be still rented at the end of the rental season and the procurement cost sb for the

unit that has already retired from inventory. The relation sg ≤ sb indicates that the unit retiring

from the rental inventory has been damaged. Hence, it has lost a portion of its value. The relation

sg ≥ sb may, on the other hand, represent the purchase of the rental unit by the customer who is

renting it as discussed in Section 1 for the rental companies Redbox and Rent-A-Center.

To account for the cost of inventory loss in the objective function of our rental inventory model,

the reduction in the salvage value of a lost rental unit (sb− sg) is multiplied by the number of lost
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rental units and subtracted from the revenue as part of the profit function, which we denote by

Πγ(y,ξ). Consequently, we obtain the profit function as follows:

Πγ(y,ξ) = r
N∑
n=1

Dn− (r+ c)Lγ(y,ξ)− sgy− (sb− sg)Zγ(y,ξ).

We are now ready to formulate the rental inventory optimization problem as the maximization

of the expected profit function πγ(y) := E[Πγ(y,ξ)] subject to y ≥ 0. We investigate the concavity

of this expected profit function in the initial inventory of y rental units for geometric lifetime

distributions in Section 4 and for general lifetime distributions in Section 5.

We can also extend this basic model to include a random duration for each rental. We define

Am,i as the random variable denoting the rental duration for the ith demand served by the mth

rental unit for i ≥ 1 and m = 1,2, . . . , y. Each rental lasts for any number of periods between a

minimum of Amin and a maximum of Amax; i.e., Am,i ∈ {Amin,Amin + 1, . . . ,Amax}. We consider

Am,i to be independent and identically distributed according to a general probability mass function

characterized by h(a) := P{Am,i = a}, a = Amin,Amin + 1, . . . ,Amax. For any sample path, we let

Da,n represent the number of units of demand in period n, n= 1,2, . . . ,N , that have a duration of

a periods. Thus, our model of stochastic rental duration differs from that of Cohen et al. (1980),

who model unit demands as having different durations with respect to constant proportions. It also

differs from that of Baron et al. (2011), who require the following condition on the rental duration.

We let Rγ
a,n(y,ξ) denote of the number of rentals of duration a that begin in period n, and

Rγa(y,ξ) denote the number of rentals of duration a that occur over the entire rental horizon.

Similarly, Lγa(y,ξ) represents the number of rentals of duration a that are lost over the entire rental

horizon. We allow W γ
a,n(y,ξ) and Zγa,n(y,ξ) to represent the number of rental units returned and

lost, respectively, in period n after a rental duration of a periods with Zγa (y,ξ) :=
∑N+A

n=A+1Z
γ
a,n(y,ξ).

Furthermore, we define am,i to denote the realized rental duration of the ith demand served by the

rental unit m. It is important to note that the sample path ξ now consists of not only the demand

realizations dn, n= 1,2, . . . ,N , and the rental unit lifetimes lm, m= 1,2, . . . , y, but also the rental

durations am,i, i ≥ 1 and m = 1,2, . . . , y. Also, we use ra for denoting the reward earned with a
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rental that has a duration of a periods. With this notation, the profit on any sample path can be

expressed as:

Πγ(y,ξ) =
N∑
n=1

Amax∑
a=Amin

raDa,n−
Amax∑
a=Amin

(ra + c)Lγa(y,ξ)− sgy− (sb− sg)Zγ(y,ξ).

When rental duration is random, the convexity of the number of lost sales L(y,ξ) in y and thus,

the concavity of the number of rentals R(y,ξ) in y, might not hold for every sample path ξ. As

an example, we consider the addition of two rental units to our inventory system, where the first

additional unit fulfills one customer demand with a very long duration and the second additional

unit fulfills several customer demands with short rental durations. In this case, the number of

additional customer demands satisfied by one extra rental unit is not necessarily non-increasing

in y. Therefore, we proceed by analyzing the structural properties of the expected number of

lost sales and the expected number of rentals. We are the first to consider this modeling aspect

simultaneously with random loss of rental inventory in the following section. It is worth noting

that the random rental duration accounts for each customer’s decision to keep the rental unit for

a different number of periods, but it can also include the random service time needed to repair the

rental unit depending on its condition upon return.

4. Rental Inventory Loss with Geometric Lifetime Distributions

This section considers a model in which each rental unit m has a loss probability of p with each

rental. More specifically, the random variable lm, which denotes the number of times the unit

m∈ {1,2, . . . , y} is rented before retiring from the rental inventory, follows a geometric distribution

with an expected value of 1/p. We assume that r+ c≥ p(sb− sg). This condition implies that the

benefit, r+ c, of converting a lost sale into a rental is greater than or equal to the expected cost,

p(sg − sb), of the rental unit loss. Due to the constant failure rate, the recirculation rule has no

effect on E [Lγn(y,ξ)], E [Rγ
n(y,ξ)], or E [W γ

n (y,ξ)] for any n. Therefore, we omit the superscript in

the notation used in this section.

We establish the concavity of the expected profit function by first presenting a condition re-

lated to the rental return process for which the expectation of the number of lost sales L(y,ξ) :=
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n=1Ln(y,ξ) is convex. Correspondingly, the expectation of the number of rentals R(y,ξ) :=∑N

n=1Rn(y,ξ) is concave in the initial inventory of y rental units for this condition.

Lemma 1. If the expected number of rental units returned E [
∑n

t=1Wt(y,ξ)] is concave and non-

decreasing in y for n= 1,2, . . . ,N , then the expected number of lost sales E[L(y,ξ)] is convex and

non-increasing while the expected number of rentals E[R(y,ξ)] is concave and non-decreasing in y.

All proofs appear in the appendix.

Proposition 1. When rental unit lifetimes are geometrically distributed, the expected profit

π(y) is concave in y for any rental unit recirculation rule.

5. Rental Inventory Loss with General Lifetime Distributions

When the lifetimes of the rental units follow a general distribution, the number of rental units

returned in period n may depend on the policy used to choose among available rental units to

satisfy the demand in previous periods. Also, the number of rentals R(y,ξ) and the number of lost

sales L(y,ξ) might not necessarily be concave and convex, respectively, in y due to a rental unit that

has a particularly long or short lifetime. Therefore, we investigate whether it is possible to establish

the concavity of the expected number of rentals E[R(y,ξ)] as well as the convexity of the expected

number of lost sales E[L(y,ξ)] in the initial inventory of y rental units. We modify the assumption

of r + c ≥ p(sb − sg) for deterministic rental duration to be
∑Amax

a=Amin
rah(a) + c ≥ p(sb − sg) for

random rental duration.

Because we have not yet found a direct algebraic proof, we compare sample paths via coupling,

as described in Chapter 4 of Lindvall (1992). A coupling approach allows us to compare the value

of an additional rental unit in two systems that differ only in the number of rental units. Due to the

rental unit lifetime distributions and the recirculation rule, analysis of the change in the expected

number of rentals would otherwise be extremely difficult. Our approach uses the following steps:

1. Establish demand values d1, d2, . . . , dN , which do not require any distributional assumptions.

2. Operate the system with y rental units, each of which has a lifetime lm, m= 1, . . . , y. The ith

demand, i≥ 1, served by rental unit m has duration am,i.
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3. Add an additional rental unit — the (y+ 1)st unit to the system — that has a lifetime l′ and

serves demands with durations {a′1, a′2, . . .}. To be clear, the system has rental units with lifetimes

l1, l2, . . . , ly, l
′.

4. To the system described in Step 2 (i.e., ignoring Step 3), add a (y + 1)st unit that has a

lifetime ly+1 and serves demands with durations {ay+1,1, ay+1,2, . . .}.

5. To the system described in Step 4, add an additional rental unit — the (y+ 2)nd unit — so

that the system has rental units with lifetimes l1, l2, . . . , ly, ly+1, l
′. This additional rental unit has

the same lifetime l′ and serves demands with same durations {a′1, a′2, . . .} as the additional unit

added to the system in Step 3.

For notational convenience, we define ξ(y) as the sample path consisting of the demands

d1, d2, . . . , dN of all N periods, the rental unit lifetimes l1, l2, . . . , ly, and the demand durations

{am,1, am,2, . . .} for m= 1,2, . . . , y, as well as the lifetime l′ and rental durations {a′1, a′2, . . .} for an

additional rental unit. For example, ξ(y) and ξ(y+ 1) contain all of the sample path information

necessary to analyze the systems described in Steps 3 and 5, respectively.

We consider two types of decisions for rental unit allocations. First, we examine a “count-based”

rental unit state in which the allocation decision is based on the number of times that each unit

has been rented. Then, we study a “condition-based” rental unit state in which the allocation

decision is based on the current state of each rental unit. Each of these models may be relevant

for Rent the Runway. Specifically, the dress’s physical condition may not be observed — requiring

a count-based model — if it is not carefully inspected or if the cause of a dress failure is difficult

to observe as the dress’s condition degrades. For example, a zipper may be more likely to fail over

time even if indications of impending failure may not be observed. On the other hand, a dress’s

physical condition may be observed if it relates to the condition of the fabric. Satin dresses are

susceptible to developing minor damage to individual threads due to their loose weaves, and the

repeated ironing of silk taffeta dresses may cause them to lose their ideal appearance around pleats

and seams. A condition-based model would then be more appropriate for this setting.
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Figure 2 Rental unit recirculation schemes for Example 2 with y = 3. The number inside a box identifies the

rental unit that satisfies a demand.

5.1. Count-Based Rental Unit State

For the analysis in this section, we let `i denote the probability that a rental unit has a lifetime

of i rentals; i.e., it is the probability that a rental unit retires from the rental inventory after its

ith rental, or Pr(lm = i). Under the assumption of deterministic rental duration in which each

rental has a duration of A periods, we assume that r + c ≥ (sb − sg)`i for 1 ≤ i ≤ N/A; i.e., the

benefit of an additional rental to a customer (i.e., r+ c) is greater than or equal to the expected

reduction in the salvage value due to rental inventory loss (i.e., (sb − sg)`i, i ≥ 1). Similar to

the presentation in Section 4 for geometrically distributed lifetimes, this condition takes the form∑Amax
a=Amin

rah(a) + c ≥ (sb − sg)`i, i ≥ N/Amin, for random rental duration so that the expected

profit of serving a customer is not negative.

In this section, we examine two recirculation rules: the even spread policy and the static priority

policy. In the even spread policy, each demand is served by an available rental unit that has been

rented out the fewest number of times among all available rental units. We note that the priority

is assigned to rental units in the order of increasing hazard rate under the even spread policy. The

static priority policy, on the other hand, allocates rental units according to a priority list that does

not change over the course of the rental horizon.
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Example 2. Figure 2 shows how different rental unit recirculation schemes can affect the num-

ber of rentals and lost sales for an example sample path ξ. Using the same demand values as in

Example 1, we now state the lifetimes of available rental units as {l1, l2, . . . , l5}= {2,4,3,4,2}. For

y= 1 and y= 2 with l1 = 2 and l2 = 4, both the even spread and static priority policies satisfy the

same number of demands; i.e., R(1,ξ) = 2 and R(2,ξ) = 5. However, when y = 3, the even spread

recirculation rule enables one more rental over the rental horizon than the static priority rule.

Under the static priority rule, rental unit 1 is lost after serving a demand in period 3, while it is

lost after serving a demand in period 5 under the even spread rule. This allows one extra demand

to be served in period 5 for the even spread rule because it has one more rental unit available than

the static priority rule. Figure 3a shows that the even spread rule also serves one more demand

than the static priority rule when y= 4 and that both policies serve all ten units of demand when

y≥ 5. Figure 3a also demonstrates that the number of rentals is not necessarily concave in y; i.e.,

the addition of rental unit 1 with lifetime l1 = 2 satisfies fewer additional units of demand than the

addition of rental unit 2 with lifetime l2 = 4.

In Figure 3b, we use the demand values from Example 1 but instead let the lifetime of each

rental unit be a discrete uniform random variable between 2 and 4 (i.e., `2 = `3 = `4 = 1/3), and

estimate the expected number of rentals with a simulation executed for a sufficiently large number

of replications so that the standard error of the experiment is negligible. Even though concavity

is violated on individual sample paths, the expected number of rentals is revealed to be a concave

function of the number of rental units. The even spread and static priority policies result in the

same number of rentals regardless of the sample path for y ≤ 2 and y ≥ 5. However, the expected

number of rentals for the even spread policy exceeds that of the static priority policy by 0.33 when

y = 3 and by 0.26 when y = 4. When y = 3, the even spread policy results in at least one more

rental than the static priority policy on 44.1% of the sample paths, and the static priority policy

exceeds the even spread policy on 10.9% of all sample paths.
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(b) Expected number of rentals.

Figure 3 Effect of the number of rental units and rental unit recirculation rule for Example 2.

5.1.1. The Static Priority Recirculation Rule The static priority recirculation rule, de-

noted by the superscript SP , selects the units to be rented according to a priority list, which is the

same for every time period. That is, when a rental unit is needed to satisfy demand, the one with

the highest priority among the set of available rental units is chosen. Therefore, when the rental

duration is deterministic, the static priority recirculation rule is the same as the policy selecting

the rental unit that has been rented the most.

Proposition 2. In a rental system with random rental duration and general rental unit lifetime

distributions, π(y) is concave and non-decreasing in y for the static priority recirculation rule.

5.1.2. The Even Spread Recirculation Rule We now consider the even spread recircula-

tion policy — denoted by the superscript ES — which satisfies a demand with the rental unit that

has been rented the fewest number of times. Defining Rγ
n,m(y,ξ) as the number of times that rental

unit m is rented in period n under some policy γ, an even spread compliant policy selects a rental

unit m to satisfy a demand based on available rental units that minimize
∑n−1

t=1 R
γ
t,m(y,ξ). When

the loss probability for rental units is non-decreasing in the number of times rented, recirculation

priority corresponds to a hazard rate ordering. We assume that ties are broken by some static pri-

ority list for allocating rental units. We first investigate the relation between the expected number

of rentals and the initial rental inventory level (Proposition 3) and discuss the concavity of the
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expected profit function in the initial rental inventory (Proposition 4). We then demonstrate the

optimality of the even spread policy to maximize the expected profit when the loss probability of

each rental unit increases with the number of times that the unit has been rented (Proposition 5).

Proposition 3. For a rental system with random rental duration that follows the even spread

recirculation rule, the expected number of rentals E[RES(y,ξ)] is concave and non-decreasing in the

initial inventory of y units.

For the special case of sg = sb, the expected profit can be expressed in terms of the linear

procurement cost and the expected number of rentals. Therefore, Proposition 3 also implies the

concavity of the expected profit function πES(y) in y when sg = sb. However, when sg 6= sb, we must

show that the expected profit function πES(y) remains concave in the initial inventory of y rental

units.

Proposition 4. When the rental duration is random and the loss probability of each rental unit

increases with the number of times that the unit has been rented, the expected profit πES(y) is

concave in the initial inventory of y rental units under the even spread recirculation rule.

When the rental unit loss probability is increasing in the number of times that the unit has been

rented, we identify the even spread policy as the optimal rental unit recirculation rule to maximize

the expected profit. Our key argument is a pairwise interchange argument in which switching an

allocation that violates the even spread policy to conform to the even spread policy increases the

expected number of rentals. We require additional notation to compare sample paths and make

this argument, which we describe along with an overview of the steps of the proof:

1. Find the first allocation decision over the rental horizon that violates the even spread policy.

We denote this existing policy with the superscript V for “violating.” Assume that this violating

decision occurs in some period n. Specifically, a rental unit j is allocated to demand when some

other rental unit i is available and
∑n−1

t=1 R
V
t,j(y,ξ)>

∑n−1
t=1 R

V
t,i(y,ξ). The availability of rental units

i and j implies that
∑n−1

t=1 R
V
t,j(y,ξ)< lj and

∑n−1
t=1 R

V
t,i(y,ξ)< li.
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2. Consider a switched forward allocation path of units i and j in periods n,n+1, . . . ,N so that

rental unit i is allocated instead of rental unit j. We refer to this allocation with the superscript S

for “switched.”

3. Change values in ξ related to the lifetimes and rental durations after period n for units i

and j with two new partial sample path vectors ξ(1) and ξ(2). Specifically, we generate two sets of

random durations (a(1),1, a(1),2, . . .) and (a(2),1, a(2),2, . . .) for demands after period n served by two

different rental units and inverse probability mass function values η(1) and η(2) for the conditional

lifetime distributions of the two rental units. The latter information allows the determination of

the lifetimes l(1) and l(2).

4. Calculate the number of rentals over the entire horizon under four scenarios (with corre-

sponding notation for the total number of rentals used for convenience): (1) RV (ξ(1), ξ(2)) for the

violating allocation with ξ(1) applied to rental unit i and ξ(2) to rental unit j; (2) RV (ξ(2), ξ(1))

for the violating allocation with ξ(2) applied to unit i and ξ(1) to unit j; (3) RS(ξ(1), ξ(2)) for the

switched allocation with ξ(1) applied to unit i and ξ(2) to unit j; and (4) RS(ξ(2), ξ(1)) for the

switched allocation with ξ(2) applied to unit i and ξ(1) to unit j.

5. Compare scenarios to observe that E [RS(y)] ≥ E [RV (y)], which implies that E [ΠS(y)] ≥

E [ΠV (y)] under certain assumptions on the cost parameters.

6. Go to Step 1 and repeat until the switched allocation is equivalent to the even spread alloca-

tion.

Proposition 5. If the loss probability of each rental unit increases with the number of times

that the unit has been rented and the rental duration is random, the even spread recirculation rule

maximizes the expected profit.

5.2. Condition-Based Rental Unit State

We now study a different model of rental units in which each rental unit has a known state in

the set {1,2, . . . , S} that may change after each time that the unit is rented. On a sample path

ξ, we define smi as the state of rental unit m after it is rented for the ith time, m ∈ {1,2, . . . , y}
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and i ∈ {1,2, . . . , lm}. The initial state of each rental unit is defined as sm0 = 1 and a rental unit’s

retirement from recirculation corresponds to sm,lm = S. A transition probability matrix P governs

the evolution of each rental unit’s state upon each instance in which the unit is rented. We define

P (i, j) as the probability that a rental unit transitions from state i to state j after each rental with

i, j ∈ {1,2, . . . , S}. We also assume that
∑Amax

a=Amin
rah(a) + c≥ (sb− sg)P (i,S) for i= 1,2, . . . , S− 1

so that the expected value of offering a rental is never negative.

One simple recirculation policy based on the observed rental unit state is to allocate the rental

units in increasing order of their state. In other words, the rental unit that is in the best condition

is given the highest allocation priority. We label this policy as the “best-first” policy. Similarly, the

“worst-first” policy gives the highest priority to the rental unit in the worst condition for which it

can still be rented out. For either policy, we show that the expected number of rentals is concave

in the initial inventory level.

Proposition 6. The expected profit π(y) is concave in the initial inventory of y rental units

under either the best-first or worst-first policy with random rental duration.

We next consider the optimal rental unit recirculation policy when rental unit selection decisions

are based on the rental unit condition. We assume that the transition matrix is totally positive of

order 2; i.e., that P (i, j)P (i′, j′)≥ P (i, j′)P (i′, j) for all i < i′, j < j′. Brown and Chaganty (1983)

show that this property implies that the first passage time from state 1 to some state Cj = {i : i > j}

has an increasing failure rate for j = 1, . . . , S− 1.

Proposition 7. If the transition matrix P is totally positive of order 2, then the best-first policy

maximizes the expected profit for a system with random rental duration.

6. An Industrial Numerical Analysis: Rent the Runway

Motivated by the high-fashion dress rental business Rent the Runway, we introduce the model

parameters representing a rental system with usage-based loss of inventory in Section 6.1. We

discuss the impact of the rental inventory loss on the optimal procurement decision in Section 6.2
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and the effect of the rental unit recirculation rule on rental inventory management in Section 6.3.

All numerical testing is performed via sample average approximation, as described in Kleywegt

et al. (2002) and Shapiro (2003).

6.1. Rental Model Parameters

The product we consider is a “middle-tier” dress as described in Eisenmann and Winig (2012); i.e.,

a full-price rental provides a net revenue of $59, which is the difference between $90 in revenue and

$31 in costs of cleaning, shipping, packaging and credit card processing. However, customers are

allowed to rent a second style for $25 and a second size for free; thus, a unit may not achieve $59

in net revenue every time it is rented. We assume that these three scenarios for a rental — renting

as the primary dress with net revenue of $59, renting as the secondary dress with net revenue of

$20, and renting as the free second size with net cost of $5 — occur with probabilities 50%, 20%,

and 30%, resulting in an expected net revenue of r= $32 per rental.

Eisenmann and Winig (2012) report that Rent the Runway purchases a middle-tier dress with

a retail price of $750 for $226. We assume an annual unit holding cost that is equal to 20% of the

purchase price of the dress to account for the cost of storage and the cost of capital. At the end

of a fashion season, dresses in a variety of conditions are sold in New York City at what is known

as a “sample sale.” Based on websites such as Yannetta (2013) that report on these sales, we let a

dress in good condition sell for 80%− 85% off of the $750 retail price and a dress in bad condition

(i.e., a dress that retires from the rental inventory) to sell for 95% off of the retail price. Adjusting

these sample sale prices for staging and transaction costs, we assume a dress that does not retire

from the rental inventory by the end of the season to have a salvage value of $100 and a dress that

retires from the rental inventory to have a salvage value of $30. We also calculate procurement

costs separately for these two types of dresses by combining their purchase prices, holding costs

and salvage values. For a 26-week horizon, the cost of procuring a dress is sg := $149, which consists

of a purchase price of $226, a holding cost of $23 and a salvage value of $100. A dress retiring

from the rental inventory incurs an additional penalty of $70, resulting in a procurement cost of
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Figure 4 The optimal inventory level increases with the loss probability for a 26-week system, and ignoring

inventory loss significantly reduces expected profit compared to the optimal inventory level.

sb := $219. Finally, we choose c := $5 as a customer goodwill penalty for the loss of a sale. With

these parameters, a dress must be rented five times (seven times, on average, if the possibility of

loss exists) to break even based on the ratio sg/c (sb/c).

With each period corresponding to a week, we consider Poisson distributed demand with a mean

of λ= 7 per week and a rental horizon of N = 26 weeks, which corresponds to one of two major

fashion seasons each year. We will also consider a longer rental horizon of N = 52 for a dress that

could be in style for two consecutive seasons. We model each rental duration as lasting for a constant

of A= 2 periods; i.e., the rented dress will be unavailable during the weekend for which it is rented

and the weekend either preceding or following that weekend, depending on the day of the week

on which the rental begins. A more granular representation of the rental duration in terms of the

individual days is certainly possible. However, we believe that weekly periods adequately represent

the system under the assumption that customers of Rent the Runway rent dresses primarily for

weekend events.

6.2. Rental Inventory Loss

The objective is to investigate the importance of accounting for the possibility of usage-based

loss when choosing the initial inventory of rental units. We first analyze a rental system with a

simple demand model in which demand is independent and identically distributed in each period
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(Section 6.2.1). Then, we consider an advanced demand model that incorporates autocorrelated

demand an an important trait for the sale of fashion items (Section 6.2.2).

6.2.1. Independent and Identically Distributed Demand Allowing the lifetime of each

rental unit to follow a geometric distribution with a loss probability of p∈ {0,0.01,0.02,0.05,0.10},

we illustrate the expected profit as a function of the initial inventory of rental units for the short

rental horizon of N := 26 periods in Figure 4, and compare it to the “state of the art” in rental

inventory management represented by Baron et al. (2011), which does not include inventory loss.

Consistent with Proposition 1, we observe the expected profit function to be concave in the number

of rental units to procure in the beginning of the rental season. In the system with no inventory

loss (p= 0), we identify the optimal solution as 16 units with a corresponding service rate — i.e.,

the percentage of customers that are served — of 93.5%. However, when there is the possibility of

inventory loss (i.e., p > 0), we find the optimal number of rental units to increase in the rental unit

loss probability. Specifically, for a 5% loss probability, the optimal policy is to add three rental

units to the initial inventory. Hence, ignoring inventory loss and using 16 rental units instead of

the optimal 19 rental units results in a reduction of 7.3% in the expected profit. Furthermore, the

service rate would only be 79.4% instead of the 88.7% corresponding to the optimal number of

rental units for the system with p= 5%.

Figure 5 shows that the impact of ignoring inventory loss is more dramatic for the longer rental

horizon covering 52 weeks than for the shorter rental horizon with 26 weeks. This can be explained

by the availability of fewer rental units to rent towards the end of the longer rental horizon. The

comparison of Figure 5 to Figure 4 reveals more asymmetry in the expected profit as a function

of the initial inventory of rental units for the longer horizon. More specifically, the slope of the

expected profit function for a lower value of the number of rental units is steeper because each

rental unit averts more lost sales in a long horizon than in a short horizon. Furthermore, the higher

optimal service rate for the system with the longer horizon than the system with the shorter horizon

reflects the higher value of a marginal rental unit. In other words, the consequence of having too

few rental units is more severe in the longer horizon.
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Figure 5 Accounting for inventory loss is more important in terms of effect on expected profit for a 52-week

system.

For rental systems considered in Figure 4 and Figure 5, the optimal policy is to always add more

rental inventory to account for the loss of rental units; i.e., the profit-maximizing inventory level is

increasing in p for p∈ {0,0.01,0.02,0.05,0.10}. However, if the loss probability is sufficiently high,

then the units will not be rented enough to justify having any stock at all, which means that the

optimal policy is to not stock any rental units. Figure 6 illustrates such a policy by considering

c ∈ {20,40,60,80} for the net revenue per rental to represent varying levels of profitability per

rental, N = 26 weeks for a rental horizon, and λ= 7 for the mean demand. We observe that the

optimal response to an increasing inventory loss probability is to initially increase the inventory

of rental units until we reach a certain value of the loss probability p associated with the optimal

number of rental units y? to procure in the beginning of the rental horizon. As p continues to

increase, the optimal number of rental units decreases and the optimal service level also appears

to be non-increasing in the loss probability. Eventually, a loss probability p̂(c) is reached such that

y? = 0 for all p≥ p̂(c). Naturally, the optimal service level and p̂(c) increase with c because a dress

with a higher net revenue per rental requires fewer rentals to be profitable.

6.2.2. Autocorrelated Demand Next, we relax the assumption of independent and identi-

cally distributed demand when generating random demand to demonstrate how advanced demand

models can be used to represent the nuances of demand for fashion products. We model demand
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Figure 6 The optimal inventory level is non-monotonic in the rental unit loss probability p.

using a stationary first-order autocorrelated process in which the marginal distribution is Poisson

with mean 7, and generate random demand by specifying the rank correlation as described in Biller

and Ghosh (2006).

Figure 7a demonstrates that negative first-order autocorrelation improves upon the expected

profit compared to the case of no rank autocorrelation, while positive first-order autocorrelation

causes it to decrease. When demand exhibits negative first-order autocorrelation, the periodicity

of demand and the constant two-period rental duration work together to improve the service rate

for a given number of rental units. On the other hand, positive first-order autocorrelation reduces

the ability of each rental unit to serve demand. Higher rental inventory loss dampens the effect of

autocorrelation, as rental units that do not last for the entire horizon do not experience autocor-

relation’s effects as severely. For a system with no inventory loss (p= 0%), rank autocorrelation of

−0.5 increases the expected profit by $197 (6.6%), and rank autocorrelation of 0.5 decreases the

expected profit by $108 (3.6%). For a system with p= 5%, rank autocorrelation of −0.5 increases

the expected profit by $114 (6.8%), and rank autocorrelation of 0.5 decreases the expected profit

by $79 (4.8%). As shown in Figure 7b, the effect of autocorrelation on the optimal initial inventory

level varies with the loss probability. When the loss probability is low (i.e., p≤ 2%), the optimal

policy is to add rental units as the rank correlation increases. However, the optimal initial inven-

tory level decreases with the rank correlation for high loss probability (i.e., p= 10%), reflecting the
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Figure 7 Positive first-order rank autocorrelation reduces the expected profit, while negative autocorrelation

increases the expected profit.

increased difficulty for each rental unit to profitable due to the combination of the loss probability

and rank correlation.

6.3. Rental Unit Recirculation Rules

Different recirculation rules employed during the rental horizon may result in different numbers of

units available near the horizon’s end. We expect that the importance of the rental unit recirculation

policy varies according to factors such as the horizon length, rental unit lifetime distribution, and

demand characteristics. Of concern to us is a horizon that is short enough that some rental units

are still functional by the end of the last time period but long enough that some rental units have

already retired from the rental inventory during the season. In this section, we compare the even

spread and static priority policy for the count-based model, omitting similar managerial insights

and results for the best-first and worst-first rules of the condition-based model.

Executives at Rent the Runway indicate that the policy used in practice more closely resembles

the static priority policy than the even spread policy. Out of convenience, dresses that have just

returned from cleaning after a rental may be selected to satisfy the next rental. However, because

individual units are not tracked, there may be an element of randomness in dress selection as

workers select a dress to rent out. The goal of this section is to quantify the effect of using the even

spread policy for rental unit recirculation over the static priority recirculation rule. For an adequate
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representation of the role of the rate at which the loss probability is increasing, we consider the

lifetime of a rental unit to be a discrete uniform random variable that takes values between 1 and

Amax ∈ {10,11, . . . ,20} rentals. As before, we consider a rental horizon of 26 periods and a mean

demand of 7 units, with all other parameters remaining the same.

The rental system illustrated in Figure 8 is only profitable when Amax ≥ 13 for the even spread

policy and when Amax ≥ 14 for the static priority policy due to the costs incurred when rental units

are lost. Consistent with Proposition 5, the even spread policy achieves a higher expected profit

than the static priority policies. This performance difference can be explained by the nature of the

even spread policy to delay the failure of rental units until later periods; thus, the even spread

policy satisfies higher demand in later periods compared to the static priority recirculation policy.

On the other hand, the static priority policy causes failures to occur earlier in the rental horizon,

limiting the system’s ability to meet higher quantities of demand in later periods.

The optimal number of rental units for the even spread, as well as the corresponding service

rate, exceeds that of the static priority policy. Choosing the even spread policy instead of the static

priority policy allows for rental units to be profitably added, thereby increasing the service rate.

For example, the optimal initial inventory level is two units higher for even spread policy than the

static priority policy when Amax = 14, and the service rate is 6.0 percentage points higher for the

even spread policy.

7. Conclusion

As rental industries continue to grow in size and the scope of products rented, inventory manage-

ment techniques that account for the complexities of rental systems become critical for achieving

profitability and service goals. We develop a discrete-time rental model with random usage-based

loss of inventory that also includes arbitrarily distributed customer demands and random rental

durations, and identify structural properties for this model. The concavity of the expected profit

function in the initial inventory of rental units is shown to hold for geometrically distributed rental

unit lifetimes regardless of the rental unit recirculation rule. When rental unit lifetimes are gener-

ally distributed, we also show the concavity of the expected profit function in the initial inventory
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Figure 8 Choosing the even spread policy over the static priority policy increases the optimal initial inventory

level, service rate, and expected profit.

of rental units for simple rental unit recirculation rules which are count-based or condition-based.

We further demonstrate the optimality of the even spread policy in the count-based setting and

the best-first policy in the condition-based setting to maximize the expected profit when the loss

probability of each rental unit increases with the number of times it is rented.

Several important insights emerge from a numerical analysis of our rental inventory management

solutions for a high-fashion dress rental business. First, we find that the possibility of inventory loss

during the rental season can significantly affect profitability, even with a small probability of loss

each time that a unit is rented. Choosing the number of rental units to procure in the beginning of

the rental season by ignoring the effect of rental inventory loss can reduce the expected profit by 7%.

Second, we examine how the optimal inventory policy responds to the increasing loss probability.

We show that the optimal policy is to first procure additional rental units, then decrease the number

of rental units to be procured and eventually procure zero rental units. Finally, we consider rental

unit lifetime distributions with loss probabilities that are increasing in the number of rentals. For

horizon lengths and lifetime distributions in which the recirculation rule affects the expected profit,

we show that choosing the even spread policy allows for more inventory to be profitably obtained

and can increase the service level by up to 6 percentage points.

Many categories of products available to rent, including dresses at Rent the Runway, present

customers with the option to substitute if their first choice is unavailable. Thus, a future research di-

rection in the study of rental inventory management is the case of multiple products with stock-out
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based substitution. Potential future work also includes advance reservations, in-season reordering,

and rental pricing.
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Takács, L. 1962. Introduction to the Theory of Queues. Oxford University Press, New York.

Tayur, S. 1993. Structural properties and a heuristic for kanban-controlled serial lines. Management Science

39(11) 1347 – 1368.

Whisler, W. D. 1967. A stochastic inventory model for rented equipment. Management Science 13(9) 640

– 647.

Wortham, J. 2009. Rent the Runway offers designer dresses in the Netflix model. New York Times URL

http://www.nytimes.com/2009/11/09/technology/09runway.html.

Yannetta, T. 2013. No kidding: Rent the Runway’s sample sale returns April 1st. URL http://ny.racked.

com/archives/2013/03/26/rent_the_runway_4.php.

Zhang, Y., M. L. Puterman, M. Nelson, D. Atkins. 2012. A simulation optimization approach to long-term

care capacity planning. Operations Research 60(2) 249 – 261.

Appendix. Proofs

Proof of Lemma 1. For notational convenience, we denote the first forward difference Ln(y + 1,ξ) −

Ln(y,ξ) by ∆Ln(y), indexing this difference to the time period n and the initial inventory of y rental units,

with the objective of comparing the inventory system with y rental units to the system with y + 1 rental

units. We also define 1(·) as the indicator function that takes the value of one if the argument is true and zero

otherwise. In addition, ∆In(y), ∆Rn(y), and ∆Wn(y) indicate the effect of increasing the value of y by one on

the available inventory to rent, the number of rentals, and the number of rental units returned, respectively;

i.e., ∆In(y) = In(y+1,ξ)−In(y,ξ), ∆Rn(y) =Rn(y+1,ξ)−Rn(y,ξ) and ∆Wn(y) =Wn(y+1,ξ)−Wn(y,ξ).

In this proof, we represent the effect of a unit increase in y on the total number of rentals in terms of

the aggregate effect over all N periods; i.e., ∆R(y,ξ) =
∑N

n=1 ∆Rn(y) =
∑N

n=1 ∆In(y)1(dn > In(y,ξ)). We

separate the summation term into two components — one for period n and another for periods 1,2, . . . , n−

1. We further substitute ∆In(y) with its counterpart from the state equations in (1) and Wn+1(y,ξ) =∑Amax

a=Amin
Wa,n+1(y,ξ) to obtain the following characterization for

∑N

n=1 ∆Rn(y):

N∑
n=1

∆Rn(y) = ∆IN(y)1 (dN > IN(y,ξ)) +

N−1∑
n=1

∆Rn(y)



Slaugh, Biller, and Tayur: Managing Rentals with Usage-Based Loss 33

=

(
∆IN−1(y) +

Amax∑
a=Amin

∆Wa,N(y)−∆RN−1(y)

)
1 (dN > IN(y,ξ)) +

N−1∑
n=1

∆Rn(y)

=

(
1 +

N∑
n=1

Amax∑
a=Amin

∆Wa,n(y)

)
1 (dN > IN(y,ξ)) +

N−1∑
n=1

∆Rn(y)1 (dN ≤ IN(y,ξ))

=

N∑
n=1

(
1 +

n∑
t=1

Amax∑
a=Amin

∆Wa,n(y)

)
1(dn > In(y,ξ))

N∏
v=n+1

1(dv ≤ Iv(y,ξ)).

In the case of experiencing at least one lost sale, this expression reduces to an equivalence between∑N

n=1 ∆Rn(y) and 1 +
∑u

t=1 ∆Wt(y) with u= max{n∈ {1,2, . . . ,N} : dn > In(y,ξ)}. This expression further

reduces to 1 +
∑u

t=1

∑Amax

a=Amin
∆Wa,u(y) with u = max{n ∈ {1,2, . . . ,N} : dn > In(y,ξ)} when the system

experiences at least one lost sale. Thus, that E[
∑n

t=1

∑Amax

a=Amin
Wa,t(y,ξ)] is concave and non-decreasing in y

for n= 1,2, . . . ,N is a sufficient condition for the expected number of rentals E[R(y,ξ)] to be concave and

non-decreasing in y, and for the expected number of lost sales E[L(y,ξ)] to be convex and non-increasing in

y. �

Proof of Proposition 1. We use induction to show the satisfaction of the sufficiency condition in Lemma 1

for the concavity of E[R(y,ξ)] in the initial inventory of y rental units. First, we note that there are no

rental units returned in period 1. Therefore, the sufficiency condition is trivially satisfied for n= 1. We next

assume that E[
∑t

i=1Ri(y,ξ)] is concave in y for t= 1,2, . . . , n−1 with n≥ 2. What is important to recognize

here is that the expected number of returns by period n, E[
∑n

t=1

∑Amax

a=Amin
Wa,t(y,ξ)] can be written as

(1−p)
∑Amax

a=Amin
h(a)

∑n−a
t=1 E[Rt(y,ξ)]. Therefore, E[

∑n

t=1

∑Amax

a=Amin
Wa,t(y,ξ)] is a concave function of y, and

it follows from Lemma 1 that E[R(y,ξ)] is concave and non-decreasing in y.

Building on this structural property of the expected number of rentals, we show the concavity

of the expected profit function in two steps: (1) The revenue acquired from all rentals is given by∑Amax

a=Amin
ra
∑N

n=1Ra,n(y,ξ). Because the duration of a rental that begins in period n is independent

of the durations of any rentals that begin in periods 1,2, . . . , n − 1, it holds that E[Ra,n(y,ξ)] =

h(a)E[Rn(y,ξ)]. Consequently, we obtain the expected rental revenue as
∑Amax

a=Amin
rah(a)E[R(y,ξ)]. (2)

To account for different salvage values of lost rental units, we consider the expectation of the difference∑N

n=1Rn(y,ξ) −
∑N+Amax

n=1

∑Amax

a=Amin
Wa,t(y,ξ). Because

∑Amax

a=Amin
h(a) = 1, the expected total number of

returns E[
∑N+Amax

t=1

∑Amax

a=Amin
Wa,t(y,ξ)] := (1− p)

∑Amax

a=Amin
h(a)

∑n−a
t=1 E[Rt(y,ξ)] can be rewritten as (1−

p)
∑N

t=1E[Rt(y,ξ)]. Consequently, we conclude the expected profit function π(y) :=−sgy− cE[
∑N

n=1Dn] +
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(
∑Amax

a=Amin
rah(a) + c− p(sb − sg))E[R(y,ξ)] to be concave in the initial inventory of y rental units for any

rental unit recirculation rule. �

Proof of Proposition 2. We first compare forward differences of systems with y rental units and y +

1 rental units to show that E [∆RSP (y,ξ)] ≥ E [∆RSP (y+ 1,ξ)] ≥ 0 for y ≥ 0. Since all rental units are

unconditionally stochastically equivalent in terms of their lifetimes, without loss of generality we focus on a

marginal unit of inventory that has the lowest priority for when rental units are assigned to demands. By

the definition of the static priority policy, the additional lowest-priority unit will not change the allocation of

any other rental units, implying that ∆ISPn (y,ξ(y))≥ 0. Thus, the forward difference of the state equations

(1) for the number of rentals in a period n+ 1 is

∆RSPn+1(y,ξ(y)) =


0 if dn+1 ≤ ISPn+1(y,ξ(y))

∆ISPn+1(y,ξ(y)) if dn+1 > I
SP
n+1(y,ξ(y)).

Next, we show that
∑n

t=1 ∆RSPt (y,ξ(y))≥
∑n

t=1 ∆RSPt (y + 1,ξ(y + 1)) by induction. For period 1, we ob-

serve that ∆RSP1 (y,ξ(y))≥∆RSP1 (y+ 1,ξ(y+ 1)) due to the forward difference of the state equations with

Iγ1 (y,ξ(y)) = y and ∆Iγ1 (y,ξ(y)) = 1.

Now, we assume that
∑n−1

t=1 ∆RSPt (y,ξ(y))≥
∑n−1

t=1 ∆RSPt (y+ 1,ξ(y+ 1)) for some period n. We account

for the following cases:

1.
∑n−1

t=1 ∆RSPt (y,ξ(y)) = l′ and l′ >
∑n−1

t=1 ∆RSPt (y+ 1,ξ(y+ 1)): In this case, the additional rental unit

is lost before period n for the system with y rental units but is not lost for the system with y+1 rental units.

Because ∆RSPn (y+1,ξ(y+1))≤ 1 by the state equations,
∑n

t=1 ∆RSPt (y,ξ(y))≥
∑n

t=1 ∆RSPt (y+1,ξ(y+1)).

2. l′ >
∑n−1

t=1 ∆RSPt (y,ξ(y)) and
∑n−1

t=1 ∆RSPt (y,ξ(y))>
∑n−1

t=1 ∆RSPt (y+ 1,ξ(y+ 1)): As in the previous

case,
∑n

t=1 ∆RSPt (y,ξ(y))≥
∑n

t=1 ∆RSPt (y+ 1,ξ(y+ 1)) because ∆RSPn (y+ 1,ξ(y+ 1))≤ 1.

3.
∑n−1

t=1 ∆RSPt (y,ξ(y)) =
∑n−1

t=1 ∆RSPt (y + 1,ξ(y + 1)): If
∑n−1

t=1 ∆RSPt (y,ξ(y)) = l′ and
∑n−1

t=1 ∆RSPt (y +

1,ξ(y + 1)) = l′, then the additional unit is unavailable for either system, and
∑n

t=1 ∆RSPt (y,ξ(y)) =∑n

t=1 ∆RSPt (y+ 1,ξ(y+ 1)) = l′. Otherwise, it suffices to show that ∆ISPn (y,ξ(y))≥∆ISPn (y+ 1,ξ(y+ 1)).

Let i=
∑n−1

t=1 ∆RSPt (y,ξ(y)). By the inductive hypothesis, the ith rental of the additional unit occurred no

later for the system with y+ 1 units than the system with y+ 2 units. Thus, after a rental duration of A′i

periods, the additional unit returns to become available in an earlier period for the system with y+ 1 units

than with y+ 2 units, which implies that ∆ISPn (y,ξ(y))≥∆ISPn (y+ 1,ξ(y+ 1)).
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Having shown that the change in the total number of rentals up to period n from one additional rental

unit is non-increasing in y on coupled sample paths (i.e.,
∑n

t=1 ∆RSPt (y,ξ(y))≥
∑n

t=1 ∆RSPt (y+1,ξ(y+1))),

the property that E [
∑n

t=1 ∆RSPt (y,ξ(y))]≥E [
∑n

t=1 ∆RSPt (y+ 1,ξ(y+ 1))] follows because the lifetime and

rental durations of the additional unit for the two systems being compared are independent and identically

distributed. Naturally, this property implies that E [∆RSPt (y,ξ(y))]≥E [∆RSPt (y+ 1,ξ(y+ 1))].

Finally, we show that πSP (y) is concave and non-decreasing in y; i.e., ∆πSP (y)≥∆πSP (y+ 1) for y ≥ 0.

To determine when the concavity of the expected number of rentals in the initial inventory level implies

the concavity of the expected profit, we must analyze whether the (y+ 1)st unit for a system with y units

and the (y + 2)nd unit for a system with y + 1 units are lost. To do so, we compare ∆ΠSP (y,ξ(y)) to

∆ΠSP (y+ 1,ξ(y+ 1)) with the profit on a sample path written as

∆ΠSP (y,ξ(y)) =

Amax∑
a=Amin

(ra + c)∆RSPa (y,ξ(y))− sg − (sb− sg)1

{
n∑
t=1

∆RSPt (y,ξ(y))≥ l′

}
. (2)

We immediately observe that ∆ΠSP (y,ξ(y))≥∆ΠSP (y+ 1,ξ(y+ 1)) if ∆RSP (y,ξ(y)) = ∆RSP (y+ 1,ξ(y+

1)). If ∆RSP (y,ξ(y))>∆RSP (y + 1,ξ(y + 1)), then the expected effect for the system with y rental units

of the ∆RSP (y,ξ(y)) − ∆RSP (y + 1,ξ(y + 1)) extra rentals of an additional unit must be non-negative.

Considering the loss probability for the extra ∆RSP (y,ξ(y))−∆RSP (y + 1,ξ(y + 1)) of the system with

y rental units to which the (y + 1)st unit is being added, it suffices that
∑Amax

a=Amin
rah(a) + c≥ (sb − sg)`i,

i≥N/Amin for ∆πSP (y)≥∆πSP (y+ 1) to hold, completing the proof. �

Proof of Proposition 3. The goal is to show that the forward difference of the number of rentals is de-

creasing in y when the rental system follows the even spread recirculation rule. To do so, we define a

restricted allocation of rental units to a reduced number of demands d′n(y,ξ(y)) = dn−RESn,y+1(y+1,ξ(y+1)),

n= 1,2, . . . ,N ; i.e., any unit demand served by the (y+1)st rental unit for the system with y+1 units is not

allowed to be satisfied by any rental unit when the system has only y units. We denote the number of units

rented in period n with this restricted allocation by RESrn (y,ξ(y)). By definition of the restricted allocation,

we immediately recognize the equivalence between RESrn,m (y,ξ(y)) and RESn,m(y+ 1,ξ(y+ 1)) for n= 1,2, . . . ,N

and m = 1,2, . . . , y. In other words, the satisfaction of the ith demand by the rental unit m ∈ {1,2, . . . , y}

occurs in the same period for the restricted system with y units and the unrestricted system with y + 1

rental units. Thus, the addition of one rental unit with lifetime l′ and random durations {a′1, a′2, . . .} to the

system with y rental units has the same effect for the system with y+ 1 rental units; i.e., ∆RESrn (y,ξ(y)) =

∆RESn (y+ 1,ξ(y+ 1)). Hence, we also have
∑N

n=1 ∆RESrn (y,ξ(y)) =
∑N

n=1 ∆RESn (y+ 1,ξ(y+ 1)).
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Next, we show that
∑N

n=1 ∆RESn (y,ξ(y))≥
∑N

n=1 ∆RESrn (y,ξ(y)) by removing the allocation restrictions so

that the recirculation rule obeys the even spread policy and that state equation Rγn(y,ξ) = min{dn, Iγn(y,ξ)}

in each period n. Specifically, we show that
∑n

t=1 ∆RESt (y,ξ(y)) is non-decreasing in {d1, d2, . . . , dn}, which

implies that
∑n

t=1 ∆RESn (y,ξ(y)) ≥
∑n

t=1 ∆RESrt (y,ξ(y)) holds because dt ≥ d′t(y,ξ(y)) for t = 1,2, . . . , n.

In period 1, the inductive hypothesis is true by the state equations because ∆RES1 (y,ξ(y)) = 1{d1 > y} is

non-decreasing in d1. For some period n with
∑n−1

t=1 ∆RESt (y,ξ(y))≥
∑n−1

t=1 ∆RESrt (y,ξ(y)), we consider the

following cases:

1. ∆RESn (y,ξ(y))≥∆RESrn (y,ξ(y)). The result follows immediately.

2. ∆RESn (y,ξ(y)) < ∆RESrn (y,ξ(y)). We must show that
∑n−1

t=1 ∆RESt (y,ξ(y)) + ∆RESn (y,ξ(y)) ≥

∆
∑n−1

t=1 R
ESr
t (y,ξ(y))+∆RESrn (y,ξ(y)). To do so, we will demonstrate that ∆IESrn (y,ξ(y))−∆IESn (y,ξ(y))≤∑n−1

t=1 ∆RESt (y,ξ(y))−
∑n−1

t=1 ∆RESrt (y,ξ(y)). Each unit difference comprising ∆IESrn (y,ξ(y))−∆IESn (y,ξ(y))

can only occur when
∑n−1

t=1 ∆RESt,m(y,ξ(y)) >
∑n−1

t=1 ∆RESrt,m (y,ξ(y)) for some rental unit m. Therefore,∑n−1
t=1 ∆RESt (y,ξ(y)) + ∆RESn (y,ξ(y))≥

∑n−1
t=1 ∆RESrt (y,ξ(y)) + ∆RESrn (y,ξ(y)).

Thus, the inductive hypothesis holds to show that the value of an additional rental unit cannot decrease

with the conversion of the restricted allocation to an unrestricted allocation while maintaining the even spread

policy; i.e.,
∑N

n=1 ∆RESn (y,ξ(y))≥∆RESrn (y,ξ(y)). Since it was also shown above that E[
∑N

n=1 ∆RESrn (y)]≥

E[
∑N

n=1 ∆RESn (y + 1)], we see that E[RES(y,ξ)] is concave and non-decreasing in y for the even spread

recirculation rule. �

Proof of Proposition 4. We start with the definition of Qi(y,ξ(y)) :=
∑y

m=1 1
{∑N

n=1R
ES
n,m(y,ξ(y)) = i

}
as the number of rental units that are rented exactly i times during the rental horizon. Because rental

unit lifetimes are independent and identically distributed, we can also express the expected number of

returns E[
∑N+Amax

n=1 WES
n (y,ξ)] as

∑N

i=1(1 − `i)E [Qi(y,ξ)]. The goal is to demonstrate the concavity of

E[
∑N+Amax

n=1 WES
n (y,ξ)] in y. We do this by investigating whether the forward difference of the expected

number of returns is non-increasing in y; i.e., ∆E
[∑N+Amax

n=1 WES
n (y,ξ)

]
≥ ∆E

[∑N+Amax

n=1 WES
n (y+ 1,ξ)

]
,

which can be equivalently written as follows for y≥ 0:

N∑
i=1

(1− `i)∆E [Qi(y,ξ)]≥
N∑
i=1

(1− `i)∆E [Qi(y+ 1,ξ)] .

To prove this condition, we next consider a sample path in which both the rental unit lifetimes and the

duration of each demand that they satisfy have already been revealed for rental units 1,2, . . . , y. However,
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the lifetimes for rental units y + 1 and y + 2, which are used in the analysis of forward differences, and

the duration of all demands satisfied by those rental units are random. Since the lifetimes of rental units

y+ 1 and y+ 2 are stochastically equivalent, it holds that ∆E [Qi(y,ξ)]≥∆E [Qi(y+ 1,ξ)] for i= 1,2, . . . , j.

This condition, however, does not necessarily imply that ∆E [Qi(y,ξ)] ≥ ∆E [Qi(y+ 1,ξ)] for i > j as the

addition of a rental unit might cause other rental units to be allocated fewer times to satisfy the demand (in

expectation over random rental durations) and ∆E [Qi(y,ξ)] takes a negative value for some i.

To account for this scenario in which
∑

i>j
∆E [Qi(y+ 1,ξ)] >

∑
i>j

∆E [Qi(y,ξ)] holds for some j, we

build on Proposition 3 and the property of the increasing loss probability. Specifically, it follows from

Proposition 3 that
∑j

i=1 ∆E [Qi(y,ξ)]+
∑

i>j
∆E [Qi(y,ξ)]≥

∑j

i=1 ∆E [Qi(y+ 1,ξ)]+
∑

i>j
∆E [Qi(y+ 1,ξ)];

i.e.,
∑j

i≥1 ∆E [Qi(y,ξ)] −
∑j

i≥1 ∆E [Qi(y+ 1,ξ)] ≥
∑

i>j
∆E [Qi(y+ 1,ξ)] −

∑
i>j

∆E [Qi(y,ξ)]. It also fol-

lows from the increasing loss probability property that `i is non-decreasing in i. Consequently, we obtain∑
i=1(1− `i)∆E [Qi(y,ξ)]≥

∑
i=1(1− `i)∆E [Qi(y+ 1,ξ)]. Therefore, for the rental unit lifetime distribution

with an increasing failure rate, the expected number of returns is concave in y, resulting in the concavity of

the expected profit function in y under the assumption that
∑Amax

a=Amin
rah(a) + c≥ (sb− sg)`i. �

Proof of Proposition 5. We first focus on the proof of Step 5 listed in the text leading up to the propo-

sition, and begin by showing that RS(ξ(1), ξ(2)) + RS(ξ(2), ξ(1)) ≥ RV (ξ(1), ξ(2)) + RV (ξ(2), ξ(1)). First, by

the increasing failure rate property, we note that for a given value of η(1) or η(2), rental unit i will have a

remaining lifetime that is at least as long as that of rental unit j.

Next, we show that RS(ξ(1), ξ(2)) ≥ RV (ξ(2), ξ(1)) and RS(ξ(2), ξ(1)) ≥ RV (ξ(1), ξ(2)). We consider each

inequality separately:

• RS(ξ(1), ξ(2))≥RV (ξ(2), ξ(1)): In this case, we compare the loss period of rental unit i defined by ξ(1)

in the switched allocation to rental unit j defined by ξ(1) in the violating allocation. Due to sample path

coupling, unit j has a remaining lifetime in the violating allocation that is less than or equal to that of unit

i in the switched allocation. By induction, we can show that
∑n

t=1R
V
t (ξ(1), ξ(2)) ≤

∑n

t=1R
S
t (ξ(1), ξ(2)) for

n= 1,2, . . . ,N . We omit this induction argument for its similarity to that of Proposition 3.

• RS(ξ(2), ξ(1))≥RV (ξ(1), ξ(2)): In this case, we compare the loss period of rental unit i defined by ξ(2)

in the switched allocation to rental unit j defined by ξ(2) in the violating allocation. Again by sample path

coupling, unit j has a remaining lifetime in the violating allocation that is less than or equal to that of unit i
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in the switched allocation. As in the previous case, we can show that
∑n

t=1R
V
t (ξ(2), ξ(1))≤

∑n

t=1R
S
t (ξ(2), ξ(1))

for n= 1,2, . . . ,N .

Because rental unit lifetimes and durations are independent and identically distributed, the inequality

RS(ξ(1), ξ(2)) +RS(ξ(2), ξ(1))≥RV (ξ(1), ξ(2)) +RV (ξ(2), ξ(1)) implies that E [RS(y)]≥E [RV (y)]. Thus, under

the assumption that
∑Amax

a=Amin
rah(a) + c ≥ (sb − sg)`i, the even spread allocation policy maximizes the

expected profit. �

Proof of Proposition 6. The proof proceeds analogously to Propositions 3 and 4 by analyzing the marginal

effect of an additional rental unit in a sample path coupling framework for which s̃i is the state of the

additional unit after it has been rented i times. We analyze the best-first policy denoted by superscript BF

but note that the same logic applies for the worst-first policy. We rely on the reasoning of Proposition 3

but must confirm the inductive argument for the condition-based model. Specifically, we define a restricted

allocation BFr analogous to that of Proposition 3 and show that the change in the number of rentals

is non-decreasing as the allocation restrictions are removed. Based on the definition of smi, the period in

which the ith allocation of a rental unit m occurs is non-decreasing as the restrictions are relaxed. As

each demand restriction is relaxed,
∑N

n=1Rn(y) either remains the same or increases by one. Thus, the

expected number of rentals can only increase with the conversion of the restricted allocation to an unrestricted

allocation while maintaining the best-first policy, and
∑N

n=1 ∆RBFn (y)≥
∑N

n=1 ∆RBFrn (y). Since it also holds

that E[
∑N

n=1 ∆RBFrn (y)]≥E[
∑N

n=1 ∆RBFn (y+ 1)], E[RBF (y,ξ)] is concave in y for the best-first (and worst-

first) policies. Using the assumption provided above about the transition probability matrix, the argument

presented in Proposition 2 holds and the concavity of the expected number of rentals implies the concavity

of the expected profit function. �

Proof of Proposition 7. The proof proceeds as in Proposition 5 with the need to only modify the inverse

probability mass function values η(1) and η(2) for the conditional lifetime distributions of the two rental

units. For P that is totally positive of order 2 and given either η(1) or η(2), rental unit i will always have a

longer remaining lifetime (i.e., the number of possible allocations after period n− 1) than rental unit j. The

remainder of the proof follows as in Proposition 5. Thus, with the assumption that
∑Amax

a=Amin
rah(a) + c≥

(sb− sg)P (i, S) for i= 1, . . . , S− 1, the best-first recirculation policy maximizes the expected profit. �


