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ABSTRACT

Electroosmosis flow refers to motion of liquids induced by an applied voltage
across microchannels.1 This phenomenon has been known for a couple of
centuries now and since then it has been used in a variety of technological
applications (inkjet printer technology, electrochromatography, isoelectric
focusing,etc. [1–3] and is still drawing even more attention from the scientific
community particularly because of its relevance to micro-scale technology.

Electroosmosis is known to be first formulated in its present form by von
Smoluchowski. [4]. He predicted that bulk fluid velocity under application
of an external electric field would be equal to:

Ub = −
εEext
η

ζ (0.1)

where Eext shows the external electric field applied tangentially to mi-
crochannel surface and η and ε refer to fluid bulk viscosity and electrical
permittivity respectively.

The ζ term was then introduced to represent the scalar electric potential
at the so called ”shear plane” where the no-slip boundary condition ap-
plies. Smoluchowski’s formula(2.4) is the most famous, fundamental equa-
tion in microfluidics and is used extensively in both research and design
applications. Nevertheless and like many other physical formulae, it has
been derived by making a few simplifying assumptions that are not neces-
sarily always true.

1 en.wikipedia.org/wiki/Electro-osmosis



In One of the early modifications to(2.4), Overbeek and Lyklema [5],
modified the formula and accounted for variability of η and ε inside the so
called ”double layer” based on previous evidence from the theory of double
layer capacitance in electrochemistry and experiments on the effects of elec-
tric field on viscosity of fluids [6, 7].

Recently researchers have studied interesting nonlinear AC electrokinetic
phenomenon and come up with new intriguing experiments [8–11]. The
novel results of these experiments have once again led researchers to con-
sider modifying the classical equations of electrokinetics in order to explain
their experimental observations. [11]

Yet another reason to urge for doing more research on the Helmholtz-
Smoluchowski classic electokinetic theory comes from undesirable discrep-
ancy between different data sets on ζ potential measurements of certain
solid-liquid interfaces. Notably Kirby and Hasselbrink, pointed out this
problem in their 2004 paper and proposed normalization of measured ζ po-
tential by ionic strength of solutions which resulted in a better agreement
between the various data sets [12].

The goal of this project which started on May 2009 under professor B.J
Kirby’s supervision was then to look for a way to either modify the classical
electokinetic phenomenon theory or provide interpretation of available data
sets on ζ potential measurements in the literature such that this discrepancy
can be explained. This would result in a better understanding and insight
to the physics of double layer theory and fluid mechanics and better models
to rely on in engineering design applications where prediction and control
of zeta potential in microchannels is crucial.
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1. MODELING THE ELECTROCHEMISTRY OF THE DOUBLE
LAYER

In the introduction chapter, elecroosmosis and some relevant parameters
were briefly introduced.It is very well known [12] that the ζ term in Smolu-
chowski’s equation is generally a function of the physical properties of both
solid and liquid phases that are in contact with each other. In this chapter
first a more vivid picture of the phenomenon will be presented and it will
be followed by derivation of a detailed electrochemical model that is used
through the rest of this work for prediction of ζ potential of Silica based
microchannels.

Electroosmosis becomes possible as a result of electric charge formation
at the solid-liquid interface which in turn produce a net charge density profile
in the double layer that extends from the interface up to several nanometers
into the fluid phase. When an external electric field is applied tangentially
to the channel surface, the net electrostatic force exerted on the charged
double layer moves the layer, the rest of fluid will then be moved by means
of viscous forces present in the fluid.[Fig.1.1]

The origins of the surface charge are different from one type of solid-
liquid interface to another. For silica based surfaces the generally accepted
hypothesis is that it is due to a chemical reaction in which water acts as a
weak base and deprotonates silanol groups at the surface leaving them neg-
atively charged. However for hydrophobic materials(Zeonor, polymers,etc)
the surface charge origins is under dispute and different explanations have
been proposed by different researchers, including hydroxyl ions specific ad-
sorption, preferential orientation of water molecules at the hydrophobic sur-
faces,etc, [13] yet none of these theories has been generally agreed upon.

For our modeling purposes, we assume that a layer of Silanol groups
furnishes the surface of a glass/silica/quartz capillary,and we represent the
local site density of these groups by ns. A Silanol group has an SiOH branch
which furnishes the surface and as mentioned earlier when these groups lose
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Fig. 1.1: Electroosmosis phenomenon, courtesy of B.Kirby

one H+ ion, a layer of SiO− groups remains at the surface which gives the
surface its negative charge and its associated electric potential.[Fig.1.2]

With this picture in mind it is obvious that interfacial potential,ϕo,
should be a strong function of pH of solution and that an increase in pH
should result in increase in the magnitude of ϕo since then more and more
SiOH groups are willing to lose their protons. This general trend has indeed
been observed and verified in experiments [12, 14, 15].

As illustrated in figure(1.2), dissolved metal cations (shown by M cir-
cles in the figure) may also get adsorbed to the surface and react with the
left SiO− groups and thus cancel out some of the negative charge pro-
duced at the surface. Hence it seems that the interfacial potential should
also be a function of cation concentration or equivalently concentration of
dissolved salt in the liquid phase. In this section the concentration of dis-
solved salt in molar is represented by Cs and the minus of its logarithm
by pCs = −log10(Cs). Since presence of more dissolved cations at the sur-
face results in cancelation of more left negative charges at the surface, one
expects a decrease in the magnitude of ϕo when Cs increases as another
general trend.



1. Modeling the electrochemistry of the double layer 3

 

Fig. 1.2: The chemical reactions at the silica water interface

To complete the list of chemical parameters needed, we need to define
two more parameters which are the equilibrium rate constants for the two
main reactions that are assumed to occur at the interface, the first one is
that of deprotonation of Silanol groups:

SiOH → SiO− +H+ Equilibrium constant: K1 (1.1)

and the second is that of metal cation reaction with the Silanol groups:

SiOH +Me+ → SiOMe+H+ Equilibrium constant: K2

(1.2)

It follows then that at equilibrium, the following set of equations should
be satisfied:

[SiOH] +
[
SiO−

]
+ [SiOMe] = ns (1.3)
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[SiO−] [[H+]]

[SiOH]
= K1 (1.4)

[SiOMe] [[H+]]

[SiOH] [[Me+]]
= K2 (1.5)

where [ . ] refers to site density of a species in sites per meters squared
and [[ . ]] refers to activity of a species which is the product of its activity
coefficient and its local concentration in molar i.e :

[[ i ]] = αi · [ i ]

where αi is called the ”activity coefficient” of species ”i’ and [ i ] shows
concentration of species ”i” in molar.

We have thus been careful to use activities instead of species concen-
tration of cations in above equations. It is possible that near a negatively
charged surface, concentration of cations get high enough such that the ”di-
lute solution” assumption breaks down. In this case using concentration of
species instead of their activities in equilibrium equations leads to incorrect
final answers. This indeed is very well known in Chemistry and in fact there
are published data in chemistry handbooks [16] which give activity coeffi-
cients versus concentrations of species.

The discrete published data in the handbooks are not particularly useful
for our purposes which requires implementing activity coefficients in a con-
tinuous quantitative model. We should instead come up with a continuous
function that gives activity coefficients as a function of concentration.

For this reason,a Debye-Huckel type equation [? ] for determining ac-
tivity coefficient has been used and the constant coefficient in that equation
were optimized such that an excellent fit to the published tables in [16] for
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H+ and K+ ions was obtained.

More precisely, the Debye-Huckel equation suggests that activity coeffi-
cient αi of species ”i” is given as:

αi = exp

(
−Az

√
I

1 +Ba
√
I

)
(1.6)

where A and B are constant coefficients, I is the ionic strength of the
solution,z is the valence and a is the effective diameter of the ion.

As mentioned earlier, by running an optimization process for determin-
ing constant coefficients in the above equation, an excellent fit for use in our
MATLAB code for determining zeta potential has been achieved. Figures
(1.3) and (1.4) show comparison of the predicted versus published values in
[16] for activity coefficients for K+ and H+ ions respectively.
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Activity coefficients of potassium ion vs ionic strength 

𝛼 = exp 
−.9625 𝐼

1 +  𝐼
  

                                                        

 

 

 

  

 

Fig. 1.3: Activity coefficient ofK+ ions
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Activity coefficients of H+ vs ionic strength 

𝛼 = exp 
−.7892 𝐼

1 + .3 𝐼
  

 

Fig. 1.4: Activity coefficient of H+ ions
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Once that activity coefficients are known we can define:

k1 =
K1

αH+

and

k2 =
K2

αMe+

and rewrite equations(1.4) and(1.5) as:

[SiO−] [H+]

[SiOH]
= k1

and

[SiOMe] [H+]

[SiOH] [Me+]
= k2

It should be noted however that since equation(1.6) needs concentration
of species in order to calculate their activity coefficients, an iterative pro-
cess is necessary for finding the concentration of species. We thus start by
making a guess on αi values, concentrations of the species are then calcu-
lated from (1.4)and(1.5). The calculated concentrations are then plugged
back into (1.6) to recalculate αi values. This iterative process continues
until convergence occurs which would give the correct concentrations and
activity coefficients.

According to Boltzmann distribution law, concentration of species ”i” at
the surface is related to its bulk concentration by:

Ci = Cbexp

(
−Fzϕo

RT

)
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If now we write local concentrations at the surface in terms of bulk con-
centration of species, we finally get the following three simultaneous equa-
tions at equilibrium:

[SiOH] +
[
SiO−

]
+ [SiOMe] = ns (1.7)

[SiO−] [H+]b
[SiOH]

= k1exp

(
Fϕo
RT

)
(1.8)

[SiOMe] [H+]b
[SiOH] [Me+]b

= k2 (1.9)

By solving the the above system of equations, we find the local density
of SiO− to be :

[
SiO−

]
=

nsk1

k1 + ([H+]b + [M+e]bk2) exp
(
−Fϕo

RT

)

⇒

Q
′′

o =
−ensk1

k1 + ([H+]b + [Me+]bk2) exp
(
−Fϕo

RT

) (1.10)

where e is the elementary charge constant and Q
′′
o shows charge density(

i.e charge per unit area) at the wall. This equation is one way of deter-
mining charge density at the wall. There is yet another way of finding the
surface charge density by applying the electro-neutrality condition for the
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whole system in the following manner:

Right above the wall surface there exists a fluid medium in which dif-
ferent ions are floating around. Up to a certain point in this medium there
exists net nonzero charge density and this particular part of the solution
is generally called the ”diffusive layer”. The reason why there should be
net charge density becomes evident if one considers the fact that since the
surface wall is negatively charged, local concentration of cations are greater
than those of anions so that a net positive charge should exist near the
wall. This net charge density of course decays to zero in the bulk of fluid,
moreover this net positive charge density screens the negative charge at the
surface and electro-neutrality requires that the two should exactly balance
out.

Mathematically speaking, from Boltzmann distribution law we have that
local concentration of species ”i” is:

Ci = Ci,bexp

(
−Fziϕ
RT

)
(1.11)

so that net charge density at a particular point is:

ρe =
∑
i

Ci,bFziexp

(
−Fziϕ
RT

)
(1.12)

here summation is over all present species in the solution.

Upon application of Poisson’s law(ρe = −ε∂
2ϕ
∂y2

), equation(1.12) becomes:

∂2ϕ

∂y2
=
∑
i

−Ci,bFzi
ε

exp

(
−Fziϕ
RT

)

or equivalently by multiplying both sides by ∂ϕ
∂y :
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∂ϕ

∂y

∂2ϕ

∂y2
=
∑
i

−Ci,bFzi
ε

exp

(
−Fziϕ
RT

)
∂ϕ

∂y

The integration of this last equation yields:

(
∂ϕ

∂y

)2

|∞o =
∑
i

2Ci,bRT

ε
exp

(
−Fziϕ
RT

)
|∞o

by realizing that ∂ϕ
∂y = E → 0 and ϕ→ 0 as y →∞

we get the so called Grahammes equation for finding the magnitude of
electric field at the surface Eo :

|Eo| =
√∑

i

2Ci,bRT

ε
exp

(
−Fziϕo
RT

)
(1.13)

It is worth to note that in deriving Grahammes equation,absolutely no
numerical approximation is made and as long as Boltzmann distribution
law is valid, this equation is exactly true. The importance of Grahammes
equation in the current context is that it enables us to get a relation for the
charge density in the diffuse layer.

As illustrated in figure(1.5), if we draw a sufficiently large control volume
that encloses the whole diffuse layer then the charge enclosed in the control
volume is equal the total net charge in the diffuse layer. Then according to
Gauss’s law in electrodynamics we know:

Qenc =

∫
V

ρe dv =

∫
S

εE · ds (1.14)

The surface integral in the above equation is easy to evaluate:(see [Fig.1.5])
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Fig. 1.5: A control volume around diffuse layer

Q
′′
enc = −εEo = ε |Eo|

Since Eo < 0 for a negatively charged surface.

Finally using Grahammes equation to find |Eo| we get:

Q
′′
enc =

√∑
i

2εCi,bRTexp

(
−Fziϕo
RT

)
(1.15)

and electro-neutrality of the system requires that Q
′′
o +Q

′′
enc = 0 ⇒
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−ensk1
k1 + ([H+]b + [Me+]bk2) exp

(
−Fϕo

RT

)+√∑
i

2εCi,bRTexp

(
−Fziϕo
RT

)
= 0

(1.16)

Equation(1.16)is the main equation that will be used in the rest of this
work in order to predict interfacial potential,ϕo,as a function of pH and salt
concentration. Comparison between model prediction and the experimental
data is presented in the concluding chapter.



2. FLUID MECHANICS OF THE DOUBLE LAYER THEORY

2.1 Classical view
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As pointed out in the introduction, Smoluchowski originally formulated
electroosmosis theory and derived a basic formula for a fluid’s bulk electroki-
netic velocity. In this section this basic formula is derived so that it can be
compared with the more complex formulations that will be presented in the
later sections.

We start by Navier-Stokes equations in low Reynolds number regime:

−∇P + η∇2 v + B = 0 (2.1)

What makes electokinetic fluid dynamics different from conventional
fluid mechanics problems, lies in the body force term B. This term arises
because of the presence of net electric charge in the double layer which upon
application of an external, tangential electric field exerts a net electrostatic
force on the fluid.

This body force term is simply equal to:

B = ρeEext

Upon application of Poisson’s law in electrodynamics, we get:

B = −ε∇2ϕ ·Eext (2.2)

Where ϕ is defined as the electric potential difference at any point with
respect to the bulk electric potential, now by assuming that no pressure
gradient is applied along the channel we get:

∇2v =
εEext

η
∇2ϕ
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Further if we assume that radius of curvature of the capillary is much
larger than double layer thickness then we can use 1-D formulation of the
above equation to get:

∂2v

∂y2
=
εEext
η

∂2ϕ

∂y2

We integrate this equation two times and upon applying the appropriate
boundary conditions:

y = 0 : ϕ = ϕo and v = 0

y →∞ : ϕ = 0 and v = Ub

we get:

Ub = −
εEext
η

ϕo (2.3)

This is the so called Smoluchowski’s equation which gives the bulk elec-
troosmotic fluid velocity in terms of electric potential at the interface (in-
terfacial potential ϕo) and other relevant parameters involved. The electric
potential at the interface, or more precisely at the shear plane, has been
given a special name and traditionally is called ”zeta”(ζ) potential and thus
Smoluchowski’s relation is usually written as:

Ub = −
εEext
η

ζ (2.4)

where ζ = ϕo
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2.2 New models

2.2.1 Viscoelectric effect
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Lyklema and Overbeek first introduced the concept of viscoelectricity [5]
and predicted saturation of electroosmotic mobility with increasing interfa-
cial potential. In this section, first I propose a different physical explanation
that came to my mind for the viscoelectric dependence of fluid viscosity to
the intrinsic electric field. I then derive the formula that Lyklema and Over-
beek got for the bulk fluid mobility. This will be used for later comparison
of different proposed fluid mechanics theories of the double layer.

It came to my mind that if the viscosity of water increases at higher
densities, then electroosmotic mobility may saturate at higher interfacial
potentials due to possible increase in the density of highly polarizable water
molecules. In trying to formulate this idea I got the exactly same functional
dependence as the one proposed by Lylema and Overbeek for viscoelectric
effect. In what follows a linear relationship is assumed between density and
viscosity of water and a quadratic relation is then found between viscosity
of fluid and intrinsic normal electric field in the double layer.

According to Boltzmann distribution law, concentration of species is an
exponential function of their potential energy normalized by thermal energy
of particles :

C = Cbexp

(
− Ei
KT

)
(2.5)

where Ei shows the energy of particles in the ith state.

A nonuniform potential energy field results in a nonuniform concentra-
tion profile in space, this in fact is the basis of Poisson-Boltzmann equation
for determining the concentration profile of charged species in double layer
and hence is the core of the so called Gouy-Chapmann theory of double layer
which is discussed in detail elsewhere[17–20].

In the case of charged particles, there is an obvious associated electric
potential energy with each particle E = qϕ where ϕ is the electric potential
field, however for uncharged particles like water molecules, at first, it seems
that there is no stored electric potential energy because their net charge is
zero, hence we do not expect nonuniformity in their concentration through
out the double layer although electric potential field is nonuniform.
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Nevertheless this insight may change if we remember that water molecules
are polarizable molecules and positive and negative poles get separated by
some distance when experiencing an electric field. Thus in an exponentially
decaying electric potential field, like the one in the double layer, due to ex-
tremely fast decay of the electric potential field, opposite poles experience
different potentials which do not exactly cancel out each other and hence a
water molecule can have a finite electric potential energy.

In order to formulate the above qualitative argument, we denote dipole
moment of a water molecule by p = qa where q is the charge of each opposite
pole and a being the distance by which the poles are separated then from
fundamental Electrodynamics one knows that:

P = εoχE (2.6)

P : Average dipole moment =
∑
p

V
εo : Vacuum electric permittivity

χ : Relative permittivity of the medium
E : Electric field

If we show concentration of particles in millimolar by m and Avogadro’s
number by Na then:

p =
εoχE

mNa
⇒

q =
εoχE

maNa
(2.7)

In the case of negative interfacial potential where electric field is also
negative then net associated electric potential is:
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V = −qϕ
(
r +

a

2

)
+ qϕ

(
r− a

2

)
⇒

V = −qa · ∇ϕ(r) (2.8)

By realizing that ∇ϕ(r) = −E(r) and taking care of the sign conventions
we find that in general:

V = − εoχE

maNa
aE ⇒

V = −εoχE
2

mNa
(2.9)

so according to(2.5), density of water molecules at a particular location
is :

C = Cbexp

(
εoχE

2

mRT

)
(2.10)

Finally if we assume a linear relationship between viscosity and density
of water molecules, i.e that :

η =
C

Cb
ηb

we get:

η = ηbexp

(
εoχE

2

mRT

)
(2.11)
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If we call
( εoχ
mRT

)
, f then://

η = ηbexp(fE
2)

A simple calculation shows that for water at room temperature f '
5.16 · 10−18 so that for a typical value of E ' 107 still the argument of the
exponential function is pretty small (approximately .013 ), since:

exp(s) ' 1 + s s << 1

then we conclude:

η = ηb(1 + fE2) (2.12)

This equation looks exactly like the one Lyklema and Overbeek have phe-
nomenologically proposed except for the difference in the calculated value
of viscoelectric coefficient which turns out to be f = 5 · 10−18 here which is
different from the value of f = 10−14 that they proposed.

The importance of viscoelectric effect is in that it results in a new rela-
tionship between interfacial and zeta potentials which is different from the
classical one derived by Smoluchowski and that it helps in reducing the over
prediction of zeta potential based on electrochemical properties of solid-
liquid interface.

To be more precise,as shown in [11],the bulk fluid velocity can be cal-
culated as:

Ub = Eext

∫ 0

ϕo

ε

η
dϕ (2.13)



2. Fluid mechanics of the double layer theory 22

In the Debye-Huckel limit we have:

ϕ = ϕoexp

(
− y

λD

)
⇒ E = −dϕ

dy
=

1

λD
ϕoexp

(
− y

λD

)

⇒

E =
1

λD
ϕ (2.14)

using(2.14) in (2.12) and plugging them back into (2.16) results in:

Ub =
εEext
ηb

∫ 0

ϕo

1

1 + f
λ2D
ϕ2

dϕ

⇒

Ub =
λDεEext

ηb
√
f

arctan(

√
f

λD
ϕ)|0ϕo

⇒

Ub = −λDεEext
ηb
√
f

arctan(

√
f

λD
ϕo)
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so that the effective zeta potential in this case is:

ζeff =
Ub

− εEext

ηb

=
λD√
f
arctan(

√
f

λD
ϕo) (2.15)
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2.2.2 Charge-induced thickening
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Recently [11, 21] M.Bazant, though in a different context from this work,
has hypothesized that the viscosity and electrical permittivity of a fluid is
not uniform throughout the double layer and postulated the following equa-
tion for their variation with respect to counter-ion density in the double
layer:

ε

η
=
εb
ηb

(
1− ρ

ρm

)
(2.16)

Where ρ is the charge density at a given point and ρm refers to the hy-
pothesized maximum charge density at which the viscosity of fluid goes to
infinity and fluid flow stops.

In this section the same idea is applied to get an equation for effective
zeta,ζ, in terms of interfacial potential which turns out to be a quadratic
relation between the two in the Debye-Huckel regime.

Bazant [11],has shown that the bulk fluid velocity can be calculated via:

U = Eext

∫ 0

ϕo

ε

η
dφ (2.17)

Now in a symmetric electrolyte solvent, if we assume Boltzmann distri-
bution for the density of particles then:

ρ = −2eFCb sinh

(
Fzφ

RT

)
(2.18)

using this equation for the density of counter ions in equation (2.16) and
plugging that back into (2.17) we get:

Ub = Eext
εb
ηb

∫ 0

ϕo

(
1 +

2Cb
Cm

sinh

(
Fzφ

RT

))
dφ
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which is tantamount to:

Ub =
εbEext
ηb

(
−ϕo +

2CbRT

FzCm

(
1− cosh(

Fzϕo
RT

)

))
(2.19)

we can further simplify the above equation by noting that:

1− cosh(s) = −2 sinh2
(s

2

)

thus (2.19) is equivalent to:

Ub =
εbEext
ηb

(
−ϕo − 4

CbRT

FzCm
sinh2

(
Fzϕo
2RT

))
(2.20)

Finally we define ζeff as:

ζeff = − ηb
εbEext

Ub (2.21)

and consequently we have:

ζeff = ϕo + α sinh2

(
Fzϕo
2RT

)
(2.22)

where:

α = 4
CbRT

FzCm
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It is also noteworthy that in the Debye-Huckel regime the last equation
can be approximated by:

ζeff ' ϕo + βϕ2
o

in which β = CbFZ
CmRT

and thus clearly a nonlinear quadratic relation be-
tween ζeff and the interfacial potential,ϕo, is predicted by ”Bazant’s jam-
ming effect hypothesis”.
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2.2.3 A reformulation of electrokinetic flow by Bingham-type fluid
mechanics analysis
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Engineers and scientists are quite familiar with the concept of frictional
force in simple physics problems. This principle simply indicates that if there
is any relative motion of an object with respect to the surface on which it
rests, then there is a corresponding friction force which is proportional to
the normal force ”N” exerted by the surface on the object. However we usu-
ally do not think of frictional shear components in Solid Mechanics. This
becomes clear when we note that in the constitutive laws of elasticity, the
shear stress are independent of the normal stress components.

Classical Fluid Mechanics constitutive laws have probably been moti-
vated by their predecessors in solid mechanics. Basically, the only difference
between Fluid and Solid Mechanics is that in Fluid Mechanics ” strain rate”
has replaced ”strain” in stress-strain relationships in elasticity.

Interestingly, a special type of non-Newtonian fluid called ”Bingham
plastic”, [22–26], shows a typical behavior that is reminiscent of a high
school Dynamics problem with non negligible friction force terms, namely
that a block under an external force, does not move unless the force exceeds
a threshold which is given as Fth = µsN . Likewise the Bingham plastic does
not experience any shear strain rate unless the shear stress exceeds a yield
value.

Motivated by the above analogy, if we assume that in a continuum body
the shear stress is also proportional to the normal stress components, e.g
pressure in fluids, we can see that if there is a considerable gradient in the
pressure distribution profile, then on any infinitesimal block of fluid there is
a net friction type force which opposes fluid flow.[Fig.2.1]

As shown in Figure(2.1), one special case where large gradients in the
pressure profile are present, occurs inside the double layer where the pressure
field exponentially decreases as one goes from the wall surface through the
bulk of fluid. The presence of these friction-type shear forces may explain the
over prediction of zeta potential in ICEO experiments as pointed out in [21].

In what follows, I propose a general constitutive law for a Newtonian
fluid with frictional stress components and then continue with application
of the idea to the simple planar electroosmotic flow.

The classical constitutive law for finding stresses in terms of strain rates
is:
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σij = −Pδij + ηγij

where γij is given as:

γij =
1

2
(ui,j + uj,i)

Motivated by the aforementioned observation, I propose a more general
constitutive law which only adds an extra term to the above equation:

σ = −PI + ηγij ei ⊗ ej + bij bi ⊗ bj (2.23)

In this formulation bi refers to a vector basis in which b1 is the unit
vector in the direction of net body force at a particular point and b2 & b3
are constructed as such to form a right handed set of orthogonal basis with
b1.Moreover b12 = b21 = b13 = b31 = Pµ where µ is the friction coefficient
and other components are zeros.

Now if we plot shear stress as a function of strain rates, using the newly
proposed constitutive law, we get a straight line with a finite intercept which
is exactly what the Bingham formulation predicts. This indeed reminds us
again of the analogy of the transition from sliding to kinetic friction in basic
Dynamics problems.

With the above insight, we continue to see the mathematical implica-
tions of this hypothesis in simple planar electrokinetic flows. In accordance
with figure(2.1), we introduce the following parameters:
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Parameter Description
P Pressure
ϕ Electric potential field

En Normal component of electric field: ∂φ
∂n

ρe Electric charge density
µk & µs kinetic and static friction coefficients respectively
δA area of the element under study
δy a length increment in the normal direction

Momentum equation in y direction gives:

δA (P − (P + δP )) + ρeEnδAδy − ρgδAδy = 0⇒
δP = ρeEnδy − ρgδy (2.24)

 

 
 

 

𝑃 +δ𝑃 

𝑃 

𝑓𝑘 = 𝜇𝑘 𝑃 +δ𝑃  

 

𝑓𝑘 = 𝜇𝑘𝑃 

 

 

 

 

Fig. 2.1: friction forces on an infinitesimal fluid element in double layer
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The net friction-type force acting on the body (see [Fig.2.1]) is now equal
to µkδP , we can safely neglect the variations in δP due to gravity because
it is orders of magnitude less than that of normal electric field gradient, so
that finally we have fk equal to :

fk = µkρeEnδAδy = µkρeEnδV (2.25)

where δV refers to the volume of the element under consideration , this
shows that the effect of frictional shear forces can be represented by a new
body force term exerted into the classical Navier-Stokes equations:

ρ(
∂v

∂t
+ v · ∇v) = −∇P + η∇2 v + B (2.26)

Which in turn in the low Reynolds number regime simplifies to :

−∇P + η∇2 v + B = 0 (2.27)

Now assuming that there is no pressure gradient along the channel and
using Poisson law for writing ρe in terms of gradients of electric potential
field, we have:

η∇2v + µkε∇2ϕ · ∇ϕ− εEext∇2ϕ = 0

If we assume that the radius of curvature of the surface is much larger
than the Debye length, then we can treat this problem as a planner one and
get:

η
∂2v

∂y2
+ µkε

∂2ϕ

∂y2
∂ϕ

∂y
− εEext

∂2ϕ

∂y2
= 0 (2.28)
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Integration of this equation twice, and applying the no-slip boundary
condition at y = 0 gives:

v = −µkε
2η

∫ y

0
ϕ(τ)

′2 dτ +
εEext
η

ϕ(y)− εEextϕo
η

Consequently the bulk fluid velocity is found to be:

vB = −µkε
2η

∫ ∞
0

ϕ(τ)
′2 dτ − εEextϕo

η

The Integral term in the above equation has been previously calculated
in this work in the section on streaming potential measurements of ζ, using
the result of that calculation we get:

vB = −εEext
η

ϕo −
4µkεR

2T 2

F 2ηλD
sinh2

(
Fϕo
4RT

)

Now as usual by defining ”effective zeta potential” , ζeff to be:

ζeff = − ηVb
εEext

(2.29)

we get:

ζeff = ϕo +
4µkR

2T 2

F 2EextλD
sinh2

(
Fϕo
4RT

)

which in the Debye-Huckel regime can be further simplified to:
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ζeff ' ϕo +
µkϕ

2
o

4λDEext

It is very interesting to note that in both the exact and Debye-Huckel
approximations, the equations relating ζeff to ϕo here, have the exact same
functional from as the ones derived in an earlier section by using M.Bazant’s
proposed dependence of viscosity to charge density in the double layer [21].
Another interesting point is that the model presented here,in its current for-
mulation, also predicts the possibility of flow reversal at extremely large volt-
ages which has been experimentally observed in ICEO experiments [21], [11].



3. EXPERIMENTAL INVESTIGATION OF ELECTROOSMOSIS

3.1 Streaming potential, a more accurate formulation
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Streaming potential is a well documented way of measuring zeta potential
in micro-capillaries and along with current monitoring, has been extensively
used as standard technique in electroosmotic experiments by different re-
searchers over the decades.

The classical equation that has been used for inferring zeta potential
from the observable parameter in the experiment (i.e voltage drop along
the channel) is the solution of a much simplified model of the phenomenon.
This simplified formulation may lead to inconsistencies between streaming
potential and current monitoring measurements of zeta potential if used in
the regimes where the simplifying assumptions break down.

In this section it is shown that in fact a more rigorous study of this phe-
nomenon reveals a more complicated relationship between the observable
voltage difference along the channel and zeta potential and that the first
order approximation may in fact lead to significant error in estimating zeta
potential.

Since the technique has been extensively reviewed elsewhere [27–29], a
very brief discussion of the phenomenon is first presented and is then imme-
diately followed by the rigorous mathematical treatment of the problem.

As shown in figure(3.1), when a pressure gradient is applied along the
channel, there would be a net migration of charged ions at the surface by
fluid flow which then induces an electrical current in the channel. However
if the channel is in an open circuit, there should be no net current flowing
throughout the channel at the steady state.

Thus the steady state occurs when a voltage difference develops along the
channel that produces an equal (Ohmic) current in the opposite direction.It
has been shown [27] that this voltage difference should be equal to:

V = −ϕoε∇P
ση

where σ is the bulk conductivity of the solution,V is the potential difference
per unit length, and the other terms have their usual meanings, replacing
ϕo by ζ results in:
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Courtesy of Brian Kirby 

  

Fig. 3.1: Streaming potential phenomenon

ζ = − ση

ε∇P
V (3.1)

which is the classical equation for relating streaming potential measure-
ments to zeta potential of the substrate. There are two important simplifi-
cations made in deriving this equation:

1. When a voltage difference is developed along the channel there will
be an electroosmotic contribution to the fluid velocity which has been
neglected in calculating the streaming current in above derivation

2. Since the concentration of ions varies greatly from their bulk values
near the surface, there is an error associated with using bulk conduc-
tivity in calculation of Ohmic current

In what follows we will consider both these facts and we will come up
with a nonlinear relationship between the streaming potential and ζ.

For a rectangular capillary of unit width and height of 2h >> 2λD the
velocity field in bottom half of the channel is given as:
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Uw =
εE(ϕ− ϕ0)

η
+
∇P
2η

(
y2 − 2hy

)
(3.2)

where E is the tangential electric field, y shows distance from the wall, ϕ is
the potential at any particular point.

Furthermore the total net streaming current Istr is given as:

Istr =

∫ h

0
ρeUw dA = −ε

∫ h

0
∇2ϕUw dy (3.3)

combining equations(3.2) and (3.3) we get:

Istr = I1 + I2

where

I1 = −ε
2E

η

∫ h

0
ϕ

′′
(ϕ− ϕo) dy

I2 = −ε∇P
2η

∫ h

0
ϕ

′′ (
y2 − 2hy

)
dy

Using integration by parts yields:

∫ h

0
(ϕ− ϕo)ϕ

′′
dy = ϕ

′
(ϕ− ϕo)|h0︸ ︷︷ ︸

0

−
∫ h

0
ϕ

′2 dy
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The integral on the right side of the above equation can be calculated
by using the general solution for P.B [27] equation which is known to be [12]:

ϕ = 2b ln

(
1 + a exp(−yλD )

1− a exp(−yλD )

)
(3.4)

In which b = RT
F and a = tanh(Fϕo

4RT ). Differentiating with respect to y
gives:

ϕ
′

=
−4ab

λD

exp(−yλD )

1− a2exp(−2yλD
)

so that we have:

∫ h

0
(ϕ

′
)2 dy =

16a2b2

λ2D

∫ h

0

exp(−2yλD
)

(1− a2exp(−2yλD
))2

dy =
8b2

λD

∫ h

0

2a2

λD
exp(−2yλD

)

(1− a2exp(−2yλD
))2

dy

By introducing a new variable u = 1−a2exp(−2yλD
) the above integration

simplifies to:

∫ h

0
(ϕ

′
)2 dy =

8b2

λD

∫ 1

1−a2

1

u2
du =

8b2a2

λD(1− a2)

Thus finally I1 is equal to:

I1 =
8ε2b2a2E

λDη(1− a2)
(3.5)

I2 can be approximated by using integration by parts and employing Debye-
Huckel limit for the very last integrand,



3. Experimental investigation of electroosmosis 40

∫ h

0
ϕ

′′ (
y2 − 2hy

)
dy = ϕ

′ (
y2 − 2hy

)
|h0︸ ︷︷ ︸

0

−2

∫ h

o
ϕ

′
(y − h) dy

∫ h

o
ϕ

′
(y − h) dy = ϕ (y − h) |h0 −

∫ h

0
ϕdy ⇒

∫ h

0
ϕ

′′ (
y2 − 2hy

)
dy = −2ϕ0 (−h+ λD) ' 2ϕ0h

so that finally

I2 = −
ε∇Ph
η

ϕo (3.6)

Combining equations 3.3 to 3.6 yields:

Istr = −
ε∇Ph
η

ϕo +
8ε2b2a2E

λDη(1− a2)
(3.7)

Ohmic current basically occurs as a result of electrophoretic migration of
ions in the solution, if we show mobility and concentration of cations by µ+
and C+ respectively and those of anions by µ− and C− then:

Iohm = EF

(∫ h

0
µ+C+ dy +

∫ h

0
µ−C− dy

)
= EFCoµ

∫ h

0

(
exp(

−Fϕ
RT

) + exp(
Fϕ

RT
)

)
dy

furthermore if we assume that cation and anions have similar mobilities, the

above equation yields:

Iohm = 2EFCoµ

∫ h

o

(
cosh(

Fϕ

RT
)

)
dy (3.8)

But if we multiply both sides of P.B equation [12], by ϕ
′
and then integrate,

we get:
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∫ h

0
ϕ

′
ϕ

′′
dy =

∫ h

0

2CbF

ε
sinh

(
Fϕ

RT

)
ϕ

′
dy ⇒

ϕ
′2 =

4CbRT

ε

(
cosh

(
Fϕ

RT

)
− 1

)
⇒

∫ h

0
cosh

(
Fϕ

RT

)
dy =

ε

4CbRT

∫ h

0
ϕ

′2 dy + h =
2εb2a2

CbRTλD(1− a2)
+ h

So that finally by realizing σ = 2µCbF

Iohm = σEh

(
1 +

2εb2a2

CbRTλDh(1− a2)

)
(3.9)

Also it is useful to note that:

a2

1− a2
=

1
1
a2
− 1

=
1

coth(Fϕo

4RT )2 − 1
= sinh2(

Fϕo
4RT

)

As previously mentioned, at steady state the net current should be zero
which means:

Itotal = Istr + Iohm = 0

−σV h− ε∇Ph
η

ϕo − σV h
(

2εb2

CbRTλDh
+

8ε2b2

λDησh

)
sinh2(

Fϕ

4RT
) = 0

ζ =
ϕo

1 +
(

2εb2

CbRTλDh
+ 8ε2b2

λDησh

)
sinh2( Fϕ

4RT )
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3.2 Current monitoring measurement of zeta in Silica
micro-capillaries

3.2.1 A new data set for Silica micro-capillary for alkaline buffers
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During the course of working on this project, I found few experimental
data available for ζ potential measurements of different buffers with high
salt concentration for silica microchannels. Furthermore, I believe that it is
in these extreme regimes(low or high salt concentration,pH,etc) where we
can get valuable insight as to whether or not the current models can explain
different aspects of the phenomenon suitably. I then decided to conduct a
number of careful experiments at high salt concentrations myself to investi-
gate the robustness of proposed models in this work and to provide reliable
data for future academic investigations.

I decided to conduct a series of ”current monitoring” experiments in
which our group has a good experience and expertise. The current monitor-
ing technique has been well discussed elsewhere and the interested reader is
encouraged to look in the literature for more details [27, 30, 31].

In our experimental setup we have been careful to avoid error sources
associated with current monitoring technique as discussed in [32, 33]. Spe-
cially we took care of Joule heating effects in the sense that whenever we
observed continuous growth in zeta potential during the course of experi-
ment, we attributed that to the decrease in the viscosity of the fluid due to
Joule heating effects and hence disregarded the data set as unreliable. We
were also careful to avoid more than 5-7.5 % difference in the two electrolyte
buffer conductivities to avoid axially non-uniform interfacial potential and
voltage drop inside the capillary, both of which result in pressure driven flow
being developed.

In this section, I have included both the raw and processed experimental
data. I will use the data in the next section along with other data sets avail-
able in the literature to investigate different aspects of the Electrochemical
and the various Fluid Mechanics models presented in previous sections. The
raw graphs are also presented because they show the extent to which our
data set is reliable.
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1M Phosphate buffer 

pH=4.1 E=120 V/cm  

 ζ= - 4.67 mV 

 

Fig. 3.2: Current monitoring raw data for 1M solution,pH=4.1 , 5 , 6 , 7
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Fig. 3.3: Current monitoring raw data for 1M solution,pH=8 , 9 , 10 , 11
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Zeta potential measurements 
1M phosphate buffer 

Silica capillary 

 
pH 

 
Zeta potential (mV) 

 
Standard deviation (mV) 

 
4.1 

 
-4.67 

 
0.26 

 

 
5 

 
-9.47 

 
1.62 

 
6 

 
-17.6 

 
1.65 

 
7.1 

 
-17.92 

 
0.67 

 
8 

 
-19.4 

 
2.3 

 

 
9 

 
-21.7 

 
2.41 

 
10 

 
-24 

 
1.68 

 
11 

 
-23.9 

 
2.25 

 

Fig. 3.4: Processed data for 1M phosphate buffer
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Fig. 3.5: Current monitoring raw data for 100mM solution,pH=4.3, 5.6, 6.6, 8
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Fig. 3.6: Current monitoring raw data for 100mM solution,pH=9, 10 , 11.3 , 12.4
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Zeta potential measurements 
100mM phosphate buffer 

Silica capillary 

 
pH 

 
Zeta potential (mV) 

 
Standard deviation (mV) 

 
4.3 

 
-15.64 

 
2.7 

 

 
5.5 

 
-23.11 

 
2 
 

 
6.6 

 
-33.65 

 
2.31 

 
8 

 
-43.57 

 
2.52 

 
9 

 
-52.1 

 
2.60 

 

 
10 

 
-55.52 

 
3.4 

 
11.3 

 
-61.2 

 
1.52 

 
12.4 

 
-55.9 

 
0.28 

 

Fig. 3.7: Processed data for 100mM phosphate buffer
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Fig. 3.8: Current monitoring raw data for 10mM solution,pH=3.3, 4.6, 5.6, 6.6
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Fig. 3.9: Current monitoring raw data for 10mM solution,pH=7, 8.5, 11.4
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Zeta potential measurements 
10mM phosphate buffer 

Silica capillary 

 
pH 

 
Zeta potential (mV) 

 
Standard deviation (mV) 

 
3.3 

 
-5.08 

 
0.76 

 

 
4.6 

 
-15.53 

 
1.88 

 

 
5.6 

 
-31.26 

 
5.22 

 
6.6 

 
-52.35 

 
7.78 

 
7 

 
-57.18 

 
5.82 

 

 
8.6 

 
-65.63 

 
4.17 

 
11.6 

 
-83.27 

 
6.30 

 

Fig. 3.10: Processed data for 10mM phosphate buffer
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Finally before concluding this section, I would like to point out an inter-
esting result about the increase in the pressure field inside the solution due
to presence of electrostatic forces in the double layer. This new insight can
potentially lead to new experimental techniques for zeta(more accurately
interfacial)potential measurements.

In the low Reynolds regime the classical Navier-Stokes equation gives:

−∇P + η∇2 v + B = 0 (3.10)

Now in a planar geometry, If we assume that the fluid velocity compo-
nents in the ”y” direction, i.e normal to capillary surface, is zero or at most
linear in y, and we insert the existing body force terms in the above equation
we have:

∂P

∂y
= ε

∂2ϕ

∂y2
∂ϕ

∂y
− ρg

If we integrate the above equation from the channel surface to the bulk
of fluid, say ”h” meters above the surface, pressure difference is:

Ps − Pb =
ε

2
E2
n + ρgh (3.11)

Where Ps and Pb show pressures at the surface and the bulk of fluid
respectively, En is the normal component of electric field at the surface and
the ρgh is the familiar gravitational contribution to the pressure field. The
first term on the right hand side of the above equation is due to electrostatic
forces present in the double layer. We can get an estimate of the order of
this number in by using Debye-Huckel approximation:
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ϕ ' ϕo exp(− y

λD
)⇒ (3.12)

E = −∂ϕ
∂y
' ϕo
λD

exp(− y

λD
)⇒ (3.13)

ε

2
E2
n ' εϕ2

o

2λ2D
(3.14)

If we use typical values of ϕ = 25mV and λD = 3nm we get that excess
pressure to be around:

εϕ2
o

2λ2D
' 25KPa

The excess pressure is thus a relatively large number. Unfortunately
measuring this excess pressure is not straightforward. For example if we
try to calculate the pressure by measuring the force exerted on the chan-
nel surface we get a null result. The reason is that the surface itself is
charged and an exact and opposite electrostatic force balances out the force
exerted by the fluid pressure field on the surface. Another issue is that
this phenomenon is observable near the double layer region which is only
few nanometers away from the surface, thus a typical pressure transducer
can not be used to measure this excess potential accurately. There may be
other ways to take advantage of this excess pressure to measure zeta poten-
tial. Exploring ways to implement the idea presented here for ζ potential
measurements can be a candidate for future research endeavors in the field.
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3.2.2 A proposed ζ potential measurement method based on excess
electrostatic pressure in the double layer
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Before concluding this section, I would like to point out an interesting
result about the increase in the pressure field inside the solution due to
presence of electrostatic forces in the double layer. This new insight can
potentially lead to new experimental techniques for zeta(more accurately
interfacial)potential measurements.

In the low Reynolds regime the classical Navier-Stokes equation gives:

−∇P + η∇2 v + B = 0 (3.15)

Now in a planar geometry, If we assume that the fluid velocity compo-
nents in the ”y” direction, i.e normal to capillary surface, is zero or at most
linear in y, and we insert the existing body force terms in the above equation
we have:

∂P

∂y
= ε

∂2ϕ

∂y2
∂ϕ

∂y
− ρg

If we integrate the above equation from the channel surface to the bulk
of fluid, say ”h” meters above the surface, pressure difference is:

Ps − Pb =
ε

2
E2
n + ρgh (3.16)

Where Ps and Pb show pressures at the surface and the bulk of fluid
respectively, En is the normal component of electric field at the surface and
the ρgh is the familiar gravitational contribution to the pressure field. The
first term on the right hand side of the above equation is due to electrostatic
forces present in the double layer. We can get an estimate of the order of
this number in by using Debye-Huckel approximation:
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ϕ ' ϕo exp(− y

λD
)⇒ (3.17)

E = −∂ϕ
∂y
' ϕo
λD

exp(− y

λD
)⇒ (3.18)

ε

2
E2
n ' εϕ2

o

2λ2D
(3.19)

If we use typical values of ϕ = 25mV and λD = 3nm we get that excess
pressure to be around:

εϕ2
o

2λ2D
' 25KPa

The excess pressure is thus a relatively large number. Unfortunately
measuring this excess pressure is not straightforward. For example if we
try to calculate the pressure by measuring the force exerted on the chan-
nel surface we get a null result. The reason is that the surface itself is
charged and an exact and opposite electrostatic force balances out the force
exerted by the fluid pressure field on the surface. Another issue is that
this phenomenon is observable near the double layer region which is only
few nanometers away from the surface, thus a typical pressure transducer
can not be used to measure this excess potential accurately. There may be
other ways to take advantage of this excess pressure to measure zeta poten-
tial. Exploring ways to implement the idea presented here for ζ potential
measurements can be a candidate for future research endeavors in the field.
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In this chapter, the model that was developed in the earlier sections, is
used to study and explain various data sets, including our own experimental
results, in the literature on zeta potential measurements for silica micro-
capillaries. The important result is that different data sets are explained
with a single model which consistently uses only two, perfectly meaning-
ful parameters.

Previously, several researchers have addressed the problem of zeta poten-
tial determination with respect to electrolyte solution properties and found
ways of explaining experimental data. [14, 34–37] However, there are impor-
tant drawbacks with those efforts:

1. Ad-hoc fitting parameters are often used to explain the data.

2. The fitting parameters are used inconsistently to explain the available
data, and change from one situation to another without any physical
reasoning that explains why this should be allowed.

3. Usually a single data set has been explained with other available data
sets being ignored.

I developed a MATLAB code based on my model for prediction of zeta
potential in silica micro-capillaries in terms of chemical properties of solu-
tion, i.e the model presented in chapter II of this work and also wrote a
simple optimization module which finds the optimum set of parameters to
fit my model to available experimental data in the literature.

There were originally four fitting parameters in my model, two reaction
equilibrium constants, K1&K2 , a parameter for the number of Silanol sites
at the glass surface,Ns, and an α parameter which can be considered as the
coefficient of the second term in the Taylor expansion of the relation between
ζ and (ϕo).

The relation between interfacial and zeta potentials has been studied
to some extent in an earlier chapter from a mere fluid mechanical point of
view. There, it has been shown that at least three different physical models,
proposed by different researchers, lead to non linear relations between bulk
fluid velocity and interfacial potential. I thus introduced a general α param-
eter in my optimization module to account for possible nonlinear relations
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betweenζ and ϕo.

Since the proposed nonlinear relations appeared in Fluid Mechanics for-
mulations of electroosmosis, the α parameter was not used in explaining
”streaming potential” data because the technique does not measure bulk
electroosmotic fluid velocity and rather measures the interfacial potential.
It should be noted that based on our studies of the streaming potential tech-
nique in an earlier chapter, we saw that in fact a nonlinear equation should
be used for inferring zeta potential from measured voltage drop. However,
the nonlinear correction terms turned out to be negligible for the data sets
studied in this work.

My analysis of available data showed that only two of the original four
fitting parameters(K1 & Ns ), are necessary to explain data and there is no
strong evidence to motivate either cation binding hypothesis or nonlinear
relationships between ζ and ϕo, at least in the electric potential and flow
regimes studied in this work.

Starting with metal cation binding, I observed that introducing a non-
negligible equilibrium constant for this type of reaction ,K2, makes the model
become inaccurate at high salt concentrations. There, the model predicts a
constant, almost zero zeta potential regardless of pH and this is in complete
disagreement with experimental observations[see figures below]. Moreover,
at moderate salt concentrations, introducing K2 does not really improve ac-
curacy of the model. As a result of these observations, I decided that K2 is
a redundant parameter and hence equated it to zero in my code.

In other words I have concluded that metal cation reactive binding with
Silica does not happen for alkaline(e.g K+,Na+, ...) buffers. A possible intu-
itive explanation of this observation is that group I metals are not absorbed
to silica strongly enough to penetrate the screening water layer on the silica
surface. On the other hand, alkaline earth metals, i.e group II metals, are
able to reach the Silica surface and react with or get absorbed to the surface.
Not surprisingly, there is evidence supporting specific absorption and posi-
tive electrokinetic potential for divalent cation groups in the literature [38].

This conclusion is also consistent with a particulary illuminating data in
the literature which compares different alkaline buffers zeta potential [39].
As shown in figure(4.3), we can see that there is no significant difference
between measured zeta potential for Li+, Na+,K+ buffers. We can thus
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conclude that either different alkaline buffer-Silica reactions all have roughly
the same equilibrium constants, which is unlikely, or that simply those re-
actions do not occur because of the strong shielding of the Silica surface by
water molecules as discussed above.
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Fig. 4.1: Comparison between different group I metal cations

I also found that the classical Smoluchowski’s formula can explain the
majority of data sets studied here and that there is no evidence for a non-
linear relation between electroosmotic velocity and ϕo. This translates to
finding the α parameter, as defined before, to be zero in the optimization
process for data fitting.

My fitting analysis suggested that a good estimate for the average site
density of Silanol groups,Ns, is 0.3 sites

nm2 . I deliberately allowed Ns to vary
slightly from one experiment to another because it is indeed possible to have
different material properties as a result of different manufacturing processes
in different experiments. Statistically speaking, I found that on average
Ns ' 0.28 sites

nm2 with a standard deviation of σd = 0.13 sites
nm2 .

I also fount that interestingly there are two different K1 values that
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should be used to explain two distinct groups of available data. I attribute
this to the possibility of having two main and different classes of silica cap-
illaries with slightly different atomistic structures. This can account for
having different equilibrium constant for deprotonation of silica substrate.
The idea of having two or more different classes of Silicon is not unprece-
dented and there is evidence for having two main different classes of Silicon
in the literature [12, 40]. Bousse and Mostarshed, observed shifts in the
point of zero charge when Silicon with SiNH4 impurities was used instead
of the usual SiH2 Silicon material.

Likewise, I found two equilibrium constant values to be K1 ' 1.2 · 10−3

and K1 ' 4.7 ·10−2 M and the numerical predictions of the presented model
for the two different cases showed a shift in the iso-electric points from ap-
proximately 3 to 2 for 10mM KCl solution.

I have gathered the results of my investigations for different data sets in
the below graphs and the the two tables that show the fitting parameters
in the two distinct classes. It can be seen that the equilibrium constants
in the tables are consistent with what presented above and acquires only
two different values with the site density of Silanol groups varying (slightly)
from experiment to experiment .
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Fig. 4.2: Top: V.Pourahmad data Bottom:Kosmulski et al. [15]



4. Conclusion 65

 

Fig. 4.3: Dickens et al. data [39]

 
Fig. 4.4: Variation of zeta with salt concentration,[41–43]
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Reference 

 

 

𝐾1 (10−3𝑀) 

 

𝑁𝑠   𝑠𝑖𝑡𝑒𝑠
𝑛𝑚2   

 

Kosmulski et.al. 
 

100mM KCl solution 
 

1.2 0.33 

Kosmulski et.al 
 

10mM KCl solution 
 

1.2 0.22 

Kosmulski et.al 
 

1mM KCl solution 
 

1.2 0.22 

V.Pourahmad 
 

1M phosphate buffer 
 

1.2 0.5 

V.Pourahmad 
 

100mM phosphate buffer 
 

1.2 0.45 

V.Pourahmad 
 

10mM phosphate buffer 
 

1.2 0.3 

Dickens et.al. 
 
 

1.2 0.3 

De-Bruyn et.al. 
 
 

1.2 0.18 

Watillon et.al. 
 
 

1.2 0.06 

Gaudin et.al. 
 
 

1.2 0.1 

Caslavska(b) et.al. 
 
 

1.2 0.3 

 

Fig. 4.5: Variation in site density of first Silica type groups
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Fig. 4.6: Zeta potential measurements on silica by different researchers, [14, 43–45]
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Reference 

 

 

𝐾1 (10−2𝑀) 

 

𝑁𝑠   𝑠𝑖𝑡𝑒𝑠
𝑛𝑚2   

 

                  Scales et.al. 
 

100mM KCl solution 
 

4.7 0.15 

Scales et.al 
 

10mM KCl solution 
 

4.7 0.12 

Scales et.al 
 

1mM KCl solution 
 

4.7 0.08 

Scales et.al 
 

0.1mM KCl solution 
 

4.7 0.035 

Caslavska et.al 
 

40mM phosphate buffer 
 

4.7 0.35 

Schwer et.al 
 

10mM KCl solution 
 

4.7 0.4 

 

Fig. 4.7: Variation in site density of type II silanol groups
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