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Abstract: This paper explores how to use programmable vector fields to control flexible planar
parts feeders. For a description of these devices and their actuation technology, see our companion
paper, Part I [2]. When a part is placed on our devices, the programmed vector field induces a force
and moment upon it. Ouver time, the part may come to rest in a dynamic equilibrium state. By
chaining together sequences of vector fields, the equilibria may be cascaded to obtain a desired final
state. By analyzing and constraining the equilibria of programmable vector fields, we can generate
and execute plans to orient and sort parts. These plans require no sensing.

This paper describes new manipulation algorithms using the tools developed in Part I [2]. In
particular, we tmprove existing planning algorithms by a quadratic factor, and the plan-length by a
linear factor. Using our new and improved strategies, we show how to simultaneously orient and
pose any part, without sensing, from an arbitrary initial configuration. We relax earlier dynamic
and mechanical assumptions to obtain more robust and flexible strategies.

Finally, we consider parts feeders that can only implement a very limited "vocabulary” of vector
fields (as opposed to the pizel-wise programmability assumed above). We show how to plan and
execute parts-posing and orienting strategies for these devices, but with a significant increase in
planning complexity and some sacrifice in completeness guarantees. We discuss the tradeoff between
mechanical complexity and planning complexity.

1 Introduction

This paper continues our exploration of programmable vector fields to control flexible planar parts
feeders. For a description of these devices and their actuation technology, see our companion paper,
Part I [2].

In Part I, we observed that planar parts feeders often exploit exotic actuation technologies such
as arrayed, microfabricated motion pixels [5, 6] or transverse vibrating plates [1]. This motivates
our research into novel and powerful control strategies. When a part is placed on our devices, the
programmed vector field induces a force and moment upon it. Over time, the part may come to
rest in a dynamic equilibrium state. By chaining together sequences of vector fields, the equilibria
may be cascaded to obtain a desired final state. Our research goal is to develop a science base for
manipulation by analyzing and constraining the equilibria of programmable vector fields.



Our companion paper (Part I [2]) describes our experimental apparatus, a technique for ana-
lyzing our devices called equilibrium analysis, lower bounds (i.e., impossibility results) on what the
devices cannot do, and results on a classification of control strategies yielding design criteria by
which well-behaved manipulation strategies may be developed. This paper (Part II) describes new
manipulation algorithms using the tools developed in Part I. In particular, we improve existing
planning algorithms by a quadratic factor, show how to simultaneously orient and pose a part, and
we relax earlier dynamic and mechanical assumptions to obtain more robust and flexible strategies.

In Part I, we asked Which vector fields are suitable for manipulation strategies? To answer,
we analyzed the equilibrium structure of general programmable vector fields. We then proposed
the fields with potential as those which induce stable equilibria in all parts. In addition, such
fields can be composed by pointwise addition, temporal switching, or "morphing” to obtain more
complex, but nevertheless stable strategies. As a reality check, we demonstrated the existence of
fields without potential that induce pathological behavior.

Previous results on array manipulation strategies may be formalized using our equilibrium anal-
ysts. In [5] we proposed a family of control strategies called squeeze patterns and a planning
algorithm to uniquely orient a part. Squeeze patterns have potential; this observation yields an
E = O(n?) upper bound on the number of equilibria of a planar part with n vertices. This results
in an O(E?) = O(n*) planning algorithm under certain dynamic and mechanical assumptions. In
Part I [2] we argued that the bound on equilibria appears tight, resulting in a very high planning
and execution complexity.

Using our equilibrium analysis, in Part I, we introduced radial fields, which satisfy our stability
property. Radial fields can be combined with squeeze fields. We show this has several benefits: (1)
The number of equilibria drops to £ = O(n). (2) The planning complexity drops to O(E?) = O(n?).
(3) throughout the strategy execution, every part rotates about one fixed, unique point (after the
first step). This means that (4) we can dispense with one critical assumption (called 2PHASE
in [5]): we no longer need assume that the transitional and rotational motions induced by the array
interact in a “quasi-static” and “sequential” manner.

The exotic planar parts-feeders described in Part I [2] — for example, the M-CHIP (manipulation
chip), a massively parallel array of programmable micro-motion pixels — bring up several key prac-
tical issues. First, the radial strategies employed by our improved algorithms and analysis require
significant mechanical and control complexity — even though they require no sensing. While we
believe such mechanisms are feasible to build using the silicon MEMS (microelectromechanical sys-
tems) technologies we advocate, it is undeniable that no such device exists yet. (The M-CHIPS
will have pixel-wise programmability, but the first generation will probably not have sufficient res-
olution to implement highly accurate radial strategies). For this reason, in Part IT we introduce
and analyze strategies composed of field sequences that we know are implementable using current
(microscopic or macroscopic) technology. Each strategy is a sequence of pairs of squeezes satisfying
certain “orthogonality” properties. Under these assumptions, we can ensure (a) equilibrium stabil-
ity, (b) relaxed mechanical and dynamical assumptions (the same as (4), above) and (¢) complexity
and completeness guarantees. The framework is quite general, and applies to any set of primitive
operations satisfying certain “finite equilibrium” properties (which we define) — hence it has broad
applicability to a wide range of devices. In particular, we view the restricted class of fields as a
vocabulary and their rules of composition as a grammar, resulting in a "language” of manipulation
strategies. Under our grammar, the resulting strategies are guaranteed to be well-behaved.

Finally, both our radial strategies and our finite manipulation grammar have the following ad-
vantage over previous manipulation algorithms for programmable vector fields: previous algorithms
such as [5] guarantee to uniquely orient a part, but the transitional position of the part is unknown
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Figure 1: A prototype M-CHIP fabricated in 1995. A large unidirectional actuator array (scanning
electron microscopy). Each actuator is 180 x 240 um? in size. Detail from a 1 in? array with
more than 11,000 actuators. For more pictures on device design and fabrication see URL http:
//www.cs.cornell.edu/Info/People/karl/MicroActuators.

at the strategy’s termination. Both of our new algorithms guarantee to position the part uniquely
in translation as well as orientation space.

However, the complexity and completeness guarantees we obtain for manipulation grammars
are considerably weaker than for the ideal radial strategies. For radial strategies, we show that any
connected, planar part can be oriented within the complexity bounds above. Under the simplified
“manipulation grammar,” our planner is guaranteed to find a strategy if one exists (If one does
not exist, the planner will signal this). However, it is not known whether there exists a strategy
for every part. Moreover, the planning algorithm is exponential instead of merely quadratic.

This result illustrates a tradeoff between mechanical complexity (the dexterity and controlla-
bility of field elements) and planning complexity (the computational difficulty of synthesizing a
strategy). If one is willing to build a device capable of radial fields, then one reaps great benefits
in planning and execution speed. On the other hand, we can still plan for simpler devices, but the
plan synthesis is more expensive, and we lose some completeness properties.

Finally, the desire to implement complicated fields raises the question of control uncertainty.
We close Part II by describing how families of potential functions can be used to represent control
uncertainty, and analyzed for their impact on equilibria.

2 Experimental Apparatus

We investigate actuation technologies that are capable of generating planar, programmable force
fields. These devices have only recently been invented and are described in more detail in Part I [2].
(1) Advances in microfabrication based on VLSI technology have made possible the fabrication of
micro actuator arrays, consisting of many thousands of individual silicon “fingers” on an area of one
square inch (Figure 1). (2) Transverse vibrations of a horizontal plate generate a force field on the
plate. The vibrational patterns can be programmed by changing the frequency, or by employing
clamps as programmable fixtures that create various vibratory nodes (Figure 2).

We have built and tested prototype micro actuator arrays and vibratory plate parts feeders.
For a more detailed description of device design and experimental results please refer to [4] and [1],



Figure 2: Vibratory parts feeder: the aluminum plate exhibits a vibratory minimum.
Parts reach equilibrium along this node line. See also URL http://www.cs.cornell.edu
/Info/People/karl/VibratoryAlign. Reproduced with permission from [1].

respectively.

3 Equilibrium Analysis for Programmable Vector Fields

3.1 Planning (Review)

For the generation of manipulation plans with programmable vector fields it is essential to be
able to predict the motion of a part in the field. Particularly important is determining the stable
equilibrium poses a part can reach in which all forces and moments are balanced. This equilibrium
analysis was described in our previous paper [5], where we presented a theory of manipulation for
programmable vector fields, and an algorithm that generates manipulation plans to orient polygonal
parts without sensor feedback using a sequence of squeeze fields.

We now briefly review the algorithm in [5], since the tools developed there are essential to
understanding our improved results. The algorithm is based on the observation that any connected
polygonal part, when placed into a force vector field with a simple squeeze pattern, aligns with the
field in a finite set of orientations in which the part is in equilibrium (Figure 3a). As in [5] we make
the following assumptions:

SiMpLICITY: The moving part P can be treated as a flat polygon.

BILATERAL SYMMETRY: We have the following simple actuator control scheme available: We can
divide the array by a straight line [ such that all motion pixels on either side of [ push normally
towards /.

DENnsIiTY: The generated forces can be described by a two-dimensional vector field. This means
that the individual microactuators are dense compared to the size of the moving part. (We will
discuss later how to relax this assumption.)
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Figure 3: (a) Polygonal part. Stable (thick line) and metastable (thin line) medians are also shown.
(b) Turn function. (c) Squeeze function. (d) Alignment strategy for two arbitrary initial configura-
tions. See URL http://www.cs.cornell.edu/Info/People/karl/Cinema for an animated simulation.

Assuming quasi-static motion, a small object will move perpendicularly towards the line [ and
come to rest there. We are interested in the motion of an arbitrarily shaped part P. Let us call Pj,
P5 the regions of P that lie to the left and to the right of [, respectively, and C;, Cy their centers
of gravity. In a rest position both translational and rotational forces must be in equilibrium. We
get the following two conditions:

I : The areas P; and P> must be equal.

IT : The vector Cy — C7 must be normal to [.

Definition 1 A bisector of a polygon P is a straight line that divides P into two parts of equal
size.

In [5] we made another assumption.

2PHASE: The motion of P has two phases: (1) Pure translation towards [ until condition I is
satisfied. (2) Motion until condition IT is satisfied without violating condition I.

Relaxing this assumption is one of the key results of this paper.

Definition 2 Let § be the orientation of a connected polygon P on an actuator array, and let us
assume that condition I holds. The turn function ¢ : § — {—=1,0,1} describes the instantaneous
rotational motion of P. t(6) = 1 if P will turn counterclockwise, t(0) = —1 if P will turn clockwise,
and t(0) = 0 if P is in equilibrium.

This definition immediately implies the following lemma:



Lemma 3 [5] Let P be a polygon with orientation @ on an actuator array such that conditions I
and IT hold. P is stable if t(6) =0, t(0+) <0, and t(§—) > 0. Otherwise P is metastable.

Using this lemma we can identify all stable orientations, which allows us to construct the squeeze
function of P in analogy to Goldberg [10]:

Lemma 4 [5] Let P be a polygonal part on an actuator array A such that assumptions SIMPLIC-
ITY, BILATERAL SYMMETRY, DENSITY, and 2PHASE hold. Given the turn function t of P, its
corresponding squeeze function s : St — S is constructed as follows:
1. All stable orientations 8 map identically to 6.
2. All metastable orientations map (by convention) to the nearest counterclockwise stable ori-
entation.
3. All orientations 0 with t(6) =1 (—1) map to the nearest counterclockwise (clockwise) stable
orientation.
Then s describes the transition of P induced by A.

3.2 Equilibrium analysis

Consider again a simple squeeze pattern as described in Section 3.1. In [5] we outlined how to
determine the orientations #; in which a given part achieves stable equilibrium. This proof can be
extended to show that stable equilibria always ezxist as long as the contact areas have finite size,
and that for simply-connected parts the equilibria are discrete. The proof also gives a polynomial
upper bound for the number of possible equilibria.

In Section 3.1, assumption 2PHASE allowed us to determine successive equilibrium positions
in a sequence of squeezes, by a quasi-static analysis that decouples translational and rotational
motion of the moving part. For any part, this obtains a unique equilibrium (after several steps). If
2PHASE is relaxed, we obtain a dynamic manipulation problem, in which we must determine the
equilibria (z,6) given by the part orientation # and the offset z of its center of gravity from the
squeeze line. A stable equilibrium is a (z;, 8;) pair in R x S! that acts as an attractor (the z offset
in an equilibrium is, surprisingly, usually not 0). Again, we can obtain these (z;,6;) equilibrium
pairs as outlined in [5].

3.3 Complexity

Considering (x;,6;) equilibrium pairs has another advantage. We can show that, even without
2PHASE, after two successive, orthogonal squeezes, the set of stable poses of any part can be
reduced from C = R? x S! to a finite subset (C is the configuration space of part P). Subsequent
squeezes will maintain the finiteness of the state space. This will significantly reduce the complexity
of a task-level motion planner. Hence if assumption 2PHASE is relaxed, this idea still enables us
to simplify the general motion planning problem (as stated e.g. in [12]) to that of Erdmann and
Mason [9]. Alternatively, relaxing assumption 2PHASE raises the complexity from the “linear”
planning scheme of Goldberg [10] to the forward-chaining searches of Erdmann and Mason [9], or
Donald [8].

Summary: In Section 3.1 we reviewed reasonable assumptions under which there exist efficient
(polynomial time) algorithms to compute manipulation plans, and we showed that the generated
plans are polynomial in the part complexity (i.e. its number of vertices). Below we investigate how
these bounds change when our assumptions are relaxed.

In Section 5 we will present new manipulation algorithms that relax the 2PHASE assumption.
These new algorithms have the advantage that the parts are not only uniquely oriented — in



addition, their final translational position is unique, too. The first algorithm uses radial vector fields
to generate linear-size alignment plans, and enjoys a quadratic improvement in the planning time.
The second algorithm broadens the scope of our alignment plans to a “language” of more general
force vector fields, which can be used even with devices that have only a limited “vocabulary” of
programming for their vector fields, such as the vibratory plate device described in Section 2 and
Part I [2].

4 Potential Fields (Review)

Radial fields A radial field is a vector field whose forces are directed towards a specific center
point. As a specific example, consider the unit radial field R which is defined (in polar coordinates)
by R(r,0) = r/||r|| for » # 0, and R(0,0) = 0. Note that R has a discontinuity at the origin. A
smooth radial field can be defined for example by R'(r,#) = —r2. R and R’ clearly have a potential:
U(r,0) =r,and U'(r,0) = %7'3, respectively.

Morphing and combining vector fields. Our strategies from Section 3 have switch points in
time where the vector field changes discontinuously (Figure 3). This is because we have shown that
after one squeeze, for every part, the equilibrium is in general non-unique, and hence subsequent
squeezes are needed to disambiguate its pose. Therefore this switch is necessary for strategies with
squeeze patterns.

One may ask whether for another class of potential field strategies, unique equilibria may be
obtained without discrete switching. We believe that continuously varying vector fields of the form
(1—t)F+tG, where t € [0, 1] represents time, and F' and G are squeezes, may lead to vector fields
that have this property (see Part II [3] for progress in that direction). Here “+” denotes point-wise
addition of vector fields, and we will write “F~sG” for the resulting continuously varying field.

Let us formalize the previous paragraphs. If F' is a vector field (in this case a squeeze pattern)
that is applied to move part P, we define the equilibrium set Ep(F') as the subset of C for which P
is in equilibrium. Let us write F'x G for a strategy that first applies vector field F', and then vector
field G to move part P. F' + G can be understood as applying F' and GG simultaneously. We have
shown that in general Ep(F) is not finite, but for two orthogonal squeezes F and G, the discrete
switching strategy F x G yields a finite equilibrium set Ep(F % G). Furthermore, for some parts the
equilibrium is unique up to symmetry.

We will explore the interesting relationship between equilibria in simple vector fields Ep(F') or
Ep(G), combined fields Ep(F 4+ G), discretely switched fields Ep(F * G), and continuously varying
fields Ep(F~»@G). For example, one may ask whether there exists a strategy with combined vector
fields, or continuously varying fields, that, in just one step, reaches the same equilibrium as a
discretely switched strategy requiring multiple steps. Finally, let Fy % Fy % - - - % F}, be a sequence of
squeeze fields guaranteed to uniquely orient a part P under assumption 2PHASE. We will investigate
how continuously varying strategies such as Fy~» Fy~» ...~ F} can be employed to dynamically
achieve the same equilibria even when 2PHASE is relaxed. Research in this area could lead to a
theory of parallel distributed manipulation that describes spatially distributed manipulation tasks
that can be parallelized over time by superposition of controls.



5 New and Improved Manipulation Algorithms

The part alignment strategies in Section 3.1 have switch points in time where the vector field
changes discontinuously (Figure 3). We can denote such a switched strateqy by Fy x Fo % --- % Fy,
where the F; are vector fields. In Section 3.1 we recalled that a strategy to align a polygonal part
with n vertices may need up to O(n?) switches, and require O(n*) time in planning. To improve
these bounds, we now consider a broader class of vector fields including simple squeeze patterns,
radial, and combined fields as described in Section 4.

In Section 5.1 we show how, by using radial and combined vector fields, we can significantly
reduce the complexity of the plans from that of Section 3. In Section 5.2 we describe a general plan-
ning algorithm that works with a limited “grammar” of vector fields (and yields, correspondingly,
less favorable complexity bounds).

5.1 Radial Strategies

Consider a connected polygonal part P in an ideal radial vector field R as described in Section 4.

Proposition 5 For each polygonal part P in a radial field R there exists a unigue pivot point v
such that P is in stable equilibrium iff v coincides with the center of R, (0,0). Surprisingly, v need
not be the center of mass.

Proof: Consider the translational forces (but not the moments) acting on P in the radial field R.
To do this, let us separate R into its z and y components, R, and Ry, such that R = (R, Ry).
Assume for now that the orientation of P is fixed. If P is placed at a sufficiently large negative «
coordinate, the force induced by R, on P will be in the positive z direction. Symmetrically, placing
P at a sufficiently large positive z coordinate will cause a force in the negative z direction. We
claim that, by translating P rigidly with increasing = coordinate, this force decreases continuously
and strictly monotone, and hence has a unique root. To verify this claim, consider a small area
patch p(t) of P, where p(t) = p(0) © (20 — t&) with zg the initial position of the patch, and & the
Minkowski Difference defined by A© z = {a — z|a € A} for any A C R2. The force in z direction is

R,dA. This force decreases continuously and strictly monotone with ¢, because R, is strictly

$(t)
monotone and continuous.

A similar argument applies for the y direction. We conclude that for P in a given fixed orien-
tation, there exists a unique position for P such that it is in force equilibrium.

Now consider P at two different orientations #; and ¢;. We claim that the corresponding pivot
points v; and v; for these orientations must be identical. To see this, suppose v; # v;. Then, due
to the rotational symmetry of R, P would also be in force equilibrium at orientation #; when v,
coincides with the center of R. This contradicts the uniqueness of v; for a given part orientation 6,
as proven above.

Finally, we claim that P is in moment equilibrium when v coincides with the center of R.
Assume that there were a nonzero moment m. Due to the symmetry of R, this moment would be
constant for any orientation # of P so long as the pivot point v remains at the center of R. Hence
during a full rotation of P about v, the vector field R would do non-zero work. This contradicts the
fact that R is a potential field, in which the work along all closed paths is zero. Hence we conclude
that the P is in equilibrium iff the unique point v coincides with the center of R. O

Now assume R is combined with a simple squeeze pattern S, which is scaled by a factor 6 > 0,
resulting in R + 6S. The squeeze component S of this field will cause the part to align with the



squeeze, similarly to the strategies in Section 3.1. But note that the radial component R keeps the
part centered in the force field. Hence, by keeping R sufficiently large (¢ small), we can assume
that the pivot point of P remains within an e-ball of the center of R. This implies that assumption
2PHASE is no longer necessary. Moreover, € can be arbitrarily small by an appropriate choice of 6.

Proposition 6 For a connected polygon with n vertices there are at most O(n) stable equilibria in
a field of the form R+ 6S if 6 is sufficiently small.

Proof: First assume § = 0, so Proposition 5 applies, that is, the part is in equilibrium iff a specific
point v of P coincides with the center of R. Now consider a ray from v, w(0). Assume w.l.o.g.
that v is not a vertex of P, and that w(0) intersects the edges S(0) = {e1,---,er} of P in general
position, 1 < k < n. Parameterize the ray w(-) by its angle 6 to obtain w(#). As 6 sweeps from 0
to 27, each edge of P will enter and leave the crossing structure S(f) exactly once. S(6) is updated
at critical angles where v(f) intersects a vertex of P. Since there are n vertices, there are O(n)
critical angles, and hence O(n) changes to S(6) overall. Hence, since between critical angles S(6) is
constant, we see that S(f) takes on O(n) distinct values. Now place the squeeze line [ to coincide
with w(@). For a given crossing structure S(0) US(6+), satisfying conditions I and IT as defined in
Section 3 devolves to solving two algebraic equations of fixed low-degree (see [5]). This implies that
between any two adjacent critical values there are only a fixed number of orientations of [ (given by
w(#)) that satisfy conditions I and II. Hence, the overall number of orientations satisfying I and
II is O(n).

If 6 > 0 the part P will be perturbed, so that the conditions for Proposition 5 are only ap-
proximately met. However, the center of rotation (COR) of P is guaranteed to lie in some small
region about v. As § — 0, this region shrinks to the point v. To see this, place P at some arbitrary

configuration zg in the squeeze field 6S. The lateral force on Py = P(zg) is fo = / 6S dA. fo
Py

is bounded above by fo < 6A|S|, where |S| denotes the magnitude of the squeeze field, and A is
the area of P. Hence, the perturbation introduced by S can be kept arbitrarily small. Thus the
COR is constrained to lie in a region C(v,6) about v. This region can be made arbitrarily small by
choosing § small enough. We conclude that the number of equilibria in a field R 4 65 is bounded
by O(n), for sufficiently small §. O

In analogy to Section 3.1 we define the turn function ¢ : S' — S, which describes how the part
will turn under a squeeze pattern, and hence yields the stable equilibrium configurations. Given the
turn function ¢ we can construct the corresponding squeeze function s as described in Section 3.1.
With s as the input for Goldberg’s alignment planner, we obtain plans for unique part alignment
(and positioning) of length O(n). They can be computed in time O(n?).

The result is a plan for parts positioning of the form R+ 651 * -+ * R+ 0Sp(n). Compared
to the old algorithm in Section 3.1 it improves the plan length by a factor of n, and the planning
complexity is reduced by a factor of n?. The planner is complete: For any polygonal part, there
exists a plan of the form *;(R+ 6S;). Moreover, the algorithm is guaranteed to find a plan for any
input part.

5.2 Manipulation Grammar

The development of devices that generate programmable vector fields is still in an early stage. The
existing prototype devices exhibit only a limited range of programmability. For example, the proto-
type MEMS arrays described in Section 2 currently have actuators in only four different directions,



and the actuators are controllable row-wise. Arrays with individually addressable actuators at var-
ious orientations are possible (see [6, 5, 11]) but require significant development effort. There are
also limitations on the resolution of the devices given by fabrication constraints. For the vibrating
plate device from Section 2 the fields are even more constrained by the vibrational modes of the
plate.

We are interested in the capabilities of these constrained systems. In this section we will give an
algorithm that decides whether a part can be uniquely positioned with a given set of vector fields,
and it gives an optimal-length plan if one exists. If we think of these vector fields as a vocabulary,
we obtain a language of manipulation plans. We are interested in those expressions in the language
that correspond to a plan for unique posing of the part.

The elements of our “manipulation grammar” are (sequences of) vector fields that bring the
part into a finite set of possible equilibrium positions. From Section 5.1 we know that combined
radial-squeeze patterns R + 0S have this property. However, there are simpler fields that also have
this finiteness property, for example two combined non-parallel squeezes F' + G, or a sequence of
two orthogonal squeezes F' x F';. That is: For any polygonal part P, either of these examples is
guaranteed to always reduce P to a finite set of equilibria in its C-space C = R? x S1.

Fix a part P. Assume that our manipulation grammar consists of f fields F;, and that there are
at most k different equilibria for P in each field F;. Then we can construct a transition table of size
f2k that describes how the part moves when the field F; is applied. This table can be constructed
either by a dynamical analysis similar to Section 5.1, or by simulation. The time to construct this
table is O(f2ks(n)), where s(n) is the complexity for analysis or simulation, which will typically
depend on the complexity of the part (with n vertices). Using the table, we can search for a plan.
Finding a plan, or deciding that it exists, requires time O(2/°%s(n)). Hence, as in [9], for any
part we can decide whether it can be uniquely posed using the field vocabulary {F;} but (a) the
planning time is exponential and (b) we do not know the class of parts that can be oriented by
{F;}. However, the resulting plans are optimal in size.

This result illustrates a tradeoff between mechanical complexity (the dexterity and controlla-
bility of field elements) and planning complexity (the computational difficulty of synthesizing a
strategy). If one is willing to build a device capable of radial fields, then one reaps great benefits
in planning and execution speed. On the other hand, we can still plan for simpler devices, but the
plan synthesis is more expensive, and we lose some completeness properties.

6 Conclusions and Future Work

Uncertainty. In practice, the force vector field as well as parts geometry will not be exact and
exhibit tolerances [7]. This is particularly important at micro scale. Within the framework of
potential fields, we can express this uncertainty by considering not one single potential function
Up, but rather families of potentials that correspond to different values within the uncertainty
range. Bounds on part and force tolerances will correspond to limits on the variation within these
function families. An investigation of these limits will allow us to obtain upper error bounds for
manipulation tasks under which a specific strategy will still achieve its goal.

Output sensitivity. We have seen in Sections 5.1 and 5.2 that the efficiency of planning and
executing manipulation plans crucially depends on the number of equilibria configurations. In
practice, we have found that there are almost no parts with more than two distinct equilibria. If
this observation can be supported by an statistical analysis of part shapes, it could lead to extremely
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good expected bounds on plan length and planning time, even for the less powerful strategies with
manipulation grammars.
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