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Abstract 

A number of estimators of squared prediction error have been suggested for use in 

model and bandwidth selection problems. Among these are cross-validation, generalized 

cross-validation and a number of related techniques based on the residual sum of squares. 

For a number of situations with squared error loss, for example nonparametric smooth­

ing, these estimators have been shown to be asymptotically optimal in the sense that in 

large samples the estimator minimizing the selection criterion also minimizes squared er­

ror loss. However, cross-validation is known not to be asymptotically optimal for some 

"easy" location problems. In this article, we consider selection criteria based on estimators 

of squared prediction risk for choosing among location estimators. We show that criteria 

based on adjusted residual sum of squares are not asymptotically optimal for choosing be­

tween asymptotically Normal location estimators that converge at rate n112 , but are when 

the rate of convergence is slower. We also show that leave-one-out cross-validation is not 

asymptotically optimal for choosing between yin-differentiable statistics but leave-d-out 

cross-validation is optimal when d -+ oo at the appropriate rate. 

Keywords: cross-validation, trimmed means, differentiable statistics, variable selection, 

generalized cross-validation, consistency, location estimation 
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1 Introduction 

Many modern data modelling techniques are adaptive in the sense that, rather than depending 

on a parametric model, they involve only mild regularity conditions and a family of estimators 

indexed by a tuning parameter which determines its properties. Under squared error loss, pre­

diction risk and estimation risk differ by a constant independent of the estimator. Accordingly, 

many popular selection criteria, such as cross-validation (CV) and adjusted residual sum of 

squares, are based on minimizing estimators of prediction loss or risk. 

Hardie and Marron (1985) showed that CV is asymptotically optimal for choice of band­

width in kernel regression estimation, while Hardie, Hall and Marron (1988) showed the asymp­

totic optimality of a large class of squared prediction loss estimators based on adjusted residual 

sum of squares in the context of regression smoothing. However, Stone (1977) showed that CV 

is not asymptotically optimal for the "easier" problem of choosing between the mean and me­

dian in the N ormallocation problem with squared error loss, and. Pruitt (1988) extended this 

result to show that CV is not asymptotically optimal for selecting the best trimming proportion 

in an adaptive trimmed mean. 

In this article we show the relationship between the rate of convergence of the family of 

estimators and the optimality of prediction based selection criteria in the location problem. We 

consider a family including a finite number of asymptotically N ormallocation estimators (with 

rate nP, p ~ 1/2, where n is the sample size). The lessons that can be learned in this simple 

context shed light on the behavior of similar methods in more complex situations. Prediction 

loss differs from estimation loss by a term depending only on the data and a cross-product term 

depending on the tuning parameter which converges to zero. Optimality is possible only if the 

cross-product term is of smaller order than the estimation loss term and that in turn depends 

on the rate of convergence of the estimator. 

The paper is organized as follows. In Section 2, we show that selection criteria based 

on adjusted residual sum of squares or an independent validation sample of the same size are 

asymptotically optimal if and only if p < 1/2. We also show that if the estimators satisfy a weak 

differentiability condition, leave-one-out CV is not asymptotically optimal, thus generalizing 

results of Stone (1977) and Pruitt (1988). On the other hand, we show that leave-d-out CV 
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is asymptotically optimal if d/n converges to 1 while n - d -+ oo . This result is similar to 

Shao (1993) in the context of model selection in regression. Finally, it is argued that bootstrap 

estimates of risk, because they are expectations, do not include a cross-product term and so 

do not suffer from this problem. Section 3 reports on the results of a small simulation study 

examining the use of leave-d-out CV to choose between y'n-convergent location estimators 

and between y'n-convergent regression estimators. Section 4 summarizes our conclusions. 

2 Non-optimality of Sum of Squared Prediction Error Esti-

mators 

Consider the location problem where y~, . .. , Yn are identically and independently distributed 

(i.i.d.) from a distribution F with mean 0 and variance u 2 and let B(y) be any estimator of 0 

depending on the vector of data y. We wish to select an estimator that minimizes the value of 

the squared error estimation loss: 

(1) 

Suppose that O(y) is the minimizer of a selection criterion in a class of estimators n. We say 

that the selection criterion is asymptotically loss optimal if 

(B(y)- 0)2 p 
• -+1. 

minn(O(y)- 0)2 
(2) 

We also consider the weaker condition of risk optimality: a selection criterion is asymptotically 

risk optimal if the probability of selecting the estimator with the smallest risk goes to 1. 

Li (1987) shows that asymptotic risk optimality implies asymptotic loss optimality in the 

context of bandwidth selection for nonparametric regression, but this need not always be the 

case. Consider estimating the mean of aN ormal distribution using the sample mean or median. 

Clearly, the mean is asymptotically risk optimal. To see that there is no asymptotically loss 

optimal estimator for this case, note that the sample mean and median are asymptotically 

jointly normal. Assuming that the population mean is 0, loss optimality implies that for any 

£ > 0, the probability of the two upper and upside down "V" regions delimited by the lines with 

slopes 1 + € and -1 - € tends to 1 as n -+ oo. But that probability tends to the corresponding 

normal probability given by the joint asymptotic distribution which is different from 1. 



Aug, 1995 4 

Many selection criteria are based on minimizing an estimator of the squared error prediction 

loss: 

[y*- o(y)F = (y*- e?- 2(y*- O)(e(y)- O) + (O(y)- e? (3) 

where y* is a new datum from the distribution. Note that because E(y*- O)(B(y)- 8) = 0, 

prediction risk and estimation risk differ by a constant not depending on O(y ), but that the 

corresponding losses differ by a cross-product term that does depend on the location estimator. 

The main goal of this paper is to show that asymptotic optimality is only possible if the cross­

product term converges faster than the estimation loss term. This, in turn, depends on the 

rate of convergence of the location estimator. 

We consider three classes of estimators of squared error prediction loss for the purpose 

of choosing among a family of location estimators. The (leave-one-out) cross-validation (CV) 

estimator of average squared error prediction loss (Stone, 197 4) is: 

n 

CV[On(Y)] = 1/n L[Yi- 0~~1 (y)]2 , (4) 
i=1 

where the subscript denotes the sample size on which the estimator is based, and the superscript 

-i indicates that the ith datum was not used in computing the estimator. (Generally we will 

suppress the subscript for 0, which always uses the full sample.) Intuitively, CV estimates 

prediction risk as a mean of prediction losses, each based on predicting Yi from the remainder 

of the data. More formally, E(yi- 0~~ 1 )2 = a 2 + E(Bn_ 1 - 8) 2 , and for consistent estimators, 

E(Bn_ 1 - 8)2 and E(Bn- 8)2 are close. 

A second class of prediction risk estimators is based on adjusted residual sum of squares. 

The residual sum of squares has expectation 

E (~ t[Yi- O(y)j2) = a 2 + E ([B(y)- oF) - 2 Covariance[y, B(y)] 
n i=1 

(5) 

Estimates of average squared error prediction loss based on adjusted residual sum of squares 

have the form: 

(6) 

where 2[n, B(y)] = 1 + 2 Covariance[y, B(y)]/a2 + op(ljnP+l/2 ) (in the case where O(y) con­

verges at the rate nP). This class has been used mainly in a regression context where it includes 
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generalized cross-validation (Craven and Wahba, 1979), Akaike's information criterion (Akaike 

1974) and a large number of other selectors (for example, Hardie, Hall and Marron, 1988). 

Under appropriate assumptions, the term 2~ I:f=1 Yt Covariance[y, O(y)]ja2 cancels the Co­

variance term in (5), so that the bias of the estimator is of smaller order than the prediction 

error. 

Adjusted residual sum of squares and CV are averages of n prediction risk estimators, one 

for each data value. As a third alternative we consider average prediction loss of the form, 

APL[B(y)] = 1 ~ A 2 
- L..,.[Yi- B(y)) 
n i=1 

1~ 2 1~ A A 2 - L..,.[Yi- B] - 2- L..,.[Yi- B)[B(y)- 8] + [B(y)- 8] , 
ni=1 ni=l 

(7) = 

where Yi, ... , y~ is an i.i.d. validation sample from the same distribution as Yl, ... , Yn and 

independent of them. Nate that the cross-product term in this expansion has expectation zero, 

and that for reasonable estimators, E(B- Bn) 2 converges to zero with n. If this term converges 

more rapidly than estimation loss then average prediction loss differs from estimation loss by 

a constant (which depends on the realization but not the estimator) and a negligible term so 

average prediction loss may be asymptotically loss optimal. 

Theorem 1 shows that asymptotic loss optimality of average prediction loss (7) for choosing 

between two consistent asymptotically Normal estimators depends on their rate of convergence. 

In particular, if they converge slowly (rate less than fo) average prediction loss is asymptoti­

cally loss optimal, but if they converge rapidly it is not even risk optimal. 

Theorem 1 Suppose Yt, ... , Yn, Yi, ... , y~ is an i. i. d. sample from distribution F with mean 

B and finite variance a~. Suppose 01(y) and 02(y) are both estimators of B such that 

where a[ is the asymptotic variance of Bi and p is the asymptotic correlation between the 

estimators. Assume also that IPI "# 1. Then average prediction loss is asymptotically loss 

optimal if p < 1/2. If p = 1/2 then average prediction loss is not asymptotically risk optimal. 
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Proof: Without loss of generality, we may assume 0 = 0. Consider the difference in estimation 

loss 

Bl(Y)2 - 02(Y)2 

[Ol(Y)- B2(y)][B1(Y) + B2(y)) 

and the difference in average prediction loss 

h -* _ 1 "'n * w ere Yn - n L--i=l Yi · 

-2y*[BI(Y)- 02(Y)] + Bl(Y)2- 02(Y)2 

[Bl(Y)- 02(y)][-2y~ + Bl(Y) + 02(Y)] 

By the asymptotic normality of the estimators, 

so n2P DEL[B1(y), 02(y)) converges in distribution to a product of correlated Normals, which 

has support on the entire line. 

Also y'ny* .£ N(O, a~). If p < 1/2 then nP[-2y~+BI(Y)+02(Y)) = nP[OI(Y)+B2(Y)]+op(nP) 

giving DAP L[(BI(Y), B2(y))/ DEL[OI(Y), B2(y)) ~ 1 which is equivalent to asymptotic loss 

optimality. 

However, if p = 1/2 then nDAP L[(OI(y), B2(y)) = nDEL[BI(Y), B2(y)) -2ny*[Bl (y) -B2(y)) 

and the second term in this sum is not negligible. By definition y* and 01(y) - 02 (y) are 

uncorrelated, so this term goes to a product of independent Normals, which is symmetric 

about zero. Thus DAPL[(01(y),B2(Y)]/E(DEL[B1(y),02(y)]) converges to a random variable. 

Remark 1 Theorem 1 covers most cases of interest including many L- and M-estimators 

(Serfiing 1980), and in particular, the mean, the median and trimmed means. Even in the 

optimistic case where we can use a validation sample of the same size, average prediction loss 

cannot be used to choose among two Vii-convergent location estimators. The reason for this is 

the rate of convergence of the mean of the validation sample which is the same as that of O(y ). 

To match adjusted residual sum of squares methods and leave-one-out CV, we have chosen the 
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sizes of the validation and estimation samples to be the same. Suppose instead we choose the 

validation sample to be of size nv where 11 is a constant larger than 2p. Then for sample size n 

wehavenv12 y~, -E N(O,a~) and DAPL[(01(y),B2(y))] = [01(Y)-02(y)][-2y~,+01(Y)+02(Y)]. 
For this larger validation sample (in the case p = 1/2), nP[-2y~, + 01(y)+ 02(y)] = nP[01(y)+ 

02(y)] + op(nP) and we have asymptotic loss optimality for choosing between 01(y) and 02(y). 

Remark 2 For an example of a class of location estimators with an asymptotically Normal 

distribution and p < 1/2, see the kernel estimates of the mode studied by Romano (1988). 

Theorem 1 suggests that selection criteria based on average prediction loss may not be 

asymptotically loss optimal. Theorem 2 shows that prediction risk estimators based on adjusted 

residual sum of squares (Equation 6) are not asymptotically risk optimal for y'n-convergent 

estimators under the conditions of Theorem 1 plus additional regularity conditions. 

Theorem 2 Suppose Yb ... , Yn, F, 0, 01(y), 02(y) and p satisfy the conditions of Theorem 1 

and that Covariance[y, Oi(Y)] = a 2 Ki/nP+112+o(1jnP+ll2 ). Assume also that Correlation[y, 01(y)-

02 (y)] +± 1. Then prediction risk estimators of the form ( 6) are asymptotically loss optimal in 

choosing between 01 (y) and 02(y) if p < 1/2 and are not asymptotically risk optimal if p = 1/2. 

Proof: Without loss of generality, we may assume () = 0. Consider the difference in the 

prediction risk estimators: 

"'n 2 
A 2 A 2 A A L..,i-1 Yi T 

t'h(y) - 02(y) - 2y[OI(Y)- 02(y)] + 2 n3l2+P (1(1- A2) 

+oP [ol(y)2 - B2(y)2 + y[OI(Y)- B2(y)] + ~~;:!] 
"'n 2 A A A A L..,·-IY· 

[OI(Y)- 02(y)][01(y) + 02(y)- 2y] + 2 n~l2+; (K1- K2) 

+op [ol(Y)2- 02(Y)2 + y[01(Y)- 02(y)] + ~f;;;!]· 

Then for p < 1/2 we find that nP[-2y + 01 (y) + 02(y)] = nP[BI(Y) + B2(y)] + op(nP) and 

n2P I:f=1 Yt jn3/2+P---+ 0 so the prediction risk estimator is asymptotically loss optimal. 
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If p = 1/2, the difference in risk estimators is 

DEL [ 01(y), 02(Y)]- 2y[01(Y)- 02(Y)] + 22 t y[(K1- ](2) 
n i=1 

+oP ( DEL[01(y), 02(y)] + y[01(Y)- 02(y)] + ~ YT /n2) . 

and ny[01(y)- 02(y)] goes to a product of correlated Normals which has support on ( -oo, oo) 

as long as the correlation does not have absolute value 1. This shows the risk estimator is not 

asymptotically risk optimal. 

We now turn to the question of asymptotic loss optimality of CV. Expanding CV in terms 

corresponding to those of average prediction loss we obtain: 

n n n 
CV[O(y)] = 1/n L)Yi- 0)2 - 2/n L(Yi- 0)(0;;~ 1 - 0) + 1/n L(O- 8;;~ 1 ?. (8) 

i=1 i=1 i=1 

The three terms in (8) estimate the corresponding terms in (7). In light of Theorems 1 and 2 it 

is expected that leave-one-out CV will not be asymptotically loss or risk optimal for p = 1/2. 

On the other hand, Remark 1 suggests that ford increasing with n, leave-d-out CV might be 

asymptotically risk optimal. We first need some notation. 

For a fixed n, let d = dn be an integer less than n and r = n - d. Following Shao and 

Wu (1989), define Sn,r to be the collection of subsets of {1, ... , n} which have size r. For any 

S = { i1. ... , ir} E Sn,n let 08 = O(yi1 , ••• , Yir)· The leave-d-out CV estimator of risk is 

where S 0 is the complement of the set Sand N = (;) is the number of subsets of size r. 

Shao (1993) has studied risk optimality for the problem of estimating the "true" model in 

a linear regression model. He discusses the well-known fact that with probability tending to 

1, leave-l-out cross-validation (also known as PRESS), adjusted residual sum of squares and 

other asymptotically equivalent criteria such as Cp, will include all variables with non-zero 

coefficients, but may include more variables. He provides a convergent estimator of the "true" 

model based on leave-d-out CV with r ----* oo and r / n ----* 0. As with the location problem, the 

regression estimators are y'n-convergent. 
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We now show that, for choosing among yin-differentiable location estimators satisfying 

a weak differentiability condition, leave-d-out CV is asymptotically risk optimal under the 

conditions on r introduced by Shao. 

Theorem 3 Suppose Yl, ... , Yn is an i. i.d. sample from distribution F with mean () and finite 

variance 0'~. Suppose 01 (y) and 02 (y) are both estimators of() such that 

where fj = ~ L:i=t hj(Yi), E[hj(Yi)] = 0, Var[hj(yi)] = O'J < oo. Assume that E(R~) = 
o(1/n), r --+ oo, and rfn --+ 0. Then with probability converging to 1, the leave-d-out cross­

validation criterion will choose the estimator with smallest asymptotic variance. 

Proof: Without loss of generality, we may assume that () = 0. Let tf = 1/r :LieS hj(Yi), 

R~,j =Off- tf and Uf = R~,j- Rn,j· It can be shown that 

CVd(02(Y)) = ~s~ 1- ~s~ 2 
r ' r ' 

1 1 
+ n(n _ 1) Z:::: Z:::: ht(Yi)ht(Yk)- n(n _ 1) 2: E h2(Yi)h2(Yk) 

i ::p k i ::p k 

2 2 
- n(n _ 1) Z:::: E Yiht(Yk) + n(n _ 1) Z:::: 2: Yih2(Yk) 

i ::p k i ::p k 

(9) 

(10) 

(11) 

where s~.j = 1/n L:f=t (hj(yi) - hj)2, hj = 1/n L:f=t hj(yi)· Since s~.j converges a.e. to the 

asymptotic variance of Bj, (9) is Op(1/r). Terms (10) and (11) are U-estimators and are 

0p(1/n). Since rfn--+ 0, these terms are of smaller order. The largest remaining terms are 

Op(E(Uf)2) = op(1/r) and op(1/nd). In either case, these terms are negligible compared to 

sLfr. 

Corollary 1 Suppose Yt, ... , Yn 1 F, 0, 0'~, Bt(Y) and 02(Y) satisfy the conditions of Theorem 

3 and suppose that the asymptotic correlation between them is not ±1. Then for any fixed d, 

leave-d-out CV is not asymptotically risk optimal for choosing between 01(y) and 02(y). 
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Proof: For fixed d, rfn __... 1, so (9) is Op(1/n), which is the same size as (10) and (11). All 

other terms are op(1/n). 

Remark 3 The differentiability condition of Theorem 3 is weak and covers a wide variety of 

cases of interest. Similar conditions were discussed in Shao and Wu (1989) in the context of 

delete-d jackknife estimates of variance. Section 6 of that paper verifies our condition, under 

regularity conditions on the distribution F, for a number of statistics including quantiles, some 

L-and M-estimators. In particular, under the conditions rfn __... 0 and r __... oo, leave-d-out CV 

can choose between the mean and the median, unlike leave-one-out CV. 

Remark 4 The number of computations in computing a leave-d-out CV estimate increases 

rapidly with d. It is possible to reduce the amount of computation by means of balanced 

subsampling or by Monte Carlo simulation as in Shao (1993). In the first case, subsets are 

chosen so that each observation Yi appears in the same number of subsets and each pair (Yi, Yi) 

appears in the same number of subsets. It is easy to see that in this case Theorem 3 remains 

valid. By choosing subsets at random, the same properties are satisfied on average. 

Remark 5 The need to use most observations to validate is not inherent to the resampling 

procedure. As in Theorem 1, the average prediction risk estimator of the form (7) using an 

independent validation sample of the same size as the original sample would not be risk optimal 

due to the size of the cross-product term. But as in Remark 1, using a much larger sample size 

would render the cross-product negligible and lead to an asymptotically risk optimal selection 

criterion. 

Remark 6 Another class of methods for choosing among competing estimators is based on 

bootstrap estimates of risk. By bootstrapping, one can estimate estimation risk directly rather 

than going through prediction risk estimates. For instance, to choose among a fixed (and finite) 

number of unbiased location estimators, one can compute a bootstrap estimate of variance and 

select the estimator with the smallest bootstrap estimate of variance. The resulting adaptive 

estimator would be asymptotically risk optimal provided that the bootstrap estimate of variance 

for each estimator is consistent, a condition met by most Jn-convergent location estimators. 
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For more details, see Leger and Romano (1990a,b ). Note that minimizing bootstrap estimates 

of prediction risk would also be asymptotically risk optimal because bootstrap estimates of 

prediction risk, being prediction risks for the same estimator but under a different distribution, 

are the sum of a variance estimate (the same for all location estimators) and the bootstrap 

estimate of estimation risk discussed above. Hence the cross-product term is 0. 

Remark 7 The results in this paper are for families with a finite number of estimators. Usu­

ally, the family contains an infinite number of estimators, such as the class of trimmed means. 

Clearly, our non-optimality results are valid in this case. Asymptotic optimality requires 

smoothness of the risk (or loss) estimator in the tuning parameter .X. This often depends 

on the smoothness of the family of estimators 0>-.. This issue is discussed in more detail in, for 

example, Leger and Romano (1990a,b). 

3 Simulations 

To verify the small sample loss and risk behavior of leave-d-out CV selection criteria we per­

formed 2 small simulation studies, one for ordinary location estimation and the other for re­

gression estimation. They confirmed that deleting a large proportion of observations improves 

the risk behavior of unbiased fo-convergent estimators. 

For each simulation, we simulated 1,000 samples of size 100, computed the delete-1 CV 

criterion exactly, and simulated 100 CV samples to approximate the delete-10 and delete-90 

CV estimators. For each adaptive estimator, we computed the probability that the selected 

estimator corresponds to the one with smaller risk, and the relative efficiencies of the adaptive 

estimator compared to the risk optimal estimator. 

The 2 studies were: 

1. choosing between the mean and the median for Normal and double exponential data 

2. choosing between weighted and unweighted least squares regression when the data are 

generated by the model y = 1 + x + s(x)E where € is generated i.i.d. N(O, .2) and s(x) 

is either the constant 1 or a normalized version of the inverse square root of the weight 

function. The weights are w( x) = 1 + 4( .25 - ( x - .5)2) 
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The sample mean is the minimum variance unbiased estimator of the mean for the Normal, 

and the median is optimal for the double exponential. The probabilities of selecting the optimal 

estimator by CV for the Normal distribution were 0.50, 0.62 and 0.92 for the delete-1, delete-10 

and delete-90 criteria, respectively. The corresponding results for the double exponential were 

0.71, 0.77, and 0.88 respectively. In this example, deleting a larger proportion of observations 

improves the probability of choosing the estimator with the smaller risk. For the Normal 

distribution, the efficiencies of the adaptive estimators (computed as the variance of the better 

estimator over the variance of the adaptive estimator) were 88%, 92% and 97% for the delete-

1, delete-10, and delete-90 CV criteria, respectively. The corresponding results for the double 

exponential were 74%, 73% and 90%, respectively. Note that the efficiencies of the delete-90 

CV are always much better than the other two. 

For the linear regression problem, we considered ordinary least squares versus weighted 

least squares regression. The 100 x's were equally spaced on [0, 1). To avoid variance inflation 

in regression estimates caused by too small a range of x in the delete-90 samples, 3 points were 

selected at random on the interval [0,.3), 4 at random on (.3,.7) and 3 at random on (.7,1). The 

delete-10 samples used the complement of these selected points. 

When the variance of the errors is constant, the relative efficiency of the weighted to un­

weighted regression estimator is 80%. The ASE of the weighted estimator was smaller than that 

of the unweighted 38% of the time and the relative risk of using the (ideal but unattainable) 

estimator with smaller loss was 115%. The probabilities of selecting the estimator with smaller 

risk were 0.85, 0.81 and 0.95 for delete-1, delete-10, and delete-90 CV criteria respectively, with 

respective relative efficiencies of 99%, 98% and 99%. Although delete-1 CV has high relative 

efficiency, it is picking the "wrong" estimator a large proportion of times, which would lead, 

for example, to incorrect confidence intervals if the intervals are based on the selected model. 

When the variance of the errors varies with x, the weighted estimator is optimal. The 

relative efficiency of the unweighted to the weighted estimator is 71%. The ASE of the un­

weighted estimator was smaller than that of the weighted 34% of the time and the relative risk 

of using the estimator with smaller loss was 121%. The probabilities of selecting the estimator 

with smaller risk were 0.83, 0.80 and 0.93 for delete-1, delete-10, and delete-90 CV criteria 
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respectively, with respective relative efficiencies of 86%, 86% and 98%. 

Remark 8 The claim is often made (e.g. Hart, 1995) that CV is estimating prediction loss 

and that it therefore may do better at estimating the loss optimal estimator for the data set at 

hand than methods clearly aimed at estimating risk. However, the results of this study strongly 

suggest that CV is estimating risk. In the regression problem, the risk optimal estimator has the 

smaller ASE only about 2/3 of the time, but it has smaller CV 80-99% of the time, depending 

on the number of data points deleted. There was no apparent tendency of CV to select the 

"wrong" estimator when that estimator had smaller ASE. 

4 Conclusion 

The increasing availability offast, convenient desk-top computing, has spurred statisticians to 

develop data-analytic methods which do not require stringent distributional assumptions. To 

work well, procedures such as nonparametric smoothing and other "self-modeling" techniques 

require data-adaptive selection of tuning parameters from a class of available estimators. Cross­

validation and adjusted residual sum of squares have been suggested in a number of contexts 

- examples include nonparametric regression, (Hardie and Marron, 1985; Wahba and Wold, 

1975) and variable selection in multiple linear regression, (Allen, 1974) -due to their ease of 

use and intuitive appeal. Although recent research has shown that the convergence of tuning 

parameters selected by these methods can be slow compared to competing methods (Hardie, 

Hall and Marron, 1988; Jones, Marron and Sheather, 1992), they are heavily used in practice. 

In this article we have shown that for squared error loss, the cross-product term of prediction 

risk estimators plays a crucial role in the asymptotic optimality of selection criteria. While its 

expectation is 0, so that prediction risk and estimation risk are equivalent for the purpose of 

choosing a tuning parameter, its size may be just as large as the estimate of estimation risk 

or loss. This has been shown for y'n-convergent estimators of location and so leave-one-out 

CV, adjusted residual sum of squares, and even average prediction loss estimates based on 

an independent validation sample do not lead to asymptotically loss optimal criteria. On the 

other hand, we have shown that the latter two are asymptotically loss optimal for choosing 

between two asymptotically Normal estimators which converge at the rate nP with p < 1/2. 
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For y'n-convergent estimators which satisfy a weak differentiability condition, risk optimality 

can be obtained by using a leave-d-out CV where ( n- d)jn-+ 0 with ( n- d) -+ oo is required. 

This latter result is in agreement with Shao (1993) in the context of model selection in multiple 

linear regression with a fixed number of variables. 

It is worth noting that bootstrap estimators of prediction risk do not suffer from this prob­

lem, because the bootstrap method computes actual expectations rather average prediction 

losses and so no cross-product is involved. Moreover, the bootstrap can also be used to esti­

mate estimation risk directly rather than going through prediction risk. This is particularly 

important if the loss is different from squared error. 
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