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Executive Summary 

 

This project tested the feasibility of combining the commonly used USDA-Natural Resources 

Conservation Service’s Curve Number method and topographic index concept to predict areas 

of runoff generation.  Baseflow was used to characterize antecedent wetness conditions.  Using 

field monitored shallow, transient water tables at Town Brook in upstate New York, the results 

showed that the proposed methodology worked well.   
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Introduction and Background 

 

Engineers have long sought a simple and reliable relationship between rainfall events and the 

resulting runoff that is physically-based on hydrologic science.  Historically engineers have used 

purely empirical rainfall-runoff methods, which have served them well for estimating order-of-

magnitude runoff volumes and rates for designing bridges, flood control structures, culverts, 

ditches and other hydraulic structures that store or transmit storm runoff from large, intense 

rainfall events. 

 

The two most widely used rainfall-runoff equations, the Rational Method (a.k.a. Lloyd-Davies 

method) and the so-called Curve-Number method (e.g., USDA-SCS 1972), estimate runoff from 

rainfall via tabulated runoff or curve number coefficients, respectively (e.g., Chin 2006).  When 

engineers use these coefficients they implicitly presume that areas with low soil infiltration 

capacity generate more runoff than areas with high infiltration capacity (e.g., Walter and Shaw 

2005); a runoff process commonly referred to as Hortonian flow in acknowledgement of Robert 

Horton’s pioneering work in this area (e.g., Horton 1933, 1940).  While this assumption of 

Hortonian flow is probably acceptable for estimating runoff from large rainstorms, for many 

places around the world it is a poor assumption for most rainfall events (e.g., Walter et al. 

2003).  Because nonpoint source pollution is transported by virtually every rainfall-runoff event, 

more appropriate tools are needed to not only reliably estimate how much runoff is generated 

by even small rainfall events, but also tools to predict from where in the landscape the runoff is 

being produced (e.g., Walter et al. 2000, 2001, Gburek et al. 2002, Agnew et al. 2006). 
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Since the 1960s, hydrologists have recognized that runoff in non-arid and non-urban 

environments is most commonly produced from rain falling on very wet parts of a watershed 

(U.S. Forest Service 1961, Beston 1964, TVA 1964, Hewlett and Hibbert 1967).  This concept 

marks a considerable deviation from earlier rainfall-runoff hydrology because it suggests that 

soil infiltration capacity is not the major control on whether or not runoff is produced.  Instead, 

runoff is produced when and where the effective soil water storage capacity is exceeded.  This 

process of runoff generation is often called saturation-excess runoff.  Because saturation-excess 

yielding parts of the landscape, i.e. “wet areas,” expand and contract over time, this runoff 

process is often termed variable source area (VSA) hydrology.  The seminal work on VSA 

hydrology was carried-out in Sleepers River, VT, by Thomas Dunne and Richard Black in the late 

1960s (1970a,b). 

 

Over the past thirty or so years there has been many hydrological simulation models developed 

based on VSA hydrology; the most common are probably TOPMODEL (e.g., Beven and Kirkby 

1979), DHVM (e.g., Wigmosta et al. 1994), and SMR (e.g., Frankenberger et al. 1999) – all of 

which have been thoroughly tested and have numerous versions, re-conceptualizations, and 

permutations to account for different field conditions or include larger suites of biophysical 

processes.  Of these, only SMR has been applied to the problem of nonpoint source pollution 

(e.g., Walter et al. 2001, Easton et al. 2007) because these types of models generally require 

copious calibration and large input datasets.  In response, there has been some recent re-

conceptualizations of widely-used water quality models so that they account for VSA hydrology, 
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namely Haith and Shoemaker’s (1987) Generalized Watershed Loading Function (GWLF) (e.g., 

Schneiderman et al. 2007) and the USDA-NRCS’ (e.g., Arnold et al. 1998) Soil Water Assessment 

Tool (SWAT) (e.g., Easton et al. 2008).  These water quality models are widely used because 

they are based on the traditional engineering rainfall-runoff equations mentioned earlier, i.e., 

the Rational Method and Curve Number Equation, which require very much less input data.  

However, even these models are somewhat more complicated and computationally intensive 

than most engineering applications warrant. 

 

The Cornell Soil and Water Lab has been working on re-conceptualizing the widely used SCS-

Curve Number (CN) method as a tool for predicting VSA runoff (Steenhuis et al. 1995, Lyon et 

al. 2004, Shaw and Walter 2008, Walter et al. 2008) [see Appendix A for the fundamental re-

derivation of the CN-method].  Although this work has lead to new simulation models (e.g., 

Schneiderman et al. 2007, Easton et al. 2008), it has not been tested as an event-specific tool 

for predicting where runoff will likely be generated.  Currently, such tools either crudely assume 

areas near streams are most likely to generate runoff (e.g., Gburek et al. 2002) or are based 

largely on long-term average results from simulation models (e.g., Agnew et al. 2006).  The 

objective of this project is to test a method for predicting runoff source areas (or VSAs) using 

the CN-method (Steenhuis et al. 1995) and topographic indices (e.g., Beven and Kirkby 1979, 

O’Loughlin 1986, Lyon et al. 2004).  Baseflow is used to characterize initial wetness conditions 

as initially proposed by Troch et al. (1993) and recently adopted by Shaw and Walter (2008) for 

estimating CNs. 
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Predicting Variable Source Areas 

Steenhuis et al. (1995) showed that the widely used CN equation could be re-arranged to predict the 

fraction of a watershed that is wet enough to generate runoff: 

 

 
22
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Where Af is the fraction of a watershed generating runoff, P is the rainfall depth, and S is the 

available water storage in the watershed [units of depth].  Shaw and Walter (2008) showed that 

S could be reliably correlated to baseflow such that high baseflow is related to low S, i.e., wet 

conditions, and visa versa, i.e., dry conditions. 

 

Using streamflow data to estimate total runoff depth, Q, and assuming that there is no 

substantial initial abstractions, S for each precipitation event’s depth, P, can be directly 

calculated by re-arranging the original CN-equation. 

 

 P
Q

P
S −=

2

 (2) 

 

Note: S is traditionally determined from tabulated CN values (e.g., USDA-SCS 1972).  In this 

study S was directly calculated for several events and then correlated to the baseflow 

immediately preceding the event using a power-function. 
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Although equation 1 estimates the total fraction of a watershed generating runoff, it does not 

predict where those areas are.  Following the CN-VSA method of Lyon et al (2004), the Af was 

computed for several storm events and the specific region of runoff generation was assumed to 

conform to the Soil Topographic Index (STI): 

 

 
( ) 








=

sDK

a
STI

βtan
ln  (3) 

 

where a is the area of the upslope watershed per unit contour length (cm), tan(β) is the local 

surface topographic slope, D is the depth of the soil layer (cm), and Ks is the saturated hydraulic 

conductivity (cm day
-1

).  The STI is calculated for each cell within a raster map of a given 

watershed. Starting with the wettest regions as based on STI, cell areas are cumulatively 

summed until an area as large as Af is reached at a threshold STI value. Thus, runoff is assumed 

to occur in all regions with an STI exceeding the threshold STI.  Figure 1 illustrates how 

equations 1 and 2 are used together to predict the saturated runoff contributing area for a 

watershed. 
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Figure 1 - Schematic illustrating how we determine runoff contributing areas; (a) a “map” of soil 
topographic indices, STI, (equation 3) is analyzed to determine (b) the continuous distribution of 
soil topographic indices - for any fractional contributing area (Af) (equation 1) there is a 
threshold STI-value that (c) corresponds to the boundary of the runoff contributing area. (Figure 
used with permission from Walter et al. 2008). 
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Site Description 

To test our method of predicting VSAs, we compared predictions to observed VSAs in the Town 

Brook watershed in Delaware County, NY (figure 2).  Shallow water table depth was monitored 

continuously using a network of capacitance probes that covered a 2.4 ha sub-section of the 

larger 37 km
2
 Town Brook watershed (Lyon et al. 2006).  The monitored hillslope ranged in 

elevation ranged from 585 m to 600 m above mean sea level with slopes ranged from 0
o
 to 8

o
.  

The soils are gravelly silt loams over fractured bedrock.  These shallow soils are typified as 

higher conductivity (5 cm/hr) surface material (< 40 cm deep) overlaying less conductive 

material (0.5 cm/hr) base material (> 40 cm deep) with large fractures.  The landuse on the 

hillslope is uniformly grass/shrub with forested regions above the study area.  Rainfall  was 

measured at the site using a tipping bucket rain gauge with data logger was set on the site to 

sample rainfall amounts at an interval of 10 minutes.  For periods when the on-site gauge 

malfunctioned, precipitation data were obtained from a National Oceanic and Atmospheric 

Administration (NOAA) weather station located in Stamford, NY located approximately 1 km 

north of the site.  It should be noted that this analysis was limited to events for which the initial 

abstraction played no obvious role.  Shaw and Walter (2008) propose a method for best-fitting 

that accounts for an initial abstraction and is more complicated than equation 2.  Daily stream 

discharge was measured at the watershed outlet by the USGS.   
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Figure 2 – Field site location at Town Brook and arrangement of water table monitoring 
capacitance probes (circles) and rain gage (triangle). 
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Soil topographic indices (equation 3) were calculated using a 5m digital elevation model (DEM) 

that was created from Light Detecting And Ranging (LIDAR) data.  A diversion ditch that runs 

across the top of the site (not shown in figure 2) was not captured by the LIDAR data and was 

manually “burned” into the DEM prior to calculating STI.  Soils information needed for equation 

3 was obtained from the Soil Survey Geographic Database (SSURGO).   

 

 
Figure 3 – Cumulative distribution of STI over the Town Brook Watershed.  The highest STI 
was about 25, but figure only shows through STI = 10; our highest STI with a field observation is 
8. 

 

In order to reduce the point-to-point noise in the water table data, water table depths were 

averaged over or binned-over integer values of STI (i.e.  Values for STIs between 1 and 2 were 

averaged and assigned an STI of 1.5).  This method of data-smoothing was also used by Agnew 

et al. (2006).   
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Fifteen well defined hydrographs were identified and runoff, Q, was determined by subtracting 

the pre-event baseflow from the peak daily discharge.  For each event, S was calculated using 

equation 2 and paired with pre-event baseflow (Figure 4)  

 

 
Figure 4 – S (equation 2) as a function of pre-event baseflow for Town Brook  
S = 122.9Qb

-0.93 (R2 = 0.70). 
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Analysis 

We analyzed eighteen independent events to assess our methodology for predicting variable 

source areas.  For each event, we used the pre-event baseflow to determine S using figure 4 

and then calculated a predicted fraction of runoff contributing area, Af, using equation 1.  Using 

figure 3 we determined the threshold STI above which we predict runoff generation.  We then 

compared the observed water table depths for areas with STI-values above and below the 

threshold.  If our methodology is valid, we anticipate that at sites with STI-values above the 

threshold-STI the water table will be systematically above a depth at which runoff generation 

begins.  Lyon et al. (2006) found this depth to be around 100 mm at this site. 
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Results and Discussion 

The calculated values for the analysis for all eighteen events are summarized in Table 1. 

 

Of our eighteen events, five had fractional runoff contributing areas, Af, greater than 15%; 

specifically 15, 17, 19, 20, and 22% (light to dark symbols, respectively, in Figure 5a) with 

corresponding threshold STI values of 6.0, 5.9, 5.8, 5.7, and 5.6.  These STI values were all very 

close and an average of 5.8 is shown in figure 5a.  For these high Af events, our method appears 

to work well, with all the sites with STI-values above the threshold experiencing water tables 

within 100 mm of the surface and all sites with STI-values below the threshold seeing water 

table depths deeper than 100 mm. 

 

We also had two moderate events in our data set, with Af = 5 and 6% (light to dark symbols, 

respectively, in Figure 5b).  The threshold-STI values were 7 and 6.8, respectively.   The 

proposed method for predicting VSAs appears to have also worked reasonably well in this 

situation, although for the Af = 5%, the water table depth for the STIs above the threshold lie 

very close to 100 mm, actual average depth was 103 mm.  The sensitivity of the capacitance 

probes is on the order of 10 mm, so this difference is not operationally significant.   

 

We had eleven events for which Af < 1% (table 1) of which the events with the five largest Af are 

graphed in figure 5c (smallest to largest Af a represented by lightest to darkest symbols, 

respectively).  Unfortunately the threshold-STI for all of these events was larger than the 
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highest STI for which we had observations, ie. STI > 7.5 (table 1).  Given that the Af ranged from 

only 0.4% to 0.001% of the total watershed area, it is not surprising that a probe did not fall into 

one of the regions expected to generate runoff.  However, all but one observed water table 

depth was below 100 mm, the depth at which Lyon et al. (2006) suggested storm runoff was 

initiated, which is largely consistent with the expectations of our method for predicting VSAs.  

The one STI with average water table depth shallower than 100 mm was at approximately 80 

mm, which we have used to set an upper (shallow) limit on our estimate of the water table 

depth at which runoff is generated (i.e., the upper dashed line in figure 5a-c). 

 

Table 1. Values calculated as part of the analysis of eighteen storm runoff events from Town 

Brook, NY 

Even

t 

Rain 

(mm) 

Q 

(mm) 

S 

(mm) 

Af 

(%) 

Threshold 

STI 

Avg Water Table 

depth below 

threshold STI (mm) 

Avg Water Table 

depth above 

threshold STI (mm) 

1 14.7 10.9 27.9 22 5.6 222.7 21.4 

2 46.5 17.8 92.1 20 5.7 145.6 36.2 

3 41.9 14.2 86.9 19 5.8 145.6 45.8 

4 87.9 27.4 195.2 17 5.9 138.3 39.9 

5 33.3 11.4 79.8 15 6.0 138.1 73.3 

6 7.4 3.0 28.4 6 6.8 186.7 103.3 

7 15.8 5.4 65.9 5 7.0 191.6 72.0 

8 39.9 3.0 620 0.4 9.5 153.8 - 

9 22.4 1.2 496 0.2 10.2 318.8 - 

10 15.0 1.9 471 0.1 10.9 173.1 - 

11 11.7 0.7 385 0.09 11.0 315.7 - 

12 11.4 0.5 419 0.07 11.2 365.2 - 

13 17.5 1.1 647 0.07 11.2 198.7 - 

14 37.6 0.9 1716 0.05 11.6 327.8 - 

15 19.8 0.5 1193 0.03 12.2 249.1 - 

16 2.3 0.6 393 0.003 14.2 186.1 - 

17 1.3 0.3 243 0.003 14.4 351.3 - 

18 5.6 0.2 2358 0.001 16.0 297.5 - 
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Figure 5 – Average water table depths (filled circles) compared to STI for (a) large, (b) 
moderate, and (c) small contributing areas.  Each different symbol fill color indicates a unique 
storm event within each graph. The vertical blue lines show predicted threshold STI above 
which saturation excess runoff should be generated, for (c) the threshold-STI > 8.  The thin 
dashed lines show the range of water table depths at which these data suggest runoff 
generation is initiated.  The heavy dashed line is the average depths of non-runoff areas for 
each set of data.  Solid vertical lines show the range of observed water table depths. 
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On average it appears that the proposed methodology for predicting VSAs captures the general 

patterns observed in the field.  However, there is substantial variability within any STI.  Figure 5 

suggests that there is more variability among observations at STI < threshold-STI, however, the 

STI below the threshold generally have more observations.  For example, the averages for STI 

0.5-4.5 shown in figure 5 are based on an average of 7.6 observations compared to 2.5 

observations per point for STI > 4.5.  However, comparing observations from STI = 7.5 (n = 4) to 

those of STI = 3.5 and 4.5 (n=4 and 3, respectively), it appears from figures 5a and 5b that the 

variability for the STI > threshold-STI (i.e., STI = 4.5) is considerably less than for the STI < 

threshold-STI (i.e., STI = 3.5 and 4.5).  Also note that the variability in water table depth for STI = 

7.5 in figures 5a and 5b, when these are over the threshold-STI, is greater than the variability in 

figure 5c, when these sites are below the threshold-STI-values.  Thus,  these limited data 

suggest greater variability in water table depth for areas predicted to be non-runoff 

contributing than those predicted to be runoff contributing.  Furthermore, the water table 

depths are generally skewed towards lower depths, i.e., most sites have depths near the 

average and relatively few are lower, although sometimes much lower than the average. 

 

This analysis emphasizes the difficulty in predicting VSAs based on any one simple parameter.  

In fact, precipitation can explain only ~44% of the variation in Af, (R
2
 = 0.44, Af = 9x10

-6
P

2.15
, data 

not graphically shown) and available storage, S, only explained about 63% (R
2
 = 0.63, 

Af = 353S
-2.075

, data not graphically shown).  Notice, however, that the wetness of the 

watershed, i.e., the available storage, is somewhat more influential than the rainfall.   
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Appendix A 

 

The traditional SCS-CN equation, in the traditional form (Rallison, 1980), is given as: 

 

  (A.1) 

 

Where Q is the runoff depth (cm), P is precipitation (cm), S is the available water storage within 

the soil (cm), and Ia is the inial abstraction (cm).  In a 1980 paper, Mockus first proposed 

dropping the inial abstraction from the equation “on the ground that it prodices rainfall runoff 

curves of a type found in natural watersheds.”  This approach was later adopted by Steinhus.  

By dropping the initial abstraction from the equation and rearranging we obtain: 

 

 

(A.2) 

 

Rearranging and employing partial fraction decomposition we arrive at equation A.3 

 

(A.3) 

 

The fractional area of a landscape that contributes to runoff can be expressed mathematically 

as:  

 

(A.4) 
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Finally, applying equation A.4 and differentiating equation A.3 we arrive at equation A.5.  Using 

the storage calculated earlier, we can then calculate the fractional area: 

 

 

 

(A.5) 

22

2

1
SP

S
A f

+
−=



20 

Appendix B 

 

Table B.1– Summary of data for individual STI values.  The numbers below each “STI values of 

observation sites” are average depths to water table (mm) 

   STI Values of Observation Sites 

Af 
Thresholdl 

STI   0.5 1.5 2.5 3.5 4.5 6.5 7.5 

0.00001 15.96  338.1 197.1 225.6 251.1 302.1 416.7 351.8 

0.00003 14.41  460.0 263.3 360.1 229.4 312.6 411.9 421.6 

0.00003 14.20  295.8 149.2 162.3 172.1 220.5 159.1 143.7 

0.0003 12.15  299.7 172.0 263.6 164.3 276.0 409.7 158.1 

0.0005 11.61  332.7 304.2 330.0 370.5 335.3 418.3 203.5 

0.0007 11.19  288.0 173.1 194.0 131.6 177.5 297.7 129.2 

0.0007 11.18  414.8 300.8 391.9 384.9 280.0 418.7 - 

0.0009 10.98  411.0 239.2 345.7 218.0 261.9 418.5 - 

0.0010 10.88  213.9 177.2 166.6 195.4 152.0 152.7 153.7 

0.0020 10.20  413.6 265.9 291.4 245.6 279.6 414.2 315.6 

0.0041 9.51  218.7 144.3 174.8 135.4 161.1 160.7 81.5 

0.05 6.99  208.9 156.2 210.7 204.6 241.8 127.5 72.0 

0.0633 6.84  194.9 159. 8 194.9 228.8 181.8 160.1 103.3 

0.15 6.01  192.1 158.1 185.9 191.3 178.9 74.4 72.3 

0.17 5.88  184.9 142.5 233.5 173.0 200.0 31.2 42.6 

0.19 5.77  139.9 111.5 149.8 144.2 145.0 51.0 40.6 

0.20 5.70  116.9 116.3 164.0 135.8 158.9 37.0 35.3 

0.22 5.63  154.7 130.9 159.1 179.8 103.3 19.7 23.1 
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