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 Proteins are macromolecules that perform many key biological functions in living 

organisms. However, despite their functional complexity, they do not act in isolation but are part 

of a large underlying cellular network – the protein interactome. In my thesis, I focus on ways in 

which the structure, topology and properties of this interactome network can be leveraged to 

better understand mechanisms of human disease and evolution at a molecular level. This work 

can be broken down into 3 broad categories – (1) in chapters 2-4, I focus on combining protein 

structure with interactome networks to better understand disease mechanisms via loss or gain of 

specific functions; (2) in chapters 5 and 6, I use gene expression data in conjunction with 

networks to study interaction dynamics and how this is useful in predicting cancer outcome; (3) 

in chapters 7 and 8, I examine global principles of protein network evolution from yeasts to 

human. At the beginning of each chapter, I have outlined both my role and the role of my 

colleagues in conducting the research described in the chapter. 
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CHAPTER 1 

A NETWORK PERSPECTIVE 

 

John Donne wrote – “No man is an island”, golden words in today’s interconnected and 

interdependent world. But it is not just humans who are part of intrinsic networks; the 

molecules that make us human are also part of complex biological networks. In the 

following chapter, I outline the relevance of the network perspective in biology. 
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1.1 INTRODUCTION 

 

The building blocks of life, nucleic acids and proteins, are complex bio-molecules that 

can carry out numerous biological functions. However, despite their functional 

complexity, the vast majority of these molecules do not act in isolation. Rather, they are 

part of well-coordinated biological networks that are robust, fault-tolerant and highly 

efficient. In my thesis, I focus on one such biological network – the protein-protein 

interaction network. In this network, the nodes are proteins and edges between these 

nodes represent biophysical interactions between proteins. My dissertation focuses on 

ways in which we can use the protein network to elucidate molecular mechanisms of 

human disease and evolution.  

 

In the first part of my thesis – chapters 2, 3 and 4, I discuss how interaction networks can 

be combined with protein structures to generate three-dimensional structurally resolved 

networks. I then study disease mutations in the concept of these 3D networks to obtain 

novel insights into mechanisms of disease progression. 

In the second part of my thesis – chapters 5 and 6, I focus on combining gene expression 

data with protein networks to understand the dynamics of interactions, as well as improve 

cancer outcome prediction. 

In the third and final part of my thesis – chapters 7 and 8, I study the evolution of protein 

networks from yeasts to human. I develop statistical frameworks that can be used to 
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compare protein networks from different organisms and enunciate the molecular basis of 

network evolution. 

 

The overall theme of this thesis is to show how network structure, organization and 

dynamics can be leveraged to gain key insights into mechanisms of complex biological 

processes. In future, similar methods may be applied to other biological networks such as 

transcriptional or metabolic networks, to uncover hitherto unknown mechanisms. 
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CHAPTER 2 

HINT: High-quality protein interactomes and their applications in 

understanding human disease 

In the following chapter, we describe the development of HINT, a high-quality repository of 

protein-protein interactions in different organisms. I am the sole first author of the paper 

resulting from this chapter (Das and Yu, BMC Systems Biology 2012). There is another paper on 

which I am a co-first author (Meyer*, Das* et al Bioinformatics 2013 *=Equal contribution) that 

builds on HINT and describes the generation of structurally-resolved interactomes. I do not 

devote a separate chapter to it as a lot of the relevant conceptual details are covered in Chapter 3. 
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2.1 ABSTRACT 

A global map of protein-protein interactions in cellular systems provides key insights into the 

workings of an organism. A repository of well-validated high-quality protein-protein interactions 

can be used in both large- and small-scale studies to generate and validate a wide range of 

functional hypotheses. We develop HINT (http://hint.yulab.org) - a database of high-quality 

protein-protein interactomes for human, Saccharomyces cerevisiae and Schizosaccharomyces 

pombe. These were collected from several databases and filtered both systematically and 

manually to remove low-quality/erroneous interactions. The resulting datasets are classified by 

type (binary physical interactions vs. co-complex associations) and data source (high-throughput 

systematic setups vs. literature-curated small-scale experiments). We find strong sociological 

sampling biases in literature-curated datasets of small-scale interactions. An interactome without 

such sampling biases was used to understand network properties of human disease-genes - hubs 

are unlikely to cause disease, but if they do, they usually cause multiple disorders. HINT is of 

significant interest to researchers in all fields of biology as it addresses the ubiquitous need of 

having a repository of high-quality protein-protein interactions. These datasets can be utilized to 

generate specific hypotheses about specific proteins and/or pathways, as well as analyzing global 

properties of cellular networks. HINT will be regularly updated and all versions will be tracked. 
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2.2 INTRODUCTION 

Numerous recent efforts in systems biology have tried to characterize the set of all possible 

pairwise physical interactions or the binary protein “interactome” of an organism (Bader et al., 

2008; Cusick et al., 2005; Vidal, 2005). Most proteins perform their functions through 

interactions (Pawson and Nash, 2000). Thus, these large-scale maps are critical in elucidating the 

biological roles of functional products of genes that are identified by large-scale genome and 

cDNA sequencing projects. Because most of these efforts are discovery-oriented and try to 

explore previously unknown functionalities, it is of utmost importance to ensure that the resultant 

maps are of high quality. Erroneous results at this stage could propagate into both ill-conceived 

hypotheses and futile downstream experiments. Moreover, it has been shown that high-quality 

interaction networks can provide key insights into fundamental topological and biological 

properties of cellular systems (Batada et al., 2006, 2007; Bertin et al., 2007; Han et al., 2004). 

Although there are numerous databases (Hu et al., 2009; Kerrien et al., 2012; Keshava Prasad et 

al., 2009; Licata et al., 2012; Mewes et al., 2011; Salwinski et al., 2004; Stark et al., 2011; 

Turner et al., 2010) that try to systematically curate the entire repository of interactions for 

different organisms, there has been very little effort in filtering out unreliable ones. This has led 

to low overlaps between independent publications and resultant confusion as to which 

interactions are correct (Cusick et al., 2009; Venkatesan et al., 2009; Yu et al., 2008).  

There are two major types of protein-protein interaction data – binary physical interactions and 

co-complex associations. While some databases distinguish between these two orthogonal 

datasets, others fail to do so. Binary interactions represent a direct biophysical interaction 

between two proteins. On the other hand, co-complex associations provide information about co-

membership in a complex. A lot of these associations may actually represent indirect interactions 
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(Cusick et al., 2009; Yu et al., 2008). The biological information conveyed by these two kinds of 

interactions is different and for many applications it is necessary to have a clear distinction 

between these two.  

There are two major methods to obtain a global map of binary interactions – literature-curation 

(LC) and high-throughput experiments (HT) (Cusick et al., 2009). LC refers to systematically 

collecting interaction data from thousands of small-scale studies directed at validating a single or 

a few specific hypotheses. On the other hand, HT experiments produce large-scale interaction 

maps. Because most LC data are generated by hypothesis-driven experiments, it is much easier 

to infer biological function from those studies as compared to HT experiments. On the other 

hand, although the search space of some HT experiments might be focused on certain functional 

groups, most HT experiments are not designed to detect the presence or absence of specific 

interactions. Any experiment can have two kinds of bias – “assay bias” and “sampling bias”. The 

first arises because no assay is perfect and all experiments – HT or small-scale have their own 

characteristic biases (von Mering et al., 2002). However, small-scale studies also have a 

sampling bias, i.e., they are typically focused on one or a few proteins of interest and hence 

selectively sample interactions from only a part of the search space. HT experiments are free of 

this sampling bias, i.e., the search space is scanned without a priori expectations (Venkatesan et 

al., 2009; Yu et al., 2008). Thus, for many global topological analyses, it is often necessary to 

use only the HT datasets. 

Here, we describe a publicly available protein-protein interaction database, HINT (High-quality 

INTeractomes) that directly addresses the above three issues and provides high-quality binary 

and co-complex interactions for human, S. cerevisiae and, S. pombe. The binary interactomes 

have also been divided into LC and HT subsets. Using these datasets, we show that there are 
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significant sociological sampling biases in LC datasets, i.e., well-studied proteins tend to have 

more interactions in LC datasets for both human and S. cerevisiae. Finally, using only the high-

quality HT interactions for human, we find that disease genes (i.e., genes that have a causal 

connection with one or more diseases) with more interactions tend to cause more diseases. Even 

though this result is unexpected in light of previous findings that interaction hubs are less likely 

to cause disease (Feldman et al., 2008; Goh et al., 2007), it will help understand mechanisms of 

various disease processes and develop corresponding treatments.  

 

2.3 RESULTS 

Data source for protein-protein interactions 

The set of all protein-protein interactions for the three organisms was downloaded from the 

public databases – BioGrid (Stark et al., 2011), DIP (Salwinski et al., 2004), HPRD (Keshava 

Prasad et al., 2009), IntAct (Kerrien et al., 2012), iRefWeb (Turner et al., 2010), MINT (Licata et 

al., 2012), MIPS (Mewes et al., 2011) and VisAnt (Hu et al., 2009). Not all three organisms were 

present in all the databases. Though some of the databases mentioned above store both genetic 

and physical interactions, only physical interactions were used in building the interactomes. 

Certain tools (Szklarczyk et al., 2011; Turner et al., 2010) also provide scoring schemes for 

protein-protein interactions. However, we do not include these for HINT as they integrate both 

computational predictions and experimentally determined interactions. Our goal is to provide a 

repository of only experimentally well-validated high-quality protein-protein interactions. 

Building the database 
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Figure 2.1 summarizes how HINT was built. For each organism and each source database, a 

filter was applied to generate non-redundant lists of appropriate interactions for the two 

categories – binary and co-complex. The filter classifies interactions into the correct groups and 

removes ones that are inadequately supported by experimental evidence. The binary interactions 

were further classified as HT and LC based on the nature of the experiments that produced them. 

If the experiment in support of the interactions discovers greater than a cutoff number of 

interactions, it is classified as HT. To determine the cutoff, we calculated the distribution of 

number of interactions reported by each unique publication. The cutoff (>=100 interactions) 

corresponds to the top 0.5 percentile of studies, when all publications are ranked in decreasing 

order of interactions reported per study. For co-complex associations, there exists no such clear 

distinction between HT and LC because the average number of interactions detected in a single 

experiment is significantly higher. 

The next step was to remove low-quality interactions. For ones supported by HT publications, a 

non-redundant list of papers was compiled and each publication was manually examined to 

verify that the actual experiments used by the authors agree with the evidence codes cited by the 

curators. All papers for which there was an error in this matching process were removed. 

Moreover, papers that do not validate the interactions obtained were also not included in HINT. 

Although some HT affinity purification followed by mass spectrometry (AP/MS) experiments 

producing co-complex associations report confidence scores, most binary HT experiments do 

not. For co-complex interactions, we require all interactions to be reported by two papers or 

more to ensure quality. For HT binary experiments, some report datasets of different levels of 

confidence – usually, core vs. non-core. We always include the highest-quality dataset (i.e., the 

core set only). Moreover, we ensure that every single interaction included is high-quality (please 
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see Quality control section). Within this high-quality dataset, the users of HINT are free to 

choose their own confidence cutoff based on any combination of the number of supporting 

publications and evidence code. For LC interactions, it is not possible to replicate this process, as 

the number of papers is too high. It has been shown that a large fraction of the LC interactions 

supported by a single publication cannot be verified (Cusick et al., 2009; Turinsky et al., 2010). 

Curation is an extremely painstaking process and we acknowledge that there may be some high-

quality interactions supported by only one publication. However, it is impossible to distinguish 

them from the larger fraction that has been demonstrated to be of lower quality/erroneous 

(Venkatesan et al., 2009; Yu et al., 2008). Our goal here is to present to the community only a 

high-quality dataset that is free of potential biases due to differential curation of the same source 

publication. Only those LC interactions that are supported by two or more publications are 

preserved in our database. Table 1 provides a summary of the source databases used (version and 

download date). Table 2 reports the number of high-quality interactions in each of these 

databases in each category.  

For the binary network, we generated two sub-interactomes – the high-quality LC (HQ-LC) and 

the high-quality HT (HQ-HT) sub-interactomes. Interactions that are supported by both forms of 

evidence belong to both.  

Table 3 provides summary statistics for the different interactomes and their sub-classes. The 

numbers refer to unique entries and any interaction validated in multiple orientations (e.g., bait 

and prey in binary interaction detection experiments) or by different research groups is counted 

as a single entity. We find that the average degree for S. pombe is much lower than that of human 

or S. cerevisiae for both binary and co-complex data. This shows that the S. pombe interactome 

is still mostly unexplored. There is also a sharp increase in the average degree from binary to co-

10



complex for S. cerevisiae. This is expected given that models to generate topologies of co-

complex networks tend to include several or all possible combinations (Bader and Hogue, 2002). 

However, the same does not hold true for human. This probably indicates that the human co-

complex interactome is underexplored as compared to the S. cerevisiae one. 

Figure 2.2 depicts the binary and co-complex interactomes for human and S. cerevisiae. The 

degree distribution of each of the networks is also illustrated and these plots correspond well 

with the theoretical expectation of the networks being scale-free (Barabasi and Bonabeau, 2003). 

It is not possible to produce these plots for S. pombe as the interactome for this organism is 

severely underexplored. 

Quality control 

There has been a great deal of effort in the literature at discovering new protein-protein 

interactions in different species to gain an understanding of the entire interactome of that 

organism. However, due to experimental errors and inaccurate curation, databases often contain 

interactions that are low quality/erroneous (Cusick et al., 2009). Since accuracy is of paramount 

importance in generating new hypotheses using these interaction data, it is essential to have an 

easily accessible repository of high-quality binary protein-protein interactions. HINT is a 

repository created by combining information from commonly used databases. To ensure quality 

control, we adopt the following protocol. Since the number of HT publications is relatively low 

as compared to the vast number of small-scale studies, we manually inspect each of the HT 

studies. We ensure that high-quality HT experiments included in HINT have been verified by 

orthogonal traditional assays (e.g., co-immunoprecipitation). Some experiments that do not 

perform any validation of their screen are considered low-quality and therefore removed. More 
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recently, we developed a statistical framework to comprehensively evaluate the quality of HT 

datasets verified by orthogonal assays in both human and S. cerevisiae (Venkatesan et al., 2009; 

Yu et al., 2008). Using this framework, we can quantitatively and experimentally measure the 

quality of individual interactions, as well as the whole dataset. The quality of interactions 

reported by a HT experiment can be measured by two independent statistical parameters – the 

number of interactions validated, i.e., the “validation rate” and the number of interactions that 

could be re-tested in the validation carried out, i.e., the “retest rate”. The first parameter is a 

measure of the confidence associated with the validation carried out (i.e., more confidence can 

be associated with the results when a larger fraction of the reported interactions are validated), 

while the second one directly assays the reproducibility of the HT experiment. We carried out a 

comprehensive re-curation for all HT experiments included in HINT. Only those HT 

experiments that satisfy have a validation rate of >50% and a recuration rate of >75% are 

included in HINT. This ensures that only the highest quality HT experiments are included in 

HINT. 

On the other hand, since it is impossible to manually check all small-scale studies, we require 

two independent publications to report the same interaction for it to be included in our dataset. 

This is because while some interactions from dedicated small-scale studies are high-quality and 

have been repeated multiple times in the literature, a significant fraction of interactions from 

small-scale experiments are not easily reproducible. In fact, many of the interactions that cannot 

be reproduced are supported by only one publication, were not produced by dedicated 

experiments and were often not even mentioned in the paper (Cusick et al., 2009). More 

importantly, it has been experimentally shown that such interactions are indeed of low quality 

(Venkatesan et al., 2009; Yu et al., 2008). Thus, our repository of high-quality interactions 
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contains only manually validated HT experiments and interactions from small-scale studies that 

have been reported at least twice in the literature.  

To further validate the filtering approach used we adopted the following method. For each 

organism and interaction type, percentage overlaps between all pairs of databases that contain 

data relevant to that category were calculated before and after filtering. Since all these databases 

are curating the same information, we would expect the overlaps between any two of them to be 

high. However, that is not the case and we find low overlaps between pairs of databases. This 

supports our hypothesis that some of the information contained in these datasets is low-

quality/incorrect. However, if our filtering scheme successfully removes these low-

quality/incorrect interactions, the pairwise overlap between databases should increase 

considerably after filtering. We find that this is indeed the case. For each organism and 

interaction type, there is a significant enrichment in the average pairwise overlap between 

databases after filtering (Figure 2.3; P-values calculated using a cumulative binomial test). 

Specifically, let the maximum number of interactions for a certain organism and interaction type 

that can be common to a particular database pair before and after filtering be denoted by Mbi and 

Mai respectively, where i is an index to denote the database pair. Let the percentage overlaps 

before and after filtering for that pair be denoted by Pbi and Pai respectively. The average 

percentage overlap for that organism and interaction type before (AvPB) and after filtering 

(AvPA) are calculated as: 

€ 

AvPB =
Mbi x Pbii

∑
Mbii

∑  
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€ 

AvPA =
Mai x Paii

∑
Maii

∑
 

Querying the database 

The database has two major parts – a query interface and a batch download for the entire 

interactomes of the organisms. The pooled interactions can be queried in the following manner.  

The organism of interest is selected from a drop-down menu followed by entering the query 

proteins separated by semi-colons. Up to a maximum of 10 proteins can be entered per query. 

The database supports Entrez gene IDs (Maglott et al., 2007) and gene names for proteins in 

human and ORF names and gene names for proteins in S. cerevisiae (Cherry et al., 1997) and S. 

pombe (Matsuyama et al., 2006). The user also has the option of specifying the cutoff number of 

publications for each of the query proteins. One can also specify a particular evidence type for 

searching interactions. For each interacting protein, the gene name is listed in the first column 

followed by the list of Pubmed IDs of the papers supporting this interaction in column 2. The last 

column lists the PSI-MI evidence code (Hermjakob et al., 2004) that describes the kind of 

evidence supporting the interaction. The gene names are linked to the NCBI Entrez Gene 

database (Maglott et al., 2007) for human and S. cerevisiae and the GeneDB database (Hertz-

Fowler et al., 2004) for S. pombe. The PubMed IDs link to the NCBI website for the relevant 

abstracts. 

For batch download, separate links are provided for binary and co-complex interactomes for each 

organism. The binary interactome is also divided into the LC and HT networks. One notes here 

that the LC and HT networks are not completely mutually exclusive. There are certain protein-
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protein interactions that have been discovered both by HT experiments and by LC. There are 

included in both interactomes. 

Using HINT, it will now be possible to analyze, visualize, and generate reliable hypotheses about 

a part of or the complete interactome of the three different organisms – human, S. cerevisiae and 

S. pombe. Future efforts may be directed at similarly collecting and filtering data for other 

organisms and also updating the current dataset based on new findings. 

Binary vs co-complex 

HINT clearly distinguishes between binary and co-complex interactions. The binary network 

represents direct interactions between two proteins. On the other hand, the co-complex network 

merely indicates membership of a group and does not necessarily imply pairwise interactions. In 

most cases, the exactly topology of the complex is unknown. Two primary methods – the spoke 

model and the matrix model are used to represent these complexes. However, both models are 

approximations and merely suggest possible topologies (Bader and Hogue, 2002). Since different 

reports base their choice of model on study-specific conditions, all co-complex associations were 

included as curated in the source databases. No re-curation was performed. Moreover, compared 

to co-complex interactome models, binary maps have a greater fraction of transient signaling 

connections and inter-complex connections (Das et al., 2012; Yu et al., 2008). Since these two 

datasets represent fundamentally different biological entities, their overlap is low and it is 

important to differentiate between them in certain studies. For example, recent studies have 

examined how mutations may either lead to complete loss of gene products or edge-specific 

changes in the interactome (Dreze et al., 2009; Zhong et al., 2009). We show in a recent study 

that the pathogenesis of human disease can be better understood by looking at the position of 
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mutations on interaction interfaces (Wang et al., 2012). These approaches are applicable to direct 

binary interactions, as it is more difficult to infer interface pairs from co-complex associations. 

The latter can be resolved using information on three-dimensional structures of protein 

complexes if these are available. Thus, based on the context, it may be more appropriate to use 

one interactome over the other. Moreover, there are significant differences in the topological 

properties of these two networks. We calculated the clustering coefficient (Watts and Strogatz, 

1998) and the edge betweenness (Girvan and Newman, 2002) for the different interaction 

networks in HINT. Clustering coefficient measures the density of clustering in an interaction 

network (Watts and Strogatz, 1998). We find that co-complex networks have a significantly 

higher clustering coefficient (P < 10-8 in both cases as calculated by a two-sample Kolmogorov-

Smirnov test) than binary networks. This shows that co-complex associations tend to be much 

more dense in terms of topological structure. Edge betweenness is used to detect community 

structure in networks. A higher betweenness value for an edge indicates that it connects different 

modules and disrupting this edge will fragment the network into disjoint components (Girvan 

and Newman, 2002). We find that binary networks for both human and S. cerevisiae have a 

significantly higher betweenness (P < 10-8 in both cases as calculated by a two-sample 

Kolmogorov-Smirnov test) than co-complex networks for the two organisms. This suggests that 

co-complex associations form tightly regulated modules and binary interactions are often used to 

form links between these modules. We did not use the S. pombe networks for our global 

topological calculations as these interactomes are highly underexplored at this stage and the 

small number of interactions available make the networks unsuitable for global analyses. 

HT protein-protein interactions in understanding human disease  
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People have realized in the last decade that a human disease is rarely the consequence of an 

isolated abnormality in a particular gene but is generally the outcome of complex perturbations 

of the underlying cellular network (Barabasi et al., 2011). This has led to systematic studies of 

interactome networks and numerous insights have been obtained from such studies. The structure 

of these networks is governed by key biological principles and changes in their global properties 

may be linked to human disease (Vidal et al., 2011). Further advances in such studies are 

expected to uncover the biological significance of disease-associated mutations discovered by 

genome-wide association studies (Manolio, 2010) and help in identifying biomarkers and novel 

drug targets (Barabasi et al., 2011). 

Previous studies have shown that protein hubs tend to be essential genes (Jeong et al., 2000; Yu 

et al., 2004). Therefore, one interesting question is whether a lot of the hubs are disease genes. 

Using the HT interactome, we examined the distribution of disease genes across number of 

protein-protein interactions. We found that disease-genes tend not to be hubs (Figure 2.4A; error 

bars correspond to standard error of the mean assuming a binomial distribution). This result is 

consistent with earlier studies that find that disease genes are usually non-essential and occupy 

peripheral positions in the human interactome (Feldman et al., 2008; Goh et al., 2007). The 

finding is logical in light of an evolutionary argument – for essential genes, mutations would be 

more likely to affect fitness to the extent of causing embryonic lethality (Feldman et al., 2008; 

Goh et al., 2007).  

However, we were unable to reproduce the same results using the LC interactome (Figure 2.4A; 

error bars correspond to standard error of the mean assuming a binomial distribution). There is a 

significant increase (P < 10-8 as calculated by a one-way ANOVA) of percentage of disease 

genes with degree for proteins that have at least one interaction. This led us to believe that the 
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difference could be due to study biases in the LC data. To systematically analyze if this is true, 

we plotted the average number of publications against the number of interactions of proteins 

separately for the HT and LC interactomes. Intuitively, there should be no strong correlation 

between these two entities as the number of publications associated with a protein should have 

no connection with its degree. The average number of publications does not vary significantly 

with degree for the HT dataset but increases dramatically for the LC interactome (see Figures 

2.4B and 2.4C). This illustrates the strong study bias in the LC data – proteins with a greater 

number of interactions tend to be revisited more often by small-scale studies. Our results are 

consistent with earlier findings that the degree of proteins in the LC interactome is strongly 

correlated with the number of publications associated with them (Pfeiffer and Hoffmann, 2007; 

Yu et al., 2008). This makes the LC interactome unsuitable for global topological analyses. The 

low overlap between the HT and LC interactomes also confirms that these are in fact two 

separate networks that need to be appropriately used based on the context. 

To further investigate whether protein interactomes can help us understand disease mechanisms 

and uncover previously unknown disease genes, we used the HT human interactome to analyze 

what fraction of disease genes are disease-hubs, i.e., genes causing multiple diseases. We 

examined the distribution of disease-hubs as a function of their degrees (Figure 2.4D; error bars 

correspond to standard error of the mean assuming a binomial distribution). We observed that 

proteins with a higher number of interactions are significantly more likely to be disease hubs (P 

< 10-8 as calculated by a one-way ANOVA). Though this may seem contradictory to earlier 

findings in Figure 2.4A, these two are in fact independent results. It is true that if a disease gene 

has more interactions, there is a higher probability of its fitness being affected. However, in 

Figure 2.4D, we focused only on disease genes. By virtue of the fact that these are observed in 
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the population as disease genes, their mutations are less likely to cause embryonic lethality. 

Therefore the evolutionary constrains in Figure 2.4A do not apply here. It is logical to expect that 

a disease protein with multiple interactions will have a greater propensity for causing multiple 

diseases. This is because a protein with more interactions is involved in more biological 

functions (Yu et al., 2004). This result also means that protein-protein interactions are important 

in the pathogenesis of many human diseases. Further studies on alteration of interactions by 

disease mutations may reveal insights into molecular mechanisms of various diseases and 

provide information about potential drug targets.  

 

2.4 DISCUSSION  

HINT is a comprehensive repository of high-quality binary and co-complex physical interactions 

in human, S. cerevisiae, and S. pombe. It establishes and implements systematic techniques for 

separating interactions based on both type (i.e., binary and co-complex) and data-source (i.e., LC 

and HT). Making these distinctions is critical for many applications. Using only the HT dataset, 

we demonstrated that human disease genes with a greater number of interactions tend to cause 

more diseases. Future directions involve implementation of the same techniques for other 

organisms of biological interest.  

 

2.5 MATERIALS AND METHODS 

Evidence codes and ID-mapping 
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As one of the primary goals of the database is to clearly distinguish binary interactions from co-

complex associations, two separate and mutually exclusive lists of evidence codes were created – 

one for each category. An evidence code is a unique number assigned by the PSI-MI initiative to 

a particular form of experimental information in support of an interaction (Hermjakob et al., 

2004). The lists used for both categories can be found in Tables 2.1, 2.2, and 2.3. Using these 

lists, all the interactions were classified into binary and/or co-complex. Interactions supported by 

evidence codes that are in neither of the two lists are excluded. Different databases use different 

gene identifiers and as this may lead to error, all gene identifiers in each database were converted 

to Entrez gene IDs for human and ORF names for S. cerevisiae and S. pombe. For each of the 

organisms, gene names are also provided in the bulk download files. Mapping files we obtained 

from Uniprot (2007) and the NCBI gene databases. 

As described earlier, for an interaction to qualify as high-quality, it has to have at least one 

manually verified HT evidence code or at least two LC evidence codes supporting it.  

Protein-protein interactions and human disease genes 

To look at the distribution of human disease genes across number of protein-protein interactions, 

the following protocol was used. The total number of human proteins is taken to be 20,000. For 

the LC and the HT interactomes, we separately calculated the number of proteins that take part in 

1, 2, 3, and >=4 interactions respectively. The difference of 20,000 and the sum of proteins in all 

these categories represents the number of proteins that have no known interactions in that 

particular network. Thus we have the number of proteins with 0, 1, 2, 3, and >=4 interactions for 

both interactomes. The mapping between human genes and diseases is obtained from OMIM 
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(Amberger et al., 2009) and HGMD (Stenson et al., 2009).Then the following formula was used 

to calculate the percentage of disease genes in each category (PGi): 

€ 

PGi =
Ni x100

Ti  

where Ni is the number of disease genes in bin i and Ti is the total number of genes in bin i. 
 

Here each bin corresponds to the number of interactions – 0, 1, 2, 3, and >=4 respectively. These 

values have been shown in Figure 2.4A. The error bars represent standard error of the mean 

assuming a binomial distribution (each gene is either involved or not involved in disease). 

To calculate the sub-percentage of disease hubs in each category (PHj), the following formula 

was used: 

€ 

PH j =
N j x100

Tj

 

where Nj is the number of disease hubs in bin j and Tj is the total number of disease genes in bin j
 

Here each bin corresponds to the number of interactions – 0, 1, and >=2 respectively and a 

disease hub is any disease gene implicated in three or more diseases. These values have been 

shown in Figure 2.4D. The error bars represent standard error of the mean assuming a binomial 

distribution (each protein is either a disease hub or it is not). 
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2.6 FIGURE AND TABLE LEGENDS 

Figure 2.1 

Flow diagram depicting the series of steps used to build HINT. 

Figure 2.2 

Binary and co-complex interactomes and degree distribution plots for human and S. cerevisiae 

Figure 2.3 

Average overlap percentage between all pairs of databases for binary and co-complex 

interactions in human, S. cerevisiae (S.c.), and S. pombe (S.p.) before and after filtering. 

Figure 2.4 

A. Percentage of disease genes within proteins that have 0, 1, 2, 3, and >=4 interactions 

respectively. 

B. Plot of average number of publications associated with a protein versus the cumulative degree 

of the protein in the HT and LC interaction networks in human. 

C. Plot of average number of publications associated with a protein versus the cumulative degree 

of the protein in the HT and LC interaction networks in S. cerevisiae. 

D. Percentage of disease hubs within disease genes that have 0,1, and >=2 interactions 

respectively. 
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Table 2.1  

List of PSI-MI evidence codes used to classify binary interactions and co-complex associations. 

 

Table 2.2 

Mapping used to convert MIPS evidence codes to PSI-MI evidence codes. 

 

Table 2.3 

Mapping used to convert VisAnt evidence codes to PSI-MI evidence codes. 
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Figure 2.2
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Figure 2.4
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Experimental Evidence PSI-MI Evidence Code
array technology 0008

beta galactosidase complementation 0010
beta lactamase complementation 0011

bioluminescence resonance energy transfer 0012
adenylate cyclase complementation 0014

circular dichroism 0016
classical fluorescence spectroscopy 0017

two hybrid 0018
coimmunoprecipitation 0019

transmission electron microscopy 0020
cosedimentation 0027

cosedimentation in solution 0028
cosedimentation through density gradient 0029

cross-linking study 0030
protein cross-linking with a bifunctional reagent 0031

dynamic light scattering 0038
electron microscopy 0040

electron paramagnetic resonance 0042
far western blotting 0047

filamentous phage display 0048
filter binding 0049

fluorescence correlation spectroscopy 0052
fluorescence polarization spectroscopy 0053

fluorescence-activated cell sorting 0054
fluorescent resonance energy transfer 0055

isothermal titration calorimetry 0065
lambda phage display 0066

light scattering 0067
molecular sieving 0071

nuclear magnetic resonance 0077
peptide array 0081
phage display 0084
protein array 0089

protein complementation assay 0090
chromatography technology 0091

reverse ras recruitment system 0097
scintillation proyimity assay 0099

static light scattering 0104
surface plasmon resonance 0107

t7 phage display 0108
dihydrofolate reductase reconstruction 0111

ubiquitin reconstruction 0112
x-ray crystallography 0114

yeast display 0115
ion eychange chromatography 0226
reverse phase chromatography 0227

Binary Interactions

TABLE 2.1
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green fluorescence protein complementation 
assay 0229

mammalian protein protein interaction trap 0231
transcriptional complementation assay 0232

blue native page 0276
ley-a dimerization assay 0369
toy-r dimerization assay 0370

two hybrid array 0397
two hybrid pooling approach 0398

two hybrid fragment pooling approach 0399
comigration in non denaturing gel 

electrophoresis 0404

competition binding 0405
deacetylase assay 0406

electron tomography 0410
enzyme linked immunosorbent assay 0411

enzymatic study 0415
fluorescence microscopy 0416

kinase homogeneous time resolved fluorescence 0420
in-gel kinase assay 0423

protein kinase assay 0424
phosphatase assay 0434

protease assay 0435
saturation binding 0440

homogeneous time resolved fluorescence 0510
methyltransferase assay 0515

methyltransferase radiometric assay 0516
enzymatic footprinting 0605

lambda repressor two hybrid 0655
antibody array 0678

reverse two hybrid 0726
gal4 vp16 complementation 0728

luminescence based mammalian interactome 
mapping 0729

comigration in gel electrophoresis 0807
comigration in sds page 0808

bimolecular fluorescence complementation 0809
y-ray fiber diffraction 0825

y ray scattering 0826
phosphotransfer assay 0841

immunodepleted coimmunoprecipitation 0858
intermolecular force 0859
demethylase assay 0870

atomic force microscopy 0872
acetylation assay 0889

surface plasmon resonance array 0921
polymerization 0953
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Experimental Evidence PSI-MI Evidence Code
affinity chromatography technology 0004

anti bait coimmunoprecipitation 0006
anti tag coimmunoprecipitation 0007

mass spectrometry studies of complexes 0069
pull down 0096

affinity technology 0400
tandem affinity purification 0676

Co-complex Associations
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MIPS Evidence Code MIPS Description Corresponding PSI-MI Code
902.01.01.02.01.01 co-immunoprecipitation 0019
902.01.01.02.01.03 centrifugation 0027

902.01.01.02.01.05.01 cross linking, chemical 0031
902.01.01.02.01.05.02 cross linking, UV 0430

902.01.01.02.01.06 in vitro reconstitution 0492
902.01.01.02.01.07 two hybrid 0018
902.01.01.02.01.08 overlay 0047

902.01.01.02.01.09.01 FRET 0055
902.01.01.02.01.09.02 scintillation proximity assay 0099

902.01.01.02.01.10 surface plasmon resonance 0107
902.01.01.02.01.11 phage display 0084

902.01.01.02.01.13.01 electron microscopy 0040
902.01.01.02.01.13.02 NMR 0077

MIPS Evidence Code MIPS Description Corresponding PSI-MI Code
902.01.01.02.01 physical 0013

902.01.01.02.01.01.02 epitope tag co-ip 0007
902.01.01.02.01.02 affinity chromatography 0004

902.01.01.02.01.02.01 affinity chromatography, native 0004
902.01.01.02.01.02.02 affinity tag chromatography 0004

Binary Interactions

Co-complex Associations

Table 2.2
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VisAnt Evidence Code VisAnt Description Corresponding PSI-MI Code
M0010 Co-immunoprecipitation 0019
M0011 Co-sedimentation 0027
M0012 Competition binding 0405
M0013 Copurification 0025
M0014 Cross-linking studies 0030
M0015 Electron microscopy 0040
M0018 Molecular sieving 0071
M0021 Western blot 0113
M0024 Immunoprecipitation 0019
M0026 In vitro binding 0492
M0029 Monoclonal antibody 0671
M0032 Sizing Column 0071
M0033 Cosedimentation 0027
M0034 Two-hybrid 0018
M0035 X-ray 0114
M0049 Surface plasmon resonance 0921
M0050 Phage display 0084
M0051 ELISA 0411
M0052 Fluorescence technology 0051
M0053 Filter binding 0928
M0060 Far western 0047
M0061 Resonance energy transfer 0055
M0062 Electron microscopy 0040
M0066 Enzymatic study 0415
M0068 Protein array 0089
M0069 Protein complementation assay 0090
M0070 NMR 0077
M0071 X-ray crystallography 0114
M0079 Co-fractionation 0027
M0085 Chromatography 0091
M0092 Peptide array 0081
M0095 Protein kinase assay 0424
M0096 Blue native PAGE 0276
M0097 Comigration in gel electophoresis 0404
M0100 Ubiquitin reconstruction 0112
M0101 Phosphatase assay 0434
M0103 Isothermal titration calorimetry 0065

VisAnt Evidence Code VisAnt Description Corresponding PSI-MI Code
M0006 Affinity column 0400
M0028 Mass spectrometry of complex 0069
M0044 Affinity precipitation 0400
M0045 Affinity technology 0400
M0065 Anti-tag co-IP 0007
M0067 Pull down 0096

Binary Interactions

Co-complex Associations

TABLE 2.3
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M0074 Reconstituted complex 0069
M0088 Tandem affinity purification 0676
M0089 Anti-bait Co-IP 0006
M5001 Tandem affinity mass spectrometry 0032
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CHAPTER 3 

 

Elucidating common structural features of human pathogenic variations using 

large-scale atomic-resolution protein networks  

 

In the following chapter, we examine human disease mutations in the context of structurally-

resolved protein networks. I am the sole first author of the manuscript resulting from this chapter 

(Das et al Human Mutation 2014). I am also a co-first author on another related manuscript 

(Wang*, Wei*, Thijssen*, Das* et al Nature Biotechnology 2012 *=Equal contribution); I have 

not devoted a separate chapter to that paper in my thesis as the core concepts common to both 

papers are covered in this chapter. 
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3.1 ABSTRACT 

 

With the rapid growth of structural genomics, numerous protein crystal structures have become 

available. However, the parallel increase in knowledge of the functional principles underlying 

biological processes, and more specifically the underlying molecular mechanisms of disease, has 

been less dramatic. This notwithstanding, the study of complex cellular networks has made 

possible the inference of protein functions on a large scale. Here, we combine the scale of 

network systems biology with the resolution of traditional structural biology to generate a large-

scale atomic-resolution interactome-network comprising 3,398 interactions between 2,890 

proteins with a well-defined interaction interface and interface residues for each interaction. 

Within the framework of this atomic-resolution network, we have explored the structural 

principles underlying variations causing human inherited disease. We find that in-frame 

pathogenic variations are enriched at both the interface and in the interacting domain, suggesting 

that variations not only at interface “hot-spots”, but in the entire interacting domain can result in 

alterations of interactions. Further, the sites of pathogenic variations are closely related to the 

biophysical strength of the interactions they perturb. Finally, we show that biochemical 

alterations consequent to these variations are considerably more disruptive than evolutionary 

changes, with the most significant alterations at the protein interaction interface. 
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3.2 INTRODUCTION 

 

The functions of a protein are inherently bound up with its three-dimensional structure – both 

regular secondary structures and disordered elements play a role in modulating function(Lahiry 

et al., 2010). Protein structures are often so intricate that even comparatively minor structural 

alterations can cause dramatic changes in function. Since such disruptions often lead to 

disease(Celli et al., 1999; Haberle et al., 2011), a significant amount of effort has been invested 

in attempting to determine the principles underlying complex structure-function relationships in 

human proteins. To date, however, most of this effort has been directed towards understanding 

how individual folds, domains or structural motifs carry out specific cellular functions(Andreeva 

et al., 2008; Pearl et al., 2005). Furthermore, most proteins carry out their functions by 

interacting with other proteins, all of which are part of a complex cellular network termed the 

“interactome”(Vidal, 2005; Vidal et al., 2011).  

           Recently, studies have become focused on how protein networks can be used to infer 

function and how changes in these networks can lead to human disease(Barabasi et al., 2011; 

Vidal et al., 2011). However, these efforts have had only limited success because protein 

networks are still incomplete(Vidal et al., 2011) and studies to date have treated proteins as mere 

graph-theoretical points in a mathematical network rather than as biological entities with their 

own structural details and chemical properties(de Souza, 2012; Wang et al., 2012). The 

importance of structural considerations has been well-recognized in predicting protein-protein 

interactions(Tuncbag et al., 2011; Zhang et al., 2012) and functional residues for each 

interaction(Marks et al., 2012). However, although structure has been widely employed to 

understand the evolutionary impact of single nucleotide polymorphisms (SNPs) (Bao and Cui, 
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2005; David et al., 2012; Sunyaev et al., 2001), the number of studies which have examined 

pathogenic variations in a structural context has been limited(Studer et al., 2013). To address this 

deficiency, we previously used a domain-level interaction network to show that in-frame 

pathogenic variations tend to be enriched within interacting domains(Wang et al., 2012). 

However, interacting domains comprise not only interface residues that are directly involved in 

the physical interaction between the two proteins but also other non-contact residues. In our 

earlier study, we did not differentiate between these two categories of amino acid residues. Since 

it is generally considered that interface residues mediate protein-protein interactions(Jones and 

Thornton, 1996), it is of paramount importance to examine the differential distribution of 

pathogenic variations between interface and non-interface residues within interacting domains. 

Moreover, only at the resolution of individual amino acid residues is it possible to ascertain 

structural (i.e., biophysical and biochemical) principles governing pathogenic processes. 

To this end, we present here a large-scale atomic-resolution human interactome network 

by systematically identifying the interaction interfaces and corresponding residues mediating all 

interactions with available co-crystal structures in the Protein Data Bank (PDB)(Berman et al., 

2000). Using this atomic-resolution interactome network, we analyze the distribution of 

pathogenic variations in different regions of human proteins focusing on interface and non-

contact residues within interacting domains. We also explore how the locational specificity of 

these variations is directly associated with the strength of the interactions they disrupt. Finally, 

we examine biochemical properties of human pathogenic variations and compare them to their 

evolutionary counterparts.  
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 3.3 RESULTS 

 

Atomic-resolution structural analysis of pathogenic variations and their molecular 

mechanisms 

Pathogenic variations belong to two broad categories – in-frame variations (both missense 

variations and in-frame microinsertions and microdeletions) and truncating variations (both 

nonsense point variations and frameshift insertions or deletions)(Zhong et al., 2009). We 

previously found that in-frame pathogenic variations are non-randomly distributed in proteins – 

indeed, they tend to be enriched within interacting domains. On the other hand, truncating 

variations do not show any particular trend with regard to their distribution in different parts of 

the protein(Wang et al., 2012).  

It has been commonly accepted that interface residues mediate interactions between 

proteins(Hu et al., 2000; Jones and Thornton, 1996). Moreover, it is generally believed that “only 

a small portion of interface residues, the so-called hot spot residues, contribute the most to the 

binding energy of the protein complex”(Assi et al., 2010). These hot-spots are often the targets of 

drug molecules(Wells and McClendon, 2007). Owing to the limits of resolution of our previous 

study(Wang et al., 2012), we were able to perform the investigation only at the domain level, not 

at the level of individual residues. Employing the newly derived atomic-resolution interactome 

network, we set out to systematically examine whether pathogenic variations tend to specifically 

alter interface residues, as our previous results suggested might be the case. This network is 

higher resolution that other structurally resolved networks(Khurana et al., 2013; Wang et al., 

2012) as it reports not just interacting domains for 3,398 interactions, but individual amino acids 

residues mediating each interaction. We calculated the enrichment of in-frame variations at the 
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interaction interface, the remainder of the interacting domain, and the rest of the protein. We 

found that in-frame variations are enriched significantly both at the interface and in the 

remainder of the interacting domain (odds ratio = 1.67, P < 10-3 for interface residues; odds ratio 

= 1.75, P < 10-3 for the remainder of the interacting domain; Figure 1A). To confirm that the 

observed trends are robust, we performed the same calculations with only the fraction of the 

protein in the actual co-crystal, because in many cases the crystallized structure does not contain 

full-length proteins. 62.6% of all the pathogenic variations used for our calculations in Fig. 1a 

are present within co-crystal structures. Using only these variations, our results remain 

unchanged – in-frame variations are enriched at both the interface and in the remainder of the 

interacting domain even if we consider only residues depicted within the co-crystal structures. To 

assess the significance of a decrease in solvent accessibility, we used randomly chosen cutoffs – 

decreases of 0.5 Å2, 2 Å2 and 5 Å2 in solvent accessible surface area to define 3 alternate sets of 

interface residues. Using these 3 sets of residues, we repeated our calculations in Fig. 1a. We 

find that our results remain unchanged with all 3 alternate sets of residues. This shows that our 

results are robust to the choice of cutoff for decrease in solvent accessible area to define interface 

residues. In fact, the sets of interface residues are very similar for any cutoff between 0.5 Å2 to 5 

Å2. 

Our result shows that it is not simply the interface residues, but rather the interacting 

domain in its entirety that plays an important role in pathology for many disease genes. As a 

negative control, we calculated the distribution of 94,084 missense non-synonymous single 

nucleotide polymorphisms (SNPs) from ESP6500 in 2,829 genes and found that these were 

distributed randomly across the protein (Figure 1B). Most genes contain relatively few 

pathogenic variations and SNPs. Moreover, there is no significant difference (P = 0.33) in the 
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distribution of pathogenic variations and SNPs across various genes, confirming that the 

differences observed in the distribution of disease-associated variants and SNPs are not due to 

gene-specific distribution biases. To further confirm that SNPs are indeed randomly distributed 

across proteins, we repeated our calculations with only those genes that contain at least one 

disease-associated variant (i.e., those genes used for the calculations in Figure 1A) and found 

that SNPs in these genes are also randomly distributed across the length of the protein. 

Moreover, even if we consider SNPs present only within co-crystal structures, we find that they 

are still randomly distributed across proteins. 

We also note that in-frame variations outside the interface were enriched in buried 

residues (Figure 1C). The importance of buried residues in maintaining the overall stability of 

the protein is well established(Gromiha et al., 1999). It has been suggested that in-frame and 

truncating variations have distinct disruption modes – the former is likely to disrupt specific 

interactions whereas the latter usually leads to degradation of the entire protein leading to a loss 

of all interactors(Zhong et al., 2009). Our results suggest that even for in-frame variations, the 

possible molecular mechanisms by which variations at or near the interface (and distant from it) 

affect protein-protein interactions are likely to be distinct: those at the interface are more likely 

to alter specific interactions, thereby causing the mutated protein either to lose or acquire specific 

functions; by contrast, in-frame variations in other non-interacting regions are more likely to 

disrupt the core of the protein and lead to incorrect folding and/or degradation of the protein, 

resulting in the loss of all interactions for the mutated protein (Figure 1D). 

To further understand the effects of variations in the interacting domain outside the 

interface, we examined the effects of two disease-associated variants on the PTS-PTS interaction 

(Figure 2A). Using site-directed mutagenesis PCR, we introduced the two variants – R25Q and 
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R9C on PTS. Although the R25Q variant is located on the PTPS domain that mediates the PTS-

PTS interaction, it is not at an interface residue. Using yeast two-hybrid, we confirmed that wild-

type PTS interacts with itself (Figure 2B). However the R25Q variant disrupts this interaction 

(Figure 2B). On the other hand, the R9C variant lies outside the interface mediating the PTS-PTS 

interaction. Using yeast two-hybrid, we confirmed that this variant (R9C) does not affect the 

interaction (Figure 2B). This shows that variations in the interacting domain outside the interface 

can disrupt protein interactions, whereas the same interactions can remain unaffected by variants 

outside the corresponding interacting domains. 

Moreover, using Western blotting, we confirm that all three variants are stable (Fig. 2b). 

Together, these results show that the R25Q variant causes an interaction-specific disruption – the 

PTS-PTS homodimeric interaction is lost due to a local structural alteration in the corresponding 

interacting domain. It has been previously shown that the enzymatic activity of the R25Q variant 

of PTS is reduced, but not completely abolished compared to the activity of WT PTS(Oppliger et 

al., 1995; Thony et al., 1994). Our results suggest a molecular mechanistic basis for this 

reduction – since the dimerization of PTS is important for its enzymatic activity(Oppliger et al., 

1995; Thony et al., 1994), the pathogenic R25Q that disrupts the PTS homodimer reduces this 

activity. However, since the variant is stable, PTS still maintains part of its activity. 

 

Pathogenic variation loci associated with interaction strength 

To understand the biophysical mechanisms by which in-frame pathogenic variations alter 

specific interactions, we examined the relationship between the spatial distribution of the 

variations and the strength of the interactions they perturb. Here, we explored the biophysical 

strength of an interaction – the stronger the interaction, the higher the free energy difference 
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between the bound and unbound states of the proteins;(Noskov and Lim, 2001; Shi et al., 2006) 

by calculating the buried surface area of all the interactions in the atomic-resolution human 

interactome network. The most direct measure of interaction strength is the equilibrium 

association constant (Ka, inverse of the equilibrium dissociation constant Kd). However, it is 

difficult to measure Ka in a high-throughput fashion and the amount of experimental Ka data is 

limited to a handful of human protein-protein interactions.  

It has been suggested that the strength of an interaction can be measured by its buried surface 

area in the co-crystal structure(Jones and Thornton, 1996). To validate this postulate, we 

classified all interactions in the network into three distinct categories on the basis of their buried 

surface area – low, medium and high. Using a genome-wide microarray analysis that measures 

the expression levels of human genes at different time points in the cell cycle(Whitfield et al., 

2002), we calculated the enrichment in co-expression of proteins involved in these interactions. 

We found that interactions with high buried surface area are significantly more likely to be co-

expressed than interactions with low buried surface area (P = 0.015, Figure 3A). It is well known 

that strong, stable interactions are more likely to be co-expressed than weak, transient 

interactions(von Mering et al., 2002; Yu et al., 2008). Our result confirms that protein-protein 

interactions mediated by high buried surface area are indeed stronger. Moreover, we calculated 

the fraction of these binary interactions independently for the three categories detected in stable 

protein complexes. We found that interactions with high buried surface area are significantly 

enriched in stable complexes, further supporting the conclusion that these are stronger 

interactions (Figure 3B). Finally, we calculated the correlation between Ka and buried surface 

area using SKEMPI, a database of binding free energy changes for interactions with supporting 

co-crystal structures(Moal and Fernandez-Recio, 2012). For all interactions in SKEMPI 

48



involving wild-type human proteins, we calculated the correlation between Ka values and the 

buried surface area. We find that there is a significant correlation (ρ = 0.63, P < 10-3 using a 

permutation test) between Ka and buried surface area, confirming that the latter is an appropriate 

surrogate for interaction strength. 

 Next, we determined the distribution of in-frame variations in different parts of the 

protein as a function of the strength of the interaction. We found that variations at the interface 

tend to disrupt strong interactions (odds ratio = 1.10, P = 0.005) whereas those in the rest of the 

protein outside the interacting domains tend to be enriched in weak interactions (odds ratio = 

1.24, P < 10-3; Figures 3C-3E). As a control, we also computed the distribution of SNPs in 

different parts of the protein as a function of interaction strength. We found that SNPs at the 

interface and away from the interface are both randomly distributed with respect to interaction 

strength. Our results therefore suggest that there is a relationship between the location of the 

disease variation and the biophysical strength of the interactions it disrupts. Because pathogenic 

variations are enriched at the interaction interface and interface variations selectively affect 

biophysically strong interactions, we surmise that many strong interactions within stable protein 

complexes involved in key cellular functions are likely to be preferentially disrupted in human 

disease. This provides a molecular-level biophysical explanation for the results of previous 

studies which have suggested that protein complexes are useful predictors for discovering 

unknown disease genes(Fraser and Plotkin, 2007). 
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Significant alterations in structural and biochemical properties of amino acids involved in 

human inherited disease 

To systematically explore the structural properties of human pathogenic variations, we analyzed 

relationships between the properties of these variations and their accessibility in the protein. 

Amino acids may be classified as either accessible or inaccessible. Using the Janin accessibility 

scale(Janin, 1979), we then calculated the proportion of accessibility-altering in-frame missense 

disease-associated variations (i.e., point variations that cause an accessible wild-type amino acid 

to be changed to an inaccessible amino acid or vice versa) in different parts of the protein. These 

variations are most likely to cause dramatic changes to the configuration of the interface because 

the local structural configuration is drastically altered. Since disease-associated variations in 

different parts of the protein may exert their effects via different pathophysiological mechanisms, 

we normalized our results by calculating the ratio of accessibility-altering in-frame variations 

against a background distribution of putatively neutral SNPs that are characterized by a similar 

change in their accessibility. Since these SNPs are uniformly distributed throughout the protein 

(Fig. 1b), this gives us an idea of the relative propensity of disease-associated variations to be 

significantly accessibility-altering. We found that at both surface and buried residues, and indeed 

in all parts of the protein, accessibility-altering variations are significantly more likely to occur in 

pathogenic variations as opposed to putatively neutral variants in the general population (P < 10-

3; Figure 4A). 

 We also examined amino acid substitutions in terms of their change in polarity. We 

calculated the proportion of polarity-altering in-frame missense disease-associated variations 

(i.e., those that cause a polar wild-type amino acid to change to a non-polar amino acid or vice 

versa). We note that these alterations also follow a similar trend – at both surface and buried 
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residues, and in all regions of the protein, polarity-altering variations are significantly more 

likely to occur in disease as opposed to putatively neutral variants in the population (P < 10-3; 

Figure 4A). This suggests that disease-associated variations are biochemically more destabilizing 

to the protein than benign variants in the population.  

To further understand how disease-associated variations differ in terms of their 

biochemical properties from changes that have been fixed over the course of evolutionary time, 

we calculated the relative enrichment of all possible pairs of amino-acid changes for disease-

associated in-frame missense variations over those that have occurred during evolution. We 

obtained the probabilities of amino acid changes occurring during evolution from a recently 

updated version of the Dayhoff matrices(Kosiol and Goldman, 2005). We compared these 

amino-acid changes to in-frame disease variations occurring throughput the protein (Figure 4B). 

We found that disease-associated variations generally tend to alter accessibility of the wild-type 

amino acid whereas evolutionary changes tend to preserve it (P = 0.010; Figure 4C). Our 

findings contrast with previous reports of significant correlations between amino acid variations 

in genetic disease and evolution(Wu et al., 2007). To further understand the specific differences 

in the distribution of variations in different parts of the protein, we determined which variations 

were enriched at least 2-fold at the interaction interface compared to other regions of the protein 

(Figure 4D). We found that these interface variations are significantly more likely to change the 

accessibility of the amino acid involved (P = 0.034), with the most dramatic changes occurring 

with those variations with the highest enrichment.  

By way of an example, a K143I variation at the interaction interface of RNASEH2B and 

RNASEH2C has been shown to be associated with a human auto-inflammatory disorder, 

Aicardi-Goutières syndrome(Reijns et al., 2011). This variation causes a major change in 
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structural and biochemical properties, leading to a significant structural modification at the 

interface that specifically alters the wild-type interaction (Figure 4E). These results further 

validate our finding that pathogenic variations tend to be more disruptive than random 

evolutionary changes, with those occurring at the protein interface causing the most drastic 

changes, enough to perturb even strong interactions. 

 

3.4 DISCUSSION 

  

In this study, we build and use an atomic-resolution human protein interactome network to 

improve our understanding of the structural principles and molecular mechanisms of pathogenic 

variations that perturb protein-protein interactions leading to disease. We find that in-frame 

variations are significantly enriched both at the interaction interface as well as in the remainder 

of the corresponding interacting domain. Thus, it is not just the residues at the interface which 

serve as the key mediators of interactions(Hu et al., 2000; Jones and Thornton, 1996), variations 

outside the interface but within the interacting domain are capable of altering protein-protein 

interactions. Our findings suggest that it is the alteration of specific interactions by in-frame 

variations within the entire interacting domain that is a major molecular determinant of human 

inherited disease. Moreover, we show that there are important biochemical and biophysical 

differences between variations at the interface and those located in the remainder of the protein 

molecule. Specifically, we find that the locations of pathogenic variations are associated with the 

strength of interactions – those at the interface tend to selectively disrupt stronger interactions. 

One mechanistic explanation for such a phenomenon is the tendency for variations enriched at 

the interface (as compared to other parts of the protein) to cause the most dramatic changes in 
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their structural and biochemical properties. Analyses at the level of individual amino acids are 

only possible with atomic-resolution interactome networks. Our findings suggest that the 

structurally guided prioritization of pathogenic variations identified in large-scale sequencing 

studies using an atomic-resolution network might be useful in the context of informing follow-up 

experiments. 

The coverage of the atomic-resolution human protein interactome network is limited by 

the number of co-crystal structures currently available in PDB. As more co-crystal structures 

become available(Chandonia and Brenner, 2006), the same principles developed here can be 

readily applied to reveal additional specific structural mechanisms underlying pathogenic 

variations. Our work further underscores the importance of the exploration of all possible domain 

architectures by structural genomics consortia(Editorial, 2007). Using our methodology on a 

more complete set of structural folds is likely to generate reliable direct atomic-resolution target 

sites for structurally-aided rational drug design, and has the potential to overcome the difficulties 

routinely encountered due to the paucity of well-elucidated structural targets(Tanrikulu and 

Schneider, 2008; Xie and Bourne, 2011). 

 

3.5 MATERIALS AND METHODS 

 

Calculating atomic-resolution interface residues for human protein interactions 

To calculate atomic-resolution interaction interfaces, we systematically examined a 

comprehensive list of 7,340 PDB co-crystal structures and were able to determine atomic-

resolution interaction interfaces for 3,398 unique human protein-protein interactions between 

2,890 proteins. To define the interface, we used a water molecule of diameter 1.4Å as a probe 
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and calculated the relative solvent accessible surface areas of the interacting pair as well as the 

individual proteins involved in the interaction(Hubbard and Thornton, 1993). All calculations 

were performed using Naccess(Hubbard and Thornton, 1993). Residues whose relative 

accessibilities changed by more than 1Å2 were considered as potential interface residues. Amino 

acids at the interface reside on the surfaces of the corresponding proteins, but tend to become 

buried in the co-crystal structure as the two proteins bind to each other. It follows that these 

residues should experience a significant decrease in accessible surface area when the bound and 

the unbound states of the protein chains are compared (Franzosa and Xia, 2011). In most cases, 

our calculations incorporated multiple instances of the same interaction from different chains 

within the same PDB structure or entirely different PDB structures representing the same 

interaction. This allows us to accurately determine the exact interface, and normalize differences 

due to specific crystallization conditions(Chayen and Saridakis, 2008). We take the union over 

all such instances subject to the constraint that the particular protein pair contains at least five 

interface residues for both interacting proteins. This ensures that all the interfaces included in our 

calculations represent significant regions of molecular contact, eliminating potential crystal 

contacts. Furthermore, 1,689/3,398 (49.7%) interactions used in this study have been detected by 

at least one other assay and were reported independently in a separate publication. This confirms 

that interactions used in this study are not only real but also reproducible using other assays. 

To further refine the set of identified interface residues, we required that they be necessarily 

present on the surface of the protein. To determine which residues were on the surface, we 

calculated the fraction of surface area for each residue in the individual protein chains that was 

accessible to the water molecule probe defined above(Hubbard and Thornton, 1993). If more 

than 15% of the total surface area for a particular residue was accessible to the water molecule 
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probe, we defined that particular amino acid to be on the surface, otherwise it was considered to 

be buried. Using these two criteria, for each interaction we obtained a set of 141,686 residues 

that represent the interface for 3,398 interactions from 7,340 atomic-resolution co-crystal 

structures. The fraction of homomeric interactions to heteromeric interactions is ~2:1 as the PDB 

is enriched for homodimers as compared to heterodimers. 

 

Identifying interacting domains for each interaction 

We generated a list of putative interacting domains utilizing the “homology modeling approach” 

as described earlier(Meyer et al., 2013) using both 3did(Stein et al., 2011) and iPfam(Finn et al., 

2005). However, some of the domain pairs identified as interacting by 3did and iPfam for a 

particular protein pair may not have been supported by the corresponding co-crystal structure as 

they may have been inferred from other co-crystal structures. Therefore, to avoid potential false 

positives, we additionally required that these domains should contain at least one interface 

residue for them to be considered as interacting domains. Moreover, the set of interacting 

domains inferred by 3did and iPfam were not always complete. For our analysis, we took 

advantage of our own atomic-resolution interface calculations to identify a comprehensive set of 

interacting domains for each co-crystal structure, and included interacting domains not identified 

by 3did or iPfam if they had five or more interface residues. 

 

Compiling a comprehensive list of pathogenic variations and SNPs 

We compiled a comprehensive list of 94,476 pathogenic variations from HGMD(Stenson et al., 

2013; Wang et al., 2012) as described earlier (Wang et al., 2012). We updated our earlier lists 

with a newer version of the HGMD dataset [HGMD Professional v.2012.2]. Specifically, we 
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used in-frame variations (both missense variations and in-frame microinsertions and 

microdeletions) classified as ‘DM’ in HGMD. For further analysis, we employed a total of 

17,306 variations in 673 genes for which we were able to define at least one atomic-resolution 

interaction interface. We also compiled a set of non-synonymous SNPs from the Exome 

Sequencing Project (Fu et al., 2013) from which we derived a dataset of 94,084 SNPs in 2,829 

genes for which we were able to define at least one atomic-resolution interaction interface. 

Using our publicly available supplementary website, http://www.yulab.org/Supp/AtomInt,	
  

researchers can query interface residues for their favorite interaction. 

 

Criteria used to choose PTS-PTS homodimeric interaction for experimental validation 

The following criteria were used to choose the PTS-PTS homodimeric interaction for 

experimental validation of the effects of pathogenic variants within and outside the interacting 

domain: 

a. the interaction is supported by a co-crystal structure 

b. the wild-type PTS clone is available in our library. 

c. the wild-type interaction (PTS-PTS) is amenable to testing in our yeast two-hybrid system 

d. there is a pathogenic variation in the interacting domain but outside interface residues. 

e. there is a different pathogenic variation outside both the interface residues and the 

interacting domain. 

 

Generation of PTS variants 
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Wild-type PTS is obtained from the human ORFeome v8.1 collection(Yang et al., 2011). To 

generate the alleles R25Q and R9C corresponding to two different pathogenic variations, 

sequence-verified single-colony wild-type PTS and corresponding mutagenic primers (designed 

according to the protocol accompanying the Stratagene QuikChange Site-Directed Mutagenesis 

Kit #200518) were aliquoted together. Mutagenesis PCR was then performed as specified by the 

New England Biolabs (NEB) PCR protocol for Phusion polymerase (M0530L), noting that PCR 

was limited to 18 cycles. The samples were then digested by DpnI (NEB R0176L) according to 

the manufacturer’s manual. After digestion, samples were transformed into competent E. coli 

and then individually streaked onto LB plates containing spectinomycin to obtain single 

colonies. The generated clones were verified by Sanger sequencing. 

Yeast two-hybrid  

Y2H was done as previously described(Wang et al., 2012). WT PTS and both pathogenic variant 

alleles were transferred by Gateway LR reactions into our Y2H pDEST-AD and pDEST-DB 

vectors. DB-X and AD-Y plasmids were transformed individually into the Y2H strains MATα 

Y8930 and MATa Y8800, respectively. Each of the DB-X MATα transformants (wild-type and 

variants) were then mated against corresponding AD-Y MATa transformants (wild-type and 

variants), including inoculation of AD-Y and DB-X yeast cultures, mating on YEPD media 

(incubated overnight at 30 °C), and replica-plating onto selective Synthetic Complete media 

lacking leucine, tryptophan, and histidine, and supplemented with 1 mM of 3-amino-1,2,4-

triazole (SC-Leu-Trp-His+3AT), SC-Leu-His+3AT plates containing 1 mg/l cycloheximide (SC-

Leu-His+3AT+CHX), SC-Leu-Trp-Adenine (Ade) plates, and SC-Leu-Ade+CHX plates to test 

for CHX-sensitive expression of the LYS2::GAL1-HIS3 and GAL2-ADE2 reporter genes. The 

plates were incubated overnight at 30 °C and replica-cleaned the following day. Plates were then 
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incubated for another three days, after which positive colonies were scored as those that grow on 

SC-Leu-Trp-His+3AT and/or on SC-Leu-Trp-Ade, but not on SC-Leu-His+3AT+CHX or on 

SC-Leu-Ade+CHX. Disruption of an interaction by a variation was defined as significant 

reduction of growth when compared to the Y2H phenotype of the wild-type PTS-PTS interaction.	
  

 

Western blotting 

Wild-type and both PTS variants were cloned into MSCV-N-FLAG-HA-IRES-Puro 

vector(Behrends et al., 2010) and transfected into HEK293T cells to express HA-tagged wild-

type and mutated proteins. HEK293T cells were maintained in complete DMEM medium 

supplemented with 10% FBS. Cells were transfected with Lipofectamine 2000 (Invitrogen) at a 

5:1 (µl/µg) ratio with DNA and harvested 24 hrs after transfection. Cells were gently washed 

three times in PBS and then resuspended using 200 µl 1% NP-40 lysis buffer [1% Nonidet P-40, 

50 mM Tris-HCl pH 7.5, 150 mM NaCl, 1× EDTA-free Complete Protease Inhibitor tablet 

(Roche 05056489001)] and kept on ice for 30 mins. Extracts were cleared by centrifugation for 

10 min at 13,000 rpm at 4 °C. 25 µl of extracts were mixed with 6X loading buffer and subjected 

to SDS-PAGE. Proteins were then transferred from the gel onto PVDF membranes (GE 

Healthcare RPN303F). Anti-HA (Sigma H9658) and anti-γ-tubulin (Sigma T5192) were used at 

1:3,000 dilutions for immunoblotting analysis. Blotting signal was developed with Novex ECL 

HRP chemiluminescent substrate reagent kit (Invitrogen WP20005) and captured with 

Amersham Hyperfilm MP (GE Healthcare 28906843). 
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3.6 FIGURE LEGENDS 

 

Figure 3.1 Atomic-resolution structural analysis of pathogenic variations. (a) Odds ratios for the 

distribution of in-frame variations in different locations on proteins in our atomic-resolution 

interactome network. **P < 10-3. P-values calculated using Z-tests for the log odds ratios. (b) 

Odds ratios for the distribution of non-synonymous SNPs in different locations on proteins in our 

atomic-resolution interactome network. (c) Enrichment of in-frame variations in buried residues. 

**P < 10-3 Error bars indicate ± SE. (d) Different mechanistic modes of disruption for variations 

in different structural environments – variations at the surface are likely to cause interaction-

specific disruptions, whereas those buried in the core of the protein are likely to destabilize the 

entire protein. 

 

Figure 3.2 (a) Crystal structure (PDB id: 3I2B) depicting a R25Q variation in the PTS-PTS 

interacting domain but not at an interface residue and a R9C variation outside the interaction 

interface. (b) Y2H assay illustrating that the R25Q variation disrupts the PTS-PTS interaction 

whereas the R9C variation does not affect the interaction. 

 

Figure 3.3 Loci of disease variations associated with interaction strength. (a) Co-expression 

profiles for interactions with low, medium and high buried surface areas. (b) Enrichment of 

interactions with low, medium and high buried surface areas in stable complexes. (c) Odds ratios 

for the distribution of in-frame variations at the interface in interactions with low, medium and 

high buried surface areas. *P < 10-3 (d) Odds ration of in-frame variations in the remainder of the 

interacting domain in interactions with low, medium and high buried surface areas. (e) Odds ratio 
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of in-frame variations in the rest of the protein in interactions with low, medium and high buried 

surface areas. *P < 10-3. Error bars indicate ± SE. 

 

Figure 3.4 Alterations of biochemical properties of individual amino acids in disease. (a) 

Enrichment of disease variations that alter the structural (accessibility) and biochemical 

(polarity) properties of amino acids as compared to SNPs. *P < 10-3. Error bars indicate ± SE. (b) 

Relative enrichment of all pairs of amino-acid changes in human pathological variations as 

compared to changes which occurred, and which were fixed, during the course of evolution (gray 

indicates that these pathogenic variations are not observed). (c) Pairs of amino-acid changes 

enriched in pathogenic missense variations and changes that occurred during evolution (shaded 

pairs undergo significant change in biochemical properties). (d) Pairs of amino-acid changes 

enriched at the atomic-resolution interaction interface (shaded pairs undergo significant change 

in biochemical properties). (e) An example of the alteration of the interaction interface between 

RNASEH2B and RNASEH2C by a variation (K143I) in RNASEH2C that significantly alters 

biochemical properties (in the circular panel, the blue residue is the wild-type K and the red 

residue is the pathogenic variant I).  
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CHAPTER 4 

A massively parallel pipeline to clone DNA variants and examine molecular 

phenotypes of human disease mutations 

 

In the following chapter, we describe a high-throughput site-directed mutagenesis pipeline to 

generate thousands of mutations and examine their effects on protein stability and interactions. I 

am a co-first author of the paper resulting from this chapter (Wei*, Das* et al PLoS Genetics 

2014, *=Equal contribution) and performed all computational analyses. The first author of the 

Xiaomu Wei led the experiments, along with other co-first authors Robert Fragoza and Jin Liang. 
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4.1 ABSTRACT 

 

Understanding the functional relevance of DNA variants is essential for all exome and genome 

sequencing projects. However, current mutagenesis cloning protocols require Sanger sequencing, 

and thus are prohibitively costly and labor-intensive. We describe a massively-parallel site-

directed mutagenesis approach, “Clone-seq”, leveraging next-generation sequencing to rapidly 

and cost-effectively generate a large number of mutant alleles. Using Clone-seq, we further 

develop a comparative interactome-scanning pipeline integrating high-throughput GFP, yeast 

two-hybrid (Y2H), and mass spectrometry assays to systematically evaluate the functional 

impact of mutations on protein stability and interactions. We use this pipeline to show that 

disease mutations on protein-protein interaction interfaces are significantly more likely than 

those away from interfaces to disrupt corresponding interactions. We also find that mutation 

pairs with similar molecular phenotypes in terms of both protein stability and interactions are 

significantly more likely to cause the same disease than those with different molecular 

phenotypes, validating the in vivo biological relevance of our high-throughput GFP and Y2H 

assays and indicating that both assays can be used to determine candidate disease mutations in 

the future. The general scheme of our experimental pipeline can be readily expanded to other 

types of interactome-mapping methods to comprehensively evaluate the functional relevance of 

all DNA variants, including those in non-coding regions. 
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4.2 INTRODUCTION 

 

Owing to rapid advances in next-generation sequencing technologies, tens of thousands of 

disease-associated mutations(Stenson et al., 2009) and millions of single nucleotide 

polymorphisms (SNPs)(Consortium, 2012; Fu et al., 2013) have been identified in the human 

population. With the large number of ongoing whole-exome and whole-genome sequencing 

projects(Consortium, 2012; Fu et al., 2013), hundreds of thousands of new SNPs are now being 

discovered every month. Hence, there is an urgent need to develop high-throughput methods to 

sift through this deluge of sequence data and rapidly determine the functional relevance of each 

variant. Here, we focus on coding variants, firstly because trait- and disease-associated SNPs are 

significantly over-represented in nonsynonymous sites(Hindorff et al., 2009), and secondly 

because the vast majority of disease-associated mutations identified to date reside within coding 

regions(Stenson et al., 2009). We evaluate the functional impact of coding variants by examining 

their effects on corresponding protein-protein interactions, because most proteins carry out their 

functions by interacting with other proteins(Vidal et al., 2011).  

Recent studies have begun to use large-scale protein interaction networks to understand 

human diseases and their associated mutations(Vidal et al., 2011; Zhong et al., 2009). By 

integrating structural details with high-quality protein networks, we created a 3D interactome 

network where the interface for each interaction has been structurally resolved(Wang et al., 

2012). Using this 3D network, we demonstrated that in-frame disease mutations (missense 

mutations and in-frame insertions/deletions) are significantly enriched at the interaction 

interfaces of the corresponding proteins(Wang et al., 2012). Our results indicate that alteration of 

specific interactions is very important for the pathogenesis of many disease genes, highlighting 
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the importance of 3D structural models of protein interactions in understanding the functional 

relevance of coding variants. However, many important questions still remain unanswered – for 

example, what fraction of protein-protein interactions is altered by disease mutations to cause the 

corresponding disorders? Furthermore, do structural details of the interacting proteins, especially 

the position of the mutation relative to the interaction interface, affect the ability of a given 

disease mutation to alter a specific interaction? 

To address these questions, we decided to focus on proteins with known disease mutations 

that participate in interactions with available co-crystal structures in the Protein Data Bank 

(PDB)(Berman et al., 2000). To detect the alteration of the interactions by disease mutations, it is 

necessary to first detect the interactions of the wild-type proteins using an assay of choice. This 

turns out to be a major bottleneck because all high-throughput interaction-detection assays have 

very limited sensitivity(Braun et al., 2009; Yu et al., 2008). Our assay of choice is Y2H because 

there are over 16,000 human protein interactions detected by our version of Y2H that can serve 

as the reference interactome for comparison(HI2012, 2012; Rual et al., 2005; Venkatesan et al., 

2009; Yu et al., 2011), the largest for any assay performed to date. In total, there are 217 

interactions detected by our version of Y2H with available co-crystal structures; 51 of these also 

have known missense disease mutations on corresponding proteins in the Human Gene Mutation 

Database (HGMD)(Stenson et al., 2009) and the corresponding interactions for the wild-type 

proteins can be detected in our experiments with strong Y2H-positive phenotypes (see Materials 

and Methods). Here, we focused on missense mutations because they are intrinsically more 

likely to generate interaction-specific disruptions(Zhong et al., 2009). We established a high-

throughput comparative interactome-scanning pipeline to clone disease mutations and examine 

74



their molecular phenotypes (Figure 4.1). The methodologies established here can be readily 

applied to any non-synonymous variant in the coding region, including nonsense mutations.  

 

4.3 RESULTS 

 

Clone-seq: a massively parallel site-directed mutagenesis pipeline using next-generation 

sequencing 

 

The first step of our pipeline is a massively parallel approach, termed Clone-seq, designed to 

leverage the power of next-generation sequencing to generate a large number of mutant alleles 

using site-directed mutagenesis in a rapid and cost-effective manner. Current protocols for site-

directed mutagenesis require picking individual colonies and sequencing each colony using 

Sanger sequencing to identify the correct clone(Suzuki et al., 2005). This standard approach is 

both labor-intensive and expensive; therefore, it does not scale up to genome-wide surveys. In 

Clone-seq, we put one colony of each mutagenesis attempt into one pool (Figure 4.1A; in other 

words, each pool contains one and only one colony for each desired mutation) and combine 

multiple pools through multiplexing for one Illumina sequencing run(Salehi-Ashtiani et al., 

2008). Colonies for generating different mutations of the same gene can be put into the same 

pool, which can be easily distinguished computationally when processing the sequencing results. 

This is true even for mutations occurring at the same site (Figure 4.2A).  

For the 51 selected interactions, we chose 27 disease-associated mutations of residues at the 

interface (“interface residue”), 100 mutations in the rest of the interface domain (“interface 

domain”) and 77 mutations away from the interface (“away from the interface”; Figure 4.3A,B). 
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These interfaces were determined using solvent accessible surface area calculations as previously 

described(Das et al., 2014b; Khurana et al., 2013) on 7,340 co-crystal structures (Materials and 

Methods). To set up our Clone-seq pipeline, we first started with 39 mutations from these 204 

and picked 4 colonies for each mutation. As a reference, we also pooled together all the wild-

type alleles in our human ORFeome library to be sequenced together with the 4 pools of the 

mutagenesis colonies. In total, there were 40.1 million Illumina HiSeq 1×100 bp reads for our 

Clone-seq samples for an average of > 2,500× coverage on all desired mutation sites. Therefore, 

our Clone-seq pipeline has the capacity to generate > 3,000 mutations in one full lane of a HiSeq 

run with 1×100 bp reads, drastically improving the throughput and decreasing overall sequencing 

costs by at least 10-fold. 

Fig. 4.2A presents a schematic of the criteria we use to determine which clones contain the 

desired mutation and can be used for subsequent steps. For example, in pool 1, all reads 

(ignoring sequencing errors) confirm that genes I and II each contain the desired mutation – 

T116A and G298T, respectively. For gene III, we want to generate two separate clones with two 

separate mutations – IIIA41T and IIIC194T. Since half the reads contain T41 (instead of A41) and 

the other half contain T194 (instead of C194), and we normalize DNA concentrations across all 

samples, we can infer that both mutant clones were generated successfully. In contrast, for gene 

IV, we see that while half the reads contain A511 (instead of G511), all the reads are wild-type at 

C74. Thus, we infer that while the IVG511A clone is successfully generated, the IVC74T clone is 

not. For gene V, although both mutant clones are successfully generated, half the reads contain 

an additional mutation, C436G. Since it is impossible to know which of the two clones for V 

contains this unwanted mutation, neither clone is usable. Similarly, we can determine mutant 

clones IT116A, IIIA41T, IIIC194T, IVC74T, IVG511A, VT53G, and VG272A as usable clones in pool n. 
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Based on these criteria, we developed the S score calculation and used it to determine successful 

mutagenesis attempts (Materials and Methods). Out of 156 colonies for 39 mutations, 125 of 

them contain the desired mutations (S > 0.8), an overall 80% PCR-mutagenesis success rate. In 

fact, we were able to pick correct clones for all 39 mutant alleles using only the first two pools in 

Clone-seq. All 78 clones from the first two pools, from which the correct ones were selected for 

use in subsequent steps, were also Sanger sequenced for verification. 55 Clone-seq positive 

results with S > 0.8 were all confirmed and there is a clear separation in the S scores between the 

successful and failed mutagenesis attempts (Figure 4.2B).  

One major advantage of our Clone-seq pipeline is that it allows us to carefully examine 

whether other unwanted mutations have been inadvertently introduced during PCR-mutagenesis 

in comparison with the corresponding wild-type alleles, since we obtain reads spanning the entire 

gene. We found that there are on average 4-5 unwanted mutations introduced in each pool of 39 

colonies. This corresponds to a 0.013% PCR error rate (Materials and Methods), in agreement 

with previous studies(Vandenbroucke et al., 2011). The detection of unwanted mutations, 

especially those distant from the mutation of interest, is achieved in traditional site-directed 

mutagenesis pipelines by Sanger sequencing through the gene of interest. This is costly and 

labor-intensive, especially because multiple sequencing runs are needed for one long gene. 

However, since Clone-seq yields reads spanning the entire gene, we were able to determine 

which of the generated clones definitely do not have unwanted mutations in the full length of 

their sequences as illustrated in Figure 4.2A (Materials and Methods), and we pick only these 

clones for subsequent assays.  

To further test our Clone-seq pipeline, we applied it to generate clones for 113 SNPs on 66 

genes from the recently published Exome Sequencing Project dataset(Fu et al., 2013). Using the 
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same approach as described above, we sequenced 4 colonies each for the 113 alleles of interest 

using one third of a 1×100 bp MiSeq run. We obtained 4.7 million reads for these 113 alleles. 

With a threshold of S > 0.8, we were able to determine that 370 out of the 452 colonies (82%) 

contain the desired mutation, in perfect agreement with the PCR-mutagenesis success rate 

obtained earlier. We were able to choose colonies that contain only the desired mutation for all 

113 alleles. Because the whole MiSeq run produced 17.7 million reads and we only used 4.7 

million for generating the 113 mutant clones, the capacity of our Clone-seq pipeline using one 

full lane of a 1×100 bp HiSeq run is estimated to be >3,000, exactly the same as our previous 

assessment.  

Finally, we generated the remaining 165 disease mutations (of the 204) and 717 other coding 

variants from the Exome Sequencing Project and the Catalog of Somatic Mutations in 

Cancer(Forbes et al., 2011) using a full 1×100 bp HiSeq run, including 40 mutations on a single 

gene – MLH1. Using 111.2 million reads for these 882 alleles, we found that 2,958 of the 3,528 

colonies (84%) contain the desired mutation, again in excellent agreement with our previously 

obtained PCR-mutagenesis success rate. There was at least one colony with only the desired 

mutation for all 882 alleles, including all 40 MLH1 mutations. Therefore, our Clone-seq pipeline 

can generate a large number of mutations (>40) even for a single gene. In fact, to generate even 

more mutations for one gene, we can implement a two-round barcoding approach: generate 

groups of 40 mutations and barcode them differently for one HiSeq run. Ten such groups will 

enable us to generate ~400 mutations for a single gene. Since the average coverage of these 882 

alleles is > 300×, the capacity of our Clone-seq pipeline using one full lane of a 1×100 bp HiSeq 

run is estimated to be >3,000, again in agreement with our previous two estimates. 
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Overall, our pipeline has been significantly optimized to make it very efficient. We 

established a web tool (http://www.yulab.org/Supp/MutPrimer) to design mutagenesis primers 

both individually and in batch. MutPrimer can design ~1,000 primers for ~500 mutations in one 

batch in less than one second. All of the 2,068 primers for the 1,034 mutations in this study were 

generated by MutPrimer. All mutagenesis PCRs are performed in batch using automatic 96-well 

procedures. Since single colony picking after bacterial transformation of mutagenesis PCR 

product is a rate-limiting step, we rigorously optimized this step and found that adding 10 µL 

mutagenesis PCR products to 100 µL competent cells and plating 50 µL transformed cells give 

the best transformation yield and well-separated single colonies. Furthermore, rather than 

individually streaking transformed cells onto agar plates one sample at a time, we were able to 

significantly increase throughput by spreading colonies using glass beads onto four sector agar 

plates which are partitioned into four non-contacting quadrants (Materials and Methods). In this 

manner, a 96-well plate of transformed bacteria can be plated out onto 24 four-sector agar plates 

in ~15 minutes. Traditional site-directed mutagenesis pipelines require miniprepping each of the 

selected colonies and sequencing them separately by Sanger sequencing. To drastically improve 

the throughput of our Clone-seq pipeline, we pooled together the bacteria stock of a single 

colony for each mutagenesis attempt to perform one single maxiprep, which makes the library 

construction step much more efficient and amenable to high-throughput. Furthermore, existing 

variant calling pipelines(McKenna et al., 2010) cannot be applied to our Clone-seq results 

because the expected allelic ratios built into these pipelines are a function of the ploidy of the 

organism. However, in our Clone-seq pipeline there is no concept of ploidy. We pool together 

many mutations for one gene in the same pool (e.g., 40 mutations for MLH1) and different genes 
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often have different numbers of mutations. Our S score calculation and unwanted mutation 

detection pipeline was designed according to our pooling strategy (Materials and Methods). 

In total, we have used the novel Clone-seq pipeline successfully to generate 1,034 (39 + 113 

+ 882) mutant clones without any additional unwanted mutations, confirming the scalability, 

accuracy, and throughput of our Clone-seq pipeline. 

 

A high-throughput GFP assay to determine the impact of mutations on protein stability 

 

For the 204 mutations on proteins with co-crystal structures, we first examined whether the 

mutant proteins can be stably expressed in human cells. To do this, we tagged every wild-type 

and mutant protein with GFP at the C-terminus using high-throughput Gateway cloning (Figure 

4.1B). The GFP constructs were transfected into HEK293T cells and fluorescence intensities 

were measured by a plate reader (Figure 4.3C; Materials and Methods). All fluorescence 

intensity readings were also confirmed manually under a microscope. Compared with the 

corresponding wild-type proteins, the expression levels of 3 of the 27 “interface residue” 

mutants, 8 of the 99 “interface domain” mutants and 6 of the 77 “away from the interface” 

mutants are significantly diminished (Figure 4.3C; Materials and Methods; Table 4.1). To 

validate these findings, we also performed Western blotting for 8 random mutants that are stably 

expressed and 8 random mutants with significantly diminished expression levels (Figure 4.4A). 

Western blotting results confirm our GFP intensity readings. 

 

A high-throughput Y2H assay to determine the impact of mutations on protein interactions 
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Next, we investigated whether these mutations could affect protein-protein interactions using 

Y2H (Figure 4.1C; Materials and Methods). We found that 21 of the 27 (78%) “interface 

residue” mutations, 57 of the 100 (57%) “interface domain” mutations, and only 22 of the 77 

(29%) “away from the interface” mutations disrupt the corresponding interactions, thereby 

demonstrating a clear difference (Figure 4.4B; P = 3 x 10-6 between “interface residue” and 

“interface domain” and P = 8 x 10-10 between “interface domain” and “away from the interface”) 

in terms of ability to interfere with protein-protein interactions between mutations at different 

structural loci within the same protein. Furthermore, comparing with the GFP results, we found 

that all destabilizing mutations were shown to disrupt the corresponding interactions in our Y2H 

experiments. By considering only the mutations that do not affect protein expression based on 

the GFP experiments, we found the same difference: 13 out of 18 (72%) “interface residue” 

stable mutations, 42 out of 83 (51%) “interface domain” stable mutations, and only 9 out of 52 

(17%) “away from the interface” stable mutations disrupt the corresponding interactions (Figure 

4.4B; P = 2 x 10-5 between “interface residue” and “interface domain” and P = 9 x 10-13 between 

“interface domain” and “away from the interface”; Table 4.1). Since these interfaces are obtained 

from actual co-crystal structures, our results suggest that accurate structural information can help 

determine the functional impact of mutations on protein-protein interactions. Wild-type proteins 

corresponding to 113 of the 153 stably expressed mutant proteins also interact with other 

proteins as determined by our Y2H experiments (114 interactions in total, termed “other 

interactions”); however, for these interactions, there are currently no co-crystal structures 

available in the PDB. Using these other interactions, we calculated the likelihood of a given 

mutation disrupting a specific interaction without any structural information to be 32% (Figure 

4.4B).  
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Relationships between measured molecular phenotypes and corresponding disease 

phenotypes 

 

We then analyzed whether the molecular phenotypes measured by our high-throughput GFP and 

Y2H assays are correlated with corresponding disease phenotypes. We first examined how 

mutation pairs on the same gene affect protein stability and its relationship to their corresponding 

diseases. We find that pairs of mutations that are either both stable or both unstable cause the 

same disease in 68% and 70% of cases, respectively. However, pairs comprising one stable and 

one unstable mutation cause the same disease in only 30% of cases (P = 6 x 10-9 and 8 x 10-10, 

respectively, Figure 4.5A). For example, we find that the mutations R727C and L844F on the 

spindle checkpoint kinase Bub1b both cause the protein to become unstable and lose all its 

interactors. These mutations are both associated with the same disease, mosaic variegated 

aneuploidy, an autosomal recessive disorder that causes predominantly trisomies and 

monosomies of different chromosomes(Hanks et al., 2004; Suijkerbuijk et al., 2010). Since our 

GFP assay shows that these two mutations cause loss of protein product, our results are 

consistent with Matusuura et al.’s finding that a more than 50% decrease in Bub1b activity leads 

to abnormal mitotic spindle checkpoint function and mosaic variegated aneuploidy(Matsuura et 

al., 2006).  

We then examined whether mutation pairs on the same gene disrupt the same set or different 

sets of interactions (i.e., their interaction disruption profiles) and investigated whether their 

disruption profiles correlates with disease phenotypes. We found that mutation pairs with the 

exact same disruption profile are significantly more likely to cause the same disease than those 
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with different profiles (70% and 61% respectively, P = 3 x 10-5, Figure 4.5B). For example, we 

found that two mutations on Smad4, R361C and Y353S, disrupt its interactions with Smad3 and 

Smad9 while leaving the interactions with Lmo4 and Rassf5 unaltered (Figure 4.5C). These two 

mutations both cause juvenile polyposis coli(Houlston et al., 1998; Roth et al., 1999), a disease is 

known to be caused by disruption of the core Smad/Bmp signaling pathways(Massague, 2008). 

Our Y2H results clearly demonstrate that the R361C and Y353S mutations disrupt the Smad4-

Smad3 and Smad4-Smad9 interactions (Figure 4.5C) leading to disruption of core Smad 

signaling pathways. However, the mutation N13S on Smad4 does not disrupt any of these 

interactions (Figure 4.5C) and is associated with a different disease, pulmonary arterial 

hypertension. Our results agree with Nasim et al.’s finding that the N13S mutation does not alter 

downstream Smad signaling(Nasim et al., 2011). Our findings provide support for the hypothesis 

that the N13S mutation either impacts pathways outside the core Smad signaling network or are 

pathogenic only when combined with other environmental and genetic factors(Machado, 2012). 

Overall, these results show that mutation pairs with similar molecular phenotypes in terms of 

both protein stability and interactions are significantly more likely to cause the same disease than 

those with different molecular phenotypes. This confirms that the molecular phenotypes 

measured by our high-throughput GFP and Y2H assays are biologically relevant in vivo. 

Furthermore, by comparing the molecular phenotypes, in particular the protein interaction 

disruption profiles, of mutations/variants to those of known disease mutations, potential 

candidate mutations for a variety of diseases can be identified. 

 

A high-throughput mass spectrometry assay to determine the impact of mutations on 

protein interactions 
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While we use only those interactions that are supported by co-crystal structures to estimate the 

fraction of interactions that are disrupted by mutations at different structural loci, the described 

procedures can also be applied to interactions with predicted interfaces and structural 

models(Meyer et al., 2013; Mosca et al., 2013; Tuncbag et al., 2011; Zhang et al., 2012). This is 

of particular importance because over 90% of known interactions do not currently have 

corresponding co-crystal structures(Das et al., 2014a; Mosca et al., 2013). For example, Mlh1 is 

known to interact with Pms2, both of which are well-studied DNA mismatch repair genes 

frequently mutated in hereditary nonpolyposis colorectal cancer(Peltomaki and Vasen, 1997). 

Although the structural basis of the Mlh1-Pms2 interaction still remains unknown, both our 

previous 3D reconstruction of the human interactome network(Meyer et al., 2013; Wang et al., 

2012) and the newly-established Interactome3D(Mosca et al., 2013) database suggest that the 

HATPase_c domain is part of the interface for Mlh1’s interaction with Pms2. Previous work has 

shown that a point mutation (I107R) on the HATPase_c domain of Mlh1 is associated with 

colorectal cancer and disrupts the Mlh1-Pms2 interaction(Kondo et al., 2003; Peltomaki and 

Vasen, 1997; Wang et al., 2012). First, using Y2H, we were able to confirm the disruption. Next, 

we developed a high-throughput-amenable mass spectrometry pipeline using Stable Isotope 

Labeling by Amino acids in Cell culture (SILAC)(Ong et al., 2002; Ong and Mann, 2006), which 

was designed to reveal both lost/weakened and gained/enhanced interactions of the target 

proteins (Figure 4.1D)(Ohouo et al., 2010). We added an HA-tag to the N-terminus of both wild-

type and mutant Mlh1, as well as to GFP as a control, and performed four SILAC experiments: 

wild-type Mlh1 (heavy) vs. GFP control (light), mutant Mlh1 (heavy) vs. GFP control (light), 

wild-type (heavy) vs. mutant (light) Mlh1, and mutant (heavy) vs. wild-type (light) Mlh1 (Figure 
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4.6A; Materials and Methods). Interactors of wild-type/mutant Mlh1 are defined as those that 

bind wild-type/mutant Mlh1 more than 2× stronger than GFP control (Materials and Methods). 

For a lost/weakened interaction, we required that the interaction be more than 2× stronger with 

wild-type Mlh1 than with mutant Mlh1 as confirmed both in wild-type (heavy) vs. mutant (light) 

and in mutant (heavy) vs. wild-type (light) experiments; we further required that the interaction 

be detected in the wild-type vs. control experiment (Figure 4.6A; Materials and Methods). For a 

gained/enhanced interaction, we required that the interaction be more than 2× stronger with 

mutant Mlh1 than with wild-type Mlh1 as confirmed both in wild-type (heavy) vs. mutant (light) 

and in mutant (heavy) vs. wild-type (light) experiments; we further required that the interaction 

be detected in the mutant vs. control experiment (Figure 4.6A; Materials and Methods). We were 

able to detect Pms2 as the only specifically weakened interactor caused by the mutation (Figures 

4.6B,C; E = -1.77; P = 3 x 10-4), in agreement with our Y2H results and previous studies(Kondo 

et al., 2003; Wang et al., 2012). Additionally, we were able to detect Hspa8 as the only 

specifically enhanced interactor of the mutant protein (Figures. 4.6B,C; E = 2.71; P = 7 x 10-8). 

Two other known interactors of Mlh1, Pms1 (Figures 4.6B,C; E = -0.32; P = 0.21)(Leung et al., 

2000) and Brip1 (Figures 4.6B,C; E = 0.18; P = 0.32)(Peng et al., 2007), were also detected, 

although their interactions with Mlh1 are not affected by this particular mutation (Materials and 

Methods).  

Hspa8 was not previously known to interact with Mlh1 and the impact of the Mlh1 I107R 

mutation on its interactions with Pms1 and Brip1 has not been reported in the literature. To 

verify our SILAC results, we performed in vivo co-immunoprecipitation using HA-tagged wild-

type and mutant Mlh1 and tagged Hspa8 and Brip1 with V5 (Materials and Methods). Our co-

immunoprecipitation results confirm that Hspa8 only weakly interacts with wild-type Mlh1, but 
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the interaction is dramatically enhanced by a single amino acid substitution (I107R) (Figure 

4.6D, lanes 3 and 4), whereas the interaction between Mlh1 and Brip1 is not affected by this 

mutation (Figure 4.6D, lanes 6 and 7; Materials and Methods). Hspa8 is a constitutively 

expressed member of the heat shock protein 70 family(Goldfarb et al., 2006). It functions as a 

chaperone to facilitate protein folding(Goldfarb et al., 2006) and also functions as an ATPase in 

the disassembly of clathrin-coated vesicles during membrane trafficking(DeLuca-Flaherty et al., 

1990). A recent study reported that Hspa8 is specifically recruited to reovirus viral factories, 

independent of its chaperone function(Kaufer et al., 2012). Therefore, our SILAC results suggest 

that Hspa8 may play an important role in colorectal cancer and that its function could be 

independent of its role as a chaperone. 

 

4.4 DISCUSSION 

 

We have successfully developed the first massively parallel site-directed mutagenesis pipeline, 

Clone-seq, using next-generation sequencing. Our Clone-seq pipeline is entirely different from 

previously described random mutagenesis approaches(Araya et al., 2012; Fowler et al., 2010; Pitt 

and Ferre-D'Amare, 2010; Starita et al., 2013). Clone-seq is used to generate a large number of 

specific mutant clones with desired mutations; each individual mutant clone has a separate stock 

and different clones can therefore be used separately for completely different downstream 

assays. In random mutagenesis, a pool of sequences containing different mutations for one gene 

is generated using error-prone PCR or error-prone DNA synthesis. Therefore, it is not possible to 

separate one mutant sequence from another and the whole pool can only be used for the same 

assay(s) together. Furthermore, it is not possible to control which or how many mutations are 
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generated on each DNA sequence. In fact, to improve coverage, most random mutagenesis 

pipelines generate on average two or more mutations on each DNA sequence(Fowler et al., 

2010), which makes it impossible to distinguish the functional impact of each individual 

mutation on the same sequence. Site-directed mutagenesis and random mutagenesis are designed 

for different goals: if one wants to generate all possible mutations for a certain protein without 

the need to separate different clones, it would be more favorable to use random mutagenesis; 

whereas if one needs to have separate clones for each mutation, site-directed mutagenesis is 

required. As a result, the two approaches are complementary and not comparable. 

While there are highly efficient methods for random mutagenesis(Araya et al., 2012; Fowler 

et al., 2010; Pitt and Ferre-D'Amare, 2010; Starita et al., 2013), current protocols for site-directed 

mutagenesis are low-throughput and become prohibitively expensive if a large number of clones 

needs to be generated. Clone-seq directly addresses the necessity for a high-throughput site-

directed mutagenesis pipeline. It is a robust, cost-effective and efficient method that can be used 

to generate a total of ~3,000 distinct mutant clones in one full lane of a 1×100 bp HiSeq run. 

Clone-seq is suitable both for generating mutations across many genes as well as a large number 

of mutations on a few genes. The former situation is applicable when one wants to generate 

many mutations/variants from large-scale studies (e.g., whole-genome or whole-exome 

sequencing) since they typically identify mutations/variants on a large number of genes(Atlas, 

2012; Stransky et al., 2011). The latter situation usually arises in a study focused on a single 

pathway with a few genes of interest (e.g., an alanine-scanning mutagenesis to determine 

functional sites on a gene of interest(Cunningham and Wells, 1989)).  

Integrating with Clone-seq, we also established a comprehensive comparative interactome-

scanning pipeline, including high-throughput GFP, Y2H, and mass spectrometry assays, to 
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systematically evaluate the impact of human disease mutations on protein stability and 

interactions. We examine each mutation individually, rather than looking at their combinatorial 

effects because these inherited germline disease mutations are extremely rare. Therefore, the 

probability of having even two of these in the same individual becomes infinitesimally small. 

Our results reveal that the overall likelihood of a given disease mutation disrupting a specific 

interaction is 32%. Accurate structural information of these interactions obtained from co-crystal 

structures greatly improves our understanding of the impact of disease mutations: 13 out of 18 

(72%) “interface residue” stable mutations, 42 out of 83 (51%) “interface domain” stable 

mutations, and only 9 out of 52 (17%) “away from the interface” stable mutations disrupt the 

corresponding interactions, unveiling a clear dependence of the molecular phenotypes of disease 

mutations on their structural loci. These estimates are not affected by the false negative rate of 

our Y2H assay as we only use those interactions for which we can detect the wild-type 

interaction with strong Y2H phenotypes. Thus, any observed disruption is due to the mutation of 

interest and not an assay false negative. Furthermore, our Y2H pipeline has been shown to be of 

high quality and has an experimentally measured false positive rate of ~5% or lower in different 

organisms(Consortium, 2011; Das et al., 2013; Venkatesan et al., 2009; Yu et al., 2008). In 

addition, the interactions used to understand the relationship between molecular phenotypes and 

structural loci of disease mutations are all supported by co-crystal structures, therefore these 

interactions are not assay false positives. We also find that the molecular phenotypes detected by 

our GFP and Y2H assays correlate with known disease phenotypes, confirming the in vivo 

biological significance of our measurements. 

Moreover, as shown by the Mlh1 example (Fig. 6), our comparative interactome-scanning 

pipeline can also be used with predicted structural models(Meyer et al., 2013; Mosca et al., 2013; 
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Tuncbag et al., 2011; Zhang et al., 2012). The consequent experimental results will clearly be 

affected by the quality of these predictions, which is not part of our pipeline. In fact, our 

experimental interactome-scanning pipeline can be applied to evaluate or improve these 

predicted models by testing mutations at different loci of a protein of interest and examining how 

these mutations disrupt different interactions of this protein.  

Our comparative interactome-scanning pipeline described and validated here can be applied 

to experimentally determine in a high-throughput fashion the impact on protein stability and 

protein-protein interactions for thousands of DNA coding variants and disease mutations, which 

can directly lead to hypotheses of concrete molecular mechanisms for follow-up studies. 

Furthermore, the elucidation of molecular phenotypes of disease mutations is also vital for 

selecting actionable drug targets and ultimately for making therapeutic decisions. Finally, the 

general scheme of our pipeline can be readily expanded to other interactome-mapping methods, 

particularly other protein-protein(Braun et al., 2009), protein-DNA(Berger et al., 2006; Reece-

Hoyes et al., 2011), protein-RNA(Yakhnin et al., 2012), and protein-metabolite interaction 

assays(Bandyopadhyay et al., 2012), to comprehensively evaluate the functional relevance of all 

DNA variants, including those in non-coding regions. 
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4.5 MATERIALS AND METHODS  

 

Selecting interactions with mutations on and away from the interface 

 

To calculate atomic-resolution interaction interfaces, we systematically examined a 

comprehensive list of 7,340 PDB co-crystal structures. To define the interface, we used a water 

molecule of diameter 1.4 Å as a probe and calculated the relative solvent accessible surface areas 

of the interacting pair as well as the individual proteins involved in the interaction. Residues 

whose relative accessibilities change by more than 1 Å2 are considered as potential interface 

residues, because amino acids at the interface reside on the surfaces of the corresponding 

proteins, but will tend to become buried in the co-crystal structure as the two proteins bind to 

each other(Franzosa and Xia, 2011). So, for these residues, there should be a significant decrease 

in accessible surface area when we compare the bound and unbound states of the protein chains.  

 

To identify interface domains, we required at least one of the following criteria to hold: 

 

1. 3did(Stein et al., 2011) or iPfam(Finn et al., 2005) have identified the domain pair as 

interacting and each of the interface domains contains at least one interface residue based 

on our calculations. 

2. The domain pair contains 5 or more interface residues for each protein according to our 

calculations. 

We then identified the subset of these interactions that contain at least one disease mutation and 

are amenable to our version of Y2H(HI2012, 2012; Rual et al., 2005; Venkatesan et al., 2009; 
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Yu et al., 2011). Subsequently, we performed a pairwise retest of all these interactions and 

selected the ones that yield strong Y2H phenotypes, because subsequent steps involve detecting a 

significant decrease in these phenotypes. 

 

Primer design for site-directed mutagenesis 

 

Primers for site-directed mutagenesis were selected based on a customized version of the 

protocol accompanying the Stratagene QuikChange Site-Directed Mutagenesis Kit (200518). 

The following criteria are used: 

 

1. The primer should be of length 30-50 bp and should contain the mutation of interest in 

the center or one base away. 

2. The GC content of the primer should be ≥ 40% and the primer should start and end with a 

G or a C. 

3. The Tm for the primer should be ≥ 78 °C. Tm was calculated using the following 

expression: 

 

€ 

Tm = 81.5 + 0.41× (%GC) − 675
N

−%mismatch  

 

where N is the primer length in bases, %GC is the percentage of G or C nucleotides in the 

primer, and %mismatch is the percentage of mismatched bases in the primer. Values for 

%GC and %mismatch are whole numbers. 
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For cases where no primer satisfies all three criteria simultaneously, we relaxed criterion 2 to GC 

content ≥ 30%. 

 

We established a supplementary web tool (http://www.yulab.org/Supp/MutPrimer) to design 

mutagenesis primers individually or in bulk. 

 

Construction of mutant alleles using high-throughput site-directed mutagenesis PCR 

 

All wild-type clones were obtained from the human ORFeome v8.1 collection(Yang et al., 

2011). To generate mutant alleles, sequence-verified single-colony wild-type clones and their 

corresponding mutagenic primers were aliquoted into individual wells of 96-well PCR plates. 

Mutagenesis PCR was then performed as specified by the New England Biolabs (NEB) PCR 

protocol for Phusion polymerase (M0530L), noting that PCR was limited to 18 cycles. The 

samples were then digested by DpnI (NEB R0176L) according to the manufacturer’s manual. 

After digestion, samples were transformed into competent E. coli. Since single colony picking 

after bacterial transformation of mutagenesis PCR product is a rate-limiting step, we rigorously 

optimized this step. First, we tried different volumes of competent cells for transformation and 

found that single colony yields peak when ~100 µL of competent cells are used. It is also 

necessary to use ~10 µL of mutagenesis PCR product: any lower volume of PCR product results 

in significantly reduced colony yields, while higher volumes of PCR product do not increase 

yield. Finally, colony picking was done using four-sector agar plates (VWR 25384-308) that are 

partitioned into four non-contacting quadrants with glass beads poured onto each plate quadrant. 

Each bead-filled quadrant was inoculated with ~50 µL of transformed bacteria. This was then 
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spread by lightly shaking the four-sector agar plate. Our optimized transformation protocol 

results in a large number of well-separated single colonies that can be easily picked the next day. 

Upon recovery, single colonies from each quadrant were then picked and arrayed into 96-

deepwell plates filled with 300 µL of antibiotic media. Four colonies per allele were picked for 

next-generation sequencing. 

 

DNA library preparation for Illumina sequencing 

 

DNA library preparation was performed using NEBNext DNA Library Prep Master Mix Set for 

Illumina (NEB E6040S) according to the manufacturer’s manual. Briefly, 5 µg of pooled 

plasmid DNA (~100 µL, all samples were normalized to the same concentration) was sonicated 

to ~200 bp fragments. The fragmented DNA was first mixed with NEBNext End Repair Enzyme 

for 30 mins at 20 °C. Blunt-ended DNA was then incubated with Klenow Fragment for 30 mins 

at 37 °C for dA-Tailing. Subsequently, NEBNext Adaptor was added to dA-Tailed DNA. 

Adaptor-ligated DNA (~300 bp) was size-selected on a 2% agarose gel. Size-selected DNA was 

then mixed with one of the NEBNext Multiplex Oligos (NEB E7335S) and Universal PCR 

primers for PCR enrichment. At each step, DNA was purified using a QIAquick PCR 

purification kit (Qiagen 28104). Multiplexed DNA samples were combined and analyzed in one 

lane of a 1×100 bp run by Illumina HiSeq 2500. 
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Identifying successful instances of site-directed mutagenesis based on next-generation 

sequencing 

 

The mutant colonies were barcoded and pooled as shown in Fig. 1a. The multiplexed colonies 

were then run on an Illumina sequencer (2 HiSeq runs and 1 MiSeq run) to give 1×100 bp reads. 

These reads were then de-multiplexed and mapped to the genes of interest using the BWA “aln” 

algorithm(Li and Durbin, 2009). For each allele, we identified all reads that mapped to the 

position of the mutation of interest (Rall) and those that actually contained the desired mutation 

(Rmut). We then calculated a normalized score (S) that quantifies the fraction of reads containing 

the desired mutation: 

 

€ 

S =
Rmut

1
k
Rall

=
k × Rmut

Rall
 

 

where k is the number of different mutations for the same gene.  

 

For 39 mutations, we Sanger sequenced two mutant colonies per mutagenesis attempt to quantify 

the correlation between S and observation of the desired mutation. We found that all clones with 

S > 0.44 are confirmed to be correct via Sanger sequencing with a clear separation between those 

that are correct and those that are not (Figure 4.2b). However, to further ensure that the clones 

we picked were correct, we require S > 0.8 for a colony to be scored as containing the desired 

mutation. 

 

Identifying unwanted mutations 
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One major advantage of our Clone-seq pipeline over traditional site-directed mutagenesis 

protocols using Sanger sequencing(Suzuki et al., 2005) is that we can now carefully examine 

whether there are other unwanted mutations inadvertently introduced during the PCR process, in 

comparison with the corresponding wild-type alleles. It is essential to use clones with no 

unwanted mutations for downstream experiments, as the presence of these will make it 

impossible to determine whether the observed disruption is due to the desired or other 

undesirable mutation(s). 

We use samtools “mpileup”(Li et al., 2009) to obtain read counts for different alleles at each 

nucleotide for all the clones. We calculate the background sequencing error rate by calculating 

the average fraction of non-reference alleles across all nucleotides where we did not attempt to 

introduce a mutation. Any site that has a significantly higher fraction of non-reference alleles 

(using a P value cutoff of 0.2 from a cumulative binomial test) is considered to have an 

unwanted mutation. A lenient P value cutoff (0.2 as opposed to the more traditionally used 0.05 

or 0.01) implies more stringent filtering in this case because we want to eliminate type II errors 

i.e., we want to identify all unwanted mutations at the cost of discarding a few clones that 

actually do not have any unwanted mutations. 

We identified an average of 4-5 unwanted point mutations per pool. The overall per-base 

point mutation rate of Phusion polymerase was calculated to be ~ 10-4. NEB’s advertised error 

rate for Phusion polymerase varies from 4.4 – 9.5 x 10-7 per PCR cycle. Since we perform 18 

PCR cycles, the expected overall error rate is ~ 10-5. Our calculated mutation is within an order 

of magnitude of this advertised error rate. It is slightly higher than the advertised rate as we use 

stringent filtering criteria as described above. 
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GFP assay 

 

All wild-type and mutant clones were moved into the pcDNA-DEST47 vector with a C-terminal 

GFP tag using automated Gateway LR reactions in a 96-well format. After bacterial 

transformation, minipreps were prepared on a Tecan Freedom Evo 200, and DNA concentrations 

were determined by OD 260/280 with a Tecan Infinite M1000 plate reader in 96-well format. A 

100 ng aliquot of each expression clone plasmid was used for transfection into HEK293T cells in 

96-well plates using Lipofectamine 2000 (Invitrogen 11668019) according to the manufacturer’s 

instructions. At approximately 48 hrs post-transfection, cells were processed with Tecan M1000. 

Fluorescence intensities were measured at 395 nm for excitation and 507 nm for emission, 

according to Invitrogen’s manual. As negative controls, the fluorescence intensities 

corresponding to cells transfected with the empty vector were measured. The normalized 

fluorescence intensity was calculated as:  

 

€ 

Inorm = I − Ibackground  

 

where I corresponds to the measured intensity and Ibackground corresponds to the average intensity 

of the empty vector controls for each plate. All Inorm values greater than K are considered to 

correspond to stable protein expression. K corresponds to the range (maximum – minimum) of 

background fluorescence intensities of the empty vector controls for each plate. For this study, 

all fluorescence intensity readings were also confirmed manually under a microscope. All 

transfection and GFP experiments were repeated 3 times. 
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Y2H assay 

 

Y2H was performed as previously described(Wang et al., 2012). All wild-type/mutant clones 

were transferred by Gateway LR reactions into our Y2H pDEST-AD and pDEST-DB vectors. 

All DB-X and AD-Y plasmids were transformed individually into the Y2H strains MATα Y8930 

and MATa Y8800, respectively. Each of the DB-X MATα transformants (wild-type and mutants) 

were then mated against corresponding AD-Y MATa transformants (wild-type and mutants) 

individually using automated 96-well procedures, including inoculation of AD-Y and DB-X 

yeast cultures, mating on YEPD media (incubated overnight at 30 °C), and replica-plating onto 

selective Synthetic Complete media lacking leucine, tryptophan, and histidine, and supplemented 

with 1 mM of 3-amino-1,2,4-triazole (SC-Leu-Trp-His+3AT), SC-Leu-His+3AT plates 

containing 1 mg/l cycloheximide (SC-Leu-His+3AT+CHX), SC-Leu-Trp-Adenine (Ade) plates, 

and SC-Leu-Ade+CHX plates to test for CHX-sensitive expression of the LYS2::GAL1-HIS3 and 

GAL2-ADE2 reporter genes. The plates containing cycloheximide select for cells that do not 

have the AD plasmid due to plasmid shuffling. Growth on these control plates thus identifies 

spontaneous auto-activators(Walhout and Vidal, 2001). The plates were incubated overnight at 

30 °C and “replica-cleaned” the following day. Plates were then incubated for another three days, 

after which positive colonies were scored as those that grow on SC-Leu-Trp-His+3AT and/or on 

SC-Leu-Trp-Ade, but not on SC-Leu-His+3AT+CHX or on SC-Leu-Ade+CHX. Disruption of 

an interaction by a mutation was defined as at least 50% reduction of growth consistently across 

both reporter genes, when compared to Y2H phenotypes of the corresponding wild-type allele as 

benchmarked by 2-fold serial dilution experiments. All Y2H experiments were repeated 3 times. 
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Construction of plasmids  

 

Wild-type MLH1, HSPA8, and BRIP1 entry clones are from the human ORFeome v8.1 

collection(Yang et al., 2011). Using Gateway LR reactions, wild-type MLH1, mutant MLH1 

(I107R), and GFP were transferred into the pMSCV-N-FLAG-HA-PURO vector(Behrends et al., 

2010); HSPA8 and BRIP1 were transferred into the pcDNA-DEST40 vector that contains a C-

terminal V5 tag (Invitrogen 12274-015).  

 

Analysis of interacting proteins by SILAC and LC-MS/MS  

 

HEK293T cells were grown in SILAC media comprising SILAC DMEM (Thermo Scientific) 

and 10% dialyzed FBS (JR Scientific) supplemented with either 0.1 mg/ml L-lysine and L-

arginine (light media) or 0.1 mg/ml L-lysine 13C6, 15N2 and L-arginine 13C6, 15N4 (heavy 

media). Heavy- or light-media cultured HEK293T cells were transfected using Lipofectamine 

2000 (Invitrogen) in three 10 cm plates. 48 hrs after transfection, cells were washed three times 

in cold PBS and then resuspended in 5 ml RIPA buffer [1% NP-40, 50 mM Tris-HCl pH 7.5, 150 

mM NaCl, 5 mM EDTA, 1× EDTA-free Complete Protease Inhibitor tablet (Roche)]. Cells were 

lysed for 30 mins on ice before centrifuging at 13,000 rpm for 10 mins. Cell lysates were 

incubated with 60 µL EZview Red Anti-HA Affinity Gel (Sigma-Aldrich) for 3 hrs. After 3 

washes with RIPA buffer, bound proteins were eluted with 3 resin volumes elution buffer (100 

mM Tris-HCl pH 8.0, 1% SDS). Eluted proteins from light and heavy media were mixed 

together, reduced with 5 mM DTT, alkylated with 15 mM of iodoacetamide, and then 

precipitated with 3 volumes PPT solution (50% acetone, 49.9% ethanol, 0.1% acetic acid). 
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Proteins from pull-down experiments were solubilized with 50 µL Urea/Tris solution (8 M Urea, 

50 mM Tris-HCl pH 8.0) and 150 µL NaCl/Tris (50 mM Tris-HCl pH 8.0, 150 mM NaCl) 

followed by the addition of 1 µg Trypsin Gold (Promega). Protein digestion was performed 

overnight at 37 °C after which trifluoroacetic acid and formic acid were added to a final 

concentration of 0.2%. Peptides were de-salted with Sep-Pak C18 columns (Waters 

Corporation), dried in a speed-vac, and reconstituted in 85 µL of a solution containing 80% 

acetonitrile and 1% formic acid. Samples were fractionated by Hydrophilic Interaction LIquid 

Chromatography (HILIC) using a TSK gel Amide-80 column (Tosoh Bioscience). HILIC 

fractions were dried in a speed-vac, reconstituted in 0.1% trifluoroacetic acid, and analyzed by 

LC-MS/MS using a 125 µM ID capillary column packed in-house with 3 µm C18 particles 

(Michrom Bioresources) and a Q-Exactive mass spectrometer (Thermo Fisher Scientific) 

coupled with a Nano LC-Ultra system (Eksigent). Xcalibur 2.2 software (Thermo Fischer 

Scientific) was used for the data acquisition and Q-Exactive was operated in the data-dependent 

mode. Survey scans were acquired in the Orbitrap mass analyzer over the range of 380 to 2000 

m/z with a mass resolution of 70.000 (at m/z 200). Up to the top 10 most abundant ions with a 

charge state higher than 1 and less than 5 were selected within an isolation window of 2.0 m/z. 

Selected ions were fragmented by Higher-energy Collisional Dissociation (HCD) and the tandem 

mass spectra were acquired in the Orbitrap mass analyzer with a mass resolution of 17.500 (at 

m/z 200). The fragmentation spectra were searched by using the SEQUEST software on a 

SORCERER system (Sage-N Research) and a human database downloaded from the 

International Protein Index (version 3.80). In all database searches, trypsin was designated as the 

protease, allowing for one non-tryptic end and two missed-cleavages. The following parameters 

were used in the database search: a mass accuracy of 15 ppm for the precursor ions, differential 
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modification of 8.0142 Daltons for lysine and 10.00827 Daltons for arginine. Results were 

filtered based on probability score to achieve a 1% false positive rate. The Xpress software, part 

of the Trans-Proteomic Pipeline (Seattle Proteome Center), was used to process the raw data and 

quantify the light/heavy peptide isotope ratios. Results were also manually inspected. 

 

Identifying loss and gain of interactors for Mlh1 

 

We performed four SILAC experiments using both wild-type and mutant Mlh1, as well as GFP 

as a control: wild-type (heavy) vs. control (light) [WT_Control]; mutant (heavy) vs. control 

(light) [Mutant_Control]; wild-type (heavy) vs. mutant (light) [WT_Mutant]; and mutant (heavy) 

vs. wild-type (light) [Mutant_WT].  

 

We use the following variables and define four ratios for all subsequent calculations. In the 

WT_Control experiment, the relative abundance of protein p pulled down by wild-type Mlh1 to 

protein p pulled down by GFP (WTp) is quantified by the inverse of the geometric mean of rwc 

reads with Xpress values Xi. In the Mutant_Control experiment, the relative abundance of protein 

p pulled down by mutant Mlh1 (I107R) to protein p pulled down by GFP (Mutp) is quantified by 

the inverse of the geometric mean of rmc reads with Xpress values Yi. In the WT_Mutant 

experiment, the relative abundance of protein p pulled down with mutant Mlh1 (I107R) to 

protein p pulled down by wild-type Mlh1 is quantified by the geometric mean of rwm reads with 

Xpress values Pi. The amount of mutant Mlh1 (I107R) to wild-type Mlh1 is quantified by the 

geometric mean of twm reads with Xpress values Cj. In the Mutant_WT experiment, the relative 

abundance of protein p pulled down with mutant Mlh1 (I107R) to protein p pulled down by wild-
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type Mlh1 is quantified by the inverse of the geometric mean of rmw reads with Xpress values Qj. 

The amount of mutant Mlh1 (I107R) to wild-type Mlh1 is quantified by the inverse of the 

geometric mean of tmw reads with Xpress values Di. 

 

WTp =
1
Xii=1

rwc

∏rwc

 

 

Mutp =
1
Yii=1

rmc

∏rmc

 

	
  

FCwm =

Pi
i=1

rwm

∏rwm

Cj
j=1

twm

∏twm  

 

FCmw =

Di
i=1

tmw

∏tmw

Qj
j=1

rmw

∏rmw  

 

where both FCwm and FCmw denote the fold change in protein abundance as the normalized ratio 

of the amount of protein pulled down with mutant Mlh1 to that with wild-type Mlh1. 
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To identify interactors that are lost/weakened due to the I107R mutation, we required the 

following criteria to hold simultaneously: 

 

1. The protein has to be identified as an interactor of wild-type Mlh1: WTp > 2, rwc ≥ 5. 

2. The protein has to be identified as a lost interactor based on both Mutant_WT: FCmw < 

0.5, rmw ≥ 5, and WT_Mutant: FCwm < 0.5, rwm ≥ 5. 

 

The first criterion ensures that the protein identified is a true interactor of wild-type Mlh1. The 

second criterion ensures that the loss of interaction is significant and reliably observed across 

both WT_Mutant and Mutant_WT experiments. 

 

Similarly, to identify interactors that are gained/enhanced due to the I107R mutation, we 

required the following criteria to hold simultaneously: 

 

1. The protein has to be identified as an interactor of mutant Mlh1 (I107R): Mutp > 2, rmc ≥ 

5. 

2. The protein has to be identified as a gained interactor based on both Mutant_WT: FCmw > 

2, rmw ≥ 5, and WT_Mutant: FCwm > 2, rwm ≥ 5. 

 

The first criterion ensures that the protein identified is a true interactor of the I107R mutant of 

Mlh1. The second criterion ensures that the gain of interaction is significant and reliably 

observed across both WT_Mutant and Mutant_WT experiments. 
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We also identify interactors of Mlh1 that are unaffected by the I107R mutation using the 

following criteria: 

 

1. The protein has to be identified as an interactor of both wild-type Mlh1: WTp > 2, rwc ≥ 5, 

and mutant Mlh1 (I107R): Mutp > 2, rmc ≥ 5. 

2. The protein has to be identified as an unchanged interactor based on both Mutant_WT: 

0.5 < FCmw < 2, rmw ≥ 5, and WT_Mutant: 0.5 < FCwm < 2, rwm ≥ 5. 

 

Integrating both WT_Mutant and Mutant_WT experiments, we calculated a weighted average of 

the individual fold changes: 

 

E =
rmw × log2(FCmw )+ rwm × log2(FCwm )

rmw + rwm  

 

P values are calculated using a two-sided Kolmogorov-Smirnov test (with bootstrapping). 

 

Cell culture, co-immunoprecipitation, and Western blotting 

 

HEK293T cells were maintained in complete DMEM medium supplemented with 10% FBS. 

Cells were transfected with Lipofectamine 2000 (Invitrogen) at a 6:1 (µL/µg) ratio with DNA in 

6-well plates and were harvested 24 hrs after transfection. Cells were gently washed three times 

in PBS and then resuspended using 200 µL 1% NP-40 lysis buffer [1% Nonidet P-40, 50 mM 

Tris-HCl pH 7.5, 150 mM NaCl, 1× EDTA-free Complete Protease Inhibitor tablet (Roche)] and 

kept on ice for 20 mins. Extracts were cleared by centrifugation for 10 mins at 13,000 rpm at 4 
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°C. 15 µL EZview Red Anti-HA Affinity Gel (Sigma-Aldrich) and 100 µL protein lysate were 

used for each co-immunoprecipitation reaction. The samples were rotated gently at 4 °C for 2 

hrs. HA beads were then washed three times with protein lysis buffer, treated with 6× protein 

sample buffer, and subjected to SDS-PAGE. Proteins were then transferred from the gel onto 

PVDF (Amersham) membranes. Anti-HA (Sigma H9658), anti-V5 (Invitrogen 46-0705), anti-β-

tubulin (Promega G7121), and anti-GFP (Santa Cruz sc-9996) antibodies were used at 1:3,000 

dilutions for immunoblotting analysis. 
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4.6 FIGURE AND TABLE LEGENDS 

 

Figure 4.1. Schematic of our comparative interactome-scanning pipeline. 

Our pipeline begins with Clone-seq (a), a massively-parallel low-cost site-directed mutagenesis 

pipeline leveraging next-generation sequencing. This is followed by a high-throughput GFP 

assay (b) to determine protein stability, and a high-throughput Y2H assay (c), along with SILAC-

based mass spectrometry (d) to determine the impact of DNA coding variants on protein 

interactions.  

 

Figure 4.2. Identifying usable clones from Clone-seq. 

(a) Schematic illustrating criteria used to determine which of the clones generated by our Clone-

seq pipeline are usable for further assays – green ticks indicate usable clones, while red crosses 

indicate clones that cannot be used. (b) Variation of S across different mutagenesis attempts that 

either contain or do not contain the desired mutation as confirmed by Sanger sequencing.  

 

Figure 4.3. Examples of disease mutations in different structural loci of protein-protein 

interactions and examples of our GFP assay results. 

(a) Crystal structure (PDB id: 3W4U) depicting a D100Y mutation (on Hbb) at an interface 

residue and a F104L mutation in the interface domain for the Hbb-Hbz interaction. (b) Crystal 

structure (PDB id: 1G3N) depicting a V31L mutation (on Cdkn2c) away from the Cdkn2c-Cdk6 

interaction interface. (c) GFP assays that determine the stability of wild-type Rrm2b and the 

R41P and L317V mutations on Rrm2b that are at an interface residue and away from the 

interface for the Rrm2b-Rrm2b interaction; GFP assays that determine the stability of wild-type 
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Hprt1 and the C206Y mutation on Hprt1 that is away from the interaction interface of Hprt-

Hprt1. Empty vector was used as a negative control.  

 

Figure 4.4. Effect of disease mutations on protein stability and protein-protein interactions.  

(a) Western blotting with anti-GFP antibody confirming the protein expression levels of wild-

type Rrm2b, Actn2, Hprt1, Pnp, Tpk1, Gnmt, Gale, Fbp1, Klhl3, Tp53, Pnp, Smad4, and 

corresponding mutant alleles. β-tubulin and γ-tubulin were used as loading controls. Red denotes 

“interface residue” mutations, orange denotes “interface domain” mutations and blue denotes 

“away from the interface” mutations. (b) Likelihood of disruption of interactions by “interface 

residue”, “interface domain” and “away from the interface” mutations – overall and for stable 

mutants only; likelihood of a disease mutation disrupting a given interaction in the absence of 

structural information. Error bars indicate +SE. (N = 204 mutations) 

 

Figure 4.5. Relationships between molecular phenotypes and disease phenotypes. 

(a) Fraction of mutation pairs on the same gene that cause the same disease: for the same and 

different effects on protein stability. (b) Fraction of mutation pairs on the same gene that cause 

the same disease: for the same and different interaction disruption profiles. Error bars indicate 

+SE. (c) Crystal structure (PDB id: 1U7F) depicting the Y353S and R361C mutations (on 

Smad4) at interface residues for the Smad4-Smad3 interaction. (d) Y2H analysis of the effects of 

Smad Y353S, R361, and N13S mutations on its interactions with Smad3, Lmo4, Rassf5, and 

Smad9. Western blotting with anti-GFP antibody confirming the protein expression levels of 

wild-type Smad4 and its 3 mutant alleles – Y353S, R361C and N13S. γ-tubulin was used as a 

loading control. 
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Figure 4.6. Identifying interactions of Mlh1 that are affected by the I107R mutation using 

SILAC-based mass spectrometry. 

(a) Schematic illustrating criteria used to identify interactions that are lost/weakened, unchanged, 

and gained/enhanced due to the I107R mutation on Mlh1. Blue denotes samples cultured in light 

media and black denotes samples cultured in heavy media. (b) Scatter plot illustrating fold 

change (FC; log scale) in the amount of protein pulled down by wild-type Mlh1 and mutant 

Mlh1 (I107R). Values are computed based on the wild-type (heavy) vs. mutant (light) (X-axis) 

and mutant (heavy) vs. wild-type (light) (Y-axis) experiments. Green denotes enhancement of 

interaction, red denotes weakening of interaction, and gold denotes no change. Mlh1 is shown in 

grey. (c) Fold changes and read counts (r) for interactors of Mlh1 that can be reliably identified 

as weakened, unchanged, and enhanced due to the I107R mutation. (d) Anti-HA 

immunoprecipitation followed by Western blotting with anti-V5 antibody confirming that the 

Mlh1-Brip1 interaction remains unchanged and that the Mlh1-Hspa8 interaction is dramatically 

enhanced due to the I107R mutation. 

 

Table 4.1. Summary of GFP and Y2H assay results for all the mutations tested in our 

interactome-scanning pipeline. For the GFP assay: “1” indicates a stable mutation, “0” indicates 

an unstable mutation, and “–” indicates inconclusive results due to weak signal for the wild-type 

protein. For the Y2H assay: “1” indicates no disruption and “0” indicates disruption of the 

corresponding interaction. 
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Table 4.1
Interface 
residue

TargetProt_ent
rez Target_uniprot

Interactor_entr
ez Mutation GFP score Y2H score

60 P60709 60 R196C 1 0
95 Q03154 95 R197W 1 0
95 Q03154 95 R378W 1 1
1967 Q14232 1967 V183F 1 0
1967 Q14232 1967 P278R 1 0
2203 P09467 2203 N213K 1 0
2582 Q14376 2582 D103G 1 0
2582 Q14376 2582 R169W 1 1
2752 P15104 2752 R324C 1 1
3043 P68871 3050 D100Y - 0
3043 P68871 3050 P101A - 0
3043 P68871 3050 E102Q - 0
3043 P68871 3050 N103Y - 1
3251 P00492 3251 P38S 0 0
3945 P07195 3945 R172P 1 0
4088 P84022 9372 T330A 1 1
4089 Q13485 4088 G352R 0 0
4089 Q13485 4088 Y353S 1 0
4089 Q13485 4088 R361C 1 0
4089 Q13485 4088 L533R 1 0
4860 P00491 4860 F159V 0 0
5631 P60891 5631 D183H 1 0
5805 Q03393 5805 T106M - 0
7329 P63279 7341 V25M 1 0
50484 Q7LG56 50484 R41P 1 0
50484 Q7LG56 50484 R121H 1 1
51135 Q9NWZ3 4615 R12C - 0

Interface 
domain

TargetProt_ent
rez Target_uniprot

Interactor_entr
ez Mutation GFP score

60 P60709 60 E364K 1 1
60 P60709 60 N12D 1 0
60 P60709 60 L65V 1 1
60 P60709 60 E117K 1 0
60 P60709 60 R183W 1 0
88 P35609 88 T495M 1 1
88 P35609 88 Q349L 1 1
88 P35609 88 E583A 1 1
95 Q03154 95 E233D 1 0
95 Q03154 95 R386C 1 0
95 Q03154 95 R393H 1 1
435 P04424 435 R12Q 1 1
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875 P35520 875 G85R 1 0
875 P35520 875 L101P 1 0
875 P35520 875 K102Q 1 1
875 P35520 875 C109R 1 0
875 P35520 875 A114V 1 1
875 P35520 875 G116R 1 0
1019 P11802 595 S52N 1 1
1019 P11802 595 R24H 1 1
1019 P11802 595 N41S 1 1
1967 Q14232 1967 N208Y 1 0
1967 Q14232 1967 Y275C 1 1
2203 P09467 2203 G164S 1 0
2203 P09467 2203 A177D 1 0
2203 P09467 2203 F194S 1 0
2203 P09467 2203 G260R 1 0
2203 P09467 2203 E281K 1 1
2512 P02792 2512 Q26L 1 0
2512 P02792 2512 A27V 1 0
2512 P02792 2512 T30I 1 0
2512 P02792 2512 A96T 1 0
2582 Q14376 2582 T150M 1 1
2582 Q14376 2582 K161N 1 1
2582 Q14376 2582 E165K 1 0
2582 Q14376 2582 D175N 1 1
2752 P15104 2752 R341C 1 0
3043 P68871 3050 S10C - 0
3043 P68871 3050 F104L - 0
3251 P00492 3251 Y105C 1 1
3251 P00492 3251 S110L 1 1
3251 P00492 3251 T124S 1 1
3611 Q13418 55742 A262V - 1
3939 P00338 3939 K222E 1 1
4085 Q13257 9587 L84M 1 0
4088 P84022 9372 E239K 1 1
4088 P84022 9372 T261I 1 1
4088 P84022 9372 P263L 1 1
4088 P84022 9372 R279K 1 1
4088 P84022 9372 R287W 1 1
4089 Q13485 4088 C324R 0 0
4089 Q13485 4088 E330K 0 0
4089 Q13485 4088 V350D 0 0
4598 Q03426 4598 N301T 1 0
4615 Q99836 51135 L93P 1 0
4830 P15531 4830 S120G 1 0
4860 P00491 4860 G71E 0 0
4860 P00491 4860 A117T 0 0
4860 P00491 4860 D128G 0 0
4860 P00491 4860 P146L 0 0
4860 P00491 4860 G156A 0 0
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5723 P78330 5723 D32N 1 1
5723 P78330 5723 M52T 1 1
5805 Q03393 5805 R25Q - 0
5805 Q03393 5805 F100V - 0
5805 Q03393 5805 A101V - 0
5805 Q03393 5805 V103A - 1
5805 Q03393 5805 A111T - 0
6898 P17735 6898 R119W 1 0
6898 P17735 6898 C151Y 1 0
6898 P17735 6898 L201R 1 0
6898 P17735 6898 P220S 1 1
6898 P17735 6898 L273P 1 0
6898 P17735 6898 G362V 1 0
7128 P21580 7128 A125V 1 1
7157 P04637 7159 G105C 1 0
7157 P04637 7159 S106R 1 1
7157 P04637 7159 R110L 0 0
7157 P04637 7159 V122G 1 1
7157 P04637 7159 Y126C 1 0
7454 P42768 998 I294T 1 0
8772 Q13158 8772 C105W 1 0
8815 O75531 2010 A12T 1 1
11144 Q14565 11144 M200V 1 1
23568 Q9Y2Y0 402 M45R 1 0
27010 Q9H3S4 27010 N219S 1 0
27010 Q9H3S4 27010 L40P 1 1
27010 Q9H3S4 27010 N50H 1 1
27232 Q14749 27232 N141S 1 0
27232 Q14749 27232 H177N 1 0
50484 Q7LG56 50484 R110C 1 1
50484 Q7LG56 50484 F123S 1 0
50484 Q7LG56 50484 E131K 1 1
50484 Q7LG56 50484 T144I 1 1
64802 Q9HAN9 64802 R66W 1 0
64802 Q9HAN9 64802 A13T 1 1
64802 Q9HAN9 64802 A147P 1 1
64802 Q9HAN9 64802 V151F 1 0
64802 Q9HAN9 64802 L153V 1 0
64802 Q9HAN9 64802 D173G 1 0

Away from the 
interface

TargetProt_ent
rez UniprotID

Interactor_entr
ez AA_mut GFP score

88 P35609 88 A119T 1 1
88 P35609 88 Q9R 1 1
88 P35609 88 V115M 1 1
88 P35609 88 E628G 1 1
88 P35609 88 H775Y 1 1
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331 P98170 842 G188E - 1
331 P98170 842 R166I - 1
331 P98170 842 W173G - 1
331 P98170 842 V198M - 1
331 P98170 842 C203Y - 1
331 P98170 842 L207P - 1
701 O60566 991 L1012P 0 0
701 O60566 991 R36Q 1 1
701 O60566 991 Y155C 1 1
701 O60566 991 R727C 0 0
701 O60566 991 L844F 0 0
875 P35520 875 L456P 1 0
875 P35520 875 R379W 1 1
875 P35520 875 K384E 1 1
875 P35520 875 M391I 1 1
875 P35520 875 P422L 1 1
875 P35520 875 P427L 1 1
958 P25942 7186 C83R 1 0
1026 Q6FI05 5111 R67L 1 1
1026 Q6FI05 5111 R84Q 1 1
1031 Q6ICV4 1021 V31L 1 1
2010 P50402 8815 P183T - 1
2010 P50402 8815 S54F 1 1
2010 P50402 8815 D72V 1 1
2582 Q14376 2582 P293L 1 1
2582 Q14376 2582 G302D 1 1
2582 Q14376 2582 L313M 1 1
2582 Q14376 2582 G319E 1 1
2582 Q14376 2582 R335H 1 1
3043 P68871 3050 V114E - 0
3043 P68871 3050 L115P - 0
3043 P68871 3050 H118Y - 0
3043 P68871 3050 E122V - 0
3043 P68871 3050 F123S - 0
3043 P68871 3050 V127G - 0
3251 P00492 3251 C206Y 0 0
3251 P00492 3251 I10S 1 0
3251 P00492 3251 D12A 1 0
3251 P00492 3251 E14K 1 0
3251 P00492 3251 R167M 0 0
3251 P00492 3251 T168I 1 0
3945 P07195 3945 K7E 1 1
4088 P84022 9372 A112V 1 1
4088 P84022 9372 N197I 1 1
4089 Q13485 4088 N13S 1 1
4598 Q03426 4598 H20Q 1 0
4615 Q99836 51135 R196C 1 0
5631 P60891 5631 E43D 1 1
5805 Q03393 5805 R9C - 1
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6829 O00267 6827 E455D 1 1
7157 P04637 7159 R290L 1 1
7157 P04637 7159 K292I 1 1
7157 P04637 7159 G293W 1 1
7157 P04637 7159 K305M 1 1
7157 P04637 7159 R306P 1 1
7157 P04637 7159 P309S 1 1
7454 P42768 998 E131K 1 1
8504 P56589 5824 D347Y - 1
26249 Q9UH77 8452 C164F 0 0
26249 Q9UH77 8452 R228G 1 0
27232 Q14749 27232 L50P 1 1
50484 Q7LG56 50484 L317V 1 1
51135 Q9NWZ3 4615 G298D - 0
51135 Q9NWZ3 4615 A428T - 1
55737 Q96QK1 51699 R524W - 1
55737 Q96QK1 51699 D620N - 1
64802 Q9HAN9 64802 N273D 1 1
64802 Q9HAN9 64802 V9M 1 1
64802 Q9HAN9 64802 H251P 1 1
64802 Q9HAN9 64802 E257K 1 1
124590 Q495M9 10083 L16V 1 1
124590 Q495M9 10083 L48P 1 1
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CHAPTER 5 

Genome-scale analysis of interaction dynamics reveals organization of 

biological networks  

In the following chapter, we explore the concept of “interaction dynamics” and how it can be 

used to understand the topological and biological properties of networks. I am the first author of 

the paper resulting from this chapter (Das et al Bioinformatics 2012) and led all computational 

analyses. Jaaved Mohammed made a significant contribution to several of the analyses in the 

paper. 
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5.1 ABSTRACT 

Analyzing large-scale interaction networks has generated numerous insights in systems biology. 

However, such studies have primarily been focused on highly co-expressed, stable interactions. 

Most transient interactions that carry out equally important functions, especially in signal 

transduction pathways, are yet to be elucidated and are often wrongly discarded as false 

positives. Here, we revisit a previously described Smith-Waterman-like dynamic programming 

algorithm and use it to distinguish stable and transient interactions on a genomic scale in human 

and yeast. We find that in biological networks, transient interactions are key links topologically 

connecting tightly regulated functional modules formed by stable interactions and are essential to 

maintaining the integrity of cellular networks. We also perform a systematic analysis of 

interaction dynamics across different technologies and find that high-throughput yeast two-

hybrid (Y2H) is the only available technology for detecting transient interactions on a large 

scale. 
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5.2 INTRODUCTION 

The protein-protein interactome of an organism is the network of all biophysically possible 

interactions of different proteins in that organism (Yu et al., 2008).  It is of key importance to 

accurately map this network as most proteins function by interacting with other proteins (Pawson 

and Nash, 2000). Moreover, a better understanding of genotype to phenotype relationships in 

human disease require modeling of how disease-causing mutations might affect protein 

interactions and interactome properties (Goh et al., 2007; Wang et al., 2011). Currently, there are 

two main high-throughput technologies to generate high-quality protein-protein interactomes on 

a large-scale: yeast two-hybrid (Y2H), where a protein interaction reconstitutes a transcription 

factor which then activates expression of reporter genes (Fields and Song, 1989); and affinity 

purification followed by mass spectrometry (AP/MS), where proteins bound to tagged baits are 

co-purified and identified (Rigaut et al., 1999). High-throughput Y2H maps have been generated 

for yeast, fly, worm, and human, while large-scale AP/MS datasets have been generated for 

yeast, worm and human (Jensen and Bork, 2008; Yu et al., 2008). An alternative approach, 

adopted by most databases, is to obtain literature-curated (LC) interactions (Cusick et al., 2009).  

It has been shown that well-controlled Y2H and AP/MS experiments are both of high quality, but 

of complementary nature – Y2H identifies direct binary interactions whereas AP/MS determines 

co-complex associations (Jensen and Bork, 2008; Yu et al., 2008). Moreover, gene expression 

and other functional genomics datasets are routinely integrated with protein-protein interactions 

to validate their biological relevance - for example, interactions between proteins encoded by co-

expressed genes are often considered to be of high quality (Ge et al., 2001; Suthram et al., 2006; 

von Mering et al., 2002). In these analyses, gene co-expression is normally determined by a high 

Pearson correlation coefficient (PCC), which really means that the expression levels of the two 
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genes are correlated over most conditions i.e., they are globally co-expressed (Figure 5.1A). 

Previous studies have shown that interacting proteins within stable complexes also tend to be 

encoded by globally co-expressed gene pairs (Jansen et al., 2002; Yu et al., 2008). On the other 

hand, the regulation and coordination of the sub-cellular machinery is achieved by dynamic 

transient interactions for example in signal transduction pathways (Jansen et al., 2002). Proteins 

involved in transient interactions are not globally co-expressed. Rather, they share local blocks 

of co-expression. Transient interactions and their dynamics have significant biological 

importance but most genes in these pathways are often co-expressed only under certain 

conditions (Figure 5.1B). As a result, these are usually discarded as false positives (Ge et al., 

2001; Suthram et al., 2006). Here, we take advantage of a novel measurement of expression 

relationships (Qian et al., 2001) to directly distinguish stable from transient interactions on a 

genome-wide scale in human and yeast and systematically analyze their topological and 

biological significance. We also evaluate different technologies in terms of their sensitivity in 

detecting interaction dynamics on a genomic scale.  

 

5. 3 RESULTS 

Expression dynamics: global vs. local co-expression 
	
  

For our analysis, we created compendiums of gene expression and high-quality large-scale 

protein-protein interaction datasets for human and yeast. We decided to use time course datasets 

because four distinct kinds of expression relationships - co-expression, time-shifted, inverted, 

and inverted time-shifted can be determined using such datasets (Qian et al., 2001). As the cell is 

in a different state at each of these time points, we are in fact measuring expression under 
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different intra-cellular conditions. All datasets are carefully normalized to remove potential noise 

(Irizarry et al., 2003; Johnson et al., 2007; Luscombe et al., 2003; Yu et al., 2007b). We also 

compiled high-quality large-scale protein-protein interaction datasets for human and yeast 

spanning both high-throughput technologies  - Y2H and AP/MS. We consolidated high-quality 

binary interactions in the literature from various databases. Although traditionally these LC 

interactions are considered to be of high quality, recent studies have shown that many of them, 

especially those supported by only one publication, in fact tend to be false positives (Cusick et 

al., 2009). To remove unreliable interactions from our analysis, we carefully compiled 

comprehensive sets of high-quality binary LC interactions supported by multiple publications 

(named “LC-multiple”) for human and yeast. High-quality LC co-complex associations were 

obtained from MIPS (Mewes et al., 2011) for yeast and Reactome (D'Eustachio, 2011) for 

human - two databases generally considered as gold standards for complexes in the 

corresponding organisms (Jansen et al., 2002; Lage et al., 2007).   

From these datasets, we first calculated the PCC for expression profiles corresponding to 

interacting protein pairs in the high-quality interaction datasets described above. For a pair of 

gene expression profiles, PCC reports the global correlation of expression levels across all 

conditions (Qian et al., 2001). A PCC value close to one indicates the pair of genes is globally 

co-expressed  (Figure 5.1A), whereas values close to zero indicate random, uncorrelated 

expression patterns. We find that the different interaction datasets for both human and yeast are 

significantly enriched for global co-expression as opposed to random gene pairs (Figures 5.2A 

and 5.2B). Since PCC is a linear correlation coefficient and certain co-expression relationships 

could be non-linear, we also used the maximal information coefficient (MIC) (Reshef et al., 

2011) to explore global expression dynamics of the different interaction datasets in human and 
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yeast. MIC belongs to a class of maximal information-based nonparametric exploration (MINE) 

statistics and has been shown to be very robust in detecting a wide range of associations both 

linear and not (Reshef et al., 2011). Using MIC, we re-validate the global expression dynamics 

captured by PCC – all the high-quality interaction datasets in both human and yeast have 

significantly enriched global co-expression as opposed to random gene pairs. Interacting protein 

pairs that have PCC greater than a certain cutoff are defined as stable interactions. However, 

gene pairs that are only co-expressed under certain conditions could have low and non-

significant global PCC/MIC values. These often go undetected in the global nature of the 

computation, making global correlation an ineffective method for identifying condition-specific 

characteristics of transient interactions.  To define dynamic co-expression relationships, we 

employed a Smith-Waterman-like dynamic programming algorithm as described previously 

(Qian et al., 2001). For each pair of genes and their expression profiles, this algorithm calculates 

local expression-correlation scores (LES) to find subsets of conditions with correlated expression 

levels  (Figure 5.1B). Interacting proteins that do not pass the global PCC cutoff but have high 

LES are defined as transient interactions (see Methods). 

 

Interaction dynamics: stable vs. transient  

Next, in order to explore interaction dynamics across different technologies, we compared how 

successful different experimental techniques were in detecting stable and transient interactions. 

In agreement with previous studies, stable interactions within sub-cellular complexes show a 

strong enrichment of proteins encoded by globally co-expressed genes  (Figures 5.2a and 5.2B). 

On the other hand, although statistically significant, the enrichment of these globally-co-

expressed pairs is much less for binary interactions from both large-scale Y2H and LC sources. 
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This lack of global co-expression has often been used as an argument to suggest that high-

throughput Y2H interactions are of low quality (Ge et al., 2001; Suthram et al., 2006; von 

Mering et al., 2002). However, a recent study applied orthogonal assays to experimentally 

confirm that these binary interactions are in fact highly reliable (Yu et al., 2008). Figures 5.2C 

and 5.2D show that in both human and yeast, Y2H is the only technology consistently able to 

identify transient interactions significantly more than random expectation. Surprisingly, binary 

interactions from the literature are not enriched with transient ones. Given the sociological biases 

within interactions from the literature (Cusick et al., 2009; Yu et al., 2008), there might be many 

compounding factors for this result. Stable interactions are easier to recapitulate under different 

experimental conditions whereas transient interactions can only be tested under specific 

conditions. Therefore, transient interactions are more likely to be considered as false positives 

and not reported in the literature. Additionally, in the post-genomic era, many candidate 

interaction partners are first identified based on gene expression and other genomic features 

favoring selection of stable interactions over transient ones. This result further highlights the 

importance of high-throughput Y2H because it is the only technology available to detect 

transient interactions, confirming that different protein interaction detection technologies capture 

different modes of biochemical interactions (Jensen and Bork, 2008; Yu et al., 2008). 

 

Biological significance of transient interactions 

To assess the biological significance of transient interactions as defined by our algorithm, we 

computed functional similarity of protein pairs involved in these interactions. We find that 

transient interactions are significantly enriched for proteins with similar functions and the fold 

enrichment is comparable to that of stable interactions in both human and yeast. These results 
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confirm the validity of our definition of transient interactions. We therefore provide the first 

method to systematically detect transient interactions on a genomic scale. Although our method 

might miss certain transient interactions, especially extremely transient ones that are virtually 

impossible to distinguish from random, our results confirm that those detected by our method are 

high-quality and share significant functional similarity.  

A good example of transient interactions identified by Y2H is the interaction between Sfb2 and 

Sec23. This interaction has been confirmed in vivo (Peng et al., 2000). Sec23 is a subunit of the 

COPII complex, required for the budding of transport vesicles from endoplasmic reticulum 

(Miller et al., 2003). SFB2 has a 56% sequence identity with SEC24, an essential component of 

COPII involved in cargo selection (Miller et al., 2003). Over-expression of SFB2 can rescue the 

sec24 null mutant cells (Kurihara et al., 2000). Furthermore, it has been suggested 

experimentally that Sfb2 may recognize different export signals from those of Sec24 and may be 

used under non-normal growth conditions (Miller et al., 2003; Peng et al., 2000). These results 

agree with the expression dynamics revealed by our new analysis – SFB2 and SEC23 are only 

co-expressed during stress response (Figure 5.3A). 

 

Transient interactions key in maintaining network integrity 

Traditionally, in network analysis, the focus has been on nodes. Hubs are crucial in maintaining 

the integrity of biological networks (Albert et al., 2000; Barabasi and Albert, 1999; Jeong et al., 

2000 ). Interaction networks have two broad categories of hubs. Date hubs have low average 

PCCs with their interactors and hold the key in maintaining the integrity of cellular networks 

while party hubs have high average PCC with their interactors and are often contained in tightly 

organized modules (Han et al., 2004). We find that date hubs have a significant propensity to be 
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involved in transient interactions (Figures 5.3B and 5.3C) suggesting that these play an important 

role in maintain the integrity of the networks. To validate this result, we compared the edge 

“betweenness” of global and transient interactions. Edge betweenness can be used to detect 

community structure within networks (Girvan and Newman, 2002). Clusters detected by this 

approach tend to share similar functions (Dunn et al., 2005). We find that transient interactions 

for both human and yeast have a significantly higher betweenness than stable interactions 

(Figure 5.3D). This implies that transient interactions hold the key in maintaining the integrity of 

the underlying cellular network. Disrupting these will partition the interactome into disjoint 

clusters, unable to perform temporally and spatially well-regulated processes. 

To further explore topological properties of transient interactions, we examined connectivity in 

response to progressive edge removal and found that selectively removing transient interactions 

increased characteristic path length much more sharply than selectively removing stable or 

random interactions (Figures 5.3E and 5.3F). Biological interactomes are small-world networks 

and removing a random edge is unlikely to significantly alter connectivity, as most random edges 

are not essential in maintaining network integrity (Albert et al., 2000). However, selectively 

disrupting key edges disrupts network structure and increases the characteristic path length 

significantly. Since removal of transient interactions causes the sharpest increase in path length, 

these are indeed critical for network integrity. 

 

 

5.4 DISCUSSION 

Here, we utilize a previously described Smith-Waterman-like dynamic programming algorithm 

to segregate transient interactions from stable complexes on a genomic scale directly from gene 
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expression data. For the first time, we distinguish their biological roles and show that though 

transient interactions are currently underexplored, they perform key biological functions and are 

essential to maintaining the integrity of cellular networks. Moreover, we find that Y2H is 

currently the only technology that is able to determine transient interactions on a large scale. Our 

findings are likely to generate significant interest in designing experiments to detect transient 

interactions to further explore their properties. 

5.5 MATERIALS AND METHODS 

Calculating PCC, MIC and LES 

PCC was calculated in a massively parallel, Java program utilizing the Parallel Java framework 

(Kaminsky, 2010). MIC was calculated using a Java implementation provided by Reshef et al. 

(Reshef et al., 2011). Transient interactions for human and yeast were identified with a similar 

Parallel Java implementation of a Smith-Waterman-like dynamic programming algorithm to 

calculate LES (Qian et al., 2001). 

Calculating betweenness and functional similarity 

Edge betweenness was calculated using the Girvan-Newman algorithm (Girvan and Newman, 

2002). Functional similarity was studied using total ancestry measure – a metric that takes the 

entire biological process tree and calculates the association of each gene with a biological 

process. For each protein pair query, it computes what fraction of all possible protein pairs that 

share the same set of Gene Ontology (GO) (Ashburner et al., 2000) biological pathway terms as 

the query pair (Yu et al., 2007a). The calculations are performed using a massively Parallel Java 

program (Kaminsky, 2010). 
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5.6 FIGURE LEGENDS 

Figure 5.1. Cartoon depiction of protein–protein interaction dynamics. (A) Gene expression 

profiles for two proteins that are highly correlated under all conditions indicating a stable or 

globally co-expressed interaction. (B) Two contiguous blocks of significant co-expression 

indicate this pair of proteins is transiently interacting or locally co-expressed. 

Figure 5.2. (A, B) Enrichment of PCC of co-expression of interacting proteins (detected by 

different technologies) as opposed to random gene pairs in human and yeast respectively. (C, D) 

Comparison of transient interactions detected per technology in human and yeast, respectively. 

The dashed line indicates the overall average detection of transient interactions. 

Figure 5.3. (A) The expression profiles of SFB2 and SEC23 (co-expression only in the final 

yellow block). (B, C) Transient interactions in human are enriched in “date hubs”. These have 

previously been shown to be vital in forming important topological links between stable 

functional modules. (D) Transient interactions in human and yeast have a significantly higher 

betweenness value–they hold the key in maintaining the integrity of cellular networks. (E, F) 

Characteristic path length as a measure of network connectivity after successive removal of 

edges of the network. Each data point represents the removal of a fixed percentage of overall 

nodes of the graph from each interaction type. Random removal occurs on all interactions in the 

network, which may include other interactions that are still uncategorized as transient or stable. 

Removal of transient interactions increases path length more sharply than disturbing random or 

stable interactions. 
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CHAPTER 6 

ENCAPP: elastic-net-based prognosis prediction and biomarker discovery for 

human cancers 

In the following chapter, we explore how expression data can be combined with protein 

networks to predict cancer outcome. I am the first author of the paper resulting from this chapter 

(Das et al BMC Genomics 2015) and led all computational analyses. Kaitlyn Gayvert made a 

significant contribution to several of the analyses in the paper. 
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6.1 ABSTRACT 

 

With the explosion of genomic data over the last decade, there has been a tremendous 

amount of effort to understand the molecular basis of cancer using informatics approaches. 

However, this has proven to be extremely difficult primarily because of the varied etiology 

and vast genetic heterogeneity of different cancers and even within the same cancer. Thus, 

one particularly challenging problem is to predict prognostic outcome of the disease for 

different patients. Here, we present ENCAPP, an elastic-net-based approach that combines 

the reference human protein interactome network with gene expression data to accurately 

predict prognosis for different human cancers. Our method identifies functional modules 

that are differentially expressed between patients with good and bad prognosis and uses 

these to fit a regression model that can be used to predict prognosis for breast, colon and 

ovarian cancers. Using this model, ENCAPP can also identify prognostic biomarkers with a 

high degree of confidence, which can be used to generate downstream mechanistic and 

therapeutic insights. ENCAPP is a robust method that can accurately predict prognostic 

outcome and identify biomarkers for different human cancers.  
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6.2 INTRODUCTION 

The genetic complexity of cancer and its widely varying etiology and outcome make it extremely 

difficult to treat. It has been realized that rather than being a single disease, different cancers 

have widely diverse molecular bases (Hanahan and Weinberg, 2011; Lawrence et al., 2014). 

There has been a tremendous amount of effort in the literature to understand molecular 

signatures underlying cancer (Hanahan and Weinberg, 2011). A significant number of these 

efforts have been informatics-based approaches that try to leverage genomic information such as 

expression alterations, mutations in genomes, copy number changes and epigenetic modifications 

to elucidate the mechanistic basis of cancer (Chin et al., 2011). Global collaborative research 

endeavors such as The Cancer Genome Atlas (TCGA) (Weinstein et al., 2013) and the 

International Cancer Genome Consortium (ICGC) (Hudson et al., 2010) are trying to assimilate 

these genome-scale datasets for different kinds of cancers across many countries. 

One of the key challenges has been to use genomic information to understand the basis for 

different outcomes for the same cancer. However, this has been difficult because it is unclear as 

to which parameters contain the most information regarding disease outcome. One of the first 

attempts at predicting cancer prognosis using genome-scale transcriptomic datasets was 

undertaken by van de Vijver et al (van de Vijver et al., 2002). Using microarrays, they obtained 

tissue-specific gene-expression profiles for breast cancer patients. They then clustered these 

expression profiles and correlated them with prognostic outcome to identify a 70-gene ‘prognosis 

profile’ for breast cancer. One of the key limitations in using only expression datasets to predict 

cancer prognosis is the assumption of independence between genes in hypotheses testing. 

However, the protein products encoded by these genes are not independent but part of a complex 

interactome network. The dependencies of this network have been shown to be of great 
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importance in understanding the genetic and molecular bases of disease (Das et al., 2014a; Das et 

al., 2014b; Guo et al., 2013; Vidal et al., 2011; Wang et al., 2012). Chuang et al (Chuang et al., 

2007), Taylor et al (Taylor et al., 2009) and Wu and Stein (Wu and Stein, 2012) used a 

functional interactome network to predict breast cancer prognosis. Recently, Hofree et al 

reported a network-based stratification approach that can use somatic mutations to predict cancer 

subtypes (Hofree et al., 2013). However, their method is primarily designed to work with 

mutation data and is less accurate for expression data (Hofree et al., 2013). Given the much 

wider availability of expression datasets as compared to whole genome or exome sequences, it is 

of paramount importance to have a robust method that can use gene expression to accurately 

predict prognosis across different types of cancer. To this end, in this manuscript, we report 

ENCAPP, an elastic-net-based cancer prognosis prediction method. We use tissue-specific gene 

expression data from patients along with the reference human protein interaction network to 

construct a regression model that can predict disease outcome for breast, colon and ovarian 

cancers. Our approach outperforms previous methods in terms of accuracy of prognosis 

prediction. Moreover, ENCAPP can also accurately identify genes that can serve as prognostic 

biomarkers for different cancers. 
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6.3 RESULTS 

ENCAPP – a schematic  

A reference high-quality human protein interactome was constructed as described earlier (Das 

and Yu, 2012). Our interactome comprises a total of 42,604 binary and co-complex interactions 

between 9,985 proteins. We include both kinds of interactions as they capture orthogonal layers 

of information – binary interactions represent direct contacts between two proteins, while co-

complex associations capture co-membership of a protein complex. This network is clustered 

into different functional modules. We then overlay tissue-specific gene expression data from 

cancer patients onto these functional modules to generate ‘expression modules’. We then identify 

ones that are differentially expressed between patients with good and bad prognosis (Figure 6.1). 

We use the expression modules that show the maximum difference between the prognostic 

outcome classes as decision boundaries to build a regression model that can predict disease 

prognosis (Figure 6.1). Our regression approach attempts to estimate the conditional probability 

of having good or bad prognosis given the patient’s expression modules. 

Since the data is inherently high dimensional (i.e., the number of expression modules is greater 

than the number of patients), ordinary least squares regression cannot be used and a 

regularization term is essential (see Methods). While ridge regression (L2 regularization term) 

(Hoerl and Kennard, 1970) uses all input variables to fit the model, the least absolute shrinkage 

and selection operator (LASSO, L1 regularization term) (Tibshirani, 1996) attempts to find the 

most optimal sparse fit. Ridge regression can lead to inflated variance but has low bias, while 

LASSO can have high bias but ensures low variance. To optimize the bias-variance tradeoff, the 
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elastic net (Bunea, 2008; Zou and Hastie, 2005) has been proposed and is our choice of 

regression model (see Methods). 

Prognosis prediction using differentially expressed functional modules 

We first examined expression data from a cohort of breast cancer patients (van de Vijver et al., 

2002). Here, prognosis was defined as five-year disease-free survival. Using five-fold cross 

validation, we first measured prognosis prediction accuracy using only expression values from 

all genes and found it to be a suboptimal predictor (median AUC = 0.747, 95% CI for AUC = 

0.743-0.751 Figure 6.2A, see Methods). Since proteins carry out their function by interacting 

with other proteins, we then used only expression values from genes whose corresponding 

proteins have at least one known interaction to predict prognosis. This did not significantly alter 

performance (median AUC = 0.745, Figure 6.2A). Taylor et al used hub groups as a measure of 

network topology, however we choose modules for two reasons (Figure 6.2B). First, hub groups 

only include interactions between the hub protein and its interactors, not those between the 

interactors themselves. Thus, modules contain more information. Second, in Taylor et al’s 

model, each protein is assigned to one and only one hub group. However, since network modules 

can be overlapping (Ahn et al., 2010; Ravasz et al., 2002), the same protein may be assigned to 

multiple modules if it has multiple functions. Since numerous proteins carry out biological 

functions in a pleiotropic fashion, our approach captures such relationships while hub groups do 

not. 

To identify functional modules, we tried three separate algorithms – hierarchical clustering 

(Ward, 1963), affinity propagation clustering (Frey and Dueck, 2007) and ClusterOne (Nepusz et 

al., 2012). We constructed modules from all three algorithms using default parameters (the 

151



module creation is independent of any expression data). Using expression values from the van de 

Vijver dataset, we used modules generated by all three algorithms to construct expression 

modules and used them to predict prognosis. We find that ClusterOne has the best performance 

(Figure 6.2C; see Methods). One possible reason for this is that the protein interactome network 

is binary (1 corresponding to an interaction between two proteins, while 0 corresponds to no 

interaction between the two proteins) and sparse. Thus, the number of discrete values (equal to 1 

+ the graph diameter) the graph distance used for hierarchical clustering can take is limited. 

Affinity propagation clustering is more suited to identifying hub-group-like topological 

structures as hubs fit the definition of exemplars. On the other hand, ClusterOne was designed to 

identify functional modules that capture pleiotropic relationships. Thus, ClusterOne was used for 

all further analyses.  

We then explored the contribution of the three different datasets – clinical covariates, gene 

expression and the protein network to predicting prognosis. Figure 6.3 presents a flowchart of 

our ENCAPP algorithm. We find that expression and network in combination are the most 

informative (Figure 6.4A, median AUC = 0.777; 95% CI for AUC = 0.773-0.780; P < 10-3; 

Table 6.1) and the addition of clinical data only marginally improves the performance (Figure 

6.4A, AUC = 0.786; 95% CI for AUC = 0.783-0.789; P < 10-3; Table 6.1). ENCAPP also 

performs much better than an approach that just uses differential approach; we trained a 

generalized linear model with differentially expressed genes selected using the LIMMA package 

(Ritchie et al., 2015) and found that the median AUC is 0.685, significantly lower than ENCAPP 

(P < 10-3). These results confirm that using interaction dynamics, a combination of gene 

expression data with the topological structure of the network, is a key predictor of prognosis. Our 

results also confirm that ENCAPP will work efficiently even in the absence of clinical 
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information, which can be hard to collect and thus is often unavailable. Furthermore, while we 

used ‘death’ as the outcome variable for the prognosis prediction described above, we find that it 

is robust to using other variables as outcome labels. 

To compare the performance of our method to previous attempts, we first compared our 

classification accuracy (i.e., the fraction of patients for which we were able to accurately predict 

prognosis, see Methods) and AUC to Taylor et al (Figure 6.4B) and Chuang et al et al. Using 

expression data in conjunction with the protein network, ENCAPP achieves a median AUC of 

0.777, significantly higher than the value of 0.71 reported by Taylor et al (P < 10-3). We then 

compared the performance of ENCAPP to that of Chuang et al. At a fixed sensitivity of 90%, 

ENCAPP has a significantly higher accuracy (75.1% vs 70.1%, P = 0.025). Finally, we 

compared ENCAPP to the results reported by Wu and Stein (Wu and Stein, 2012). Since they do 

not directly report ROC curves, we adopted a slightly different approach for this comparison. We 

trained a generalized linear model (GLM) using expression values from Wang et al Lancet 2005 

for the significant modules identified by them and attempted to predict prognosis for the Wang 

dataset. We found that the median AUC is 0.510. We then used the same modules and 

constructed the features that ENCAPP uses to train a GLM. The median AUC goes up to 0.561, 

significantly higher (P < 10-3) than the earlier median AUC.  

We then sought to assess the changes that cause the performance boost over previous methods. 

We used ENCAPP on an experimentally verified subset of the Ophid interactome used in the 

Taylor et al. study. We obtained a median AUC of 0.750, which is significantly higher (P = 

0.040) than the AUC of 0.71 obtained by them. This confirms that a large portion of the increase 

in performance is solely due to the core methodology underlying ENCAPP – our approach 

captures more information regarding the topology of the protein interactome than Taylor et al 
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because of the differences in hub groups and modules outlined earlier. The rest of the increase is 

due to a higher quality protein network used in our study. The improvement in the protein 

network can be attributed to two factors – a methodological enhancement: we employ a series of 

stringent filtering steps (Das and Yu, 2012) to identify a set of high-quality interactions and an 

increase in the available data. Thus, ENCAPP is a robust and reliable method that combines 

expression data with protein network modules to accurately predict cancer prognosis; it works 

efficiently even in the absence of clinical data. 

Robustness of ENCAPP 

Is ENCAPP robust to changes of the response variable or the incompleteness of the reference 

protein network? To systematically test this, we first focused on how the performance of 

ENCAPP changes when the response variable is altered. For the van de Vijver dataset, he 

outcome variable (survival) is right censored, i.e., if a patient survives for >=5 years, she is 

considered to have good prognosis, else bad prognosis. To test the robustness of ENCAPP to the 

right censoring cutoff, we varied it from 3-14 years i.e, a patient is defined to have good 

prognosis if she survived for >=k years, where k varies from 3 to 14. We find that ENCAPP 

performs consistently well for all values of k (Figure 6.4C), with the highest median AUC being 

0.778 and the lowest median AUC being 0.730. This confirms that ENCAPP is robust across a 

wide range of cutoff values for right censoring. 

 To further validate the robustness of ENCAPP to alternate definitions of prognosis, we modified 

the outcome definition. We defined a patient to have a good prognosis, if she does not have 

metastases for >= k years, where k varies from 3 to 10. Here too, ENCAPP performs consistently 
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well (Figure 6.4D), with the highest median AUC being 0.744 and the lowest median AUC being 

0.652, confirming that it is also robust across prognosis definitions. 

To address the robustness of ENCAPP to incompleteness of the protein network, we generated 

sets of 50 random networks for each of the following scenarios:  5%, 10%, 15% and 20% of the 

total edges randomly removed. We then generated modules for all these random networks using 

the same ClusterOne parameters as the original network. We then re-calculated the performance 

of ENCAPP on the van de Vijver dataset for each of these networks with a certain fraction of the 

edges removed. We find that ENCAPP still performs well, with median AUCs of 0.744, 0.740, 

0.743 and 0.742 at 5%, 10%, 15% and 20% edge deletions respectively (Figure 6.4E), 

confirming that it highly robust to network incompleteness. 

Pan-cancer prognosis prediction 

A major challenge of prognosis prediction algorithms is to make them generically applicable to 

different human cancers. To examine the applicability of ENCAPP for other cancer types and 

sub-types, we first used it on a dataset of lymph-node negative breast cancer patients (Wang et 

al., 2005). Although, van de Vijver et al also examined breast cancer patients, the consensus gene 

signature identified was very different. Wang et al stated that the results vary so much “because 

of differences in patients, techniques, and materials used” (Wang et al., 2005). The van de Vijver 

dataset included node-negative and node-positive patients and women less than 53 years old. 

Moreover, prognosis for the Wang dataset is defined as metastasis-free survival. However, 

ENCAPP is still able to accurately predict (median AUC = 0.690; 95% CI for AUC = 0.684-

0.695; P < 10-3; Table 6.1) cancer prognosis for these patients (Figure 6.5A), confirming that its 

robustness across cancer sub-types. 
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Another key goal of prognosis prediction algorithms is to be applicable across data collected 

from different cohorts of patients. To test whether ENCAPP can be trained on a certain dataset 

and then used to predict outcome for a completely different set of patients, we used the Wang et 

al dataset to train the model and then predicted outcomes for the van de Vijver dataset using it. 

While we originally analyzed the van de Vijver dataset in terms of overall survival, clinical 

information on metastasis was available. Since, the Wang et al dataset uses metastasis-free 

survival as the prognostic outcome, we used this as the outcome for the cross-dataset prediction. 

ENCAPP was accurate in predicting outcomes (median AUC = 0.649; 95% CI for AUC = 0.649-

0.650; P = 0.019; Table 6.1), showing that our approach is highly robust and successful in 

incorporating major differences in clinical parameters (Figure 6.5B). Here too, we perform better 

than Chuang et al who report a classification accuracy of 55.8% at 90% sensitivity (for 

predictions on the Wang dataset using the van de Vijver sub-network markers). ENCAPP 

achieves a significantly higher classification accuracy of 62.6% at 90% sensitivity (P = 0.009).  

We then used ENCAPP to analyze other kinds of cancer – a colon cancer (Atlas, 2012) and an 

ovarian cancer (Atlas, 2011) expression dataset published by the TCGA. The ovarian cancer 

dataset that we analyzed consisted of platinum-resistant cancer patients, which occurs in 

approximately 25% of patients within 6 months of therapy. For each dataset, we looked to see 

how well our method could predict overall survival. ENCAPP was able to predict prognostic 

outcome successfully for both colon and ovarian cancer (median AUCs = 0.666 and 0.766 

respectively; 95% CIs for AUC = 0.658-0.674 and 0.760-0.771 respectively; P = 0.001 and 

0.097 respectively; Table 6.1) confirming that it works robustly across different cancers (Figures 

6.5C, 6.5E). 

Finally, we tried using ENCAPP to predict prognosis across cancer types when they are related. 
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We tried predicting rectal cancer prognosis (Atlas, 2012) having trained ENCAPP using colon 

cancer data (Atlas, 2012). ENCAPP is very successful (median AUC = 0.803; 95% CI for AUC 

= 0.782-0.823; Figure 6.5D; P < 10-3; Table 6.1) at predicting rectal cancer prognosis showing 

that ENCAPP is able to predict prognosis across related cancers. 

Identifying prognostic markers using ENCAPP 

Since our elastic net approach is a combination of LASSO and ridge regression, the number of 

coefficients with significant regression coefficients is relatively low (Figure 6.6A, Table 6.2; see 

Methods). The modules whose corresponding coefficients are mathematically significant are 

termed ‘significant modules’. To test the robustness of these ‘significant’ modules, we calculated 

the Spearman rank correlation coefficient of these significant modules across cross-validation 

runs and folds. We find that they are highly stable: 99.1% have a rank correlation coefficient >= 

0.98. To see if these modules are also biologically significant, we examined the distribution of 

known cancer genes in these modules (see Methods). We found that these modules are 

significantly enriched for cancer genes (Figure 6.6B; P < 0.01 for all 4 datasets). The fact that the 

enrichment extends to the level of entire modules shows that the differences in expression 

patterns extend to the level of the modules themselves. This is conceptually consistent with 

previous findings that gene sets rather than genes themselves better explain dysregulation in 

cancer (Subramanian et al., 2005). Thus differential co-expression of these modules is a 

molecular determinant of different outcomes for different patients.  

We also compared the average degree of proteins in these significant modules with that of 

cancer-associated proteins (11.2) and all proteins in the network (8.2). The average degree of 

proteins in significant modules is not, in general, skewed towards the average degree of cancer-
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associated proteins. For the van de Vijver and Wang breast cancer datasets, the average degree of 

proteins in significant modules are 12.0 and 10.5 respectively, similar to the average degree of 

cancer-associated proteins. However, for the colon and ovarian cancer datasets, they are 8.3 and 

8.8 respectively, similar to the overall average degree. These findings are also consistent with 

Figure 6B, which shows that the enrichment of cancer genes in significant modules for the 2002 

and 2005 breast cancer datasets is higher than the enrichment for the colon and ovarian cancer 

datasets. This could be due to higher noise for the colon and ovarian cancer datasets or due to the 

list of cancer genes being incomplete with varying degrees of incompleteness for different tissue 

types. 

To examine whether the significant modules that we find agree with what has been previously 

reported, we compared the significant modules that we obtained for the van de Vijver dataset 

with the significant modules that Wu and Stein (Wu and Stein, 2012) obtained for the same 

dataset. 29/85 (34.1%) of the modules are overlapping. Thus, ENCAPP does find a large number 

of signatures concordant with what has been reported earlier, but it also finds a significant 

number of potentially novel signatures. We then compared the significant modules that we 

obtained for the Wang dataset with the significant modules that Wu and Stein obtained for the 

van de Vijver dataset. This is a comparison both across methods and cancer sub-types. 25/268 

(9.3%) of the modules are still overlapping, showing that there are a number of stable signatures 

across cancer sub-types. We also find that 3 significant modules for the van de Vijver dataset 

contain 13 proteins of which 5 have been previously implicated in cancer (Figure 6.6C) and 3 

significant modules for the colon cancer dataset contain 9/21 known cancer genes (Figure 6.6C). 

A number of these genes are known to be good prognostic markers.  
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As a further validation, we examined prognostic biomarkers detected by ENCAPP that were 

unknown at the time of publication of the expression dataset, but have since been clinically 

validated. Conceptually, these correspond to novel biomarkers detected by ENCAPP. For 

example, we detected NFKB2 and BCL3 in a significant module for the breast cancer (2002) 

dataset (Figure 6.6C). In 2005, it was shown that the NFκB complex, of which NFKB2 is one of 

the subunits, can be used a well-known prognostic marker for breast cancer (Zhou et al., 2005). 

More recently, it has also been shown that suppression of the NFκB co-factor BCL3 correlates 

with poor prognosis as it inhibits apoptosis of mammary cells (Wakefield et al., 2008). GATA2 

was present in a significant module for the colon cancer (published in 2011) dataset (Figure 6C). 

In 2013, GATA2 was shown to be a useful prognostic marker for colorectal cancer – patients 

with high expression levels of GATA2 are likely to have worse disease-free survival outcomes 

than those with lower expression levels of GATA2 (Chen et al., 2013). These confirm that the 

significant modules identified by ENCAPP contain numerous prognostic markers.  

We also found a number of modules with proteins that have not yet been validated as prognostic 

biomarkers but are excellent candidates for hypothesis-driven follow-up experiments. For 

example, one of the significant modules for the breast cancer (2002) dataset contains CKS1B, 

SKP2 and DUSP1 (Figure 6.6D). It has been shown that CKS1B is required for the SKP2-

mediated ubiquitination of PSMD9 (p27) (Ganoth et al., 2001). A recent study shows that 

PSMD9 expression is altered in breast cancer patients irrespective of the BRCA mutation state 

(Dressler et al., 2013). Together, these results suggest that this module and especially CKS1B and 

SKP2 could be reliable prognostic markers across breast cancer subtypes as altered expression of 

these genes will lead to mis-regulation of PSMD9, whose expression is altered in breast cancer 

patients with or without mutations in BRCA1. 
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For the colon cancer dataset, one of the significant modules contains FAM175B, BARD1, CSTF1, 

BRE, and UIMC1 (Figure 6.6D). It is well known that BARD1 interacts with BRCA1 to form a 

ubiquitin ligase complex (Brzovic et al., 2003; Hashizume et al., 2001) and the interaction can be 

disrupted by breast cancer mutations on BRCA1 (Brzovic et al., 2003; Hashizume et al., 2001). A 

blood test based on BARD1 has been proposed as a potential way to diagnose breast cancer 

(Irminger-Finger, 2010). FAM175B (ABRO1) and BRE are two of the 4 subunits of the BRISC 

deubiquitinating enzyme complex (Cooper et al., 2009). BRE has already been shown to be a 

reliable prognostic marker for acute myeloid leukemia (Noordermeer et al., 2012; Noordermeer 

et al., 2011). In the context of these studies, our results suggest that this module and especially 

FAM175B, BARD1 and BRE can be potential prognostic markers for colon cancer as altered 

expression of these genes can modify ubiquitination activity in the cell. 
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6.4 DISCUSSION 

Here we have described ENCAPP, a robust prognosis predictor of different human cancers. 

Since ENCAPP uses differentially expressed modules between patients with good and bad 

prognosis to accurately predict disease outcome, the decision boundaries used to make this 

prediction correspond to functional changes in the cell. This is potentially extremely useful in 

generating mechanistic hypotheses regarding cancer causation and progression that can then be 

experimentally tested. Conceptually, the ENCAPP algorithm uses interaction dynamics, a 

combination of gene expression data with the topological structure of the network, to predict 

prognosis. Previous studies have shown that interaction dynamics is also useful in understanding 

the organization and evolutionary modes of biological networks (Das et al., 2012; Das et al., 

2013). Together, these suggest that approaches using interaction dynamics may be successful in 

elucidating the mechanistic basis of a wide range of biological phenomena, by combining two 

discrete layers of information – gene expression and protein networks. 

Another key feature of ENCAPP is its ability to identify prognostic markers from the regression 

model itself. While some previous methods show examples of prognostically relevant genes 

identified by their method (Hofree et al., 2013; Taylor et al., 2009), the key difference is that 

such detections are typically anecdotal. On the other hand, we demonstrate that the significant 

modules in ENCAPP are systematically enriched for cancer genes. Thus, our model identifies 

biologically relevant genes and uses these for determining prognostic outcome. We also show 

that significant modules identified by ENCAPP contain known prognostic markers and 

hypothesize that they may contain novel biomarkers. Follow-up studies may want to validate 

these putative prognostic markers. Since ENCAPP identifies modules containing these genes, 
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any positive results emerging from such studies will directly tie in to a pathway-level 

understanding of the mechanistic basis of that specific cancer type.  

One limitation of ENCAPP is that the accuracy of the prognosis prediction is highly dependent 

on the quality of the expression dataset, which is why the AUCs vary across the different 

cancers. Future approaches may want to combine gene expression and protein networks with 

other data such as somatic mutations, epigenetic modifications and copy number alterations to 

make the overall prediction accuracy less dependent on the quality of an individual dataset. 
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6.5 MATERIALS AND METHODS 

Expression data and the human protein interactome network 

Sample size, number of good and bad prognosis patients, and breakdown by stage and grade for 

the different expression datasets used are available in Table 6.3. Expression data were RMA-

normalized. High-quality binary and co-complex human protein interactome networks were 

obtained from HINT (Das and Yu, 2012). The final network used for this study was the union of 

the binary and co-complex networks. It comprises 42,604 interactions between 9,985 proteins. 

All datasets used in this study are obtained from papers that have already been published and 

required no ethics approval. 

Identifying functional modules using clustering 

ClusterOne identifies overlapping functional modules based on the topological properties of the 

protein interactome network (Nepusz et al., 2012). We did a sweep for the ‘s’ (size) and ‘d’ 

(minimum cluster density) parameters in ClusterOne (Nepusz et al., 2012). The default 

parameters are s = 3 and d = 0.35. We examined the parameter space around these values. Since 

the modules were identified independently of the expression datasets, situations occasionally 

arose in which some modules had missing gene expression values. In these cases, a module was 

included only if at least 1/3 of the genes in that module had corresponding expression values. For 

each cancer type, we report the highest AUC value obtained in the parameter sweep.  

The elastic-net-based regression model 

163



The elastic net (Zou and Hastie, 2005) is a regularized regression model that uses a linear 

combination of the L1 penalty term from LASSO (Tibshirani, 1996) and the L2 penalty term 

from ridge regression (Hoerl and Kennard, 1970). The objective function is given by:  

€ 

min β 0 ,β
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where, yi corresponds to the prognostic outcome for the ith patient (0 or 1 corresponding to good 

and bad prognosis respectively). xi is a vector of a vector of features for the ith patient (please see 

below for a detailed description of xi). The β’s are regression coefficients that we estimate. The 

tuning parameter λ is the weight of the regularization term and is chosen to minimize mean 

square error. The regularization term Pα(β) is given by: 
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Here, α is a number between 0 and 1 with α = 0 corresponding to ridge regression alone and α = 

1 corresponding to LASSO alone. We choose the best α using cross validation. 

For our first analysis (Figure 6.2a) that used only expression data, xi is a vector of dimension n 

containing expression values for n genes for the ith patient (The entire set of expression values 

for d patients will be a matrix of size d x n, where each row is the transpose of xi.). For ENCAPP, 

xi is a vector of dimension 2n containing expression values for n modules for the ith patient. Each 

functional module m contributes 2 values – Gim and Bim to xi: 
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Here, sm is the number of genes in module m. Eik corresponds to the expression value of the kth 

gene for the ith patient. < Ekg > and < Ekb > represent the average (mean) expression values of the 

kth gene across all patients with good and bad prognosis respectively. σkg and σkb represent the 

standard deviation of the expression values of the kth gene across all patients with good and bad 

prognosis respectively. For all the cross-validations, < Ekg >, < Ekb >, σkg and	
  σkb are calculated 

using only the samples in the training set. However, while using Gim and Bim as features derived 

from every module generally gives the most optimum performance, we noticed that in certain 

cases it is possible to obtain a slight increase in performance by not averaging over each module. 

There all Pik and Qik values are used as input. While training the ENCAPP classifier, it is 

necessary to check which of the two approaches performs better. 

For the datasets where clinical information was also available, we incorporated it using a logistic 

regression model. Since the clinical data is not high dimensional, elastic net regression is not a 

suitable choice for it. The final predicted outcome was a weighted linear combination of the two 

outputs – one predicted by the elastic-net-based model (using expression and protein network 

data) and the other predicted by the logistic regression model. Thus, Y1 = f(X1) and Y2 = g(X2) 

and Y = k x Y1 + (1 - k) x Y2. Here, X1 is the set of expression derived features, f the function 
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obtained from the elastic-net based classifier and Y1 the corresponding outcome variable, X2 the 

set of clinical features, f the function obtained from the logistic-regression based classifier and Y2 

the corresponding outcome variable. Y is the final outcome obtained by a linear combination of 

Y1 and Y2. An optimal value of k, the relative weight parameter is obtained by grid search. 

Evaluating performance  

The performance of our model is evaluated in a five-fold cross validation framework. We split 

the patients into five subsets such that four subsets are used for training and the fifth one is the 

test set. The prognostic outcomes for the training set were used to determine the regression 

coefficients. These coefficients were then used to predict outcomes for patients in the test set. 

We repeated this procedure five times so that each subset served as a test set. The predicted 

outcomes were compared to the actual outcomes using a receiver operating characteristic (ROC) 

curve (Hastie et al., 2009). The area under the ROC curve (AUC) and classification accuracy 

were used as measure of the quality of the prediction (Hastie et al., 2009). The cross validation is 

process was repeated 50 times with a set of random seeds. For all comparisons, each method was 

run with the same set of random seeds, which ensured that the cross-validation dataset splits 

were identical across methods. Thus, all observed differences are solely due to one method being 

superior to the other and not because of how the dataset was split into the 5 folds. P-values 

evaluating the significance of difference in performance between different methods (two sets of 

AUC values) were calculated using a Mann-Whitney U test. 

Classification accuracy is measured at the optimum point on the ROC curve. This is usually the 

point where the slope of the curve (S) is given by: 
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� 

S =
c(P |N) − c(N |N)
c(N |P) − c(P |P)

×
N
P

 

Here, c(I|J) represents the cost of assigning class I to class J. Here, P = true positives + false 

negatives and N = true negatives + false positives are the total counts in the positive and negative 

classes, respectively. For our calculations, we chose c(P|P) = c(N|N) = 0. And c(N|P)=c(P|N). 

Substituting these values, we get, 

� 

S =
N
P

 

Enrichment of cancer genes in modules with significant regression coefficients 

To identify modules with significant regression coefficients, we examined the distribution of 

coefficients and chose the highest and lowest two percentile of coefficients as significant (Figure 

6A). We then examined the genes in these modules and compared them to known cancer genes. 

A list of known cancer genes was obtained from the Cancer Gene Census (Futreal et al., 2004). 

This is a high-confidence list of manually curated cancer genes with orthogonal layers of 

evidence, including but not limited to mutation information from COSMIC (Forbes et al., 2011). 

The expected fraction of cancer genes identified by random is given by: 

€ 

Efi =
Ci

Ti
 

where Ci is the number of cancer genes and Ti the total number of genes in modules in the ith 

expression dataset. The observed fraction of cancer genes in modules with significant regression 

coefficients is given by: 

€ 

Ofi =
Xi

Ni
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where Xi is the actual number of cancer genes and Ni the total number of unique genes in these 

modules. Thus, the enrichment of cancer genes in modules with significant regression 

coefficients is given by: 

€ 

En =
Ofi
Efi

 

P-values were calculated using a cumulative binomial test. 
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6.6 FIGURE AND TABLE LEGENDS 

Figure 6.1. Schematic of ENCAPP. 

ENCAPP begins by overlaying tissue-specific gene expression data with the reference 

interactome network. Modules that have significant differential co-expression between patients 

with good and bad prognosis are used to build a regression model that can predict prognostic 

outcome. 

Figure 6.2. Integrating gene-expression data with protein interactome networks 

(A) Receiver operating characteristic (ROC) curves for prognosis prediction using expression 

data alone.  

(B) Illustration of hub groups and networks modules. 

(C) ROC curves comparing the performance of three module-detection algorithms – 

hierarchical clustering, affinity propagation clustering and ClusterOne. 

Figure 3. Flowchart illustrating the different steps in ENCAPP. 

The inputs to ENCAPP are RMA-normalized expression data and modules from a reference 

human protein interactome network. These are then combined into features that are input to an 

elastic-net based regression model. The performance of the model is evaluated using cross-

validation. 

Figure 4. Predicting breast cancer prognosis using differentially expressed functional modules 
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(A) ROC curves for prognosis prediction of patients in the breast cancer (2002) dataset using 

clinical data alone, expression data alone, expression data with the protein network and 

all 3 datasets together. 

(B) Comparison of the performance of ENCAPP with Taylor et (values shown are those 

obtained in the absence of clinical information).  

(C) Boxplots showing performance of ENCAPP at different right censoring cutoffs k used for 

determining prognostic outcome: for each boxplot, good prognosis is defined as survival 

for >=k years and bad as death within k years. 

(D) Boxplots showing performance of ENCAPP at different right censoring cutoffs k used for 

determining prognostic outcome; here a different outcome definition is used: for each 

boxplot, good prognosis is defined as no metastasis for >=k years and bad as metastasis 

within k years. 

(E) Boxplots showing performance of ENCAPP using random networks that have 5%, 10%, 

15% and 20% of the total edges in the original network randomly removed. 

 

Figure 5. Prognosis prediction for different cancer types and subtypes 

(A) ROC curves for prognosis prediction of patients in the breast cancer (2005) dataset using 

expression data alone and expression data with the protein network. 

(B) ROC curves for prognosis prediction of patients in the breast cancer (2002) dataset using 

data from the breast cancer (2005) dataset.  
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(C) ROC curves for prognosis prediction of patients in the colon cancer dataset using clinical 

data alone, expression data alone, expression data with the protein network and all 3 

datasets together. 

(D) ROC curves for prognosis prediction of patients in the rectal cancer dataset using data 

from the colon cancer dataset. 

(E) ROC curves for prognosis prediction of patients in the ovarian cancer dataset using 

expression data alone and expression data with the protein network. 

Figure 6. Prognostic biomarker discovery using ENCAPP. 

(A) Distribution of regression coefficients for different human cancers. The red shaded area 

corresponds to the top 10 percentile. Significant modules are defined as those with 

coefficients in the red shaded area.  

(B) Enrichment of known cancer genes in the significant modules for the breast cancer 

(2002), breast cancer (2005), colon cancer and ovarian cancer datasets. 

(C) Examples of significant modules for the breast cancer (2002) and colon cancer datasets. 

Known cancer genes are depicted in red. 

(D) Examples of novel biomarker prediction for the breast cancer (2002) and colon cancer 

datasets. 

Table 6.1. Summary of AUCs and p values for the different datasets. 

Table 6.2. Number of different modules identified by each clustering method and list of 

significant modules identified by ENCAPP for the breast cancer (2002), breast cancer (2005), 
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colon cancer and ovarian cancer datasets. All genes in a particular module are listed in a single 

row. Each module is listed in a separate row. 

Table 6.3. Sample size, number of good and bad prognosis patients, breakdown by stage and 

grade for the different datasets.. 
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- β’s = estimated regression coefficients
- λ = weight of the regularization term 
         (chosen to minimize mean square error)
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Table 6.1

Dataset median AUC

p-value 
(expression 

vs expression 
+ network)

median AUC

p-value 
(clinical vs 
clinical + 

expression +  
network)

2002BreastCancer 0.778 < 0.001 0.786 < 0.001
2005BreastCancer 0.690 < 0.001 - -

Cross-prediction (trained 
using 2005BreastCancer, 

tested on 
2002BreastCancer)

0.649 0.019 - -

ColonCancer 0.666 0.053 0.649 < 0.001

Cross-prediction (trained 
using clon cancer, tested 

on rectal cancer)
0.803 < 0.001 - -

OvarianCancer 0.766 0.097 - -

Without clinical data With clinical data (when 
available)
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Table	
  6.2
2002BreastCancer

Total	
  number	
  of	
  modules

Modules	
  a8er	
  filtering	
  
out	
  those	
  where	
  the	
  
majority	
  of	
  expression	
  
values	
  are	
  not	
  available

Affinity	
  propaga-on	
  
clustering 151 57

Hierarchical	
  clustering 200 120
ClusterOne 350 234

2005BreastCancer

Total	
  number	
  of	
  modules

Modules	
  a8er	
  filtering	
  
out	
  those	
  where	
  the	
  
majority	
  of	
  expression	
  
values	
  are	
  not	
  available

ClusterOne 584 63

ColonCancer

Total	
  number	
  of	
  modules

Modules	
  a8er	
  filtering	
  
out	
  those	
  where	
  the	
  
majority	
  of	
  expression	
  
values	
  are	
  not	
  available

ClusterOne 584 104

OvarianCancer

Total	
  number	
  of	
  modules

Modules	
  a8er	
  filtering	
  
out	
  those	
  where	
  the	
  
majority	
  of	
  expression	
  
values	
  are	
  not	
  available

ClusterOne 2221 241

Note:	
  The	
  total	
  number	
  of	
  modules	
  also	
  varies	
  by	
  dataset	
  (for	
  ClusterOne)	
  as	
  
we	
  have	
  reported	
  the	
  number	
  of	
  modules	
  corresponding	
  to	
  op-mal	
  

performance.	
  We	
  did	
  a	
  parameter	
  sweep	
  around	
  the	
  default	
  recommended	
  
parameters	
  for	
  ClusterOne	
  and	
  found	
  that	
  the	
  s	
  and	
  d	
  parameters	
  need	
  to	
  be	
  
varied	
  in	
  the	
  neighbourhood	
  of	
  the	
  default	
  recommended	
  parameters	
  for	
  

op-mal	
  performance.
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Table 6.3

2002Breast Cancer GRADE: GRADE:
I:    61 I:    14
II:   76 II:   25
III:  79 III:  39

2005Breast Cancer Grade/Stage Grade/Stage
Not Available Not Available

ColonCancer STAGE: STAGE:
I:        26 I:        2
IIA:    50 IIA:    5
IIB:    4 IIB:    1
IIIB:  18 IIIB:  1
IIIC:  13 IIIC:  3
IV:     19 IV:     3
Unknown: 2

OvarianCancer STAGE: STAGE:
IIC:   0 IIC:   1
IIIB: 0 IIIB: 1
IIIC: 14 IIIC: 61
IV:    3 IV:    10

GRADE: GRADE:
G2: 2 G2: 6
G3: 15 G3: 66

Unknown: 1

90 17 73

152 137 15

286 179 107

Dataset Sample Size Positive Outcome (=0)
#patients

Negative Outcome (=1)
#patients

293 215 78
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CHAPTER 7 

Cross-Species Protein Interactome Mapping Reveals Species-Specific Wiring of Stress-

Response Pathways 

 

In the following chapter, we explore concepts of network evolution and how stress-response 

pathways have evolved across different yeast species. I am the first author of the paper resulting 

from this chapter (Das et al Science Signaling 2013) and performed all computational analyses. 

Experimental analyses described in the chapter were led by graduate student Tommy Vo. 
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7.1 ABSTRACT 

 

The fission yeast Schizosaccharomyces pombe has more metazoan-like features than the 

budding yeast Saccharomyces cerevisiae, yet it has similarly facile genetics. Here, we 

present a large-scale verified binary protein-protein interactome network, “StressNet”, 

based on high-throughput yeast two-hybrid screens of interacting proteins classified as 

part of stress-response and signal transduction pathways in S. pombe. We performed 

systematic, cross-species interactome mapping using StressNet and a protein interactome 

network of orthologous proteins in S. cerevisiae. With cross-species comparative network 

studies, we detected a previously unidentified component (Snr1) of the S. pombe mitogen-

activated protein kinase Sty1 pathway. Coimmunoprecipitation experiments showed that 

Snr1 interacted with Sty1 and that deletion of snr1 increased the sensitivity of S. pombe 

cells to stress. Comparison of StressNet with the interactome network of orthologous 

proteins in S. cerevisiae showed that the majority of interactions among these stress-

response and signaling proteins are not conserved between species, but are “rewired;” 

orthologous proteins have different binding partners in both species. In particular, 

transient interactions connecting proteins in different functional modules were more likely 

to be rewired than conserved. By directly testing interactions between proteins in one yeast 

species and their corresponding binding partners in the other yeast species with yeast two-

hybrid assays, we found that about half of the interactions traditionally considered 

“conserved” form modified interaction interfaces that may potentially accommodate novel 

functions. 
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7.2 INTRODUCTION 

 

A crucial step towards understanding properties of cellular systems is to map networks of DNA-

protein, RNA-protein, and protein-protein interactions, or the “interactome network,” of an 

organism. Over the last decade, large-scale binary protein-protein interactome datasets have been 

produced for several eukaryotes – Saccharomyces cerevisiae (Ito et al., 2001; Uetz et al., 2000; 

Yu et al., 2008), Drosophila melanogaster (Formstecher et al., 2005; Giot et al., 2003), 

Caenorhabditis elegans (Li et al., 2004; Simonis et al., 2009), Arabidopsis thaliana (Consortium, 

2011), and human (Rual et al., 2005; Stelzl et al., 2005), among which we produced a high-

quality whole-proteome interactome network in S. cerevisiae using a high-throughput yeast two-

hybrid (HT-Y2H) system (Yu et al., 2008). However, due to large evolutionary distances among 

these species [the last common ancestor of fungi and human is over 1 billion years ago (Sipiczki, 

2000; Wood et al., 2002)] and extremely low coverage (most protein interactions are yet to be 

detected) of available interactome maps outside of S. cerevisiae, the overlap among these 

networks is sparse (Gandhi et al., 2006). This makes it difficult to extract meaningful 

information about evolutionary relationships from these interactomes. Thus, to bridge this gap, it 

is essential to construct a high-coverage interactome network for an intermediate species. The 

fission yeast, Schizosaccharomyces pombe, has an easily manipulatable genome and is estimated 

to have diverged from the budding yeast, S. cerevisiae, approximately 400 million years ago 

(Sipiczki, 2000; Wood et al., 2002). Furthermore, fission yeast is more similar to metazoans than 

is budding yeast, especially in its gene regulation by chromatin modification and RNA 

interference, mechanisms that are differently regulated and absent, respectively, in budding yeast 
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(Roguev et al., 2008). A high-quality map of the protein-protein interactome network of S. 

pombe will enable analysis of biological properties of many complex pathways common in 

metazoan species but missing in S. cerevisiae (Shevchenko et al., 2008). 

The two yeasts live in highly disparate ecological niches and have varied mechanisms 

of responding to external stimuli. Therefore, in this study, we focus on 658 S. pombe genes 

involved in key regulatory processes of stress response and cellular signaling. Because these 

pathways control how organisms sense and adapt to their immediate environments, they are 

likely to have diverged between the two species. Using our HT-Y2H pipeline (Yu et al., 2008), 

we obtained a binary interactome network among these 658 genes, which we named “StressNet”. 

All interactions were verified with two orthogonal assays to ensure their quality. By comparing 

with their S. cerevisiae counterparts, we measured the conservation rate of these StressNet 

interactions between fission and budding yeasts using a Bayesian method. We found species-

specific wiring of stress-response and signaling pathways beyond what was expected by 

sequence orthology, indicating that rewiring of protein interactome networks in related species is 

likely to be a major factor for divergence. We also identified a previously unknown component 

Snr1 of the Sty1 mitogen-activated protein kinase (MAPK) pathway and experimentally 

validated that Snr1 has gained functions, through rewiring of its interactions, compared to the 

orthologous protein in S. cerevisiae. Furthermore, to better understand the evolution of proteins 

and their interactions, we developed a large-scale cross-species interactome mapping approach to 

directly test interactions between S. pombe proteins and the S. cerevisiae orthologs of their 

partners. Such analysis is only possible with the availability of two well-controlled high-

coverage interactome maps generated with the same technology. We found that, for many 

conserved interactions, both partners had co-evolved to accommodate new interactions and 
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functions, and their interaction interfaces can no longer be recognized by their S. cerevisiae 

counterparts.  

 

7.3 RESULTS 

Comparison of known interactions in S. cerevisiae and S. pombe 

The number of known protein-protein interactions in S. pombe is disproportionately lower than 

in other model eukaryotic organisms and human. We estimated the number of all known 

interactions in S. cerevisiae and S. pombe by analyzing seven commonly-used databases – 

BioGRID (Stark et al., 2011), DIP (Salwinski et al., 2004), IntAct (Kerrien et al., 2012), 

iRefWeb (Turner et al., 2010), MINT (Ceol et al., 2010), MIPS (Mewes et al., 2011), and 

VisANT (Hu et al., 2007). There identified 110,443 interactions for budding yeast, but only 

4,038 for fission yeast, from these databases. Furthermore, only those interactions or interaction 

sets that have been validated by at least two independent assays are reliable and defined as “high 

quality” (Cusick et al., 2009; Das and Yu, 2012). Based on this criterion, 519 fission yeast 

interactions are of high quality, as opposed to 25,335 high-quality interactions known in budding 

yeast. Of these, only 160 S. pombe interactions are binary (a direct biophysical interaction 

between the two proteins), as opposed to 11,936 in S. cerevisiae. These numbers indicate the 

extent to which the fission yeast interactions are underexplored and necessitate the systematic 

mapping of its interactome network.  

 

StressNet: A large-scale high-quality protein interactome network for stress response and 

cellular signaling in S. pombe 

The subset of 658 genes for this study was selected using Gene Ontology (GO) (Ashburner et al., 
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2000) “Biological Process” (BP) functional annotations for fission yeast (Figure 7.1A). To 

generate a high-quality high-coverage stress-response interactome map for S. pombe, we 

screened all possible protein pairs (>430,000) in this space three times using a high-quality HT-

Y2H system, as we had done for S. cerevisiae (Yu et al., 2008). The resulting protein 

interactome network, StressNet (Figure 7.1B), comprises 235 high-quality binary interactions 

among 200 proteins (Table 7.1). Of these, 218 interactions were previously unknown. To 

validate our experimental pipeline and the quality of StressNet, from the 160 high-quality binary 

interactions we selected a set of 54 well-documented protein interactions from the literature and 

[“positive reference set” (PRS); Table 7.2] and 43 random protein pairs that have never been 

reported or predicted to interact [“random reference set” (RRS); Table 7.3]. 20 PRS interactions 

were successfully confirmed in our pipeline, whereas none of the RRS pairs were detected as 

positives (Figure 7.1C). Therefore, the sensitivity [fraction of detected true positives among all 

possible true positives (Yu et al., 2008)] of our Y2H assay is 37.0%. 

To directly measure the quality of our Y2H-identified interactions (Braun et al., 2009; Yu et al., 

2008), we re-tested all 235 interactions detected in our HT-Y2H screen by two orthogonal 

assays: the protein complementation assay (PCA) (Remy and Michnick, 2006) and the well-

based nucleic acid programmable protein array (wNAPPA) (Ramachandran et al., 2004), 

producing a fully-verified large-scale interactome map. The confirmation rates of our 

interactions with both orthogonal assays were similar to those of the PRS, further validating the 

high quality of StressNet (Braun et al., 2009; Yu et al., 2008) (Figure 7.1C). Using the results of 

the validating assays, we calculated the precision of StressNet as 95.3

€ 

± 4.7% (Eq. 8 and 9 in 

Materials and Methods).  
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To assign a confidence score to each interaction in StressNet, we implemented a random 

forest algorithm to integrate results from the three orthogonal assays (figs. S1 and S2 and 

Materials and Methods). Every detected interaction had a confidence score >0.76 (Table 7.1). 

This value represents a normalized probability on a scale of 0 to 1 and indicated that all the 

interactions in StressNet were of high quality. Finally, to evaluate the topological properties of 

our network, we plotted the degree (number of interactions each protein has) distribution of 

StressNet (Figure 7.1D). Protein interactomes are small-world scale-free networks (Barabasi and 

Albert, 1999; Jeong et al., 2000) and our stress-response interactome for S. pombe exhibited 

similar topological properties to other large-scale biological networks.  

To assess the biological relevance of this network, we investigated overall relationships 

between protein pairs using expression and genetic interaction profile similarities (Roguev et al., 

2008; Rustici et al., 2004), subcellular colocalization (Matsuyama et al., 2006), and GO 

functional similarities (Ashburner et al., 2000). We found significant enrichment of interactions 

in StressNet of protein pairs that colocalized or were functionally similar, and that were encoded 

by coexpressed genes or genes that exhibited similar genetic interaction profiles [calculated 

using the Pearson Correlation Coefficient (PCC)], relative to random expectation (Figure 7.2A-

D). Furthermore, the enrichment of StressNet in all four categories was similar to that of high-

quality literature-curated binary interactions. These results confirmed the high quality of 

StressNet and indicated that these interactions are likely to be functionally relevant. 

 

Evolutionary relationships in StressNet 

For biological networks, evolutionary relationships are commonly measured in terms of 

conservation and rewiring: If a pair of interacting proteins in one species has corresponding 
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orthologs in another that also interact, then the interaction is considered to be conserved (an 

interolog); otherwise, the interaction is considered to be rewired (Matthews et al., 2001; Shou et 

al., 2011; Yu et al., 2004) (Figure 7.3A). To understand key principles governing the evolution 

of protein-protein interactions, especially for those in stress-response and signaling pathways, we 

compared the interactions in StressNet to their corresponding ortholog pairs in S. cerevisiae. We 

experimentally tested all corresponding S. cerevisiae protein pairs of the 235 interactions in 

StressNet and found that for 35 interactions, the corresponding budding yeast ortholog pairs were 

detected as interacting by our Y2H experiments. We developed a Bayesian framework to 

calculate the percentage of conserved interactions based on three parameters – the proportion of 

observed conserved interactions (35/235 = 14.9%), the precision (95.3

€ 

±4.7%), and the 

sensitivity (37.0%

€ 

± 4.4%) of our Y2H assay (see Eq. 12 and 13 in Materials and Methods). 

Substituting appropriate values, the percentage of conserved interactions between S. pombe and 

S. cerevisiae is calculated as 36.3 ± 2.9% (Figure 7.3B). 

Using an orthogonal approach, we supplemented S. cerevisiae interactions detected in our 

Y2H experiments with high-quality known S. cerevisiae interactions curated from the literature 

to obtain 55 more StressNet interactions for which the corresponding budding yeast orthologs 

were reported to interact in the literature (Das and Yu, 2012). There are 90 (35 + 55) conserved 

interactions in total and the conservation is 38.3% ± 3.2%, consistent with the conservation 

calculated using the Bayesian framework (Figure 7.3B). Furthermore, this agreement shows that 

after combining our Y2H experimental results with high-quality literature-curated interactions, 

the number of known interactions in our search space in S. cerevisiae is nearly complete, because 

if there were still a large number of unidentified interactions, the observed proportion of 

conserved interactions based on literature-curated interactions would have been much lower. 
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Because it is always difficult to determine a negative interaction (Ben-Hur and Noble, 2006; Yu 

et al., 2008), to ensure the set of rewired interactions is of high quality, we used a stringent set of 

criteria to define them as those StressNet interactions without corresponding S. cerevisiae 

ortholog pairs and those interactions whose corresponding S. cerevisiae ortholog pairs have other 

high-quality interactions but have never been reported as interacting in the literature or tested 

positive in our Y2H experiments, and these ortholog pairs are known to have different cellular 

localizations (Huh et al., 2003).   

Proteins encoded by essential genes, those when deleted cause lethality, tend to have 

more interacting partners (hubs) and also evolve more slowly than non-essential ones (Fraser et 

al., 2002; Hirsh and Fraser, 2001). We found that essential and non-essential genes (Kim et al., 

2010) in our interactome were equally likely to be involved in conserved interactions (Figure 

7.3C), contrary to previous studies (Fraser et al., 2002). Stress-response and signal-transduction 

pathways play a crucial role in the process of adaptation to distinct ecological environments. As 

measured by the ratio of nonsynonymous to synonymous substitution rates (dN/dS) (Nei and 

Gojobori, 1986; Rhind et al., 2011), we found that the essential genes in these pathways evolve 

at the same rate as the non-essential genes in the pathways evolve, although on average all 

essential genes in the genome evolve significantly slower than non-essential genes. To ensure 

that this is not an artifact of the calculation method, we also calculated dN/dS values for all 

essential and non-essential genes. Consistent with earlier findings (Das and Yu, 2012), we 

observed that overall, the essential genes had a significantly lower average dN/dS. The average 

dN/dS for all stress-response genes is not significantly different from that for the entire genome. 

The dN/dS distributions for these two species are highly similar. This finding is consistent with 

analyses that suggest that these species are at comparable evolutionary distances from S. pombe 
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and confirm that there are no inherent biases in our dN/dS calculations. Thus, our findings 

suggest that essential genes in stress-response and signal transduction pathways are under less 

negative selection such that their interactions are rewired for adaptive advantages through 

evolution.  

To better understand the mechanisms underlying conservation and rewiring of 

interactions, we examined the relationship between sequence similarity of orthologous pairs and 

interaction conservation rates. Consistent with expectation (Yu et al., 2004), interactions 

involving proteins with higher overall sequence similarity or identity were more likely to be 

conserved (Figure 7.3D). However, proteins interact through specific domains (Finn et al., 

2010); therefore, we examined the role of sequence similarity of these interfaces in determining 

the conservation of corresponding interactions. Previous studies have established a homology 

modeling approach (Kim et al., 2006; Wang et al., 2012) to locate interaction interfaces using co-

crystal structures in PDB (Berman et al., 2000) and have found that analysis of these interfaces 

provides insights into their evolutionary rate (Kim et al., 2006). The conservation of an 

interaction depends on the conservation of the interfaces involved (Espadaler et al., 2005). Using 

a similar approach, we inferred interaction interfaces for proteins involved in 161 interactions in 

our network (Materials and Methods). We found no significant correlation between the similarity 

or identity of interaction interfaces and the conservation of the corresponding interactions 

(Figure 7.3E). Examination of the average dN/dS ratios for proteins with different numbers of 

rewired interactions showed that the selection pressure on the gene did not affect the degree to 

which the interactions of the corresponding protein were rewired (Figure 7.3F), further indicating 

that the rewiring of interactome networks and the divergence of related species are not 

completely dictated by evolution detected at the sequence level. 
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Functional profile of conserved and rewired interactions 

To investigate whether gene pairs encoding proteins involved in conserved and rewired 

interactions are differently regulated at the transcriptional level, we measured global 

coexpression between these pairs using the PCC. Global coexpression means that the pattern of 

gene expression of both genes is the same. Whereas conserved interactions had the highest 

fraction of coexpressed pairs, gene pairs encoding proteins involved in rewired interactions were 

also significantly more coexpressed than random in S. pombe (Figure 7.4A). We also calculated 

coexpression relationships for the corresponding budding yeast pairs. By definition, the 

conserved pairs also interact in budding yeast, but the rewired pairs do not. The enrichment in 

gene expression is consistent with this distinction:  Gene pairs encoding proteins involved in 

conserved interactions were coexpressed, genes encoding rewired pairs were not significantly 

enriched than random expectation in S. cerevisiae (Figure 7.4A).  

PCC captures only global coexpression relationships, but cannot capture local or transient 

coexpression that occurs only under certain conditions. Furthermore, gene pairs encoding 

proteins involved in stable interactions tend to be globally coexpressed, whereas those in 

transient interactions are often only locally coexpressed without significant PCC values (Das et 

al., 2012). Stable and transient interactions both have important biological functions – the former 

constitute tightly connected modules, whereas the latter form key links between modules, 

especially in signal transduction pathways, and are more important than the stable ones or 

random interactions in maintaining the integrity of cellular networks (Das et al., 2012). To detect 

transient interactions, we used the Local Expression-correlation Scores (LES) (Das et al., 2012; 

Qian et al., 2001). Rewired interactions in fission yeast had significantly higher LES values 
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(Figure 7.4B) than both conserved interactions and random expectation, suggesting that transient 

interactions are more likely to be rewired through evolution. Rewired pairs in budding yeast had 

LES values lower than random pairs (Figure 7.4B), indicating that gene regulation for these pairs 

is also rewired.  

Next, we examined GO functional similarities between interacting proteins involved in 

conserved and rewired interactions. Whereas conserved interactions had higher functional 

similarity than rewired interactions in fission and budding yeast, interacting protein pairs in both 

categories were significantly more functionally similar than random (Figure 7.4C). This is in 

agreement with previous findings that conserved interactions tend to be in modules with specific 

functions, whereas rewired interactions tend to be inter-modular and have greater diversity in 

function (Das et al., 2012).  

In our analysis of rewired interactions above, we focused on those that are present in 

fission yeast but lost in budding yeast. Because the S. pombe interactome is still considerably 

underexplored in the literature and the sensitivity of our Y2H assay is 37.0%, it is not yet 

possible to determine non-interacting pairs in S. pombe reliably. Therefore, although it is 

possible to define lost interactions in S. cerevisiae by combining literature-curated interactions 

with our Y2H-detected ones, the same cannot be done to define lost interactions in S. pombe. 

However, there are 1,638 S. cerevisiae interactions where one protein has a corresponding S. 

pombe ortholog in the space of the 658 open reading frames (ORFs) that we explored and 

another protein has no S. pombe ortholog. Thus, there can be no corresponding S. pombe 

interactions and these are rewired interactions in S. cerevisiae by definition. We found that these 

interactions had significantly higher PCC, LES, and functional similarity as compared to 

random. The trend is comparable to that of rewired interactions in S. pombe (Figure 7.4), further 
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confirming the robustness of our results. We performed PCC and LES analysis of coexpression 

and functional similarity of conserved and rewired interactions defined at different confidence 

levels and obtained similar results, indicating that the analysis is robust and reliable. 

 

Modes of rewiring uncovered by cross-species interactome mapping  

To further understand the meaning of “conservation” of interactions and experimentally explore 

the molecular mechanisms through which interaction interfaces evolve, we performed a 

systematic cross-species interactome mapping by testing all conserved interactions between 

corresponding S. cerevisiae and S. pombe proteins. Using orthologous pairs of interacting 

proteins in the two yeast species, we examined whether a protein in one species interacted with 

the ortholog of its partner in the other (Figure 7.5A). Because we could detect the original 

interacting pairs from the same species with our Y2H experiments, we know that all four 

proteins are correctly expressed, folded, and are amenable to detection by our Y2H approach, 

thereby avoiding technical false negatives. The traditional definition of “conservation” implies 

the notion of conserved interfaces across different species. However, there are many examples 

where proteins with conserved interactions form new interactions and carry out new functions 

that are not conserved. The interface of a conserved interaction in fission yeast is considered 

“intact” if the proteins involved could also interact with the corresponding orthologs of their 

partners in budding yeast; otherwise, the interface is considered “co-evolved” (Figure 7.5A). We 

found that these conserved interactions were equally likely result from an intact interface or co-

evolved interface that formed new interaction interfaces that were unrecognizable by their 

orthologous counterparts in the other species (Figure 7.5B). Earlier studies have suggested that 

interacting proteins may co-evolve to maintain structural complementarity and binding 
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specificity (Goh et al., 2000; Hakes et al., 2007; Kim et al., 2004). In this calculation, we used a 

lenient definition for an intact interface: We considered the interface intact if one or both of the 

cross-species interactions was positive, which provides a lower bound estimation of co-evolution 

between interacting proteins. 

 

Divergence of the Sty1 stress-response pathway through interaction conservation and 

rewiring  

In S. pombe, Sty1 is activated in response to various stresses, including oxidative and osmotic 

stress, starvation, and other conditions (Gasch, 2007; Shiozaki and Russell, 1996). Sty1 has 

orthologs in S. cerevisiae (Hog1, with 89% sequence similarity) and human (p38, with 69% 

sequence similarity). Both p38 and Sty1 respond to a wide range of stresses and both are 

different from Hog1 in terms of function (Bone et al., 1998). With our stress-response 

interactome, we detected key interactions at every step of the MAPK signal transduction 

pathway and, therefore, completely recapitulated the entire Sty1 pathway. This confirmed the 

sensitivity and accuracy of our HT-Y2H method, especially for discovering transient interactions 

in signaling pathways. Among all Sty1 interactions in StressNet, those with its activator (Wis1) 

and inhibitor (Pyp2) were both conserved between the two yeast species, and the Sty1-Wis1 

interaction interface was intact. By contrast, the interaction between Sty1 and its known target in 

fission yeast, Atf1, represented a rewired interaction (Figure 7.5C). We also identified a 

previously unknown interactor of Sty1: SPBC2D10.09, a protein that we named Snr1 (Sty1-

interacting stress-response protein). To confirm this interaction in vivo, we performed co-

immunoprecipitation of tagged proteins expressed in S. pombe (Figure 7.5D). The amount of 

Snr1 pulled down in the presence of Sty1 was greater than that pulled down in the absence of 
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Sty1, indicating that the interaction with Sty1 stabilizes Snr1 (Figure 7.5D). The corresponding 

orthologous pair of Hog1 and Ehd3 in S. cerevisiae did not interact by Y2H (Figure 7.5E). Cells 

lacking snr1 (snr1∆ cells) grew slower under stress, similar to sty1∆ cells (Figure 7.5F), whereas 

growth of ehd3∆ cells was not compromised. These results suggested that Snr1 is a component 

of the Sty1 pathway and that its functions diverged from its budding yeast counterpart. 

Moreover, snr1 also has a human ortholog, HIBCH, further investigation of which may expand 

our knowledge of the human p38 MAPK pathway.  

 

7.4 DISCUSSION 

 

We generated StressNet – a high-quality high-coverage binary interactome for stress-response 

and signal-transduction pathways in the fission yeast, S. pombe. All interactions were verified by 

three orthogonal assays and assigned probabilistic confidence scores. We performed comparative 

network analysis to study the evolution of protein interactomes between the fission and budding 

yeast species. Even though 84% of StressNet interactions have corresponding orthologous pairs 

in S. cerevisiae, only about 40% of these interactions are conserved, indicating considerable 

evolutionary changes beyond simple sequence orthology. Thus, the interolog concept should be 

used with caution to infer interactions across species, especially if the two are not closely related. 

Furthermore, our results suggested that rewiring of protein interactome networks in related 

species is likely a major factor for divergence. Surprisingly, we found no significant correlation 

between the similarity of interaction interfaces and the conservation of corresponding 

interactions. This demonstrates that conservation of interactions is more complex than previously 

expected – domains that are not part of the interaction interface also play some indirect role in 
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making the interaction possible. Even if the interface is conserved, the corresponding interaction 

could still be rewired because of steric hindrance due to altered overall structure or loss of nearby 

structural scaffolds that make the interaction thermodynamically favorable (Kastritis et al., 

2011). We also experimentally explored the evolution of interaction interfaces and our analysis 

indicated that interactions traditionally considered “conserved” are equally likely to have intact 

interfaces as to have co-evolved ones that are different from their orthologous counterparts. 

These results suggest a molecular mechanism by which the interactome network is rewired 

through evolution: Many proteins have co-evolved with their partners to form modified 

interfaces that can, therefore, accommodate new interactions and functions.  

Our results indicated that conserved interactions tended to be stable and rewired ones were 

more likely to be transient. Therefore, our finding provides a molecular-level mechanistic 

explanation for previous studies showing that genetic cross talk between functional modules can 

differ substantially (Frost et al., 2012; Roguev et al., 2008; Ryan et al., 2012). However, our 

results also suggest that, overall, proteins tend not to rewire all of their interactions; thus, even if 

they acquire novel interactions, they still generally conserve at least some of the original 

functions. 

Our results indicate that substantial evolutionary changes, both rewiring and co-evolution, 

of stress-response pathways could be a major mechanism by which different organisms adapt to 

diverse living environments. Conservation of interactions in other pathways might be different 

from what we observed here. Therefore, similar cross-species interactome mapping and 

comparative network analyses of more pathways and species will provide a more comprehensive 

understanding of underlying principles that help shape distinct characteristics of individual 

organisms through evolution. 
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7.5 MATERIALS AND METHODS 

 

Selection of genes for the study 

This study focused on stress response and signal transduction proteins (based on GO Biological 

Process annotations) and their known interactors in S. pombe. We also include S. pombe 

orthologs of S. cerevisiae proteins that are known to interact with orthologs of fission yeast 

stress-response and signal transduction proteins. While selecting the 658 ORFs, we also ensured 

that a set of PRS interactions in S. pombe could be constructed with genes from our space, a 

limiting criterion because there are only 160 binary high-quality S. pombe interactions reported 

in the literature. 

 

Yeast two-hybrid (Y2H)  

Y2H experiments were carried out as described (Yu et al., 2011). Briefly, 658 S. pombe ORFs in 

Gateway entry vectors were transferred into AD and DB vectors using Gateway LR reactions. 

After bacterial transformation, plasmids of all AD-Y and DB-X clones were transformed into 

yeast two-hybrid strains MATa Y8800 and MATα Y8930 (genotype: leu2-3, 112 trp1-901 

his3Δ200 ura3-52 gal4Δ gal80Δ GAL2-ADE2 LYS2::GAL1-HIS3 met2::GAL7-lacZ cyh2R), 

respectively. The MATa Y8800 strain was obtained from the MATa Y550 strain after mutating 

CYH2 to introduce cycloheximide resistance. MATα Y8930 was generated by crossing MATa 

Y8800 with MATα Y1541 (3), followed by sporulation and identification of the MATα 

cycloheximide-resistant yeast strain by tetrad analysis. After AD-Y and DB-X were transformed 
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into Y8800 and Y8930, respectively, autoactivators were screened by spotting onto synthetic 

complete media (SC) lacking histidine and tryptophan (AD-Y) or histidine and leucine (DB-X). 

These autoactivators were excluded from all further screenings. Each unique DB-X was mated 

with pools of ~188 unique AD-Y by co-spotting onto yeast extract peptone dextrose (YEPD) 

plates. Diploids were selected by replica plating onto SC plates without leucine and tryptophan 

(SC–Leu–Trp). To select for positive interactions, Y2H screening was performed by replica 

plating the diploids onto SC plates with 1 mM 3-amino-1,2,4-triazole (3-AT) and without 

leucine, tryptophan, and histidine (SC–Leu–Trp–His+3-AT). SC-Leu-Trp-His plates were used 

for the HT-Y2H screen in S. cerevisiae (Yu et al., 2008). We used 1 mM 3-AT, because this 

concentration greatly reduces background and improves the quality of the screens (Consortium, 

2011; Venkatesan et al., 2009; Yu et al., 2011). Newly occurring autoactivators were determined 

by concurrently replica plating the diploids onto SC media with cyclohexamide (CHX) and 1 

mM 3-AT and lacking leucine and histidine (SC–Leu–His+3-AT+CHX). Screening for these 

autoactivators relies on CHX to select for cells that do not have the AD plasmid, due to plasmid 

shuffling. Thus, growth on the latter plate identifies spontaneous autoactivators; these were 

removed from further analyses. All plates were replica cleaned the following day and scored 

after three additional days. The space was screened three times. 

Y2H positives were grown two to three days at 30°C and then spotted onto four plates for 

secondary phenotype confirmation (phenotyping II) (SC–Leu–Trp–His+3-AT; SC–Leu–His+3-

AT+CHX; SC–Leu–Trp–adenine; SC–Leu–adenine+CHX). Colonies that either grew on SC–

Leu–Trp–His+3-AT but not on SC–Leu–His+3-AT+CHX or on SC–Leu–Trp–adenine but not on 

SC–Leu–adenine+CHX were identified as positives. 
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  For colonies that scored positive in phenotyping II, the identities of DB-X and AD-Y 

were determined by the Stitch-seq approach (Yu et al., 2011) using Illumina sequencing. All 

identified interacting pairs were retested by pairwise Y2H. 

 

Construction of PRS and RRS 

The PRS and RRS are representatives of true positive interactions and negative pairs, 

respectively, and we used the PRS and the RRS to optimize the assay performance and they may 

be interpreted as positive and negative controls. The PRS comprises a set of 54 protein 

interactions from the literature, each of which is supported by at least two independent assays 

from two different publications (Table 7.2). RRS pairs were generated from a random selection 

out of all possible protein pairs within our search space for which no interaction has yet been 

detected by any method (Table 7.3). Because fission yeast interactions are underexplored, we 

also required that their corresponding budding yeast ortholog pairs have never been reported to 

interact.  

Another way to construct the RRS is to consider protein pairs with different cellular 

localizations because these are unlikely to interact. 31 out of the 43 RRS pairs are indeed 

localized in different cell compartments. Using the whole RRS (Figure  7.1C), we estimate the 

false positive rate for Y2H, PCA, and wNAPPA are 0/43, 2/43 (4.7% ± 3.2%), and 2/43 (4.7% ± 

3.2%), respectively. If we only use the 31 RRS pairs localized in different cell compartments 

(named “RRS_DiffLocal”), the false positive rates for the three assays are 0/31, 2/31 (6.5% ± 

4.4%), and 1/31 (3.2% ± 3.2%). Therefore, the false positive rates for all three assays used in our 

experiments do not change whether we use the complete RRS or RRS_DiffLocal. 
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With these controls, we found that 20 of the 54 PRS were detected in our screen and none 

of the RRS set. We calculated the sensitivity of our assay as 20/54 (37.0% ± 4.4%) . 

 

Protein Complementation Assay (PCA) 

S. pombe ORFs available in Gateway entry vectors were transferred by Gateway LR reactions 

into vectors encoding the two fragments of YFP (Venus variant) fused to the N-terminus of the 

tested proteins. Baits were fused to the F1 fragment (amino acids 1-158 of YFP) and preys to the 

F2 fragment (amino acids 159-239 of YFP). After bacterial transformation, plasmid DNA was 

prepared on a Tecan Freedom Evo bio-robot, and DNA concentrations are determined by 

OD260nm with a Tecan M1000 in a 96-well format. A 50 ng aliquot of each vector encoding the 

two proteins was used for transfection into HEK 293T cells in 96-well plates, using 

Lipofectamine 2000 (Invitrogen) reagent according to the instructions of the manufacturer. At 

approximately 48 hrs post-transfection, cells were processed with a Tecan M1000. A pair is 

considered interacting if the YFP fluorescence intensity was ≥2 fold higher over background. 

 

Well-based nucleic-acid programmable protein array (wNAPPA) 

ORFs encoding the interacting proteins were cloned into Gateway-compatible pCITE-HA and 

pCITE-GST vectors by LR reactions. After bacterial transformation, growth, DNA minipreps, 

and determination of DNA concentration, ~0.5µg of each plasmid were added to Promega TnT 

coupled transcription-translation mix (catalog number: L4610) and incubated for 90 minutes at 

30°C to express proteins. During this time anti-GST antibody-coated 96-well plates (Amersham 

96-well GST detection module, catalog number: 27-4592-01) were blocked at room temperature 

with PBS containing 5% dry milk powder. After protein expression, the expression mix was 
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diluted in 100µl blocking solution, and added to the emptied pre-blocked 96-well plates. 

Expression mix was incubated in the 96-well plates for two hours at 15°C with agitation to allow 

for protein capture. After capture, plates were washed three times and developed by incubation 

with primary and secondary antibodies. Signal was visualized using chemiluminescence 

(Amersham ECL Reagents, catalog number: RPN2106) with a Tecan M1000. Wells with ≥3 fold 

higher intensity over background in either configuration were considered positives. 

 

Measuring the precision of our assay 

The precision of the Y2H assay was calculated using PCA and wNAPPA as orthogonal 

validation assays. Using Bayes’ rule we can build relationships between true and false positive 

rates of Y2H and observed positive interactions by a validating assay as: 

 

€ 

Pr(A+ |Y+) = Pr(A+ |Y+,T+) × Pr(T+ |Y+) +Pr(A+ |Y+,T−) × Pr(T− |Y+)   Eq. 1 

 

where A+ corresponds to observing a positive interaction using the validating assay, Y+ 

corresponds to observing a positive interaction using Y2H, and T+ (T−) corresponds to an 

interaction being a real positive (negative) interaction. The precision of the Y2H is the term 

Pr(T+|Y+) [which is also equal to 1− Pr(T −|Y +)].  

 Assuming conditional independence between the validating assay and Y2H based on 

previously defined reasons (Yu et al., 2008), we can write: 

 

€ 

Pr(A+ |Y+) = Pr(A+ |T+) × Pr(T+ |Y+) +Pr(A+ |T−) × Pr(T− |Y+)  Eq. 2 
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Solving for the precision of the Y2H assay yields: 

 

€ 

Pr(T+ |Y+) =
Pr(A+ |Y+) −Pr(A+ |T−)
Pr(A+ |T+) −Pr(A+ |T−)

     Eq. 3 

 

Pr(A+|T+) and Pr(A+|T–) were measured in the PRS and RRS experiments. So, for our Y2H 

assay we can write precision as: 

 

€ 

Precision =
FStressNet − FRRS
FPRS − FRRS

       Eq. 4 

 

where FStressNet is the fraction positive by an assay for StressNet, which is the best estimator for 

Pr(A+|Y+). FPRS is the fraction positive by the assay for the PRS, which is an estimator for 

Pr(A+|T+). FRRS is the fraction positive by the assay for the RRS, which is an estimator for 

Pr(A+|T-). 

The standard errors of FStressNet, FPRS, and FRRS are calculated using the standard error for 

binomial distributions: 

 

€ 

StdErr =
F(1− F)

N
        Eq. 5 

 

where F is the fraction positive by the assay (FStressNet, FPRS, or FRRS and N is the total number of 

pairs tested. 

To estimate the standard error for the precision, we used the standard delta method: 
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€ 

σX
2 = (∂f

∂A
σA )

2

+ (∂f
∂B

σB )
2

+ (∂f
∂C

σC )
2

+ ...       Eq. 6 

 

where X = f(A, B, C, …). A, B, C, … are independent random variables. 

Here, the standard error of the precision is calculated as: 

 

€ 

σprecision = ( 1
FPRS − FRRS

)2 ×σStressNet
2 +

(FStressNet − FRRS )
(FPRS − FRRS )

4

2

×σPRS
2 +

(FStressNet − FPRS )
2

(FPRS − FRRS )
4 ×σRRS

2  Eq. 7 

 

We have two validating assays, and we can incorporate the precision rates from these 

assays by calculating the average precision: 

 

€ 

Average Precision =
PrecisionPCA + PrecisionwNAPPA

2
     Eq. 8 

 

The standard error for the average precision is calculated by the delta method as: 

 

€ 

σaverage precision =
σPCA
2

4
+
σwNAPPA
2

4
        Eq. 9 

 

Using this framework, we estimate the precision of our Y2H assay to be 95.3

€ 

±4.7%. 

 

Calculating confidence scores for interactions 

Using the random forest algorithm (Breiman, 2001), we integrate results from Y2H, PCA, and 

wNAPPA and calculated confidence scores for interactions. Random forest is an ensemble 
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classifier that constructs multiple decision trees by stochastic discrimination (Kleinberg, 1996) 

and predicts a final class based on a weighted combination of the output class of each decision 

tree. It is considered to be a robust and accurate classifier for noisy datasets (Breiman, 2001). We 

evaluated the performance of our classifier by five-fold cross validation on our reference set 

(union of PRS and RRS) and obtained moderately good performance (AUC = 0.64). 

 

Determination of orthologs between S. pombe and S. cerevisiae 

We use the list of orthologs provided by PomBase (Wood et al., 2012). The genome of S. 

cerevisiae underwent a duplication event (Kellis et al., 2004). Thus, many S. pombe genes have 

two corresponding S. cerevisiae orthologous genes. Moreover, in a number of cases, the same S. 

cerevisiae gene has multiple S. pombe orthologs. Thus, the mapping considered for the study is 

“many-to-many”. 

 

Estimation of the conservation of interactions 

To estimate the conservation of protein-protein interactions between S. pombe and S. cerevisiae, 

we used a Bayesian framework that incorporates the precision and sensitivity of our Y2H assay: 

 

€ 

Pr(Det) = Pr(Det |Cons+) × Pr(Cons+) + Pr(Det |Cons−) × Pr(Cons−)   Eq. 10 

 

where Pr(Cons+) corresponds to the conservation of protein-protein interactions between S. 

cerevisiae and S. pombe. The best estimator for Pr(Det) (the probability of detecting a S. 

cerevisiae interaction among proteins pairs that are orthologous to an interacting protein pair in 

StressNet) is Fdet, the fraction of the 235 StressNet interactions in S. pombe with corresponding 
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Y2H-detected interactions in S. cerevisiae (35/235). Pr(Det|Cons+) and Pr(Det|Cons-) are 

estimated by FPRS and FRRS, the fractions of PRS and RRS interactions detected by our Y2H 

assay (20/54 and 0/43, respectively). By definition: 

 

 

€ 

Pr(Cons+) =1 − Pr(Cons−)        Eq. 11 

 

We can simplify the earlier equation to obtain an expression for Pr(Cons+): 

 

€ 

Pr(Cons+) =
Pr(Det) − Pr(Det |Cons−)

Pr(Det |Cons+) − Pr(Det |Cons−)
     Eq. 12 

 

To estimate the error for the conservation percentage, we used the standard delta method as 

described earlier. The standard deviation of Cons+ is given by: 

 

σCons+=
(FPRS − FRRS )

2σ Fdet
2 + (Fdet − FRRS )

2σ FPRS
2 + (Fdet − FPRS )

2σ FRRS
2 )

(FPRS − FRRS )
4   Eq. 13 

  

Using the Y2H data, we calculated a conservation of 36.3 ± 2.9% interactions. 

 

Another approach for measuring the conservation is to calculate fraction of S. cerevisiae 

interactions conserved in S. pombe. We mapped all S. pombe proteins in our space to their 

corresponding S. cerevisiae orthologs. We calculated the number of interactions in this S. 

cerevisiae space detected by our Y2H assay. We then mapped all the observed S. cerevisiae 

interactions to their corresponding S. pombe ortholog pairs and calculate the number of pairs 
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detected as interacting in StressNet. We find that for 48/386 (12.4%) S. cerevisiae interactions, 

the corresponding S. pombe ortholog pairs also interact. Using the Bayesian framework 

described above, we calculate the conservation between S. pombe and S. cerevisiae interactions 

as 34.7 ± 2.0%, which is statistically the same (P = 0.708 using a cumulative binomial test) as 

the conservation calculated using the Y2H results (36.3 ± 2.9%).  

 

Interaction conservation and confidence scores 

After supplementing our Y2H experiments with high-quality interactions from the literature, we 

find that 90/235 (38.3%) interactions are conserved in StressNet. The statistical error associated 

with this measurement is related to the sample size and is calculated as the standard error 

[standard error = standard deviation / square root (N), where N is the number of samples]. The 

standard deviation is calculated based on the underlying probability distribution. The 

conservation percentage is obtained by a simple division (90/235 = 38.3%) and the underlying 

probability distribution is binomial (since each interaction can either be conserved or not, it 

corresponds to a Bernoulli event, the ensemble of which is modeled by a binomial distribution).  

The standard error is calculated using the appropriate formula for a binomial distribution: square 

root [p × (1-p) / N] = 3.2%, p = fraction of interactions that are conserved (90/235) and N = 

sample size (235)]. 

To test whether interactions with higher confidence scores were more likely to be conserved, we 

divided all StressNet interactions into two groups. The first group comprises interactions with 

confidence scores in the lower two quartiles and the second group comprises interactions with 

confidence scores in the upper two quartiles. We then compared the conservation for these two 

groups. We find that there is no significant difference (P = 0.37 using a two-sided Fisher exact 
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test) in conservation rate between the two groups. This validates that the observed conservation 

rate is robust and not correlated with the confidence score associated with each interaction.  

 

Evolutionary rates of genes and protein interactions  

The evolutionary rate of genes is commonly measured in terms of the ratio of asynchronous 

nucleotide substitutions per asynchronous site to synchronous substitutions per synchronous site 

or dN/dS. This quantifies the selective evolutionary pressure on certain protein-coding genes to 

diverge faster, as opposed to others that may almost remain unchanged across species. To 

calculate the dN/dS values for all S. pombe genes, used two sequenced species in the 

Schizosaccharomyces genus – S. cryophilus and S. octosporus. To determine orthology 

relationships, we used BLAST-x with default parameters on all S. pombe genes. The top BLAST 

hit for each S. pombe gene against the indexed database of proteins for each of the two species 

was designated to be an ortholog, provided the E-value of the hit was < 0.05. Although the E-

value cutoff is relatively high, it ensures that no potential pairs are missed. For pairs that have 

been incorrectly estimated to be orthologs, there is a correction step in downstream calculations 

that will return a dN/dS value of NaN (not a number), because of too high divergence. For all 

orthologous pairs, the Nei-Gojobori algorithm, which uses the Jukes-Cantor substitution model, 

was used to calculate dN/dS values.  

 

Conservation of interactions and sequence similarity 

Sequence similarity between S. pombe ORFs and their S. cerevisiae orthologs was measured by 

performing pairwise sequence alignment between all known ortholog pairs using the Needle 

program in the EMBOSS suite (Rice et al., 2000). It uses the Needleman-Wunsch alignment 
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algorithm (Needleman and Wunsch, 1970) to find the optimum alignment of two sequences 

along their entire length. The recommended default parameters – an affine gap penalty model 

(Vingron and Waterman, 1994) with an opening penalty of 10 and an extension penalty of 0.5 

and the BLOSUM62 scoring matrix (Henikoff and Henikoff, 1992) – were used for the 

alignment. Because the lengths of orthologs may be dissimilar, we calculated the overall 

similarity percentage (OPS) with reference to the length of the S. pombe ORFs:  

 

€ 

OPS =
Nst

L _ Spt
        Eq. 14

 

 

where, Nst is the total number of similar residues and L_Spt is the total length of the S. pombe 

ORF.  

We then examined the relationship between the similarity percentage and the percentage 

of conserved interactions. Because the number of interactions varies considerably across 

different groups corresponding to different similarity percentages, we required each group to 

have at least 5 interactions. If any group had less than 5 interactions, it was merged with the next 

(higher) group. This ensured that our results were robust to outlier effects. We found that there 

was an increase in the degree of conservation with an increase in overall sequence similarity. To 

examine if the primary cause of this trend is the similarity of conserved domains, we identified 

domains on ortholog pairs that interact (Finn et al., 2005; Stein et al., 2011). We defined the 

percentage similarity of interacting domains (PSID) as: 

 

€ 

PSID =
Nsi

L _ Spi
        Eq. 15 
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where Nsi is the number of similar residues in interacting domains and L_Spi is the sum of the 

lengths of the interacting domains in S. pombe.  

 

Inferring interaction interfaces from 3did and iPfam  

In this study, we use interacting domains identified by 3did (Stein et al., 2011) and iPfam (Finn 

et al., 2005) to define interaction interface. To verify the reliability of inferring these domain-

domain interactions, we performed three-fold cross-validation for 1,456 interaction pairs that 

have co-crystal structures. Because there are few co-crystal structures for S. pombe, this 

approach allowed us to obtain a meaningful estimate of the quality of the domain-domain 

predictions in these two databases. We split the pairs into three subsets such that two subsets 

were used for training and the third one was the test set. For each interaction pair in the test 

dataset, we scored a successful structural prediction when the predicted domain-domain 

interaction(s) had at least one co-crystal structure in support of it. We repeated the procedure 

thrice with each of the three subsets as the test set. Among the 1,456 PPI pairs, over 90% were 

correctly predicted with corresponding interacting domains, indicating that the predicted 

interaction interfaces used for our calculations were accurate (Wang et al., 2012). 

 

Robustness of differences between sets of conserved and rewired interactions 

To assess the robustness of the differences between sets of conserved and rewired interactions, 

we constructed different sets of conserved and rewired interactions corresponding to different 

confidence levels. 
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We constructed two sets of conserved interactions at different confidence levels – 

Conserved_HQ and Conserved_All. Conserved_HQ comprises only those interactions with 

corresponding S. cerevisiae ortholog pairs that tested positive in our Y2H experiments or were 

confirmed by two or more independent orthogonal assays in the literature. Conserved_All 

comprises all interactions in Conserved_HQ and those S. cerevisiae ortholog pairs that have been 

reported as interacting in the literature by only one assay. 

We constructed five sets of rewired interactions at different confidence levels – 

Rewired_ByDefn, Rewired_HQ, Rewired_LC, Rewired_All_DiffLocal, and Rewired_All. 

Rewired_ByDefn comprises only those StressNet interactions for which at least one of the 

interacting proteins does not have a S. cerevisiae ortholog and, therefore, no corresponding 

interaction can exist in S. cerevisiae. Thus, these interactions are rewired by definition. 

Rewired_HQ comprises all interactions in Rewired_ByDefn and those interactions for which the 

corresponding S. cerevisiae ortholog pairs have other high-quality interactions but have never 

been reported as interacting in the literature or tested positive in our Y2H experiments, and these 

ortholog pairs are known to have different cellular localizations. Thus, these correspond to S. 

pombe interactions with corresponding budding yeast ortholog pairs that are in principle non-

interacting, because they have different cellular localizations (Jansen et al., 2003; Yu et al., 

2008) and they participate in well-validated interactions with other proteins but have never been 

reported to interact in the literature. Rewired_LC comprises all interactions in Rewired_ByDefn 

and those interactions with corresponding ortholog pairs that have other high-quality interactions 

but have never been reported as interacting in the literature or tested positive in our Y2H 

experiments. Rewired_All_DiffLocal corresponds to all interactions in Rewired_ByDefn and 
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those interactions with corresponding ortholog pairs that have different cellular localizations. 

Rewired_All comprises all interactions that are not in Conserved_All.  

 

Construction of myc-sty1 and HA-snr1 expression clones 

S. pombe sty1 and snr1 genes were PCR amplified using the following primers – sty1-

pNCH1472-Forward, sty1-pNCH1472-Reverse, snr1-pSGP73-Forward, and snr1-pSGP73-

Reverse (Table 7.4). The sty1 PCR product was cloned into a pNCH1472-myc vector using the 

NotI and SalI restriction sites. The snr1 PCR product was cloned into a pSGP73-HA vector using 

the NotI and BglII restriction sites. pNCH1472-myc-sty1 and pSGP73-HA-snr1 were single or 

double transformed into S. pombe KGY553 (ATCC). Transformed yeast was selected on 

Edinburgh minimal medium (EMM)–Ura plates for pNCH1472-myc-sty1, EMM–Leu for 

pSGP73-HA-snr1, and EMM–Ura–Leu for double transformation. 

 

Coimmunoprecipitation and Western blotting 

Transformed yeast (KGY553) containing pNCH1472-myc-sty1 or pSGP73-HA-snr1 or both 

were cultured overnight in 10 mL EMM selection medium. Yeast pellets were washed in 5 mL 

of cold TE buffer before protein extraction. To lyse cells, 1 mL of lysis buffer (50mM Tris-HCl 

pH 7.5, 0.2% Tergitol, 150 mM NaCl, 5 mM EDTA, Complete Protease Inhibitor tablet) and 600 

µL glass beads were added to each tube and mixed in a beater for two rounds of 10 minutes each. 

Protein extracts were centrifuged for 10 minutes at 13,200 rpm at 4°C in an Eppendorf 5415R 

centrifuge.. Then, 500 µL of supernatant was immunoprecipitated overnight using 20 µL of 

EZview™ Red Anti-c-Myc Affinity Gel (Sigma-Aldrich E6654) or EZview™ Red Anti-HA 

Affinity Gel (Sigma-Aldrich E6779). The next morning, beads were washed three times using 
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cold lysis buffer before being subjected to SDS-PAGE and Western blotting analysis. Primary 

antibodies used in our analysis were anti-c-Myc (Santa Cruz sc-789), anti-HA (Roche 12CA5), 

and anti-γ-tubulin (Sigma-Aldrich T5192).  

 

Construction of yeast deletion strains 

The snr1∆ strain was obtained from the Bioneer Schizosaccharomyces pombe Genome-wide 

Deletion Library. The deletion strain was verified by PCR using primers SpEhd3_Up_Fwd and 

Sp_Dn_Rev spanning the 3’ end of snr1 and the region immediately downstream. Primers 

specific for KanMX4 (KanMX4-Fwd and KanMX4-Rev) were used to detect the deletion 

cassette. A PCR-based strategy was used to construct the sty1∆ strain. Briefly, in the first round 

of PCR, primers (PFA6a_Sty1_Fwd and PFA6a_Sty1_Rev) with 20 base pairs (bp) homology to 

the regions upstream and downstream of sty1, respectively, were synthesized for PCR of the 

pFA6a-KanMX6 cassette. Primers with 20 bp homology to the pFA6a-KanMX6 were 

synthesized to PCR 290 bp upstream (Sty1Del-Up_Fwd and Sty1Del-Up_Rev) and 290 bp 

downstream (Sty1Del-Dn_Fwd and Sty1Del-Dn_Rev) of sty1, not including the sty1 gene. The 

three PCR products were stitched together sequentially with a second round of PCR. Stitch PCR 

of the upstream region and pFA6a-KanMX6 and of the downstream region and pFA6a-KanMX6 

were carried out separately. In the third round of PCR, both upstream and downstream stitched 

PCR products were further stitched together to produce a final product of pFA6a-KanMX6 

flanked on the 5’ and 3’ ends by 290 bp that are homologous to the upstream and downstream 

regions of chromosomal sty1 (Sty1Del-Up_Fwd and Sty1Del-Dn_Rev). The final PCR product 

was transformed into S. pombe 972h- canonical wild-type (ATCC). Transformed yeast was 

selected on yeast extract-sucrose (YES) media plates containing 150 mg/L G418. Insertion of the 
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pFA6a-KanMX6 cassette by homologous recombination at the sty1 locus was verified by PCR 

using primers to target the entire cassette (Sty1Del-Up_Fwd and Sty1Del-Dn_Rev) and to target 

a sty1 internal region of 401 bp (Sty1_Fwd and Sty1_Rev). In addition, sty1 and snr1 deletion 

were performed in S. pombe KGY553 (ATCC) wild-type (h- his3-D1 leu1-32 ura4-D18 ade6-

M216) background using a similar PCR strategy. Sequences of primers used for deletion and 

verification of strains in this study are listed in Table 7.4. 

 

Stress Sensitivity Assays  

S. cerevisiae was grown in YEPD and S. pombe was grown in YES medium. All yeast strains 

were initially grown as a starter culture overnight at 30°C. From the starter culture, yeast cells 

were diluted into fresh medium to an initial OD600nm = 0.2. The cultures were grown to mid-log 

phase (OD600nm = 0.7). The S. cerevisiae and S. pombe strains were serially diluted 4-fold in 

sterile water and spotted onto YEPD and YES plates, respectively, containing various stressors. 

Spotted plates were incubated at 30°C and yeast growth was assessed after 3 days. 
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7.6 FIGURE AND TABLE LEGENDS 

Figure  7.1. S. pombe stress-response binary interactome network, StressNet. (A) Functional 

classification of the proteins included in our high-quality high-coverage HT-Y2H screen. (B) 

Network view of the stress-response binary interactome network in S. pombe. (C) Fraction of 

protein pairs in PRS, RRS, and StressNet that tested positive using Y2H, PCA, and wNAPPA. 

Data are shown as measurements + statistical error (SE). (D) Degree distribution of StressNet.  

P(k) is the probability that a protein has a degree = k. 

Figure 7.2. Biological properties of StressNet interactions. (A) Pearson correlation coefficient 

(PCC) distribution of expression profiles of interacting and random protein pairs (dashed line 

corresponds to PCC cutoff above which pairs are considered to be significantly coexpressed; 

inset shows the fraction of significantly coexpressed pairs). (B) PCC distribution of genetic 

interaction profiles of interacting and random protein pairs (dashed line corresponds to PCC 

cutoff above which pairs are considered to be significantly similar; inset shows the fraction of 

pairs with significantly similar interaction profiles). (C) Enrichment of colocalized protein pairs. 

(D) Enrichment of protein pairs sharing similar functions. For each panel, the random set is 

constructed by considering all pairwise combinations of genes or proteins in the corresponding 

space. All P values represent comparisons between StressNet interactions and random pairs 

using a cumulative binomial test. Inset graphs and data in C and D are shown as measurements + 

SE. 

Figure 7.3. Evolutionary analysis of interactions. (A) Schematic of conserved and rewired 

interactions between the two yeast species. S.p., S. pombe; S.c., S. cerevisiae (B) Conservation 

rate (fraction of conserved interactions) in our interactome calculated in two different ways. 

Measured represents the value calculated using a Bayesian framework that incorporates the 
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precision and recall of our assay. Literature represents the value estimated using budding yeast 

interactions reported in the literature. (C) Fraction of conserved interactions involving essential 

and non-essential proteins. The differences in B and C are not significant based on a cumulative 

binomial test. (D) Distribution of the fraction of conserved interactions as a function of overall 

sequence similarity. (E) Distribution of the fraction of conserved interactions as a function of 

sequence similarity of interaction interfaces. For D and E, P values are used to test whether there 

is a significant difference (using a cumulative binomial test) in conservation percentage between 

the groups corresponding to the lowest and highest similarity percentages. R2 (coefficient of 

determination) represents the significance of the correlation between conservation and similarity 

percentages. (F) Distribution of dN/dS [ratio of the number of non-synonymous substitutions per 

non-synonymous site (dN) to the number of synonymous substitutions per synonymous site (dS)] 

as a function of number of rewired interactions. The differences are not significant based on a 

two-sided Kolmogorov-Smirnov test. Data are shown as the measurements + SE. 

Figure 7.4. Functional analysis of conserved and rewired interactions in S. pombe and S. 

cerevisiae. (A) Fraction of globally coexpressed pairs (as measured by PCC) among conserved 

and rewired interactions. (B) Fraction of locally coexpressed pairs (as measured by LES) among 

conserved and rewired interactions (C) Fraction of functionally similar pairs among conserved 

and rewired interactions. For each panel, the random set is constructed by considering all 

pairwise combinations of genes/proteins in the corresponding space. All P values represent 

comparisons between rewired interactions and random pairs using a cumulative binomial test. 

Data are shown as measurements + SE.  

Figure 7.5. Analysis of intact and co-evolved interactions. (A) Schematic of intact and co-

evolved interactions. (B) Fraction of intact and co-evolved interactions in our interactome. Data 
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are shown as measurements + SE. No significant difference detected using a cumulative 

binomial test. (C) The MAPK Sty1 stress response pathway. All undirected lines represent 

interactions detected in our interactome. The black arrow represents transcriptional regulation. 

(D) Sty1-Snr1 interaction validated in S. pombe using co-immunoprecipitation (N = 3 blots). (E) 

Y2H analysis of the ability of Hog1 and Ehd3 to interact and Sty1 and Snr1 to interact (N = 3 

experiments). (F) Sensitivity assays for different deletion strains of S. cerevisiae and S. pombe 

under various stress conditions (N = 3 experiments).  

Table 7.1. StressNet and interaction confidence scores. 

Table 7.2. Positive reference set. 

Table 7.3. Random reference set. 

Table 7.4 Primers used in the study.
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ORF_A ORF_B Gene_A Gene_B Confidence Score
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SPAC1142.06 SPBC4C3.06 GET3 SYP1 0.9338
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SPAC14C4.05C SPAC23A1.02C HEH2 SPAC23A1.02C 0.8804
SPAC14C4.05C SPAC26A3.16 HEH2 DPH1 0.8516
SPAC14C4.05C SPAC4G8.10 HEH2 GOS1 0.9176
SPAC14C4.05C SPAC644.13C HEH2 SPAC644.13C 0.8096
SPAC14C4.05C SPAC688.04C HEH2 GST3 0.8958
SPAC14C4.05C SPAC6F12.04 HEH2 SPAC6F12.04 0.8666
SPAC14C4.05C SPAC824.08 HEH2 GDA1 0.8814
SPAC14C4.05C SPBC119.09C HEH2 SPBC119.09C 0.9179
SPAC14C4.05C SPBC12D12.01 HEH2 SAD1 0.8524
SPAC14C4.05C SPBC146.04 HEH2 SPBC146.04 0.8547
SPAC14C4.05C SPBC365.12C HEH2 ISH1 0.8433
SPAC14C4.05C SPBC428.14 HEH2 SPBC428.14 0.8588
SPAC14C4.05C SPBC582.03 HEH2 CDC13 0.8270
SPAC14C4.05C SPBC646.05C HEH2 ERG9 0.9453
SPAC1565.04C SPBC1D7.05 STE4 BYR2 0.8529
SPAC15A10.03C SPAC644.14C RHP54 RHP51 0.9491
SPAC16A10.05C SPAC589.08C DAD1 DAM1 0.8522
SPAC17A5.10 SPAC17A5.10 SPAC17A5.10 SPAC17A5.10 0.8606
SPAC17A5.10 SPAC328.04 SPAC17A5.10 SPAC328.04 0.7981
SPAC17A5.10 SPAC821.07C SPAC17A5.10 MOC3 0.8522
SPAC17A5.10 SPBC1734.06 SPAC17A5.10 RHP18 0.8606

SPAC17D4.03C SPBC16E9.14C CIS4 ZRG17 0.9403
SPAC17G6.09 SPBC12D12.01 SEC62 SAD1 0.9286

SPAC17G6.14C SPAC17G6.14C UAP56 UAP56 0.9532
SPAC17G6.14C SPCC31H12.03C UAP56 SPCC31H12.03C 0.8791
SPAC17G8.10C SPAC24B11.06C DMA1 STY1 0.8132
SPAC17G8.10C SPAC4H3.11C DMA1 PPC89 0.7932
SPAC17G8.10C SPAC644.14C DMA1 RHP51 0.8958
SPAC17G8.10C SPAC6F12.04 DMA1 SPAC6F12.04 0.8554
SPAC17G8.10C SPBC12D12.01 DMA1 SAD1 0.8149
SPAC17G8.10C SPBC13E7.08C DMA1 SPBC13E7.08C 0.8155
SPAC17G8.10C SPBC29A3.16 DMA1 RRS1 0.8958
SPAC17G8.10C SPBC317.01 DMA1 MBX2 0.8522
SPAC17G8.10C SPBC56F2.07C DMA1 SPBC56F2.07C 0.7932
SPAC17H9.04C SPAC821.07C SPAC17H9.04C MOC3 0.9523
SPAC1805.16C SPAC1805.16C SPAC1805.16C SPAC1805.16C 0.8100
SPAC1834.11C SPAC1834.11C SEC18 SEC18 0.9306
SPAC1834.11C SPAC227.13C SEC18 ISU1 0.9524
SPAC1834.11C SPAC29B12.06C SEC18 RCD1 0.8792
SPAC19A8.07C SPCC757.09C SPAC19A8.07C RNC1 0.8316
SPAC19A8.10 SPBC1734.06 RFP1 RHP18 0.9562
SPAC19A8.10 SPBC3D6.11C RFP1 SLX8 0.9029

Table 7.1: StressNet and interaction confidence scores
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SPAC19D5.01 SPAC24B11.06C PYP2 STY1 0.9328
SPAC19G12.03 SPAC19G12.03 CDA1 CDA1 0.9212
SPAC19G12.04 SPAC19G12.04 SPAC19G12.04 SPAC19G12.04 0.9105
SPAC1D4.11C SPBC1685.01 LKH1 PMP1 0.8591
SPAC1D4.13 SPAC31G5.09C BYR1 SPK1 0.8097
SPAC1D4.13 SPAC821.07C BYR1 MOC3 0.8958
SPAC1D4.13 SPAC9E9.10C BYR1 CBH1 0.8958
SPAC1D4.13 SPBC14F5.12C BYR1 CBH2 0.8958
SPAC1D4.13 SPBC1D7.05 BYR1 BYR2 0.8958
SPAC1D4.13 SPBC56F2.07C BYR1 SPBC56F2.07C 0.8958
SPAC1F3.02C SPBC543.07 MKH1 PEK1 0.9627
SPAC1F8.07C SPAC1F8.07C SPAC1F8.07C SPAC1F8.07C 0.9464
SPAC20H4.07 SPAC30D11.10 RHP57 RAD22 0.9212
SPAC20H4.08 SPAC2F7.02C SPAC20H4.08 SPAC2F7.02C 0.8370
SPAC222.08C SPAC222.08C SPAC222.08C SPAC222.08C 0.9542
SPAC222.08C SPAC29B12.04 SPAC222.08C SNZ1 0.8376
SPAC222.11 SPAC26H5.09C HEM13 SPAC26H5.09C 0.8100
SPAC227.06 SPAC644.13C SPAC227.06 SPAC644.13C 0.8522
SPAC227.13C SPAC644.14C ISU1 RHP51 0.9501
SPAC227.13C SPBC2D10.11C ISU1 NAP2 0.9406
SPAC227.13C SPCC162.08C ISU1 NUP211 0.9464
SPAC227.18 SPBC725.07 LYS3 PEX5 0.9380
SPAC22F8.08 SPBC26H8.01 SEC24 THI2 0.8587

SPAC23A1.14C SPAC23A1.14C SPAC23A1.14C SPAC23A1.14C 0.8919
SPAC23A1.14C SPBC725.07 SPAC23A1.14C PEX5 0.8853
SPAC23A1.15C SPBC691.02C SEC20 SPBC691.02C 0.9370
SPAC23D3.06C SPBC31E1.05 NUP146 GLE1 0.9328
SPAC24B11.06C SPAC24B11.06C STY1 STY1 0.8027
SPAC24B11.06C SPBC29B5.01 STY1 ATF1 0.7991
SPAC24B11.06C SPBC2D10.09 STY1 SPBC2D10.09 0.7998
SPAC24B11.06C SPBC409.07C STY1 WIS1 0.7657
SPAC24B11.06C SPCC4F11.02 STY1 PTC1 0.8225
SPAC24C9.14 SPAC343.09 OTU1 UBX3 0.8082
SPAC24C9.14 SPBC119.05C OTU1 SPBC119.05C 0.8958

SPAC25G10.08 SPACUNK12.01 SPAC25G10.08 SPACUNK12.01 0.9393
SPAC26A3.16 SPAC26A3.16 DPH1 DPH1 0.9139
SPAC26A3.16 SPAC3C7.12 DPH1 TIP1 0.9475
SPAC26A3.16 SPBC27.01C DPH1 SPBC27.01C 0.8055
SPAC26H5.05 SPBC32F12.08C SPAC26H5.05 DUO1 0.8799

SPAC27D7.03C SPBC19C2.05 MEI2 RAN1 0.9491
SPAC27D7.04 SPAC27D7.04 OMT2 OMT2 0.9328
SPAC27D7.04 SPAC29B12.06C OMT2 RCD1 0.8351
SPAC27D7.04 SPCC962.03C OMT2 CUT15 0.8217
SPAC29B12.04 SPAC29B12.04 SNZ1 SNZ1 0.9088
SPAC29B12.04 SPBC119.04 SNZ1 MEI3 0.8958
SPAC2C4.15C SPAC2C4.15C UBX2 UBX2 0.8626
SPAC2C4.15C SPAC343.09 UBX2 UBX3 0.8290
SPAC30D11.10 SPAC30D11.10 RAD22 RAD22 0.8433
SPAC30D11.10 SPAC3C7.03C RAD22 RHP55 0.9571
SPAC30D11.10 SPAC644.14C RAD22 RHP51 0.8575
SPAC31A2.11C SPAC31A2.11C CUF1 CUF1 0.9380
SPAC328.04 SPAC328.04 SPAC328.04 SPAC328.04 0.9491
SPAC328.04 SPAC3C7.02C SPAC328.04 SPAC3C7.02C 0.9501
SPAC328.04 SPBC582.03 SPAC328.04 CDC13 0.8958
SPAC343.09 SPBC428.05C UBX3 ARG12 0.8958
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SPAC343.11C SPAC637.12C MSC1 MST1 0.9491
SPAC3A12.10 SPBC2D10.11C RPL2001 NAP2 0.8370
SPAC3A12.12 SPAC3C7.02C ATP11 SPAC3C7.02C 0.8958
SPAC3A12.12 SPAC644.14C ATP11 RHP51 0.8155
SPAC3A12.12 SPAC7D4.04 ATP11 TAF1 0.7961
SPAC3A12.12 SPACUNK12.01 ATP11 SPACUNK12.01 0.8606
SPAC3A12.12 SPBC2D10.11C ATP11 NAP2 0.8958
SPAC3C7.02C SPBC1347.10 SPAC3C7.02C CDC23 0.8958
SPAC3C7.02C SPBC32F12.08C SPAC3C7.02C DUO1 0.8958
SPAC3C7.12 SPBC1604.20C TIP1 TEA2 0.9229
SPAC3C7.12 SPCC1223.06 TIP1 TEA1 0.9447

SPAC3H5.05C SPCC830.11C RPS1401 SPCC830.11C 0.9212
SPAC3H5.10 SPBC2D10.11C RPL3202 NAP2 0.9369
SPAC4H3.11C SPBC582.03 PPC89 CDC13 0.8958
SPAC589.08C SPAC8C9.17C DAM1 SPC34 0.9491
SPAC589.08C SPBC32F12.08C DAM1 DUO1 0.9491

SPAC5H10.09C SPAC5H10.09C SPAC5H10.09C SPAC5H10.09C 0.8919
SPAC637.12C SPCC830.05C MST1 EPL1 0.9441
SPAC644.14C SPAC644.14C RHP51 RHP51 0.8861
SPAC644.14C SPBC119.04 RHP51 MEI3 0.8958
SPAC644.14C SPBC1347.10 RHP51 CDC23 0.8341
SPAC644.14C SPBC1921.03C RHP51 MEX67 0.9129
SPAC644.14C SPBC19C2.05 RHP51 RAN1 0.9292
SPAC644.14C SPBC28F2.07 RHP51 SFR1 0.8245
SPAC644.14C SPBC2D10.09 RHP51 SPBC2D10.09 0.8958
SPAC644.14C SPBC317.01 RHP51 MBX2 0.8958
SPAC644.14C SPBC32F12.08C RHP51 DUO1 0.8928
SPAC644.14C SPBC582.03 RHP51 CDC13 0.9501
SPAC688.11 SPAC688.11 END4 END4 0.9399
SPAC7D4.04 SPAC7D4.04 TAF1 TAF1 0.9486
SPAC7D4.04 SPBC1347.10 TAF1 CDC23 0.8556
SPAC7D4.04 SPBC16A3.11 TAF1 ESO1 0.8919
SPAC7D4.04 SPBC1718.07C TAF1 ZFS1 0.8683
SPAC7D4.04 SPBC32F12.08C TAF1 DUO1 0.9161
SPAC7D4.04 SPBC3B8.11 TAF1 RRN6 0.8523
SPAC7D4.04 SPBC839.07 TAF1 IBP1 0.9030
SPAC7D4.04 SPCC364.02C TAF1 BIS1 0.8958
SPAC7D4.04 SPCC4F11.02 TAF1 PTC1 0.9225
SPAC7D4.04 SPCC548.05C TAF1 SPCC548.05C 0.8064
SPAC806.06C SPAC806.06C SPAC806.06C SPAC806.06C 0.9212
SPAC806.07 SPAC806.07 NDK1 NDK1 0.9238
SPAC821.07C SPAC821.07C MOC3 MOC3 0.9362
SPAC821.07C SPAC9E9.10C MOC3 CBH1 0.8958
SPAC821.07C SPBC19C2.05 MOC3 RAN1 0.8341
SPAC821.07C SPBC21B10.05C MOC3 POP3 0.8708
SPAC821.07C SPBC582.03 MOC3 CDC13 0.9478
SPAC890.02C SPCC895.07 ALP7 ALP14 0.8347
SPAC8C9.03 SPAC8C9.03 CGS1 CGS1 0.8376
SPAC8C9.17C SPAC8C9.17C SPC34 SPC34 0.8958
SPAC8E11.11 SPCC16C4.13C SPAC8E11.11 RPL1201 0.8354
SPAC959.10 SPAC959.10 SEN15 SEN15 0.9226
SPAC9E9.10C SPAC9E9.10C CBH1 CBH1 0.8881
SPAC9E9.10C SPBC2D10.09 CBH1 SPBC2D10.09 0.9338
SPAC9G1.02 SPAC9G1.02 WIS4 WIS4 0.8958
SPAC9G1.02 SPBC725.02 WIS4 MPR1 0.9491
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SPAC9G1.02 SPBC887.10 WIS4 MCS4 0.9417
SPACUNK12.01 SPBC19G7.15 SPACUNK12.01 NUP44 0.8958
SPACUNK12.01 SPBC337.13C SPACUNK12.01 GTR1 0.9362
SPACUNK12.01 SPBC839.07 SPACUNK12.01 IBP1 0.8958
SPAP27G11.09C SPAP27G11.09C SPAP27G11.09C SPAP27G11.09C 0.8559

SPAP8A3.06 SPBC146.07 SPAP8A3.06 PRP2 0.8231
SPAPB1E7.12 SPBC2D10.11C RPS602 NAP2 0.9485

SPBC1105.04C SPBC1105.04C CBP1 CBP1 0.9491
SPBC119.04 SPBC19C2.05 MEI3 RAN1 0.9491

SPBC11B10.10C SPBC2D10.11C PHT1 NAP2 0.9476
SPBC11B10.10C SPCC830.11C PHT1 SPCC830.11C 0.8958
SPBC12C2.07C SPBC12C2.07C SPBC12C2.07C SPBC12C2.07C 0.9212
SPBC12D12.01 SPBC12D12.01 SAD1 SAD1 0.9416
SPBC12D12.01 SPBC582.03 SAD1 CDC13 0.8881
SPBC1347.10 SPBC211.04C CDC23 MCM6 0.9478
SPBC1347.10 SPCC162.08C CDC23 NUP211 0.9523

SPBC13G1.03C SPCC338.13 PEX14 COG4 0.9107
SPBC14F5.05C SPBC14F5.05C SAM1 SAM1 0.9088
SPBC14F5.09C SPBC14F5.09C ADE8 ADE8 0.9226
SPBC14F5.12C SPBC14F5.12C CBH2 CBH2 0.9559
SPBC14F5.12C SPBC354.03 CBH2 SWD3 0.8732
SPBC16E9.01C SPBC26H8.06 PHP4 GRX4 0.9491
SPBC1706.01 SPCC1223.06 TEA4 TEA1 0.8692
SPBC1734.06 SPBC1734.06 RHP18 RHP18 0.9340

SPBC1773.05C SPBC1773.05C TMS1 TMS1 0.9427
SPBC211.02C SPCC364.02C CWF3 BIS1 0.9429
SPBC215.14C SPBC651.05C VPS20 DOT2 0.8522
SPBC215.15 SPBC8D2.20C SEC13 SEC31 0.7981

SPBC21C3.10C SPBC21C3.10C SPBC21C3.10C SPBC21C3.10C 0.9229
SPBC23E6.10C SPBC23E6.10C SPBC23E6.10C SPBC23E6.10C 0.9572
SPBC25H2.09 SPCC4F11.02 SPBC25H2.09 PTC1 0.8958
SPBC26H8.01 SPBC26H8.01 THI2 THI2 0.9427
SPBC28F2.01C SPBC28F2.01C SPBC28F2.01C SPBC28F2.01C 0.8438
SPBC29A3.16 SPCC4F11.02 RRS1 PTC1 0.8958
SPBC2D10.09 SPBC725.04 SPBC2D10.09 SPBC725.04 0.8648
SPBC2D10.11C SPBC2D10.11C NAP2 NAP2 0.9017
SPBC2D10.11C SPBC32F12.08C NAP2 DUO1 0.8958
SPBC2D10.11C SPBC582.03 NAP2 CDC13 0.8867
SPBC2D10.11C SPCC1672.07 NAP2 SPCC1672.07 0.8649
SPBC2D10.11C SPCC663.04 NAP2 RPL39 0.9075
SPBC30D10.05C SPBC30D10.05C SPBC30D10.05C SPBC30D10.05C 0.9108

SPBC317.01 SPBC32F12.08C MBX2 DUO1 0.8958
SPBC317.01 SPBC354.03 MBX2 SWD3 0.9488

SPBC31F10.11C SPCC1739.11C CWF4 CDC11 0.9372
SPBC32F12.08C SPCC162.08C DUO1 NUP211 0.8370
SPBC32H8.12C SPBC32H8.12C ACT1 ACT1 0.9462

SPBC342.05 SPBC582.03 CRB2 CDC13 0.9464
SPBC342.05 SPCC4F11.02 CRB2 PTC1 0.9406
SPBC354.03 SPBC685.09 SWD3 ORC2 0.9399

SPBC3E7.02C SPBC3E7.02C HSP16 HSP16 0.9471
SPBC3E7.02C SPBC543.07 HSP16 PEK1 0.8958
SPBC3F6.03 SPBC3F6.03 TRR1 TRR1 0.9427

SPBC409.07C SPBC725.02 WIS1 MPR1 0.9427
SPBC428.05C SPBC428.05C ARG12 ARG12 0.9212
SPBC56F2.07C SPBC56F2.07C SPBC56F2.07C SPBC56F2.07C 0.8448
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SPBC582.03 SPBC685.09 CDC13 ORC2 0.8567
SPBC582.03 SPCC1739.11C CDC13 CDC11 0.9107
SPBC725.02 SPBC887.10 MPR1 MCS4 0.9491
SPBC725.02 SPCC74.06 MPR1 MAK3 0.9328

SPBC725.13C SPBP4H10.21C PSF2 SLD5 0.8426
SPBC800.03 SPBC800.03 CLR3 CLR3 0.9491
SPBC887.10 SPBC887.10 MCS4 MCS4 0.9429
SPCC1223.06 SPCC895.05 TEA1 FOR3 0.9501
SPCC1322.12C SPCC1322.12C BUB1 BUB1 0.9464
SPCC1322.12C SPCC895.02 BUB1 SPCC895.02 0.9429
SPCC162.08C SPCC364.02C NUP211 BIS1 0.9417
SPCC1739.11C SPCC1739.11C CDC11 CDC11 0.9493

SPCC18.07 SPCC330.13 RPC53 RPC37 0.9244
SPCC24B10.13 SPCC4F11.02 SKB5 PTC1 0.9212
SPCC330.05C SPCC330.05C URA4 URA4 0.9088
SPCC4B3.06C SPCC4B3.06C SPCC4B3.06C SPCC4B3.06C 0.9066
SPCC4G3.17 SPCC4G3.17 SPCC4G3.17 SPCC4G3.17 0.9439
SPCC757.09C SPCC757.09C RNC1 RNC1 0.9043
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ORF_A ORF_B Gene_A Gene_B
SPAC926.04C SPCC613.04C HSP90 RNG3
SPAC1D4.13 SPAC31G5.09C BYR1 SPK1

SPAC30D11.10 SPAC30D11.10 RAD22 RAD22
SPAC30D11.10 SPAC644.14C RAD22 RHP51
SPBC1604.20C SPBC1604.20C TEA2 TEA2
SPBC1347.10 SPBC211.04C CDC23 MCM6
SPAC27F1.09C SPBC146.07 PRP10 PRP2
SPBC3E7.02C SPBC3E7.02C HSP16 HSP16
SPAC3C7.12 SPBC1604.20C TIP1 TEA2
SPAC3C7.12 SPCC1223.06 TIP1 TEA1
SPBC244.01C SPCC1739.11C SID4 CDC11
SPBC244.01C SPBC244.01C SID4 SID4
SPBC146.03C SPBP4H10.06C CUT3 CUT14
SPAC9G1.02 SPBC409.07C WIS4 WIS1

SPAC16A10.07C SPBC1778.02 TAZ1 RAP1
SPAC16E8.09 SPAC22H10.07 SCD1 SCD2
SPAC890.02C SPCC895.07 ALP7 ALP14
SPAC644.06C SPCC18B5.03 CDR1 WEE1

SPAC27D7.03C SPAC8E11.02C MEI2 RAD24
SPAC27D7.03C SPBC19C2.05 MEI2 RAN1
SPAC23G3.01 SPBC31F10.09C RPB2 NUT2
SPBC14F5.08 SPBC31F10.09C MED7 NUT2
SPBC1105.06 SPBC31F10.09C PMC4 NUT2
SPBC146.07 SPBC530.14C PRP2 DSK1

SPAC8E11.03C SPAC8E11.03C DMC1 DMC1
SPAC17H9.09C SPBC1D7.05 RAS1 BYR2
SPAC15A10.03C SPAC644.14C RHP54 RHP51
SPAC19A8.12 SPBC3B9.21 DCP2 DCP1

SPAC2E1P5.04C SPAPB1A10.04C CWG2 CWP1
SPAC11E3.08C SPBC651.10 NSE6 NSE5
SPAC24H6.05 SPCC1322.08 CDC25 SRK1

SPBC31F10.09C SPCC1020.04C NUT2 RPB6
SPAC637.07 SPBC646.09C MOE1 INT6

SPAC24B11.06C SPBC29B5.01 STY1 ATF1
SPAC24B11.06C SPBC409.07C STY1 WIS1

SPAP8A3.06 SPBC146.07 SPAP8A3.06 PRP2
SPBC1706.01 SPCC1223.06 TEA4 TEA1
SPAC19D5.01 SPAC24B11.06C PYP2 STY1
SPAC3C7.03C SPAC644.14C RHP55 RHP51
SPAC1F7.04 SPBC12D12.04C RHO1 PCK2

SPAC19A8.10 SPBC3D6.11C RFP1 SLX8
SPAC19A8.10 SPBC1921.02 RFP1 RAD60
SPAC1565.04C SPBC1D7.05 STE4 BYR2
SPAC1142.03C SPAC664.01C SWI2 SWI6
SPAC644.14C SPAC644.14C RHP51 RHP51
SPBC1105.17 SPBC409.04C CNP1 MIS12

Table 7.2: Positive reference set
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SPBC725.02 SPBC887.10 MPR1 MCS4
SPAC20H4.07 SPAC3C7.03C RHP57 RHP55
SPBC1D7.05 SPBC1D7.05 BYR2 BYR2
SPBC216.06C SPBC30D10.04 SWI1 SWI3
SPAC23C11.16 SPCC4B3.15 PLO1 MID1
SPBC1604.14C SPBC1604.14C SHK1 SHK1
SPAC18G6.15 SPAC3C7.12 MAL3 TIP1
SPAC18G6.15 SPAC18G6.15 MAL3 MAL3
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ORF_A ORF_B Gene_A Gene_B
SPCC1020.11C SPCC24B10.13 SPCC1020.11C SKB5
SPAC13F5.05 SPBC4C3.06 SPAC13F5.05 SYP1
SPAC227.18 SPAC959.10 LYS3 SEN15
SPAC222.08C SPAC688.11 SPAC222.08C END4
SPAC20G8.02 SPAC23H3.05C SPAC20G8.02 SWD1
SPBC26H8.06 SPCC1223.06 GRX4 TEA1
SPAC3C7.03C SPBC691.03C RHP55 APL3
SPAC8C9.03 SPBC3B9.09 CGS1 VPS36

SPAC16E8.17C SPBC2D10.04 SPAC16E8.17C SPBC2D10.04
SPAC23C4.06C SPAC343.09 SPAC23C4.06C UBX3
SPAC22A12.10 SPAC22F3.13 SPAC22A12.10 TSC1
SPBC15D4.04 SPCC4G3.13C GPT2 SPCC4G3.13C

SPBC30D10.13C SPBP4H10.06C PDB1 CUT14
SPBC27.01C SPBC31F10.11C SPBC27.01C CWF4

SPAC20H4.08 SPBC29A3.06 SPAC20H4.08 SPBC29A3.06
SPCC18.11C SPCC4B3.06C SDC1 SPCC4B3.06C
SPAC3G9.08 SPBC21H7.07C PNG1 HIS5
SPAC1F7.04 SPBC3B9.01 RHO1 SPBC3B9.01

SPAPYUK71.02 SPBC119.16C SPAPYUK71.02 SPBC119.16C
SPAC23C11.13C SPAC2F7.02C HPT1 SPAC2F7.02C
SPBC146.03C SPBC428.03C CUT3 PHO4
SPCC4F11.02 SPCC63.05 PTC1 SPCC63.05
SPAC1006.02 SPBC409.20C ASA1 PSH3
SPAC17A5.17 SPCC74.06 SPAC17A5.17 MAK3

SPAC14C4.02C SPAC1805.06C SMC5 HEM2
SPAC23C4.06C SPBC119.04 SPAC23C4.06C MEI3
SPBC16A3.11 SPBC28F2.10C ESO1 NGG1
SPAC1486.03C SPBC18E5.05C SPAC1486.03C SPBC18E5.05C
SPAC23D3.11 SPAC821.10C AYR1 SOD1
SPAC16E8.03 SPCC1281.07C GNA1 SPCC1281.07C
SPAC977.15 SPBC543.09 SPAC977.15 SPBC543.09

SPAC31G5.09C SPCP31B10.06 SPK1 MUG190
SPAC30D11.10 SPCC1235.03 RAD22 SPCC1235.03
SPAC1002.17C SPCC1393.14 URG2 TEN1
SPAC17A2.09C SPBC16A3.11 CSX1 ESO1
SPBC13G1.09 SPCC613.10 SPBC13G1.09 QCR2
SPAC3H5.10 SPBC21C3.04C RPL3202 SPBC21C3.04C

SPAC1486.03C SPBC2D10.04 SPAC1486.03C SPBC2D10.04
SPAC6F12.01 SPBC31F10.11C SPAC6F12.01 CWF4
SPBC1711.08 SPBC1815.01 SPBC1711.08 ENO101
SPAC2F7.11 SPAC823.15 NRD1 PPA1

SPAC22E12.08 SPBC3H7.13 RRN10 SPBC3H7.13
SPAC24H6.12C SPAC637.14 UBA3 SPAC637.14

Table 7.3: Random reference set
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Table 7.4: Primers used. 

  

Primer Name Primer Sequences (5'-3') 

Sty1-pNCH1472-

Forward AAGGAAAAAAGCGGCCGCATGGCAGAATTTATTCGTAC 

Sty1-pNCH1472-

Reverse GGTGTCGACGGATTGCAGTTCATTATCCATG 

snr1-pSGP73-Forward AAGGAAAAAAGCGGCCGCATGGGATTGAAATTAAATATC 

snr1-pSGP73-Reverse GGAAGATCTCTATAAATAAGGATAAGTC 

SpEhd3_Up_Fwd CTTAAACAGCCTGATTTTGT 

SpEhd3_Dn_Rev AACTATCGTACGCACAGCTA 

KanMX4-Fwd TTAGCTTGCCTCGTCCCC 

KanMX4-Rev TTTCGACACTGGATGGCG 

Sty1Del-Up_Fwd TACAAGCAAACACCACAATC 

Sty1Del-Up_Rev TTAATTAACCCGGGGATCCGTTTATTCAAACTGGTTACAAAAAGGAC 

PFA6a_Sty1_Fwd TTGTAACCAGTTTGAATAAACGGATCCCCGGGTTAATTAA 

PFA6a_Sty1_Rev AGGCTTTATCTACAACTTGTGAATTCGAGCTCGTTTAAAC 

Sty1Del-Dn_Fwd GTTTAAACGAGCTCGAATTCACAAGTTGTAGATAAAGCCTTAAAAGTTGTTC 

Sty1Del-Dn_Rev ACACCACACTTGAAAATCGC 

Sty1_Fwd AATTGAGACGATTTGCAGTAAAAAC 

Sty1_Rev TAATACGCTTACGAGGATCAAAGAC 

	
  

246



 

	
  

 

 

 

 

 

CHAPTER 8 

A proteome-wide fission yeast interactome reveals network evolution principles from yeasts 

to human 

 

In the following chapter, we expand our study of network evolution to the scale of the proteome. Using a 

proteome-wide fission yeast network, we identify several key mechanisms by which protein interactions 

have evolved from yeasts to human. I am a co-first author of the paper resulting from this chapter (Vo*, 

Das* et al Cell 2016, *=Equal contribution) and led all computational analyses. The first author of the 

paper, Tommy Vo, led the entire experimental effort. Michael Meyer, also a co-first author also made a 

significant contribution to several analyses in the paper.   
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8.1 ABSTRACT 

 

Here, we present FissionNet, a proteome-wide binary protein interactome for S. pombe, 

comprising 2,278 high-quality interactions, of which ~50% were previously not reported in any 

species. FissionNet unravels previously unreported interactions implicated in processes such as 

gene silencing and pre-mRNA splicing. We developed a rigorous network comparison 

framework that accounts for assay sensitivity and specificity, revealing extensive species-

specific network rewiring between fission yeast, budding yeast, and human. Surprisingly, 

although genes are better conserved between the yeasts, S. pombe interactions are significantly 

better conserved in human than in S. cerevisiae. Our framework also reveals that different modes 

of gene duplication influence the extent to which paralogous proteins are functionally 

repurposed. Finally, cross-species interactome mapping demonstrates that coevolution of 

interacting proteins is remarkably prevalent, a result with important implications for studying 

human disease in model organisms. Overall, FissionNet is a valuable resource for understanding 

protein functions and their evolution. 
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8.2 INTRODUCTION 

 

Proteins function primarily by physically interacting with other proteins. Gain or loss of these 

interactions within an organism can modulate protein functions and disease states (Sahni et al., 

2015; Wei et al., 2014). The importance of protein interactions to our understanding of 

fundamental biological processes has spurred the mapping of protein interactome networks for 

several organisms (Arabidopsis Interactome Mapping Consortium, 2011; Giot et al., 2003; 

Rolland et al., 2014; Stelzl et al., 2005; Yu et al., 2008). However, the budding yeast 

Saccharomyces cerevisiae remains the only eukaryotic organism for which a high-coverage 

binary protein interactome has been mapped by systematic interrogation of pairwise 

combinations of all proteins in triplicate (Yu et al., 2008). Here, we present FissionNet, a high-

coverage proteome-wide protein interactome network generated for the fission yeast 

Schizosaccharomyces pombe. 

We compared FissionNet with the only other proteome-scale eukaryotic interactomes 

available (>50% of all protein pairs screened), the interactome networks of S. cerevisiae and 

human. Surprisingly, we find that FissionNet is more similar to the human network than it is to 

that of S. cerevisiae. Furthermore, among interactions involving conserved proteins, there is 

significant species-specific rewiring that is not completely determined by overall sequence 

similarity of orthologs. Instead, we identify several other determinants of interaction 

conservation, including local network constraints and conservation of interacting protein 

domains. Also, by comparing FissionNet with the proteome-wide interactome of S. cerevisiae, 

we are able to ascertain how gene duplication events influence the process by which paralogs 

acquire novel functions. 
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S. pombe is an important model organism for studying fundamental biological processes such 

as RNA splicing, cell cycle regulation, RNA interference (RNAi), and centromeric maintenance, 

which are conserved in metazoans but divergent in budding yeast (Wood et al., 2002). We use 

FissionNet to unveil previously unreported protein associations between gene regulatory factors 

involved in pre-mRNA splicing and silencing of stress-response genes and at pericentromeric 

regions, illustrating the value of our network as a proteome-scale resource to understand 

biological processes. 

 

8.3 RESULTS 

 

A proteome-wide high-coverage binary protein interactome map of S. pombe 

To generate a proteome-wide interactome network for S. pombe, which we call FissionNet, we 

systematically tested all pairwise combinations of proteins encoded by 4,989 S. pombe genes 

(corresponding to >99% of all S. pombe coding genes) using our high-quality yeast two-hybrid 

(Y2H) assay, the same pipeline that we used to generate the budding yeast and human 

interactome networks (Yu et al., 2008; Yu et al., 2011). Extensive screenings in triplicate (a total 

of ~75 million protein pairs) yielded 2,278 interactions between 1,305 proteins, of which 2,130 

(93.5%) have not been previously reported in S. pombe (Figure 8.1A, downloadable from 

hint.yulab.org under S. pombe binary HQ corresponding to PMID: 26771498) (Das and Yu, 

2012). Furthermore, FissionNet contains 1,034 interactions that have not been reported between 

orthologs in any other species before. Of these, 142 interactions involve S. pombe proteins that 

both have human orthologs, but at least one does not have a S. cerevisiae ortholog and, hence, 
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cannot be studied in S. cerevisiae. Thus, FissionNet provides a valuable repertoire of biological 

insights. 

To assess the sensitivity and specificity of our Y2H assay (Yu et al., 2008), we constructed a 

positive reference set (PRS) consisting of 93 well-validated S. pombe interactions from the 

literature and a negative reference set (NRS) of 168 random S. pombe protein pairs that are not 

known to interact in the literature and whose orthologs in other species are also not known to 

interact (Table 8.1, see Materials and Methods). We performed Y2H and protein 

complementation assay (PCA) (Das et al., 2013; Yu et al., 2008) to test what fraction of the PRS, 

NRS, and a random sample of 220 FissionNet interactions can be detected using orthogonal 

methods (Figure 8.1B). We found that the detection rates of the PRS and FissionNet interactions 

are indistinguishable from each other and are significantly higher than that of the NRS (Figure 

8.1B; >15% difference in detection rates between the PRS and NRS for both assays, P<10-3, Z 

test). The robust validation rates of FissionNet interactions by an orthogonal assay confirm the 

high quality of the network. Furthermore, although it has been speculated that Y2H interactions 

involving proteins with many interaction partners (hubs) could be of low quality (Bader et al., 

2004), we found that the validation rate by PCA of hub interactions is the same as the overall 

PCA validation rate for FissionNet (Figure 8.1B; P=0.34, Z test), confirming that FissionNet 

interactions involving hubs are of high quality. 

Biological relationships between interacting proteins in FissionNet were assessed by 

measuring similarities in protein localization, functional annotations, and expression profiles (see 

Materials and Methods). We found that FissionNet interactions are significantly enriched for 

protein pairs that are co-localized, functionally similar, and encoded by coexpressed genes 

relative to random expectation (Figures 8.1C to 8.1E; P<0.05 in all three cases using a KS test 
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for coexpression and Z test for co-localization and functional similarity). Furthermore, the 

enrichment of these interactions for all three categories is similar to that of literature-curated 

binary interactions. These results confirm that FissionNet interactions are functionally relevant in 

vivo. We illustrate this by focusing on two previously unreported interactions: Tas3-Hhp1 and 

Atf1-Cid12, and their potential roles in gene silencing. 

 

FissionNet provides insights into functions of proteins and interactions 

The regulation of centromeric silencing is a well-conserved process in S. pombe and metazoans 

but is divergent from that in S. cerevisiae (Holoch and Moazed, 2015). FissionNet revealed a 

previously unidentified interaction between Tas3 and Hhp1 that we confirmed in vivo (Figures 

8.1F and 8.1G). Tas3 is a component of the RNA-induced transcriptional silencing (RITS) 

complex that mediates gene silencing at S. pombe centromeres (Verdel et al., 2004). Hhp1 is a 

conserved mitotic checkpoint kinase (Johnson et al., 2013) not known to be involved in 

centromeric silencing. In S. pombe cells where the ura4+ reporter gene was inserted at the 

centromere inner repeats of chromosome 1 (imr1R) (Verdel et al., 2004), we find that hhp1Δ 

confers loss of silencing at the centromere, similar to tas3Δ cells (Figure 8.1H). Furthermore, 

levels of endogenous centromeric transcripts are elevated in hhp1Δ cells. Moreover, loss of hhp1 

leads to a decrease in the dimethylation of histone 3 lysine 9 (H3K9me2) at the centromere. 

These results show that Hhp1 is involved in centromeric silencing. 

We also identified a previously unreported interaction between the transcription factor Atf1 

and the polyadenylation polymerase Cid12 (Figure 8.2A). Atf1 mediates transcriptional 

responses to stresses such as high temperatures (Shiozaki and Russell, 1996). At S. pombe 

centromeres, Cid12 is a core component of the RNA-directed RNA-polymerase complex 
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(RDRC) (Motamedi et al., 2004). The RDRC is responsible for generating double-stranded 

RNAs, a key step for Dcr1-dependent centromeric silencing. Interestingly, it has been reported 

that Dcr1 transcriptionally represses the Atf1-target genes hsp16 and hsp104 under non-stressed 

conditions (Woolcock et al., 2012). 

Pull-down experiments confirm the interaction of Atf1 and Cid12 in S. pombe (Figure 8.2B), 

and cid12Δ cells grown under non-stressed conditions show elevated mRNA levels of hsp16 and 

hsp104 as compared to wild-type cells, similar to dcr1Δ cells (Figure 8.2C). Additionally, double 

mutant cid12Δ dcr1Δ cells do not exhibit more drastic transcript accumulation than the single 

deletion mutants, suggesting both genes function in the same pathway (Figure 8.2C). Together, 

these results suggest that Cid12 may be involved in repressing aberrant gene expression of Atf1-

target genes. 

Next, we identified two Cid12 mutations, lysine-213 to isoleucine (Cid12K213I) and aspartic 

acid-260 to valine (Cid12D260V), that disrupt the interaction of Cid12 with Atf1 while preserving 

interactions within the RDRC complex (Figure 8.2D; see Materials and Methods). Exogenous 

expression of wild-type Cid12 in cid12Δ cells enables the transcriptional repression of hsp16 and 

hsp104. In stark contrast, neither mutant can repress gene expression (Figure 8.2E). The mutant 

phenotype is not due to complete loss of protein caused by destabilization because these Cid12 

mutant proteins express in S. pombe cells. Furthermore, in cid12Δ cells where the ura4+ reporter 

gene was inserted at the centromeric imr1R, we find that exogenous expression of either Cid12 

wild-type or mutants equally permit the silencing of the ura4+ reporter (Figure 8.2F). Thus, we 

show that Cid12 has dual roles in regulating the expression of heat-shock genes and the 

centromere. Importantly, the roles can be selectively uncoupled via specific disruption of the 
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Atf1-Cid12 interaction. These examples illustrate the usefulness of FissionNet as a resource to 

uncover areas of biological inquiry. 

 

Comparative network analyses reveal species-specific conservation of interactions 

High-quality protein interactome networks have previously been reported in budding yeast (Yu 

et al., 2008) and human (Rolland et al., 2014). A fundamental question, which can be addressed 

with FissionNet and these networks, is how protein-protein interactions have evolved and 

whether this trend mirrors gene-level evolution. From sequence-based phylogenetic analyses, the 

two yeasts are less divergent from each other than either yeast is from human (Figure 8.3A) 

(Sipiczki, 2000). Additionally, the two yeasts share a greater fraction of protein-coding genes 

than either yeast does with human (Figures 8.4A and 8.4B). 

To calculate interaction conservation, we considered only those interactions that have the 

potential to be conserved, i.e., the two interacting proteins in the reference species have orthologs 

in the other species. However, directly calculating the overlap between sets of interactions 

obtained from the literature would be erroneous because currently available interactomes are 

incomplete and are derived from assays with varied and often unreported false positive and false 

negative rates (Yu et al., 2008). Therefore, to accurately estimate the underlying interaction 

conservation fractions, we required interactomes of all species to be derived from the same 

experimental assay. Since interactomes in budding yeast (Yu et al., 2008) and human (Rolland et 

al., 2014) have been generated using our version of Y2H (Figure 8.4C and 8.4D), we were able 

to compare FissionNet to these interactome networks to measure the observed extent of 

interaction conservation. We developed a rigorous Bayesian framework that incorporates both 

the false positive and false negative rates of our Y2H assay to estimate the underlying interaction 
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conservation fraction from the observed fraction for each pair of species (see Materials and 

Methods). Surprisingly, we find that interaction conservation follows a completely different 

trend from gene conservation (Figures 8.3B, 8.4E, and 8.4F). While only ~40% of S. pombe 

interactions are conserved in S. cerevisiae (of the 1,331 interactions where both proteins have S. 

cerevisiae orthologs and were pairwise retested using our Y2H assay), ~65% of S. pombe 

interactions are conserved in human (of the 652 interactions where both proteins have human 

orthologs and were pairwise retested using our Y2H assay) (Figure 8.3B; P=1.4×10-4, Z test). 

However, when using budding yeast as the reference species, the fraction of conserved 

interactions is as high in fission yeast as in human, comparable to the fraction conserved between 

fission yeast and human (Figure 8.3B). We were able to recapitulate these results using 

interaction datasets generated by other assays (Figures 8.4G to 8.4I; >1.5 fold difference between 

fission yeast interactions conserved in budding yeast and human; P<10-3 in all cases, Z test; see 

Materials and Methods). Thus, our results suggest that a large fraction of interactions are 

conserved between human and S. pombe, but have been lost specifically in the S. cerevisiae 

lineage. 

One possible explanation for these surprising results is that fission yeast proteins that are 

conserved in human could have higher overall sequence similarity than those that are conserved 

in budding yeast. However, we find that proteins in interactions that have the potential to be 

conserved based on orthology are actually slightly more similar in sequence between the two 

yeasts than between S. pombe and human (Figure 8.3C; P<10-5, U test; see Materials and 

Methods). 

Another possibility is that the observed difference primarily arises from interactions 

involving proteins that are conserved between fission yeast and human but lost in budding yeast. 
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To test this, we first focused on proteins that are conserved in all 3 species. We still find that 

~20% more interactions are conserved between S. pombe and human as compared to between the 

two yeasts (Figures 8.3D, 8.4J, and 8.4K; P<0.05, Z test). 

We next explored the conservation of interactions involved in various biological processes as 

defined by the Gene Ontology (GO) (Ashburner et al., 2000). We find wide variation in species-

specific interaction conservation among different processes (Figures 8.3E and 8.4L to 8.4N). We 

show that S. pombe interactions are more conserved in human than in S. cerevisiae for 10 out of 

13 GO Slim categories containing ≥50 interactions (Figure 8.3E; P<0.05, as marked, Z test). The 

same trend is observed with GO Slim categories containing ≥30 or ≥75 interactions (Figures 

8.4L and 8.4N). Some of these categories, such as “chromosomal organization”, “chromosome 

segregation”, and “cell cycle”, are far better conserved in human than in S. cerevisiae, and 

accordingly S. pombe has been used as a model organism for studying these processes (Wood et 

al., 2002). Furthermore, considering GO Slim categories that are well conserved in all three 

species (using cutoffs of ≥50, 100, and 200 genes annotated per species), we find that the 

conservation of S. pombe interactions in these core biological processes is also higher in human 

than in S. cerevisiae (Figures 8.3F and 8.4O; P<10-3, Z test). Overall, these results suggest that 

insights gained from FissionNet may be widely applicable to the study of human biology across 

many important cellular processes. 

We validated three cases of previously unreported functional conservation between fission 

yeast and human proteins. Uncharacterized S. pombe factors Srrm1, SPAC30D11.14C, and 

SPAC1952.06C interact with known splice factors Srp1, Usp104, and Cwf15, respectively 

(Figure 8.3G). Although these proteins have no orthologs in S. cerevisiae, they are orthologous 

to human SRRM1, KIAA0907, and CTNNBL1, respectively. Interestingly, all three human 
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orthologs have been implicated in pre-mRNA splicing or were found to associate with 

spliceosomal factors in human (Blencowe et al., 1998; Hegele et al., 2012; Rolland et al., 2014). 

We used DNA microarrays to measure changes in the splicing of every known intron in the S. 

pombe deletion mutants. The loss of srrm1, SPAC30D11.14C, or SPAC1952.06C results in 

widespread splicing defects, confirming the roles for these proteins in the splicing pathway 

(Figure 8.3H). Moreover, Srrm1 and Srp1 share many gene targets, suggesting that the 

interacting proteins are functionally related (Figure 8.4P). Notably, an analysis of the introns 

whose splicing is affected by srrm1 deletion shows a strong enrichment for introns with weak 

splice site signals (Figure 8.4Q). This is consistent with previous findings that human SRRM1 

affects splice site selection by binding to exonic splicing enhancers and facilitating interactions 

between spliceosomal proteins (Blencowe et al., 1998). These results highlight the utility of 

FissionNet to reveal proteins that are functionally conserved between S. pombe and human. 

 

Determinants of interaction conservation 

Previous studies have shown that increased protein sequence similarity facilitates conservation of 

protein interactions (Matthews et al., 2001). Indeed, we also found a positive correlation between 

sequence similarity of proteins and the fraction of their associated interactions conserved 

between S. pombe and human or S. cerevisiae, demonstrating a proteome-scale dependence of 

protein sequence and function (Figure 8.5A; R2
S.p-H.s=0.948 and R2

S.p-S.c=0.976). However, 

protein interaction conservation is not completely dependent on overall sequence similarity, as 

we find many instances of conserved interactions involving proteins with low overall sequence 

similarity (<40%) with their orthologs (Figure 8.5A; 40% and 13% of 116 interactions in human 

and 196 interactions in S. cerevisiae, respectively). To investigate whether certain highly 
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conserved domains in these proteins play an important role in interaction conservation, we 

inferred protein interaction domains from co-crystal structures of 124 human interactions 

conserved in S. pombe and 293 conserved in S. cerevisiae. We find that the sequence similarity 

within protein interaction domains tends to be higher than in other domains for interactions 

conserved between fission yeast and human (Figure 8.5B; 7.0% higher, P=0.012, U test). For 

instance, the human DR1-DRAP1 heterodimer is orthologous to the protein pair Ncb2 and Dpb3 

in S. pombe. While the overall sequence similarity of the orthologs is quite low (0.58 and 0.51, 

respectively), the interaction is conserved in fission yeast. Moreover, we also find that the 

proteins can interact with the orthologs of their native interaction partner (Figure 8.5C). Based on 

a crystal structure of the human DR1-DRAP1 complex, we were able to determine the 

interaction domains of these proteins (Figure 8.5D) (Kamada et al., 2001). The sequence 

similarity within these domains in DR1 and DRAP1 with their fission yeast orthologs is 0.78 and 

0.80, respectively, while the conservation outside of these interaction domains is only 0.45 and 

0.38. Thus, the basis for this high degree of functional conservation is likely dependent on the 

interaction domains. 

Strikingly, interaction conservation is nearly three times higher between S. pombe and human 

than between the two yeasts at low levels of overall sequence similarity (Figure 8.5A; at <40% 

similarity, P=0.030, Z test). As sequence similarity approaches 100%, interaction conservation 

converges. Therefore, for the vast majority of interactions corresponding to proteins with lower 

sequence similarity to their orthologs, our results strongly suggest that species-specific factors, 

independent of overall protein sequence similarity, influence conservation of protein-protein 

interactions. 
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We then sought to explore other factors that could explain the basis of interaction 

conservation. First, we used ClusterOne (Nepusz et al., 2012) to detect topological protein 

clusters in FissionNet (see Materials and Methods). We find that intra-cluster FissionNet 

interactions are >3 times more likely to be conserved in both budding yeast and human than 

inter-cluster interactions (Figures 8.5E; P<0.05 for both organisms, Z test). Next, we examined 

biological processes defined by GO (Ashburner et al., 2000) and observed the same trend 

(Figures 8.5F; P<10-3 for both organisms, Z test). Using genetic interactions, it has been earlier 

hypothesized that while individual functional modules are conserved, inter-modular connectivity 

could be rewired across evolution (Roguev et al., 2008). In this study, we provide direct 

molecular level evidence on a proteome scale that while interactions within modules tend to be 

conserved across evolution, the cross-talk among these modules changes significantly from one 

species to another. 

 

Gene duplication shapes the functional fate of paralogs 

Gene duplication has long been known as a major source of evolutionary novelty (Arabidopsis 

Interactome Mapping Consortium, 2011). Previous studies have found that a whole-genome 

duplication (WGD) event leads to more functional redundancy between paralogous proteins than 

small-scale duplications (SSDs) (Arabidopsis Interactome Mapping Consortium, 2011; Hakes et 

al., 2007). However, there has been much debate in the literature regarding the relative extents of 

sub-functionalization and neo-functionalization for diverged paralogs (Gibson and Goldberg, 

2009; He and Zhang, 2005). Previous studies on functional evolution of paralogs often used 

interaction datasets from the literature, which, as mentioned earlier, suffer from detection and 

completeness biases (Yu et al., 2008). Until now, it has not been possible to measure the extent 
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of sub-functionalization and neo-functionalization using an unbiased framework because there 

was only one proteome-wide high-coverage binary protein interactome available, that of S. 

cerevisiae. Here, we compare the unbiased proteome-wide networks of S. pombe (FissionNet) 

and S. cerevisiae (CCSB-YI1) (Yu et al., 2008) that we produced using the same Y2H assay to 

analyze these two types of functional divergence. 

We first examined the extent to which interactions in S. pombe and S. cerevisiae tend to be 

conserved across species but not shared between within-species paralogs (sub-functionalized) 

(Figure 8.6A; see Materials and Methods). We find that fission yeast paralog pairs tend to 

undergo more sub-functionalization than budding yeast paralog pairs (Figure 8.6B; difference in 

log odds ratio=2.8 using 1,762 fission yeast paralog pairs and 2,068 budding yeast paralog pairs, 

P<10-5, Z test). Since S. pombe paralogs arose via SSDs, while many S. cerevisiae paralogs arose 

via a WGD event (Kellis et al., 2004), this result suggests that duplication modes could impact 

paralog divergence differently. To test this, we compared paralog pairs generated via the WGD 

event with those generated via SSDs in S. cerevisiae. We find that SSD pairs are more sub-

functionalized than WGD pairs (Figures 8.6C and 8.7A to 8.7D; P<0.05, Z test; see Materials 

and Methods). 

Next, we compared the extent of neo-functionalization (rewiring) (Figure 8.6A) for the two 

species and found that fission yeast paralog pairs tend to undergo more neo-functionalization 

than budding yeast pairs (Figures 8.6D and 8.7E; difference in log odds ratio=0.5 using 1,158 

fission yeast paralog pairs and 1,175 budding yeast paralog pairs, P=0.015, Z test). Furthermore, 

within S. cerevisiae, SSD pairs are significantly more neo-functionalized than WGD pairs 

(Figures 8.6E and 8.7F to 8.7I; P<0.05, Z test). 
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In a WGD, the entire genome is duplicated almost at once. Soon afterward, a vast majority of 

the duplicates are purged while only a few are retained (Kellis et al., 2004). However, the 

duplicates that remain are under strong evolutionary pressure to maintain stoichiometric ratios 

with their interaction partners and, thus, evolve more slowly (Fares et al., 2013). On the other 

hand, SSDs arise sporadically and are under less pressure to maintain stoichiometric ratios (Fares 

et al., 2013), which explains why they can undergo greater functional divergence. This increased 

pressure on WGD genes to maintain stoichiometry is illustrated by their propensity to be 

enriched in protein complexes compared to SSD genes (Hakes et al., 2007). Using 408 high-

quality literature-curated complexes from CYC2008 (Pu et al., 2009), we observed the same 

enrichment. Moreover, we find that the enrichment increases with the size of the complex, 

further supporting the notion that stoichiometric constraint influences the fate of WGD genes 

(Figure 8.7J). 

Since WGD pairs are more functionally redundant than SSD pairs, these genes tend to be 

non-essential (Guan et al., 2007). It has also been shown that double deletions of these WGD 

pairs lead to a higher synthetic lethality rate than SSD pairs (Guan et al., 2007). Using a genome-

scale genetic interaction map (Costanzo et al., 2010), we confirmed that deletion of WGD pairs 

is more likely to lead to synthetic lethality (Figure 8.6F; >6 fold difference in the fraction of 

synthetically lethal pairs, P<10-10, Z test). Moreover, when we further stratify both groups of 

paralogs into pairs that are known to share interactors and pairs that have not been reported to 

share interactors, double deletions of the former are more likely to cause synthetic lethality than 

double deletions of the latter (Figure 8.6F; ~1.5 fold difference between the 2 sets for both SSD 

and WGD pairs, P<0.05 for both SSD and WGD pairs, Z test). This shows that paralog pairs that 
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share interactors are more likely to be functionally redundant, regardless of whether they arose 

via SSD or WGD. 

There have been conflicting reports in the literature regarding coexpression patterns of SSD 

and WGD pairs (Conant and Wolfe, 2006; Guan et al., 2007). Using a compendium of genome-

wide expression datasets for S. cerevisiae genes (Yu et al., 2008), we found no significant 

difference in coexpression patterns of these pairs (Figure 8.7K). However, we find that SSD and 

WGD paralog pairs that share interactors are significantly more likely to be coexpressed than 

pairs that are not known to share interactors (Figures 8.6G, 8.7L, and 8.7M; >10% more 

coexpressed for paralogs that are known to share interactors, P<0.02 in both cases, Z test; see 

Materials and Methods). The tendency to be coexpressed among SSD pairs and WGD pairs that 

share interactors is the same. Furthermore, among pairs that are not known to share interactors, 

WGD pairs tend to be more coexpressed than SSD pairs (Figures 8.6G, 8.7L, and 8.7M; >10% 

more coexpressed for WGD paralogs compared to SSD paralogs, P<0.02 in all cases, Z test). 

These results show that for both duplication modes, because paralog pairs that are known to 

share interactors tend to be functionally redundant, the regulation of their gene expression also 

tends to be retained. Only for paralog pairs that are not known to share interactors is there a 

significant difference in coexpression between SSD and WGD paralogs, suggesting that even 

these WGD pairs might still be more functionally redundant than SSD pairs. It should be noted 

that, due to the incompleteness of current interactomes, paralog pairs could share interactors that 

are currently unreported.  

The availability of proteome-wide interactomes helps dissect functional redundancy and 

divergence, and to some degree the regulation of expression, between paralogs. Overall, our 

results show that a WGD leads to greater functional redundancy while SSDs lead to greater 
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functional diversification by sub-functionalization and neo-functionalization. Moreover, while 

there has been debate in the literature regarding the ubiquity of neo-functionalization (Gibson 

and Goldberg, 2009; He and Zhang, 2005), our results provide accurate measurements of the 

extent of neo-functionalization in the two yeasts. 

 

Coevolution of conserved interactions revealed by cross-species interactome mapping 

To further dissect the nature of conserved interactions, we implemented a cross-species 

interactome mapping approach to determine the prevalence of coevolution. We consider an 

interaction to be coevolved when its proteins have evolved in a coordinated manner to maintain 

the interaction in different species, but have developed incompatible binding interfaces with 

orthologs of their partners. To determine whether conserved interactions are intact or coevolved, 

we test by Y2H whether a protein in one species can interact with the ortholog of its interacting 

partner in another species. If the cross-species interaction can occur, the interaction is intact 

(Figure 8.5C), otherwise it is coevolved between the two species (Figure 8.8A). For example, 

through our cross-species mapping, we discovered that interactions of farnesyltransferase subunit 

Cwp1 with other subunits Cpp1 and Cwg2 have coevolved between S. pombe and S. cerevisiae; 

Cwp1 cannot interact with either Ram1 or Cdc43, S. cerevisiae orthologs of Cpp1 and Cwg2, 

respectively (Figure 8.8B). A previous study showed that expression of Cwp1 cannot 

complement a non-functional mutant of its S. cerevisiae ortholog, Ram2 (Arellano et al., 1998). 

This suggests that Cwp1, although conserved between S. pombe and S. cerevisiae at the gene 

level, has evolved incompatible interaction interfaces with other farnesyltransferase subunits in 

S. cerevisiae and is thus unable to reconstitute an active enzyme complex. 
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It is known that evolution in protein folds is essentially the result of many random mutation 

events (Lockless and Ranganathan, 1999). However, since only a small fraction of changes that 

occur via random drift will satisfy the pairwise constraints necessary for interaction 

conservation, coevolution at the residue level only occurs at a few specific sites and is relatively 

rare (Talavera et al., 2015). Surprisingly we find that coevolution at the interaction level is not 

uncommon: ~33% and 50% of conserved interactions between S. pombe and S. cerevisiae or 

human are coevolved, respectively (Figure 8.8C). This shows that even among conserved 

interactions, only a few key alterations at important binding sites can make the cross-species 

interactions incompatible and the interactions coevolved. Thus, these sites are critical to protein 

binding and subsequent function, and changes at these sites alter protein interactions in a manner 

analogous to a single amino acid change disrupting protein interactions in human disease (Wang 

et al., 2012; Wei et al., 2014). 

Among interactions for which we were able to determine coevolution status, we found that 

the likelihood for an interaction to be intact between S. pombe-S. cerevisiae and S. pombe-human 

is significantly higher than random expectation, while the likelihood for an interaction to be 

intact for one species pair and coevolved for the other species pair is significantly lower (Figure 

8.8D; difference in log odds ratio=1.7, P=0.022, Z test; see Materials and Methods). Thus, these 

intact interactions are likely involved in functions that have remained unchanged among yeasts 

and human throughout evolution. 

We then investigated potential factors that could determine whether an interaction is intact or 

coevolved with respect to another species. We find that overall sequences of proteins involved in 

intact interactions tend to be better conserved across species than sequences of proteins in 

coevolved interactions (Figure 8.8E; 18.0% higher, P=2.1×10-4 for S. pombe-human, U test). 
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High sequence conservation may indicate higher levels of evolutionary constraint existing within 

the local network neighborhood of a given interaction. In fact, we find that proteins involved 

only in intact interactions have twice the number of interactors as compared to proteins involved 

in only coevolved interactions (Figure 8.8F; P=1.1×10-3, U test), suggesting that the added 

evolutionary constraint of maintaining many interacting partners may prevent the coevolution of 

two interacting proteins. Finally, we find that the most highly evolutionarily correlated inter-

protein residue pairs in coevolved interactions are significantly more correlated than top residue 

pairs in intact interactions, suggesting that the maintenance of coevolved interactions involves 

compensatory changes at the amino acid residue level. 

 

Implications of FissionNet for the study of human disease 

We explored the relevance of FissionNet to human disease by considering the context of known 

human disease mutations from HGMD (Stenson et al., 2014) within proteins of the human 

interactome conserved in S. pombe. We find that among human interactions conserved in either 

S. pombe, S. cerevisiae, or both, ~40% of inter-protein pairs of disease mutations cause the same 

disease (Figure 8.9A). This is significantly higher than in human interactions that are not 

reported to be conserved in either yeast or cannot be conserved in either due to lack of protein 

orthologs (Figure 8.9A; P<10-10 for all pairwise comparisons, Z test). Based on these results, 

mutations that break specific protein-protein interactions to cause diseases may be 

overrepresented among interactions conserved in model organisms. From a global network view, 

FissionNet may be highly relevant to the study of human disease based on the large portion of S. 

pombe interactions in which both proteins have human orthologs with known germline disease or 
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somatic cancer-associated mutations (Figure 8.9B; 902 interactions) (Forbes et al., 2015; Stenson 

et al., 2014). 

To demonstrate the plausibility of studying specific human disease mutations using 

FissionNet, we explored whether human disease mutations that disrupt human interactions intact 

in S. pombe also disrupt the corresponding interactions of the fission yeast orthologs. We focused 

on three examples: two Mendelian disease variants (Stenson et al., 2014) that disrupt the human 

NMNAT1-NMNAT1 and PCBD1-PCBD1 interactions and one population variant from the 

Exome Sequencing project (Fu et al., 2013) that disrupts the human SNW1-PPIL1 interaction. 

We find that introducing these human protein residue changes into their S. pombe orthologs also 

disrupts the fission yeast interactions (Figure 8.9C). These results indicate that cross-species 

interactome mapping enables investigation of whether interaction interfaces are altered at the 

molecular level between model organisms and human, a finding with potentially far-reaching 

implications for the study of protein function and human disease. 

Our results regarding gene duplication modes may also be relevant to the study of human 

disease. We find that human WGD paralog pairs have a significantly higher likelihood to be 

involved in the same disease compared to human SSD paralog pairs, in agreement with our 

observation that WGD paralog pairs tend to be functionally redundant (Figure 8.9D; 7 fold 

difference in the fraction of WGD and SSD pairs that cause the same disease, P<10-10, Z test; see 

Materials and Methods). Thus, our findings have direct implications for understanding the 

functional roles of paralogous genes, from yeasts to human. 
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8.4 DISCUSSION 

 

FissionNet provides a wealth of functional information. For example, we find that the Atf1-

Cid12 interaction mediates silencing at Atf1-target genes hsp16 and hsp104. It has been shown 

that the RNAi pathway is involved in silencing of these genes (Woolcock et al., 2012). Hence, it 

is possible that the Atf1-Cid12 interaction is part of an RNAi-dependent regulatory pathway.  

By comparing FissionNet to protein networks in budding yeast and human, we have shown 

that the molecular bases for interaction conservation among orthologous proteins are complex 

and different from those that underlie gene conservation. This is highly relevant to the use of the 

two yeasts as model organisms as there are functions that can be better studied using fission 

yeast. We find that divergence across species is not completely dictated by sequence level 

changes, suggesting that rewiring of interactomes plays an important role in species evolution. 

Additionally, our finding that proteins in a significant fraction of conserved interactions have 

undergone coevolution to maintain interactions has major implications for studies reliant on the 

expression of human proteins in model organisms to identify functional mechanisms (Tardiff et 

al., 2013). 

 

Gene duplications introduce evolutionary innovation and robustness 

Gene duplication is a key process shaping evolution (Figure 8.9E). Our results show that 

paralogs arising via WGD are under strong constraints to maintain stoichiometric ratios with 

their interaction partners and, hence, tend to maintain functional redundancy; on the other hand, 

duplicates arising via SSDs are not under such strong constraints and are more likely to gain 

novel functions (Figure 8.9F). For example, it has previously been reported that duplicate copies 
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of the SRGAP2 gene that arose via segmental duplications (SSD-like events) have gained new 

functions related to brain development specifically in the human lineage (Dennis et al., 2012).  

Gene duplications play an important role in the evolutionary mechanism governing 

speciation as well as the evolution of developmental and morphological complexity in 

vertebrates (Rensing, 2014; Ting et al., 2004). For example, two rounds of WGD have been 

predicted in the origin of jawed vertebrates (Figure 8.9E) (Kasahara, 2007). During speciation, 

while certain key functions need to be evolutionarily preserved, new functions are necessary for 

differential adaptation between species (Ting et al., 2004). Previous studies have identified how 

duplication events can lead to functional changes through gene dosage alterations (Papp et al., 

2003). Our results help establish on a proteomic scale that paralogs arising via WGD are more 

likely to preserve functions and provide robustness for important cellular functions, while 

paralogs arising via SSDs are more likely to contribute to novel functions gained by specific 

species. These findings further our understanding of human biology and disease.  

 

Future directions 

Our analyses focus on budding yeast, fission yeast, and human, as they are the only three 

eukaryotic organisms for which we have proteome-scale interactome networks using our version 

of the Y2H assay (>50% of all protein pairs screened). Once more interactome networks are 

systematically generated in other species, using assays with measured sensitivity and specificity, 

the comparative network analysis framework established in this study can be readily applied to 

further elucidate the extent and nature of the evolution of protein functions across many species. 
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8.5 MATERIALS AND METHODS 

 

Generation of the binary protein-protein interactome map of S. pombe 

FissionNet was generated by triplicate independent screening of ~4,900 S. pombe ORFs. The 

network was validated by testing a representative 220 interacting ORF pairs using PCA assays 

and by determining its functional properties with respect to random pairs and to a literature-

curated network.  

 

Conservation of interactions in S. pombe, S. cerevisiae, and human 

We focused only on interactions that can be conserved, i.e., both proteins involved in the 

interaction have orthologs in the other species We mapped interactions in the reference species to 

their corresponding ortholog pairs in the other species and tested these pairs using our Y2H assay 

in a pairwise fashion. Overall, results from these pairwise retests for all three species (a total of 

~20,000 individual Y2H experiments) are used to obtain the observed conservation fraction. To 

accurately estimate the true conservation fraction, we developed a rigorous Bayesian framework 

that takes into account both the false positive and false negative rates of our Y2H assay, and 

computes the true conservation fraction from the observed fraction. 

 

Positive and negative reference sets 

The PRS and NRS constitute sets of positive and negative controls, respectively. Our PRS 

comprises 93 S. pombe interactions that have been previously reported in 2 or more publications. 

To construct the NRS we choose 168 random protein pairs that have not been reported to interact 

in S. pombe and whose orthologs have not been reported to interact in any species. In a set of 
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random protein pairs, the expected fraction of interactions is ~10-3-10-4 (Riley et al., 2005; Yu et 

al., 2008), the expected number of interactions in a random set of 168 pairs is <10-3×168 (≈0.2). 

Since we exclude pairs that are known to interact, the expected number of interactions in our 

NRS is even lower. 

 

Identification of Cid12 mutants 

In order to select residues integral to the Cid12-Atf1 interaction (i.e., at the interface), but not to 

Cid12-Hrr1 or Cid12-Rdp1, we used Direct Coupling Analysis (Morcos et al., 2011) to 

determine evolutionarily correlated residues across interfaces of these interactions in 28 yeast 

species. Cid12 residues exhibiting the strongest evolutionary couplings with Atf1 residues were 

considered likely to facilitate the Cid12-Atf1 interaction. In order to increase the chances of 

selecting Cid12 residues that are not at the interaction interface of other Cid12 interactions, we 

did not consider any Cid12 residues with strong evolutionary couplings with Hrr1 or Rdp1. Once 

Cid12 residues were chosen, we introduced amino acid mutations designed to strongly alter the 

hydrophobicity of the wild-type amino acid. 

 

Detection rates of the positive (PRS) and negative (NRS) reference sets 

Of the 168 NRS pairs, 78 are between proteins with different sub-cellular localizations and 90 

have the same sub-cellular localization (Matsuyama et al., 2006). However, there is no 

significant difference in the fraction of random pairs detected by either Y2H (0/78 and 0/90 for 

the two sets respectively, P=0.92 using a Z test) or PCA (8/78 and 9/90 for the 2 sets 

respectively, P=0.96 using a Z test). To examine if there are any species-specific biases of our 

Y2H assay, we computed the fractions of PRS and PRS-nonY2H (subset of PRS interactions that 
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have been detected using an assay other than Y2H) interactions in the three different species that 

are recapitulated by our Y2H assay. We find that there is no significant difference between the 

detection rates across species (P>0.35 for all pairs, Z test). Furthermore, we find that there is no 

significant difference in interaction density (i.e., number of interactions detected divided by total 

number of protein pairs screened) for FissionNet and previously reported Y2H interactomes in S. 

cerevisiae (Yu et al., 2008) and human (Rolland et al., 2014) (all interaction densities differ by 

<2 fold). These results confirm that our Y2H assay has no species-specific detection biases. 

 

Calculating the coexpression of genes 

To measure the coexpression of transcripts corresponding to proteins involved in FissionNet 

interactions, we calculated the Pearson Correlation Coefficient (PCC) between their expression 

profiles: expression values measured at different time-points in the cell cycle (Rustici et al., 

2004). We also calculated the PCC between expression profiles of transcripts corresponding to 

proteins involved in high-quality S. pombe interactions from literature curation. Finally, we 

defined two different sets of random pairs: (1) all random pairs, (2) random pairs by permuting 

edges between proteins in the network. We first compared the different distributions using a KS 

test. Next, we calculated the fractions of significantly co-expressed interactions, as well as the 

fraction of significantly co-expressed random pairs. We defined significant coexpression as PCC 

≥ a threshold value. When comparing the fractions of interactions or pairs that are significantly 

co-expressed, P-values were calculated using a Z test. 

 

Other functional properties of FissionNet 
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For other calculations, since small-scale studies could focus on proteins with more complete 

annotations in GO, we restricted our analyses to a set of proteins found in both high-quality 

literature-curated S. pombe interactions (Das and Yu, 2012) and interactions in FissionNet. We 

then defined 3 sets of protein pairs such that both proteins are from the previously defined set: 

(1) high-quality S. pombe interactions from literature curation, (2) S. pombe interactions from 

FissionNet, and (3) all pairs of proteins for which the two proteins have never been reported to 

interact. We performed the following calculations on these 3 sets: 

 

Calculating functional similarity 

 We calculated functional similarity using a total ancestry method that computes all 

pairwise functional similarities in a set of proteins by determining for each given pair of proteins, 

the number of other protein pairs sharing the same set of parent GO terms (Yu et al., 2007). In 

this framework, a pair of proteins that are very dissimilar will share their GO ancestry with a 

large number of other protein pairs. Conversely, a pair of proteins that are very similar will share 

their GO ancestry with only a few or none of the other pairwise combinations of proteins in the 

same set. Each similarity score for a pair of proteins was computed as a percentile ranking of 

their total ancestry score among all such scores calculated for all pairwise combinations of 

proteins in the set. We considered the top 1% of protein pairs in this ranking to be functionally 

similar. P-values were calculated using a Z test. 

 

Calculating co-localization 

272



 

	
  

 To calculate the co-localization of proteins involved in FissionNet interactions, we 

calculated the fraction of protein pairs that have the same sub-cellular localization (Matsuyama 

et al., 2006). P-values were calculated using a Z test. 

 

Conservation of genes 

To analyze the extent to which genes are conserved, we calculated the fraction of genes in the 

reference species i that also have orthologs in the other species j: 

 

where denotes the total number of genes in species i and  the number of genes in species i 

that have corresponding orthologs in species j. Using ortholog annotations from PomBase and 

the Saccharomyces Genome Database, we computed the extent of gene conservation between 

different species pairs for all coding genes (Cherry et al., 2012; McDowall et al., 2015). We also 

used orthologs from InParanoid to compute the extent of gene conservation between different 

species pairs for all coding genes (Sonnhammer and Ostlund, 2015). We observe the same gene 

conservation trends regardless of which database is used for determining orthology, confirming 

the robustness of our result. 

 

Estimating true interaction conservation fractions  

 To calculate the extent to which interactions are conserved, we focused only on those 

interactions that can be conserved, i.e., both proteins involved in the interaction have orthologs in 

the other species. For each pair of organisms, we used both organisms as the reference (six 

comparisons for 3 species). We mapped interactions in the reference species to their 

corresponding ortholog pairs in the other species and tested these pairs using our Y2H assay in a 
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pairwise fashion. We performed pairwise retests because we have shown earlier that not all 

interactions detected by Y2H in a pairwise fashion will be detected in a high-throughput screen 

where individual baits are tested against minipools of ~188 preys (Yu et al., 2008). Overall, 

results from these pairwise retests for all three species (a total of ~20,000 individual Y2H 

experiments) are used to obtain the observed conservation fraction. To accurately estimate the 

true conservation fraction, we used a rigorous Bayesian framework that takes into account both 

the false positive and false negative rates of our Y2H assay, and computes the true conservation 

fraction from the observed fraction. 

 

Using the law of total probability, we can write: 

  (1) 

Here,  denotes the event that an interaction occurs in the reference species, I the event that the 

interaction occurs in another species,  the event that the interaction does not occur in the other 

species and D the event that it is detected in the other species using our Y2H pipeline. The 

observed conservation rate is P(D| ). The true conservation rate is P(I| ). As an interaction in 

the reference species can only be either conserved or rewired in the other species: 

  (2) 

Finally, we can assume conditional independence between D and  given I. In other words, 

given that an interaction occurs in the other species, whether it is Y2H detectable in that species 

and whether its ortholog pair interacts in the reference species are independent of each other. 

Using this: 

  (3) 

Using similar arguments, 
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 (4) 

Substituting equations (2), (3) and (4) in equation (1), we obtain: 

  (5) 

P(D| ) is estimated using the fraction of interactions in the reference species that are detected by 

Y2H to interact in the other species (fd). P(D|I) is estimated using the fraction of a set of true 

interactions (PRS) that we can detect using our Y2H assay (fprs). Finally, P(D| ) is estimated 

using the fraction of a set of random pairs that are unlikely to interact (NRS) that we can detect 

using our Y2H assay (fnrs). So, for any species pairs: 

 (6) 

We can estimate the error using the delta method: 

  (7) 

 

Interaction conservation using assays other than Y2H 

We examined the observed conservation as detected by individual assays rather than using 

overall interactome networks from the literature as these are derived from assays with varied and 

unknown false positive and false negative rates. However, for a single assay with unknown false 

positive and false negative rates, while we will be unable to calculate the true underlying 

conservation fraction, we can still compute the observed conservation fraction. We first 

calculated the fraction of FissionNet interactions whose corresponding S. cerevisiae and human 

ortholog pairs have been shown to interact in co-crystal structures (Das and Yu, 2012). We find 

that that fission yeast interactions are better conserved in human than in budding yeast (>2 fold 

difference in observed conservation, P<10-3). Next, we calculated the fraction of FissionNet 

275



 

	
  

interactions whose corresponding S. cerevisiae and human ortholog pairs have been detected as 

interacting by proteome-scale affinity purification/mass spectrometry experiments (Gavin et al., 

2006; Huttlin et al., 2015; Krogan et al., 2006). Here, we also find that fission yeast interactions 

are better conserved in human than in budding yeast (>1.5 fold difference in observed 

conservation, P<10-3 in both cases).  

 

Identifying proteins conserved in eukaryotes 

To identify proteins that are conserved across eukaryotes, we used clusters of conserved 

eukaryotic orthologous groups of genes (KOGs) as defined by Koonin et al. (Koonin et al., 

2004). These conserved KOGs often comprise genes essential for survival and could be 

considered to approximate “a minimal set of essential eukaryotic genes” (Koonin et al., 2004). 

Each KOG consists of orthologous genes in up to 7 representative eukaryotic species studied by 

the authors. We defined proteins conserved in eukaryotes as those proteins from these KOGs that 

are conserved in ≥5 species. 

 

Interaction conservation in different biological processes 

We used the Gene Ontology (GO) (Ashburner et al., 2000) to categorize interactions based on 

the annotations of the proteins involved. We computed interaction conservation in GO Slim 

Biological Process (BP) categories, a set of 70 terms representative of diverse biological 

processes not specific to any one organism. For all analyses, we considered only genes annotated 

with experimental evidence codes (Ashburner et al., 2000). We considered an interaction to be 

within a category if either of its interacting proteins is annotated in that category or one of its 

children.  
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Sequence conservation of proteins and interactions  

To determine the sequence conservation between two proteins, alignments were produced using 

the pairwise2.align.global function of the BioPython Python module, an implementation of the 

Needleman-Wunsch global alignment algorithm (Needleman and Wunsch, 1970). We used the 

BLOSUM62 scoring matrix, a gap-open penalty of -10 and a gap-extend penalty of -0.5. Two 

amino acids are considered similar if the BLOSUM62 score associated with a substitution 

between the two residues is >0. Unless otherwise specified, sequence similarity is measured with 

sequences of S. pombe proteins serving as the reference. Sequence similarity between an S. 

pombe protein and an ortholog in another species is measured as the fraction of S. pombe 

residues similar to their aligned residues in either S. cerevisiae or human. To calculate the 

sequence similarity of pairs of proteins with orthologous pairs, the individual sequence 

similarities of each protein with their orthologs are averaged. P-values were calculated using a Z 

test. 

 

Interface domain conservation based on co-crystal structures  

We compiled a set of co-crystal structures from the PDB representing human protein-protein 

interactions. For each structure, we calculated interface residues using NACCESS to determine 

surface residues whose solvent accessible surface area was altered by ≥1Å2 between bound and 

unbound states (Hubbard, 1996). To determine interface residues of protein interactions, we took 

the union of interface residues determined from each representative PDB chain pair for which at 

least 5 interface residues were calculated in each chain. In the human interactions, we identified 

Pfam domains at the interaction interface as those domains containing at least 5 interface 
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residues. All domains not meeting this criterion are considered 'Other' as we don't know if they 

facilitate the interaction or not. We then aligned the full human protein sequences in each 

interaction to their orthologs in S. pombe and S. cerevisiae using the alignment method 

mentioned previously. Here, we used the human sequences as the reference and only calculated 

sequence similarity within the portions of the alignment in the human domain regions. P-values 

were calculated using a U test. 

 

ClusterOne 

 We performed clustering with ClusterONE (Nepusz et al., 2012). ClusterONE finds 

overlapping functional modules and is specifically tuned for clustering biological networks. We 

used ClusterONE with parameters s=3 (minimum cluster size) and d=0.5 (minimum cluster 

density) and found 193 clusters in our network. Since proteins can belong to multiple clusters, 

we defined an intra-cluster interaction as any interaction for which there is a cluster that contains 

both proteins and an inter-cluster interaction as any interaction for which both proteins belong to 

clusters, but there is no cluster that contains both proteins. Intra-cluster and inter-cluster 

conservations were calculated using the fraction of interactions within and across clusters that 

are detected as conserved using our Y2H assay, transformed via the Bayesian framework 

described above to obtain the true conservation fractions. P-values were calculated using a Z test. 

 

Distribution of intact and coevolved interactions across species 

We computed the log-odds ratios for 3 scenarios: an interaction is intact in both species pairs (S. 

pombe-S. cerevisiae and S. pombe-human), an interaction is coevolved in both species pairs, an 

interaction is intact in one species pair but coevolved in the other: 
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where, p1 is the observed fraction of interactions in each category and p2 the expected fraction of 

interactions in each category. The expected fraction is calculated assuming independence 

between the events of being intact/coevolved in each species pair. Standard error was calculated 

using the delta method: 

 
P-values were calculated using a Z test. 

 

Sub-functionalization and neo-functionalization 

We obtained a set of 3,853 fission yeast paralog pairs and 6,846 budding yeast paralog pairs 

from Ensembl Biomart (Kinsella et al., 2011). For budding yeast, WGD paralogs were defined 

based on annotations from Kellis et al. (Kellis et al., 2004), and the rest were considered to be 

SSD paralogs.  

 To measure the extent of sub-functionalization, we calculated the fraction of interactions 

that are conserved but not shared among paralog pairs. We normalized this by the fraction of 

conserved but not shared interactions among all pairs of proteins that do not have a paralog. The 

fraction of conserved and not shared interactions is equal to 1 – the fraction of conserved and 

shared interactions. To calculate the fraction of conserved and shared interactions, we first 

constructed a set of high-quality interactions from the literature that are conserved. If we use the 

literature to ascertain how many of these interactions are shared, the fraction will be inaccurate 

as literature-curated interactomes are incomplete and suffer from detection rate biases. To 
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circumvent this, we first calculated the fraction of conserved interactions that were detected as 

shared using our Y2H assay. We then used our previously developed framework to calculate the 

actual number of shared interactions: 

 

where fobs is the detected fraction of shared pairs using our Y2H assay and fshared is the actual 

fraction of shared pairs (Yu et al., 2008). Precision, completeness, assay-sensitivity, and 

sampling-sensitivity for FissionNet are calculated as previously described (Yu et al., 2008). For 

the CCSB-YI1 network, they have been previously reported (Yu et al., 2008). With the 

calculated fractions of conserved and not shared interactions, we computed the following log 

odds ratio for S. pombe and S. cerevisiae: 

 
where p1 is the fraction of interactions that are conserved with its ortholog but not shared among 

paralog pairs and p2 by the fraction of conserved but not shared interactions among all pairs of 

proteins that do not have a paralog. Standard error was calculated using the delta method as 

described earlier. P-values were calculated using a Z test. 

 To measure the extent of neo-functionalization, we calculated the log odds ratio of the 

fractions of rewired interactions involving proteins that have and do not have paralogs. We 

computed the same log odds ratio for S. pombe and S. cerevisiae: 
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where, p3 is the fraction of rewired interactions involving proteins where at least one has a 

paralog and p4 the fraction of rewired interactions between proteins that do not have paralogs. 

The fraction of rewired interactions is defined as 1 – the fraction of conserved interactions. Since 

we are able to calculate the true fraction of conserved interactions using a Bayesian framework 

that accounts for assay false positive and negative rates (please refer to ‘Conservation of 

interactions in S. pombe, S. cerevisiae, and human’), the fraction of rewired interactions used 

for this calculation is also accurate and has taken into account for assay detection rates. Standard 

error was calculated using the delta method as described earlier. P-values were calculated using a 

Z test. 

 Our definition of rewiring is based on the interactions in the orthologous species. 

However, in cases where a paralog pair in the reference species shares an interaction that is 

rewired in the orthologous species, it is possible that the common ancestor may have this 

interaction. It could be argued that if the common ancestor does have the interaction, it is not 

truly neo-functionalized. To account for this (and since the interactome for the common ancestor 

is unknown), we constructed a set of interactions involving at least one protein that has a paralog, 

and the interactor of the paralog has only degree one (only one interaction), i.e., by definition 

that interactor cannot be shared between paralogs in the reference species. Even for this set, we 

find that S. pombe paralog pairs are significantly more neo-functionalized than S. cerevisiae 

paralog pairs, confirming the robustness of our results.  

 

Correcting for divergence times, sequence evolution rates and sequence identities 

 We obtained JTT-corrected divergence times for paralog pairs from Fares et al. (Fares et 

al., 2013). To ensure that the observed differences between SSD and WGD paralog pairs are not 
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due to differences in divergence times, we selected only those SSD and WGD pairs whose 

divergence times are between the 10th and the 90th percentile of the WGD divergence time 

distribution. The rationale here is to use the WGD distribution as a reference (we remove the top 

and the bottom 10 percentiles to eliminate outliers) and sample SSD paralog pairs that are only 

from this divergence time window. 

 We used Ka to calculate sequence evolution rates. Ka (not Ks or Ka / Ks) is an appropriate 

choice to correct for sequence evolution rate because synonymous substitutions between WGD 

pairs are essentially saturated (Byrne and Wolfe, 2007). As mentioned earlier, to ensure that the 

observed differences between SSD and WGD paralog pairs are not due to differences in 

sequence evolution rates, we selected only those SSD and WGD pairs whose sequence evolution 

rate are between the 10th and the 90th percentile of the WGD Ka distribution.  

 We obtained paralog sequence identities from Ensembl BioMart. Here too, as earlier, to 

ensure that the observed differences between SSD and WGD paralog pairs are not due to 

differences in sequence identity, we selected only those SSD and WGD pairs whose identities 

are between the 10th and the 90th percentile of the WGD sequence identity distribution. Since 

sequence identity depends both on divergence time and sequence evolution rates, correcting for 

sequence identity simultaneously corrects for both covariates. 

 

Functional properties of S. cerevisiae SSD and WGD pairs 

 To calculate the fraction of SSD and WGD pairs in complexes, we used high-quality 

literature curated complexes from CYC2008 (Pu et al., 2009). We computed the fractions of 

proteins from SGD and WGD pairs that are in all CYC2008 complexes, complexes with ≥10 

proteins, and complexes with ≥20 proteins. P-values were calculated using a Z test. 
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 To calculate the fraction of SSD and WGD pairs that involve non-essential genes but lead 

to synthetic lethality when both genes are deleted, we used genome-scale double knockout 

phenotype data (Costanzo et al., 2010). We considered a double deletion to lead to synthetic 

lethality if the genetic interaction score (ε) is strongly negative, i.e., passes a stringent cutoff as 

defined by the authors at http://drygin.ccbr.utoronto.ca/~costanzo2009/ where ε<-0.12 and 

P<0.05. We considered a paralog pair to “share interactors” if both proteins had at least 2 

interactors and they shared >50% of their interactors. “Other” paralog pairs are defined as those 

pairs that are not known to have any shared interactors based on the literature. P-values were 

calculated using a Z test. 

 To calculate the fraction of SSD and WGD pairs that are coexpressed, we used a 

normalized expression dataset constructed as described in Yu et al. (Yu et al., 2008). Paralog 

pairs that “share interactors” and “other” paralog pairs are defined as described above. We 

defined significant coexpression as PCC ≥a threshold value. To ensure that our conclusions are 

robust to the choice of this threshold, we used three different thresholds: 0.3, 0.4 and 0.5. When 

comparing the fractions of significantly co-expressed pairs, P-values were calculated using a Z 

test. 

 

Calculation involving human SSD and WGD pairs 

A set of human WGD (ohnolog) pairs was obtained from Makino and McLysaght (Makino and 

McLysaght, 2010). A set of human SSD pairs was identified as described in Singh et al. (Singh 

et al., 2014). This study also used the previous set of human WGD pairs (Makino and 

McLysaght, 2010) for their analyses. We calculated the fractions of SSD and WGD pairs 

containing genes that are known to cause the same disease based on HGMD (Stenson et al., 
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2014). Two genes are said to cause the same disease if at least one HGMD mutation on each of 

the two genes is associated with the same disease. 

 

8.6 FIGURE LEGENDS 

 

Figure 8.1. 

A Proteome-wide Binary Protein Interactome Map of S. pombe 

(A) Network representation of FissionNet. Proteins are color-grouped based on PomBase GO 

slim categories. The number of FissionNet interactions per group is indicated. (B) Y2H and PCA 

detection rates of the PRS, NRS, FissionNet, and FissionNet hub interactions. (C) Pearson 

correlation coefficient (PCC) distribution of gene expression profiles of interacting and all 

random protein pairs. (D) Enrichment of co-localized protein pairs. (E) Enrichment of protein 

pairs sharing similar functions. (F) Subnetwork of Tas3 and Hhp1 in FissionNet. (G) 

Coimmunoprecipitation of Tas3-myc and Hhp1-HA in vivo. (H) Centromeric silencing assay of 

tas3Δ and hhp1Δ cells. A schematic of the imr1R region with the ura4+ reporter gene is shown. 

WT denotes wild-type. Data are shown as measurements + standard error (SE). * denotes 

significant (P<0.05); n.s. denotes not significant. 

 

Figure 8.2. 

Atf1-Cid12 Interaction Mediates Silencing at Heat-shock Genes 

(A) Subnetwork of Atf1 and Cid12 in FissionNet. (B) Coimmunoprecipitation of Atf1-myc and 

Cid12-HA in vivo. (C) Semi-quantitative real-time PCR (semi qRT-PCR) shows hsp16 and 

hsp104 transcript levels in deletion strains. (D) Y2H confirms Cid12 mutants cannot interact 
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with Atf1, but maintain interactions with Hrr1 and Rdp1. (E) Semi qRT-PCR shows that the 

Cid12 mutants in cid12Δ cells do not restore the repression of hsp16 or hsp104. (F) Centromeric 

silencing assay shows that Cid12 mutants retain centromeric silencing function. -RT, no reverse 

transcriptase. +RT, with reverse transcriptase. Act1+ serves as loading control. WT denotes wild-

type.  

 

Figure 8.3. 

S. pombe Protein Interactions are More Conserved in Human than in S. cerevisiae 

(A) Sequence-based phylogeny dendrogram of S. pombe (S.p.), S. cerevisiae (S.c.), and human 

(H.s.). (B) Interaction conservation between reference-query species. (C) Sequence conservation 

for ortholog pairs that could be conserved between S.p.-S.c. and S.p.-H.s. (D) Interaction 

conservation between reference-query species for proteins that are conserved in all three species. 

(E) Interaction conservation in GO Slim categories with at least 50 interactions. (F) Interaction 

conservation among GO Slim categories that are conserved in all three species. (G) FissionNet 

subnetworks of Srrm1, SPAC30D11.14C, and SPAC1952.06C. (H) Global splicing profiles of 

deletion strains relative to wild-type. Columns represent total mRNA (T), pre-mRNA (P), and 

mature mRNA (M). Data are shown as measurements + SE. * denotes significant (P<0.05); n.s. 

denotes not significant.  

 

Figure 8.4.  

S. pombe Protein Interactions Are More Conserved in Human than S. cerevisiae 

(A and B) Pairwise comparisons of the conservation of all coding genes between reference-query 

species pairs. (A) Orthologs are defined by PomBase (McDowall et al., 2015) and 
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Saccharomyces Genome Database (SGD) (Cherry et al., 2012). (B) Orthologs are defined by 

InParanoid (Sonnhammer and Ostlund, 2015). (C) Y2H detection rates of PRS and 

PRS_nonY2H (subset of PRS interactions that have been detected using an assay other than 

Y2H) interactions in fission yeast, budding yeast, and human. (D) Interaction density, i.e., 

interactions detected out of the total number of proteins pairs screened (log scale) in different 

organisms. (E) Observed interaction conservation between reference-query species pairs. (F) 

Observed interaction conservation between reference-query species pairs for proteins that have 

1:1 orthologs between reference and query species. (G) Observed interaction conservation 

between reference-query species pairs using co-crystal structures for S. cerevisiae and human. 

(H and I) Observed interaction conservation between reference-query species pairs using large-

scale AP/MS datasets for S. cerevisiae and human. For both panels, the human AP/MS dataset 

used is from (Huttlin et al., 2015). (H) The S. cerevisiae AP/MS dataset is from Gavin et al. 

(2006). (I) The S. cerevisiae AP/MS dataset is from Krogan et al. (2006). (J) Observed 

interaction conservation between reference-query species pairs for proteins that have 1:1:1 

orthologs between fission yeast, budding yeast, and human. (K) Observed interaction 

conservation between reference-query species pairs for proteins that are conserved in all 

eukaryotes. (L–N) Observed conservation fractions of S. pombe interactions in S. cerevisiae and 

human in different GO Slim biological process categories with at least (L) 30, (M) 50, and (N) 

75 interactions. (O) Observed interaction conservation among GO Slim categories that are 

conserved in all three species. (P) Overlap of genes whose intron splicing is affected by deletion 

of either Srrm1 or its interaction partner Srp1. Indicated within the diagrams are the number of 

genes affected. (Q) Distribution of log odds scores of affected (intron accumulation of log2 0.5 

or greater in srrm1D versus wild type cells) versus unaffected (intron accumulation of less than 
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log2 0.5 in srrm1D versus wild-type cells). The log odds score for each annotated 50 splice site 

measures the sequence similarity of that site relative to the consensus 50 splice site of each 

intron. Data are shown as measurements + SE. * denotes significant (p < 0.05); n.s. denotes not 

significant. 

 

Figure 8.5. 

Determinants of Interaction Conservation 

(A) Interaction conservation as a function of overall protein sequence similarity. (B) Sequence 

similarity within protein interaction domains and other domains for interactions conserved 

between yeasts and human. (C) Y2H confirms the interactions of human (H.s.) DRAP1-DR1, the 

orthologous S. pombe (S.p.) Dpb3-Ncb2, and the cross-species interactions. (D) Crystal structure 

of human DR1-DRAP1. Boxed region highlights interaction domains. Gray shaded regions 

denote aligned interaction domain sequences. (E) Interaction conservation within and across 

topological clusters. (F) Interaction conservation within and across GO categories. Data are 

shown as measurements + SE. * denotes significant (P<0.05); n.s. denotes not significant. 

Abbreviations are S. pombe (S.p.), S. cerevisiae (S.c.), and human (H.s.).  

 

Figure 8.6. 

Functional Divergence of Interactions Involving Paralogous Proteins 

(A) Schematic representation of sub-functionalization and neo-functionalization. (B-C) Log odds 

ratios of sub-functionalization (B) for S. pombe and S. cerevisiae paralog pairs and (C) for S. 

cerevisiae SSD and WGD paralog pairs after correcting for divergence times. (D-E) Log odds 

ratios of neo-functionalization (D) for S. pombe and S. cerevisiae paralog pairs and (E) for S. 
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cerevisiae SSD and WGD paralog pairs after correcting for divergence times. (F) Fraction of 

synthetic lethal pairs among SSD and WGD paralogs known or not known to share interactors. 

(G) Fraction of coexpressed pairs (PCC>0.4) among SSD and WGD paralogs known or not 

known to share interactors. Data are shown as measurements + SE. * denotes significant 

(P<0.05); n.s. denotes not significant.  

 

Figure 8.7.  

Functional Divergence of Interactions Involving Paralogous Proteins 

 (A–D) Log odds ratio of sub-functionalization for S. cerevisiae SSD and WGD paralog pairs: 

(A) correcting for sequence evolution rates, (B) correcting for sequence identities, (C) without 

correcting for any covariates, and (D) where SSD and WGD pairs are defined using an 

independent dataset (Fares et al., 2013). (E) Log odds ratio of neo-functionalization for S. pombe 

and S. cerevisiae paralog pairs that do not share interactions. (F–I) Log odds ratio of neo-

functionalization for S. cerevisiae SSD and WGD paralog pairs: (F) correcting for sequence 

evolution rates, (G) correcting for sequence identities, (H) without correcting for any covariates, 

and (I) where SSD and WGD pairs are defined using an independent dataset (Fares et al., 2013). 

(J) Enrichment of proteins from WGD paralog pairs compared to proteins from SSD paralog 

pairs in protein complexes of different sizes. (K) Fraction of SSD and WGD paralog pairs whose 

proteins are coexpressed (PCC > 0.4), without separating pairs that are known to share and not 

known to share interactions. (L and M) Fraction of coexpressed pairs at other PCC cutoffs of (L) 

> 0.3 or (M) > 0.5 among SSD and WGD paralogs that are known to share and not known to 

share interactions. Data are shown as measurements + SE. * denotes significant (p < 0.05); n.s. 

denotes not significant. 
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Figure 8.8. 

Intact and Coevolved Interactions 

(A) Schematic representation of conserved protein interactions that are either intact or 

coevolved. (B) Within- and cross-species Y2H detects coevolved interactions. (C) Fraction of 

S.p. interactions that are coevolved with respect to S.c. or human (H.s.). (D) Log odds ratio of co-

occurrence of intact and coevolved interactions between S.p.-S.c. and S.p.-H.s. (E) Overall 

protein sequence similarity of S.p. proteins involved in intact or coevolved interactions. (F) 

Number of interactors for proteins involved in intact or coevolved interactions. Data are shown 

as measurements + SE. * denotes significant (P<0.05); n.s. denotes not significant. 

Figure 8.9. 

FissionNet as a Resource for Studying Human Disease 

(A) Fraction of inter-protein HGMD mutation pairs that cause the same disease in human 

interactions with regard to their conservation status in S. pombe and S. cerevisiae. (B) Largest 

connected subcomponent of FissionNet wherein all proteins have human orthologs with known 

germline disease or somatic cancer-associated mutations. (C) Impact of human disease mutations 

and a population variant on intact interactions between human and fission yeast. (D) Fraction of 

human SSD and WGD paralogs that cause the same disease. (E) The 2R hypothesis predicts two 

recent WGD events leading to the vertebrate lineage. (F) WGD can lead to more functional 

redundancy through targeted gene loss that maintains stoichiometric ratios of protein products. 

SSD leads to more neo-functionalization and sub-functionalization through alterations to initially 

redundant paralogs. Data are shown as measurements + SE. * denotes significant (P<0.05); n.s. 

denotes not significant. 

Table 8.1 Positive and negative reference sets 
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Table 8.1. List of the positive reference set (PRS).
ORF_A ORF_B Y2H_status PCA_status
SPAC1002.06C SPBC1778.02 Nega1ve Nega1ve
SPAC110.03 SPAC22H10.07 Nega1ve Nega1ve
SPAC110.03 SPAC24H6.09 Nega1ve Nega1ve
SPAC110.03 SPBC1289.04C Nega1ve Nega1ve
SPAC110.03 SPBC1604.14C Nega1ve Nega1ve
SPAC13C5.07 SPAC13C5.07 Posi1ve Nega1ve
SPAC13C5.07 SPBC6B1.09C Nega1ve Nega1ve
SPAC1565.06C SPAC222.10C Posi1ve Nega1ve
SPAC1565.06C SPBC21.06C Posi1ve Nega1ve
SPAC16.02C SPBC530.14C Posi1ve Posi1ve
SPAC16A10.06C SPCC5E4.06 Nega1ve Posi1ve
SPAC16A10.07C SPAC16A10.07C Nega1ve Posi1ve
SPAC16A10.07C SPBC1778.02 Nega1ve Nega1ve
SPAC16E8.09 SPAC22H10.07 Posi1ve Nega1ve
SPAC17H9.09C SPBC1D7.05 Nega1ve Posi1ve
SPAC1834.04 SPBC428.08C Nega1ve Posi1ve
SPAC18G6.02C SPBC83.03C Posi1ve Posi1ve
SPAC19A8.12 SPBC3B9.21 Posi1ve Nega1ve
SPAC19D5.01 SPAC24B11.06C Nega1ve Nega1ve
SPAC222.10C SPAC6F6.08C Posi1ve Nega1ve
SPAC22E12.07 SPAC22E12.07 Nega1ve Nega1ve
SPAC22F3.09C SPBC2F12.11C Posi1ve Nega1ve
SPAC22F3.09C SPBC336.12C Posi1ve Nega1ve
SPAC22H10.07 SPBC1604.14C Nega1ve Nega1ve
SPAC23A1.06C SPAC24B11.06C Nega1ve Nega1ve
SPAC23C11.16 SPCC4B3.15 Nega1ve Nega1ve
SPAC23C4.15 SPBC28F2.12 Nega1ve Nega1ve
SPAC23C4.15 SPCC1442.10C Nega1ve Nega1ve
SPAC23C4.18C SPAC6B12.11 Nega1ve Nega1ve
SPAC23G3.01 SPCC1442.10C Nega1ve Nega1ve
SPAC23H3.13C SPBC19C7.03 Nega1ve Nega1ve
SPAC24B11.06C SPBC29B5.01 Nega1ve Posi1ve
SPAC24B11.06C SPBC409.07C Posi1ve Posi1ve
SPAC24B11.11C SPBC428.13C Nega1ve Nega1ve
SPAC24B11.11C SPCC1739.11C Nega1ve Nega1ve
SPAC24H6.05 SPCC1259.13 Nega1ve Nega1ve
SPAC24H6.05 SPCC18B5.11C Nega1ve Nega1ve
SPAC26H5.06 SPAC26H5.06 Nega1ve Nega1ve
SPAC27E2.05 SPBC1734.02C Nega1ve Nega1ve
SPAC27F1.09C SPBC146.07 Nega1ve Nega1ve
SPAC30.03C SPCC736.09C Nega1ve Nega1ve
SPAC30D11.10 SPAC30D11.10 Nega1ve Nega1ve
SPAC30D11.10 SPAC644.14C Posi1ve Nega1ve
SPAC3A12.07 SPCC1442.10C Nega1ve Nega1ve
SPAC3F10.01 SPBC25D12.03C Nega1ve Nega1ve
SPAC637.07 SPBC646.09C Nega1ve Posi1ve
SPAC644.06C SPCC18B5.03 Nega1ve Posi1ve
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SPAC644.14C SPAC644.14C Posi1ve Posi1ve
SPAC664.01C SPAC664.01C Nega1ve Posi1ve
SPAC694.06C SPCC18B5.11C Nega1ve Nega1ve
SPAC6F12.09 SPBC83.03C Nega1ve Posi1ve
SPAC6G9.13C SPBC1778.02 Nega1ve Nega1ve
SPAC8E11.02C SPCC1259.13 Nega1ve Nega1ve
SPAC8E11.03C SPAC8E11.03C Posi1ve Posi1ve
SPAC9E9.08 SPBC216.05 Nega1ve Nega1ve
SPAP8A3.06 SPBC146.07 Posi1ve Nega1ve
SPBC11B10.09 SPBC14C8.07C Nega1ve Nega1ve
SPBC11B10.09 SPBC32F12.09 Nega1ve Posi1ve
SPBC11B10.09 SPCC18B5.03 Nega1ve Posi1ve
SPBC11C11.08 SPBC530.14C Nega1ve Posi1ve
SPBC1289.02C SPBC146.07 Nega1ve Nega1ve
SPBC146.03C SPBP4H10.06C Nega1ve Nega1ve
SPBC146.07 SPBC530.14C Nega1ve Posi1ve
SPBC14C8.12 SPCC1442.10C Nega1ve Nega1ve
SPBC14F5.08 SPBC31F10.04C Nega1ve Posi1ve
SPBC1604.14C SPBC1604.14C Nega1ve Nega1ve
SPBC16D10.09 SPBC1734.02C Nega1ve Nega1ve
SPBC16H5.11C SPBC16H5.11C Nega1ve Nega1ve
SPBC1703.06 SPBC409.05 Nega1ve Nega1ve
SPBC1778.06C SPBC32H8.12C Nega1ve Nega1ve
SPBC1921.02 SPCC18B5.11C Nega1ve Nega1ve
SPBC211.04C SPBC25D12.03C Nega1ve Nega1ve
SPBC216.05 SPCC1259.13 Nega1ve Nega1ve
SPBC216.05 SPCC18B5.11C Nega1ve Nega1ve
SPBC216.06C SPBC30D10.04 Posi1ve Nega1ve
SPBC244.01C SPBC244.01C Posi1ve Nega1ve
SPBC25D12.03C SPBC4.04C Nega1ve Nega1ve
SPBC28F2.07 SPBC409.03 Nega1ve Nega1ve
SPBC28F2.12 SPCC1020.04C Nega1ve Posi1ve
SPBC28F2.12 SPCC1442.10C Posi1ve Nega1ve
SPBC4.04C SPBC776.12C Nega1ve Posi1ve
SPBC409.03 SPBC409.03 Nega1ve Nega1ve
SPBC409.05 SPCC18.04 Nega1ve Posi1ve
SPBC646.14C SPBC685.09 Nega1ve Posi1ve
SPBC6B1.09C SPCC338.08 Nega1ve Nega1ve
SPBC725.02 SPBC887.10 Nega1ve Nega1ve
SPBC776.12C SPCC550.13 Nega1ve Nega1ve
SPCC11E10.08 SPCC613.12C Posi1ve Nega1ve
SPCC1223.06 SPCC1223.06 Nega1ve Nega1ve
SPCC1739.03 SPCC663.12 Nega1ve Nega1ve
SPCC18B5.03 SPCC18B5.11C Nega1ve Nega1ve
SPAC15A10.03C SPAC644.14C Posi1ve Posi1ve
SPBC1706.01 SPCC1223.06 Posi1ve Nega1ve

Table 8.1. List of the negative reference set (NRS).
ORF_A ORF_B Y2H_status PCA_status
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SPAC1002.17C SPAC2F3.09 Nega1ve Nega1ve
SPAC1006.03C SPCC1494.07 Nega1ve Nega1ve
SPAC1142.07C SPAC186.06 Nega1ve Nega1ve
SPAC11D3.01C SPBC11G11.06C Nega1ve Posi1ve
SPAC12B10.06C SPBC800.03 Nega1ve Posi1ve
SPAC13G7.10 SPBC17D1.02 Nega1ve Posi1ve
SPAC1486.08 SPAC1805.06C Nega1ve Nega1ve
SPAC1705.03C SPBC776.08C Nega1ve Nega1ve
SPAC17A2.08C SPCC14G10.01 Nega1ve Nega1ve
SPAC17C9.15C SPBC31F10.02 Nega1ve Nega1ve
SPAC1834.04 SPAC922.05C Nega1ve Nega1ve
SPAC186.07C SPCC70.10 Nega1ve Nega1ve
SPAC18B11.08C SPAPB17E12.07C Nega1ve Nega1ve
SPAC18G6.02C SPAC644.06C Nega1ve Nega1ve
SPAC18G6.13 SPAC1952.01 Nega1ve Nega1ve
SPAC1952.02 SPAC23G3.04 Nega1ve Nega1ve
SPAC1B1.01 SPBC16D10.01C Nega1ve Nega1ve
SPAC1B3.18C SPAC890.05 Nega1ve Nega1ve
SPAC1F7.11C SPCC1840.10 Nega1ve Nega1ve
SPAC1F8.02C SPBC800.02 Nega1ve Nega1ve
SPAC20G8.06 SPCC613.10 Nega1ve Nega1ve
SPAC20G8.07C SPBC19G7.13 Nega1ve Nega1ve
SPAC20H4.01 SPAPB1E7.04C Nega1ve Nega1ve
SPAC227.16C SPBC713.08 Nega1ve Nega1ve
SPAC22A12.08C SPCC1902.02 Nega1ve Nega1ve
SPAC23A1.12C SPAC458.06 Nega1ve Nega1ve
SPAC23C4.07 SPBC660.08 Nega1ve Nega1ve
SPAC23H4.01C SPBC25H2.14 Nega1ve Nega1ve
SPAC26A3.15C SPBC211.09 Nega1ve Posi1ve
SPAC31G5.09C SPCC4G3.06C Nega1ve Nega1ve
SPAC323.02C SPBC685.03 Nega1ve Nega1ve
SPAC3G6.03C SPAC4F10.05C Nega1ve Nega1ve
SPAC3H1.04C SPCC663.14C Nega1ve Nega1ve
SPAC4A8.07C SPAC890.08 Nega1ve Nega1ve
SPAC4D7.13 SPCC965.07C Nega1ve Nega1ve
SPAC56F8.04C SPAC869.10C Nega1ve Nega1ve
SPAC57A10.06 SPBC2D10.04 Nega1ve Nega1ve
SPAC589.11 SPBC409.16C Nega1ve Nega1ve
SPAC5H10.10 SPCP25A2.02C Nega1ve Nega1ve
SPAC688.11 SPCC830.09C Nega1ve Posi1ve
SPAC688.15 SPBP22H7.03 Nega1ve Nega1ve
SPAC806.07 SPCC132.03 Nega1ve Nega1ve
SPAC821.10C SPBC26H8.11C Nega1ve Nega1ve
SPAC821.11 SPBC2D10.04 Nega1ve Nega1ve
SPAC869.03C SPBC1683.03C Nega1ve Nega1ve
SPAC890.06 SPBC609.02 Nega1ve Nega1ve
SPAC8C9.02 SPBPB2B2.01 Nega1ve Nega1ve
SPAC8C9.10C SPBC21H7.02 Nega1ve Nega1ve
SPAC922.04 SPBC25B2.02C Nega1ve Nega1ve
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SPAC9G1.05 SPBC1198.10C Nega1ve Nega1ve
SPAP14E8.04 SPBC25H2.07 Nega1ve Nega1ve
SPAP27G11.03 SPBP35G2.13C Nega1ve Nega1ve
SPAP7G5.02C SPBC1348.01 Nega1ve Nega1ve
SPAP7G5.06 SPBC649.04 Nega1ve Nega1ve
SPBC1105.03C SPBC36B7.04 Nega1ve Nega1ve
SPBC1105.16C SPCC965.10 Nega1ve Nega1ve
SPBC1215.01 SPBC336.04 Nega1ve Nega1ve
SPBC1604.10 SPBC17A3.08 Nega1ve Nega1ve
SPBC1685.01 SPCC74.04 Nega1ve Nega1ve
SPBC16G5.17 SPCC1620.08 Nega1ve Nega1ve
SPBC1709.04C SPCC1223.02 Nega1ve Nega1ve
SPBC17A3.08 SPBC3B8.07C Nega1ve Nega1ve
SPBC25H2.07 SPBC354.04 Nega1ve Posi1ve
SPBC25H2.08C SPBC4C3.02C Nega1ve Nega1ve
SPBC27B12.14 SPBC800.13 Nega1ve Nega1ve
SPBC28E12.03 SPCC550.02C Nega1ve Nega1ve
SPBC2G2.05 SPBC3D6.04C Nega1ve Posi1ve
SPBC32H8.13C SPCC1620.07C Nega1ve Nega1ve
SPBC336.05C SPCC70.10 Nega1ve Nega1ve
SPBC3B8.04C SPBP8B7.20C Nega1ve Nega1ve
SPBC3B8.08 SPCC584.15C Nega1ve Posi1ve
SPBC4C3.06 SPCC297.05 Nega1ve Nega1ve
SPBC947.10 SPCC16C4.12 Nega1ve Nega1ve
SPBP8B7.24C SPCC594.02C Nega1ve Nega1ve
SPBP8B7.25 SPCC2H8.05C Nega1ve Nega1ve
SPCC320.06 SPCPB16A4.06C Nega1ve Nega1ve
SPCC417.05C SPCC4F11.01 Nega1ve Nega1ve
SPCC622.21 SPCP1E11.06 Nega1ve Nega1ve
SPAC1002.03C SPBC409.20C Nega1ve Nega1ve
SPAC1039.08 SPCC417.12 Nega1ve Nega1ve
SPAC1071.02 SPAC24B11.05 Nega1ve Nega1ve
SPAC1071.04C SPAC3A12.06C Nega1ve Nega1ve
SPAC1071.05 SPCC63.06 Nega1ve Nega1ve
SPAC11D3.18C SPAC212.08C Nega1ve Nega1ve
SPAC11G7.06C SPCC11E10.04 Nega1ve Nega1ve
SPAC12G12.05C SPAC23C4.15 Nega1ve Nega1ve
SPAC13C5.01C SPCP1E11.10 Nega1ve Nega1ve
SPAC13C5.05C SPAC17H9.09C Nega1ve Posi1ve
SPAC144.03 SPBC577.05C Nega1ve Nega1ve
SPAC16.01 SPAC4H3.08 Nega1ve Nega1ve
SPAC1783.07C SPAC328.03 Nega1ve Nega1ve
SPAC17D4.01 SPAC1F12.08 Nega1ve Posi1ve
SPAC186.07C SPBC25H2.07 Nega1ve Nega1ve
SPAC18B11.08C SPBC83.12 Nega1ve Nega1ve
SPAC19A8.10 SPBC15D4.10C Nega1ve Nega1ve
SPAC19B12.06C SPAC9G1.07 Nega1ve Nega1ve
SPAC19G12.04 SPBC577.05C Nega1ve Nega1ve
SPAC19G12.05 SPBC19G7.18C Nega1ve Nega1ve
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SPAC1B2.02C SPBC660.08 Nega1ve Nega1ve
SPAC1F7.08 SPBC1734.12C Nega1ve Nega1ve
SPAC1F8.02C SPAPB8E5.03 Nega1ve Nega1ve
SPAC222.07C SPBC8D2.18C Nega1ve Nega1ve
SPAC227.17C SPAC3G6.09C Nega1ve Nega1ve
SPAC22E12.11C SPCC1682.13 Nega1ve Nega1ve
SPAC22G7.10 SPAC8E11.11 Nega1ve Nega1ve
SPAC23C4.11 SPCC645.02 Nega1ve Nega1ve
SPAC23H4.07C SPCC1020.11C Nega1ve Nega1ve
SPAC24B11.04C SPBC1709.04C Nega1ve Posi1ve
SPAC2F3.13C SPBC1677.03C Nega1ve Nega1ve
SPAC2H10.02C SPBC1604.10 Nega1ve Nega1ve
SPAC30.02C SPCC663.09C Nega1ve Nega1ve
SPAC30.03C SPBC691.02C Nega1ve Nega1ve
SPAC31A2.02 SPAPB1E7.10 Nega1ve Nega1ve
SPAC31A2.03 SPAC4G9.17C Nega1ve Nega1ve
SPAC323.06C SPBC685.07C Nega1ve Posi1ve
SPAC323.06C SPCC613.04C Nega1ve Nega1ve
SPAC328.10C SPCC895.09C Nega1ve Nega1ve
SPAC3G6.09C SPBC3B9.03 Nega1ve Nega1ve
SPAC458.04C SPAC694.05C Nega1ve Nega1ve
SPAC4A8.14 SPBC725.03 Nega1ve Nega1ve
SPAC4D7.09 SPBC17G9.08C Nega1ve Nega1ve
SPAC4G8.08 SPBC1604.07 Nega1ve Nega1ve
SPAC521.03 SPAC869.01 Nega1ve Nega1ve
SPAC56E4.03 SPBC17D1.08 Nega1ve Nega1ve
SPAC57A7.05 SPBC16G5.18 Nega1ve Nega1ve
SPAC5D6.06C SPCC285.11 Nega1ve Nega1ve
SPAC607.08C SPBC12D12.03 Nega1ve Posi1ve
SPAC6C3.04 SPBC4.06 Nega1ve Nega1ve
SPAC6C3.09 SPBP23A10.09 Nega1ve Nega1ve
SPAC6F12.13C SPBC1734.15 Nega1ve Posi1ve
SPAC6F6.05 SPBC557.02C Nega1ve Nega1ve
SPAC6G10.08 SPBC29A3.15C Nega1ve Nega1ve
SPAC823.01C SPBC119.15 Nega1ve Nega1ve
SPAC823.12 SPBC8D2.10C Nega1ve Nega1ve
SPAC9.10 SPBC15D4.04 Nega1ve Nega1ve
SPAP27G11.04C SPCC364.05 Nega1ve Nega1ve
SPAP27G11.06C SPBC1734.10C Nega1ve Nega1ve
SPAPB1E7.09 SPBC119.09C Nega1ve Nega1ve
SPBC106.11C SPCC4B3.06C Nega1ve Nega1ve
SPBC1198.07C SPBC25H2.14 Nega1ve Posi1ve
SPBC13A2.03 SPBC2A9.06C Nega1ve Nega1ve
SPBC13G1.01C SPBC17A3.01C Nega1ve Nega1ve
SPBC13G1.01C SPBC725.14 Nega1ve Nega1ve
SPBC15C4.03 SPBC21B10.08C Nega1ve Nega1ve
SPBC15D4.15 SPCC14G10.05 Nega1ve Nega1ve
SPBC1683.07 SPCC1450.12 Nega1ve Nega1ve
SPBC16A3.06 SPCC4F11.02 Nega1ve Nega1ve
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SPBC16G5.06 SPBC342.03 Nega1ve Nega1ve
SPBC16H5.03C SPCC622.19 Nega1ve Nega1ve
SPBC1709.10C SPBC1921.07C Nega1ve Nega1ve
SPBC1709.15C SPCC126.14 Nega1ve Nega1ve
SPBC17A3.03C SPBC4B4.12C Nega1ve Nega1ve
SPBC18H10.20C SPBC19C7.08C Nega1ve Nega1ve
SPBC19C2.02 SPBC29A3.19 Nega1ve Nega1ve
SPBC1A4.02C SPBC3D6.15 Nega1ve Posi1ve
SPBC20F10.06 SPCC970.02 Nega1ve Nega1ve
SPBC21C3.16C SPBC28F2.09 Nega1ve Nega1ve
SPBC23E6.06C SPBC577.08C Nega1ve Nega1ve
SPBC2G5.01 SPBC4F6.16C Nega1ve Nega1ve
SPBC30D10.18C SPBC31F10.04C Nega1ve Nega1ve
SPBC342.03 SPCC24B10.13 Nega1ve Nega1ve
SPBC3H7.05C SPCC1259.10 Nega1ve Nega1ve
SPBC4.02C SPCC1795.08C Nega1ve Nega1ve
SPBC405.07 SPCC132.01C Nega1ve Posi1ve
SPBP19A11.05C SPCP1E11.02 Nega1ve Nega1ve
SPBP8B7.32C SPCC285.04 Nega1ve Nega1ve
SPBPJ758.01 SPCC297.04C Nega1ve Nega1ve
SPCC1682.01 SPCC550.06C Nega1ve Nega1ve
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