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ABSTRACT 

Typhula incarnata (GSM) and Microdochium nivale (PSM) are important psychrophilic 

pathogens of cool-season turfgrasses. Existing field data suggests that K fertilization may affect 

disease severity, warranting additional experimentation under controlled conditions. 

Overwintering carbon metabolism of perennial grasses is known to affect their performance and 

utility. While there is some evidence that plant K status influences winter survival, the 

physiological basis is unclear. The goal of this project was to determine the effect of K 

fertilization on carbon metabolism of overwintering annual bluegrass [Poa annua var. reptans 

(Hauskn) Timm.] and its relationship to psychrophilic pathogen susceptibility. In a greenhouse, 

annual bluegrass was seeded into 30 x 10 cm diam. sand filled columns. Nitrogen (0.5 g m2), K 

(0.5 g m2), and all other plant essential nutrients were applied weekly for 90 d. Following 

establishment, weekly application rates of N and other essential nutrients remained constant, yet 

five different K treatments (0, 0.25, 0.5, 2, 3 g m-2) were imposed for 90 d. Columns were then 

moved to a refrigerated room, maintained under a photosynthetically active radiation flux of 

~300 µmol m-2 s-1, and day/night air temperature incrementally decreased every 7 d over four 

weeks (10/4°C, 4/-2°C, 2/-4°C, -2/-6°C). Plants were then buried under 10 cm of snow and kept 

under darkness at -4°C for 28 d. After thawing at 2°C, eight replicates of each K treatment were 

inoculated with a 5 mm agar disc taken from GSM, PSM, or sterile cultures. Columns were 

incubated at 2°C (40 d) then 4°C (40 d) under periodic misting and evaluated for % necrotic turf 

every 10 d. Survival analysis of days to 50% infection (LI50) was used to quantify disease 

progression. Tissue harvested following each experimental phase was analyzed for nonacid 

cations, nonstructural carbohydrates, and several organic acids using gas chromatography-mass 

spectrometry. The experiment was conducted twice and data was pooled.  

 Potassium treatment significantly affected LI50 in GSM (Pr>χ2 =0.007) but not PSM 

(Pr>χ2 =0.277) inoculated turf. While specific mechanisms remain unclear, several biochemical 

parameters (K, Ca, organic acid content) associated with GSM and PSM severity were impacted 

by K fertilization rate. In contrast to existing literature, nonstructural carbohydrate dynamics 



 

 

were not strongly correlated with disease severity. Disease recovery was significantly slower for 

PSM inoculated turf than GSM inoculated turf. Tissue K content and cation:anion ratios 

increased with K fertilization rate. Overall K fertilization had a minimal impact on non-structural 

carbohydrate dynamics. Tissue organic acid content, particularly malate and citrate, markedly 

increased at greater K fertilization rates. The results of this study suggest that K fertilization 

significantly increases diversion of carbon resources to organic acid synthesis due to 

perturbations in charge and pH homeostasis associated with disparate cation/anion uptake ratios. 

In addition to affecting plant utility, there is a biochemical cost associated with luxury K uptake 

and subsequent organic acid accumulation.  
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1.1 Introduction 

 As social awareness of environmental issues increases, a substantial amount of research 

is being directed towards reducing fertilizer and pesticide applications to agricultural and 

landscape crops while maintaining high productivity. Because potassium (K) does not have the 

same stipulations attached as nitrogen (N) and phosphorus (P) regarding plant performance and 

environmental impact, many turfgrass managers perceive abundant K application as harmless to 

the plant and the environment. Although N and P have the highest potential for negatively 

impacting fresh water and marine ecosystems, gratuitous applications of K fertilizers may be a 

costly, unnecessary, and wasteful allocation of monetary and labor resources. The economic 

burden of K fertilization may become more significant in the future, as potash costs have 

increased by ~300% in the past decade (USDA, 2010). 

 On sand-based turfgrass sites, reference textbooks such as Carrow et al. (2001) suggests 

that annual K requirements can be approximated by following an N:K ratio of 1:1.45 or 1:0.83 

when N is applied at rates of  <167 kg ha-1 yr-1 or between 168 and 342 kg ha-1 yr-1, respectively. 

These annual N application rates are common in highly managed turfgrass systems; accordingly, 

K is applied at a rate of ~150-250 kg ha-1 to as much as 10 ha annually, leading to a total 

application of ~1,500-2,500 kg golf course-1 yr-1. This textbook is regarded as the benchmark of 

turfgrass nutrient management and is utilized extensively in university turfgrass education 

programs. Interestingly, a recent national survey of golf courses (in press) indicates turfgrass 

managers utilize these guidelines. 

 Claims of potassium conferring increased drought, temperature stress, and wear tolerance 

(Shearman and Beard, 2002) are ubiquitous in textbooks (Carrow et al., 2001; Fry and Huang, 

2004) and turfgrass publications, yet these statements are generally vague and poorly referenced. 

In an extensive literature review, Turner and Hummel (1992) examined the role of K in turfgrass 

establishment, cold/heat/wear tolerance, disease incidence, root growth, and color. In all cases 

results were inconsistent, and the specific impact of K on these parameters remains unclear.  
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Of particular interest, are the purported effects of K on conferring increased cold hardiness. 

Although the association between K fertility and winter survival is unclear, there is some 

evidence that abundant K applications to highly managed turfgrasses may actually be 

detrimental, leading to delayed spring greening (Waddington et al., 1972) and enhanced 

susceptibility to psychrophilic fungi (Webster and Ebdon, 2005; Woods et al., 2006). 

Furthermore, Tyler et al. (1981) observed that winter wheat (Triticum aestivum L.) grown in a 

hydroponic culture of 4:1 N:K ratio (0.358 µmol L-1 K) were more cold hardy and developed 

hardiness more rapidly than plants grown in solutions with a N:K ratio of 1:1.25 (1.74 mmol L-1 

K). 

  

1.2 Essential Functions of Potassium 

 Although some of the aforementioned ‘whole plant’ effects of K fertilization are less 

clear, the biochemical role of K in plants is more completely characterized. Potassium is highly 

mobile, is the most abundant ion in the cytoplasm, and is intimately associated with solute 

speciation and osmotic potential of cytosolic and vacuolar components of plant cells (Marschner, 

1995). Specifically within the vacuole, K has mainly a biophysical function by regulating turgor 

(Leigh and Jones, 1984). Under low K conditions Na salts (Wildes and Pitman, 1975), 

carbohydrates (Evans and Sorger, 1966; Wildes and Pitman, 1975), and other solutes may 

accumulate within the vacuole to maintain vacuolar osmotic pressure as vacuolar K quenches 

cytosolic demands. In barley (Hordeum vulgare L.) grown under K limiting conditions, Pitman 

et al. (1968) observed root dry weight concentrations of 6 g kg-1 K and 100 g kg-1 reducing 

sugars. Reducing sugars include, inter alia, glucose and fructose and are characterized as 

reducing agents possessing a carbonyl functional group (aldehyde or ketone) that upon oxidation 

become a carboxyl group (Wade, 1999). As K was supplied to the plants, reducing sugar content 

decreased as tissue K content increased. Similarly, Nowakowski et al. (1974) observed greater 

reducing sugar content associated with reduced tissue K in Italian ryegrass (Lolium multiflorum 

Lam.). Increased reducing sugar content was not observed in K deficient plants grown in high 
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concentrations of Na (Gregory and Baptiste, 1936) or Ca (Janssen and Bartholomew, 1930). 

These results highlight the effect of cation nutrition on the speciation of osmotic pressure 

generating solutes within the vacuole.  

 The ability of plants to maintain vacuolar osmotic pressure and turgor utilizing an array 

of solutes is a brilliant demonstration of their plasticity. Plants able to utilize alternative turgor-

generating solutes have a competitive advantage in K-deficient soils.  Still, K concentrations in 

the cytosol and stroma must be closely regulated to facilitate optimal enzyme activation and 

regulation (Evans and Sorger, 1966; Marschner, 1995). Many K-regulated enzymes require ~50-

100 mmol L-1 cytosolic K for adequate function, far below normal tissue concentrations (Epstein, 

1980). In fact, plants supplied with sufficient K generally accumulate greater tissue K than the 

amount required to support adequate growth and cell maintenance, termed ‘luxury consumption’ 

(Hoagland and Martin, 1933; Wildes and Pitman, 1975).  

 Within the cytoplasm, K has been shown to activate enzymes including those involved in 

glycolysis (Wildes and Pitman, 1975) and partitioning of photosynthetic triose phosphates into 

sucrose or storage carbohydrates (Hawker et al., 1979). Wildes and Pitman (1975) observed 

reduced pyruvate kinase activity in low tissue K (19 µmol g-1 fresh weight) barley seedlings and 

a concomitant increase in reducing sugar content. The activities of starch synthase, 

phosphorylase and ADP-glucose pyrophosphorylase were increased 2–2.5 fold in the presence of 

100 mmol L-1 K (Hawker et al., 1979). These studies highlight the intimate association between 

potassium and enzymatic control of carbohydrate storage and metabolism. Cytoplasmic K is also 

thought to affect protein synthesis (Wyn Jones et al., 1979), photosynthetic efficiency (Demmig 

and Gimmler, 1983), and maintenance of cytosolic pH and membrane potential (Marschner, 

1995). Potassium concentrations within the cytosol and stroma of well-fertilized plants is 

generally ~100-150 mmol L-1 (Leigh and Jones, 1984). These conditions provide the correct 

thermodynamic environment for optimal protein hydration, conformation, and function (Wyn 

Jones and Pollard, 1983). 
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1.3  Potassium Sufficiency Ranges 

 Methods of evaluating soil and plant tissue K sufficiency ranges remain a significant 

point of contention within agricultural literature. Scores of studies have demonstrated the 

impotence of soil testing procedures for estimating plant available K, particularly when 

attempting to apply levels of adequacy to soils with varying mineralogy and non-acid cation 

composition (Dest and Guillard, 2001; Nair, 1996; Woods et al., 2005; Woods et al., 2006). 

Conducting K fertility evaluations in natural soils adds to the variability observed among studies, 

particularly because potassium flux from soil minerals is highly dependant on soil mineralogy, 

organic matter, and water content (Rich, 1968; Sparks, 1987). Furthermore, plant extraction and 

utilization of mineral released K is highly dependent on root metabolism, fresh weight, surface 

area, cation exchange capacity, and length (Mengel, 1980; Mengel and Steffens, 1985). These 

factors can be extremely variable across a turfgrass sward/rootzone, warranting novel protocol 

for evaluating K uptake and sufficiency parameters.  

 Tissue K concentrations vary widely across turfgrass genera, cultivars, and throughout 

the growing season; making sufficiency ranges difficult to ascertain (Waddington and 

Zimmerman, 1972). Furthermore, biomass growth or yield is a common parameter utilized for 

evaluating plant health or response to nutrient applications. Although useful in crops where yield 

is paramount, a fundamentally different approach must be taken in turfgrasses, particularly 

regarding K dynamics. The utility of turfgrass surfaces makes excessive shoot growth 

unfavorable; therefore, a more complete biochemical assessment of plant health should be 

conducted when considering nutrient sufficiency. In a broad sense, ‘sufficiency’ ranges should 

be constructed according to physiologically meaningful tissue nutrient concentrations that 

support optimal photosynthesis, use/storage of photosynthates, and maintenance of cellular 

processes, while maintaining optimal utility.  

 Turfgrass scientists, as well as many agronomist and whole plant physiologists almost 

exclusively report tissue K content on a dry mass basis (KD), with a generalized sufficiency 

range of 15-30 g kg-1 (Carrow et al., 2001) or 10-25 g kg-1 (Jones, 1980) for turfgrasses. This 
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convention may not be appropriate, particularly because K- sensitive cytosolic reactions 

affecting plant growth and metabolism are regulated by cytosolic K concentrations, not a dry 

matter : K relationship (Leigh and Jones, 1984). Therefore, K content on the basis of tissue water 

(KW) seems a more physiologically meaningful parameter (Pitman, 1975). In fact, Leigh and 

Johnston (1983b) (1983a) found that differences in KD of field grown spring barley across K 

treatments were due to varying tissue water content. In well-fertilized plots, barley KW was ~200 

mmol L-1 compared to 50-70 mmol L-1
 in barley grown in plots that had not been fertilized with 

K in over 100 years. These studies also showed that KW is age-independent, whereas KD tends to 

decline with age (Ulrich and Hills, 1967). 

 Other disciplines of plant science have reported KW for ryegrass, barley, and wheat; yet to 

my knowledge Woods (2006) presents the only publicly available document where highly 

managed turfgrass tissue K content is expressed as both KW and KD. In this abstract, the authors 

report creeping bentgrass [Agrostis stolonifera  var. palustris (Huds.) Farw.] tissue KD between 

5-25 g kg-1 with corresponding KW values between 50 and 230 mmol L-1. Furthermore, in 

samples with KD below 15 g kg-1, considered to be deficient on a dry mass basis, KW was often 

greater than 150 mmol L-1, a biochemically sufficient K concentration (Leigh and Jones, 1984; 

Marschner, 1995). Tissue KW levels beyond the broadly defined sufficiency range (>150 mmol 

L-1) may also have inhibitory effects on certain enzymes, including starch synthase (Preusser et 

al., 1981). Clearly turfgrass scientists need to improve methods of reporting and interpreting 

tissue K content. Adequate K is essential for proper plant function; however, levels of 

‘adequacy’ and the potential harmful effects of excessive K fertilization are poorly characterized; 

warranting reassessment of K fertilization strategies in turfgrass systems.  

 Accumulation of polyamines, particularly putrescine is associated with plants grown 

under K-deficient conditions (Aurisano et al., 1993; Reggiani et al., 1993). Synthesis of diamines 

is inhibited by adequate cytosolic K and stimulated by low cytosolic pH; therefore, the divalent 

cation presumably functions as a substitute for K in maintaining cytosolic pH and osmotic 

balance (Marschner, 1995). Reggiani et al.  (1993) noted large differences in putrescine content 



 

  
 

7 

of wheat seedling exposed for 1 hour to exogenous K solutions ranging from 0-60 mmol L-1. 

Investigating the association between putrescine accumulation and tissue K content (KW and KD) 

of plants grown under varying K levels over the course of weeks rather than hours may provide a 

physiologically meaningful approach to characterize K deficiency as putrescine biosynthesis is 

regulated specifically by the activity of K in the cytosol.  

 The confounding responses observed in K fertility studies may be due to methodology. 

Data is included from Woodhouse et al. (1978) (Table 1.1) to demonstrate that adequate tissue 

KD, as identified by Jones (1980) and Carrow et al. (2001), can be achieved by growing perennial 

ryegrass in solution with K concentrations in the µM range.  

 
Table 1.1 Data from Woodhouse et al. (1978). 

    7 DAG†    21 DAG† 
         
  1.3 μM K  100 μM K  1.3 μM K  100 μM K 
         
Dry Matter (mg plant-1)  1.0  1.1  18.7  18.7 
Tissue K (g kg-1)  26  40  41  52 
Tissue K (mmol L-1)‡  85  130  138  175 
Root length (cm plant-1)  2  2  200  180 
Root length : Fresh weight (cm mg-1) 0.3  0.3  2.3  1.8 
K Flux (μg cm-2 d-1)§   47   77   10   13 
† DAG, Days After Germination         
‡ Calculated by author         
§ Root surface area basis                 

 

 Note that at 7 days after germination (DAG), tissue KW of plants grown in 1.3 µM K was 

bordering on deficient (~80 mmol L-1) whereas KD was well within the recognized sufficiency 

range. This further illustrates the impotence of using KD to determine physiological K activity. In 

plants supplied with 100 µM K, KW and KD were within sufficiency ranges and K influx rates 

were greater than those grown in 1.3 µM K, yet root/shoot growth parameters were essentially 

identical between the two treatments. Twenty-one DAG, plant dry matter content was 

independent of solution K concentration, KW and KD for plants grown under both conditions 
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were within sufficiency ranges, and plants grown 100 µM K solution displayed luxury K 

consumption. In agreement with the results of Cherney et al. (2004), root length and root:shoot 

ratios were also slightly elevated in plants grown under the low K conditions. Potassium influx 

rates also decreased dramatically from 7 to 21 DAG and were independent of solution K 

concentration. Interestingly, at 21 DAG, K influx rates on a root surface area basis were similar 

to soil K supply rates (5-25 µg cm-2 d-1) measured on a soil surface area basis from a calcareous 

sand using cation exchange resins (Woods, 2006). 

 

1.4  Storage Carbohydrate Dynamics 

 In general, C3 plants are less efficient than C4 plants in exporting photosynthates from 

mesophyll cells and have developed strategies for storing nonstructural carbohydrates (NSCs) 

(Hull, 1992). The complete fructan biosynthetic pathway is complicated; in summary, sucrose is 

transported from the cytosol to vacuoles where it activates and serves as a substrate for 1-

sucrose:sucrose fructosyltransferase (1-SST, EC 2.4.1.99) (Chatterton et al., 1989), which 

catalyses the transfer of fructose from one sucrose molecule to another, creating 1-kestose (1-

kestotriose, isokestose) (Housley and Pollock, 1985; Pollock, 1984). Fructan-fructan 

fructosyltransferases and/or other fructosyltransferases facilitate fructan polymerization and 

modification in concert with specific fructan exohydrolases (FEH, EC 3.2.1.80) (Housley and 

Daughtry, 1987; Nagaraj et al., 2004; Pavis et al., 2001; Pontis and del Campillo, 1985). Most 

gramineous species synthesize β(2-6) linked fructans with β(2-1) branches (Bancal et al., 1991; 

Pavis et al., 2001). Storage of NSCs in the vacuole prevents cytosolic sucrose from reaching 

concentrations that would inhibit photosynthesis (Housley and Pollock, 1985; Pollock and 

Chatterton, 1988) accordingly, 1-SST activity and fructan accumulation are enhanced under 

conditions that inhibit growth but permit photosynthesis (Pollock, 1984). With the onset of 

darkness, SST activity declines and FEH activity increases, promoting the hydrolysis of fructans 

and transport of mono- disaccharides to the cytosol (Obenland et al., 1991; Wagner and 

Wiemken, 1987; Wagner et al., 1986).  
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 The degree of fructan polymerization varies between cool season grass genera. Perennial 

ryegrass and red fescue (Festuca rubra L.), accumulate fructans that are completely soluble in 

65% EtOH, suggesting that they are short chain polymers consisting of 26 fructose units or 

less(Smith, 1972; Smith and Grotelueschen, 1966). In contrast, fructans extracted from Kentucky 

bluegrass (Poa pratensis L.) are soluble in very dilute EtOH or water fractions, a function of the 

high degree of polymerization of fructose monomers (~260). Fructan polymerization is also 

tissue dependant, with highly polymerized fructan chains being localized more towards stem 

bases than leaf blades or upper internodes (Smith, 1967; Smith, 1972). The tissue/species 

dependence of fructan polymerization suggests that there may be some association between 

fructan chain length, storage location, and the susceptibility of that plant tissue to psychrophilic 

fungi.  

 Nonstructural carbohydrates provide an essential energy reserve for actively growing 

plants, and as mentioned previously, K mediated enzymes play a central role in the metabolism 

and fate of photosynthates. As much as 12-25% of photosynthetic products may be used in root 

respiration (Lambers et al., 1991), with as much as 36% of total ATP consumption going toward 

ion uptake (Marschner, 1995). Potassium uptake is an active process, and K stimulates its own 

transport across the membrane by activating membrane bound ATPases, rapidly enhancing ATP 

consumption at concentrations greater than 1mM (Fisher et al., 1970). Phloem loading of sucrose 

is also impacted by phloem sap K content. Specifically, phloem transport in castor oil plants 

(Ricinus communis L.) grown in a 1 mM K solution was approximately two times that of plants 

grown in a 0.4 mM K solution (Mengel and Haeder, 1977). Although the proposed study would 

not directly evaluate K uptake energy requirements, it is conceivable that the energy 

(photosynthate) use associated with luxury K consumption manifests in diminished NSC storage 

under high K fertility. The inseparable link between K and carbohydrate dynamics highlights the 

importance of evaluating its impacts on the synthesis and storage of NSCs during autumn and 

early winter, a critical period of NSC accumulation that could influence susceptibility to 

psychrophillic fungi infection.  
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1.5 Carbohydrate Dynamics and Psychrophilic Fungi Susceptibility 

 Tronsmo (1986) demonstrated that growth of psychrophilic fungi (Microdochium nivale 

Fr. and Typhula ishikariensis Imai.) is reduced by ~ 50% when cultured in media with a water 

potential of -2 MPa vs. growth at -0.6 MPa. This same study demonstrated a significant decrease 

in leaf water potential of timothy (Phleum pratense L.) and reed canary (Phalaris arundinacea 

L.) grass after ‘hardening’ at 1°C for two weeks. Across species, water potentials of hardened 

plant tissues were reduced by ~75% versus ‘unhardened’ tissue, and were within the range of -

1.21 to  -2.08 MPa. This suggests that accumulating solutes within plant tissues reduces water 

potential during hardening, and may function as a deterrent for psychrophilic fungal infection 

and growth. The intimate association between K fertility and plant tissue osmotic balance, and 

the potential impact on psychrophilic fungi growth warrants tissue water potential analyses in 

our investigation. 

 Turfgrasses grown in northern locales are annually subjected to conditions that favor 

infection by low temperature fungi. Although potentially very destructive, pink snow mold 

(Microdochium nivale Fr.) symptoms and damage tend to develop in swards lacking snow cover 

and can frequently be ameliorated with preventative and curative fungicide applications. 

Turfgrass losses from Typhula blight (Typhula spp.) infection can be very severe, persist for 

weeks or months into the growing/golfing season, and recur in the same areas annually. Typhula 

blight develops exclusively under snow cover, and for this reason can only be treated 

preventatively with fall applications of fungicides that may loose efficacy through the winter. 

The insulative properties of prolonged, deep snow cover may prevent soil from freezing and 

allow soil to thaw through geothermal heat flux, thereby maintaining soil temperatures near 0°C 

(Smiley et al., 2007). These conditions not only provide ideal conditions for Typhula spp. 

development, but may also increase metabolic catabolism of plant storage carbohydrates, a 
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critical component of low temperature fungi pathogenicity and plant cold hardiness (Gaudet et 

al., 1999).  

 The connection between cold hardiness and low temperature fungi susceptibility is 

unclear, although both seem inseparably related to overwintering carbohydrate dynamics. Gaudet 

and Kozub (1991) did not observe a direct correlation between cold hardiness and resistance to 

most snow mold fungi; however, low temperature stress increases plants susceptibility to snow 

mold and snow mold infection may reduce the plants freeze tolerance (Gaudet and Chen, 1988). 

Resistance to infection by pink snow mold seems to be acquired within 1-2 weeks following the 

onset of hardening conditions and is dependant on light (Nakajima and Abe, 1996); in contrast, 

cold hardiness seems to develop more slowly, over a period of 4-8 weeks (Dionne et al., 2001; 

Koster and Lynch, 1992; Levitt, 1980) and is light independent (Nakajima and Abe, 1996).  

 Reduced catabolic processes at low temperatures results in the accumulation of 

photosynthates in the cytoplasm (Pollock and Cairns, 1991). High polymeric sugar 

concentrations in autumn and winter as well as elevated fructan content in the spring are 

characteristic of snow mold resistant winter wheat varieties (Kiyomoto and Bruehl, 1977). 

Yoshida et al. (1998) related snow mold tolerance of winter wheat varieties with cold sensitivity. 

Interestingly, snow mold tolerant varieties accumulated higher fructan concentrations in the fall, 

and hydrolysed storage carbohydrates at a slower rate than cold hardy/snow mold susceptible 

varieties under dark conditions. In this context, an annual bluegrass ecotype isolated from an area 

prone to extensive snow cover was the most cold sensitive, accumulated greater concentrations 

of fructans, and maintained the highest concentrations of mono- and disaccharides during the 

winter (Dionne et al., 2001). These results imply that there may be different ecological strategies 

for utilizing storage carbohydrates depending on whether psychrophilic fungi or direct low 

temperature damage pose the greatest threat to survival. Although previous studies have 

monitored NSCs during acclimation and overwintering, very few have evaluated the activity of 

enzymes responsible for photosynthate storage and metabolism. Quantifying the activity of 

photosynthate mediating enzymes while simultaneously measuring NSC of plants grown under 
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different K fertility conditions may more definitely elucidate cold weather NSC dynamics, and 

determine whether K fertility impacts these processes through mediating enzyme activity. 

 I previously reviewed some of the basic processes involved in the utilization and storage 

of photosynthates, with particular focus on fructans. During the winter, fructans are metabolized 

by β-fuctosidases, including FEH and invertase (EC 3.2.1.26) (Olien and Clark, 1993). 

Hydrolytic fructan enzymes are also activated during darkness (Wagner et al., 1986), which may 

significantly impact fructan hydrolysis under snow cover. It appears as though some the 

aforementioned enzymes may play a significant role in conferring snow mold resistance. In fact, 

some unpublished data indicates that SST activity may be greater in snow mold resistant 

cultivars than more sensitive types (Gaudet et al., 1999). That being said, fructan accumulation in 

acclimating wheat is not entirely associated with the activity of these enzymes (Yukawa et al., 

1994).  

 A review by Gaudet et al. (1999) examines the connections between overwintering 

carbohydrate dynamics and snow mold susceptibility in winter wheat. The authors suggest that 

exceptionally resistant varieties have the ability to accumulate high levels of storage 

carbohydrates during the fall, and through enzyme mediated hydrolysis of these polymeric 

carbohydrates maintain high concentrations of simple sugars throughout winter into spring. 

These simple sugars may induce the expression of plant defense resistance genes though the 

hexokinase signal transduction pathway (Herbers et al., 1996). Hexokinases are ‘sugar sensing’ 

enzymes that phosphorylate glucose and fructose to glucose-6-Phosphate and fructose-6-

Phosphate during the initial steps of glycolysis.  

 There may also be a connection between the down regulation of photosynthesis and the 

accumulation of mono- and disaccharides during the onset of cold temperatures (Herbers et al., 

1996). For this reason, Gaudet et al. (1999) propose that the rapid accumulation of simple sugars 

during cold hardening may have a dual function in down regulating photosynthetic activity and 

inducing plant defense systems. Plants that are able to replenish carbohydrate pools as they are 

metabolized and maintain high cytosolic carbohydrate concentrations into the spring may 
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continuously stimulate plant defense mechanisms and thus possess exceptional snow mold 

resistance. Several other studies note the association between high concentrations of soluble 

carbohydrates in the spring and reduced snow mold damage (Kiyomoto, 1987; Kiyomoto and 

Bruehl, 1977).  

  Respiration of winter wheat decreases through the fall, and the rate of respiration at 0°C 

is inversely related to the degree of plant hardiness and dormancy (Newton and Anderson, 1931). 

Therefore, it is conceivable that early snowfall may prevent grasses from completely hardening, 

increase the rate of respiration and utilization of storage carbohydrates at 0°C, and leave plants 

more susceptible to low temperature and psychrophilic fungi damage. Following this concept, 

any factor that may prolong the period necessary for adequate hardening may affect snow mold 

susceptibility.  

 This leads to several key points; (i) the site of fructan storage is the vacuole; therefore, if 

plants are grown under high K conditions, vacuolar osmotic potential will already be very low, 

potentially reducing the ability of the plant to store fructans and other carbohydrates during the 

hardening process; (ii) high concentrations of photosynthates override light regulation of 

photosynthesis by reducing the activity of rubisco and Calvin-cycle proteins (Smeekens and 

Rook, 1997); therefore, excessively high tissue K concentrations may promote the rapid 

dispersion of photosynthates to sink tissues allowing photosynthesis to proceed during times 

when downregulation and hardening would be more beneficial; (iii) although potentially a 

function of the aforementioned hypotheses, (Tyler et al., 1981) observed that plants grown under 

low K fertility were able to harden more rapidly and to a greater extent. These features suggest 

that the positive association between K fertilization and psychrophilic fungi damage observed by 

Webster and Ebdon (2005) and Woods et al. (2006) has an underlying physiological explanation 

involving carbohydrate storage during autumn and metabolism through the winter.
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CHAPTER 2: THE EFFECT OF POTASSIUM FERTILIZATION ON 

OVERWINTERING CARBOHYDRATE AND METABOLITE DYNAMICS 
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2.1 Abstract 

  

Overwintering carbon metabolism of perennial grasses is known to affect their performance and 

utility. While there is some evidence that plant K status influences winter survival, the 

physiological basis is unclear. The goal of this experiment was to determine the effect of 

seasonal K fertilization on carbon metabolism of overwintering annual bluegrass [Poa annua 

var. reptans (Hauskn) Timm.]. In a greenhouse, annual bluegrass was seeded into sand filled 

columns. Nitrogen (0.5 g m-2 ), K (0.5 g m-2), and all other essential nutrients were applied 

weekly for 90 d. Following establishment, 5 different K treatments (0, 0.25, 0.5, 2, 3 g m-2 7d-1) 

were imposed for 90 d. Columns were moved to a refrigerated room, maintained under a 

photosynthetically active radiation flux of ~300 mmol m-2 s-1, and day/night air temperature 

incrementally decreased every 7 d over 28 d (10/4°C, 4/-2°C, 2/-4°C, -2/-6°C). Plants were then 

kept under darkness at -4°C (28 d), 2°C (40 d), then 4°C (40 d). Tissue harvested following each 

experimental phase was analyzed for elemental composition, nonstructural carbohydrates, and 

several tricarboxylic acid cycle intermediates (TCAIs). Tissue K content and cation:anion ratios 

increased with K fertilization rate. Overall K fertilization had a minimal impact on non-structural 

carbohydrate dynamics. Tissue TCAI content, particularly malate and citrate, markedly increased 

at greater K fertilization rates. The results of this study suggest that K fertilization significantly 

increases diversion of carbon resources to organic acid synthesis due to perturbations in charge 

and pH homeostasis associated with disparate cation/anion uptake ratios. In addition to affecting 

plant utility, there is a biochemical cost associated with luxury K uptake and subsequent organic 

acid accumulation.  
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2.2 Introduction 

 

 Nonstructural carbohydrates (NSCs) have been the focus of studies related to heat (Liu 

and Huang, 2000), cold (Patton and Reicher, 2007; Yoshida et al., 1998), drought (DaCosta and 

Huang, 2006), and wear (Han et al., 2004) tolerance of turfgrasses. Factors affecting NSC 

content of forage grasses used as animal fodder have also been studied extensively, as forage 

carbohydrates can account for ~2/3 of a production animals total dietary carbohydrate intake 

(Nie et al., 2009). Overwintering carbohydrate dynamics of perennial grasses are particularly 

important at northern latitudes. Plant storage and utilization of carbon resources is a critical 

determinant of winter survival (Dionne et al., 2010), spring recovery, and seasonal yield of 

forage and amenity grasses (Lawton and Burpee, 1990; Sanada et al., 2010).   

 In addition to affecting plant utility, NSCs serve as fuel for oxidative metabolism 

(glycolysis, tricarboxylic acid pathway) and provide carbon skeletons for a multitude of plant 

biosynthetic pathways. Organic acids derived from the tricarboxylic acid (TCA) metabolic 

pathway participate in generating osmotic gradients (e.g. stomates), maintaining charge and pH 

homeostasis within cellular compartments, and nitrogen assimilation. Furthermore, the majority 

of reducing power generated during oxidative metabolism stems from the TCA pathway. 

Photosynthesis, carbon partitioning, and oxidative metabolism through the TCA cycle are all 

reciprocally regulated in response to plant reducing power and/or ATP demands. The effect of 

carbohydrate storage on organic acid metabolism has been demonstrated experimentally (Wang 

et al., 2010). While TCA cycle intermediates participate in many other independently regulated 

biochemical pathways, organic acid dynamics allow some speculation as to how plants are 

utilizing carbon resources and their overall metabolic activity.     

 Claims of potassium conferring increased drought, temperature stress, and wear tolerance 

(Shearman and Beard, 2002) are ubiquitous in textbooks (Carrow et al., 2001; Fry and Huang, 

2004) and turfgrass publications, yet supporting data are generally vague. In an extensive 

literature review, Turner and Hummel (1992) examined the role of K in turfgrass establishment, 
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cold/heat/wear tolerance, disease incidence, root growth, and color. In all cases results were 

inconsistent, and the specific impact of K on these parameters remains unclear. There is some 

evidence that abundant K applications to highly managed turfgrasses may have detrimental 

effects on winter hardiness, leading to delayed spring greening (Waddington et al., 1972) and 

enhanced susceptibility to psychrophilic fungi (Webster and Ebdon, 2005; Woods et al., 2006). 

Furthermore, Tyler et al. (1981) observed that winter wheat (Triticum aestivum L.) grown in a 

hydroponic culture of 4:1 N:K ratio (0.358 µM K) were more cold hardy and developed 

hardiness more rapidly than plants grown in solutions with a N:K ratio of 1:1.25 (1.74 mM K). 

 Although some of the aforementioned ‘whole plant’ effects of K fertilization are less 

clear, the biochemical role of K in plants is more completely characterized. Potassium is highly 

mobile, is the most abundant ion in the cytoplasm, and is intimately associated with solute 

speciation and osmotic potential of the cytosol and vacuole (Marschner, 1995). Specifically 

within the vacuole, K has mainly a biophysical function by regulating turgor (Leigh and Jones, 

1984). Under low K conditions Na salts (Wildes and Pitman, 1975), carbohydrates (Evans and 

Sorger, 1966; Wildes and Pitman, 1975), and other solutes may accumulate within the vacuole to 

maintain vacuolar osmotic pressure as vacuolar K quenches cytosolic demands. An inverse 

relationship between tissue K and reducing sugar content has been observed in barley (Hordeum 

vulgare L.) and Italian ryegrass (Lolium multiflorum Lam.), demonstrating the effect of growth 

media cation concentrations on the speciation of osmotic pressure generating solutes within the 

vacuole (Nowakowski et al., 1974; Pitman et al., 1968). Within the cytoplasm, K has been shown 

to activate enzymes including those involved in glycolysis (Wildes and Pitman, 1975) and 

partitioning of photosynthetic triose phosphates into sucrose or storage carbohydrates (Hawker et 

al., 1979). Leaf K concentrations have also been correlated with net photosynthetic rate, stomatal 

conductance, phloem loading of photosynthates, and rubisco activity (Amtmann et al., 2006). 

These studies highlight the intimate association between potassium fertility and enzymatic 

control of carbohydrate storage and metabolism.  
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 Overwintering NSC dynamics of annual bluegrass ecotypes have been characterized in 

several previous studies (Bertrand et al., 2011; Dionne et al., 2001; Dionne et al., 2010), but the 

effects of K fertilization have not been tested. In a review of the literature, organic acid 

metabolism of annual bluegrass has apparently never been characterized. The central importance 

of carbon metabolism to the utility and performance of grasses and the likely influence of K 

fertilization warrants research on this topic. Therefore, the goal of this study was to evaluate the 

effect of seasonal K fertilization on carbohydrate and metabolite dynamics of annual bluegrass 

during simulated winter conditions. 

  

 

2.3 Materials and Methods 

 

2.3.1 Plant Establishment and Fertility Treatments: Greenhouse 

 The experiment was repeated twice between March 15, 2009 and May 15, 2010. The 

second experiment began 3 months after the first experiment (June 15, 2009), and was conducted 

identically yet independent in space and time. The following methods apply to both experimental 

runs. 

 Forty annual bluegrass [Poa annua L. forma reptans (Hausskn.) T. Koyama)] seeds (PD-

24, University of Minnesota) were sown into 125 -30.5 x 10.4 cm diam. cm polyvinyl chloride 

(Schedule 40) columns filled with sand (Table 2.1)Each column had been previously glued to a 

11.4 x 11.4 cm square polyvinyl chloride base with a 6 mm hole drilled in the center to provide 

drainage. Seeds were then covered in ~5 mm of sand and fertilized with 20 mL of nutrient 

solution (Table 2.2) fortified to contain 5.5 mM KCl, supplying K and Cl at a rate of 0.5 g m-2.  

 A 12 x 12 cm square of low-density polyethylene wrap was secured over each 

experimental unit (EU) to retain moisture. Experimental units were placed on raised benches in a 

greenhouse with a 16 hr day length (Figure 2.1). Plastic covers were removed after 10 d. Starting 

14 d after seeding (DAS), every 7 d seedlings were clipped to 10 mm (clippings removed), 
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watered from above with a hand held nozzle until liquid spontaneously drained from the base (~ 

2 cm irrigation), and then fertilized with 20 mL of KCl fortified (5.5 mM) nutrient solution. At 

90 DAS, EUs were randomly selected to receive the normal weekly nutrient solution fortified 

with KCl to apply K and Cl at a rate of  0, 0.25, 0.5, 2, or 3 g m-2 7 d-1 (Table 2.3). Weekly K 

fertility treatments continued for a total of 90 days (‘fertilization period’) before EUs were 

moved into a low temperature growth chamber. Once entering the simulated winter phase of the 

experiment, no additional fertilizers were applied. 

 
Table 2.1 Physicochemical characteristics of the sand growing media. 

Parameter Mean N Standard Error 

pH (1:1 H2O) 6.37 3 - 

Organic Matter (g kg-1) 0.14 3 0.02 

Exchangeable Ca† (mg kg-1) 96.7 3 2.85 

Exchangeable Mg† (mg kg-1) 27.3 3 0.88 

Exchangeable K† (mg kg-1) 6.00 3 0.00 

Nonexchangeable K‡ (mg kg-1) 95.4 3 8.11 

Exchangeable Na† (mg kg-1) 32.3 3 0.88 

CEC§ (cmolc kg-1) 0.89 3 0.02 

Phosphorus† (mg kg-1) 2.00 3 0.00 

Sulfur† (mg kg-1) 12.7 3 0.33 

† Mehlich III Extractant.    

‡ Nonexchangeable by boiling HNO3 (Pratt, 1965).  

§CEC, Cation Exchange Capacity by summation of cations. 
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Table 2.2 Fertilizer composition and nutrient application rates. 

 

 

 

Source  Concentration (mM) 
Nutrient 
Supplied 

Application Rate 
(g m-2 7d-1) 

From Source, (Total) 

NH4H2PO4 2 
N 0.06, (0.60) 

P 0.15, (0.15) 

NH4NO3 5.5 N 0.18, (0.60) 

Ca(NO3)2 5.5 
Ca 0.50, (0.50) 

N 0.36, (0.60) 

MgSO4 4.5 
Mg 0.25, (0.25) 

S 0.35, (0.35) 

Fe-EDDHA 1 Fe 0.1, (0.1) 

H3BO3 0.5 B 0.01, (0.01) 

MnCl2 0.5 
Mn 0.06, (0.06) 

Cl 0.08, 0.08 

ZnSO4 0.008 
Zn 0.001, (0.001) 

S <0.01, (0.35) 

CuSO4 0.003 
Cu 0.0005, (0.0005) 

S <0.01, (0.35) 

H2MoO4 0.002 Mo 0.0005, (0.0005) 
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Figure 2.1. Temperature and photosynthetic photon flux density (PPFD) in the greenhouse 

during establishment and K fertilization period.  
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Table 2.3. Potassium (KCl) fertilizer concentration, application rate, and total amount of K 

applied during the 90 d fertilization period prior to simulated winter. 

K Treatment Level 
K Concentration 

(mmol L-1) 
Application Rate†  

(g m-2) 
Total K Applied 

(g m-2) 

1 0.00 0.00 0.00 

2 2.25 0.25 3.25 

3 5.50 0.50 6.50 

4 22.0 2.00 26.0 

5 33.0 3.00 39.0 

† K applied every 7 d for 90 d prior to simulated winter. 

 

2.3.2 Simulated Autumn, Winter, and Spring: Low Temperature Growth Chamber 

 Following 180 days of growth in the greenhouse (90 d establishment + 90 d K 

treatments), EUs were moved into a 15 x 3 m refrigerated container car (reefer) located at the 

Bluegrass Lane Turf and Landscape Research Center in Ithaca, NY. The reefer was divided into 

3- 4 x 3 m thermally isolated rooms allowing independent control of air temperatures (±0.5ºC) 

and light conditions within each room. Each of the 3 simulated ‘seasons’; 1) incrementally 

decreasing temperature under illumination (‘hardening’); 2) sub-zero constant temperature under 

darkness (‘mid-winter’); and 3) near freezing, high humidity (‘early-spring’), were conducted in 

separate rooms within the reefer. Climate conditions imposed during these three phases were 

meant to roughly represent seasonal conditions in Ithaca, NY.  

 During the ‘hardening’ period, EUs were randomly distributed within one 4 x 3 m room 

of the reefer. High pressure sodium lights provided an average plant-level photosynthetic photon 

flux density (PPFD) of 300 µmol m-2 s-1 and an 8 h day length. While a higher PPFD (400-800 

µmol m-2 s-1) is commonly observed in the field during autumn months at northern latitudes, a 

PPFD of 300 µmol m-2 s-1 was used due to technical limitations of lighting equipment, and to 



 

  
 

23 

approximate ‘hardening’ conditions used in studies that evaluated overwintering carbohydrate 

dynamics and/or low temperature hardiness (Anderson et al., 1993; Dionne et al., 2001; Patton 

and Reicher, 2007; Patton et al., 2007; Wanner and Junttila, 1999). Over the course of 4 weeks, 

day/night temperatures decreased incrementally (10/4, 4/-2, 2/-4, -2/-6°C) every 7 d. Irrigation 

was applied (2 cm) using a hand held spray bottle during the daytime hours (ambient air 

temperature >0°C) of the first three weeks of hardening to prevent desiccation. Experimental unit 

position was randomized weekly.  

 After 28 d, EUs were moved to random locations within the second room of the reefer. 

Approximately 2 cm of chipped distilled H2O ice was placed over the foliage of each EU to 

prevent desiccation and they were held under darkness at -4°C for a 28 d ‘mid-winter’ period. 

 Experimental units were then moved to the third room of the reefer, randomly positioned 

on a 3 x 4 m slotted rack elevated above a catch basin, and were maintained under darkness and 

an ambient air temperature of 2°C for 40 d and then 4°C for another 40 d. Experimental units 

were misted every 1 h for 15 s, providing ~0.5 cm of precipitation every 7 d. These conditions 

were imposed to simulate the darkness, 24 h leaf wetness, ~99% relative humidity, and near 0°C 

temperatures that persist under snow cover during late winter and early spring. This is 

subsequently referred to as the ‘early spring’ period.   

 

2.3.3 Harvesting Tissue for Biochemical Analyses 

 Five replicates of each K level were destructively sampled by harvesting all aerial tissues 

at the completion of the establishment, fertilization, hardening, mid-winter, and early spring 

experimental periods (5 replicates X 5 K levels X 5 sampling dates = 125 EUs) . Tissue was 

trimmed at the root/shoot interface, homogenized, split, and either frozen in liquid N2 and stored 

at -80°C overnight or weighed and then placed in a forced air oven at 55ºC for 48 h. Dry weights 

were obtained and tissues were analyzed for K, Ca, Mg, Na, P, S, Fe, Mn, B, Cu, Zn, and Al 

using the microwave acid digestion method (Horneck and Miller, 1998) with tissue 

concentrations determined by inductively coupled plasma atomic emission spectroscopy. Tissue 
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N content was measured by combustion in a C/N analyzer (Horneck and Miller, 1998). Tissue Cl 

content was determined by hot water extraction (Ghosh and Drew, 1991) and detected with a Cl-

specific electrode (Orion 961700, Fisher Scientific, Pittsburgh, PA). Tissue frozen in liquid N2 

was ground using a mortar and pestle in liquid N2 and stored at -80°C until being analyzed for 

nonstructural carbohydrates and citric acid cycle metabolites. 

 

2.3.4 Determination of Glucose, Fructose, Sucrose, and Fructans 

 Extraction of the major non-structural carbohydrates (NSCs) glucose (Glu), fructose 

(Fru), sucrose (Suc), and high/low degree of polymerization (DP) fructans was performed 

similarly to Zhao et al. (2010) and Ranwala and Miller (2008). While both of these authors 

derived their protocol from several older published articles, these papers present a very detailed 

description of reagent preparation and extraction.  

 Ethanol soluble NSCs (glucose, fructose, sucrose, low-DP fructans) were extracted by 

adding 2 mL of 80% (v/v) ethanol (EtOH) to a 4 mL polypropylene centrifuge tube containing 

50 mg of liquid N2 ground tissue and heating the samples in an 80°C water bath for 15 min.  

Each sample was extracted three times. Following each extraction, tubes were centrifuged (3000 

x g) for 10 minutes and the supernatant from each repeated extraction was pooled into a 10 mL 

centrifuge tube. The three pooled supernatants were then brought to a 6 mL final volume with 

80% EtOH. A 1.0 mL aliquot of each pooled extract was vacuum concentrated (Labconco Corp., 

Kansas City, MO) overnight in a 1.5 mL micro-centrifuge tube and resuspended with 1.0 mL of 

HPLC-grade water. Each resuspended sample was then transferred to a separate 1.2 mL tube 

within eight-tube, multichannel pipette compatible strips, and stored at -80°C until used for 

analysis.  

 The pellet remaining after EtOH extraction was vacuum concentrated overnight. The 

dried pellet was then extracted three times for 30 min at 80°C with 3 mL of HPLC grade water. 

Supernatants from each extraction were combined following centrifugation (3000 x g) and then 

brought to a final volume of 10 mL using HPLC grade water. Aliquots (1.0 mL) of each sample 
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extract were stored at -80°C in 1.2 mL multichannel pipette compatible tube strips. The purpose 

of the water extraction after 80% EtOH extraction was to extract high-DP fructans that were not 

soluble in 80% EtOH. 

 Acid hydrolysis of fructans results in depolymerization of the fructan chain into its 

individual Fru and Glu reducing sugars constituents which can then be quantified using 

colorimetric methods (Cairns, 1987) that are unable to quantify intact fructans. Acid hydrolysis 

of EtOH and water extracts was performed as follows. Aliquots (200 µL) of each sample were 

transferred to new eight-tube, multi-channel pipette compatible strips using an eight channel 

pipette. Two-hundred µL of 0.05 M HCl was added to each tube, and tube strips were then 

placed in a boiling water bath for 5 min. Once removed from the water bath, 200 µL of 0.05 M 

NaOH was added to each tube within 5 s. Samples were then stored at -80°C until being 

analyzed. Using a multi-channel pipette allows rapid neutralization of the reaction following 

boiling. 

 Glucose, fructose, and sucrose concentrations were measured in each of the four extract 

fractions (EtOH extract, H2O extract, acid hydrolyzed EtOH extract, acid hydrolyzed H2O 

extract) using a colorimetric assay modified from Cairns (1987), Chen and Setter (2003), and 

Zhao et al. (2010). The assay relies on the following coupled reactions. Glucose and Fru are 

converted to Glu-6-phosphate and Fru-6-phosphate in the presence of hexokinase (EC 2.7.1.1) 

and adenosine-5’- triphosphate (ATP), respectively. Glucose-6-phosphate dehydrogenase (EC 

1.1.1.49) then reacts with Glu-6-phosphate resulting in the reduction of nicotinamide adenine 

dinucleotide (NAD+) to NADH. Subsequent reduction of thiazolyl blue tetrazolium bromide 

(MTT) yields a blue formazan dye that can be readily quantified by measuring absorbance at λ ~ 

600 ηm using a spectrophotometer. Following the complete reaction of all Glu-6-phosphate 

contained in the sample, addition of phosphoglucose isomerase (PGI; EC 5.3.1.9) converts Fru-

6-phosphate to Glu-6-phosphate which then participates in the reduction cascade resulting in a 

visible blue color change. Finally, sucrose is converted to Glu and Fru with the addition of 

invertase (EC 3.2.1.26). The Glu and Fru generated through the addition of invertase then 
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participates in the colorimetric reaction as described above. Essentially, this assay allows 

detection of Glu, Fru, and Suc sequentially by converting sugars to Glu-6-phosphate equivalents 

that can then participate in the reduction cascade. This assay was used to evaluate samples in 96-

well microplates (BD Falcon 353915, BD Biosciences, Chicago, IL) in the following manner.      

  Two 20-µL aliquots of plant extracts were added to separate wells of a 96-well 

microplate. Two columns of each microplate were left empty for glucose, fructose, and sucrose 

standards, allowing the analysis of 40 samples (in duplicate) on each plate. Once samples were 

added, an additional 20 µL of distilled H2O was added to each sample well. Next, 6-Glu 

standards (0, 0.0125, 0.025, 0.05, 0.125, 0.25 mg mL-1), a Fru check (0.25 mg mL-1), and Suc 

check (0.25 mg mL-1) were added to adjacent wells in the first two columns of each microplate. 

Absorbance at λ= 620 ηm (A620) was measured (Beckman Coulter LD-400, Beckman Coulter, 

Brea, CA) and recorded for each well (
1

620A ). These values were later subtracted from total 

absorbance to account for variations in plate characteristics and absorbance of pigments 

contained in samples. 

 A master reagent was then formulated by mixing 2.0 mL of H2O, 1.0 mL of bovine serum 

albumin (A8022, Sigma-Aldrich, St. Louis, MO) stock (20 g L-1), 0.5 mL of MTT (M2128, 

Sigma) stock (20 mM), and 0.5 mL of phenazine methosulfate (PMS; P9625, Sigma) stock (60 

mM) in that order. Phenazine methosulfate stock solution and the reagent mixture spontaneous 

change color in the light; therefore, it is essential to store PMS stocks in darkness, mix the assay 

reagent immediately before use, and minimize light exposure during the assay. Immediately after 

formulation, 40 µL of the master reagent was added to each well followed by the addition of 100 

µL of glucose hexokinase reagent (1.5 mM NAD, 1.0 mM ATP, 1.0 U mL-1 hexokinase, and 1.0 

U mL-1 Glu-6-phosphate dehydrogenase; G3293, Sigma). Microplates were then covered, placed 

in a dark incubator for 10 min at 30°C, removed, uncovered, and A620 measured (
2

620A ). Color 

change of wells containing glucose standards provided visual confirmation that the reaction was 

proceeding appropriately. During the final minutes of the reaction, 1.0 mL of PGI (P5381, 

Sigma) enzyme reagent (20 U mL-1) was mixed and kept on ice. Immediately after removing the 
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microplate from the plate reader, 10 µL of PGI reagent was added to each well (0.2 U PGI well-

1). Plates were then incubated and A620 was measured (
3

620A ) as in the first step of the assay. 

Color change of wells containing a 0.25 mg mL-1 Fru ‘check’ provided visual confirmation that 

the reaction was proceeding appropriately.  During the final minutes of the PGI reaction, 1 mL of 

invertase (I4504, Sigma) enzyme reagent (800 U mL-1) was mixed and kept on ice. Immediately 

after removing the microplate from the plate reader, 10 µL of invertase reagent was added to 

each well (8 U invertase well-1). Plates were then incubated for 20 minutes at 30°C and A620 was 

measured (
4

620A ) as in the first two steps of the assay. Color change of wells containing a 0.25 mg  

mL-1 Suc ‘check’ provided visual confirmation that the reaction was proceeding appropriately. 

 A simple linear regression equation generated from duplicate mean A620 values for each 

glucose standard was used to estimate Glu equivalent concentrations from adjusted A620 at each 

measurement point. The equation was extremely stable (β0 = 0.000 ± 0.004; β1 = 0.25 ± 0.02) 

with r2 ≥ 0.99 in all cases. Within each plate, Glu, Fru, and Suc concentrations were calculated 

for each well using relevant regression equations and adjusted A620 values for each unknown 

sample as described in Table 2.4. Each sample was run in duplicate on each plate, and assayed 

on three different plates; yielding a total of six replicate measurements for each extract fraction 

of each EU. Replicate measurements were averaged over EU.     
 

Table 2.4 Equations relating nonstructural carbohydrate concentrations in plant extracts 

to microplate well absorbance at λ= 620 ηm.  

Carbohydrate (mg mL-1)  Adjusted A620 †  Slope‡  Intercept§ 

Glucose = 
2

620A - 
1

620A  x 
2

1β
 

+ 
2

0β
 

Fructose = 
3

620A - 
2

620A  x 
3

1β
 

+ 
3

0β
 

Sucrose = 
4

620A -
3

620A  x 
4

1β
 

+ 
4

0β
 

†,
xA620 , absorbance at λ= 620 ηm at plate measurement time x (x=1,2,3,4). 

‡ 
x

1β , slope of regression relating A620 and carbohydrate concentration, 
derived from glucose standards at plate measurement time x (x=2,3,4). 
§ 

x
0β , intercept of regression relating A620 and carbohydrate concentration, 

derived from glucose standards at plate measurement time x (x=2,3,4). 
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 Once Glu, Fru, and Suc concentrations of each extract fraction were calculated, sample 

totals of Glu, Fru, Suc, ethanol soluble low DP fructans (ESF), and water soluble high DP 

fructans (WSF) were calculated as outlined in Table 2.5. 

 
Table 2.5 Equations used to calculate sample totals of glucose, fructose, sucrose, and 

fructans using soluble carbohydrate concentrations in each extract fraction. 

Type of Carbohydrate Sample Total  Constituents of Total† 

Hexose & Oligosaccharide    
 Glucose                           = EtOH Glucose + H2O Glucose 
 Fructose                         = EtOH Fructose + H2O Fructose 
 Sucrose                           = EtOH Sucrose + H2O Sucrose 
ESF‡    

 
Glucose 
Monomers = AH EtOH Glucose - EtOH Glucose 

 
Fructose 
Monomers = AH EtOH Fructose - EtOH Fructose 

 
Total ESF 
Fructan   = Glucose Monomers +Fructose Monomers 

WSF§    

 
Glucose 
Monomers = AH H2O Glucose - H2O Glucose 

 
Fructose 
Monomers = AH H2O Fructose - H2O Fructose 

 
Total WSF 
Fructan = Glucose Monomers +Fructose Monomers 

† EtOH, 80% ethanol extractant; H2O, distilled water extractant; AH, acid hydrolyzed. 
‡ ESF, 80% ethanol soluble low degree of polymerization fructan. 
§ WSF, water soluble high degree of polymerization fructan. 

  

2.3.5 Determination of Metabolites and Minor Non-Structural Carbohydrates  

 Fructose-6-phosphate, glucose-g-phosphate, raffinose, trehalose, myo-inositol, malate, 

citrate, α-ketoglutarate, succinate, fumarate, and shikimate were extracted, identified, and 

quantified following the procedures of Lisec et al. (2006) and Wang et al. (2010) with minor 

modification.  
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 These compounds were extracted from liquid N2 ground tissue (~100 mg) in 1.4 mL of 

75% (v/v) methanol with 60 µL of ribitol (A5502, Sigma) stock (0.2 mg mL-1) added to each 

sample as an internal standard. Samples were maintained at 30°C while being shaken for 30 min 

at 950 revolutions per minute (rpm) during the extraction. Samples were then centrifuged 

(10,000 x g) for 10 min, the supernatant was transferred to a tapered 5 mL glass centrifuge tube, 

750 µL of chloroform (-20°C) and 1.5 mL of H2O (4°C) was added, tubes were vortexed for 10 

s, and then centrifuged (2200 x g) for 15 min. An aliquot (100 µL) of the polar (upper) phase of 

each sample was then transferred to a 1.5 mL microcentrifuge tube and dried without heating in a 

vacuum concentrator for 6 h. Dried extracts were then derivatized by adding 40 µL of 

methoxyamine hydrochloride (M1139, Sigma) stock (20 mg mL-1 in pyridine), shaking at 37°C 

for 2 h at 900 rpm, adding 60 µL of N-methyl-N-trimethylsilyl-trifluoroacetamide (MSTFA, 

CAS 24589-78-4, Macherey & Nagel, Düren, Germany), and shaking at 37°C for 30 min at 900 

rpm. Derivatized samples were then transferred to 100 µL glass inserts (CTI-2410, Chromtech 

Inc., Apple Valley, MN) placed in 1.5 mL amber screw cap vials (CTV-4802(A), Chromtech), 

that were then sealed with septa containing screw caps (CTC-0956, Chromtech).  

 Samples were then analyzed with an Agilent 7890A GC/5795C MS (Agilent Technology, 

Palo Alto, CA, USA). Injection of a 1 µL aliquot of each sample was performed at 230°C in 

splitless mode with helium carrier gas flow set to 1 ml min-1. Chromatography was performed on 

a DB-5MS custom capillary column (20 m length x 0.18 mm i.d. x 0.18 mm film thickness) with 

a 5 m Duraguard column (125-1334G5, Agilent Technology). The temperature program was 

isothermal at 70°C for 2.471 min, followed by a 10.119°C min-1 ramp to 330°C and a final 2.471 

min heating at 330°C. Cooling was performed as fast as possible. The system was then 

temperature equilibrated at 70°C for 5 min before subsequent sample injection. Mass spectra 

were collected at 5.6 scans s-1 over an m/z 50–600 scanning range. The transfer line temperature 

and the ion source temperature were set to 250 and 230°C, respectively. Metabolites were 

identified by comparing fragmentation patterns with those in a mass spectral library generated on 

our GC/MS system and an annotated quadrupole GC–MS spectral library downloaded from the 
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Max Planck Institute of Molecular Plant Physiology (2010) and quantified based on standard 

curves generated for each metabolite and internal standard.  

 

2.3.6 Monitoring Turfgrass Health  

 Approximately every 14 d, all EUs were individually photographed under controlled light 

conditions using a Cannon PowerShot SX 110 IS camera (Cannon USA Inc., Lake Success, NY) 

mounted 30 cm above and perpendicular to the turfgrass surface. Lighting was provided by two 

70 watt incandescent light bulbs. A white balance reference card (WhiBal G7, Michael Tapes 

Design, Melbourne, FL) was included within the field of view of each image. Because EUs 

lacked aerially visible indentifying marks, a written record of photo order and corresponding EU 

identity was maintained. Using the white balance reference card, white and grey balance of each 

image was normalized using Adobe Photoshop CS4 (Adobe Systems Inc., San Jose, CA). Images 

were also cropped to contain only turfgrass foliage within the 10 cm diam. i.d. of the PVC pot. 

 Once images were normalized and cropped, automated image analysis was performed in 

SigmaScan pro (v. 5.0, Systat Software Inc., San Jose, CA) using the ‘turf analysis’ macro 

presented by Karcher and Richardson (2005). Optimal hue and saturation thresholds (38-110 and 

30-100, respectively) were established by starting with default levels outlined in Karcher and 

Richardson (2005) and iteratively making adjustments that maximized selection of green 

turfgrass and minimized interference caused by canopy shadow artifacts. Dark green color index 

(DGCI) of ‘green’ turfgrass was calculated as described in Karcher and Richardson (2003). 

 

2.3.7 Statistical Analysis 

  Treatments and observations were made on EUs arranged in a completely randomized 

design. All statistical analyses were conducted in JMP (version 8, SAS Institute, Cary, NC). 

Main treatment (K level) effects on DGCI for each observation date were analyzed as repeated 

measures using the REML method of the MANOVA personality. Main treatment (K level) 

effects on nonstructural carbohydrate and metabolite data were analyzed for each sampling date 
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using the REML method of the standard least squares personality in JMP, trial was considered a 

random effect (McIntosh, 1983). Single degree of freedom orthogonal contrasts were used to 

determine more specific treatment effects. 

 

2.4 Results 

2.4.1 Tissue Nonacid Cation Content Dynamics 

 Following establishment under identical fertilization, there were no significant 

differences in major non-acid cation (K, Ca, Mg, Na) tissue concentrations across K treatment 

groups (data not shown). Significant differences in tissue K, Ca, and Mg content were observed 

among treatment groups 90 d after the initiation of K treatments and these trends largely 

persisted throughout the experiment (Table 2.6). On every sampling date following K treatment 

initialization, a positive linear association (Pr>│t│<0.001) between tissue K content and an 

inverse linear association (Pr>│t│<0.001) between tissue Ca content and K fertilization rate was 

observed. With the exception of the final sampling date, an inverse linear relationship 

(Pr>│t│<0.001) between tissue Mg content and K fertilization rate was also observed. Tissue K 

levels ranged across the recognized (Carrow et al., 2001) K sufficiency level of ~380 mmolc kg-1 

(15 g kg-1) on the final three sampling dates. It is important to note that although tissue K content 

in plants recieving less than 0.50 g K m-2 7 d-1 fell below the recognized sufficiency level, there 

were no statistically significant differences in dark green color index (data not shown) on any 

date throughout both runs of the experiment. Clipping yields were not measured due to logistical 

difficulties of maintaining constant clipping heights while hand-mowing container grown grass; 

however, there were no obvious differences in clipping production between K treatment groups. 

Tissue Ca and Mg levels were within recognized ‘sufficiency’ levels in all cases (Carrow et al., 

2001). Overall, there was an inverse relationship between tissue K and Na content. For each K 

treatment group, the total sum of tissue non-acid cations (mmolc kg-1) was not significantly 

different on any sampling date. Tissue concentrations of K, Ca, Mg and the total sum of tissue 

non-acid cations decreased once fertilization ceased and plants entered simulated winter 
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conditions. Tissue Na content increased markedly following plant hardening and remained 

relatively constant throughout the remainder of the experiment. The concentration of all other 

plant essential nutrients was not affected by K fertilization rate (data not shown).  

 
Table 2.6. Least square means of nonacid cation tissue concentrations by K fertilization 

rate following the fertilization, hardening, mid-winter and early spring experimental 

periods.  Trial was considered a random variable. Mean seperations were conducted using 

Fisher’s protected LSD (α = 0.05) 

 
   Tissue Nonacid Cation Content 
Sample Date† K Rate  K+ Ca2+ Mg2+ Na+ Total 
 g m-2 7d-1  ___________________ mmolc kg-1 _____________________ 

Fertilization        
 0.00  436 C‡ 494 A 321 A 29.5 NS§ 1281 NS 
 0.25  479 C 491 A 298 AB 31.6  1300  
 0.50  564 B 428 B 279 B 27.1  1299  
 2.00  704 A 385 B 256 C 27.1  1373  
 3.00  742 A 334 C 232 D 25.7  1334  
Hardening   ____________________________________________________________________________ 

 0.00  290 E 423 A 260 A 97.9 A 1071 NS 
 0.25  357 D 401 A 243 AB 75.4 AB 1078  
 0.50  404 C 369 B 233 B 66.4 B 1073  
 2.00  522 B 321 C 203 C 54.6 C 1101  
 3.00  569 A 302 C 191 C 41.6 D 1105  
Mid-Winter   ____________________________________________________________________________ 

 0.00  325 D 399 A 244 A 78.3 A 1047 NS 
 0.25  356 D 374 AB 223 B 67.5 AB 1022  
 0.50  405 C 358 B 220 B 63.8 B 1047  
 2.00  514 B 323 C 204 C 56.5 C 1099  
 3.00  562 A 285 D 189 D 50.6 C 1088  
Early Spring   ____________________________________________________________________________ 

 0.00  303 D 362 A 205 NS 72.9 NS 944 NS 
 0.25  355 C 342 AB 192  65.5  956  
 0.50  405 B 350 AB 201  60.2  1017  
 2.00  462 A 317 BC 197  57.6  1035  
 3.00  482 A 298 C 184  56.8  1023  
† Stage of experiment preceding harvest. 
‡ Within columns and sampling dates, means not followed by a common letter are 
significantly different (Fisher’s protected LSD; α=0.05). 
§ NS, No significant differences between K treatment levels on that sampling date. 
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2.4.2 Tissue Carbohydrate Content 
  

 Following the fertilization period, an inverse linear relationship between K fertilization 

rate and both fructose (Pr>│t│<0.001) and glucose (Pr>│t│= 0.014) was observed (Table 2.7). 

Fertilization rate significantly affected the concentration of both sugars (α=0.10) on the final 

(‘early spring’) sampling date, with the lowest sugar concentrations associated with the highest 

two K fertilization rates. Tissue fructose and glucose were not affected by K fertilization rate 

following ‘hardening’ or mid-winter’. 

 Potassium fertilization rate did not affect tissue sucrose content on any sampling date. 

Raffinose content was not affected by K fertilization rate except following ‘mid-winter’, where 

an inverse linear relationship (Pr>│t│<0.001) was observed. Potassium fertilization rate did not 

affect water soluble, high degree of polymerization fructan (WSF) content on any sampling date. 

Ethanol soluble, low degree of polymerization fructan (ESF) content was not affected by K 

fertilization rate except on the final (‘early spring’) sampling date, where an inverse linear 

relationship (Pr>│t│<0.001) was observed. Potassium fertilization did not affect tissue trehalose 

content on any sampling date.  

 Following the fertilization period, tissue fructose-6-phosphate content was significantly 

greater in plants fertilized with 3.00 g K m-2 7 d-1 than any other K fertilization rate. Fructose-6-

phosphate content was not affected by K fertilization on any other sampling date. A positive 

linear association between tissue glucose-6-phosphate content (Pr>│t│<0.001) and K 

fertilization rate was observed on every sampling date except following early spring, where no 

association was observed. Total non-structural carbohydrate content was not affected by K 

fertilization rate on any sampling date.  
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Table 2.7. Mean non-structural carbohydrate content for each K fertilization rate following 

‘fertilization’, ‘hardening’, ‘mid-winter’, and ‘early spring’ experimental phases. 

Carbohydrate concentrations are expressed on a fresh weight basis of pooled leaf and 

crown tissue. Mean separations of K treatment levels are reported only when K treatment 

level was a significant (α=0.05) source of analyte variability.  
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Sample Date† Non-Structural Carbohydrates‡ 

g K m-2 7d-1 Fructose Glucose Sucrose Raffinose WSF ESF Trehalose  F-6-P G-6-P  Total 

 _____________________________________________ mg g-1 fresh wt. _______________________________________ 

Fertilization           
 0.00  0.89 A§ 0.55 A   2.46 NS¶ 0.71 NS 33.7 NS 18.5 NS   0.097 NS 0.049 B 0.051 BC   57.3 NS 
 0.25  0.69 B 0.44 B   2.54  0.73  31.5  16.9    0.096 0.049 B 0.049 C   53.4 
 0.50  0.63 BC 0.44 B   2.47  0.74  32.6  15.1    0.101 0.047 B 0.049 C   52.5 
 2.00  0.53 CD 0.46 B   2.44  0.73  30.7  15.6    0.092 0.049 B 0.055 AB   51.0 
 3.00  0.47 D 0.39 B   2.49  0.79  31.7  16.4    0.097 0.055 A 0.058 A   52.8 
Hardening  ______________________________________________________________________________________________________ 

 0.00  4.65 NS 2.97 NS 11.4 NS 2.15 NS 80.1 NS 48.0 NS   0.228 NS 0.055 NS 0.053 C 150 NS 
 0.25  5.54  3.80  10.4  2.08  86.0  50.2    0.196 0.052 0.058 BC 159 
 0.50  4.77  3.31  10.6  1.81  79.4  54.0    0.187 0.053 0.059 B 155 
 2.00  3.71  2.67    9.19  1.94  82.4  48.6    0.163 0.055 0.067 A 149 
 3.00  5.06  3.80    9.33  2.16  85.4  47.7    0.157 0.056 0.068 A 154 
Mid-Winter  ______________________________________________________________________________________________________ 

 0.00  6.72 NS 3.83 NS   7.72 NS 1.16 AB 89.4 NS 47.8 NS   0.141 NS 0.045 NS 0.047 C 157 NS 
 0.25  7.77  4.81    6.71  1.22 AB 84.4  47.3    0.135 0.046 0.049 C 153 
 0.50  7.46  4.69    7.79  1.24 AB 90.9  47.8    0.139 0.046 0.054 B 161 
 2.00  6.95  4.58    7.34  0.97 BC 87.0  47.0    0.169 0.048 0.059 A 155 
 3.00  7.45  4.74    6.64  0.87 C 86.0  46.0    0.128 0.048 0.062 A 152 
Early Spring ______________________________________________________________________________________________________ 

 0.00  1.98 NS 0.77 NS   1.74 NS 0.23 NS 32.9 NS 16.5 A   0.081 NS  0.057 NS 0.058 NS   54.7 NS  
 0.25  1.74 0.76    1.50  0.20  31.2  15.4 AB   0.081  0.056 0.056   51.4  
 0.50  1.89  0.84    1.52  0.23  29.6  15.2 AB   0.077 0.057 0.061   49.8 
 2.00  1.61  0.64    1.53  0.22  27.2  13.9 B   0.073 0.052 0.056   45.5  
 3.00  1.61  0.65    1.57  0.21  30.9  14.1 B   0.093 0.051 0.056   49.6  

† Stage of experiment preceding harvest. 
‡  WSF, Water soluble fructans; ESF, 80% ethanol soluble fructans; F-6-P, Fructose-6-Phosphate; G-6-P, Glucose-6-Phosphate. 

§  Within columns and sampling dates, means not followed by a common letter are significantly different (Fisher’s protected LSD; α=0.05). 

¶  NS, No significant differences between K treatment levels on that sampling date. 
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2.4.3 Tissue Metabolite Content 

 A positive linear association (Pr>│t│<0.001) between tissue citrate and malate content 

and K fertilization rate was observed on every sampling date (Table 2.8). A positive linear 

association (Pr>│t│<0.001) between α-ketoglutarate and K fertilization rate was observed 

following the fertilization period, but no significant association was observed on any other 

sampling date. A positive linear association (Pr>│t│<0.001) between succinate and fumarate 

content and K fertilization rate was observed following the fertilization and hardening periods, 

but not on any other sampling date. A positive linear association (Pr>│t│<0.001) between total 

TCA intermediate content and K fertilization rate was observed on every sampling date. A 

positive linear association (Pr>│t│<0.005) between tissue shikimate content and K fertilization 

rate was observed following the fertilization period but not on any other sampling date. 

Potassium fertilization rate did affect tissue myo-inositol content on any sampling date.  

 

 

 

 

 

 

 

 

 

 

 

 



 

  
 

37 

 

 

Table 2.8. Mean tricarboxylic acid cycle intermediate, shikimate, and myo-inositol content 

for each K fertilization rate following ‘fertilization’, ‘hardening’, ‘mid-winter’, and ‘early 

spring’ experimental phases. Metabolite concentrations are expressed on a fresh weight 

basis of pooled leaf and crown tissue. Mean separations of K treatment levels are reported 

only when K treatment level was a significant (α=0.05) source of analyte variability. 
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Sample Date† Tricarboxylic Acid Intermediates  Additional Metabolites 

g K m-2 7d-1 Citrate α-ketoglutarate Succinate Fumarate Malate Total  Shikimate Myo-inositol 

 __________________________________________ mg g-1 fresh wt. ________________________________ 

Fertilization          
 0.00  3.77 B‡ 0.091 B 0.094 BC 0.061 B 1.52 C 5.54 B  0.241 AB 0.286 NS§ 
 0.25  3.44 B 0.084 B 0.089 C 0.059 B 1.48 C 5.16 B  0.226 B 0.273 
 0.50  3.86 B 0.087 B 0.102 B 0.059 B 1.60 C 5.72 B  0.242 AB 0.284 
 2.00  6.22 A 0.119 A 0.117 A 0.073 A 2.04 B 8.58 A  0.276 A 0.296 
 3.00  6.81 A 0.128 A 0.128 A 0.077 A 2.40 A 9.56 A  0.278 A 0.295 
Hardening  _____________________________________________________________________________________________ 

 0.00  1.71 D 0.049 NS 0.071 C 0.058 C 1.71 B 3.61 D  0.532 NS 0.395 NS 
 0.25  2.05 CD 0.047 0.073 C 0.054 C 1.76 B 4.11 CD  0.581 0.398 
 0.50  2.39 BC 0.049 0.078 BC 0.059 BC 2.12 A 4.71 BC  0.632 0.406 
 2.00  2.89 BC 0.049 0.085 AB 0.066 AB 2.14 A 5.24 B  0.578 0.416 
 3.00  3.45 A 0.051 0.092 A 0.067 A 2.42 A 6.09 A  0.575 0.425 
Mid-Winter  _____________________________________________________________________________________________ 

 0.00  1.75 C 0.046 NS 0.063 NS 0.074 NS 1.79 BC 3.73 C  0.449 NS 0.579 NS 
 0.25  1.91 C 0.045 0.068 0.073 1.61 C 3.72 C  0.437 0.564 
 0.50  2.35 B 0.045 0.069 0.073 1.85 AB 4.39 B  0.599 0.569 
 2.00  3.24 A 0.047 0.071 0.077 2.07 AB 5.51 A  0.503 0.569 
 3.00  3.53 A 0.044 0.072 0.078 2.03 AB 5.77 A  0.437 0.556 
Early Spring _____________________________________________________________________________________________ 

 0.00  3.95 B 0.125NS 0.087 NS 0.105 NS 0.73 C 5.01 C  0.304 NS 0.399 NS 
 0.25  4.06 B 0.125 0.085 0.104 0.79 C 5.17 BC  0.265 0.377 
 0.50  5.06 A 0.127 0.091 0.112 0.89 BC 6.29 AB  0.264 0.413 
 2.00  5.78 A 0.133 0.092 0.119 1.09 AB 7.22 A  0.386 0.431 
 3.00  5.94 A 0.119 0.085 0.113 1.09 AB 7.36 A  0.275 0.391 

† Stage of experiment preceding harvest. 
‡   Within columns and sampling dates, means not followed by a common letter are significantly different (Fisher’s protected LSD; α=0.05). 

§   NS, No significant differences between K treatment levels on that sampling date. 



 

  
 

39 

 

2.5 Discussion 

   

2.5.1  Tissue Nonacid Cation Dynamics 

 Turfgrass scientists, as well as many agronomist and whole plant physiologists almost 

exclusively report tissue nutrient content on a dry mass basis. This convention may not be 

appropriate, particularly for K because cytosolic reactions affecting plant growth and metabolism 

are regulated by cytosolic K concentrations (mmolc L-1) , not a dry matter : K relationship (Leigh 

and Jones, 1984). Therefore, K content on the basis of tissue water (KW) is a more 

physiologically meaningful parameter (Pitman, 1975). Other disciplines of plant science have 

reported KW for ryegrass, barley, and wheat; yet to my knowledge only Woods (2006) presents 

tissue K content of intensively managed turfgrass as both KW and KD. In this abstract, tissue K 

content for creeping bentgrass [Agrostis stolonifera  var. palustris (Huds.) Farw.] was reported 

between 5-25 g kg-1 with corresponding KW values between 50 and 230 mmol L-1. Furthermore, 

in samples with K concentrations below 15 g kg-1, considered to be deficient on a dry mass basis, 

KW was often greater than 150 mmol L-1, a biochemically sufficient K content (Leigh and Jones, 

1984; Marschner, 1995). Tissue KW levels beyond the broadly defined sufficiency range (>150 

mmol L-1) may also have inhibitory effects on some enzymes (Preusser et al., 1981). Clearly 

turfgrass scientists need to diversify their methods of reporting and interpreting tissue K content. 

 Another useful convention for reporting tissue nutrient content is on a mmolc kg-1 basis 

(Woods, 2006). Even elements that fill a structural role in the plant and are largely 

electrochemically inactive (e.g. Ca, Mg) are initially taken up in accordance with the 

electrochemical composition of the soil solution and cell sap. Therefore, it is important to 

consider elemental electrochemical equivalents as well as tissue concentration on a mass basis. 

While this designation may seem entirely academic, it has significant implications to 

interpretation of experimental data. For example, we observed a positive linear association 

(Pr>│t│<0.001) between K fertilization rate and total tissue cation content when elements were 
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expressed as g kg-1 but no association was observed when total cation content was expressed as 

mmolc kg-1 (Table 2.6). As will be discussed in further detail, this changes the interpretation of 

relationships between nonacid cations and the composition of the nonacid cation pool. While this 

convention still does not address the fact that elemental composition of cellular compartments 

and structures is not determined on a dry matter basis, it does account for the electrochemical 

activities of nutrients upon ion uptake and storage. These results highlight the need to examine 

tissue nutrient composition using multiple units of measurement, as each convention has 

strengths, weaknesses, and situations of practical applicability. 

 Application of fertilizers or soil amendments containing K, Ca, or Mg is known to affect 

tissue nonacid cation composition of plants (Marschner, 1995; Pelletier et al., 2008a; Pelletier et 

al., 2008b; Woods et al., 2006). Interestingly, in this study the sum of cations (mmolc  kg-1) was 

not significantly affected by K fertilization rate, while the portion of the total nonacid cation pool 

occupied by each cation was (Table 2.6). This suggests that there is a conserved physiological 

limit on cation uptake, irrespective of fertilizer application rate. As such, the ratio of applied 

fertilizers can be critical determinant of nonacid cation pool composition. Monocots are 

proficient scavengers of K in soils, as the low cation exchange capacity of their root system 

(compared to dicots) preferentially excludes Ca and Mg affording them tremendous K uptake 

capabilities (Marschner, 1995). Therefore, it is likely that the reciprocal nature of nonacid cation 

uptake in this study was a function of Ca and Mg exclusion at the root/soil interface as well as 

electrochemical limitations on ion uptake and vacuolar capacity. Interestingly, tissue Ca content 

was more affected by K fertilization rate than Mg or Na.  

 The sum of tissue K and Ca (mmolc kg-1) accounts for 92% of total cation content 

variability with ~85% of points falling between 800 and 1200 mmolc kg-1 of total cations. When 

tissue Ca content (mmolc kg-1) is plotted versus tissue K content (mmolc kg-1), no statistically 

significant trend is observed. However, when the % of the total cation pool occupied by Ca is 

plotted versus the % of the total cation pool occupied by K, a strong inverse linear relationship is 

observed (Figure 2.2). These results highlight the reciprocal nature of tissue K and Ca content 
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and the profound effect of these cations on the composition of the total cation pool. No 

statistically significant correlation between dark green color index and any tissue nutrient 

parameters was observed; therefore, there is no clear ‘optimal’ base cation pool composition that 

affords maximal aesthetic performance. This nonconventional method of reporting tissue cations 

should be explored further under field conditions and varying nitrogen application rates. 

   
Figure 2.2. Relationship between tissue Ca and K when both are expressed as the 

percentage of the sum of nonacid cations (Cationsum). Data from the two experimental runs 

was pooled. 
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2.5.2 Non-structural Carbohydrate Dynamics  

  

 Fructose and glucose content following the fertilization period showed an inverse linear 

relationship with K fertilization rate (Table 2.7), likely due to the effects of plant K status on the 

speciation of osmotic pressure generating solutes within the vacuole (Evans and Sorger, 1966; 

Pitman et al., 1968; Wildes and Pitman, 1975). These differences were not apparent following 

plant hardening, potentially overshadowed by the ~10 fold increase in reducing sugar content 

following the onset of hardening conditions. Tissue sucrose content was not affected by K 

fertilization rate. Unlike glucose and fructose, the highest tissue sucrose levels were observed 

following ‘hardening’ and these values declined following the ‘mid-winter’ period. 

Correspondingly, glucose and fructose concentrations increased during this period, suggesting 

catabolism of sucrose (and potentially raffinose) to glucose and fructose. Bertrand et al. (2011) 

made similar observations in winter wheat. 

 The oligosaccharide raffinose has been shown to influence freezing tolerance of several 

grass species (Crowe et al., 1988; Koster and Lynch, 1992). Following the ‘mid-winter’ period, 

when the likelihood of experiencing killing temperatures in the field would be greatest, an 

inverse linear relationship between K fertilization rate and tissue raffinose content was observed. 

While not attributed to the effect of raffinose or other NSCs, Tyler et al. (1981) observed an 

inverse relationship between K fertilization rate and freezing tolerance of wheat. An inverse 

linear relationship between K fertilization rate and ethanol soluble-low degree of polymerization 

fructans (ESF) was observed following the final (‘early-spring’) sampling date only. Although 

usually associated with WSFs, spring fructan content has been linked to increased snow mold 

resistance, spring recovery, and seasonal yield of forage grasses (Bertrand et al., 2011; Lawton 

and Burpee, 1990; Sanada et al., 2010). The positive linear association between K fertilization 

rate and tissue glucose-6-phosphate and fructose-6-phosphate on several sampling dates ( 
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Table 2.7) suggests that K fertilization increases the rate of carbon metabolism. These results are 

discussed further in the context of TCA metabolite dynamics.   

 

2.5.3 Tricarboxylic Acid Intermediates 

 

 The tricarboxylic acid (TCA) cycle is central to oxidative metabolism in nearly all 

organisms, where the oxidation of carbon fuels generates the bulk of reducing power yielded 

from carbon respiration. Furthermore, TCA cycle intermediates serve as carbon skeletons for 

nitrogen assimilation, amino acid synthesis, and a myriad of secondary metabolites. Not all TCA 

intermediates are found in the mitochondria. Beyond steady state concentrations involved in the 

mitochondrial TCA cycle, malate and citrate are accumulated in the vacuole and mobilized in 

response to homeostatic demands (Winter et al., 1994). As much as 95% of total malate is found 

within the vacuole even when whole leaf concentrations increase fourfold (Gerhardt et al., 1987). 

These organic acids participate in generating osmotic gradients (e.g. stomates), and maintenance 

of charge and pH homeostasis within cellular compartments (e.g. cytosol and vacuole). Malate 

transport into the vacuole is via an active transport mechanism (Boller and Wiemken, 1986; 

Martinoia et al., 1985) and there is considerable evidence that vacuolar malate and citrate 

transport are mediated by a shared transporter (Rentsch and Martinoia, 1991). 

 Experiments using 13C have shown that citrate formed in the TCA cycle is not found in 

the cytoplasm, but is actively accumulated in the vacuole (Gout et al., 1993). Furthermore, citrate 

ions accumulated in the vacuole seem to remain there out of equilibrium with cytoplasmic 

enzymes even when intracellular carbohydrate pools are extremely low, making vacuolar citrate 

essentially metabolically inert (Genix et al., 1990; Gout et al., 1993). These features also suggest 

that citrate plays an important homeostatic roll, particularly in the vacuole. 

 The tendency of plants to absorb cations and anions at unequal rates depending on soil 

solution composition apparently violates the absolute principle that the total charge of ions 

within plant cells equals zero. However, disparate ion uptake ratios and compartmental charge 
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balance are buffered largely by the organic acids malate and citrate. As cation uptake exceeds 

anion uptake (the cation-anion difference; CAD), root cell cytosolic pH increases, largely due to 

extrusion of protons in order to drive K uptake. Consequently, organic acids (~90% malate) are 

mobilized in a corresponding fashion, maintaining pH homeostasis and serving as counter anions 

to maintain charge balance (Jacobson and Ordin, 1954). Cations in excess of cellular demands 

are then shuttled to the vacuole, where malate and citrate serve as charge balancing organic acid 

anions. This phenomenon has been demonstrated in several classic experiments (Hiatt, 1967; 

Jacobson and Ordin, 1954; Kirkby and Knight, 1977; Ulrich, 1941). In this experiment, CAD 

was calculated according to Goff et al. (2004), and mean CAD values were 64, 87, 106, 143, and 

166 mmolc L-1 for turfgrass fertilized with 0.00, 0.25, 0.50, 2.00, or 3.00 g K m-2 7d-1, 

respectively. As would be expected, a significant (Pr>F <0.0001), positive linear relationship 

between cation-anion difference and tissue malate (r2 = 0.68) and citrate (r2 = 0.67) was 

observed. 

 Potassium fertilization is an essential determinant of CAD, as tissue K content explains 

94% of CAD variability when both parameters are expressed as mmolc L-1 and 80% of CAD 

variability when both parameters are expressed as mmolc kg-1. In a more applied sense, CAD is 

largely a function of tissue K content because nearly all cellular K is electrochemically active 

and CAD is scaled to account for the structural and therefore electrochemically inactive pool of 

Ca and Mg. It is important to note that fertilizing with potassium chloride only affected tissue K 

content. Total tissue cation content, total tissue anion content, and anion pool composition were 

unaffected by K fertilization rate; therefore, the influence of K fertilization on CAD is strictly 

due to an increased portion of the total cation pool being electrochemically active as K. As the 

percentage of the cation pool occupied by K increases, the overall electrochemical activity of 

cation pool increases, requiring additional organic acid anions to maintain charge homeostasis 

within the vacuole.  

 There is apparently no association between tissue malate and tissue K content until K 

concentrations reach ~125 mmolc L-1 (Figure 2.3 A) At tissue K concentration greater than ~125 
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mmolc L-1 a strong positive linear relationship with malate is observed. Interestingly, this value 

has been suggested as a generalized plant sufficiency level  for affording the correct 

thermodynamic environment for optimal protein hydration, conformation, and function of K 

dependent enzymes (Leigh and Jones, 1984; Wyn Jones and Pollard, 1983). Furthermore, when 

tissue K concentrations are greater that ~200 mmolc L-1 there appears to be a significant increase 

in tissue citrate content (Figure 2.3 B)  

 Luxury K consumption has been described as the accumulation of tissue K to 

concentrations greater than the amount required to support adequate growth and cell maintenance 

(Hoagland and Martin, 1933; Wildes and Pitman, 1975). These important benchmarks of tissue 

K content may reflect the point of K sufficiency and ‘luxury K consumption’, respectively. 

These data suggest that malate synthesis increases in response to K uptake rates greater than 

those needed for maintaining adequate cytosolic K levels whereas citrate synthesis increases 

once cytosolic K pools are saturated and K begins to accumulate in the vacuole at high 

concentrations. The increased role of citrate as an organic acid anion at greater K concentrations 

may be because malate is a divalent organic acid anion whereas citrate is trivalent; therefore, the 

electrostatic buffering ability on a molar concentration basis is greater for citrate.   
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Figure 2.3. Relationship between tissue K content (mmolc L-1) and tissue concentrations of 

the organic acids (A) malate and (B) citrate (mmol L-1). Data from the two experimental 

runs is pooled. 
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 Averaged across all sampling dates, tissue K content was 140, 173, 187, 228, and 260 

mmolc L-1 for turfgrass fertilized with 0.00, 0.25, 0.50, 2.00, or 3.00 g K m-2 7d-1, respectively. If 

~200 mmolc K L-1 truly represents the threshold designate of luxury K consumption, then 

fertilizing with K at a rate greater than 0.50 g m-2 7d-1 (1:1 N:K ratio) would promote luxury K 

consumption. These data also show that even with no supplemental K applications in a soil with 

low (6 mg kg-1) exchangeable K, tissue K levels can remain at physiologically adequate levels. 

Without specific measurements of the location and concentrations of K and organic acids these 

statements are purely speculative; however, this model is logically supported by existing 

literature and bears further experimental consideration. 

 As tissue K content and CAD increases, a greater portion of organic acids are siphoned 

from metabolically active pools to fulfill homeostatic rolls. This represents a significant cost, in 

terms of the active transport of organic acids into the vacuole and subsequent redistribution in 

accordance with homeostatic demands, reduced availability of carbon skeletons for anabolic 

reactions, as well as unrealized ATP and reducing power that would be generated if these carbon 

resources were fully oxidized via oxidative respiration. The cost of unrealized chemical energy 

would be particularly pertinent for citrate, as K fertilization had the greatest effect on tissue 

citrate content and vacuolar citrate is known to be relatively metabolically inert even when 

carbon resources are low (Genix et al., 1990; Gout et al., 1993). Therefore, luxury K 

consumption has a real cost, at least on a biochemical level. The fact that malate and citrate are 

intermediates in multiple important metabolic pathways makes it nearly impossible to estimate a 

specific cost in terms of ATP, NADH, and/or carbon skeletons; however, it can be assumed with 

confidence that the utilization of organic acids strictly as homeostatic buffers represents an 

inefficient use of carbon resources. The positive linear relationship (Pr>F <0.0001) between K 

fertilization rate and other TCA intermediates following fertilization (α-ketoglutarate, succinate, 

and fumarate) and hardening (succinate, and fumarate) suggests an overall positive association 

between carbon metabolism and K fertilization rate. This is further supported by the positive 
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linear association between K fertilization rate and tissue glucose-6-phosphate content, suggestive 

of a higher rate of carbon flux through glycolysis and oxidative respiration. These findings are 

logical, as maintenance of pH and electrochemical homeostasis under increasing K fertilization 

would require greater metabolic carbon flux to satisfy organic acid buffer requirements.  While 

the overall implications of this scenario are unclear, respiration of winter wheat decreases 

through the fall, and the rate of respiration at 0°C is inversely related to the degree of plant cold 

hardiness and dormancy (Newton and Anderson, 1931). Following this logic, increasing K 

fertilization would keep plants at a higher state of metabolic activity thereby compromising their 

cold hardiness and snow mold resistance. The inverse linear relationship between tissue raffinose 

content and K fertilization rate following mid-winter also implicates K fertilization in affecting 

plant cold tolerance. While the total flux of carbohydrates throughout simulated winter was not 

significantly different across K fertilization treatment groups, it is apparent that carbon resources 

were utilized differently depending on K fertilization rate. Clearly these topics deserve more 

attention with regards to plant winter hardiness.  

  

2.5.4 Additional Considerations 

 In addition to physiological impact of K fertilization on grasses, tissue potassium content 

is critically important when forages are grown as animal fodder. Fertilizing with adequate K to 

support maximal yields while preventing luxury uptake is critical, as forage elemental 

composition can predispose production animals to metabolic disorders associated with 

electrolyte imbalance. Homeostatic regulation of animal plasma Ca and Mg is greatly affected by 

electrolyte intake, largely a function of forage K, Ca, and Mg composition. The cation-anion 

difference (CAD), commonly referred to as dietary cation-anion difference (DCAD), is used to 

model the potential impact of forages on the manifestation of hypocalcaemia and 

hypomagnesaemia in dairy cows (Pelletier et al., 2008a). The risk of developing these disorders 

increases with DCAD, which significantly compromise animal health and farm profitability.  
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 Forage organic acid composition also affects the nutritional quality and energy yield of 

ensiled crops. The purpose of ensiling grasses (including maize) is to preserve animal fodder 

resources that cannot be immediately used. Ensiling plant materials in an anaerobic environment 

promotes microbial fermentation of a portion of labile carbon fuels which lowers silage pH to 

where additional microbial decomposition of feed materials is inhibited. In doing so, the bulk of 

forage dry matter and digestible carbon fuels (e.g. carbohydrates, volatile fatty acids) are 

conserved to a greater extent than they would in an aerobic environment. An important 

component of efficient silage preservation is a precipitous drop in pH within several weeks of 

being ensiled. Extending this period can result in considerable dry matter loss through continued 

microbial decomposition. Malate and citrate contained in silage materials buffer against this pH 

decrease across the critical pH range of pH 4-6. Roughly 80% of silage buffering capacity comes 

from plant organic acids (Playne and McDonald, 1966). 

 Citrate and malate are degraded rapidly (~7 d) following ensiling (Hirst and Ramstad, 

1957; Playne et al., 1967). While it is difficult to determine the fate of carbon contained in forage 

citrate and malate, they are rapidly fermented by microorganisms to organic acids with even 

greater buffering capacities, leading to delayed silage preservation (McDonald and Henderson, 

1962). The overall impact of the buffering effects of malate, citrate, and/or their derivatives is 

that a larger portion of labile sugars are required to reduce silage pH to stable levels that support 

preservation. In fact, 50-80 times more hexose equivalents can be required to achieve silage 

preservation when the buffering capacity of organic acids is considered (Smith, 1962). 

Furthermore, the direct conversion of malate and citrate to pyruvate during fermentation results 

in 46 and 66% of dry matter loss as CO2, respectively. This leads to greatly reduced efficiency in 

the conversion of plant biomass to suitable animal fodder. While organic acids may only 

represent ~1-2% of forage dry weight, this small percentage can significantly affect forage 

quality and preservation efficiency, particularly on larger farms where thousands of tons of silage 

are used annually.  
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 In conclusion, the negative impact of excessive potassium fertilization on forage 

management is three-fold. The economic burden of K fertilization is significant, as potash costs 

have increased by ~300% over the past 10 years (USDA, 2010) making efficient use of fertilizers 

essential. Feeding animals high-potassium forages increases their likelihood of suffering from 

metabolic disorders associated with electrolyte imbalances. Finally, increased forage malate and 

citrate content at high K fertilization rates would result in less efficient conversion of resource 

intensive crop biomass to animal feed. These factors significantly impact production efficiency 

in a business were efficiency is paramount to economic viability, especially considering that feed 

represents ~75% of a dairy farms total operating cost (USDA, 2011). 

 

2.6 Conclusions 

  As social awareness of environmental issues increases, a substantial amount of research 

is being directed towards reducing fertilizer and pesticide applications to agricultural and 

landscape crops while maintaining high productivity. In the past, K fertilizers were inexpensive 

and because K does not have any obvious detrimental impacts on plant performance or the 

environment, refining K fertilization strategies was not of practical or economic significance. In 

this study, we found that K fertilization rate has significant impacts on plant metabolism and on 

crop utility when used as animal feed. Results from a study run in parallel (Chapter 3) also 

demonstrated that K fertilization increases the risk of grey snow mold (Typhula incarnata Fr.) 

damage. While there is no doubt that K fulfills a critical role in plant function and utility, 

gratuitous applications of K fertilizers may be a costly, unnecessary, and wasteful allocation of 

resources with significant practical and economic consequences.  

 Besides affecting snow mold susceptibility, the relationship between K fertilization, plant 

utilization of carbon resources, and seasonal plant stresses remains unclear. However, the 

findings of this study provide a framework for devising new studies to examine the effects of K 

fertilization on carbon utilization of grasses under various stresses. A more robust data set taken 

from multiple environments where a greater number of ‘performance’ parameters were 



 

  
 

52 

monitored would provide more comprehensive information regarding whether increased 

diversion of carbon resources to organic acid anion production significantly affects plant 

performance. Understanding how fertilizer and soil chemical composition affect plant cation-

anion balance, carbon utilization, and subsequent plant performance presents an interesting area 

of future research.     
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CHAPTER 3: POTASSIUM FERTILIZATION AFFECTS PSYCHROPHILIC 

PATHOGEN SUSCEPTIBILITY OF ANNUAL BLUEGRASS 
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3.1 Abstract 

Typhula incarnata (GSM) and Microdochium nivale (PSM) are important psychrophilic 

pathogens of cool-season turfgrasses. Existing field data suggests that K fertilization may affect 

disease severity, warranting additional experimentation under controlled conditions. In a 

greenhouse, annual bluegrass [Poa annua var. reptans (Hauskn) Timm.] was seeded into 120 – 

30 x 10 cm diam. sand filled columns. Nitrogen (0.5 g m-2 ), K (0.5 g m-2), and all other essential 

nutrients were applied weekly for 90 d. Following establishment, weekly application rates of N 

and essential nutrients remained constant, yet 5 different K treatments (0, 0.25, 0.5, 2, 3 g m-2) 

were imposed for 90 d. Columns were then moved to a refrigerated room, maintained under a 

photosynthetically active radiation flux of ~300 µmol m-2 s-1, and day/night air temperature 

incrementally decreased every 7 d over 28 d (10/4°C, 4/-2°C, 2/-4°C,       -2/-6°C). Plants were 

then buried under 10 cm of snow and kept under darkness at       -4°C for 28 d. After thawing at 

2°C, 8 replicates of each K treatment were inoculated with a 5 mm agar disc taken from GSM, 

PSM, or sterile cultures. Columns were incubated at 2°C (40 d) then 4°C (40 d) under periodic 

misting and evaluated for % necrotic turf every 10 d. Survival analysis of days to 50% infection 

(LI50) was used to quantify disease progression. Tissue harvested following each experimental 

phase was analyzed for nonacid cations, nonstructural carbohydrates, and several organic acids. 

The experiment was conducted twice and data was pooled. Potassium treatment significantly 

affected LI50 in GSM (Pr>χ2 =0.007) but not PSM (Pr>χ2 =0.277) inoculated turf. While specific 

mechanisms remain unclear, several biochemical parameters (K, Ca, organic acid content) 

associated with GSM and PSM severity were impacted by K fertilization rate. In contrast to 

existing literature, nonstructural carbohydrate dynamics were not strongly correlated with 

disease severity. 
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3.2 Introduction 

 Winter cereals, perennial forages, ornamental turfgrasses, and conifers grown in northern 

locales are annually subjected to weather conditions that favor infection by Microdochium nivale 

[Fries] Samuel & Hallett (Pink snow mold, PSM), Typhula spp. (Grey snow mold, GSM), and 

other psychrophilic pathogens (Hartig, 1888; Hsiang et al., 1999). These pathogens can cause 

considerable crop damage during cool (0-15°C) wet weather (PSM) or following extended 

periods of continuous snow cover (PSM & GSM). These losses can affect the utility and spring 

recovery of amenity turfgrasses (Chang and Jung, 2009) and the spring recovery (Sanada et al., 

2010) and seasonal yield of winter cereals (Lawton and Burpee, 1990).  

 Psychrophilic organisms, including pathogenic snow molds, have recently been identified 

as important contributors to carbon and nitrogen fluxes in subnivean environments (Larsen et al., 

2007; Schmidt et al., 2008; Schmidt et al., 2009).  Furthermore, snow mold disease pressure 

appears to be an important selective force in determining genetic diversity of amenity turfgrass 

(Bertrand et al., 2009; Wang et al., 2005) and forage grass populations (Hwang et al., 2002). The 

profound impact of these organisms on subnivean ecosystems has engendered growing interest in 

studying their biology and plant/snow mold interactions.    

 Snow molds caused by Typhula spp. develop exclusively under snow cover, and for this 

reason can only be treated preventatively with fall applications of fungicides that may loose 

efficacy through the winter. While PSM is often found in association with GSM, snow cover is 

not a strict prerequisite for PSM manifestation.  The insulative properties of prolonged snow 

cover allows soil to thaw through geothermal heat flux, thereby maintaining soil temperatures 

near 0°C (Bruehl, 1982). These conditions facilitate growth of psychrophilic organisms and 

allow considerable depletion of plant storage carbohydrates, which are critical to affording plant 

resistance to snow molds and cold hardiness (Gaudet et al., 1999; Sanada et al., 2010). 

Furthermore, transcript levels of candidate plant defense and stress-related genes in winter wheat 

(Triticum aestivum L.) decrease over time when held at near-freezing temperatures (Gaudet et 

al., 2011).  
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 The connection between cold hardiness and snow mold susceptibility is unclear, although 

both seem inseparably related to overwintering nonstructural carbohydrate (NSC) dynamics. 

Gaudet and Kozub (1991) did not observe a direct correlation between cold hardiness and 

resistance to most snow mold fungi; however, low temperature stress increases plants 

susceptibility to snow mold and snow mold infection may reduce cold hardiness (Gaudet and 

Chen, 1988). Recently, the combined work of Bertrand et al. (2011) and Dionne et al. (2010) 

demonstrated that cold hardiness and snow mold resistance are not always mutually exclusive 

traits, and that high degree of polymerization fructans are critical determinants of both. 

Furthermore, Gaudet et al. (2011) reports that antifreeze proteins isolated from winter rye 

(Secale cereale L.) apoplasts by Hon et al. (1994) and Griffith et al. (1992) are related to 

chitinases and β-1,3-glucanases, implicating their dual role in low temperature survival and 

pathogen defense. There is some evidence that a non-specific decline in cell water potential 

through the accumulation of osmotically active solutes (including NSCs) may contribute to cold 

hardiness and snow mold resistance as well (Tronsmo, 1986).      

 Snow mold resistance seems to be acquired within 1-2 weeks following the onset of 

‘hardening’ conditions and is dependent on light (Nakajima and Abe, 1996); in contrast, cold 

hardiness seems to develop more slowly, over a period of 4-8 weeks (Dionne et al., 2001; Koster 

and Lynch, 1992; Levitt, 1980) and is light independent (Nakajima and Abe, 1996). More recent 

research presents a somewhat different timeline for the development of cold hardiness and snow 

mold resistance. Molecular characterization of cold hardiness genes suggests a more rapid (1-2 

d) initiation of freezing tolerance (Sung and Amasino, 2005), while Gaudet et al. (2011) reports 

that maximum expression of genes associated with snow mold resistance is not realized until 

plants are exposed to low temperatures for a period of at least 21 days.     

 While molecular characterization of snow mold resistance is just beginning, several 

common themes have persisted in the literature for nearly 30 years. High polymeric sugar 

concentrations in autumn and winter as well as elevated fructan content in the spring are 

characteristic of snow mold resistant winter wheat varieties (Bertrand et al., 2011; Kiyomoto and 
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Bruehl, 1977; Sanada et al., 2010). Gaudet et al. (1999) suggest that exceptionally resistant 

varieties accumulate high levels of storage carbohydrates during the fall, affording their ability to 

maintain high concentrations of simple sugars throughout winter into spring. Bertrand et al. 

(2011) convincingly support this premise. These simple sugars may induce the expression of 

plant defense resistance genes though the hexokinase signal transduction pathway (Herbers et al., 

1996). It has since been shown that several important pathogenesis related genes can be induced 

by soluble carbohydrates as well (Roitsch et al., 2003). There may also be a connection between 

the down regulation of photosynthesis, the accumulation of mono- and disaccharides during the 

onset of cold temperatures, and a concomitant up regulation of plant defense mechanisms 

(Herbers et al., 1996). Pociecha et al. (2010) observed differences in photosynthetic efficiency 

and carbohydrate storage between snow mold susceptible and resistant Festulolium genotypes, 

but the specific impacts of these phenomena on snow mold susceptibility is unclear. 

 Several cold-induced pathogenesis related proteins have also been associated with 

increased non-specific resistance to snow molds in winter wheat (Gaudet et al., 2003a; Gaudet et 

al., 2003b). Of these proteins, the monocot non-specific lipid transfer proteins have shown in 

vitro toxicity to pathogenic snow molds, apparently affecting fungal membrane permeability 

(Sun et al., 2008).  Interestingly, transcripts of the defense related proteins γ-thionin and γ-

purothionin were strongly upregulated during hardening yet were not detected following 1 d 

exposure to 20°C (Gaudet et al., 2003a). These results are in agreement with observations that 

overwintering plants can ‘deharden’ rapidly following exposure to warm temperatures, leaving 

them more susceptible to winter injury (Tompkins et al., 2000).    

 For many years turfgrass managers have been under the impression that increased 

seasonal or late-season K fertilization affords increased turfgrass resistance to snow molds, yet 

no peer reviewed literature supports this notion. This common ethos likely stems from the 

ubiquitous comprehensive review of turfgrass culture written by Beard (1973). Citing Goss and 

Gould (1968), Beard comments that higher potassium levels reduce the incidence of PSM. 

Closer inspection of Goss and Gould’s article reveals a less than convincing argument. Without 
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showing statistical analyses or data, the authors vaguely describe that increasing K applications 

from 0 to 400 kg ha-1 yr-1 reduced PSM disease severity, but not every year. They continued to 

comment that when N application rates were 1000 kg ha-1 yr-1, increasing K fertilization did not 

affect disease severity, and that this indicates proof that a 20:4:8 N:P:K ratio for the total season 

is in balance. Clearly our understanding of turfgrass fertility has advanced in the past 40 years, 

and the longstanding association between K fertilization and snow mold severity needs to be 

revisited. To the contrary of Goss and Gould (1968), both Woods et al. (2006) and Webster and 

Ebdon (2005) observed a positive, linear associated between snow mold severity and K 

fertilization. The physiological basis of these findings is unclear, yet K is directly and/or 

indirectly involved in many fundamental plant processes related to the aforementioned plant 

defense strategies. 

 The specific environmental conditions required for snow mold manifestation limits 

scientists ability to study the biology of these unique organisms and plant/pathogen interactions 

in the field. Furthermore, snow cover provides a physical barrier that precludes scouting of 

disease development and implementation of disease control options mid-winter, making it 

paramount to study pre-winter management strategies that may delay disease onset or improve 

spring recovery. Agricultural managers have a high level of control over seasonal crop 

fertilization, thus providing an opportunity to minimize the potential for overwintering crop 

losses. Therefore, the goal of this research was to confirm or refute the previously reported 

effects of K fertilization on snow mold severity in a controlled environment, and evaluate 

physiological parameters associated with the observed response.  

 

3.3 Materials and Methods 

 

3.3.1 Pathogen Isolation 

 Typhula incarnata (GSM) was obtained from visually infected turfgrass (sclerotia 

present) at Portland Country Club (Falmouth, ME). The fungus was isolated and cultured 
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following the procedures of Chang et al. (2006b). Sclerotia from infected annual bluegrass leaves 

were surface sterilized with 10% bleach for 20 s, rinsed with H2O, plated on 1.5% water agar 

(WA, Difco Laboratories, Detroit, MI), and incubated at 10°C for 14 d. Aided by a dissecting 

microscope, a sterile scalpel and forceps were used to extract one hyphal tip emanating from a 

single sclerotium. The hyphal tip was transferred to potato dextrose agar (PDA, Difco 

Laboratories, Detroit, MI) and incubated at 10°C. Once mycelia were present (~ 4 d), the culture 

was transferred to a 4°C incubator in the dark. After ~10 d, sclerotia were present and no fungal 

or bacterial contaminants were apparent. 

 Culture purity was confirmed in the following manner. Cellophane circles (150 mm 

diam.) were placed in a 150 x 15 mm glass Petri dish and covered with 10 mL of distilled water 

(dH2O). The covered Petri dish was then autoclaved twice, waiting 24 h between each 

sterilization. The sterile cellophane disc was then placed on the surface of a PDA culture. A 5 

mm cube was cut from the center of the presumed pure culture and placed on the surface of the 

cellophane disc (Hsiang and Wu, 2000). Following 14 d incubation at 10°C, mycelium was 

scrapped off of the cellophane using forceps, placed in a 2.2 mL microcentrifuge tube, and 

lyophilized. Fungal DNA was extracted from 100 mg of lyophilized mycelium using the Qiagen 

DNeasy Plant Mini Kit (Qiagen Inc., Valencia, CA, USA). Polymerase chain reaction (PCR) was 

then conducted using the extracted DNA and GSM specific primers (Chang et al., 2006b) 

designed from the internal transcribed spacer (ITS) of the nuclear ribosomal DNA (GSMF1:5’-

AGGGCCGTCTGAGGCTCTCC-3’; GSMR1:5’-AGGGCCGTCTTTATAACGGT-3’), or a 

generic fungal primer set (ITS-1: 5’-TCCGTAGGTGAA CCTGCGG-3’) and (ITS-4: 5’-

TCCTCCGCTTATTGATATGC-3’) (White et al., 1990). The 25 µL reactions were conducted 

with thermal cycling conditions of 91°C for denaturation (60 s for 1st cycle, 15 s thereafter), 

61°C for annealing (15 s), and 72°C for elongation (70 s) for a total of 40 cycles. Products of 

each reaction were visualized in a 1.5% agarose gel impregnated with SYBR® safe DNA gel 

stain (invitrogen, Carlsbad, CA, USA). Reactions containing GSMF1/GSMR1 or ITS 1,4 primer 
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pairs yielded single ~750 kb or ~850 kb bands, respectively. These findings supported the visual 

determination of culture purity.  

 To further confirm the identity of the pure culture, PCR reaction products were purified 

using the QIAquick PCR Purification Kit (Qiagen Inc., Valencia, CA, USA) and the purified 

product was sequenced using an Applied Biosystems Automated 3730 DNA Analyzer (Applied 

Biosystems, Carlsbad, CA), at the Cornell University Life Sciences Core Laboratories Center.     

 The top match in the National Center for Biotechnology Information (NCBI)  basic local 

alignment search tool (BLAST) (Altschul et al., 1990) is a T. incarnata strain (E value = 1x10-92) 

isolated from infected turfgrass in Cambridge, Ontario (Hsiang and Wu, 2000; NCBI, 1999). The 

top 15 matches are all T. incarnata isolates collected at The University of Wisconsin-Madison. 

These results confirmed the purity and identity of the isolated organism. This pure ‘master 

culture’ was propagated on fresh PDA media every 14 d and maintained under darkness at 4°C 

(Chang et al., 2007; Chang et al., 2006b).  

 Microdochium nivale (PSM) sampled from Portland Country Club was isolated and 

cultured similarly to Nicholson et al. (1996). Surface sterilized, visibly infected leaf tissue was 

plated on water agar media containing kanamycin, rifampicin, and penicillin (KWARP) and 

incubated in the dark at 10°C. Once mycelia were present (~4 d), a scalpel and forceps were used 

to remove and transfer a single hyphal tip to fresh KWARP media. Following 4 d of incubation, 

a single hyphal tip from this culture was removed and transferred to a PDA culture plate. 

 To confirm culture purity, six - 5 mm discs were removed from random positions within 

the presumed pure culture and placed in a 150 x 15 mm sterile glass Petri dish containing 40 mL 

of potato dextrose broth (PDB, Difco Laboratories, Detroit, MI). Following 14 d of incubation at 

10°C, the mycelium was harvested and immediately lyophilized. Fungal DNA was extracted 

from 100 mg of homogenized lyophilized mycelium using the Qiagen DNeasy Plant Mini Kit 

(Qiagen Inc., Valencia, CA, USA). Polymerase chain reaction was then conducted using the 

extracted DNA and the generic, yet fungal specific ITS-1 and ITS-4 primer set (White et al., 

1990). The 25 µL reaction was conducted with thermal cycling conditions of 95°C for 
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denaturation (180 s for 1st cycle, 30 s thereafter), 58°C for annealing (30 s), and 72°C for 

elongation (60 s) for a total of 30 cycles. Reaction products were visualized in a 1.5% agarose 

gel impregnated with SYBR® safe DNA gel stain. A single band ~550 kb was observed, 

confirming culture purity. To further confirm the identity of the pure culture, PCR reaction 

products were purified using the QIAquick PCR Purification Kit and the purified product was 

sequenced as described for GSM at the Cornell University Life Sciences Core Laboratories 

Center.     

 The top two matches in the NCBI BLAST database were M. nivale strain DSM62278 (E 

value = 0.0) isolated from ‘sports grass courts’ in Switzerland (NCBI, 2006) and an uncultured 

Monographella nivalis (teleomorph of Microdochium nivale) isolated from an Austrian grassland 

(E value = 0.0) (Klaubauf et al., 2010; NCBI, 2009). All of the top 20 matches are described as 

Monographella nivalis or Microdochium nivale, confirming the purity and identity of the 

isolated organism. This pure ‘master culture’ was propagated on fresh PDA media every 14 d 

and maintained under darkness at 4°C. 

  

3.3.2 Plant Establishment, Fertility Treatments, Simulated Winter, and Biochemical analyses.  

 

 Experimental protocols were identical to those described in section 2.3. 

 

3.3.3 Inoculation of Experimental Units 

 Once EUs were moved to the third room of the reefer, randomly positioned on a 3 x 4 m 

slotted rack elevated above a catch basin, and held at 2°C for 24 h under darkness, 8 replicate 

EUs of each K level were inoculated with a 5 mm disc obtained from the growing margin 

(Nicholson et al., 1996) of a 21 d old GSM PDA culture, a 14 d old PSM PDA culture, or from a 

random position within a sterile PDA culture (8 replicates x 5 K levels x 3 inoculum = 120 EUs). 

Once inoculated, EUs were maintained under darkness and an ambient air temperature of 2°C for 

the first 40 d and then 4°C for another 40 d. Experimental units were misted every 1 h for 15 s, 
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providing ~0.5 cm of precipitation every 7 d. These conditions were imposed to simulate the 

darkness, 24 h leaf wetness, ~99% relative humidity, and near 0°C temperatures that persist 

under snow cover during late winter and early spring. This is subsequently referred to as the 

‘early spring’ period.  These conditions were also chosen to provide near-optimal growth 

conditions for GSM and PSM (Remsberg, 1940; Wu and Hsiang, 1999). 

 

3.3.4 Monitoring Turfgrass Health  

   Starting 30 d after inoculation, all EUs were photographed every 10 d under controlled 

light conditions using a Canon PowerShot SX 110 IS camera (Canon USA Inc., Lake Success, 

NY) mounted 30 cm above and perpendicular to the turfgrass surface. Lighting was provided by 

two 70 W incandescent light bulbs. A white balance reference card (WhiBal G7, Michael Tapes 

Design, Melbourne, FL) was included within the field of view of each image. Using the white 

balance reference card, white and grey balance of each image was normalized using Adobe 

Photoshop CS4 (Adobe Systems Inc., San Jose, CA). Images were also cropped to contain only 

turfgrass foliage within the 10 cm diam. of the pot. 

 Once images were normalized and cropped, visually symptomatic turfgrass cover 

(VSTC) was estimated. Furthermore, computed symptomatic turfgrass cover (CSTC) was 

determined by computer-automated image analysis (SigmaScan Pro v. 5.0, Systat Software Inc., 

San Jose, CA). During visual analysis, images were viewed in Adobe Photoshop CS4 and circles 

of known circumference were overlaid on the image to assist in accurate visual estimation of 

percent symptomatic turfgrass area in 5% intervals. Utilizing circles of known circumference to 

assist visual estimation of disease progress is particularly pertinent for evaluating snow molds, as 

these organisms grow in concentrically expanding hyphal mats both in culture and in the field 

(Schmidt et al., 2009). The lack of identifying marks on EUs ensured unbiased assessment of all 

images.  

 Automated image analysis was performed in SigmaScan pro using the ‘turf analysis’ 

macro presented by Karcher and Richardson (2005). Optimal hue and saturation thresholds (38-
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110 and 30-100, respectively) were established by starting with default levels outlined in Karcher 

and Richardson (2005) and iteratively making adjustments that maximized selection of visually 

non-symptomatic turfgrass and minimized interference caused by the PDA inoculum disc, and 

canopy shadow artifacts. Computed symptomatic turfgrass area was determined by subtracting 

the area of ‘green’ turfgrass (as determined by preset thresholds) from the total area. Dark green 

color index (DGCI) of ‘green’ turfgrass was calculated as described in Karcher and Richardson 

(2003). 

 

3.3.5 Determination of Disease Severity 

 Under field conditions, metrics of snow mold resistance or disease severity are limited to 

measurements of healthy or symptomatic turfgrass cover following snowmelt (Burpee et al., 

1987; Sanada et al., 2010; Woods et al., 2006). This is particularly true for Typhula snow molds, 

as these organisms require prolonged snowcover to manifest in the field (Chang et al., 2006b; 

Hsiang et al., 1999). Microdochium nivale on the other hand has less stringent environmental 

requirements (Hsiang et al., 1999; Kaminski et al., 2004), allowing more thorough analysis of 

disease progression.  

 Several other snow mold severity metrics have been proposed, including the index of 

damage by snow mold (IDSM) (Sanada et al., 2010), average disease severity index (ASI) 

(Hartman et al., 1984), and PCR based methods for quantifying fungal DNA within infected 

plant tissues (Nicholson et al., 1996). While these methods can be useful in some studies, IDSM 

and ASI rely on a ‘real-time’ (no permanent image record), unaided, 0-9 visual rating scale. 

Ordinal data generated in this manner often shows considerable variability, can be difficult to 

reproduce by other evaluators, do not always provide adequate resolution to determine 

intermediate levels of disease severity, and can limit the power of statistical inference (Horst et 

al., 1984). More modern PCR based methods are extremely powerful in exploring pathogen 

growth dynamics within a single-plant; however, the extreme sensitivity inherent to PCR 

techniques precludes larger scale disease analysis. Visual estimation of disease progression on a 
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% symptomatic turfgrass scale is commonly used for evaluating snow mold severity (Chang et 

al., 2006a) and/or host resistance (Nakajima and Abe, 1996). Employing both computer 

automated and computer aided visual analysis techniques to rate EUs provides two methods of 

unbiased analysis with complementary strengths and weaknesses that will explored further 

during the discussion of results.  

 Crop researchers have long used the area under the disease progress curve (AUDPC) to 

evaluate patterns of disease severity in space/time and develop measures of quantitative plant 

resistance. A dizzying array of AUDPC variants exist in the literature (Jeger and Viljanen-

Rollinson, 2001; Waggoner et al., 1986). Here, AUDPC was calculated from visual disease 

analysis data as described by Das et al.  (1992) and Shaner and Finney (1977). In addition to 

AUDPC, days of incubation to 50% symptomatic turfgrass (LI50) was estimated using visual 

disease analysis data in a manner similar to Nakajima and Abe (1996) and Hofgaard (2006).   

 

3.3.6 Turfgrass Recovery 

 Maintaining EUs under ‘optimal’ conditions for several weeks following exposure to 

extreme abiotic conditions or disease epidemics and measuring healthy turfgrass cover is a 

common method for evaluating recuperative ability and longer-term implications of stresses 

(Hofgaard et al., 2006; Nakajima and Abe, 1996; Patton and Reicher, 2007; Webster and Ebdon, 

2005; Yoshida et al., 1998). Here, following simulated winter in the reefer, all EUs were moved 

to a greenhouse and maintained at 25/10°C Day/Night temperatures and a 16 hr day length with 

average daily maximum PPFD of 1000 µmol m-2 s-1. Experimental units were photographed and 

evaluated as described above. From a practical standpoint, understanding the effects of prior K 

fertilization on turfgrass re-recovery from snow mold injury and overall winter decline was 

desirable. Therefore, the sensitivity of CSTC to quantifying both aspects of winter injury made it 

the most appropriate turfgrass recovery measurement protocol. 

 Several snow mold studies (Boulter et al., 2002; Chang and Jung, 2009) evaluate the 

percentage of symptomatic turfgrass remaining after a recovery period, or the total recovered 
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area as measures of turfgrass recovery from winter/snow mold injury. While these data provide 

useful information, the percentage of potential recovery realized and/or area under the crop 

recovery curve (Lawton and Burpee, 1990) provide a more thorough assessment of a stands 

recuperative ability for several reasons.  

 The percentage of symptomatic turfgrass remaining after a recovery period permits the 

relative ranking of treatment groups based on the final conditions of the turf stand, but does not 

account for the starting condition of the EU. Stand condition following recovery is inevitably 

correlated with stand condition following disease incubation (Boulter et al., 2002; Chang and 

Jung, 2009; Woods et al., 2006); therefore, this measure merely provides an additional metric of 

disease severity and not recovery per se. 

 The percentage of turfgrass improvement following recovery (% symptomatic turfgrass 

following incubation - % symptomatic turfgrass following recovery) is a poor measure of 

turfgrass recovery as it is inherently limited by the stand’s potential for recovery. For example, if 

an EU starts the recovery period with 0% symptomatic turfgrass then by default total recovery 

will be 0%. This result could be erroneously interpreted as a lack of recovery, an undesirable 

situation. Both the percentage of potential recovery (total improvement following 

recovery/(100% - symptomatic turfgrass following winter)) and area under the crop recovery 

curve (Lawton and Burpee, 1990) account for stand status prior to recovery; therefore, providing  

a more appropriate metric of crop recuperative ability.  

       

3.3.7 Statistical Analysis 

  Treatments and observations were made on EUs arranged in a completely randomized 

design. All statistical analyses were conducted in JMP (version 8, SAS Institute, Cary, NC). 

Main treatment and interaction effects on AUDPC, AUCRC, and nonacid cation content data 

were analyzed using the REML method of the standard least squares personality in JMP, trial 

was considered a random effect (McIntosh, 1983). Main treatment and interaction effects on 

censored LI50 data was analyzed first by the REML method of the proportional hazard 
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personality to specifically identify the effects of trial, fungus, and all interactions. Potassium 

level treatment effects on censored LI50 data pooled across both trials was then analyzed 

separately for each fungus type (GSM and PSM) using Kaplan-Meier survival/reliability 

analysis.  

 

3.4 Results 

3.4.1 Tissue Nonacid Cation Content Dynamics 

 See section 2.4.1 for nonacid cation content dynamics.  

 

3.4.2 Metrics Used for Disease Progression Analysis 

 Experimental units that were inoculated with sterile PDA discs showed no visual disease 

symptoms throughout the experiment (VSTC = 0); therefore, CSTC data from these samples 

provides a measure of turfgrass decline caused by factors other than snow mold infection. These 

data also provide a measure of how readily automated image analysis differentiated between 

turfgrass color change caused by seasonal decline or disease. Computed symptomatic turfgrass 

cover erroneously over-estimated symptomatic turfgrass by ~10% in trial #1 and ~20% in trial 

#2 (Table 3.1). Potassium level did not influence CSTC of sterile PDA inoculated EUs. 

 
Table 3.1. Computed symptomatic turfgrass cover of  non-inoculated experimental units  

Days of Incubation 
Computed Symptomatic Turfgrass 

Cover† 

 Trial #1  Trial #2 
0 3.38  12.8 
30 8.71  24.9 
40 7.03  20.1 
50          10.7  20.9 
60 9.01  25.1 
70         20.8  27.3 
80         21.4  27.1 

Mean         11.6  22.6 
† Thresholds: Hue: 38-110; Saturation: 30-110)  
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 There is considerable relative agreement between VSTC and CSTC (Figure 3.1 A, B); 

however, CSTC tends to be greater than the ideal 1:1 ratio below 20% and 30% VSTC (trial #1 

and #2, respectively), and less than the 1:1 ratio above these values. In order for CSTC to be 

used as a valid surrogate measure of disease severity, CSTC values would need to be ‘adjusted’ 

to account for turfgrass decline caused by factors other than snow mold infection. If CSTC 

means from sterile PDA inoculated controls are subtracted from CSTC values for each 

inoculated EU at corresponding measurement dates, many ‘adjusted’ CSTC values fall below 0, 

even when VSTC is as high as 50% (Figure 3.1 C, D). Furthermore, adjusted CSTC values fall 

almost entirely below the 1:1 CSTC:VSTC ratio across the entire measurement range. The 

disparity between VSTC and both adjusted and non-adjusted CSTC at the lower and upper limits 

(0 and 100%) of the measurement scale is particularly concerning, because visual designation of 

0% symptomatic turfgrass or 100% symptomatic turfgrass is quite absolute. Low adjusted CSTC 

values and the discrepancy between CSTC and VSTC is largely a function of significant decline 

in turfgrass green color (particularly trial #2) due to factors other than disease.  

 In conclusion, computer automated image analysis did not provide a valid measurement 

of disease severity in this study. While this technique has been used with considerable success to 

identify diseased turfgrass in a healthy/green sward (Karcher and Richardson, 2005) and quantify 

vegetation cover in a soil background (Richardson et al., 2001), the binary nature of digital 

image analysis (green or non-green) limits the applicability of this technique to situations where 

multiple factors contribute to turfgrass decline. As a result, snow mold severity metrics discussed 

in subsequent sections will rely on VSTC data.  
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Figure 3.1. Computed symptomatic turfgrass cover vs. visually symptomatic turfgrass 

cover (A, B). Adjusted computed symptomatic turfgrass cover (CSTCAdjusted = CSTCSample – 

CSTC non-inoculated control ) vs. visually symptomatic turfgrass cover (C, D).  Trial #1 (A, C) 

and Trial #2 (B, D) are compared side to side. Data from inoculation ‘day 0’ and non-

inoculated control experimental units were removed from the data set.
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3.4.3  Area Under the Disease Progress Curve 

 The AUDPC provides a useful measure of disease severity, with high AUDPC values 

designating more severe disease conditions. Potassium treatment level significantly affected 

AUDPC at α = 0.1 (Table 3.3) when data from GSM and PSM inoculated EUs were pooled. In 

this case a positive linear relationship between K fertilization rate and disease severity was 

observed. While there were no significant differences in AUDPC between K fertilization rates 

less than 0.5 g K m-2 7 d-1; together, mean AUDPC for K fertilization rates less than 0.5 g K m-2 

7 d-1 were significantly lower than K fertilization rates greater than 0.5 g K m-2 7 d-1. When data 

for each inoculum type is analyzed separately, these same trends hold for GSM but not PSM 

inoculated EUs. In fact, K level did not significantly affect AUDPC of PSM inoculated EUs 

(Table 3.2 & Table 3.3).   

 

 
Table 3.2. Mean area under the disease progress curve values by K fertilization level and 

inoculum type. 

  Mean AUDPC† 

K Level Application Rate (g m-2)‡ 
Grey Snow 

Mold Pink Snow Mold 
1 0.00 1788b§ 1334NS¶ 
2 0.25 1719b 1480 
3 0.50 2113ab 1385 
4 2.00 2556a 1304 
5 3.00 2633a 1706 

† AUDPC, Area under the disease progress curve.  
‡ Every 7 d for 90 d prior to simulated winter. 
§ Within column, means not followed by a common letter are significantly 
different (α = 0.05). 
¶ NS, not significant (α=0.05). 
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Table 3.3. Analysis of variance for area under the disease progress curve, by source. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   
Area Under the Disease 

Progress Curve 
Area Under the Disease 

Progress Curve 
Area Under the Disease 

Progress Curve 
   (GSM and PSM)† (GSM Only)  (PSM Only)  

Source Contrast df Estimate  Pr > │t│ Pr > F Estimate  Pr > │t│ Pr > F Estimate  Pr > │t│ Pr > F 
K Level 
(KL)‡  4   0.0804   0.0161   NS§ 
 Linear KL 1 482.3 0.005  773.1 0.001  NS NS  
 Quadratic KL 1 NS NS  NS NS  NS NS  
 KL 1,2, & 3 vs. KL 4 & 5 1 413.53 0.01  721.6 0.001  NS NS  
 KL 1 & 2 vs. KL 3 1 NS NS  NS NS  NS NS  
Fungus 
Type (F)  1   ***   NA¶   NA 

KL x F  4   NS   NA   NA 

***Significant at the 0.001 probability level.  
† GSM, Grey snow mold (Typhula incarnata); PSM, Pink snow mold (Microdochium nivale)  

‡ K level 1, 2, 3, 4, 5; 0.00, 0.25, 0.50, 2.00, and 3.00 g K m-2 7d-1 for 90 d prior to simulated winter, respectively.  
§ NS, Not significant (α = 0.05).  
¶ NA, Not applicable.  
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3.4.4 Days of Incubation to 50% Visually Symptomatic Turfgrass Cover 

 Days of incubation to 50% visually symptomatic turfgrass cover (LI50) was used as a 

measure of disease progression and severity in a manner similar to Nakajima and Abe (1990) and 

Hofgaard et al. (2006). Unlike AUDPC, low LI50 values indicate more rapid disease onset. Cox 

proportional hazard analysis of LI50 reveals that K level and inoculum fungus type (GSM vs. 

PSM) significantly affected LI50, whereas trial and all source interactions did not (Table 3.4).  

 
Table 3.4. Cox proportional hazard analysis of days of incubation to 50% visually 

symptomatic turfgrass cover, by source. 

 

Source df Pr > χ2 
K Level (KL) 4 0.0103 
Inoculum Type (I) 1 0.0002 
Trial (T) 1 NS† 

KL x I 4 NS 
KL x T 4 NS 
I x T 1 NS 
KL x I x T 4 NS 
† NS, not significant (α=0.05). 

 

 Because LI50 was not significantly affected by trial, data was pooled across trials and 

analyzed by inoculum fungus type using Kaplan-Meier survival analysis. Cox proportional 

hazard analysis of independent variable effects and their interactions was conducted first because 

Kaplan-Meier survival procedures only allow one independent variable in the model. Survival 

curves for K levels were significantly different for GSM (Pr > χ2 = 0.0019) but not PSM (Pr > χ2 

= 0.2780) inoculated EUs. Mean LI50 values for each inoculum type are reported in Table 3.5. 
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Table 3.5. Mean days of incubation to 50% visually symptomatic turfgrass cover by K level 

and inoculum type. 

  Mean LI50
† (Standard Error) 

K Level Application Rate (g m-2)‡ Grey Snow Mold Pink Snow Mold 
1 0.00 77 (3) 81 (3) 
2 0.25 74 (3) 78 (2) 
3 0.50 71 (3) 79 (2) 
4 2.00 64 (3) 78 (3) 
5 3.00 58 (2) 73 (3) 

† LI50, Days of incubation to 50% visually symptomatic turfgrass cover 
‡ Every 7 d for 90 d prior to simulated winter. 

 

 

3.4.5  Turfgrass Recovery Following Simulated Winter 

 Inoculum type significantly (α = 0.05) affected (Table 3.6) mean CSTC at 0 d recovery 

(GSM=PSM>Control), 28 d recovery (PSM>GSM>Control), the total percentage of recovered 

turfgrass area (GSM>PSM>Control), percentage of potential recovery realized after 28 d 

(Control=GSM>PSM) and area under the crop recovery curve (Control>GSM>PSM). Neither K 

fertilization rate nor a K fertilization rate x inoculum type interaction significantly affected any 

recovery parameter.   
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Table 3.6. Mean computed symptomatic turfgrass cover (CSTC) at 0 and 28 d of greenhouse growth following simulated 

winter, the percent of recovered turfgrass area following 28 d, the percentage of potential recovery (% recovery / % CSTC at 

0 d) realized during the recovery period, and area under the crop recovery curve (AUCRC). 

 

 
 Recovery Time     
 CSTC† ( 0 d)   CSTC (28 d)     

Inoculum‡ Range (%) Mean  (%)  Range (%) Mean (%)   Recovery (%) % of potential§ AUCRC¶ 
Control 11.2 – 49.0 24.8b  1.13 – 46.1 9.42c  15.3c 62.9a 2287a 
GSM 15.7 – 77.9 44.8a  1.05 – 55.6 16.8b  28.0a 62.9a 1950b 
PSM 16.1 – 69.1 43.4a  1.05 – 78.0 22.9a  20.5b 51.9b 1832c 

† CSTC, Computed symptomatic turfgrass cover. 
‡ Control, no inoculum; GSM, grey snow mold; PSM, pink snow mold. 
§ % of potential = % Recovery / % CSTC (recovery time 0 d). 
¶ AUCRC, Area under the crop recovery curve. 
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3.5 Discussion 

  

 Since the inception of this experiment in 2006, a considerable amount of progress has 

been made to understanding characteristics that afford plants snow mold resistance (Bertrand et 

al., 2011; Bertrand et al., 2009; Chang and Jung, 2009; Gaudet et al., 2011; Pociecha et al., 2010; 

Sanada et al., 2010; Sun et al., 2008). Whereas our previous understanding of snow mold 

resistance was largely based on presumed associations between NSC dynamics and the 

stimulation of plant defense systems (Gaudet et al., 1999) or overall robustness and recuperative 

ability (Bertrand et al., 2011; Sanada et al., 2010), we are rapidly gaining further insight into the 

molecular basis of snow mold resistance and cold hardiness thanks largely to ongoing research at 

The University of Guelph and Agri-Food Canada. This experiment was designed largely in the 

context of the NSC driven model of snow mold resistance, and is discussed as such.  

 

3.5.1 The Effect of K Fertilization on Disease Severity 

 For PSM inoculated samples, K fertilization rate did not affect disease severity in both 

the AUDPC and LI50 scales of disease severity (Table 3.2 & Table 3.5). However, it is 

interesting to note that the lowest disease severity was observed at the 0.00 g K m2 7d-1 

fertilization rate and the greatest disease severity was observed at the 3.00 g K m2 7d-1 

fertilization rate in both measurement scales. For GSM inoculated samples, both AUDPC and 

LI50 metrics of disease severity ranked K fertilization rate means in an identical ordinal fashion 

(Table 3.2 & Table 3.5). In both cases, an apparent positive linear relationship between K 

fertilization rate and disease severity/onset was observed. Within inoculum groups (e.g. PSM or 

GSM), AUDPC and LI50 provide nearly identical trends in disease onset/severity; therefore, only 

LI50 data are discussed in the context of other dependent variables for the remainder of the 

discussion. 



 

  
 

76 

 Potassium fertilization clearly affected disease severity in GSM inoculated samples, 

while no statistically significant K treatment effects were observed in PSM inoculated EUs. 

However, the greatest PSM severity was observed in plants fertilized at the highest K 

fertilization rate. So why would we observe strikingly different trends for GSM and PSM 

progression at low to moderate K fertilization rates but similar results at a very high K 

fertilization rate? Gaudet et al. (2011) aptly describe snow mold resistance as quantitative rather 

than binary, as supported by the literature (Bertrand et al., 2011; Gaudet and Kozub, 1991; 

Kiyomoto and Bruehl, 1977; Sanada et al., 2010). Furthermore, following extended exposure to 

conditions favorable for snow mold development, even the most resistant winter wheat cultivars 

can suffer significant snow mold damage (Gaudet and Kozub, 1991). In fact, Gaudet et al. (2011) 

observed equal disease severity in ‘snow mold resistant’ and ‘snow mold susceptible’ winter 

wheat lines inoculated with PSM for eight weeks. Chang and Jung (2009) observed that PSM 

was able to infect and colonize three different creeping bentgrass cultivars more rapidly than six 

Typhula spp. isolates and that PSM infected turfgrass recovered more slowly, an indication of the 

pathogens ‘aggressiveness’. This leaves the potential that innate snow mold defense systems and 

the physiological effects of K fertilization are subtle, and were overshadowed by the 

‘aggressiveness’ of PSM and/or incubation conditions.  

 The question of how K fertilization affects snow mold resistance however, remains 

unanswered. In order to harvest enough tissue for all (nonacid cation, NSC, metabolite) 

biochemical analyses, entire EUs were destructively harvested following each experimental 

phase. Disease measurements were made on separate, inoculated EUs. Therefore, this study 

relies on comparing K fertilization treatment group means in order to identify parameters 

affecting snow mold severity. Conducting correlations between many independent variables 

greatly increases the risk of falsely assigning correlation when in fact a true correlation does not 

exist (type I error); that is, the correlation may exist simply by chance. This is one reason why 

‘shotgun’ approaches to determining causative factors can be misleading. This can be 

particularly apparent when many autocorrelated factors are correlated to the same dependent 
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variable. In an effort to ascertain which biochemical parameters were associated with disease in 

this study, a multitude of such correlations were performed. However, the goal was not to apply 

causation to every statistically significant correlation, but rather identity parameters that were 

consistently and systematically correlated with disease across fungus types, sampling dates, and 

disease measurement metrics.      

 

3.5.2  Tissue Nonacid Cation Dynamics and Snow Mold Severity 

  

 The reciprocal nature of tissue nonacid cation composition (Table 2.6) complicates both 

statistical and practical interpretation of correlation coefficients listed in Table 3.7. That being 

said, some interesting trends regarding tissue nonacid cation composition and disease severity 

were observed. While correlation coefficients for all sampling dates and nonacid cation 

parameters are reported for thoroughness, the ‘mid-winter’ and ‘early spring’ sampling periods 

offer data that is arguably the most pertinent to disease severity as these reflect plant fertility 

conditions while inoculum were present. These data are therefore discussed in more detail. 

 Potassium tissue content following ‘mid-winter’ (time of inoculation) and ‘early spring’, 

when expressed on a dry matter (mmolc kg-1) or cell sap (mmolc L-1) basis, was inversely 

correlated with LI50 of GSM inoculated plants (α=0.05). Tissue K content (mmolc L-1) on these 

final two measurement dates was also inversely correlated with LI50 of PSM inoculated plants 

(α=0.10). The likelihood that these correlations are significant due to interactions with other 

physiological features is high; however, there is merit to exploring how K can directly affect 

plant susceptibility to snow molds and other diseases. 

 Local and systemic wound signaling and subsequent upregulation of healing and/or 

defense related genes is an important evolutionary advantage to plants. Their sessile nature 

precludes alternative avoidance mechanisms, leaving them dependent on preventing further 

damage and repair of wounded tissue. In their characterization of the K dependent Arabidopsis 

transcriptome, Armengaud et al. (2004) identified a very strong connection between plant K 
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status and the expression of genes linked to synthesis of jasmonic acid (JA) and other JA 

dependent gene pathways. Through synergistic or antagonistic interactions with other stress 

related plant hormones (e.g.. ethylene, salicylic acid, abscisic acid), these pathways are 

associated with a number of stress and defense responses to abiotic stress, wounding, and/or 

pathogenesis (Leon et al., 2001). Transcript levels of the first three JA biosynthesis enzymes 

lipoxygenase, allene oxide synthase, and allene oxide cyclase increased markedly during K 

starvation and rapidly declined follow resupply of K (Armengaud et al., 2004). Citing the fact 

that snow mold resistant winter wheat varieties maintained higher transcript levels of allene 

oxide synthase under winter-like conditions, Gaudet (2011) has implicated the importance of the 

jasmonic acid pathway to ‘hardening’ induced low-temperature and snow mold resistance. Leon 

et al. (2001) also reports that JA biosynthesis is limited by allene oxide synthase 

transcript/protein levels, which are very low in healthy plants and increase correspondingly with 

JA following a stress event. Maintaining plants under subclinical K stress may precondition them 

for rapid JA related responses to winter related stresses including pathogenesis by snow molds. 

This may be particularly beneficial when thermodynamic restrictions imposed by low 

temperatures precludes de novo synthesis of JA and rapid induction of JA related plant defense 

systems. 

 Tissue calcium content was the only predictor of LI50 for both GSM and PSM inoculated 

samples that showed a statistically significant (α=0.05) correlation (positive) on both of the final 

two measurement dates. The systematic and statistically significant nature of these results 

suggests that the depression of tissue Ca content by K fertilization may play an important role in 

disease dynamics. Calcium is an important component of secondary messenger systems for a 

multitude of plant cell signaling pathways, including JA-dependent and JA-independent wound 

signaling/response pathways (Leon et al., 1998). The distribution of Ca within the cell is 

complex, with pronounced electrochemical gradients across the plasma membrane, tonoplast, 

endoplasmic reticulum, and even within the cytoplasm (Bush, 1995). Vacuolar Ca2+ has been 

implicated in maintaining homeostatic cytosolic Ca2+ concentrations as well as providing a 
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source of Ca2+ during signal transduction (Bush, 1995). The regulatory effect of Ca2+ is 

modulated through the activation of Ca2+ binding proteins including calmodulin and calmodulin-

related proteins and the interaction of Ca-bound proteins with a plethora of enzymes and 

regulatory proteins (Klee and Vanaman, 1982). In addition to discovering that JA biosynthesis 

genes and related pathways were strongly down-regulated following re-supply of K, Armengaud 

et al. (2004) also observed strong down-regulation of several genes associated Ca2+ binding 

proteins including calmodulin. These research findings provide an interesting theoretical 

framework for the observed positive correlation between LI50 and tissue Ca content. While it is 

difficult to assume the cellular distribution of Ca2+, it is likely that Ca2+ homeostasis of cellular 

structures/compartments would be maintained at the expense of vacuolar Ca2+ stores. Therefore, 

the combined effect of reduced transcript levels of Ca2+ binding secondary messenger proteins, 

JA biosynthetic and wound/defense related proteins, and reduced Ca2+ stores could have 

hindered the plants ability to elicit plant defense systems in response to pathogen attack.   

 The ionic environment of the apoplast is known to affect cell wall extensibility and 

expansion. Specifically, increased concentrations of polyvalent cations (e.g. Ca2+) restricts 

enzymatic modification of pectin and subsequent arrangement of other cell wall components 

(Wehr et al., 2004). While it would be attractive to attribute increased disease severity to reduced 

tissue Ca content and subsequent cell wall integrity at increased K fertilization rates, speculating 

the fraction of the total Ca2+ pool residing in the cell wall under these conditions would be 

impossible. Furthermore, a considerable amount of research has shown that when calcium is 

taken up from the soil solution, there is a rapid, initial enrichment of the cell wall ‘free space’ 

and then a slow linear progression of uptake into the cell (Demarty et al., 1984). Therefore, it 

seems logical that even under conditions where Ca uptake is restricted by heavy K fertilization, 

cell wall Ca content would be less affected by mild Ca starvation. Of course, this ignores the 

likely possibility that Ca can be remobilized from cell wall structures to other cellular 

compartments through reciprocal regulation of cell wall modifying enzymes.  
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 Seling et al. (2000) observed that a greater portion of total tissue Ca was localized to the 

cell wall under low Ca conditions and that significant differences in cell wall Ca content were 

only observed in conjunction with visual deficiency symptoms in potato leaves. Furthermore, 

their data suggest that increased enzymatic degradation of pectin was only observed under 

obvious Ca deficiency symptoms. None of the EUs used in our experiment showed any visual 

symptoms of Ca deficiency, and the lowest tissue Ca value observed was 4.3 g kg-1. This value is 

within the accepted range for turfgrass tissue (3.0-12.5 g kg-1) and very close to the tissue Ca 

content (4.5 g kg-1) above which no deficiency symptoms were observed by Seling et al. (2000).  

 Microscopic observation of mycelial invasion of creeping bentgrass (Oshiman et al., 

1995) and winter wheat (Takenaka and Yoshino, 1989) inoculated with Typhula snow molds 

suggested that infection occurs initially through stomata and then through the cuticle and 

epidermal cells. This suggests that cell wall integrity would not be a major determinant of snow 

mold infection, as stomata would provide a path of least resistance for mycelial invasion of leaf 

tissues. Therefore, there is insufficient evidence to support the notion that the observed inverse 

correlation between tissue Ca content and disease severity was a function of compromised cell 

wall integrity under increasing K fertilization. 
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Table 3.7. Simple correlation coefficients (r) relating turfgrass tissue non-acid cation parameters measured following each 

experimental phase and days to 50% infection for grey snow mold (GSM) and pink snow mold (PSM) inoculated experimental 

units. Correlations were performed using means for different potassium fertilization rate treatment groups. Negative 

correlation coefficients designate a trend toward greater disease severity (fewer days to 50% infection). 

 

 

 

 

 

 

 

 

 

 

 

 

  Stage of Experiment Preceding Harvest 
Turfgrass Tissue  ‘K Treatment’  ‘Hardening'  ‘Mid-Winter'  ‘Early Spring' 

Nonacid Cation Parameter†  GSM† PSM‡  GSM PSM  GSM PSM  GSM PSM 
  _______________________ Correlation Coefficient (r) ___________________________ 

K mmolc kg-1  -0.98** NS§  -0.98** -0.83¶  -0.99*** -0.82  -0.96** NS 
K mmolc L-1  -0.99*** -0.81  -0.96** -0.89*  -0.99*** -0.85  -0.91* -0.84 
Ca mmolc kg-1   0.99***  0.81   0.98**  0.80   0.99***  0.89*   0.96**  0.92* 
Mg mmolc kg-1   0.99***  0.86   0.98**  0.81   0.97**  0.89*  NS  0.95* 
*,**,*** Statistically significant at the 0.05, 0.01, and 0.001 probability level, respectively. 
†  GSM, Mean days to 50% infection of grey snow mold inoculated experimental units. 
‡  PSM, Mean days to 50% infection of pink snow mold inoculated experimental units. 
§  NS, Not significant (α=0.10). 
¶  Correlation coefficients not followed to *,**. or *** are significant at the 0.10 probability level. 
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3.5.3 Non-structural Carbohydrate Dynamics and Snow Mold Severity 
  

 Resistance to snow molds has been attributed to leaf water potential (Tronsmo, 1986), 

‘strategic’ catabolism of storage carbohydrates (Gaudet et al., 1999), and light conditions during 

the ‘hardening’ period (Nakajima and Abe, 1996). Common to all of these findings is the 

importance of non-structural carbohydrates (NSCs), and as a result, NSC dynamics have long 

been the focus of efforts to understand snow mold resistance. The potential interactions between 

plant K status and NSCs made this an attractive focus for this study as well. Overall, K 

fertilization did not appreciably affect NSC dynamics (Table 2.7).   

 The correlation coefficients (Table 3.8) generated from NSC data contained in Table 2.7 

suggest very little correlation between NSCs and disease severity. In fact, the only NSC 

parameter significantly correlated with both GSM and PSM severity was ESF content on the date 

of inoculation. Similarly, Bertrand et al. (2011) observed that snow mold resistant annual 

bluegrass genotypes accumulated greater concentration of low degree of polymerization fructans 

than snow mold sensitive types. Citing plant defense activation by fungal and cell wall 

oligosaccharides (Ryan and Farmer, 1991), Bertrand et al. (2011) suggest that fructans having a 

low degree of polymerization (8-16 monomers) may elicit plant defense systems in a similar 

manner. While an interesting hypothesis, structural differenced between fructans (β- linked 

fructose) and dominant plant/fungal cell wall oligosaccharides (β- linked glucose) complicates 

the direct transfer of this mechanism. Particularly because high-affinity receptors for β-glucan 

elicitors show considerable binding specificity (Ryan and Farmer, 1991). Furthermore, ESF 

fructans are present throughout the growing season and constant stimulation of plant defense 

mechanisms by a ubiquitous storage carbohydrate presents an avoidable non-sequitor. 

 We observed no correlation between WSF or total NSC content and disease severity 

(Table 3.8) or recuperative ability (data not shown). High WSF content in the later stages of 

winter has been observed in snow mold resistant varieties of winter wheat (Yoshida et al., 1998), 
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orchardgrass (Sanada et al., 2010), and annual bluegrass (Bertrand et al., 2011). Greater total 

NSC content following winter (real or simulated) has also been ubiquitously associated with 

snow mold resistance (Bertrand et al., 2011; Kiyomoto and Bruehl, 1977; Pociecha et al., 2008; 

Pociecha et al., 2010; Sanada et al., 2010; Yoshida et al., 1998). In all of these experiments, NSC 

dynamics of resistant and susceptible varieties were compared and from these comparisons it 

was inferred that NSC storage and/or utilization is a critical component of snow mold resistance. 

However, as pointed out by Bertrand et al. (2011), it is unclear whether fructans actually confer 

greater snow mold resistance or whether accumulating and maintaining greater concentrations of 

fructans is an independent trait commonly associated with snow mold resistant varieties. Our 

results would suggest the latter, but the systematic association between NSC dynamics and snow 

mold severity across species, years, and continents cannot be ignored. Clearly the quantitative 

nature of snow mold resistance is multifaceted.   

 The author would be remiss to not address features of our experimental design that may 

partially explain differences between previously published results and our findings. Most studies 

that have linked NSC dynamics with snow mold resistance measured NSCs at their primary site 

of accumulation in crown tissue (Bertrand et al., 2011; Kiyomoto and Bruehl, 1977; Sanada et 

al., 2010), whereas whole plant (aerial tissue) NSC measurements were made in our study. That 

being said, the total and individual NSC (except sucrose) concentrations observed in whole leaf 

samples in this study closely matched those observed in crowns of 42 annual bluegrass ecotypes 

(Dionne et al., 2010) and crowns of annual bluegrass ecotypes assayed under similar conditions 

in two other studies (Bertrand et al., 2011; Dionne et al., 2001). Therefore, it seems as though the 

potential ‘dilution effect’ of including leaf tissue did not appreciably affect our results. Sucrose 

content was considerably lower in this experiment than in the other aforementioned studies, it is 

unclear whether this is a turfgrass varietal effect or other experimental artifact. 
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Table 3.8. Simple correlation coefficients (r) relating turfgrass tissue non-structural carbohydrates measured following each 

experimental phase and days to 50% infection for grey snow mold (GSM) and pink snow mold (PSM) inoculated experimental 

units. Correlations were performed using means for different potassium fertilization rate treatment groups. Negative 

correlation coefficients designate a trend toward greater disease severity (fewer days to 50% infection). 

 

  Stage of Experiment Preceding Harvest 
  ‘K Treatment’  ‘Hardening'  ‘Mid-Winter'  ‘Early Spring' 

Non-structural Carbohydrate†  GSM‡ PSM§  GSM PSM  GSM PSM  GSM PSM 
____ mg g-1 fresh wt. ____  _______________________ Correlation Coefficient (r) _________________________ 

Fructose    0.92* NS ¶   NS NS   NS NS   NS NS 
Glucose    NS NS   NS NS   NS NS   NS NS 
Sucrose   NS NS   0.90* NS   NS NS   NS NS 
Raffinose   NS -0.93*   NS NS   0.88* NS   NS NS 
WSF    NS NS   NS NS   NS NS   NS NS 
ESF   NS NS   NS NS   0.90* 0.97**   0.91* NS 
Total Fructan   NS NS   NS NS   NS NS   NS NS 
Total NSCs   NS NS   NS NS   NS NS   NS NS 
*,**,*** Statistically significant at the 0.05, 0.01, and 0.001 probability level, respectively. 
† WSF, water soluble fructans; ESF, 80% ethanol soluble fructans; NSCs, non-structural carbohydrates.   
‡ GSM, Mean days to 50% infection of grey snow mold inoculated experimental units. 
§ PSM, Mean days to 50% infection of pink snow mold inoculated experimental units. 
¶ NS, Not significant (α=0.10). 
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3.5.4 Tricarboxylic Acid Intermediates and Snow Mold Resistance 

  

 The correlation coefficients (Table 3.9) generated from metabolite data contained in 

Table 2.8 suggests very little correlation between organic acid content and LI50. Where a 

significant correlation did exist, there was an inverse relationship between TCA parameters and 

LI50. There are some indications that plant TCA metabolite status may truly influence disease 

severity, particularly malate and citrate content following ‘hardening’. However, strong 

correlations between organic acid content and nonacid cation dynamics complicate interpretation 

of these data.   

 Although there is no clear association between disease severity and tissue metabolite 

content, organic acid dynamics may be another component of the overall ‘subtle’ effect of K 

fertilization on plant susceptibility to snow molds. Potassium fertilization is an essential 

determinant of CAD, as K+ is the greatest single ion contributor to total CAD. Furthermore, 

plants grown in media supplying sufficient K generally accumulate greater tissue K than the 

amount required to support adequate growth and cell maintenance, termed ‘luxury consumption’ 

(Hoagland and Martin, 1933; Wildes and Pitman, 1975). As tissue K content and CAD increases, 

a greater portion of organic acids are siphoned from metabolically active pools to fulfill 

homeostatic rolls, representing a significant biochemical cost. The cost of unrealized chemical 

energy would be particularly pertinent for citrate, as K fertilization had the greatest effect on 

tissue citrate content and vacuolar citrate is known to be relatively metabolically inert (Genix et 

al., 1990; Gout et al., 1993). Therefore, vacuolar storage of K has a tangible biochemical cost, 

which may effect snow mold severity.  
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Table 3.9. Simple correlation coefficients (r) relating turfgrass tissue tricarboxylic acid intermediates measured following each 

experimental phase and days to 50% infection for grey snow mold (GSM) and pink snow mold (PSM) inoculated experimental 

units. Correlations were performed using means for different potassium fertilization rate treatment groups. Negative 

correlation coefficients designate a trend toward greater disease severity (fewer days to 50% infection). 

 

 

 

 

 

 

 

 

 

  

 

  Stage of Experiment Preceding Harvest 
  ‘K Treatment’  ‘Hardening'  ‘Mid-Winter'  ‘Early Spring' 

TCA Cycle Intermediate†  GSM‡ PSM§  GSM PSM  GSM PSM  GSM PSM 
________ mmol L-1 _______  _______________________ Correlation Coefficient (r) _________________________ 

Malate  -0.97** -0.89*  -0.95* -0.93*    NS¶ NS  -0.96** NS 
Citrate  -0.95*  NS  -0.99*** -0.93*   -0.98** NS  -0.98** NS 
Total  -0.96**  NS  -0.99***  NS   -0.96** NS  -0.96** NS 
*,**,*** Statistically significant at the 0.05, 0.01, and 0.001 probability level, respectively. 
† TCA, Tricarboxylic acid.   
‡ GSM, Mean days to 50% infection of grey snow mold inoculated experimental units. 
§ PSM, Mean days to 50% infection of pink snow mold inoculated experimental units. 
¶ NS, Not significant (α=0.10). 
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3.5.5 Turfgrass Recovery Following Simulated Winter 

  

 Potassium fertilization rate did not affect turfgrass recovery following simulated winter 

and/or inoculation with snow molds; however, fungus type (GSM vs. PSM) did significantly 

affect turfgrass recuperative ability (Table 3.6). Specifically, samples inoculated with PSM 

recovered to a lesser extent than non-inoculated and GSM inoculated EUs. These data support 

anecdotal field observations and are in agreement with Chang and Jung (2009). Bruehl (1982) 

describes that Typhula snow molds tend to infect older leaves and then progress slowly towards 

the crown as snow cover persists; in contrast, PSM progresses from the roots and lower leaf 

sheaths immediately to the crown. Infecting crown tissue during disease progression makes PSM 

a particularly destructive pathogen, as plant recuperative potential is severely compromised. 

 

3.5.6 Practical Application of Data 

 Snow molds (particularly GSM) are ‘threshold diseases’, in that their manifestation 

depends almost exclusively on the duration of continuous snow cover during winter. In this 

context, LI50 provides a particularly meaningful measure of disease as it represents the number of 

days to an ‘unacceptable’ threshold (50% infection). Statistically significant differences between 

LI50 means provided grounds for scientific interpretation of K fertilization affects, but the true 

practical significance of these findings is best analyzed in the context of climatological data.  

Table 3.10 shows the percentage of winters from 1940 to 2006 in Madison, WI where days of 

continuous snow cover (>2.54 cm) were greater than or equal to LI50 for each K fertilization rate. 

Madison, WI was chosen as the example site due to the availability of a complete data set and 

because this region experiences significant snow mold disease pressure. Data were obtained from 

the Wisconsin State Climatology Office (Young, 2010). These data show that on any given year, 

the probability of experiencing winter conditions that would facilitate ‘unacceptable’ GSM 

damage would be 36% for turfgrass fertilized with 0.00 g K m-2 7d-1 and 69% for turfgrass 
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fertilized with 3.00 g K m-2 7d-1. The nearly two-fold increase in ‘seasonal risk’ associated with 

K fertilization at 3.00 g K m-2 7d-1 represents a tremendous practical disadvantage to growers. 

Furthermore, even though LI50 for GSM inoculated turfgrass fertilized with 0.00 g K m-2 7d-1 

differed from turfgrass fertilized with 0.50 g K m-2 7d-1
 by only 6 d, this represents a seasonal 

risk increase of 18%. For PSM inoculated turfgrass, the seasonal risk for turfgrass fertilized with 

3.00 g K m-2 7d-1 was 14% greater than that for turfgrass fertilized with 0.00 g K m-2 7d-1. While 

these interpretations assume a 1:1 relationship between LI50 and days of continuous snow cover, 

meaningful trends can be taken from this discussion even if this assumption is not perfect. These 

data provide a more practical interpretation of LI50, and highlight the greatly increased seasonal 

risk of snow mold damage associated with increased K fertilization.  
 

Table 3.10. Percentage of winters from 1940 to 2006 in Madison, Wisconsin where days of 

continuous snow cover (>2.54 cm) were greater than or equal to days of incubation to 50% 

visually symptomatic turfgrass cover (LI50) for each K fertilization rate. 

 Grey Snow Mold  Pink Snow Mold 

Application Rate (g m-2)† LI50‡ Winters (%)§  LI50 Winters (%) 
0.00 77 36%  81  34% 
0.25 74 43%  78 37% 
0.50 71 54%  79 36% 
2.00 64 62%  78 37% 
3.00 58 69%  73 48% 

† Every 7 d for 90 d prior to simulated winter. 
‡ LI50, Days of incubation to 50% visually symptomatic turfgrass. 
§ Percentage of winters between 1940 and 2006 with continuous snow cover ≥ 
LI50. 

 

3.5.7 Additional Considerations 

 This experiment, like most other published snow mold studies, distinguishes levels of 

disease severity based on the linear growth rate of a point source inoculum under controlled 

conditions favorable for disease development. This system provides a viable method for 

evaluating relative disease severity, but differs from natural systems in several important ways. 
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Most notably, it assumes that there are no plant/snow mold interactions prior to early spring and 

that the near linear growth of snow molds at constant temperatures and high humidity is 

reflective of actual growth dynamics under snow cover.  

 While penetration of artificially inoculated grasses by Typhula snow molds has been 

characterized (Oshiman et al., 1995; Takenaka and Yoshino, 1989), natural disease progression 

dynamics are largely unknown. Although rare, germination of Typhula sclerotia during cool, wet 

periods prior to snowfall has been observed (Hsiang et al., 1999). Furthermore, interactions 

between seasonal fungicide applications and snow mold severity the following spring have been 

observed (Reicher and Throssell, 1997). These findings suggest significant plant/snow mold 

interactions prior to macro-scale mycelial production and/or visible tissue necrosis. Therefore, 

the precise timing of infection, disease progression, and mycelial growth in natural systems 

remains unclear, compromising the applicability of data obtained in controlled environment 

studies. 

 While mycelial production of snow molds held at constant temperatures is near linear, 

casual observations of pathogenic snow molds in the field suggests exponential growth of 

mycelial blooms following the transition from sub-zero to near 0°C temperatures at the edges of 

a receding snow pack (Remsberg, 1940). These observations are supported by studies that 

monitor subnivean ecosystem respiration rates (Monson et al., 2006), and more recently, growth 

rate analyses of snow molds isolated from sub-alpine forests of Colorado (Schmidt et al., 2009). 

The Q10 of growth rates exhibited by snow molds can be as high as 330 across the temperature 

range of   -2 to -0.3°C (Schmidt et al., 2009), supporting the notion of rapid mycelial growth just 

prior to complete snow melt. Therefore, it is conceivable that snow molds infect the plant during 

fall, progress slowly through plant tissues under the humid, dark, near freezing conditions that 

persist under snow cover, and then rapidly produce mycelium when soil temperatures rapidly 

warm above 0 in the final ~48 hrs preceding complete snow melt. Again, these features may 

complicate the applicability of results obtained via controlled environment studies to field 

scenarios.     
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3.6 Conclusions 

 The complex nature of quantitative snow mold resistance and the temporal scale of 

plant/snow mold interactions make it difficult to draw strong conclusions from controlled 

environment snow mold studies. Strong correlations between dependent variables also made it 

difficult if not impossible to determine with great confidence which parameters were important 

components of disease resistance. That being said, snow mold severity and other correlated 

biochemical parameters were significantly affected by K fertilization. While specific 

mechanisms discussed were largely speculative, these findings broaden our understanding of 

snow mold resistance to include biochemical parameters other than nonstructural carbohydrates 

(e.g. mineral nutrient composition, TCA intermediates). The results of this study also illustrate 

the importance of considering ‘seasonal risk’ when devising snow mold control strategies or 

making practical interpretations of data. 

 In reviewing much of the published literature on snow molds, this study also highlights 

the importance of developing conventional methods for studying quantitative snow mold 

resistance. Variations in type/age of plant materials, pathogen isolates, and experimental protocol 

make it difficult to make comparisons across studies and allow for a tremendous amount of 

speculation. Greater consensus among researchers on these topics would facilitate a more 

integrated and directed approach to studying plant/snow mold interactions. Furthermore, until 

researchers develop novel methods for monitoring disease dynamics in the field, the true nature 

of snow mold disease cycles and host resistance will remain elusive.       
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