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Eating is a multisensory experience, input from sight, smell, sound, taste, and 

texture combine to create flavor perception. Evidence for crossmodal 

enhancement through olfactory and visual bimodal stimulation has been found 

in mammals and humans in the ortbitofrontal cortex. However, the factors that 

result in a measurable bimodal enhancement in vision and olfaction have not 

been defined. A computerized methodology, involving visual stimulus 

presentation on a computer screen along with controlled odorant presentation 

through a specially designed puff-olfactometer, allowed for the psychophysical 

measurement of olfactory and visual crossmodal interactions.  

There were two parts to this research. The first set of tests presented 

stimuli at calculated perithreshold levels and examined two different attention 

tasks. Visual stimuli were black and white outlines of fruit. One task evaluated 

the influence visual object shape on the detection of fruit odorants in an 

olfactory detection threshold, the other task evaluated whether an olfactory 

stimulus could alter detection of a visual object. Both attention conditions were 

tested using congruent and incongruent stimuli.  

The second set of tests assessed if a color stimulus or the presentation 



 

of a color along with a shape could alter the olfactory detection threshold. 

Results from the first set of tests suggest no crossmodal interaction when 

stimuli were presented at the perithreshold level, in either the olfactory 

attention task or the visual attention conditions when the stimuli were 

congruent or incongruent. The second set of tests demonstrated presentation 

of the congruent color at the level of recognition, well above the perithreshold 

region, strongly influenced the olfactory detection threshold. To a lesser extent 

object shape influenced the olfactory detection threshold.  

 The combined result from experiment 1 and experiment 2 reveals the 

ability of a recognizable visual stimulus to heighten olfactory detection 

performance. However, the overall impact of color in its ability to both increase 

olfactory detection performance and disrupt olfactory detection performance 

when presented in an incongruent condition demonstrates the ability of a 

visual signal to override olfactory processing mechanisms. 
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CHAPTER 1 

INTRODUCTION 

 

The olfactory and visual systems are separate; however, information from 

each of system contributes to the perceptual flavor experience. The color and 

shape of a fruit enable the individual to assess what it should taste like, even 

without eating it. Once the food is consumed, all of the sensory systems 

engage, taste, smell, touch, and the somatosensory systems contribute to that 

overall perception. However, how these sensory inputs combine to create the 

multomodal synthetic experience, and how expectations influence the overall 

perception is not well understood.  

Perceptions result from the seamless integration of input from multiple 

sensory systems. The anatomical structures critical to the flow of sensory 

information have been studied extensively; however, the pathways in which 

the information is combined are not understood. Both biological cellular and 

neuro-imaging studies suggest higher-order sensory processing occurs in the 

orbitofrontal cortex (Abdi 2002, Calvert 2001, Gottfried 2010, Kadohisa, Wilson 

2006, Plailly et al. 2008, Wolfe 2001). Imaging studies have enabled 

researchers to localize regions in the orbitofrontal cortex believed to integrate 

signals (Calvert 2001, Fulbright et al. 1998, Gottfried, Winston and Dolan 

2006, Rolls, Baylis 1994, Small, Prescott 2005, Thesen et al. 2004, Zelano et 

al. 2005, Verhagen, Engelen 2006). However, there are still many unanswered 
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questions addressing both the processing and implications of multimodal 

sensory integration.  

In 1935 a simple test developed by, John Stroop, revealed the 

complexity of sensory integration by asking subjects to name the ink color of 

typed words; however, the words were names of colors (Stroop 1992, 

MacLeod 1991). The differing ink-color delayed the reaction time of the 

participant during the naming task, creating a disruption to the otherwise 

seamless process of naming. In 1976, Harry McGurk and John MacDonald 

discovered the McGurk effect, demonstrating the ability of a visual 

representation to alter an auditory sensory input (McGurk and MacDonald 

1976). Researchers are still examining the mechanisms underlying these two 

classic examples of multisensory integration.  

Sensory integration is part of the everyday food experience. Two 

studies in Garber et al (2001) illustrate real-world examples of subjects who 

were served food where the colors had been . Subjects in both accounts report 

off-odors and off-flavors and feelings of nausea (Garber et al. 2001). These 

examples allude to the ability of visual information to inform flavor perceptions 

(the integration of taste and smell). The multisensory integrative process 

occurs whether or not the individual is conscious of it. The visual experience is 

as much part of the eating as smell or taste; however, the ability of visual 

information to influence flavor perception is not understood. Undoubtedly 

experience influences expectations, and forms our understanding of 
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congruency effects, meaning we associate the color red with cherry, 

strawberry, and raspberry. For a comprehensive examination of how 

appearance influences our expectations please see Hutchings (2003) and 

Spence et al (2010). The extent to which olfactory information can be altered 

by visual information has yet to be determined. There are countless 

approaches to examining the impact of visual information on another sense. It 

is possible to examine luminance, contrast, patterns, curvature, timing of the 

presentation, color, motion and many other types of visual changes. When 

examining olfaction it is possible to test liking, preference, mixtures, intensity, 

timing, attention, again the different types of odor evaluations are endless.  

This dissertation investigates signal enhancement resulting from 

crossmodal olfactory and visual input by using psychophysical detection 

threshold methods. The research explores the factors that need to be present 

in order to result in a crossmodal enhancement and by using highly controlled 

forms of stimulus delivery. The interactions of both vision on olfaction and 

olfaction on vision are studied, as well as the roles of object shape, object 

color, and object intensity.  

 

1.1 The Underestimated Power of Crossmodal Interactions 

1.1.2 The Indirect Impact of Odor Cues on Overall Perception 

This section serves as a brief overview of the influence of olfactory and visual 

information in the context of consumer research. The following studies outline 
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how olfactory cues lead to measurable change in the perceived quality of a 

product. A review by Bone et al (1992), outlines several examples of how 

olfactory is capable of altering consumer perception of products (Bone and 

Jantrania 1992). Laird (1932) conducted one of the earliest studies 

demonstrating the power of an olfactory cue on consumer behavior. 

Housewives were asked to evaluate the quality of four identical pairs of silk 

hosiery; three of the four pairs of hosiery were scented. A pair of unscented 

hosiery served as the control. Housewives were not informed of the scented 

hosiery; however, based on the results, the scent strongly influenced the 

perception of quality. Housewives rated the hosiery scented with narcissus as 

having the highest quality, even alluding to differences in texture . The 

housewives were unaware the perceived differences in quality they were 

linked with the different scents of the hosiery, not differences in silk quality. 

A similar study conducted in 1967 by Cox, reported orange-scented 

hosiery sold better than unscented hosiery, demonstrating the strong link 

between olfaction and quality. Similarly, Miller et al (1991) reported scenting a 

room, resulted in higher liking ratings of Nike shoes when compared to the an 

environment with ambient air.  

Churchill et al (2009) evaluated changes in consumer response due to 

the addition of fragrance to a fixed shampoo base. The subjects were asked to 

evaluate several textural aspects of their hair. Panelists shampooed with both 

the scented and unscented products. Results revealed that panelists 



5 

associated certain fragrances with positive textural attributes, such as silky, 

soft, smooth, and conditioned. While other fragrances imparted negative 

textural attributes such as sticky, tacky, slimy, brittle, and tangled. All 

fragrances in the study were considered to be pleasant, the authors state the 

differences in textural perception were not due to the unpleasant nature of the 

stimuli, but the fragrance characteristics were quite varied. Churchill et al 

(2009) suggest liking of a fragrance is likely important in influencing the 

consumer perception of texture.  

The studies described above allude to the ability of an odor to influence 

the consumerʼs hedonic preference of a product. Authors have examined the 

role of pleasantness and unpleasantness of odorants in their ability to 

influence a product perception. Bone and Ellen (1999) review scentʼs influence 

on consumer behavior. They suggest the traditional view of scent altering 

sales of items has not been properly tested. The traditional tenets used to 

explain the role of olfaction in product purchasing suggest: ʻapproach 

avoidanceʼ, ʻmood shiftsʼ, and ʻcognitive elaborationʼ. Bone and Ellen (1999) 

propose these three tenets are not supported by the current studies that have 

been conducted, they challenge whether an olfactory cue is capable of altering 

a mood state thus changing a consumer behavior or whether it is possible for 

odor to change a consumerʼs approach and avoidance behaviors. The authors 

imply congruency may influence a consumerʼs interaction with a product, but 

prior experience most likely has the greatest impact on consumer judgment.  
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1.1.3 The Indirect Impact of Visual Cues on Overall Perception 

Visual cues can also influence the consumer experience. In 1993 Pepsi Cola 

launched Clear Pepsi, traditionally, a brown product, with the goal of gaining 

two percent of the cola market (approximately one billion in sales) within the 

first year; however, Pepsi only sold a reported $335 million. Triplett (1994) and 

Garber et al (2008) suggest the failure of Clear Pepsi is due to the 

underestimated importance of color to a product. Without the brown color cue 

consumers did not automatically associate the product with cola flavor. Tennet 

(1993) elaborates that the trend in the 90s toward clear products may have 

only worked for a select few products, such as the malt beverage Zima, due to 

its novelty (Triplett 1994). The consumer has no prior expectations when 

presented with a Zima, the consumer did not already have an idea of a pre-

existing flavor concept.  

Garber et al (2001) suggests different approaches to successfully 

integrating color into new products. First, creating novelty in both the product 

and color thus make incongruence intentional, whether the consumer 

understands the intention, thus the marketer controls flavor perception, for 

example Gatorade's Blue Raspberry beverage. Another example of this is 

Gatoradeʼs line of Frost beverages, where neither the colors nor the flavor 

names ʻGlacier Freezeʼ are understood to have a preconceived flavor. In 

another example of understood incongruity, Heinz introduced a line of green 

ketchup, playing off of its traditionally red ketchup in order to attract a different 
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portion of the market (Garber, Hyatt and Starr 2001). Another strategy is to 

dissociate the product packaging from the color of the product, in this 

particular case the product is not visible inside of the packaging (thus the 

package is opaque), therefore the consumer can make a flavor judgment 

based on the packaging information rather than the color of the beverage.  

Research has also shown the power of labeling to inform the overall 

judgment and expectations of a product. Studies have shown how a product 

labeled in two different ways, one implying an upscale-product while another 

suggesting a budget-conscious product will create different flavor experiences 

for the consumer (Shankar et al 2009, Yeomans et al. 2008, Wansink et al 

2005, Herz and von Clef 2001, Wansink et al. 2000, Cardello et al. 1985). The 

visual appearance of a food is the first attribute the consumer can use to 

assess a product and will set up certain expectations for flavor all based on 

models from prior experience.  

Several scientific studies have tried to examine the role of color in 

creating our perceptions of a product. These studies will be discussed in 

greater depth in the section on crossmodal interactions. The examples 

described thus far are scenarios in which there is a direct connection between 

the sensory attributes of a product and its influence on consumer perception. 

These studies illustrate how information from vision and olfaction can impart 

greater meaning on a product. This dissertation critically examines how the 

combined signals from olfaction and vision are able to convey a stronger 
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signal. The following sections will describe the physiology of both olfaction and 

vision, and then the scientific studies that have been conducted in the areas of 

both olfaction and vision. 

 

1.2 Olfaction 

An odorant can enter through the nose (orthonasally) or the mouth 

(retronasally). The odorant binds to odorant receptors (ORs) located on the 

olfactory epithelium (OE). An odorant is defined as a small volatile organic 

compound, whose molecular weight is ~300 daltons or less (Touhara and 

Vosshall 2009). Odorants are most commonly found in plants, insects, 

animals, and microbes. Most odorants are organic; however, there are known 

inorganic odorants such as SO2, which smells of rotten eggs. The olfactory 

epithelium is located in the upper nasal cavity and measures ~1 cm2-5cm2 

(Morrison and Costanzo 1990). A commonly cited statistic suggests humans 

are capable of distinguishing 10,000 odors; however, there is no evidence for 

this commonly cited statistic (Touhara and Vosshall 2009). No one has 

catalogued the precise number of known odorants and no one has tested the 

number of odorants a human is capable of perceiving. Thus, the exact number 

of odorants an individual is capable of perceiving is still unknown. There is 

another form of odorant, the pheromone; these will not be discussed in this 

review. For information regarding the differences and similarities between the 

detection of pheromones and odorants please read: Touhara and Vosshall 
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(2009). A pheromone can be broadly defined as a substance used for intra-

species communication, known to elicit both changes related to behavior and 

the endocrine system.  

Stereo-specificity is the most widely accepted theory of olfaction, 

proposed by Amoore in 1963 (Amoore 1963). This theory suggests odor 

perception occurs through the binding of an odorant to a specific olfactory 

receptor. Odorants varying in different chemical structure can only bind to 

specific olfactory receptors. Strong support for this theory can be found in the 

discovery of the G-protein coupled receptors (GPCRs), the family of seven-

transmembrane proteins, found to encode receptor proteins for odorants in 

rats (Buck and Axel 1991). G-proteins are also part of visual perception. 

Rhodopsin, also a GPCR, is critical to signal transduction in vision. The family 

of GPCRs identified in olfaction, is believed to be the largest subfamily of 

GPCRs and likely the largest single family of genes within the mammalian 

genome. Currently, it is not possible to predict which odorants will bind to 

which specific ORs. Furthermore it is not possible to predict odorant quality 

from odorant structure. Although the stereo-specific model of odorant binding 

is the most widely accepted explanation for how we detect an odorant, there 

are still several other theories: absorption, puncturing, radiational, and 

vibrational (Keller and Vosshall 2004, Burr 2002). 

 

1.2.1 Olfactory Receptors 
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In 1991, Axel and Buck (1991) identified a large gene family encoding 

olfactory receptors in rats, these were GPCRs. ORs are classified as GPCRs, 

due to their structural similarities to other GPCRs. In addition, OR activation 

occurs though coupling to heterotrimeric proteins. It is estimated there are 

~800-1500 genes members in mammals, in contrast to fish who only have 

~100 gene members (Mombaerts 2004, Niimura and Nei 2005). In homonides 

up to 50% of the genes are pseudogenes, in primates it is estimated between 

25-50% of the genes are pseudogenes, and in whales and dolphins 70-80% of 

the olfactory genes are pseudogenes. Since audition is the primary form of 

sensory transmission in whales and dolphins it is speculated the more 

pseudogenes a species has the less dominant the sense (Touhara 2008). The 

difference in the number of genes found in mammals versus fish supports the 

theory of gene expansion as animals shifted from living in a primarily aqueous 

environment to a terrestrial environment. Each olfactory sensory neuron (OSN) 

represents a single OR member of the gene family. 

 

1.2.2 Odorant Binding 

Olfactory transduction occurs when an odorant binds to an OR, converting the 

odorant into a neural (electrical signal). GPCRs are defined by their seven 

hydrophobic transmembrane domains, odorants bind to the hydrophobic 

binding pocket formed by transmembranes (TM), TM3, TM5, and TM6 (Katada 

et al. 2005). Figure 1 represents the structure and topology of the olfactory 
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receptor protein. The red dots represent variable amino acids in the OR family, 

while the blue dots represent the conserved amino acids in the OR family. The 

extracellular loops are characterized by conserved cysteins and there is a 

conserved glycosilation site in the N-terminal region (Katada et al 2004). 

Katada et al (2005), identified Ser113 located on TM3 as a critical for ligand 

hydrogen bonding to the receptor. They also identified Phe252 located in TM6 

as crucial to leading to a conformational change within the OR, switching the 

OR from an inactive to an active state, and leading to the signal cascade. 

When these residues have been altered through single amino acid 

replacement studies, odorant binding does not occur. It is believed the large 

number of polymorphisms noted in humans is related to individual differences 

in olfactory perception. 

 

1.2.3 Signal Transduction 

The signal cascade begins when the receptor activates a G-protein (Golf), 

leading to the activation of adenylyl cyclase III (ACIII). For a visual 

representation of the G-protein cascade please see Figure 2. Signaling the 

conversion of intracellular adenosine triphosphate (ATP) into cyclic AMP 

(cAMP). The elevated levels of cAMP activate the opening of the cyclic 

nucleotide gated channel (CNG), releasing an influx of Na+ and Ca2+ ions, 

depolarizing the inside of the cell, thus altering the membrane potential. This 

action potential is propagated along the axon of the OSN, and into the  
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Figure 1: Olfactory Receptor Protein. This is a graphical representation 
of the 7TM OR protein. The conserved amino acids are represented in 
red. The variable amino acids are represented in blue. Reprinted by 
permission of Elsevier Inc. (Touhara 2008). 
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olfactory bulb (OB). The signal is amplified through the Ca2+ ions entering the 

CNG pathway; these ions activate a separate ion channel permeable to Cl- 

ions. OSNs maintain a high negative potential, there is an efflux of Cl- ions 

when the CNG pathway is activated (Firestein 2001). The net positive charge 

on the membrane results in a further depolarization, thus enhancing the signal 

response. Olfactory receptors became unresponsive in studies of gene 

knockout mice lacking Golf, ACIII, or CNG (Belluscio et al. 1998, Brunet et al. 

1996, Wong et al. 2000). The receptor depolarizes and returns to steady state 

through the binding of phosphorylated kinase A (PKA) and G protein-coupled 

receptor kinase (GRK). The elevated levels of Ca2+ from the opening of the 

CNG channel also mediate the negative feedback loop, which ensures the OR, 

returns to its steady state. For a more detailed explanation of the polarization 

and subsequent depolarization of the OR please see Touhara et al (2005), in 

addition this review suggests two other theories of odorant signal 

transmission.  

The axons of OSNs are sent to the OB. Each OSN relays signals to 

specific glomeruli within the OB. A glomerulus is composed of a bundle of 

neorophil. Mombaerts (1999) identified that OSNs expressing a specific 

receptor type, converge onto specific glomeruli within the OB, regardless of 

their location within the epithelium. Glomeruli receive input from OSNs, there is 

cross-talk between glomeruli due to periglomular cells, the signals from the 

glomeruli are transmitted down the lateral olfactory tract through mitral and  
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Figure 2. Olfactory Sensory Transduction. This is the sensory transduction 
cascade that occurs when an odorant binds to an OR. An odorant binds to R 
(receptor), Golf, which activates ACIII. The cyclase converts ATP to cAMP. cAMP 
then binds to the inner walls of the ion channel (CNG channel), allowing for the 
influx of Na+ ions and Ca2+ ions. The Ca2+ ions are capable of activating the Cl- 
channel. Leading to an efflux of Cl- ions. The entering Ca2+ ions are also involved 
in regulating the adaptation through the negative feedback pathway. Reprinted by 
permission of Nature Publishing Group (Firestein 2001).  
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tufted cells where the information is then projected into the olfactory cortex and 

higher brain regions Figure 3, illustrates Thus different odorants stimulate 

different glomerular activity patterns, it has even been found that glomerular 

activity patterns can be altered by the same odorant in different concentrations 

(Xu et al 2000, Leon and Johnson 2003, Mori et al. 1999, Oka et al. 2006). 

Each odor creates a unique odor image (Gottfried 2010). Imaging as well as 

classical neuroanatomy studies have identified the anterior olfactory nucleus, 

taenia teacta, olfactory tubercle, piriform cortex, amygdala, entorhinal cortex, 

and areas of the orbitofrontal cortex as regions of higher order cortical 

olfactory processing (Gottfried 2010, Zelano et al. 2005, Price 2008, Meredith 

and Stein 1986, de Araujo et al. 2005, Anderson et al. 2003). 

 

1.2.4 Receptor Tuning  

Beyond the level of the olfactory bulb there is little understanding of the 

specific of processing. Neuro-imaging studies have elucidated the areas in 

which higher order processing may occur, but little is understood regarding 

whether olfactory receptors are finely tuned or broadly tuned, meaning 

whether receptors are capable of binding several different types of odorant 

classes or are more specific to only certain odorant structures. (For two basic 

reviews discussing neuro-imaging and olfactory processing please see: 

Gottfried 2010, Lundström et al. 2011). A recent paper  



16 

Figure 3 Wiring of the Early Olfactory System. The olfactory neuroepithelium is 
composed of OSNs, sustenacular cells (supporting cells), and stem cells 
(basal cells). Each OSN expresses only one of the ~1000 genes, and the 
axons from these cells converge on specific glomeruli located in the olfactory 
bulb. The mitral axons send signals from each glomeruli to areas of higher 
cortical processing. Periglomular cells and granular cells provide for cross-talk. 
Reprinted by permission of Nature Publishing Group (Gottfried 2010) 
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revealed the variation in receptor tuning, most were finely tuned, while some 

were more broadly tuned (Nara et al. 2011). This explanation supports both 

the combinatorial and elemental theories of olfaction, suggesting that olfactory 

receptors more often bind specific types of odorants but other receptors are 

capable of binding a broader set. 

 

1.2.5 Theories of Olfactory Perception 

There are two theories of odorant perception: elemental and combinatorial 

processing. The elemental theory of processing suggests an individual is 

capable of identifying parts of a complex odor mixture (Nara et al. 2011, Laing 

1994, Laing and Glemarec 1992, Laing and Willcox 1983). The combinatorial 

theory of olfaction proposes an odor mixture is perceived as a novel sum of its 

parts, representing no single aspect of the components of which it is 

composed (Le Berre et al. 2008). Likely our perceptions result from the way 

we attend to a stimulus. Human studies on olfaction suggest individuals are 

capable of detecting single parts of a mixture as well as experience blending 

qualities (Le Berre et al. 2008, Chiralertpong et al. 2008). The underlying 

arguments for both of these theories can be seen at the level of the olfactory 

bulb (Xu et al. 2000, Leon and Johnson 2003, Mori et al. 1999, Shepherd 

2006, Cleland et al. 2002). 

 

1.2.6 Psychophysical Odor Evaluation Methods 
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One of the most common methods for determination of the psychophysical 

detection threshold of an odorant is through n-alternative forced choice (AFC) 

testing. Pair-wise tests refer to when two samples are tested side-by-side. In 

this test the experimenter presents two samples simultaneously to the subject, 

one sample contains an odorant and the other does not. The subject is asked 

to indicate which sample contains the odorant (For a detailed explanation of 

pair-wise comparisons and methods for olfactory threshold evaluation please 

see: Lawless and Heymann 2010 and Gescheider 1997). In order to measure 

an olfactory threshold several factors must be controlled to ensure the 

experimenter is measuring the subjectʼs sensitivity to the stimulus and not 

indirectly measuring something else. First to evaluate an olfactory threshold, 

the stimuli should be presented in ascending order of concentration, to control 

for adaptation. Several concentrations should be presented to the subject to 

collect a broad range evaluation points. Other factors that must controlled 

when assessing a olfactory threshold are the method of odor delivery to 

control for uniformity across each sample tested, sniff size, sample purity, and 

temperature of the samples (Stevens et al. 1988). The overall goal of the 

researcher is to minimize testing variability, due to the wide range individual 

variability.  

In a pair-wise test the statistical chance of choosing the correct sample 

(the odorant containing sample) is 0.5. When collecting an olfactory detection 

threshold it is advised to correct for the positive skew often created by the 
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panelist, this is done by calculating the threshold with a geometric mean. 

Furthermore, using Abbotʼs correction formula is also advised. Thus if the 

researcher wanted to calculate the 0.5 detection threshold for a panelist using 

a pair-wise comparison the panelist would have to get 0.75 correct (Lawless 

and Heymann 2010). Pair-wise comparisons may be one of the most common 

forms of collecting an olfactory detection threshold; however, a 3-AFC is a 

more sensitive test and therefore is preferred. In this test, two blanks are 

presented along with a sample containing an odorant. The subject must 

choose the sample containing the odorant. 

Once all concentration levels have been evaluated, the researcher can 

create a psychophysical curve. The psychophysical curve is a plot of the log 

concentration vs. percent correct response. This will visually represent the 

response characteristics to a specific odorant. From a psychometric function it 

is possible to interpolate the point at which the odorant reaches the level of 

detection. 

The following section describes four different threshold types, in which 

the same method of data collection can be used to identify the four different 

thresholds measurements. It is necessary to vary the question asked of the 

subject according to the type of threshold collected. The four different 

thresholds are: detection threshold, recognition threshold, difference threshold, 

and terminal threshold. This research is primarily concerned with detection 

thresholds and sometimes recognition thresholds. The level of detection is 
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defined as the minimum point at which point a subject is capable of detecting a 

sensation from a stimulus. In this example, a subject would choose the sample 

containing benzaldehyde odor 50% of the time, but would not be able to 

recognize the odor as benzaldehyde, the individual would be able to notice a 

difference between that sample and the other constant odorant. The difference 

between a detection threshold and a recognition threshold, is that at the level 

of a detection, the subject is often unable to identify i.e. name the odorant. At 

the point of recognition the individual is capable of naming the stimulus. 

Naming requires a higher level of cognition and accordingly a higher 

concentration of the stimulus. The subject must be able to both distinguish the 

stimulus from the blank, and name the nature of the stimulus (e.g. an 

individual can recognize and identify benzaldehyde as cherry odor in a 

solution). The difference threshold measures the minimum amount of 

concentration change necessary for a subject to identify a stimulus 50% of the 

time, when compared to a constant reference. An example of a difference 

threshold is being able to correctly identify the different concentration of 

benzaldehyde when presented with two solutions of benzaldehyde 50% of the 

time. A fourth type of threshold measurement is the terminal threshold, the 

point at which an increase in concentration yields no changes in response. 

There is a point, at which the maximum concentration for benzaldehdye has 

been reached, and the subject can no longer distinguish between samples, 
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there is no perceivable increase in stimulation with an increase in 

concentration. 

 

1.2.7 Challenges in Measuring Olfaction: 

There are many challenges a researcher encounters when measuring 

olfactory perceptions. Individuals breathe at different rates, have different 

genes, as well as vary widely in sensitivity. Measuring the psychophysical 

perception of an odorant can be quite precarious if the researcher does not 

devise and follow a method that eliminates outside distractions, ensuring 

confident the subject is evaluating the odorant and not an unrelated cue. 

Training the panelist for a specific method can eliminate some variation. 

However, the experimenter must control for purity of sample, off-odors in the 

diluent, reliable blanks, a standardized method of measurement such as a 

forced choice method, understand the nature of the odorant he/she is using, 

and use instructions indicating when a subject should inhale and exhale 

(Stevens et al. 1988, Schmidt and Cain 2010).  

Both Stevens et al (1988) and Schmidt et al (2010) stress the 

importance sample purity. Variability in threshold measurement can be the 

result of impurities within a sample. A lower than normal detection threshold 

can be an indicator of sample contamination (the contaminant is the odor the 

individual detects not the test odorant). Furthermore, if the blank or diluent is 

not close to odorless, the subject may evaluate the presence of a blank rather 
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than the presence of an odorant. It is important for the researcher to pre-

screen all subjects to determine whether the subject is capable of detecting 

the odorant, a subject could exhibit a specific anosmia to an odorant.  

The researcher should be aware of the timing of odorants in order to 

control for adaptation. Stevens et al (1988) suggest that much of the reported 

variability amongst individuals is related to experimental differences. In fact 

Schmidt et al (2010) further suggests the variability observed is usually a 

function of variation within the panelist testing from session-to-session. 

Therefore it is paramount the researcher be aware of changes in subject 

variation and reliability. Schmidt also stresses the importance of understanding 

the amount of odorant delivered during each evaluation and consistency. 

Overall, measuring thresholds requires a large amount of experimental control, 

the experimenter is capable of controlling stimulus purity, delivery, and 

measurement; however, large variability is often due to subject differences. 

 

1.3 Vision 

1.3.1 Basic Structures in Phototransduction 

Most visual research has been conducted in primates and other mammals 

(cats, rabbits), with the advent of imaging techniques many of the prior 

findings in primates have been corroborated. Light first enters the eye and 

must pass through ganglion cells as well as horizontal, bipolar, and amacrine 

cells before reaching the photoreceptors. Phototransduction is the conversion 
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of wavelengths of light into electrical signals that result in visual perception. 

The process of phototransduction begins when a photon binds to a 

photoreceptor located on the retina. Light is defined by wavelength; humans 

are capable of detecting wavelengths in the range of 390-750 nm. The retina 

is capable of detecting a single photon of light, the smallest form of energy 

(Hecht et al. 1942).  

The retina contains two basic photoreceptors: rods and cones. A third 

type of photoreceptor has been identified in mammals as responsible for 

regulating circadian rhythms (Berson et al. 2002). Rods regulate processing of 

achromatic vision, while cones process color vision. Rods are most sensitive 

to wavelengths of 510 nm and cones are most sensitive to wavelengths of 

555, the difference known as Purknje Shift, explains why night vision is 

undisturbed by the presence of red light. Rods are one of the best understood 

G protein mediated signaling processes (for full reviews please see (Luo et al. 

2008, Palczewski and Saari 1997, Baylor 1996). Like in olfaction, visual 

transduction is also mediated by GPCRs 7-TM proteins, in vision they are 

referred to as opsins. Rhodopsin, found in rods absorbs primarily green-blue 

light. Light activates rhodopsin, converting it to the active form. This signals a 

G-protein cascade closing the CNG channel open during darkness where the 

signal is then propagated along the optic nerve. The cones are also mediated 

by opsin protein. There are three specific types of cones, enabling humans to 

see a full spectrum of colors (Krauskopf and Gegenfurtner 1992). Each cone-
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type absorbs lights within a specific range: s-cones (~430 nm), m-cones (~530 

nm), and l-cones (~560 nm). Human vision is trichromatic due to the presence 

of these three cones; however, some humans lack the s-cone thus resulting in 

dichromacy. For a review of color vision transduction please see: (Solomon 

and Lennie 2007).  

Unlike in olfaction, vision is topographically mapped. Meaning, 

neighboring groups of cells in the retina relay neural information to neighboring 

groups of cells in the lateral geniculate nucleus (LGN), which send their 

information of to neighboring sets of cells in the visual cortex. Essentially, 

spatial arrangements of forms and objects are maintained through the neural 

encoding process, referred to as a retinotopic map (Kandel et al. 2000, Wolfe 

et al. 2006). 

 

1.3.2 Visual Processing: Stream Specialization 

Visual information is processed in a hierarchical manner. This means the 

beginning stages of visual processing extract the localized and basic forms of 

vision, as the information reaches higher levels of processing the information 

is transformed into and abstract, holistic, and likely multimodal scene. At the 

neuronal level, as the flow of visual information progresses from the retina to 

the cortex the receptive fields of the neurons increases, thus suggesting more 

complex processes. In early vision processing, ganglion cells process the 

basic features of an object. From the earliest stages of visual processing in the 
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retina there are two types of retinal ganglion cells. Magnocellular ganglion 

cells (M-cells) and parvocellular ganglion cells (P-cells). Table 1 outlines the 

basic differences between these two cell-types. This is where object 

recognition begins. The subdivision of information that occurs due to the 

specialization of these cells is maintain up until the visual information reaches 

the visual cortex for higher processing, where it is believed to combine to form 

an overall gestalt. As visual information reaches higher levels of processing 

more complex cells have been identified such as facial recognition cells.  

P-cells are slow, process information about color, have low luminance 

contrast sensitivity, high spatial frequency and low temporal frequency. P-cells 

are responsible for information about the shape of an object. In contrast, M-

cells quickly process information, have high luminance contrast sensitivity, are 

color blind, have low spatial frequency, and high temporal frequency. For more 

information about specialization please see Livingstone and Hubel (1988). The 

divisions in specialization are maintained through the optic nerve, information 

from P-Cells and M-Cells go to specific parts of the LGN located in the 

thalamus. Figure 4 provides a map of the two pathways. Different layers within 

the LGN receive specific information from these cells. The specific layers then 

transfer this information onto specific areas for higher order processing. 

Information processed by P-cells is sent to the inferior occiptotemporal cortex 

along what is referred to as the ʻwhat pathwayʼ (ventral cortical pathway).  
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Color 
Selectivity 

Contrast 
Sensitivity 

Temporal 
Resolution 

Spatial 
Resolution 

ʻWhere Streamʼ 
Dorsal Pathway 

(Magno 
System) 

No High Fast Low 

 
ʻWhat Streamʼ 

Ventral 
Pathway 

(Parvo System) 

Yes Low Slow High 

Table 1: Basic differences between the two visual processing streams 
 



27 

Information from M-cells is sent to the dorsolateral parietotemporal cortex 

along the ʻwhere pathwayʼ (dorsal cortical pathway) (Milner and Goodale 2008, 

Goodale and Milner 2009).  

The dorsal pathway processes information related to form and motion. 

Most motion processing occurs in the medial temporal area. The ventral 

pathway processes information about depth as well as color and form. These 

processes occur in area V4. The ventral pathway is primarily responsible for 

object recognition. The inferotemporal (IT) cortex is where facial recognition, 

cells have been found. Cells responsible for pattern recognition have also 

been found in the IT (Kandel et al. 2000, Milner and Goodale 2008, Mishkin et 

al. 1983).  

 

1.3.3 The Binding Problem: Synthesis of Visual Information 

Although there are two distinct pathways involved in processing specific parts 

of visual information, this information is eventually combined to yield a  

perceptual experience. The two visual information streams have been well 

researched, but the underlying issue of how the information is bound together 

is still a mystery. How the information is combined to yield the experience of 

observing a basketball being shot into a hoop is not yet understood. The 

difficulty of understanding of how simple features are combined to create 

perceptions is known as the binding problem.  
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Illusory conjunctions are strong evidence for the existence of the binding 

problem. An illusory conjunction occurs when visual information is improperly 

combined to create an image. For example, if there are two objects, one is 

round and red and the other square and green (Treisman and Schmidt 1982). 

If the subject is asked to recall the two objects, it is possible the subject might 

confuse the colors and shapes of the objects. The misattribution of object 

information is referred to as an illusory conjunction and presented as evidence 

for the binding problem. However, researchers argue whether illusory 

conjunctions are a function of memory rather than visual processing (Wolfe 

and Cave 1999).  

Research has shown visual information may be bound together even 

earlier than the area V1 in the visual cortex (David 2009). Regardless of the 

exact location of binding, visual information is processed in separate areas 

and is most likely processed in a hierarchical manner, most importantly 

attention is essential to creating a perception. Object recognition utilizes both 

top-down and bottom-up processing. Bottom up processing is stimulus driven, 

and the subject is searching for differences in preattentive features. Top down 

processing requires a subject to search for an object with specific preattentive 

features. 

 

1.3.4 Visual Perception and the Role of Attention 
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There are several different stages where visual information is attended to and 

processed, contributing to the visual experience. In order for a subject to see 

an object, the subject must attend to it (Wolfe 2001). Wolfe and Howard (2001) 

suggest there are several stages of processing: a preattentive phase, early 

vision processing, mid-level processing, and then an overall formation of a 

perception. Prior to the integration of attention, the visual system encodes 

dozens of features about an object in parallel which are represented as a 

bundle of features In the preattentive stages of visual processing, the object is 

not well defined as the basic features are loosely attached to the object. Color, 

size, orientation and other basic features about an object are encoded at this 

stage; however, attention is essential in order for these features to be properly 

attributed to an object (Treisman and Schmidt 1982, Wolfe and Bennett 1997).  

As shown through repeated search task studies, the binding or linking 

of features to an object can only occur in a single object at a time, thus 

attention is a bottleneck for visual information, and prevents observers from 

detecting change in objects if the change is either transient or hidden (Wolfe 

2001, Wansink et al. 2000, Goldsmith 1998). Basic features such as 

luminance polarity, color, orientation, size, depth, line termination, curvature, 

target orientation and target polarity occur before more complex properties 

such as facial recognition, reading, object identification, or even perceiving the 

wetness of water. Attention is required for the second set of processes to 

occur.  
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The area or areas, where binding takes place and the theory of binding 

is still under debate. However, what is accepted is that attention is essential to 

object recognition. Objects that are not attended to, will not be recognized, and 

the preattentive information about the unattended object will be lost. 

Furthermore, the binding problem researched by visual attention researchers 

is also a larger question. In real life we experience multiple sensations in a 

single perception, thus we bind many features at once from multiple sensory 

inputs. Crossmodal research examines how multiple signals are bound to 

create our sensations. Nowhere is the combining of the senses more apparent 

than when food is consumed.  

 

1.3.5 Visual Threshold Measurement 

Like in olfaction a forced choice methods are a commonly used approach for 

measuring the limitations of vision. In vision the 2-AFC is the most common 

method, often due to the limitations of a screen. Thresholds have been 

calculated for luminance, recognition, textures, motion, adaptation, and many 

different visual features (Solomon 2002, Donner 1992, Swanso et al. 1984, 

Foley, Legge 1981, Brown et al. 1953, Kohn 2007, Li et al. 2008, Enns and Di 

Lollo 2000, Tolhurst 2002). Masking has been used to study the limits of vision 

since 1925 (Piernon 1925). Many classical vision studies have used masking 

and paired comparison tests to evaluate the psychophysical perception of 

vision (Solomon 2002, Swanson, Wilson and Giese 1984, Foley and Legge 
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1981, Foley 1994, Legge and Foley 1980, Plant and Hess 1987, Turvey 1973, 

Weale 1955). Visual masking is a common psychophysical method used to 

evaluate the limits of vision. Two reviews outline the different uses and 

methods employed for visual masks: (Kahneman 1968) and (Enns and Di 

Lollo 2000) Through the various types of masking used, researchers have 

been able to determine the components necessary for object recognition. A 

visual mask can be presented in the form of a noise pattern superimposed 

over an image or as an object occluding another object. There are different 

levels of effectiveness of different types of masks (Enns and Di Lollo 2000, 

Legge and Foley 1980, Turvey 1973, Harmon and Julesz 1973, Kolers and 

Rosner 1960, Scheerer 1973, Schiller and Wiener 1963). The purpose of the 

mask is to increase the difficulty of a task, in doing so disrupts higher order 

processing (Enns and Di Lollo 2000). A mask is capable of reducing object 

recognition, such as obscuring the contours on an outline of two cherries 

making it more difficult to identify (Schiller and Wiener 1963, Kinsbourne 1962, 

Scharf 1966, Schiller 1965, Smith, Schiller 1966, Sperling 1963).  

In a paired comparison using a visual noise mask, two visual stimuli 

patches are presented side-by-side. One patch, is the masking stimulus (MS), 

this is the noise mask presented alone overlaying a blank image. The other 

patch is the test stimulus (TS), containing the test stimulus, superimposed with 

a noise mask. The researcher can adjust the level with which the opacity of 

the noise mask to increase or decrease the difficulty of viewing the object 
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through the mask. The subject is required to choose the patch containing the 

TS. Unlike in olfaction, visual stimuli can be both presented increasing and 

decreasing in difficulty. Thus the stimuli are often delivered using a staircase 

method, stimuli are presented in a single session by increasing and decresing 

the intensity (Cornsweet 1962). The staircase method is sometimes used to 

measure olfactory thresholds; however, it is modified to ensure stimuli are 

presented in an ascending order, to avoid the effects of adaptation. 

When measuring a visual threshold, the researcher must control the 

head movements of the subject to ensure the subject views the images from a 

fixed visual angle. The lighting should be the constant during testing. A focal 

point should be used to direct the subjectʼs attention on the task. The monitor 

used should be calibrated and it is advised the subjectʼs become familiarized 

with the task prior to testing (Solomon 2002). Similar to olfaction, visual 

threshold determination needs to be properly controlled as well; however, the 

individual variation in vision is considered to be far less than in olfaction.  

 

1.4 Flavor Perception: a Multimodal Process 

Flavor perception occurs through the input of taste, smell, vision, audition, and 

touch. Two comprehensive reviews thoroughly describe the crossmodal 

interactions that have been researched as applied to food (Verhagen and 

Engelen 2006, Auvray and Spence 2008). Lawrence et al (2001) and Spence 

et al (2010) also investigated the influence of color on the consumer food 
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experience (Garber et al. 2001, Spence et al. 2010). All of our senses are 

used to assess the foods we are eating to create a flavor perception. The 

crossmodal integration of taste and smell has been widely studied (Small and 

Prescott 2005, Chiralertpong et al. 2008, Delwiche and Heffelfinger 2005, 

Prescott, Johnstone and Francis 2004, Small et al. 2004, Dalton et al. 2000, 

Stevenson, Boakes and Wilson 2000, Frank and Byram 1988, Gillan 1983). It 

is also clear vision is critical to informing our perceptions of flavor. Often the 

visual appearance of a food is assessed prior to even tasting the food and the 

aromas can offer further clues about the flavor profile of a food. However, how 

vision and smell combine to form our flavor perception is still not understood.  

Consumers are easily persuaded by the visual appearance of a food, 

often basing flavor expectations on the presence of visual cues. Even 

professional wine tasters have been fooled by color-adultered wine (Morrot, 

Brochet and Dubourdieu 2001). In 2001, Morrot et al (2001) used a 

professional panel of wine tasters to evaluate wine samples. These samples 

included a white wine as well as the same white wine that had been dyed red. 

Using descriptive analysis, the professional wine tasters used red wine 

attributes to describe the color-adultered wine. Morrot suggested the evidence 

of visual cues overriding the other senses used to assess a wineʼs character is 

further evidence that higher order olfactory processing activates the primary 

visual cortex, area V1 as demonstrated by Royet et al (1999), suggesting 

vision may add to our olfactory perceptions. 
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1.4.1 Odor/Color Associations 

The combined input of vision and olfaction powerfully influences our 

perceptions of foods. Several studies have demonstrated the strong 

associations of colors and specific odorants (Dematte, et al. 2006, Gilbert et 

al. 1996, Zellner et al. 2008). Although it is possible to argue these 

associations are based on learned pairings, Stevenson et al (2001) conducted 

a study in which participants learned to associate novel colors and odors 

(Stevenson 2001). Therefore, although color and odor associations may be 

strongly based on experience and expectation it is possible to learn new 

associations. 

 

1.4.2 Odor/Color Quality 

The following studies demonstrate the ability of visual stimuli to alter the 

perception of overall flavor quality. Several studies have examined the role of 

color to influence visual appearance to alter the odor quality of a product. In 

1995 Francis conducted a review of the influence of color on the perceived 

quality of food products and found there are ideal color points that cue 

observers to associate color with flavor quality (Francis 1995). Schutz (1956) 

determined individuals perceive an ideal color for specific foods, he observed 

that these colors may not be the same as those found in nature (Schutz 1954).  
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Schutz (1956) showed through doctoring the color of orange juice, 

consumers found it to be more appealing. Christenson reported aromas paired 

with ʻappropriateʼ colors were judged as having a higher quality aroma than 

those not paired with a color or paired with an ʻinappropriateʼ color 

(Christensen 1983). DuBose determined the overall hedonic quality of a 

beverage could be significantly decreased or increased based on the color 

value of a beverage. Furthermore, a study using fMRI imaging confirmed the 

findings of others by demonstrating greater cortical excitation in pairs of 

congruent odors and smells judged as higher in hedonic quality (Österbauer et 

al. 2005). 

 

1.4.3 Odor/Color Pleasantness 

The combination of visual and olfactory stimuli can also alter judgments about 

the pleasantness of a food. This linkage is most likely related to theories of 

expectation, for a review please see Scharf and Volkmer (2000). Often 

alterations in the visual appearance of a stimulus can override the 

pleasantness of a flavor stimulus. Pleasantness is closely related to the 

perception of hedonic quality. Color and odor pairings can also influence the 

perceived pleasantness of a flavor in a product. Foster (1956) presented 

consumers with two types of chips, one speckled and one without speckles, 

consumers found the unspeckled chips more pleasant. However, when he 

informed the consumers the chips were ʻcharcoal grilledʼ the speckled chips 
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were preferred and were preferred overall (Foster 1956). Zellner et al (1991) 

presented subjects with several different odor color pairs. Those pairs judged 

as appropriate received higher pleasantness ratings than those odor-color 

pairs judged as inappropriate.  

The linkage between pleasantness and acceptability in products due to 

discoloration is closely related to expectation and experience. The greater the 

discrepancy between the expectation and actual experience the consumer 

has, the greater the level of rejection and unpleasantness (Garber et al. 2001, 

Hutchings 2003, Cardello 2003).  

 

1.4.4 Odor/Color Identification 

Studies involving flavor identification, illustrate how a visual cue can drive our 

perceptions of flavor. One of the most common types of studies examining the 

role of vision and flavor involve flavor identification. Several studies have 

corroborated the reliance individuals have on visual cues in order to inform 

flavor judgments. As early as 1955, research dissecting the role of color and 

flavor perception in beverages found when colors were mismatched with 

beverages, individuals made large errors in flavor identification (Kanig 1955). 

A similar study devised by DuBose et al (1980) revealed how the color of a 

beverage influenced the identification of a beverage more than the flavor of the 

beverage. Another study where subjects were asked to identify the odor, odor 
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color pairs judged as ʻappropriateʼ were identified correctly more often than 

odor-color pairs judged as ʻinappropriateʼ (Zellner et al. 1991).  

As previously mentioned color influenced wine tasting professionals to 

misattribute a white wine as a red wine based on the visual appearance alone 

(Morrot et al. 2001). Another study determined that subjects were likely to 

identify a cola flavored solution as cola when colored brown. When the 

experimenter changed the color of solution to orange, subjects misidentified 

the cola solutions as either orange flavored or tea flavored (Sakai et al. 2005). 

In a series of studies conducted by Shankar et al (2009, 2010) subjects were 

asked to identify the odor while the experimenter manipulated the timing of the 

color presentation. Shankar et al (2010) found the timing of the visual color 

stimulus influenced the identification of the odorant (Stanford et al. 2010). In 

an imaging study, Österbauer et al (2005) revealed greater cortical activation 

when congruent color-odor pairs were presented and identified correctly. 

 

1.4.5 Odor/Color Intensity 

The color intensity of a stimulus has been known to interfere with the ability of 

the subject to evaluate the flavor intensity of a stimulus. The other most 

common type of odor-color experiment asks subjects to evaluate flavor 

intensity. Overall these studies report an increase in perceived flavor intensity 

as the color intensity of the samples increased. Duncker (1939) conducted one 

of the earliest studies demonstrating the power of color to influence consumer 
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flavor judgment. In this study he first presented blindfolded subjects and 

presented them with two pieces of chocolate, both pieces were milk chocolate, 

one colored white and the other colored brown. Subjects were asked to 

describe the flavor of the chocolate samples. He then repeated the same set 

of questions but without the blindfold (Duncker 1939). The responses to the 

two chocolates were quite different when subjects were not blindfolded. In the 

evaluations were subjects were able to see the two samples, subjects reported 

a less intense chocolate flavor in the white chocolate sample (Duncker 1939). 

Several studies have demonstrated the ability of color to enhance 

sweetness in solutions. Through a series of studies, Pangborn revealed the 

ability of color to influence the perceived sweetness of sucrose solutions; 

however, she did not find specific colors to influence the intensity, just the 

presence of a color in comparison to a colorless solution (Pangborn and 

Hansen 1963, Pangborn 1960). In another series of studies conducted by 

Johnson and colleagues, the concentration of color added to fruit flavored 

solutions yielded higher sweetness ratings and stronger flavor intensity ratings 

(Clydesdale et al 1992, Johnson and Clydesdale 1982). Similarly, Roth et al 

(1988) reported increases in perceived sweetness intensity in lemon-lime 

solutions as the yellow and green color within the samples were manipulated 

(Roth et al. 1988). It should be noted Frank et al (1989) demonstrated 

perceived increases in sweetness as a result of the presence of strawberry 

flavor rather than the intensity of the color in the solution (Frank et al. 1989). 
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Thus according to Frank, flavor is the driver of the change in perceived 

sweetness intensity not the visual cue. Furthermore, Lavin and Lawless (1998) 

showed depending on the level of experience of the consumer, color cues will 

not always influence the perceived sweetness of a product (Lavin and Lawless 

1998). 

DuBose et al (1980) reported changes in the redness of a cherry 

flavored beverage and changes in the concentration of orange color in an 

orange flavored beverage were both able to alter the perceived flavor of the 

beverage. However, DuBose did not find a direct relationship between the 

color of the solution and the perceived flavor intensity. Christensen (1983) 

reported subjects found appropriately colored foods perceivably more intense 

in both aroma and flavor than the inappropriately colored foods. Zellner and 

Kautz (1990) reported increases in odor intensity when odorants were 

presented with their expected color, they suggest the observed changes in 

intensity are the result of a perceptual change, and could be the consequence 

of conditioning. Engen (1972) found subjects were more likely to report an 

odor in colored solutions even in the absence of a color. Zellner suggests 

these associations are either learned or part of our multimodal processing.  

 

1.4.6 Color/Odor Influencing Detection 

Colors have also been found to alter psychophysical evaluations of odor 

stimuli. Two studies report psychophysical changes in perceptual detection 
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resulting from the presence of a visual stimulus. In 1972 Engen reported an 

increase in the number of reported false alarms when odorants were 

presented in colored solutions. When subjects performed the 2-AFC task, 

evaluating the odor of two solutions subjects were able to distinguish between 

the two colorless solutions. However, upon adding color to the solutions, the 

reported detection rates changed (Engen 1972). Engen attributed this finding 

to the role of expectations and cognition informing our perceptions.  

In a separate imaging study, Gottfried and Dolan (2003) demonstrated 

the ability of a visual stimulus to increase detection rates of an odor. Gottfried 

and Dolan (2003) delivered puffs of olfactory stimuli through an olfactometer 

while displaying visual images on a monitor while analyzing the neural activity 

of subjects in an fMRI. They were able to find as the level of correspondence 

between the visual image and odorant presented increased, the detection of 

the odorants increased as well as the level of observed neural activity 

(Gottfried and Dolan 2003). The finding by Gottfried and Dolan (2003) 

suggests the combination of visual and olfactory stimuli can lead to an 

observed enhancement. Perhaps this observed increase in neural activity 

suggests signals from separate sensory pathways are enhanced when 

combined.  

1.4.7 Studies where Olfaction Drives Visual Attention 

The following two studies suggest olfaction is capable of driving attention 

toward a visual stimulus. The other previously mentioned studies have 
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described how vision often overrides olfaction during the simultaneous 

presentation of olfactory and visual stimuli. The associations made between 

visual stimuli and olfactory stimuli often show visual stimuli dominating 

olfactory stimuli when the two are presented simultaneously. However, Zhou et 

al (2010) demonstrated an olfactory stimulus could influence vision. In this 

binocular rivalry study participants were presented two images, one in each 

eye, and an odorant. If the image and olfactory stimulant were congruent, the 

individual would spend more time looking at the image in the eye of the 

congruently presented image.  

A study conducted by Seigneuric et al (2010) also demonstrated the 

ability to influence the visual modality through olfaction. In this study 

participants were presented with a visual scene, a still life of images 

associated with the odors that would be presented. Participants were 

connected to a visual tracking device. When subjects were presented with an 

olfactory stimuli congruent with a visual object within the visual still life tracking 

times were reduced, demonstrating the olfactory cue shortened the visual 

processing time and helped to direct visual attention (Seigneuric et al. 2010). A 

similar study, conducted by Seo et al (2010) also used eye tracking to assess 

the influence of olfaction on object recognition. Seo et al (2010) like, 

Seigneuric et al (2010) also found congruent odors assisted in object 

detection.  
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Overall the reported studies demonstrate strong links between olfaction 

and visual stimuli when the two images presented are considered to be 

congruent. The definition of congruency is often determined by the authors of 

the paper, and not through a test to determine whether the subjects within the 

study agree with the definition of congruency. Of the crossmodal olfactory-

vision studies mentioned above only three screened to ensure the olfactory 

and visual stimuli were considered by the subject to be associated (Dematte et 

al. 2006, Gilbert, Martin and Kemp 1996, Österbauer et al. 2005). The 

methods in these three papers used to determine congruency varied. 

 

1.4.8 Observations about Prior Olfactory/Visual Studies 

Unlike, taste, texture, and touch, olfaction and vision are the first sensory 

inputs an individual experiences when interacting with a food. Even before the 

food is consumed, olfactory and visual cues contribute to the expectation of 

flavor.  

In most of the reported studies, odorants were presented above the 

level recognition. It is necessary to mention, the method of visual presentation 

of stimulus is not standardized across these studies, nor is the type of 

olfactory stimulus or the method with which the olfactory stimulus is delivered 

and evaluated by the participant. Color vision is separately processed from 

black and white vision, the majority of the studies discussed above use color in 

the visual modality. Many of the studies use color alone i.e. the shape of the 
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objects is not changed, (Garber et al. 2001, Shankar et al. 2009, Stevenson et 

al. 2000, Dematte et al. 2006, Gilbert et al. 1996, Zellner et al. 2008, 

Christensen 1983, DuBose, Cardello and Maller 1980, Österbauer et al. 2005, 

Shankar et al. 2010, Clydesdale et al. 1992, Roth et al. 1988, Zellner and 

Kautz 1990) others use color photographs i.e. a scene and therefore a more 

sophisticated visual display (Gottfried and Dolan 2003, Seigneuric et al. 2010) 

only one evaluated crossmodal vision and olfaction by using black and white 

images (Zhou et al. 2010). Furthermore, presenting a block of color is different 

than presenting an image composed of lines, curves, shading, and depth. 

Thus depending on the visual image displayed to the subject different levels of 

visual processing and cognition are used to perceive the visual image. The 

more complex the image, a colored visual scene, the more parts of the visual 

system are engaged.  

It is important to determine the parametric limits of multimodal 

interactions. Gaining insight into the features, which most strongly contribute 

to multimodal interactions, will yield more information about flavor processing 

and a greater understanding for how consumers interact with products. From 

the previous studies, it is unclear whether color is a necessary driver of these 

associations or whether the presentation of a curved line can signal the 

presence of a fruit. It may be that a curve is not enough to signal a higher 

order level of processing necessary to engage a multisensory enhancement. 
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Odorant delivery methods vary across these crossmodal experiments. 

Many of the experiments use flavored solutions, thus olfactory stimuli are 

evaluated through retronasal evaluation. Many of the studies actually examine 

the crossmodal interactions of odor and vision by using retronasal smell, due 

to the fact the researchers are examining combinations of taste, smell, and 

color (Morrot et al. 2001, Gilbert et al. 1996, DuBose et al. 1980, Pangborn, 

Hansen 1963, Pangborn 1960, Johnson and Clydesdale 1982, Roth et al. 

1988). All of these studies require the subject to put the sample in oneʼs 

mouth, thus odor is delivered retronasally. Koza et al (2005) reported 

differences in the influence of color on odor intensity when sampled 

orthonasally or retronasally. Other studies ask subject to smell the stimuli, thus 

orthonasal evaluation is used (Dematte et al. 2006, Christensen 1983, 

Österbauer et al. 2005, Zellner et al. 1991, Shankar et al. 2010, Zellner and 

Kautz 1990, Trygg 1972, Gottfried, Dolan 2003, Zhou et al. 2010, Seigneuric 

et al. 2010). In these studies the method of odor delivery varies, from the use 

of plastic bottles (Gilbert et al. 1996, Zellner et al. 1991, Zellner and Kautz 

1990), glass jars and bottles (Engen 1972, Zhou et al. 2010, Seigneuric et al. 

2010), to smelling a food or drink (Christensen 1983, Shankar et al. 2010), and 

olfactometers (Dematte et al. 2006, Österbauer et al. 2005, Gottfried, Dolan 

2003). Diluents vary across studies; however, since odorants in these studies 

are presented above threshold the odorous nature of the diluent is not too 

disconcerting. 
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Österbauer et al (2005), Gottfried and Dolan (2003), and Seo et al 

(2010) delivered odorants through an olfactometer, precisely controlling 

olfactory delivery. The odorants used were complex smells (not pure single 

compounds). For instance, Österbauer et al (2005) presented subjects with 

blocks of color and odorants were spearmint, lemon, strawberry, and caramel. 

Gottfried and Dolan (2003) presented high resolution color photographs of 

everyday images. Both of these tests employed color stimuli and complex odor 

stimuli. The timing of odorants was controlled in both of these studies by the 

delivery method. Gottfried and Dolan (2003) used a detection task in order to 

evaluate responses, where subjects answered yes or no to the presence of an 

odorant. They also collected reaction times in order to determine whether 

congruency influenced response speed. Österbauer et al (2006) used a rating 

system, 1 = very good to 4 = very bad, to evaluate intensity, familiarity, and 

pleasantness for the odorants alone, they ultimately evaluated the ʻfitʼ of 

odorants and colors using the same rating scale. All odorants were presented 

above the detection threshold.  

Gottfried and Dolan measured whether the presence of an odorant 

alters the observed brain activity when an odorant is paired with a congruent 

or incongruent visual stimulus, or whether the stimulus is pleasant or 

unpleasant. However, this study does not examine the limitations necessary 

for the interaction to occur. The study reveals pleasant odors paired with its 

congruent visual stimulus yields more correct responses to the presence of an 
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odorant, as well as decreases reaction time, in comparison to incongruent 

bimodal presentation and unimodal presentation. Furthermore the congruent 

bimodal condition showed the strongest brain activation. However, it is not 

clear how much of an odorant must be presented in order to result in an 

enhanced response or how much of the visual stimulus needs to be present. 

Meaning, if the image has to be in color and whether the full photograph needs 

to be presented or it can be occluded or it can be an outline. There are many 

unanswered questions about the role of bimodal processing and its ability to 

enhance a response.  

The research conducted by Österbauer et al (2005) leaves many 

unanswered questions about bimodal processing. The reader can extrapolate 

the importance of color odor congruency; however, it is unclear how intense 

the odorant must be in order to yield the observed super-additive brain activity 

response. Additionally it is unclear how long the visual stimulus must be 

presented to the subject. Österbauer et al (2005) suggests the observed 

increase in activity observed in the insular cortex due to crossmodal activity 

suggests color may influence certain aspects of olfactory processing. This 

supports the prior observations made by Öngür and Price (2000) and Rolls 

and Baylis (2004), in non-human mammalian species, that the OFC may 

receive input from both the primary olfactory cortex as well as the ventral 

visual pathway.  
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However, the observation that color is capable of influencing a 

perceived olfactory stimulus has been demonstrated in studies by others using 

varying methodologies (Shankar et al. 2009, Morrot et al. 2001, Christensen 

1983, DuBose et al. 1980, Sakai et al. 2005, Shankar et al. 2010, Clydesdale 

et al. 1992, Roth et al. 1988). Thus it would be interesting to understand 

whether color is crucial to creating this enhancement, or if other information 

processed through the ventral pathway such as object recognition through 

form with the absence of color could also yield such an excitatory enhanced 

response. It is worth noting, Österbauer et al (2005) did not observe a 

suppressive brain activity response during the presentation of incongruent 

visual-olfactory stimuli, reported in other crossmodal studies with auditory and 

visual stimuli and taste and smell stimuli (Calvert 2001, Small 2004, Small et 

al. 1997). 

The previously mentioned crossmodal studies examining olfaction and 

vision or even taste and vision have not isolated the necessary components of 

a visual stimulus to create an enhanced response, i.e. a psychophysical 

response greater than the response of a single sensory modality. Neither have 

they determined the types of olfactory stimuli that can elicit these responses. 

Although most individuals experience the world through a full spectrum of 

colors, it is worthwhile to determine whether color is critical for an enhanced 

response, if form alone is crucial for a response, or if is the pairing of form and 

color that can lead to a multisensory enhancement.  
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As mentioned previously both Österbauer et al (2005) and Gottfried and 

Dolan (2003) use computerized olfactometers to control the delivery of the 

olfactory stimulus. Dematte et al (2006) conducted a study using color and 

odors with the intention of improving on the experimental design of Gilbert et al 

(1996). Odorants were delivered through an olfactometer, they tested whether, 

semantic prompting could speed or change the accuracy of responses to the 

visual/olfactory stimuli. The results revealed the semantic prompting of key 

selection did not influence the subjects as much as congruency. Reaction 

times decreased for congruently paired stimuli, the researchers also observed 

an increase in accuracy for congruently paired stimuli. Thus this states a 

similar finding as Gilbert et al (1996), where individuals pair certain colors to 

certain colors. Dematte et al (2006) also report a semantic prompt is not as 

influential to changing accuracy of response as the congruency of the stimuli. 

However, from the design of the study it is clear the odorants are presented for 

a fairly long interval. The stimuli are all presented far above threshold, thus the 

reader does not gain a further understanding of how olfaction and vision are 

processed, whether the naming would have influenced the subject more had 

the odors been less recognizable or the visual stimuli presented for a shorter 

interval. It is possible the semantic element of naming, a higher level of 

processing, could facilitate in detection if the stimuli are not as easily 

detectable. 
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It should be noted the field of subliminal information processing reports 

on several examples where a subliminally presented signal can alter an 

individualʼs behavior. These have been demonstrated in both the olfactory and 

visual fields. However, the mechanism through which the subliminal 

information is processed in order to yield behavioral changes are not well 

understood, and many of these studies have had difficulty replicating prior 

results. Studies have shown the ability of a visual subliminal presentation to 

prime a subjectʼs response, other studies have shown subliminal message 

presentation may not be as influential in helping a subject remember the 

message of a product or in persuading someone to purchase a product (Bar 

and Biederman 1998, Smith and Rogers 1994, Theus 1994, Williams 1938). 

The term ʻprimingʼ describes the ability of a stimulus presented prior to the test 

stimulus to influence the subjectʼs response to the test stimulus, There are 

both negative and positive primes, priming is linked to implicit memory.  

Subliminal stimulation has also be tested within the olfactory field, to 

determine if a subliminal olfactory cue can alter a subjectʼs behavior. These 

studies like the visual studies suggest there may be underlying mechanisms 

which can influence a subject regardless of awareness; however, few studies 

have been conducted and their methodologies are not well tested (Hirsch 

1995, Li et al. 2007, Stockhorst and Pietrowsky 2004). Theories related to 

subliminal olfactory influence often relate to hormonal influences. Based on the 

basic tenets of the role of attention in both olfactory and visual processing, it is 
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difficult to conclude how subliminal processing works if attention is required to 

form recognition. 

From the above literature it is clear a study examining the limits 

necessary for a psychophysical crossmodal interaction between vision and 

smell has yet to be conducted. All of the preexisting studies use stimuli well 

above threshold and have not taken into consideration the complex nature of 

visual processing and olfactory delivery techniques. 
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CHAPTER 2 

 

THESIS STATEMENT 
 

Flavor perception involves the integration of sensory information from sight, 

sound, taste, and touch. All of the senses are involved in creating a flavor 

perception; however, the significance of each sensory contribution to the 

formation of the overall perception is not understood. The visual appearance of a 

food strongly informs the perceptual expectations of the food including its flavor. 

Research has shown the congruency of a foodʼs color with its flavor has been 

found to increase performance in detection tasks, identification, and decrease 

reaction times in comparison to incongruent pairings. Researchers have 

attributed these observed increases in performance with the increased signal due 

to multimodal input as opposed to unimodal processing. Although, the integration 

of the senses undoubtedly influences our perceptions of a flavor how each sense 

contributes to the perception is not understood, nor are the specific parameters of 

each sense well defined. There are still many unanswered questions related to 

crossmodal processing of information. This research investigates crossmodal 

interactions between olfaction and vision in order to gain further insight into flavor 

perception. 

There are many different variables that can be measured when testing a 

visual stimulus: length of stimulus presentation, contrast, luminance, color, 

occlusion, attention, peripheral or direct, shape of stimulus, movement of 
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stimulus. When assessing an olfactory stimulus it is possible to: intensity of the 

stimulus, length of presentation, purity of sample, timing of presentation (i.e. 

whether it is before, after, or during the visual stimulus), type of odor, retronasal, 

vs. orthonasal, and attention to the stimulus. For this study we seek to define the 

elements necessary to result in a measurable change in performance in visual 

task when presented with an olfactory stimulus or a measurable change in an 

olfactory task when presented with a visual stimulus. Figure 5, illustrates the 

project objectives and layout. In order to test the influence of a visual stimulus on 

olfactory perception, these experiments manipulate the visibility of a visual 

stimulus through a noise mask, color, and the shape of an object while 

measuring performance on an olfactory detection task. Furthermore the influence 

of an olfactory stimulus on a visual detection task is also measured in order to 

assess with an olfactory stimulus can result in measurable changes in 

performance of a visual detection task. 

All experiments compare changes in detection performance resulting from 

crossmodal presentation in comparison to unimodal presentation. The first 

experiment will test whether the simultaneous presentation of perithreshold 

stimuli in olfaction and vision can influence performance in either a visual 

detection task or an olfactory detection task. These tasks will be conducted in the 

absence of color. During these tests, the visual fruit stimuli will either be 

congruent with the fruit odor or incongruent. 
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Figure 5: Experimental flow diagram of research. 
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(I.e., benzaldehyde and cherry outline; iso-amyl acetate and a banana outline). 

The effect will be measured by examining the influence of a congruent or 

incongruent fruit outline stimulus on the performance in an olfactory detection 

task. It will also be examined by measuring the effect of a congruent or 

incongruent presentation of an olfactory stimulus on the performance of a visual 

detection task. If perithreshold crossmodal enhancement were to occur in the 

congruent conditions, the performance In the crossmodal task would increase in 

comparison to its unimodal detection condition. Furthermore, if the simultaneous 

presentation of incongruent stimuli yield a decrease in performance in either the 

visual or olfactory detection tasks, it is then possible to conclude that the 

incongruent presentation of visual and olfactory information leads to a cognitive 

interference.  

The next step in this research will assess if increasing the visibility of a 

visual stimulus to the level of recognition can influence the performance in an 

olfactory detection task. The role of color will also be investigated, whether the 

presentation of a congruent or incongruent color can influence the performance 

of an olfactory detection task. Finally visual stimuli at the level of recognition 

consisting of colored fruit shapes will be presented in both color congruent and 

color incongruent conditions while assessing the performance in an olfactory 

task. If color influences olfactory performance, it would be expected to see 

congruent colors yielding measurable increases in olfactory performance, and 

incongruent color presentation leading to decreases in olfactory detection 



58 

performance. If shape alone influences olfactory detection performance, the color 

of the fruit shape should not influence the olfactory detection performance. 

Finally, if the intensity of the visual stimulus influences olfactory detection, there 

may be observable differences in performance from the first experiment to the 

second experiment. 

Overall these experiments will reveal how each sense contributes to an 

overall flavor perception by investigating the influence of stimulus intensity, 

stimulus shape, stimulus color, and stimulus congruency.  
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CHAPTER 3 

 

MATERIALS AND METHODS 
 

3.1 Congruency Test 

In order to select the test stimuli, a set of four olfactory and four visual stimuli 

were chosen to be included within a congruency test. The congruency test 

assessed how strongly the participants associated the olfactory and visual 

stimuli. Based on the results of this test the two odorants and visual stimuli 

with the strongest associations were chosen to be the test stimuli.  

 

3.1.1 Panelists in Congruency Test 

Eleven female and four male healthy individuals with no reported olfactory or 

visual impairment participated in the congruency test, whose mean age was 

33±11 years. Of those nine female and one male partook in all parts of the 

study. The University Committee of Human Subjects of Cornell University 

approved and reviewed all research protocol. Testing took place in a smell 

isolation room, ensuring a constant flow of pure air. 

 

3.1.2 Materials for Congruency Test 

Visual stimuli were presented on a sheet of paper, the visual stimulus sheet. 

The visual stimulus sheet, illustrated in Figure 6, consisted of a single sheet of 
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paper containing black and white outlines of all four visual stimuli: a banana, 

cherries, a bushel of grapes, and a lemon located on the four corners on the 

sheet of paper. Panelists used five black bottle caps to respond to evaluations 

of olfactory stimuli. Olfactory stimuli consisted of four Teflon squeeze bottles 

each retrofitted with a Teflon ball for nasal comfort. Each bottle contained a 

single odorant. All odorants were diluted in Polyethylene Glycol 400 Lot 

J33647 (J.T. Baker, Mallinckrodt Baker Inc, Phillipsburg NJ). Odorants were: 

2.94 mM benzaldehyde (≥99.5%, Sigma Aldrich, St. Louis MO), 26.91 µM iso-

amyl acetate (≥97%, SAFC (Sigma Aldrich), St. Louis MO), 772.6 µM methyl 

anthranilate (≥99%, SAFC (Sigma Aldrich), St. Louis MO), and 263.5 µM 

octanal (≥99%, Sigma Aldrich, St. Louis MO). 

 

 3.1.3 Procedure for Congruency Test 

The congruency test method was adapted from Gilbert et al (1996). Subjects 

were presented with a sheet of paper consisting of four black and white 

images of fruit outlines. The four black and white fruit outlines were: a banana, 

two cherries, a cluster of grapes, and a lemon. While explaining the 

procedures, the experimenter demonstrated for the panelist, the proper 

method of sniffing from the squeeze bottles. The subjects received five black 

bottle tops. Subjects were instructed to sniff the odorant from the squeeze 

bottle and then place the five game pieces on the image they felt best fit the 

odorant. All five bottle tops could all be placed on a  
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single fruit outline or distributed amongst the four outlines. Following each trial, 

the experimenter recorded the placement of the five game pieces. After a 

minimum of a timed 45-second break the subjects evaluated a different odor 

repeating the same process as before. Participants evaluated each odorant 

three times. Testing took approximately 15 minutes. The order of odorant 

presentation was randomized.  

 

3.1.5 Data Analysis for Congruency Test 

The number of times a game piece was placed on each image was tabulated. 

The distributions of the five game pieces across the four fruit outlines were 

tabulated for each trial. The total number of game pieces placed on each 

outline for each fruit presented was totaled. Percentages for the number of 

game pieces placed on cherry when presented with benzaldehyde were 

calculated, number of game pieces placed on banana when presented with a 

iso-amyl acetate, the number of  game pieces placed on grape when present 

with methyl anthranilate, and the number of game pieces placed on lemon 

when presented with octanal. 

 

3.2 Visual Threshold Determination 

Ten participants (nine female and one male) who partook in the congruency 

study partook in crossmodal study. All protocols were approved by the 

University Committee of Human Subjects of Cornell University. Testing took 
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place in a smell isolation room, to ensure a constant flow of pure air. Visual 

thresholds were determined for each participant through a forced choice visual 

noise mask task.  

 

3.2.1 Materials for Visual Threshold Determination 

All visual stimuli were black and white outlines of fruit created in GIMP, the 

same black and white fruit outlines used to determine the visual stimuli in the 

congruency test were used in the visual threshold task. Two visual thresholds 

were calculated: a threshold of the outline of a banana, the other threshold of 

the outline of two cherries. All visual stimuli were presented on a screen with a 

resolution of 2560 X 1440. Images were prepared in GIMP. A black and white 

noise pattern was created in GIMP. The transparency of the noise pattern was 

manipulated in GIMP, from 85% transparency to 99% transparency (nearly 

opaque). The noise pattern was layered on top of the images of the fruit, the 

transparency for the visibility of the fruit outline through the noise pattern 

varied from 85%-100%. During testing, all except for one panelist were tested 

with a transparency range of 90% to 99% transparency (not visible), 

transparency increased in single step increments. One panelist, due to 

demonstrated poor visual performance, was tested with a range from 85%-

94%. Subjects were seated at a fixed distance of 60 cm from the screen; their 

heads were stabilized with a chin and forehead rest. Images were viewed at a 

visual angle of 18.21º X 12.12º. The fixed distance of 60 cm was chosen 
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based on prior visual testing protocol (Seigneuric et al. 2010, Zhang et al. 

2011). All stimuli were presented using a program written in PyschoPy v 

1.64.00 where timing of the instructions, stimulus presentation, interstimulus 

intervals (ISI), randomization, and data collection could be effectively 

controlled (Peirce 2007, Peirce 2009)  

 

3.2.2 Method for Visual Threshold Determination 

Visual thresholds for banana stimulus and cherry stimulus were determined in 

two separate sessions. Testing took place in a smell isolation room. Panelists 

were seated in front of a computer monitor, with a chin and forehead rest 

located at a fixed distance of 60 cm from the screen, as illustrated in Figure 7a 

and b. Upon entering the testing area, the experimenter adjusted the chair 

height for each panelist ensuring uniform eye level. All stimuli were presented 

using a two alternative forced-choice method, similar to the classic two the 

visual masking methods using in (Foley and Legge 1981, Foley 1994, Legge 

and Foley 1980, Garcia-Perez 1998). The computer program used to evaluate 

visual thresholds, written using PsychoPy (Peirce 2007, 2009) instructed the 

subject to evaluate two images side-by-side one image located on the left side 

of the screen and one image located on the left side of the screen.  

Figure 8 is a schematic of the experimental. Following the first set of 

instructions were examples of the two reference images: a patch of noise 

followed by a patch of noise+target. Six practice trials with feedback followed  
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the presentation of the references. Practice trials, like the test trial presented 

the subject with two images (noise and noise + target) presented side-by-side. 

All images were evaluated using a forced-choice method, where noise and 

noise+target were always presented side-by-side on the screen. Subjects 

were instructed to select the noise+target image. Presentation location of 

noise+target was randomized to appear on either left or right side of the 

screen. Subjects responded by pressing either the left or right arrow keys on 

the keyboard, indicating the location of the noise+target stimulus. Subjects 

were instructed to respond as quickly and accurately as possible. A 440 Hz 

tone simultaneous with the presentation of a focal cross-hair centered in the 

middle of the screen, alerted the subject to the beginning of each trial. 

Subjects were told to focus on the cross-hair at the start of each trial. 

Subjects were instructed to press any key to continue. After the practice trials, 

subjects were alerted to the start of testing. Each session consisted of 8 test 

sets, each containing 14 trials. The test sets alternated between increasing 

and decreasing in visual detection difficulty. Each transparency level was 

presented two times during each test set. A test set increasing in difficulty 

would always be followed by a test decreasing in visual detection difficulty. 

Whether a subject began testing with a test set that increased or decreased in 

difficulty was randomized across subjects. Subjects rested for 1-minute 

between each test set. There were a total of eight sets of trials.  
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3.2.3 Data Analysis for Visual Threshold Determination 

The number of correct responses was tabulated for each mask level presented 

to each panelist. The 0.75 correct level was calculated for each participant 

using the geometric mean.  

 

3.3 Odor Threshold Determination 

Odor Thresholds were first collected without the use of an olfactometer, using 

a 3-AFC method Kurtz et al (2010). In order to control for timing and uniform 

puff delivery across all panelists it became increasingly necessary to engineer 

an olfactometer. The design of the olfactometer integrated the Teflon puff 

bottles into the design. By pressing in the sidewall of the squeeze bottle a 

fixed distance, the same size puff could be delivered to each panelist. 

Additionally the olfactometer could receive commands from the computer 

indicating when to deliver a puff of air to the panelist. This allowed the panelist 

to focus on the required task rather than be distracted by stimulus delivery. 

Attention could be effectively directed toward the visual stimulus or olfactory 

stimulus. Two thresholds were determined, one for benzaldehyde (cherry) and 

the other for iso-amyl acetate (banana). 

 

3.3.1 Materials for Odor Threshold Test 

Testing for two odorant thresholds occurred over separate sessions. All 

dilutions were prepared in Polyethylene Glycol 400 (J.T. Baker, Mallinckrodt 
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Baker Inc, Phillipsburg NJ) (PEG). All solutions of benzaldehyde were made 

from ≥99.5%, (Sigma Aldrich, St. Louis MO) and all solutions of iso-amyl 

acetate were made from ≥97%, SAFC (Sigma Aldrich), St. Louis MO)Five 

concentrations were prepared for benzaldehyde: 46 µM, 92 µM, 184 µM, 368 

µM, and 736 µM. Five concentrations of iso-amyl acetate were also prepared: 

0.13 µM, 0.41 µM, 1.24 µM, 3.73 µM, 11.21 µM. All odorants were presented 

in 250 mL Teflon bottles manufactured by Nalgene. A Teflon ball was affixed 

to the top of each bottle to avoid panelists from accidentally sticking the bottle 

up their noses. Each bottle contained 10 mL of solution. All bottles were 

labeled with random three-digit codes except for the reference bottles, which 

were marked ʻRefʼ. All solutions appeared clear and colorless. Solutions were 

made 24 hours in advance of testing, and pipetted into bottles approximately 

1-hour prior to testing. 

 

3.3.2 Method for Odor Threshold Determination 

The protocol followed a 3-AFC threshold method described in Wise et al 

(2008) (Wise et al. 2008) and used by Kurtz et al 2009. Panelists evaluated 

three references at the beginning of each session a reference for the blank (a 

bottle containing only PEG) and two odor references, labeled ʻlow referenceʼ 

and ʻhigh referenceʼ containing the lowest and highest concentrations if the 

test odorant. The panelists evaluated three bottles per trial, references were 

available throughout the testing session. Two of the three bottles were blank 
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and one of the bottles contained the odorant. The researcher randomized the 

order of bottle presentation. After the panelist selected the bottle containing 

the odorant, the panelist recorded the bottle number and the location of the 

bottle on the ballot. Once the subject completed her assessment, the subject 

rested for a timed 45-second break. After the break, the individual repeated 

the same procedure for the next set of three-bottles. There were a total of 

three trials per concentration level, odorant concentration increased 

throughout the test. Each testing session began with the lowest concentration 

and ended with the highest concentration. Subjects evaluated a total of 15 

trials during a single training session, lasting approximately 20-minutes. Every 

panelist completed a total of two testing sessions per odorant, for a total of 

four odorant-threshold testing sessions. The level of detection is defined as 

66.7% correct; however, we were interested in a slightly higher level of 

detection, in between that of detection and recognition, and thus chose the 

level of 75% detection.  

 

3.3.3 Olfactometer Design 

In order to ensure accurate and measurable delivery of olfactory stimuli this 

experiment utilized an olfactometer, capable of communicating with the 

PyschoPy computer program. The olfactometer used throughout these 

experiments was engineered specifically for this research. From the outside 

the olfactometer appeared as a white rectangular box, with two side doors, a 
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chin rest, a forehead rest, and a single piece of Teflon tubing located during in 

front of the chin rest, pointing up toward the participantʼs nostrils. The subject 

rested her chin on a chin rest affixed to the top of the olfactometer and rested 

her forehead against a forehead rest also affixed to the olfactometer. Odors 

were emitted through a Teflon tube centered directly beneath the participantʼs 

nostrils and located directly in front of the chin rest. Figure 9 a and b is a 

diagram of the puff olfactometer (Kurtz et al, in preparation). Each side-door 

accessed the Teflon squeeze bottles. These bottles could be easily switched 

in and out of the machine during testing. Two actuators affixed with circular 

discs, one for each bottle were used to press in the side of each squeeze 

bottle to deliver a puff of  

approximately 11 mL in volume as confirmed through a soap bubble test. The 

olfactometer was controlled through a program written in Python code from 

ActiveState Komodo IDE version 7.0.0 (ActiveState,Vancouver, BC) 

connected to an Arduino board (http://arduino.cc, Italy). The program 

PsychoPy regulated timing of odorant delivery from the olfactometer. 

 

3.3.4 Olfactory Threshold Method with Olfactometer 

Threshold determination for benzaldehyde and iso-amyl acetate with the 

olfactometer used a 2-AFC forced choice method (Delwiche and Heffelfinger 

2005). Thresholds for the two odorants were collected in separate testing  
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Figure 9 a and b: Puff-olfactometer design. a is a cartoon drawing of the 
olfactometer and computer set-up. b) is a schematic of the olfactometer 
design, from above, from front and profile views. From above the two 
horizontal objects are the actuators. From the front, the two squeeze 
bottles, chin rest, and forehead rest are visible. 
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sessions to reduce olfactory fatigue. Five concentrations of iso-amyl acetate 

were prepared 1.24 µM - 11.24 µM and five concentrations of benzaldehyde  

92 µM - 368 µM. All solutions were diluted in PEG. 10 mL of solution were 

pipetted into a 250 mL Teflon Nalgene squeeze bottle. These concentrations 

were determined to be within the detection range from the 3-AFC test set. Two 

bottles were inside of the olfactometer throughout testing. One bottle 

contained only PEG (blank) and the other bottle contained the odorant (target). 

In order to avoid bias due to unknown differences between left and right 

actuators, bottle location was randomized throughout the trials. Upon the 

subjectʼs arrival, the height of the chair was adjusted in order to ensure a the 

subjectʼs chin rested comfortably in the chin rest located on top of the 

olfactometer, this also ensured all panelists viewed the visual stimuli from 

approximately the same angle.  

To measure the olfactory threshold a program written in PsychoPy, 

delivered a set of instructions on a computer screen stating two puffs of air 

would be delivered in sequence for each trial. Panelists wore Bose noise 

canceling headphones throughout testing to block external noise. Headphones 

were connected to the computer where white noise played throughout testing, 

subjects prompted with tones throughout testing. In order to alert panelists to 

the beginning of a trial panelists were alerted with a 440 Hz tone along with a 

focal crosshair, located in the center of the monitor. Panelists were instructed 

when to inhale and exhale in order to regulate breathing patterns across 
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panelists. During testing one puff always contained the odor while the other 

contained no odor, panelists were told regardless of whether they detected an 

odor to make a decision. The program alerted the panelist to the onset of the 

first and second puffs; panelists were instructed to use the left and right arrow 

keys to record their responses (left arrow = 1st puff; right arrow = 2nd puff). At 

the beginning of each testing sessions panelists completed five practice trials 

with feedback in order to ensure that he or she understood the task as well as 

to serve as a warm-up. A schematic of the testing protocol can be seen in 

Figure 10.  

In order to test the threshold, testing always began with the comparison 

of the lowest concentration and increased up to the highest concentration. 

Panelists evaluated each odorant at five concentrations. Concentration levels 

were repeated four times in a row, separated by 15 second breaks. After  

repeating the same concentration step four times, a timed 1-minute break took 

place, followed by the presentation of the next concentration step. Thus each 

panelist completed 20 total trials, five for each concentration step for each 

odorant tested. Thresholds were calculated through the presentation of five 

different odorant concentrations.  

 

3.3.5 Data Analysis Olfactory Threshold Determination Method 
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The number of correct responses was tabulated for each concentration level 

presented to each panelist. The 0.75 correct level was calculated for each 

participant using the geometric mean.  

 

3.4 Training Method  

A set of two training sessions took place prior to the engineering of the 

olfactometer, to determine whether individuals were capable of associating 

visual images with olfactory cues. 

 

3.4.1 Materials for Training 

All visual images were presented using a program written in PyschoPy on a 

screen with a resolution of 2560 X 1440. Panelists rested their head on a chin 

and forehead rest, located at a fixed distance of 60 cm from the screen. All 

visual images were viewed at a visual angle of 18.21º x 12.12º. Images were 

either of a noise pattern or of a fruit outline (either banana or cherry) occluded 

by noise. All images were created in GIMP. Images were the same as those 

described in the methods for determining the visual threshold. Images were 

presented above threshold at the 85% transparency point. All stimuli 

presented were above the calculated thresholds of detection for all panelists. 

Odorant concentrations during training were above threshold: benzaldehyde 

736µM and iso-amyl acetate 11.21µM. Blank bottles, those containing only 

PEG, were also presented to panelists. All bottles were labeled with 3-digit 
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codes, except for the three reference bottles. Reference bottles were labeled 

ʻRef 1,ʼ ʻRef 2,ʼ and ʻBlankʼ. Ref 1 contained iso-amyl acetate, Ref 2 contained 

benzaldehyde, and Blank contained PEG. As in the other tests, all bottles 

were 250 mL Teflon Nalgene squeeze bottles, retro-fitted with a Teflon ball on 

top for nasal comfort. Each bottle contained 10 mL of clear colorless solution. 

 

3.4.2 Method for Training Session 

Panelists completed a training session to gain experience associating images 

and odorants. Each training session took approximately 30 minutes. Training 

took place in two separate sessions. For the first training session taught the 

panelist to use associate a visual stimulus with an odorant. Figure 11 

illustrates the testing scheme used during the olfactory discrimination task 

used to train subjects. Subjects were presented with a single image, centered 

on the screen either target + noise or noise alone. The subjects were 

presented with either a visual image of noise or an image of noise + target. 

The researcher presented the participant with two bottles, one odorant bottle  

and one blank bottle. The subject then would choose the blank bottle if she 

perceived the visual patch to be noise or select the odorant bottle if she 

detected a fruit outline in the visual patch. The participant indicated to the 

experimenter which bottle best fit the image on the screen. The experimenter 

recorded the participantʼs answer and provided feedback. Testing began with  
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two example trials for the odorant/visual stimulus to acquaint the participant 

with the task. Participants completed five practice trials with feedback prior to  

beginning the test. Each participant repeated the test for a total of 10 test trials 

per odor. All participants were required to receive a score of 90% correct by 

the conclusion of the second test trial. After a timed 20 second break, the 

panelist repeated the procedure for the second odor and image. A 440 Hz tone  

signaled the beginning of each trial, along with a message prompting the 

participant. The participant pressed any key to continue, prompting another 

440 Hz tone and a focal crosshair to appear in the center of the screen. A 

visual patch appeared in the center of the screen until the participant made his 

or her decision, at which point the participant was instructed to press any key 

to continue which prompted a 20-second timed break. After completing the 

second set of trials, the same procedure was repeated for the second 

odor/visual pairing, beginning with the two example trials.  

During the second stage of training, two images were presented side-

by-side the same as in the visual threshold test, one an image of a fruit + 

noise  (either banana or cherry at 85% transparency), and the other of noise 

alone. Subjects were presented with a single squeeze bottle, to be sniffed as 

they examined the two visual images. Subjects used the left and right arrow 

keys to choose the image best fitting the bottle presented with a single bottle, 

either containing an odorant (matching that of the fruit image on the screen) or 

a blank (PEG). Subjects were instructed to choose the image that best  
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matched the odorant in the bottle. If the subject were presented with a blank 

bottle, the subject should choose the image of noise. Training for cherry and 

banana occurred separately. Training proceeded as follows. The test 

schematic for the visual discrimination crossmodal training is illustrated in 

Figure 12. The participants were presented with two example trials, two 

images were presented on a screen, panelists were also presented with a  

single squeeze bottle. The test session began with a 440 Hz tone 

accompanied by a screen informing the participant to ʻGet Readyʼ, and to 

press any key to continue. The next screen presented a focal cross-hair along 

with a 440 Hz tone followed by the presentation of two images side-by-side. 

The individual was instructed to evaluate the visual images while 

simultaneously sniffing from the squeeze bottle, and make her selection with 

the left or right arrow keys. A timed 20-second break immediately followed the 

subjectʼs response. A 440 Hz tone along with a screen to ʻGet Readyʼ 

appeared after 20-seconds and this procedure was repeated five times and 

then again for second test, for another five trials. After which, the subject was 

introduced to the second odor and the entire procedure was repeated for the 

second odor and image. 

Completion of this training task enabled the researcher to ensure 

individuals were able to distinguish the target odor from the blank. All testing 

took place above every individualʼs calculated threshold, in order to observe 
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whether the individuals were capable of completing the task with a 95% 

success rate.  

 

3.5 Method for Crossmodal Tasks  

3.5.1 Experiment 1: Participants in Crossmodal Task  

Nine female and one male participant who had partook in all other parts of 

training and testing, completed the eight testing sessions. The same stimuli 

that had been used in the previous training and detection determination 

sessions were used in the testing sessions. Stimulus preparation followed the 

same protocol as described above. 

 

3.5.2 Overview of Method for Experiment 1 

Two tasks were devised for evaluating crossmodal interactions between the 

olfactory and visual systems. The visual focus task (VF) examined whether an 

olfactory stimulus could alter visual detection sensitivity, the olfactory focus 

task (OF) examined whether a visual stimulus could influence the olfactory 

detection sensitivity. Figure 13 a and b illustrate the VF and OF tasks. The OF 

task required the panelist to complete an olfactory 2-AFC with the  

simultaneous presentation of a single visual stimulus, the VF task required 

panelists to evaluate a visual 2-AFC during the simultaneous presentation of 

an olfactory stimulus. All stimuli used during these tests were delivered at the  
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calculated 0.75 detection threshold for each panelist based on their 

performance on the olfactory and visual threshold tests. Olfactory and visual 

stimuli were presented in both congruent (c) (cherry image and benzaldehyde; 

banana image and iso-amyl acetate) and incongruent (i) tests (cherry image 

and iso-amyl acetate; banana image and benzaldehyde). Congruent and  

incongruent manipulations were tested separately. The different test 

conditions are illustrated in Tables 2 and 3. Table 2 outlines the different test 

conditions in the VF task, while Table 3 outlines the conditions presented in 

the OF task. There were two basic tests conducted, OF and VF, both of these  

tests were conducted for the both the congruent (c) and incongruent conditions 

(i). Thus there were a total of eight test conditions, four of these focused on 

banana (B) and four focused on cherry (Ch): cBOF, cBVF, iBOF, iBVF, 

cChOF, cCHVF, iChOF, iChVF. Thus each panelist completed a total of 8 test 

sessions.  

All programs for testing the VF and OF tasks were written in PyschoPy 

the schemes for the VF and OF tasks are illustrated in Figure 14 illustrates the 

testing schemes written in PsychoPy for the VF task, and Figure 15 illustrates 

the testing scheme for the OF task written in PsychoPy. To begin each test 

session, adjustments to chair height were made ensuring panelists viewed the 

visual images at the proper visual angle and received a direct puff of air from 

the olfactometer. All testing occurred in the smell isolation room, panelists 

wore Bose noise-cancelling headphones during all testing to isolate noise.  
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Table 2: Stimuli presented in the visual focus condition. The top row defines the 
stimuli in the visual detection task, the odorants presented were either congruent, 
incongruent, or no odor (PEG) for a control. 

Visual Task 

Banana + Noise vs. 
Noise 

Cherry + Noise vs. 
Noise 

Congruent iso-amyl acetate benzaldehyde 

Incongruent benzaldehyde Iso-amyl acetate 

Control PEG PEG 
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Panelists listened to white noise during testing and received 440 Hz tone 

alerting them when to sniff. Each testing session began with a set of 

instructions alerting the panelist to the type of task he or she would complete. 

The PsychoPy programs delivered instructions to panelists, instructing them 

when to inhale and exhale, to ensure breathing be as controlled across 

panelists as possible. For both OF and VF tasks each test began with a 

presentation of the reference stimuli as well as a set of five practice trials with 

direct performance feedback, serving as both a warm-up trial as well as to 

gauge performance, if further adjustments were necessary.  

As in the prior tests a 440 Hz tone along with a focal crosshair indicated the 

delivery of each stimulus. Across all testing timed 15-second timed breaks 

separated each trial presentation, and 3-minute timed breaks after the 

presentation of a set (each set consisted of eight trials, four test trials and four 

control trials). For both the OF and VF tasks a total of five test sets were 

evaluated during a single testing session excluding the practice trials. Thus a 

total of 24 test trials and 24 controls trials were tested per session.  

 

3.5.3 Procedure for VF Task 

Panelists conducted a two-alternative forced choice visual masking procedure 

using the mask of the panelist at their calculated level of the 0.75 detection 

threshold. Simultaneous with the presentation of the visual two-alternative 

forced choice procedure were timed presentations of single puffs of odor.  
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Panelists were instructed when to inhale and exhale through instructions on 

the screen as well as 440Hz tones along with the focal crosshair signal. During 

the VF task, panelists were told to evaluate the two images on the screen, 

choosing the noise+target image while sniffing from the olfactometer. The test 

condition consisted of an odorant presented above the panelistʼs calculated 

level of detection, at the 0.75 level, the control condition presented the panelist 

with a puff of PEG (blank). For each trial the panelist was told to choose the 

visual image containing the fruit outline, by pressing the right and left arrow 

keys. The control condition served to measure whether the level of detection 

for the visual threshold changed during the test condition. Testing lasted 

approximately 20 minutes. 

 

3.5.4 Procedure for OF Task 

The OF task required panelists to complete a similar to task to the olfactory 

threshold task; however, simultaneous with the presentation of the two puffs of 

air, panelists were presented with a single visual image in the center of the 

screen. All visual and olfactory stimuli were presented at the panelistʼs 

calculated 0.75 detection threshold. Instructions and 440 Hz tones along with  

a cross-hair visual stimulus alerted the panelist to the delivery of a puff of air. 

Instructions were presented on the screen indicating when the panelist should 

inhale and exhale in order to regulate breathing across panelists. Panelists 

were asked to respond to whether the first or second puff of air contained an  
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Table 3: Stimuli in the olfactory focus task. The top row indicates the olfactory 
task performed, the visual stimuli are presented in the rows, congruent, 
incongruent, and control. Visual noise was presented alone in the control 
condition.  

Olfactory Task 

Benzaldehyde vs. 
PEG 

Iso-amyl Acetate vs. 
PEG 

Congruent Cherry + Noise Banana + Noise 

Incongruent Banana + Noise Cherry + Noise 

Control Noise Noise 
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odorant. As in the VF task, each test sessions contained five test sets and one 

practice set, with each set containing eight randomized trials, four test trials 

and four control trials. During each trial an odorant was always presented; 

however, the order of presentation was randomized across each trial. During 

the control condition, noise alone was presented in the visual image, rather 

than noise + image. The tested whether the olfactory threshold remained at 

the 0.75 calculated detection threshold level. Between each trial the panelist 

rested for a timed 15-second break, with a 3-minute timed break between 

each test set. Testing lasted approximately 20 minutes. Like in the VF task, 20 

test trials and 20 control trials were collected. 

 

3.5.5 Data Analysis for Experiment 1: VF and OF Tasks 

Data for the OF and VF tasks were analyzed separately. Mean percent correct 

values and associated uncertainty intervals were calculated for each condition 

type. Figures 17-20 incorporate significance tests of differences between 

means using the uncertainty intervals of Andrews et al. (1980) α=5% least 

significant intervals (LSI) were calculated as  

 

 

 

Where 

! 

x  is a mean 

! 

t" / 2,v  is the upper α/2 point of Studentʼs t distribution on 

v degrees of freedom, s2 is the error mean square from the analysis of 
! 

L = x ±
ta / 2, v 2s2 /n
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variance, and n is the number of observations contributing to each mean 

(Andrews et al. 1980). The least significant intervals include the error mean 

square from analysis of variance, thus they are more conservative than 

confidence intervals. Two means significantly differ if their least significant 

intervals do not overlap. One way ANOVAs were performed for the both the 

OF and VF data. 

 

3.6 Experiment 2: Methodology 

3.6.1 Panelists 

Six men and four women completed the crossmodal task for this study, with an 

average age of 30.5±10 years. Testing consisted of six training sessions and 

four test sessions. All protocols were approved by the IRB. The testing 

protocol remained the same as in the OF task, except some visual stimuli 

were in color.  

 

3.6.2 Materials 

Visual stimuli included black and white noise, used in the Part 1 of the 

experiment, as well as the two black and white fruit outlines. Color transforms 

of the noise patterns were made, these color masks were also applied to the 

two fruit outlines. A transform was performed on the black and white noise 

pattern to create a red and yellow noise pattern. The red noise mask had a 

RGB value of R=255, G=0, B=0 and H=0, S=100, V=100. The yellow noise 
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mask had a RGB value of R=255, G=255, B=0, H=60, S=100, V=100. These 

same color transforms were applied to the black and white fruit outlines. All 

visual stimuli were presented at fixed levels of opacity. Noise stimuli were 

presented as follows: black and white noise 85%, red noise 88%, yellow noise 

93%. Black and white fruit outlines were presented as: banana 85% and 

cherry 85%. Color noise masks were created of the fruit outlines: red banana 

88%, yellow banana 93%, red cherry 88%, yellow cherry 93%. These levels 

were chosen based on the ability to recognize the visual stimulus. The same 

concentration levels and preparation used to determine the olfactory 

thresholds in part 1 were used in part 2. 

 

3.6.3 Experiment 2: Method 

Panelists completed an OF task as described above as well as the VF task. 

The range of visibility for the stimuli presented in the VF task ranged from 

88%-97% occlusion by the mask. A short test in order to assess whether 

visual stimuli were at the level of recognition was devised. Cherry and banana 

stimuli with visual masks ranging from 92-94 were presented in a randomized 

order, where each image was presented a total of 6 times. Panelists had to 

press ʻbʼ on the keyboard if he or she saw a banana and ʻcʼ if he or she saw a 

cherry. The accuracy of response indicated the ability to recognize as well as 

distinguish the two visual stimuli.  
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For the OF task, stimuli presentation were congruent i.e. benzaldehyde odor 

was presented with cherry images and iso-amyl acetate was presented with  

banana images. All visual images were created in GIMP. Visual stimuli were 

noise (black and white), noise (yellow), noise (red), banana + noise (black and  

white), banana + noise (yellow), banana + noise (red), cherry + noise (black 

and white), cherry + noise (yellow), and cherry +noise (red). The testing 

conditions are outlined in Table 4. The OF task proceeded as described 

above. The testing scheme is illustrated in Figure 16. There were four practice 

trials, with direct feedback after each response, followed by two test sets.  

Each test set contained 12 trials, six trials control trials and six test trials, a 15-

second timed break occurred between each trial presentation, and a 3-minute 

timed break separated the set presentations. Testing lasted approximately 20 

minutes. 

 

3.6.4 Data Analysis for Experiment 2 

As in section 3.5.5 data were analyzed using LSIs. Data were analyzed by the 

effect of color on olfactory detection and the influence of shape and color on 

the olfactory detection task (Figures 19 and 20). Mean percent correct values 

and associated uncertainty intervals were calculated for each condition type.  

One-way ANOVAs were performed for the both the color and color and shape 

conditions. 
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 CHAPTER 4 

RESULTS 

 

4.1 Congruency Test: Results 
Results of the congruency test were analyzed to determine the stimuli to be 

used for the crossmodal tasks. Panelists placed the game pieces on the 

cherry outline when presented with benzaldehyde 88% of the time, followed by 

banana and iso-amyl acetate 79.5%, grape and methyl anthranilate 78.2%, 

and lastly lemon and octanal (72%). Table 5 reports the frequency counts of 

game piece distribution as well as the upper and lower 95% confidence limits 

(Goodman, 1965). Based on these results the two test stimuli chosen were the 

outline of the banana and the outline of the two cherries. The two olfactory 

stimuli were benzaldehyde and iso-amyl acetate. 

 

4.2 Experiment 1: Results 

Figures 17 and 18 represent the findings from the VF and OF tasks. In fig.17, 

plots the mean percent correct performance in the visual task, while presented 

with either a congruent or incongruent olfactory stimulus. The mean percent 

correct for visual detection performance in the congruent condition remained 

around 60% performance, in both the control and test conditions The visual 

stimuli presented to each subject were at the calculated 75% level of 

detection, thus at the perithreshold, performance did not vary greatly from this  
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Figure 17: Results from VF Task. Influence of the presence of an olfactory 
stimulus, while performing a visual detection task. Mean percent correct for 
performance in the visual task is plotted against the congruency of the 
olfactory stimulus. Grey circles represent the control condition and black 
circles the test condition. The whiskers indicate the 95% LSIs based on pooled 
error from the ANOVA. In the control conditions, PEG is presented. In the 
congruent test conditions iso-amyl acetate is presented while evaluating a 
banana, benzaldehyde while evaluating the cherry image. In the incongruent 
condition, benzaldehyde is presented while evaluating the banana visual 
stimulus and iso-amyl acetate is presented while evaluating the cherry visual 
stimulus. 
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Figure 18: Results from OF Task. The influence of perithreshold shape on 
olfactory detection performance. Percent correct performance in the OF task is 
plotted against the congruency of the condition. Grey dots represent the 
control condition, and black dots represent the test condition. The whiskers 
indicate the 95% LSIs based on pooled error from the ANOVA. In the control 
condition, a noise patch is presented. In the congruent task, a banana figure is 
displayed in the presence of iso-amyl acetate, a cherry figure in the presence 
of benzaldehyde. In the incongruent conditions, iso-amyl acetate is evaluated 
while looking at cherries, and benzaldehyde is evaluated while looking at a 
banana. 
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level. The consistency of performance between the control and test conditions, 

indicates the drop in percent detection is likely due to the difficulty of the visual 

task. When presented with an incongruent olfactory stimulus, the performance 

in the visual task is slightly lower for overall in the cherry incongruent condition 

for both the control and test condition (in the presence of iso-amyl acetate), F 

(7,1752) = 2.05, p<0.05.  

Figure 18 represents the performance in the OF task. The mean 

percent correct values, lie around 70%, very close to the perithreshold levels 

calculated for each subject. The olfactory detection performance for 

benzaldehyde was lower overall; however, in the congruent condition, as 

indicated by the overlap in the LSIs, this difference is not statistically different 

from the performance in the iso-amyl acetate detection task. Performance in 

the incongruent olfactory task condition, where iso-amyl acetate was 

evaluated in the presence of a cherry and banzaldehyde in the presence of a 

banana, performance is significantly different in both the control and test 

conditions of the iso-amyl acetate odor condition from all other evaluations. 

However, since the control (evaluation of iso-amyl acetate in the presence of 

black and white noise) does not significantly differ from the test condition.  

 

4.3 Experiment 2: Results

Figures 19 and 20 represent the findings from experiment 2. Figure 19 plots 

the mean percent correct performance in the olfactory task in the presence of  
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Figure 19: The effect of color on olfactory performance. Mean percent correct 
in the OF task is plotted against the color of the noise patch. The grey dots 
represent iso-amyl acetate evaluation and the black dots represent 
benzaldehyde odor evaluation. The whiskers indicate the 95% LSIs based on 
pooled error from the ANOVA. Congruent color is yellow while evaluating iso-
amyl acetate and red while evaluating benzaldehyde. Incongruent color is red 
while evaluating iso-amyl acetate and yellow while evaluating benzaldehyde. 
Color strongly influences the ability to perform in the olfactory detection task.  
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Figure 20: The influence of color and congruent shape. Mean percent correct 
in the olfactory task is plotted against the effect of color. Grey dots represent 
iso-amyl acetate evaluation and black dots represent benzaldehyde 
evaluation. The whiskers indicate the 95% LSIs based on pooled error from 
the ANOVA Congruent color is yellow while evaluating iso-amyl acetate and 
red while evaluating benzaldehyde. Incongruent color is red while evaluating 
iso-amyl acetate and yellow while evaluating benzaldehyde. The effect of 
congruent shape is not as strong as the impact of color. 
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visual noise, presented in black and white, yellow and red. Performance In the 

black and white visual condition, is around 70% detection, there is no 

significant difference in the detection performance of iso-amyl acetate and 

benzaldehyde. When congruent color is presented during the olfactory 

detection task, yellow in the presence of iso-amyl acetate evaluation and red 

in the presence of benzaldehyde odor evaluation, performance rises to 80% 

detection. However, these results are not significantly different than in the 

presence of a black and white noise pattern. Olfactory detection performance 

decreases to approximately 35% detection for both iso-amyl acetate and 

benzaldehyde when in the presence of an incongruent noise stimulus. Thus a 

yellow patch decreases performance in the benzaldehyde detection condition 

and a red patch decreases olfactory detection performance of iso-amyl 

acetate, F (5, 474) = 18.35, p<0.001.  

 Figure 20 plots the influence of color and shape on olfactory detection 

performance, when the visual stimulus is presented at the level of recognition. 

Olfactory detection performance when presented with a black and white noise 

pattern over a congruent object shape, yielded performance close to 80% 

detection. The addition of a congruent color mask to the congruent fruit shape, 

increased olfactory detection in both the iso-amyl acetate and benzaldehyde 

conditions to approximately 85% detection; however, this is not a significant 

change. Olfactory detection performance dropped significantly when an  
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Figure 21:  The Impact of a Recognizable Shape. The influence of visual 
object recognition on olfactory detection performance. The whiskers indicate 
the 95% LSIs based on pooled error from the ANOVA. The grey dots 
represent the evaluation while the visual image is presented at the 
perithreshold level, and the black dots indicate when the visual stimulus is 
presented at the level of recognition. There is a difference in olfactory task 
performance when presented with the congruent fruit outline at the level of 
recognition; however, this is not a significant change. 
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incongruent color mask occluded the fruit object, for both iso-amyl acetate 

odor detection and benzaldehyde odor detection, F (5, 474) = 24.41, p<0.001. 

 

4.4 Combined Results for Experiment 1 and Experiment 2 

Figure 21, plots data from both experiment 1 and experiment 2, it compares 

olfactory detection task performance when presented with black and white 

noise from both experiment 1 and experiment 2 as well as olfactory task 

performance when presented with a congruent shape at both perithreshold 

(experiment 1) and at the level of recognition (experiment 2). Olfactory task 

performance remains around 70% detection for all black and white noise 

conditions as well as for perithreshold noise + shape conditions; however the 

noise+shape condition presented above the perithreshold, at the level of 

recognition in experiment 2, yields a significant difference in olfactory detection 

performance in comparison to the noise+shape presentation in experiment 1. 

Olfactory detection in the noise+shape recognition condition rose from 

68%±3.16 (standard error) to 77.5%±1.97 in the banana outline condition, and 

61%±3.33 to 73.75%±4.95 in the cherry outline condition. However, the 

calculated 95% LSI values indicate this is not a significant difference, thus 

likely due to differences in error and number of individuals tested the 

difference between performance due to visibility of the fruit outline did not yield 

a significant difference in olfactory performance. 
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CHAPTER 5 

 

DISCUSSION 
 
 
Flavor perception involves the integration of input from sight, smell, sound, 

taste, and texture. Both smell and vision are crucial to forming first 

impressions of a food. This research sought to investigate crossmodal 

interactions between olfaction and vision through a psychophysical approach. 

Prior research examining olfactory and visual interactions has investigated 

identification and hedonic ratings; however, this research sought to determine 

whether detection sensitivity could be altered through bimodal presentation in 

order reveal new insight into flavor perception. From prior crossmodal olfactory 

visual experiments there is evidence that a visual stimulus can influence 

olfactory perception (Morrot, et al. 2001, Österbauer et al. 2005, Zellner, et al. 

1991, Zellner and Kautz 1990, Engen 1972, Blackwell 1995, Davis 1981, Koza 

et al. 2005).  

This research investigated the necessary parameters to be presented in 

one sense to result in a measurable change in detection performance in a 

different sense. Two different olfactory stimuli were tested and several 

different visual manipulations were assessed including: object shape, color, 

and visibility. Two different attention tasks were used to measure crossmodal 

interactions: The olfactory attention task (OF) measured whether a visual 
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stimulus could influence olfactory detection performance, while the visual 

focus task (VF) measured whether an olfactory stimulus could influence visual 

detection performance. All tasks in this first set of experiments were conducted 

at  slightly above the calculated level of detection, at the 0,75 response level. 

Performance in a crossmodal tasks were compared to the performance in a 

unimodal task. Neither the results in the OF nor the VF task show measurable 

change in performance from the crossmodal condition to the unimodal 

condition. Figure 18, illustrates the findings from the OF task. The 

performance of both benzaldehyde and iso-amyl acetate detection remained 

constant, regardless of whether the subject viewed black and white noise 

(control), the congruent visual stimulus, or incongruent visual stimulus. This 

finding suggests that the simultaneous presentation of perithreshold black and 

white shape objects does not alter the performance in the olfactory detection 

task.  

 

5.1 Experiment 1 Findings Explained 

Due to the consistency of performance, across both the unimodal and 

crossmodal conditions simultaneous presentation of a visual cue while 

performing an olfactory performance task did not disrupt nor enhance visual 

processing. There is also the possibility that the nature of the visual task does 

not allow for a crossmodal disruption or enhancement to occur. It is also likely 

that the strength of the visual stimuli must be stronger to result in a 
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measurable change. Due to the attention-related resources being allocated to 

the olfactory detection task a question requiring greater overall processing 

integration might have yielded a different response. If the task required the 

individual to evaluate a hedonic measure as well or choose from a list of fruits 

that best fit the odorant smelled rather than just performing a detection task 

there would have been a more measurable change due to the higher level of 

processing integration needed when performing these other types of tasks. 

Figure 17 illustrates the results of the VF task. Like the findings in the 

OF task, there were no significant differences between in the visual detection 

task in either crossmodal (test) condition or unimodal (control) condition. 

Performance in both the detection of the banana stimulus and cherry stimulus 

remained around 60% performance. Performance in the visual detection task 

did not change from the control condition where the panelist was presented 

with a blank puff or in the test conditions. Within the test conditions, neither the 

simultaneous presentation of a congruent odor nor the presentation of an 

incongruent odorant resulted in a measurable change in the visual detection 

task. 

Like the results of the OF task, it is possible the nature of the task does 

not enable for sensory disruption. If the task involved greater integration 

across the senses, rather than full attention of visual resources, there could be 

a measurable change. The task asks the subject to choose the visual patch 

with the fruit, if the task required the subject to perform a visual search 
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amongst several other visual fruit outlines, perhaps it would result in a different 

type of interaction (Seigneuric et al. 2010). 

Taken together the results of Experiment 1, both the olfactory task 

condition and visual task condition, show that crossmodal stimulation at the 

perithreshold does not influence the performance of the task being attended 

to. Thus the addition of sensory information did not improve or decrease 

performance. One theory is the signal strength from the crossmodal stimuli did 

not interfere with the performance in the detection task. This would suggest 

that if a signal presented above the perithreshold level were presented 

simultaneously with the detection task, performance might change. It could 

also be possible that these two processing paths do not cross in a way in 

which cognitive interference occurs.  

 

5.2 Cognitive Interference in Crossmodal Processing 

Cognitive interference, a term commonly found in cognitive psychology, 

refers to the measurable change in response due which occurs when the 

processing of a stimulus is interrupted by the processing of another stimulus. 

This can result in a decrease in performance as well as measurable changes 

in reaction time due to the disruption in processing (Stroop 1992, MacLeod 

1991, White and Prescott 2007, Djordjevic et al. 2004, Kane and Engle 2003). 

One of the most well known examples of cognitive interference is the Stroop 

Task. In this task an individual is presented with a word, spelling the name of a 
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color; however, the color of the letters are different than the word, e.g. the 

word ʻREDʼ in blue type-face. The subject is instructed to name the color of the 

typeface, not the word. When the typeface color is the same as the word 

(congruent) subjects perform with better accuracy and at faster speeds than 

when presented with the incongruent condition. This is observed effect is 

known as Stroop interference (Stroop 1992, MacLeod 1991). There have been 

many different variants on the Stroop task (for a review please see: (MacLeod 

1991)); two tests even used Stroop like tasks to evaluate the influence of odor 

and taste on word evaluations (White and Prescott 2007, Pauli et al. 1999). 

 

5.3 Experiment 2: Increasing Signal Strength  

One possibility for the lack of measurable change in experiment 1 could 

have been due to the strength of stimuli used or the type of task not creating 

interference. In order to test whether signal strength could alter performance, 

experiment 2 visual stimuli were presented at the level of recognition. 

Experiment 2 only evaluated the influence of a visual stimulus on the olfactory 

detection task. In addition to increases the strength of the visual stimulus to 

the level of recognition, red and yellow noise patterns were used to test the 

role of color. The olfactory stimuli remained the same; all olfactory tasks were 

again performed at the calculated level of detection. By presenting the 

olfactory detection task at the level of detection and the visual stimulus at the 

level of recognition the change in olfactory performance due to a stronger 
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visual signal could be measured. Black and white stimuli were presented in 

addition to, yellow noise, red noise, and fruit outlines occluded by red and 

yellow noise patterns. In this experiment, object shape was always congruent 

with the olfactory task; the cherry outline was presented in the presence of 

benzaldehyde and the banana outline in the presence of iso-amyl acetate. 

Figure 19 plots the robust effect of color on olfactory perception. When the 

black and white noise condition (unimodal) is compared to the olfactory 

detection performance of bimodal congruent color presentation and 

incongruent color presentation, it is clear that presence of incongruent color 

while performing the olfactory detection task resulted in a significant decrease 

in performance. This dramatic decrease in performance is best explained by 

both cognitive interference as well as literature on the profound role of 

expectation in forming our perceptions. 

Figure 20 illustrates the effect of noise + shape. Figure 20 displays the 

same pattern of results as Figure 19; however, this plot shows how congruent 

object shape, paired with color influences olfactory detection. It is clear color is 

driving the performance in the olfactory task, because if shape were driving 

the task, the change would not be as dramatic since the object shape is 

congruent with the olfactory task. There is a slight overall increase in the 

performance with the presence of the shape; however, color appears to have 

a greater impact.  
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5.4 Findings from Experiment 1 and 2 Compared 

In order to determine the role of signal strength of an objectʼs shape to 

influence performance in an olfactory detection task, results from the 

perithreshold crossmodal OF experiment conducted in experiment 1 were 

compared with the results of the findings in experiment 2, collected in the 

presence of a visual cue at the level of recognition. This comparison enabled 

us to determine whether a shape presented at the level of recognition is 

capable of altering olfactory detection performance, these findings are plotted 

in Figure 21. The results in this Fig. 21 illustrate the impact of increasing the 

visibility of the visual stimulus from perithreshold to detectable yielded a 

measurable and significant change in the performance in the olfactory 

detection task. Thus object shape does contribute to the crossmodal 

processing of olfaction; however, color is still a more powerful factor. However, 

due to differences in the number of times the stimuli were tested the pooled 

error between experiment 1 and experiment 2 yield a non-significant difference 

between olfactory performance when presented with a visual stimulus at the 

level of recognition when compared to olfactory detection performance when 

presented with a visual stimulus at the perithreshold level. Further testing with 

a larger number of sample repetitions and greater number of subjects could 

yield a significant finding  

 

5.4.1 Differences in Congruency Reflected in Error 



 

114 

It should be noted that in experiment 1 and experiment 2, there is a 

difference between detection performance error in benzaldehyde and iso-amyl 

acetate. Likely, this observation can be traced to the congruency test, where 

banana and iso-amyl acetate had the strongest association, while cherry and 

benzaldehyde followed. The difference in their associations is expressed in the 

variation in performance. 

 

5.5 Experiment 2 Findings Explained 

Congruencies and expectations are learned associations. The effect of 

color to alter performance in crossmodal tasks is well documented, for a 

thorough review, please read  (Spence et al. 2010). Through experience 

individuals learn color and food associations. Due to the element of 

experience, some associations may not be as strongly engrained as others 

(Lavin, Lawless 1998). When presented with a colored solution, there is an 

automatic association of the color with a flavor as well as a taste profile 

(Shankar, Levitan and Spence 2010). These associations vary across 

cultures. However, these associations profoundly inform the way in which 

consumers interact with foods. Many of these associations are gathered 

through implicit learning, where the simultaneous presentation of color and 

odor is learned through an intentional process (Dematte et al. 2006, Degel, et 

al. 2001, Degel,and Köster 1999, Stevenson and Boakes 1998).  
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The more often sensory stimuli are commonly presented together, the 

consumer expects when he or she sees a specific food it will taste and smell a 

certain way. When these expectations are broken there are changes in 

performance (Schifferstein and Spence 2008). Research in the area of 

expectation has focused on food liking and acceptability (Garber et al. 2001, 

Hutchings 2003, Cardello et al. 1985, Cardello 2003, Blackwell 1995, 

Schifferstein and Spence 2008, Zellner et al. 2004, Armand V. 1995, Frewer et 

al. 2001, Wilson et al. 1989). The findings have shown that when visual 

appearance and expected flavor differ there is a strong dislike and even 

rejection of the product. Researchers have used a combination of theories to 

explain this finding. All of these theories rely on the concept of expectation 

versus actual experience. These theories suggest, the greater the distance 

between the expectation of the experience and the actual experience, the 

greater the consumer disappointment (Cardello et al. 1985, Festinger 1962, 

Carlsmith and Aronson 1963, Scharf and Volkmer 2000, Anderson 1973, 

Hovland et al. 1957).  

A well-cited explanation is the assimilated-contrast model, which a 

consumer based range of acceptability and rejection (Scharf and Volkmer 

2000, Anderson 1973, Hovland et al. 1957). Essentially if expectation and 

acceptance vary slightly, the consumer will excuse the discrepancy and accept 

the product. However, if the discrepancy between expected and actual is too 

large, the product will be rejected. Perhaps, the dramatic decrease in olfactory 
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detection performance could have been due to the expectation of a different 

odor, prompted by the incongruent visual cue, leading to an interference 

reaction. The decrease in performance due to the presence of an incongruent 

color might be explained by the combination of the expectation model as well 

as the allocation of attention-related resources. The presentation of a red 

visual stimulus cues the attention-related resources of the subject to cherry 

odor, thus when iso-amyl acetate is presented, olfactory performance may 

decrease due to the unexpected nature of the odorant. Thus to due to the 

cognitive interference of expectation and resource allocation, there is a dip in 

olfactory performance in the presence of an incongruent visual cue.  

The lack of measurable crossmodal interaction in experiment 1, 

suggests the need for one signal to be above the perithreshold level in order to 

yield a crossmodal interaction. Perhaps when both signals are presented at 

the perithreshold level attention-related resources from the focused attention 

task are not distracted from the task. This is contrary to mixed reports within 

the subliminal stimulation literature of reports of behavioral responses due to 

signals presented at the subliminal level (Bar and Biederman 1998, Smith and 

Rogers 1994, Theus 1994, Williams 1938, Li et al. 2007). In order to attend to 

a task, attention-related resources must be allocated, according to Wolfe and 

Bennet (1997) in order to actually see a stimulus, regardless of subliminal 

message or not, the individual must attend to it, thus if the visual stimulus 

cannot be seen or the individual does not know where the stimulus will be 



 

117 

projected, it would then be extremely unlikely that the visual stimulus would be 

processed and thus lead to a behavioral or measurable psychophysical 

response. Thus if the individual cannot see the stimulus, not only would the 

individual not process the visual information, there would logically not be a 

crossmodal or behavioral response. 

It is well understood that consumers use visual information in order to 

assess foods before consumption. These visual assessments enable the 

consumer to create an image of the expected product experience. Color as 

well as label information strongly inform these perceptions (Shankar et al. 

2009, Yeomans et al. 2008, Wansink et al. 2005, Herz, von Clef 2001 and 

Wansink et al. 2000, Cardello et al. 1985, Zellner et al. 2008, Cardello 2003, 

Zellner et al. 2004, Carddello 1995, Vazquez et al. 2009, Zampini et al. 2007). 

Thus understanding the roles of color, object shape, and strength of the visual 

signal and its ability to influence olfactory perception is important in order to 

better understand consumer preference formation. Understanding that 

olfactory sensitivity might be influenced by visual information should be 

understood by the product developer when creating packaging and labeling 

information due to its implicit influence on overall hedonic acceptance as well 

as evidence for influence of the sensitivity of sensory information processing. 

 

5.6 Further Areas for Research 
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This research only begins to examine the many possible psychophysical 

interactions, which can be observed between olfaction and vision. This 

research investigated the effect on detection performance when 

simultaneously presented with a bimodal stimulus. However, it would be 

worthwhile further researching the influence of timing, such as cue on olfactory 

detection. As well as further testing the limits on the necessary strength of a 

crossmodal stimulus to yield a measurable interaction. Further investigation 

into the role of shape is crucial to understanding how visual appearance can 

alter the consumerʼs experience. Additionally, understanding how labeling, an 

already burgeoning area of research, can influence the olfactory experience is 

also crucial to understanding how the consumer experience can be changed 

even before consuming the product. 
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CHAPTER 6 

 

CONCLUSIONS 

 
This research sought to determine a consistent method for measuring 

crossmodal olfactory and visual interactions using psychophysical methods. 

The experiments were designed in order to better understand olfactory and 

visual interactions to further investigate flavor perception. The first experiment 

tested whether olfactory and visual crossmodal interactions could be observed 

when bimodal stimulus stimulation occurred at the calculated perithreshold 

level. These experiments assessed whether a black and white object shape 

outline could influence the perception of an olfactory stimulus or whether an 

olfactory stimulus could influence the detection of an object shape. No 

measurable changes were observed for bimodal versus unimodal 

presentation. This suggests regardless of the attention task or stimulus 

congruency that crossmodal olfactory / visual interactions do not occur at the 

perithreshold.  

Experiment 2 measured the influence of visual stimulus presentation at 

the level of recognition; shapes were presented as well as color. In this 

experiment measurable changes between the presentation of bimodal versus 

unimodal stimulation occurred. Presentation of incongruent color most strongly 

influenced olfactory detection performance. The change in olfactory 

performance due to the presentation of color, suggests attention-related 
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resources are strongly allocated to the visual information resulting in 

interference in olfactory processing. Furthermore the presence of a 

recognizable congruent object shape resulted in a change in olfactory sensory 

performance; however, not to the extent of color. 

Overall these findings highlight the importance of visual information in 

forming expectations and cognitive associations. The visual information a 

consumer uses in order to evaluate novel products is based on expectations 

and associations from experience. Although new color and odor associations 

are made through implicit memory, working memory is associated with 

confirming the familiarity and thus acceptability and pleasantness of the 

experience. When introducing novel products into a marketplace it is 

paramount to understand the cultural implications of colors and odors.  

If both the color and the odor are novel, a label may offset the 

preconceived association by creating a context for the flavor of a new product. 

The label can inform consumer expectation and perhaps avoid a large 

discrepancy between expectation and experience, leading to a pleasant and 

acceptable product experience. Marketers and product developers must work 

together to create both visual and sensorial experiences that enable the 

consumer to use prior experience to inform the expectations of a new 

experience this could help to ensure product acceptance and success in the 

marketplace.  
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