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The Memory Wall continues to be a problem with modern systems design.
While the steady increase in processor speeds has abated somewhat, Moore’s
Law continues to provide more transistors to chip designers. This leads to an
increase in the number of processors and threads located per chip, which in-
creases the demands on memory systems. Current simulation technology is not
able to keep up, leading to sacrifices in methodology and accuracy in order to
get results in reasonable time.

Because cycle-accurate simulators are so slow, various methods for reducing
execution time can be used. Unfortunately these methods can introduce varia-
tions in results of between 10-50% when compared to full reference input sets.
Limitations of academic simulators also constrain the architectures under study,
with results generated for obsolete or uninteresting systems.

We analyze the performance and accuracy of various limited-execution
methodologies. We investigate how deterministic execution affects the mea-
surement of error. We then evaluate using Dynamic Binary Instrumentation
(DBI) as an alternative to cycle-accurate simulation. We compare our results to
actual systems using hardware performance counters. We look first at a simple
32-bit RISC system, and then look at more complex 64-bit x86 based systems. Fi-
nally we investigate the feasibility of using the same methodology for modern

multi-processors simulations.
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CHAPTER 1
INTRODUCTION

We investigate various methods of speeding up computer architectural sim-
ulation, validating the results against real hardware using performance coun-
ters. We evaluate RISC, CISC, and CMP-CISC systems. We find that a Dy-
namic Binary Instrumentation (DBI) based simulation methodology improves
run-time over cycle-accurate simulation by at least an order of magnitude, en-

abling more complete results using full input sets.

Our primary motivation is the Memory Wall [162], which notes that modern
system performance is held back by the speed of the memory system. While the
steady increase in processor speeds has abated somewhat, Moore’s Law con-
tinues to provide more transistors to chip designers. This leads to an increase
in the number of processors and threads located per chip, which increases the

demands on already overloaded memory systems.

In order to address the Memory Wall and other performance problems, the
underlying architecture must be studied in detail. The only practical way to do
this is with simulators, usually fully in software, that simulate various parts of
a computer. As systems get more complicated, simulators get larger, slower,
and harder to understand. With the decline of RISC processors and the rise of
the Intel x86 architecture, it has become increasingly difficult to create relevant
cycle-accurate simulators. Each additional generation of features slow simula-
tors further; development time is spent enhancing micro-architectural simula-
tion and not tuning for speed. Often external effects such as I/O and DRAM

are not investigated as thoroughly as internal effects. This is disappointing, as
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Figure 1.1: Weighted slowdowns of various simulators when running
SPEC CPU2000

these externalities are critical to overall performance.

Simulation speed is critical in architectural research. Unfortunately even the
tastest DBI methods slow execution by almost a factor of 30, and cycle-accurate
simulators slow execution by over a factor of 100 (see Figure 1.1 for slowdowns
from various common academic simulation methods). These slowdowns are
enough to make a minutes long benchmark take over a day to execute. Some
simulators, especially those of complex out-of-order processors, can slow execu-
tion by over 1000 times, making single simulations take weeks to months. This
drastically increases the hardware required for experiments, as large clusters of
computers are required to run simulations in parallel to mitigate long execution
times. Simulator bugs become difficult to find, as it might take days to repro-
duce problems, leading to inefficient debugging sessions. Validation against
real hardware also suffers, as proper validation requires many iterations of runs

to fine-tune simulator parameters.
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Figure 1.2: Instruction set diversity across various domains. Recent com-
puter architecture conference papers (ICCD’09, ISCA’09, MI-
CRO’08 and ASPLOS’09) match years-old high-performance
computing diversity rather than modern trends in computing

Because cycle-accurate simulators are so slow, various methods have been
proposed for reducing execution time. Unfortunately these methods can in-
troduce differences in results between 10-50% when compared to full reference
input sets [168]. We investigate the effectiveness of many of these methods in
Chapter 3. The reduced methods involve simulating small amounts of code, of-
ten only a few hundred million to a few billion instructions. On a modern multi-
gigahertz chip this equates to less than a second of run time; the reduced execu-
tion can miss longer timescale events such as disk and network I/O, operating
system context-switches, thermal events, etc. To allow for longer-running input
sets, we evaluate using faster Dynamic Binary Instrumentation (DBI) methods

of execution.

Another current limitation is the lack of accurate and up to date academic
simulators. Once available simulators become “good enough” there is little in-

centive to do more than incremental improvements. The computer industry



moves quickly and simulators cannot keep pace. This leads to simulators sup-
porting older, simpler, architectures. As shown in Figure 1.2, the mix of archi-
tectures simulated in papers from recent conferences (ICCD’09, ISCA’09, MI-
CRO’08 and ASPLOS’09) is unlike any current workloads (gaming [1], embed-
ded [4], desktop, or high performance computing [5]); in fact the most similar
workload we find is Top 500 list [5] from seven years ago. This dependence on
older architectures makes it difficult to determine if suggested improvements
apply to current implementations. Speedups for obsolete systems might not be
relevant to the vastly different chips being produced today. We attempt to avoid
these limitations by investigating current 64-bit x86 architectures in addition to

a more traditional RISC MIPS simulation environment.

One final barrier to accurate simulation is the recent proliferation of multi-
core machines. Processor designers are limited by how much performance they
can squeeze out of a design before thermal and power issues make the design
infeasible. Moore’s law of ever increasing transistor counts still holds, but the
most common solution is to place more cores per chip. Most non-embedded
processors have at least two cores, if not more, per package. This is unfortunate,
as adding cores complicates simulators and makes them slower. Most simula-
tors are single-threaded themselves, and can only simulate multiple cores by in-
terleaving execution. This causes a linear increase in slowdowns as more cores
are added, compounding the already critical slowness in simulations. In addi-
tion, many of the techniques used to improve single-core simulation either do
not work for CMP or else are not thoroughly tested enough to know accuracy
tradeoffs. We undertake preliminary examinations to address the CMP problem

in regard to DBI-based simulation.



CHAPTER 2
RELATED WORK

Slow simulators are an ever-present limitation, holding back the work of
computer architects. There is much work attempting to mitigate the problem,
some more successful than others. The problem has been attacked from many
angles, and there are many related topics that also must be investigated. Our
work encompasses many of these different areas, requiring comparison to a

large body of related work.

2.1 Reduced Execution Validations

One way to speed simulations is to simulate smaller workloads. Yi et al. [168,
169, 170] investigate the six most common ways of workload reduction: repre-
sentative sampling (SimPoint [132]), statistics based sampling (SMARTS [163]),
reduced input sets (SPEC training inputs, MinneSPEC [77]), simulating the first
X Million instructions, fast-forwarding Y Million instructions and simulating
X Million, and fast-forwarding Y Million, performing architectural warmup,
then simulating X Million. They conclude that SimPoint and SMARTS give the
most accurate results. We find similar results, although we do not investigate
statistics-based sampling. Their work uses the WATTCH [28] simulator to char-
acterize their results using ten SPEC CPU2000 benchmarks; we use hardware
performance counters and the complete CPU2000 and 2006 benchmarks while

exploring more architectures and compilers.

Another method of reducing run time is to avoid running redundant bench-

marks. Phansalkar et al. [122] use various techniques to determine redundancy



in the SPEC CPU2006 suite and propose eliminating the need to run all of the
benchmarks. They use Pin, as well as hardware performance counters on four
different architectures (Power, SPARC, itanium, x86) and find that 6 of 12 integer

and 8 of 17 FP benchmarks can capture most of the overall benchmark behavior.

Eeckhout et al. [49] propose a hybrid method of reduced inputs and sam-
pling, determining in advance which method works best on a benchmark-by-

benchmark basis.

There have been attempts to speed simulation by moving to a hardware
based approach. Chiou et al. [33, 32] propose FAST, which is a timing simulator
implemented in an FPGA. This speeds simulation by having the slow timing
simulation implemented in fast hardware. The Qemu tool is used to gener-
ate traces which are fed into the timing simulator; Qemu is modified to handle
wrong-path execution. Qemu also handles correctness and operating system
issues. This work is not validated, and its speed is limited by the Qemu trace

generation.

2.2 SimPoint Validation

There have been many papers published that investigate the SimPoint method-
ology; our work encompasses more architectures and more implementations
than any previous work. We also explore in detail the speed and accuracy of
Basic Block Vector (BBV) generation, which is a critical step in undertaking Sim-
Point analysis (an extension of our HIPEAC work [155]). BBV generation is not
discussed in depth in previous papers. We validate our results with hardware

performance counters, whereas most previous work validates solely using sim-



ulation.

Sherwood, Perelman, and Calder [131] introduce the SimPoint methodology,
which uses basic block distribution to investigate phase behavior. They use
SimpleScalar [30] to generate the BBVs, as well as to evaluate the results for
the Alpha architecture. They show preliminary results for three of the SPEC95
benchmarks and three of the SPEC CPU2000 benchmarks. They build on this
work and introduce the original SimPoint tool [132]. They use ATOM [135] to
collect the BBVs and SimpleScalar to evaluate the results for the SPEC CPU2000
benchmark suite. They use an interval of 10M instructions, and find an average
18% IPC error for using one simulation point for each benchmark, and 3% IPC

error using between 6 to 10 simulation points. These results roughly match ours.

Perelman, Hamerly and Calder [118] investigate finding “early” simulation
points that can minimize fast-forwarding in the simulator. We do not investi-
gate early points as that functionality is no longer available in current versions
of the SimPoint tool. When looking at a configuration similar to ours, with 43
of the SPEC2000 reference input combinations, 100M instruction intervals, and
up to 10 simulations per benchmark, they find an average CPI error of 2.6%.
This is better than what we find using performance counters. They collect BBVs
and evaluate results with SimpleScalar, showing that the results on one archi-
tectural configuration track the results on other configurations while using the
same simulation points. We also find this to be true when comparing different

implementations of the same instruction set architecture.

When reporting results that use the SimPoint methodology, often no men-
tion is made of how the underlying BBV files are collected. If not specified, it

is usually assumed that the original method described by Sherwood et al. [132]



is used, which involves ATOM [135] or SimpleScalar [30]. The SimPoint web-
site provides pre-generated simulation points for a set of Alpha SPEC CPU2000
binaries; the use of these makes gathering BBV files unnecessary. Some works
mention BBV generation briefly, with no indication of any validation. For exam-
ple, Nagpurkar and Krintz [107] implement BBV collection in a modified Java
Virtual Machine in order to analyze Java phase behavior, but do not specify the

accuracy of the resulting phase detection.

Patil et al.’s PinPoints [115] use the Pin [87] tool to gather BBVs, and then val-
idate the results on the Itanium architecture using performance counters. This
work predates the existence of Pin for x86, so no x86 results are shown. Their
results show that 95% of the SPEC CPU2000 benchmarks have under 8% CPI
error when using up to ten 250M instruction intervals. All their benchmarks
complete with under 12% error, which is more accurate than our results. This is
potentially due to their use of much longer intervals. They also investigate com-
mercial benchmarks, and find that the results are not as accurate as the SPEC

results.

Perelman et al. [120] look at cross-binary simulation points. These rely on
code path traces instead of plain BBVs, which allows the SimPoint methodology
to be applied across different compilations and even different architectures (as
long as they are compiled from the same source code). This does require a more
complicated data collection infrastructure, and requires gathering data on all
architectures of interest. Using CMP$im [75] they find error similar to using
regular SimPoints. In our work we generate cross-platform SimPoints by using

a cross-platform simulator, which is a much simpler solution.

Nair and John’s [108] work on SPEC CPU2006 SimPoints postdates ours.



They use PinPoint and performance counters on a Pentium 4, simulating up to
30 simulation points. They find average error of 2.45% for SPEC CPU2006 and
2.15% for SPEC CPU2000. This is better than our results, but they simulate more

of the benchmarks by at least a factor of three.

Ganesan et al. [55] look at SimPoint results for SPEC CPU2006 using Al-
pha binaries on the sim-alpha simulator. No validation to real hardware is per-

formed.

2.3 Performance Counter Validation

We notice irregularities when validating our BBV generation methods using
hardware performance counters, leading us to validate the counters themselves.
The previous work on the topic is not as comprehensive as our investigations,

tirst presented at IISWC’08 [153].

Black et al. [24] use performance counters to investigate the total number of
retired instructions and cycles on the PowerPC 604 platform. Unlike our work,
they compare their results against a cycle-accurate simulator. The study uses
a small number of benchmarks (including some from SPEC92), and the total
number of instructions executed is many orders of magnitude fewer than in our

work.

Patil et al. [115] validate SimPoint generation using CPI from Itanium per-
formance counters. They compare different machines, but only the SimPoint-

generated CPI values, not the raw performance counter results.

Sherwood et al. [132] compare results from performance counters on the Al-



pha architecture with SimpleScalar [13] and the Atom [135] DBI tool. They do

not investigate changes in counts across more than one machine.

Korn, Teller, and Castillo [78] validate performance counters of the
MIPS R12000 processor via microbenchmarks. They compare counter re-
sults to estimated (simulator-generated) results, but do not investigate the
i nstructions_graduat ed metric (the MIPS equivalent of retired instruc-
tions). They report up to 25% error with the i nst ruct i ons_decoded counter
on long-running benchmarks, though this is possibly due to the 20% error in-

herent in the simulator itself [43].

Maxwell et al. [95] look at accuracy of performance counters on a variety of
architectures, including a Pentium III system. They report less than 1% error on
the retired instruction metric, but only for microbenchmarks and only on one

system.

Mathur and Cook [94] look at hand-instrumented versions of nine of the
SPEC 2000 benchmarks on a Pentium III. They only report relative error of using

sampled versus aggregate counts, and do not investigate overall error.

DeRose et al. [40] look at variation and error with performance counters on
a Power3 system, but only for startup and shutdown costs. They do not report

total benchmark behavior.

Zaparanuks et al. [173] investigate the accuracy of the cycle count on various

x86 processors, as gathered by three different measurement infrastructures.

Mytkowicz et al. [105] investigate sources of non-deterministic execution,

but look at causes for variations in run-time rather that retired instruction count.
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Keeton et al. [76] use performance counters to thoroughly investigate the
behavior or a parallel Pentium Pro based system. They swap CPU boards to
vary cache sizes, allowing analysis to investigate changing hardware parame-

ters. They did not compare against simulators.

2.4 Single-core DBI-Based Simulation

The DBI-based simulation methodology we use is inherently similar to trace-
based simulation [144]. The idea of generating traces on the fly and feeding
architectural simulation is not new. Our contribution is in validating the gen-
erated results against reduced input methods, hardware performance counters

and cycle-accurate simulators.

2.4.1 Valgrind

Valgrind [113] is a dynamic binary instrumentation tool for the PowerPC, x86,
x86_64 and ARM architectures. It is a generic and flexible DBI utility originally
designed to detect application memory allocation errors. It comes with a single-

core memory simulator called cachegrind.

2.4.2 Pin

Pin [87] is a fast DBI tool that runs on Intel architectures (including x86, x86_64,

and Itanium), and supports the Linux and Windows operating systems. Pin
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comes with some simple cache and branch simulator tools. It can be used to

generate more complicated cache simulations, see CMP$im in Section 2.5.1.

243 Qemu

Qemu [18] is a DBI-based simulator that can simulate a large number of plat-
forms, and also can simulate full operating systems. Qemu has no native cache
simulation; any simulation done has to be patched into the binary. It is the only
DBI tool that we investigate that can simulate cross-platform. We use a patched
version of Qemu in conjunction with the Dinero [48] cache simulator in our

WDDD’08 [152] work.

244 TAXI

Vlaovic and Davidson develop TAXI [148], which uses a Bochs-based front end
to generate traces that are fed to a cycle-accurate simulator modeling an earlier
x86 machine. They attempt to validate this method using performance coun-
ters, and find their major limiting factor to be lack of documentation for the

architecture they are trying to model.

2.5 Multi-core Simulation

A number of academic cycle-accurate simulators have various levels of multi-

core simulation support, the most popular being SESC [125], m5 [22], and Sim-

12



ics/GEMS [91]. We find these to be slow, and look to DBI for speed gains. Some

simulators incorporate DBI methods for speed.

251 CMPS$im

CMP$im [75, 74] is the most similar project to ours. The Pin DBI tool feeds the
results from x86 simulation into a custom CMP cache simulator. Their results
match an unspecified cycle-accurate model to within 13% (4% for benchmarks
with low branch predictor misses) on SPEC CPU2006 with full input sets. They
also run ammp from SPEC OMP and multi-programmed SPEC CPU2006 work-
loads (no validation was done on these results). Their cache-simulator imple-
ments a MESI-like coherence protocol. It is configurable in the number of levels,
privacy, inclusion, associativity, allocation, and replacement policy. Unlike our
work they only compare results against a simulator and not against actual hard-

ware. Their simulation runs at a speed of 4-10MIPS.

2.5.2 Other

PTLSIM [172, 171], is a cycle-accurate simulator that uses DBI internally for

speed. It is described more fully in Section 2.6.

Goldschmidt and Hennessy [57] investigate multi-threaded trace simulation,
as compared to cycle-accurate simulation. They find the methods to be equiv-
alent, except in cases where synchronization matters or where the metric mea-

sured has a small value.
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Li et al. [84] generate traces using IBM’s Turandot/PowerTimer (a cycle-
accurate simulator) but then use these traces multiple times to feed Zauber, a
cache simulator. Re-using the traces mitigates the overhead of using a cycle-

accurate simulator.

Lee et al. [81] propose Composable Performance Regression which uses
uniprocessor and contention models to predict multiprocessor performance.
Once trained, the models can predict multiprocessor performance with median

errors of under 7%.

Donald and Martonosi [47] create a parallel version of PowerPC Sim-
pleScalar that can run CMP simulations, and is multi-threaded itself, giving
a speedup of 2-3x on a multi-core system. This is still much slower than the

benefits achievable by using DBI.

Muzahid et al. [103] detect data races using a Pin-based simulation method
that feeds into an unspecified MESI cache simulator. They do not investigate

performance or perform any validation.

Luo et al. [89] investigate speculative threads using a custom version of Sim-
pleScalar fed by Pin. They do not validate their results or comment on perfor-

mance.

2.6 Cycle-Accurate x86 Simulators

The x86 architecture has been the dominant desktop platform for a long time,
and more recently it has begun dominating in server and high-performance

computing situations. There is an ongoing push to use the architecture more
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frequently in embedded systems as well. Any architectural study that avoids
investigating x86 limits the relevance of the results. Unfortunately academic
simulators are just now catching up to using x86 and many studies still use ob-

solete RISC architectures.

Loh et al. [86] present Zesto, which is a detailed x86 cycle accurate simulator
based on SimpleScalar. It is designed with accuracy, not speed in mind. They
have validated it versus wall-clock time on a series of microbenchmarks and

found around 5% error.

mb5 [22] has recently acquired x86 support (with many contributions by us).
It has not been validated except by the work in this thesis. It currently cannot

run in detailed out-of-order or in-order modes.

PTLsim [172, 171], is a DBI-based full-system simulator that runs x86 bina-
ries. There is an SMT mode available but it uses a simplistic cache coherence
scheme and does not model system memory at all. MPTLsim [174], an enhanced

CMP version, is described but is not currently available.

2.7 Simulator Validations

Cycle-accurate simulators are often used without concern that results match real
hardware. This limits architectural studies, as the magnitude of error in the re-

sults is unknown. We list previous studies that attempt validation of simulators.

Gibson et al. [56] validate various MIPS simulators against their R10000-
based FLASH system. They find that even their most carefully designed simu-

lators have surprisingly large errors. They, like we, call into question the value
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of highly detailed simulators that are not validated against real hardware.

Black et al. [24, 25] create a model of the PowerPC 604 processor and validate
it using hardware performance counters. They use a small set of benchmarks
for validation, and try to reduce error. Interestingly, they find that fixing bugs
in the simulator can actually increase the error in simulation because previous

errors masked other bugs.

Desikan, Burger, Keckler and Austin [42, 43] validate the sim-alpha cycle-
accurate simulator. They find that the generic sim-outorder simulator has up-
wards of 40% error, and even a fine-tuned attempt to match an actual Alpha
machine still yields errors of around 15%. They run 22 of the SPEC CPU2000

benchmarks.

SimOS [127] is a full-system simulator. It was the first simulator to use DBI
internally; its DBI implementation is called Embra [157]. Is it only 3-9x slower
than actual hardware, although with the cache simulator enabled it is 7-20 times
slower. It models a 32-bit MIPS R3000 and can run SGI IRIX. Parallel Embra can
run parallel simulations which scale with multiple host cores. It models DASH-
like directory memory coherence and has been validated against the MIPSy
simulator (and MIPSy has been validated against a real machine, within 1-2%
for uniprocessor) [128, 17]. Currently the project is not under development,
although a version for PowerPC running AIX is developed by IBM [2] and a

version that can run Linux is also developed [159].

XTREM [37] is a validated ARM simulator. It matches real hardware to
within 4% for thermal measurements and 7% on IPC using some MiBench and

Java benchmarks. The IPC numbers are collected using hardware performance
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counters. XEEMU [66] is another ARM simulator validated with performance
counters. They claim better results than XTREM. Varma et al. [147] look at
power estimation on ARM using a simulator based on Intel’s Xsim with is a

simulator found to be with 2% for hardware memory accesses.

SIGMA: [41] is a memory system simulator validated to match real hardware
within 1% using performance counters for a Power3 system. They only validate

against one benchmark, swi m from SPEC CPU2000.

Barroso et al. [16] use hardware counters to validate SimOS on Alpha, as
well as to characterize a memory subsystem. They also use the static binary
instrumentation tool ATOM, but they in the end do not elaborate on their use of

ATOM to gather traces.

2.8 Multi-processor Phase Detection

Many of the reduced execution methods previously mentioned, including Sim-
Point, will not work for multi-processor workloads. This severely limits multi-

processor studies. Some attempts have been made to solve this problem.

Perelman et. al [121] find multi-processor SimPoints by gathering info for

each thread individually, then aggregating the count.

Namkung et al. [109] synthesize samples from similar phase combinations.

They find that they can reduce sampling by 90% with error of less than 5%.

Van Biesbrouck et al. [146] use a technique called a Co-Phase Matrix to com-

bine single-threaded phase behaviors in order to estimate performance on SMT
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systems. They found an error rate of 4% while only requiring 1% to be run for
28 pairs of Alpha SPEC CPU2000 benchmarks on the m5 simulator. This work
is extended [145] to consider multiple benchmark starting points for higher ac-

curacy.

Ekman and Stenstrom [50] use matched-pair comparison in conjunction
with statistical sampling to reduce the amount of simulation needed for multi-

processor simulations.

Gonzalez et al. [58] propose using hardware performance counters in con-
junction with density-based clustering algorithms to detect phases in parallel

applications.

2.9 Deterministic Execution

Comparing performance results of CMP systems and simulators is difficult, as
inherent non-determinism in the executions make it nearly impossible to com-
pare results fairly. There have been many attempts at creating practical deter-
ministic execution environments for CMPs; the methods proposed often require
hardware modification and thus are not available on commodity processors.
Examples of this are See Capo [98], DMP [44], Delorean [97], and Flight Data
Recorder [165].

The most promising implementation that requires no hardware modifica-
tion is Kendo [114]. They use performance counters to enforce deterministic
context switching. The retired_stores counter is used; they, like us, found that

on x86 the retired_instructions counter includes interrupt counts. They modify
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the pthreads package to have a new type of deterministic lock. When running

in deterministic mode there is an overall overhead of 16%.

Pereira et al. [117] present a method of deterministic execution that uses
DBI instrumentation to gather dependence information. Data collection is 27x
slower, but running in a simulator is actually slightly faster due to elimination

of stalls.

Alameldeen et al. [8] propose using random perturbations and statistical

methodology to mitigate non-determinism in simulation.

Narayanasamy et al. [110] log operating system effects in order to have
deterministic multi-threaded workloads, but only when simulating multiple

threads on a single core.

Lepak et al. [83] enhance a simulator to enable deterministic execution by

recording various sources of non-determinism.

2.10 Performance Counter based CPI Prediction

DBI simulations have no concept of cycle time, making prediction of methods
such as CPI or IPC difficult. Various other groups have looked at estimating

cycles from other performance metrics.

Amato et al. [9] use performance counters on the R10000 to predict parallel

application performance.

Marin et al. [90] predict execution time and cache misses on R12000 proces-

sors, and compare the results with hardware performance counters.
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Luo et al. [88] estimate CPI values based on memory performance counter

results on MIPS R10000. They find good results.

Eyerman et al. [52] use interval analysis on out of order processors and try
to determine the causes of stalls that impact CPU. The Power5 processor has

performance counter hardware dedicated to generating these CPI stacks.

Bhargava et al. [21] enhance CPI numbers by modeling speculative instruc-
tion execution when generating program traces. A “resurrection” tree can be
used to simulate wrong-path execution even without having the original binary

available.
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CHAPTER 3
METHODS OF REDUCING SIMULATION TIME

A common way of reducing simulation time is using reduced execution
methods. This involves running only a small part of a workload and extrapolat-
ing total behavior. This inherently adds error to the results, but the dramatically

decreased runtime is often deemed worth it.

Running reduced inputs can have problems besides accuracy. For one, not
running full inputs means the final benchmark results are not generated, which
is an important step in determining if the simulator is working properly. Subtle
bugs that are not enough to crash simulation but different enough to skew re-
sults can be hidden if the program subset being run does not generate I/O that
can be compared to known good results. Another problem with reduced inputs
is the loss of results that can only be observed over relatively long time peri-
ods. For example, temperature fluctuations happen on the order of many sec-
onds, and reduced input methods often reduce simulation times to sub-second

lengths of time.

Yi et al. [168] investigate common methods of speeding up simulations,
which they break up into six categories (some additional methods are described

in Section 2.1):

Representative sampling (SimPoint [132]),

Statistics based sampling (SMARTS [163]),

Reduced input sets (such as training inputs, or MinneSPEC [77]),

Simulating the first X Million instructions,

Fast-forwarding Y Million instructions and simulating X Million, and
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e Fast-forwarding Y Million, performing architectural warmup, then simu-

lating X Million.

They conclude that SimPoint and SMARTS give the most accurate results, with
differences in the 10% range. The other methods can have upward of 50% differ-
ence when compared to running full benchmarks. They investigated 10 years
(from 1995 to 2005) of HPCA, ISCA, and MICRO papers and found that over
70% use reduced simulation methods. This shows how critical fast simulation
is to the architectural community, and how important it is to understand the

accuracy tradeoffs introduced by these methods.

We evaluate various of the reduced execution methods in order to compare
the results with our dynamic binary instrumentation based approach that uses

full input sets.

3.1 Running a Small Portion from the Beginning

The simplest form of reduced execution is simply to start at the beginning and
execute for some number of instructions, usually a few billion. It turns out that
this has poor accuracy, as often the beginning of a program is one-time initial-
ization and startup routines and is not representative of full program execution.

We look at this method in our analysis.
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3.2 Un-guided Fast-forwarding

Another method is to fast-forward deeper into a program (most simulators sup-
port running a faster, functional, mode that can then be switched into slower
cycles-accurate mode). Usually the program is fast-forwarded by a billion or
more instructions before starting detailed simulation. This usually avoids the
startup region of a program, but it is still not necessarily representative of the

rest of the program. We also look at this method in our analysis.

3.3 Reduced Input Sets

Yi et al. found that using reduced input sets, such as MinneSPEC or the SPEC
training input sets, had worse accuracy than SimPoint while requiring much
more execution. We do present some results for the SPEC training inputs in

Section 3.5.3 which agree with that analysis.

3.4 Statistics-based Sampling

Statistics based sampling, such as SMARTS [163]), is a method of reducing run-
time by gathering detailed statistics from various parts of the execution. It has
high-accuracy, but it requires large amounts (gigabytes) of disk space. Yi et al.
found that the results were not much better than using multiple SimPoints. We

did not investigate this type of reduced execution.
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3.5 SimPoint

SimPoint [62, 118, 119, 131, 132] exploits the phase behavior of programs. Many
applications exhibit cyclic behavior: code executing at one point in time behaves
similarly to code running at some other point. Entire program behavior can be
approximated by modeling only a representative set of intervals (in our case,

simulation points or SimPoints).

Figures 3.1, 3.2, and 3.3 show examples of program phase behavior at a gran-
ularity of 100M instructions; these are captured using hardware performance
counters from representative SPEC CPU2000 benchmarks. Each figure shows
two metrics: the top is L1 D-Cache miss rate, and the bottom is cycles per in-
struction (CPI). Figure 3.1 shows t wol f , which exhibits almost completely uni-
form behavior. For this type of program, one interval is enough to approximate
whole-program behavior. Figure 3.2 shows the ntf benchmark, which has more
complex behavior. Periodic behavior is evident: representative intervals from
the various phases can be used to approximate total behavior. The last example,
Figure 3.3, shows the extremely complex behavior of gcc running the 200. i
input set. Few patterns are apparent; this type of program is difficult to approx-
imate with the SimPoint methodology (smaller phase intervals are needed to
recognize patterns, and variable-size phases are possible, but choosing appro-
priate interval lengths is non-trivial). A complete set of CPI phase plots for x86

and x86_64 can be found in Appendix E.
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Figure 3.1: L1 Data Cache and CPI behavior for t wol f : behavior is uni-
form, with one phase representing the entire program.
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Figure 3.2: L1 Data Cache and CPI behavior for ntf: several recurring
phases are evident.
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Figure 3.3: L1 Data Cache and CPI behavior for gcc. 200: this program
exhibits complex behavior that is hard to capture with phase

detection.
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3.5.1 BBV Generation

To generate the simulation points for a program, the SimPoint tool needs a Ba-
sic Block Vector (BBV) describing the code’s execution. Dynamic execution is
split into intervals (often fixed size, although that is not strictly necessary). In-
terval size is measured by number of committed instructions, usually 1M-300M
instructions. Smaller sizes enable finer grained phase detection; larger sizes mit-
igate warmup error when fast-forwarding (without explicit state warmup) in a
simulator. We use 100M instruction intervals, which is a common compromise.
During execution, entry into all basic blocks is tracked along with a count of
how many times each block is executed. The block count is weighted by the
number of instructions in each block to ensure that instructions in smaller basic
blocks are not given disproportionate significance. When total instruction count
reaches the interval size, the basic block list and frequency count are appended

to the BBV file.

The SimPoint methodology uses K-means clustering of the BBV file to find
simulation points of interest. The algorithm selects one representative interval
from each phase identified by clustering. The number of phases can be specified
directly, or the tool can search within a given range for an appropriate number

of phases.

The final step in using SimPoint is to gather statistics for all chosen simula-
tion points. For multiple simulation points, the SimPoint tool generates weights
to apply to the intervals. By scaling the statistics by the corresponding weights,
an accurate approximation of entire program behavior can be estimated quickly

(within a small fraction of whole-application simulation time).
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The SimPoint website only provides BBV generation tools using ATOM [135]
and SimpleScalar sim-alpha [13]. These are useful for experiments involving
the Alpha processor, but that architecture has declined in significance. There is
a PinPoints tool that enabled generation of BBVs using Intel’s Pin [87] tool, but
that only works for Intel supported architectures. We investigate using other

tools to generate BBVs for a wider range of architectures.

We modify the Qemu [18] and Valgrind [113] Dynamic Binary Instrumenta-
tion tools to generate SimPoint BBV files. The changes to Qemu are available
from our website [3] and are also shown in Appendix J. The tool we develop for
Valgrind, exp- bbv, was merged into the main Valgrind project as of versions
3.5 (the code is also included as Appendix I). We tried using DynlInst [29] to
generate BBV files, but we were unsuccessful. Unfortunately the version of the
tool available at the time only worked with dynamically linked applications and

had a large overhead, often exceeding 4GB of RAM used for some benchmarks.

To evaluate our BBV generation methods, we compare results gathered on
the x86 architecture, as this is the one architecture supported by Qemu, Valgrind

and Pin. Figure 3.4 shows architectures supported by each tool.

3.5.2 x86 Evaluation

To evaluate the BBV generation tools, we use the SPEC CPU2000 [136] and
CPU2006 [138] benchmarks with full reference inputs. We compile the bench-
marks on SuSE Linux 10.2 with gcc 4.1 and - O2 optimization (except for
vor t ex, which we compile without optimization because it crashes, otherwise).

We link binaries statically to avoid library differences on the machines we use
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Figure 3.4: Architectures supported by Pin, Qemu, and Valgrind: x86 is
the ideal platform for comparison, as it is well supported by all
three of the tools.

to gather data. The choice to use static linking is not due to tool dependencies;
all three handle both dynamic and static executables. We use the Perfmon2 [51]
interface to gather hardware performance counter results for the platforms de-

scribed in Table 3.1.

We use the Cycles Per Instruction (CPI) metric to evaluate our tools. The per-
formance counter infrastructure is set to dump the cycles performance counter
results every 100M instructions. The same performance counter data are used
to evaluate all three tools, to avoid any variation between runs. Basic Block Vec-
tor files are generated using the three tools, and SimPoint version 3.2 is used
to generate the simulation points and weights. We calculate actual overall CPI
for the benchmarks by using the performance counter data, and use this as a
basis for our error calculations. Note that calculated statistics are ideal, with

full warmup. If we were analyzing via a simulation, the results would likely
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Table 3.1: Machines used for x86 SimPoint evaluation.

type | frequency | memory | L11/D | L2/L3 Cache | performance counters used
Pentium Pro 200MHz 256MB 8KB/8KB 512KB inst_retired,
cpu_clk_unhalted
Pentium Il 400MHz 256MB 16KB/16KB 512KB inst_retired,
cpu_clk_unhalted
Pentium il 550MHz 512MB 16KB/16KB 512KB inst_retired,
cpu_clk_unhalted
Itanium 800MHz 1GB 16KB/16KB 96KB/3MB ia32_inst_retired,
cpu_cycles
Atom N270 1.6GHz 1GB 32KB/24KB 512KB instructions_retired,
unhalted_core_cycles
Core Duo 1.66GHz 1GB 32KB/32KB 1MB instructions_retired,
unhalted_core_cycles
Athlon MP 1.733MHz | 512MB 64KB/64KB 256KB retired_instructions,
cpu_clk_unhalted
Athlon64 X2 2GHz 1GB 64KB/64KB 512KB retired_instructions,
cpu_clk_unhalted
AMD Phenom 2.2GHz 2GB 64KB/64KB | 512MB/2MB retired_instuctions,
cpu_clk_unhalted
Core2 Q6600 2.4GHz 2GB 32KB/32KB 4MB instructions_retired,
unhalted_core_cycles
Pentium 4 2.8GHz 2GB 12Ku/16KB 512KB instr_retired:nbogusntag,
global_power_events:running
Pentium D 3.46GHz 4GB 12Ku/16KB 2MB instr_retired:nbogusntag,
global_power_events:running

vary in accuracy depending on how architectural state is warmed up after fast-

forwarding between simulation points.

Figure 3.5 shows results for reduced input methods for the SPEC CPU2000
benchmarks across 12 different implementations of the x86 architecture. The
results shown are the average error for CPI when compared against a full ref-
erence input run, as measured with hardware performance counters. Each ma-

chine has three sets of plots; one for detailed simulation of 100 million instruc-

tions, one for 500 million, and one for 1 billion.

The first plot in each set is just starting from the beginning of the program

and simulating for some instructions. The results are universally bad, although
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Figure 3.5: Average CPI error for SPEC CPU2000 when using first, un-
guided fast-forward, and SimPoint selected intervals on vari-
ous x86 machines.
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FP Results, up to 20 SimPoints, Pentium D = Pin Qemu == Valgrind
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Figure 3.6: Percent error in CPI on a Pentium D when using up to 20 Sim-
Points on CPU2000 FP: the error with f acer ec and f ma3d is
due to extreme swings in the phase behavior that SimPoint has

trouble capturing.
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Figure 3.7: Percent error in CPI on a Pentium D when using up to 20 Sim-
Points on CPU2000 INT: the large error with the gcc bench-
marks is due to spikes in the phase behavior that SimPoint does

not capture well.

simulating more instructions can sometimes get results as close as 20% error.

The second plot in each set is fast forwarding by 1 billion instructions, in an
attempt to avoid startup effects. This often, but not always, has better accuracy
than starting from the beginning, and can also obtain results approaching 20%

error, though usually higher.

The next three plots show the results using the SimPoint methodology, with
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BBV files generated by Pin, Qemu and Valgrind respectively. Even when only
simulating one simulation point, the results are much better than the unguided
results. In general they are within the 10-20% error range. Moving on to up to 5
chosen SimPoints (approximately 500M instructions per benchmark) helps even
more, with error in the 5-10% range for all machines. Moving on to simulating
up to 10 SimPoints does not help much, and in fact it can have worse results!
This might be unexpected, but there is no guarantee in the SimPoint methodol-
ogy that adding more points helps error (Figure 3.19 shows this with regard to

the x86_64 architecture).

The last plot shown is the “oracle” result shown. This shows how low the
error would be if the optimal interval was picked for each benchmark. This
is an extremely low value, which shows that each benchmark has an interval
that matches program behavior well. Unfortunately this interval varies from
machine to machine, so it would not be possible to have a tool that can find this

in a generic fashion.

The thing to note about these results is the small amount of simulation time
required. When allowing SimPoint to choose up to 10 simulation points per
benchmark, the average error across all machines for CPI is roughly 5-10% for
all machines tested while having a small amount of execution. The intervals
chosen are not many; Pin chooses 354 SimPoints, Qemu 363, and Valgrind 346;
this represents only 0.4% of the total execution length, making the simulations
finish 250 times faster than if run to completion. It is reassuring that all three
BBV methods pick a similar number of intervals, and in many cases they pick

the same intervals.

Figures 3.6 and 3.7 break out the Pentium D results by benchmark. For float-
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ing point applications, f acer ec and f ma3d have significantly more error than
the others. This is because those programs feature phases which exhibit extreme
shifts in CPI from interval to interval, a behavior that SimPoint often has trouble
capturing. The integer benchmarks have the biggest source of error, which is the
gcc benchmarks. The reason gcc behaves so poorly is that there are intervals
during its execution where the CPI and other metrics spike. These huge spikes
do not repeat, and only happen for one interval; because of this, SimPoint does
not weight them as being important, and they therefore are omitted from the
chosen simulation points. These high peaks are what cause the actual average
results to be much higher than what is predicted by SimPoint. It might be pos-
sible to work around this problem by choosing a smaller interval size, which
would break the problematic intervals into multiple smaller ones that would be

more easily seen by SimPoint.

We also use our BBV tools on the SPEC CPU2006 benchmarks. These runs
use the same tools as for CPU2000, without any modifications. These tools
yield good results without requiring any special knowledge of the newer bench-
marks. We do not have results for the zeusnp benchmark for Valgrind; it
uses a 1GB data segment which Valgrind was unable to handle. Unlike the
CPU2000 results, we only have performance counter data from six of the ma-
chines. Many of the CPU2006 benchmarks have working sets of over 1GB, and
many of our machines have less RAM than that. On those machines the bench-
marks take months to run, with the operating system paging constantly to disk.
The CPU2006 results shown in Figure 3.8 are as favorable as the CPU2000 re-
sults. When allowing SimPoint to choose up to 10 simulation points per bench-
mark, the average error for CPI is less than 10% for all of the BBV generation

methods. Pin chooses 420 simulation points, Qemu 433, and Valgrind. This
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Figure 3.8: Average CPI error for CPU2006 on a selection of x86 machines
when using first, unguided fast-forward, and SimPoint se-
lected intervals.

would require simulating only 0.056% of the total benchmark suite. This is an

impressive speedup, considering the long running time of these benchmarks.

Error when simulating the first 100M instructions peaks at over 100%, show-
ing that this continues to be a poor way to choose simulation intervals. Fast-
forwarding 1B instructions and then simulating produces average errors in the
range of 20-40%. Using only a single simulation point again always does better

than unguided simulation.

Figures 3.9 and 3.10 show CPI errors for individual benchmarks on the Pen-
tium D machine. For floating point applications, there are outlying results for
cact usADMand GensFDTD. As with the CPU2000 results, the biggest source

of error is from gcc in the integer benchmarks. The reasons are the same as
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Figure 3.9: Percent error in CPI on a Pentium D when using up to 20
SimPoints on CPU2006 FP: the large variation in results for
cact usADMand GensFDTDare due to unresolved inaccuracies
in the way the tools count instructions.
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Figure 3.10: Percent error in CPI on a Pentium D when using up to 20
SimPoints on CPU2006 INT: the large error with the gcc and
bzi p2 benchmarks is due to spikes in the phase behavior not
captured by SimPoint.

described previously: SimPoint cannot handle the spikes in the phase behavior.
The bzi p2 benchmarks in CPU2006 exhibit the same problem that gcc has. In-
puts used in CPU2006 have spiky behavior that the CPU2000 inputs do not. The

other outliers, per | bench and ast ar require further investigation.
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Table 3.2: Machines used for x86_64 SimPoint evaluation.

Processor Cores Speed Memory L11/D L2/L3 Retired Instruction Counter
Cache Cache Cycles Counter
AMD Phenom 4 2.2GHz 2GB 64KB/64KB | 512MB/2MB retired_instuctions,
cpu_clk_unhalted
Core2 Q6600 4 2.4GHz 2GB 32KB/32KB 4MB instructions_retired,
unhalted_core_cycles
Pentium D 2x2 3.46GHz 4GB 12Ku/16KB 2MB instr_.completed:nbogus,
global_power_events:running

3.5.3 x86_64 Results

The x86_64 architecture is a 64-bit extension of the x86 architecture. While it is
very similar to the x86 architecture, it has features that change program behav-
ior. The move to 64-bits causes memory access widths to change, there are more
registers (which reduces register spills), and by default SSE vector instructions
can be used (this allows for saner floating point math and optimized memory
transfers). We extend our original x86 SimPoint work by generating results for

x86_64.

The machines used are described in Table 3.2. The SPEC CPU2000
benchmarks were used, compiled with - @8 -nsse3 -funroll-all-Ioops
-ffast-math -static using gcc-4.2. With that configuration, some of the
per | bk benchmarks and all of the vort ex benchmarks fail to run due to
memory access errors inherent in the benchmarks that are exhibited with recent

compilers.

Unlike the x86 results, we use only SimPoints from Valgrind-generated BBV
files. In Section 3.5.2 we show that the Valgrind generated BBV files have similar
characteristics to those generated by other tools. We generate the BBV files using

our exp- bbv tool as included in Valgrind 3.5.

36



46.2% ” 41.9%

CPI Error (%)
N oW b
o o o
1 1 ]

=
o
!

!

o
L

AMD Phenom Pentium D Core2 Q6600
First 100M === \/algrind, one SimPoint
== Ffwd 1B, 100M == Valgrind, up to 5 SimPoints

== \/algrind, up to 10 SimPoints

Figure 3.11: Average CPI error for CPU2000 on three x86_64 machines
when using first, unguided fast-forward, and SimPoint se-
lected intervals.

Figure 3.11 shows CPI error for three different x86_64 implementations on
the SPEC CPU2000 benchmarks. On all of the machines, the SimPoint results are
much better than the un-guided results. Increasing the number of simulation
points helps accuracy, and on all machines accuracy of better than 5% can be
found when using up to 10 SimPoints per benchmark. This is better than the
average results found using the x86 binaries, even on the same machines. This
is primarily due to the outliers being much better behaved on 64-bit systems,
and since it is an average measure, it is the outliers which cause the high percent

error results.

Figure 3.12 and 3.13 show broken out results for the Phenom when up to 10
SimPoints are used per benchmark. It is somewhat unsurprising to note that the
outlying benchmarks are pretty much the same as the ones found for 32-bit x86

in Section 3.5.2.
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FP Results, up to 10 SimPoints, AMD Phenom == Valgrind
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Figure 3.12: x86_64 CPI Error for SPEC CPU2000 floating point bench-
marks

Integer Results, up to 10 SimPoints, AMD Phenom = Valgrind
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Figure 3.13: x86_64 CPI Error for SPEC CPU2000 integer benchmarks

5.4 Cross-Platform MIPS Results

common situation found when performing architectural simulation is using

simulators for machines for which you do not have any actual hardware. This

akes for difficult development, involving setting up cross-compiler toolchains

generate binaries. It becomes hard to determine when bugs are in the

toolchain or in the simulator when there is no real hardware for comparison.

Generating SimPoints for an unavailable platform is also difficult; it might be

mpting to just re-use SimPoints generated for another architecture, but this

not advisable. Figure 3.14 shows phase plots for the ncf benchmark across
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Figure 3.14: Phase plot for ncf across various architectures. While the
phases look similar, the interval numbers are not.

multiple architectures. (A complete set of multi-architecture phase plots can be
seen in Appendix F). While the phases are similar, the actual interval values are
very different, and SimPoints generated for one of the architectures would not

work for any of the others.

Another way to avoid generating SimPoints is to re-use those already gener-
ated by someone else. This can cause problems unless you have the exact same
binaries used to generate the original SimPoints. Figure 3.15 shows that on x86
the compiler chosen and the compiler flags used can vastly affect the interval

numbers for a benchmark (in this case, equake.

There have been studies done on the possibility of generating true cross-
platform SimPoints [120], but the methods involve time-consuming profiling

on multiple machines, and the results are not practical.
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Figure 3.16: MIPS R12000 SimPoint results for SPEC CPU2000. The BBVs
for the SimPoints were generated cross-platform on an x86
machine using Qemu

An option we explore is to use DBI simulation to generate BBV files for a
different platform. The Qemu DBI tool can run executables cross-platform. By
using our BBV-generation patched version of Qemu, we can generate BBV files

for Alpha, SPARC, MIPS, PPC and ARM while still running on an x86 machine.

Figure 3.16 shows results using SimPoints generated for the MIPS archi-
tecture using MIPS binaries while running on an x86 machine. These Sim-
Points were then used on performance counter data collected on an actual MIPS
R12000 processor. The results are very similar to those found for the other ar-
chitectures investigated, and have 5% CPI error when using up to 5 SimPoints.
This shows that Qemu is a valuable tool for generating SimPoints for platforms

where native hardware is not available.

Figures 3.17 and 3.18 break out the results per-benchmark. The results are
markedly different from the x86 and x86_64 results seen previously. The gcc
benchmarks are not outliers, in this case ncf has a large error, and the floating

point benchmarks are more of a problem.
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FP Results, up to 10 SimPoints, MIPS R12000 Qemu
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Figure 3.17: MIPS CPI Error for SPEC CPU2000 floating point

Integer Results, up to 10 SimPoints, MIPS R12000 Qemu
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Figure 3.18: MIPS CPI Error for SPEC CPU2000 integer benchmarks

3.5.5 Summary

On actual x86 hardware, using the SimPoint methodology can give CPI error
of under 10% while only running 0.4% of the total SPEC CPU2000 suite on full
reference inputs across 12 different machines. Our code generates under 12%
CPI error when running under 0.06% of SPEC CPU2006 (excepting zeusnp)

with full reference inputs across 6 different machines.

We also investigate x86_64 and cross-platform generated MIPS SimPoints

and find results that compare favorably to the x86 results.
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3.6 SimPoint Limitations

While these results are good, there are some limitations to using this methodol-
ogy. This error can only add to the error generated with cycle-accurate simula-
tors (for example, 20% with sim-alpha [43]). Also, it is unclear if it is possible to
use the SimPoint methodology for multi-threaded workloads (see discussion in

Section 2.8.

We find more variation in our results than we originally expected. This led
us to investigate our evaluation methods to try to determine the source of the
differences. For example, we would expect that the different DBI tools, since
they are running the same executables/inputs on the same machines with the
same inputs, should have identical BBV files, but they do not. This turns out to
be because the different DBI tools have different ideas of what constitute a basic
block. For performance reasons the DBI tools try to have biggest blocks as pos-
sible, and will use “super-blocks” which unlike basic blocks can have multiple
exits but only one entry. Also, the tools discover basic-blocks at run-time, so are
often in the situation where a program will jump to a middle of a block (or on
x86, it’s even technically legal to jump to the middle of an instruction), which
means that a new block has to be created out of the old one, and the DBI tools
differ into how statistics are accounted in that situation. The SimPoint method-
ology generates different SimPoint files depending on the BBV inputs, and even
a single extra instruction in a block can change which points are chosen. Because

of this, even slight difference in BBV accounting can cause different results.

Even with the DBI differences, we found that even on real hardware the

performance counts for retired instructions were different from machine to ma-
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Figure 3.19: Percent average CPI error for SPEC CPU2000 as more Sim-
Points are added per benchmark. After 20 SimPoints the av-
erage does not decrease, even up to 100 points per benchmark
(this is equivalent to running 2% of all of the benchmarks).

chine, which was often unexpected. To get accurate SimPoint results you need
to have fairly accurate instruction counts, as you need to fast-forward to the ex-
act start of the phase. On programs with a high amount of phase variability be-
ing a million instructions off could end up in a completely different phase than
the one intended, causing poor results. This exposes many hardware counter

and deterministic execution issues that we investigate it in detail in Chapter 4.

Another problem with the SimPoint methodology is that it is not possible to
predict what the error will be. Figure 3.19 shows the average CPI error on three
different x86_64 machines with SPEC CPU2000 as the number of SimPoints per
benchmark is raised from 1 to 100. The error does not always decrease, and after
a certain point (roughly around 20) a steady-state is reached and the error does

not get better and in fact can get worse.

SimPoint is a valuable tool, and is much better than using unguided simula-
tion. However, we believe that many of its limitations cannot be fully addressed,

and thus suggest finding some way to run full input sets if at all possible.
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CHAPTER 4
SINGLE-CORE VALIDATION CONCERNS

Hardware performance counters are a useful tool for validation. These coun-
ters are available on most modern processors, and keep track in real time of var-
ious architectural statistics. The counters must be used with caution, as hard-
ware engineers are reluctant to certify the accuracy of the counters. Before using
a counter in research, it needs to be checked to ensure it is delivering reasonable

results.

When using hardware performance counters to validate the SimPoint
methodology in Chapter 3 we noticed discrepancies in the results. Some of
these could be attributed to variations in how the DBI tools generate BBV files,
but some results indicate that the retired instructions counters were varying
both run-to-run and across machines. These unexpected variations can be by
as much as 2%. The retired instruction counter should not vary this much; it
is high profile enough to be heavily debugged by hardware engineers. Retired
instruction count is one of the few counters that should be the same for the same

executable/input set across all implementations of an ISA.

In order to trust the results from our SimPoint study we investigate the ac-
curacy of the retired instruction performance counter and how it relates to de-

terministic execution on the x86 architecture.

4,1 Hardware Performance Counters

When used in aggregate counting mode (as opposed to sampling mode), per-

formance counters provide architectural statistics at full hardware speed with
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minimal overhead. Most modern processors support some form of counters.
Although originally implemented for debugging hardware designs during de-
velopment, they have come to be used extensively for performance analysis and
for validating tools and simulators. The types and numbers of events tracked
and the methodologies for using these performance counters vary widely, not
only across architectures, but also across systems sharing an ISA. For example,
the Pentium III tracks 80 different events, measuring only two at a time, but
the Pentium 4 tracks 48 different events, measuring up to 18 at a time. Chips
manufactured by different companies have even more divergent counter archi-
tectures: for instance, AMD and Intel implementations have little in common,
despite their supporting the same ISA. Verifying that measurements generate
meaningful results across arrays of implementations is essential to using coun-

ters for research.

Comparison across diverse machines requires a common subset of equiva-
lent counters. Many counters are unsuitable due to microarchitectural or timing
differences. Furthermore, counters used for architectural comparisons must be
available on all machines of interest. We choose a counter that meets these re-
quirements: number of retired instructions. For a given statically linked binary,
the retired instruction count should be the same on all machines implement-
ing the same ISA, since the number of retired instructions excludes speculation
and cache effects that complicate cross-machine correlation. When validating
SimPoints (as described in Chapter 3) the retired instruction count was not as
regular as expected. This count is especially relevant, since it is a component
of both the Cycles per Instruction (CPI) and (conversely) Instructions per Cycle

(IPC) metrics commonly used to describe machine performance.
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The CPI and IPC metrics are important in computer architecture research; in
the rare occasion that a simulator is actually validated [116, 37, 42, 152] these
metrics are usually the ones used for comparison. Retired instruction count and
IPC are also used for vertical profiling [64] and trace alignment [106], which are

methods of synchronizing data from various trace streams for analysis.

Retired instruction counts are also important when generating basic block
vectors (BBVs) for use with the SimPoint [62] tool. When investigating the use
of DBI tools to generate BBVs [155], we find that even a single extra instruction
counted in a basic block can change which simulation points the SimPoint tool

chooses to be most representative of whole program execution.

All these uses of retired instruction counters assume that generated results
are repeatable, relatively deterministic, and have minimal variation across ma-
chines with the same ISA. Here we explore whether these assumptions hold
by comparing the hardware-based counts from a variety of machines, as well as

comparing to counts generated by Dynamic Binary Instrumentation (DBI) tools.

41.1 Performance Counter Evaluation

We run experiments on multiple generations of x86 machines, listed in Table
4.1. All machines run the Linux 2.6.25.4 kernel patched to enable performance
counter collection with the perfmon2 [51] infrastructure. We use the entire SPEC
CPU2000 [136] and CPU2006 [138] benchmark suites with the full reference in-
put sets. We compile the SPEC benchmarks on a SuSE Linux 10.1 system with
version 4.1 of the gcc compiler and - O2 optimization (except for vor t ex, which

crashes when compiled with optimization). All benchmarks are statically linked
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Table 4.1: Machines used for this study.

Processor Speed Bits | Memor L11/D L2 Retired Instruction Counter /
P y Cache Cache Cycles Counter
. inst_retired
Pentium Pro 200MHz 32 256MB 8KB/8KB 512KB
cpu_clk_unhalted
inst_retired
Pentumll | 400MHz | 32 | 256MB | 16KB/16KB | 512KB nst-refre
cpu_clk_unhalted
inst_retired
Pentium Il 550MHz 32 512MB 16KB/16KB | 512KB nst-retire
cpu_clk_unhalted
instr_retired:nbogusnta
Pentium 4 28GHz | 32 | 2GB | 12Ku/16KB | 512KB gusniag

global_power_events:running
instr_completed:nbogus
global_power_events:running
retired_instructions
cpu_clk_unhalted
retired_instructions
cpu-clk_unhalted
instructions_retired
unhalted_core_cycles
instructions_retired
unhalted_core_cycles

Pentium D 3.46GHz 64 4GB 12Ku/16KB 2MB

Athlon XP 1.733GHz | 32 768MB | 64KB/64KB | 256KB

AMD Phenom 2.2GHz 64 2GB 64KB/64KB | 512KB

Core Duo 1.66GHz 32 1GB 32KB/32KB 1MB

Core2 Q6600 2.4GHz 64 2GB 32KB/32KB 4MB

to avoid variations due to the C library. We use the same 32-bit, statically linked

binaries for all experiments on all machines.

We gather Pin [87] results using a simple instruction count utility via Pin
version pin-2.0-10520-gcc.4.0.0-ia32-linux. We patch Valgrind [113] 3.3.0 and
Qemu [18] 0.9.1 to generate retired instruction counts. We gather the DBI results
on a cluster of Pentium D machines identical to that described in Figure 4.1. We
configure pf non [51] to gather complete aggregate retired instruction counts,
without any sampling. The tool runs as a separate process, enabling counting
in the OS; it requires no changes to the application of interest and induces mini-
mal overhead during execution. We count user-level instructions specific to the

benchmark.

We collect at least seven data points for every benchmark/input combina-
tion on each machine and with each DBI method. The CPU2006 benchmarks

require at least 1GB of RAM to finish in a reasonable amount of time. Given
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this, we do not run them on the Pentium Pro or Pentium II, and we do not run
bwaves, Gens FDTD, ntf, or zeusnp on machines with small memories. Fur-
thermore, we omit results for zeusnp with DBI tools, since they cannot handle

the large 1GB data segment the application requires.

4.1.2 Sources of Hardware Counter Variation

We focus on two types of variation when gathering performance counter results.
One is inter-machine variations, the differences between counts on two different
systems. The other is intra-machine variations, those found when running the
same benchmark multiple times on the same system. We investigate methods

for reducing both types.

Specific Instructions Counted Differently

For instruction counts to match on two machines, the instructions involved
must be counted the same way. If not, this can cause large divergences in to-
tal counts. On Pentium 4 systems, the i nstr _retired: nbogusnt ag perfor-
mance counter counts f | dcwas two retired instructions; on all other x86 imple-
mentations f | dcw counts as one. This instruction is common in floating point
code: itis used in converting between floating point and integer values. It alone
accounts for a significant divergence in the mesa and sphi nx3 benchmarks.
Table 4.2 demonstrates occurrences in the SPEC benchmarks where the count is
over 100 million. We modify Valgrind to count the f | dcwinstructions, and use
these counts to adjust results when presenting Pentium 4 data. It should be pos-

sible to use statistical methods to automatically determine which type of opcode
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Table 4.2: Dynamic count of f | dcwinstructions, showing all benchmarks
with over 100 million. This instruction is counted as two instruc-
tions on Pentium 4 machines but only as one instruction on all
other implementations.

benchmark fldcw instructions | % overcount
482.sphinx3 23,816,121,371 0.84%
177.mesa 6,894,849,997 2.44%
481.wrf 1,504,371,988 0.04%
453.povray 1,396,659,575 0.12%
456.hmmer retro 561,271,823 0.03%
175.vpr place 405,499,739 0.37%
300.twolf 379,247,681 0.12%
483.xalancbmk 358,907,611 0.03%
416.gamess cytosine 255,142,184 0.02%
435.gromacs 230,286,959 0.01%
252.eon kajiya 159,579,683 0.15%
252.eon cook 107,592,203 0.13%

causes divergence in cases like this; this is part of ongoing work. We isolated

the f | dcwproblem by using a tedious binary search of the mesa source code.

Using the Proper Counter

Pentium 4 systems newer than model 6 supportai nstr_conpl et ed: nbogus
counter, which is more accurate than the i nstr _retired: nbogusnt ag
counter found on previous models. This newer counter does not suffer the
f 1 dcw problem described in Section 4.1.2. Unfortunately, all systems do not
include this counter; our Pentium D can use it, but our older Pentium 4 systems
cannot. This counter is not well documented, and thus it was not originally
available within the per f npon infrastructure. We contributed counter support

that has been merged into the main per f non source tree.

50



1 = Original After Adjustments

| || 1] |||||I‘
ol LTI ] 1]

Coefficient of
Variation (log)

-6
le-9 < &G A A
@;’Q‘o ((\ «}”\a\) oot N \@\5\ »@ qu?j&) a\‘?’ \\%&)‘(\\%\‘(&) 60\‘\ ‘0‘3 \3\ ‘\():6'561:2\ g:il 2 \3;‘ (\e e,\,&\o) ?’*0 e*«e* \)\,&0 5
PR e° 016%@cq® \Qogeu\&u\(«\ 3‘(\063“““ SRS
166\01,\9 gxﬂ S iﬂcﬂ S 9‘ oSRIGAS & gjf%%fm%% 2 gavggv?,sggwe ‘{‘,«\ N x\“ OB N
1 = Original After Adjustments 1.07%
5 D
29
<= 0.001 I | | I |
L c
> I | |
ST 1es | | | | |
B
le-9 o o " " \8
s e&.&s\ @ & 5 Iy e,@\s\ 63@\)\ (566’\'5\)\ 66‘6\)\ 6@,‘@“\ 68‘3\3\ gééa\)\ ée&.ao\ ‘\e’\a\)\ (@@»\
@O T B AT 9T P Y WA (O o0 N G
« o Ko W ) « > W <« RS S 3
RN RS Ll SN R A I

Figure 4.1: SPEC 2000 Coefficient of variation. The top graph shows inte-
ger benchmarks, the bottom, floating point. The error variation
from mesa, per | bnk, vpr, twol f and eon are primarily due
to the f | dcw miscount on the Pentium 4 systems. Variation
after our adjustments becomes negligible.

Processor Errata

There are built-in limitations to performance counter accuracy. Some are in-
tended, and some are unintentional by-products of the processor design. Our
results for our 32-bit Athlon exhibit some unexplained divergences, leading us
to investigate existing errata for this processor [6]. The errata mention vari-
ous counter limitations that can result in incorrect total instruction counts. Re-

searchers must use caution when gathering counts on such machines.
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Figure 4.2: SPEC 2006 Coefficient of variation. The top graph shows in-
teger benchmarks, bottom, floating point. The original varia-
tion is small compared to the large numbers of instructions in
these benchmarks. The largest variation is in sphi nx3, due to
f 1 dcw instruction issues. Variation after our adjustments be-
comes orders of magnitude smaller.

4.1.3 Counter Variation Findings

Figure 4.1 shows the coefficient of variation for SPEC CPU2000 benchmarks
before and after our adjustments. Large variations in mesa, per | bnk, vpr,
twol f, and eon are due to the Pentium 4 f | dcw problem described in Sec-
tion 4.1.2. Once adjustments are applied, variation drops below 0.0006% in
all cases. Figure 4.2 shows similar results for SPEC CPU2006 benchmarks.
Larger variations for sphi nx3 and povr ay are again due to the f| dcw in-
struction. Once adjustments are made, variations drop below 0.002%. Overall,
the CPU2006 variations are much lower than for CPU2000; the higher abso-
lute differences are counterbalanced by the much larger numbers of total re-

tired instructions. These results can be misleading: a billion-instruction differ-
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ence appears small in percentage terms when part of a three trillion instruction
program, but in absolute terms it is large. When attempting to capture phase
behavior accurately using SimPoint with an interval size of 100 million instruc-

tions, a phase’s being offset by one billion instructions can alter final results.

41.4 Intra-machine results

Figure 4.3 shows the standard deviations of results across the CPU2000 and
CPU2006 benchmarks for each machine and DBI method. DBI results are
shown, but not incorporated into standard deviations. In all but one case
the standard deviation improves, often by at least an order of magnitude.
For CPU2000 benchmarks, per| bk has large variation for every generation
method. We are still investigating the cause. In addition, the Pin DBI tool has a
large outlier with the par ser benchmark, most likely due to issues with consis-
tent heap locations. Improvements for CPU2006 benchmarks are less dramatic,
with large standard deviations due to high outlying results. On AMD machines,
per | bench has larger variation than on other machines, for unknown reasons.
The povr ay benchmark is an outlier on all machines (and on the DBI tools); this
requires further investigation. The Valgrind DBI tool actually has worse stan-
dard deviations after our methods are applied due to a large increase in varia-
tion with the per | bench benchmarks. For the CPU2006 benchmarks, similar
platforms have similar outliers: the two AMD machines share outliers, as do

the two Pentium 4 machines.
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Figure 4.3: Intra-machine results for SPEC CPU2000 (above) and CPU2006

(below). Outliers are indicated by the first letter of the bench-
mark name and a distinctive color. For CPU2000, the per | bnk
benchmarks (represented by gray ‘p’s) are a large source of
variation. For CPU2006, the per| bench (green ‘p’) and
povray (gray ‘p’) are the common outliers. Order of plotted
letters for outliers has no intrinsic meaning, but tries to make
the graphs as readable as possible. Horizontal lines summa-
rize results for remaining benchmarks (they’re all similar). The
message here is that most platforms have few outliers, and
there’s much consistency with respect to measurements across
benchmarks; Core Duo and Core2 Q6600 have many more out-
liers, especially for CPU2006. Our technical report provides
detailed performance information — these plots are merely in-
tended to indicate trends. Standard deviations decrease dras-
tically with our updated methods, but there is still room for
improvement.

4.1.5 Inter-machine Results

Figure 4.4 shows results for each SPEC 2000 benchmark (DBI values are shown

but not incorporated into standard deviation results). We include detailed plots
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Figure 4.4: Inter-machine results for SPEC CPU2000. We choose five rep-
resentative benchmarks and show the individual machine dif-
ferences contributing to the standard deviations. Often there
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ten different. DBI results are shown, but not incorporated into
standard deviations.
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Figure 4.5: Inter-machine results for SPEC CPU2006. We choose five rep-
resentative benchmarks and show the individual machine dif-
ferences contributing to the standard deviations. Often there is
a single outlier affecting results; the outlying machine is often
different. DBI results are shown, but not incorporated into the
standard deviations.
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for five representative benchmarks to show individual machine contributions
to deviations. (Detailed plots for all benchmarks are available in our technical
report [154].) Our variation-reduction methods help integer benchmarks more
than floating point. The Pentium III, Core Duo and Core 2 machines often over-
count instructions. Since they share the same base design, this is probably due to
architectural reasons. The Athlon frequently is an outlier, often under-counting.
DBI results closely match the Pentium 4’s, likely because the Pentium 4 counter

apparently ignores many OS effects that other machines cannot.

Figure 4.5 shows inter-machine results for each SPEC 2006 benchmark.
These results have much higher variation than the SPEC 2000 results. Machines
with the smallest memories (Pentium 3, Athlon, and Core Duo) behave simi-
larly, possibly due to excessive OS paging activity. The Valgrind DBI tool be-
haves poorly compared to the others, often overcounting by at least a million

instructions.

4.2 Deterministic Execution

We found various issues that affect deterministic execution.

4.2.1 Virtual Memory Layout

It may seem counter-intuitive, but some benchmarks behave differently de-
pending on where in memory their data structures reside. This causes much
of the intra-machine variation we see across the benchmark suites. In theory,

memory layout should not affect instruction count. In practice, both par ser
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Figure 4.6: The typical layout of virtual memory for a process on 32-bit x86
Linux. If process space randomization is enabled, then the BSS,
Heap, mmap and stack can have different offsets.
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and per | bench exhibit this problem. To understand how this can happen, it
is important to understand the layout of virtual memory on x86 Linux (see Fig-
ure 4.6). In general, program code resides near the bottom of memory, with
initialized and uninitialized data immediately above. Above these is the heap,
which grows upward and the mmap region, which on newer kernels grows
downward. Near the top of virtual memory is the stack, which grows down-
ward. At the very top of the stack is process information, including command

line arguments and environment variables.

Typical programs are insensitive to virtual address assignments for data
structures. Languages that allow pointers to data structures make the virtual
address space “visible”. Different pointer values only affect instruction counts
if programs act on those values. Both par ser and per | bench use pointers as
hash table keys. Differing table layouts can cause hash lookups to use differ-
ent numbers of instructions, causing noticeable changes in retired instruction

counts.

There are multiple reasons why memory layout can vary from machine to
machine. On Linux the environment variables are placed above the stack; a
differing number of environment variables can change the addresses of local
variables on the stack. The same is true of the executable name (so a program
run from a different directory path could change this offset). Also, from kernel
to kernel the number of ELF auxiliary vectors changes, and unfortunately these
too are above the stack. If the addresses of local variables are used as hash keys
then the size and number of any of these executable parameters can affect the
total instruction count. This happens with per | bench; Mytkowicz et al. [104]

document the effect, finding that it causes execution time differences of up to
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5%.

A machine’s word size can have unexpected effects on virtual memory lay-
out. Systems running in 64-bit mode can run 32-bit executables in a compat-
ibility mode. By default, however, the stack is placed at a higher address to
free extra virtual memory space. This can cause inter-machine variations, as lo-
cal variables have different addresses on a 64-bit machine (even when running
a 32-bit binary) than on a true 32-bit machine. Running the Linux command
[ i nux32 - 3 before executing a 32-bit program forces the stack to be in the

same place it would be on a 32-bit machine.

Another cause of varied layout is due to virtual memory randomization. For
security reasons, recent Linux kernels randomize the start of the text, data, bss,
stack, heap, and mmap() regions. This feature makes buffer-overrun attacks
more difficult, but the result is that programs have different memory address
layouts each time they are run. This causes programs (like par ser) that use
heap-allocated addresses as hash keys to have different instruction counts every

time. This behavior is disabled system wide by the command:

echo 0 >

/ proc/ sys/ kernel / random ze_va_space

It is disabled at a per-process level with the - R option to the | i nux32 com-
mand. For our final runs, we use the | i nux32 -3 - R command to ensure
consistent virtual memory layout, and we use a shell script to force environ-

ment variables to be exactly 422 bytes on all systems.
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4.2.2 System Effects

Any Operating System or C library call that returns non-deterministic values
can potentially lead to divergences. This includes calls to random number gen-
erators; anything involving the time, process ID, or thread synchronizations;
and any I/O that might involve errors or partial returns. In general, the SPEC
benchmarks carefully avoid most such causes of non-determinism; this would

not be the case for many real world applications.

OS activity can further perturb counts. For example, we find that perfor-
mance counters for all but the Pentium 4 increase once for every page fault
caused by a process. This can cause instruction counts to be several thousands
higher, depending on the application’s memory footprint. Another source of
higher instruction counts is related to the number of timer interrupts incurred
when a program executes; this is possibly proportional to the number of context
switches. The timer based perturbation is most noticeable on slower machines,
where longer benchmark run times allow more interrupts to occur. Again, the
Pentium 4 counter is not affected by this, but all of the other processors are. In
our final results, we account for perturbations due to timer interrupt but not for
those related to page faults. There are potentially other OS-related effects which

have not yet been discovered.

4.2.3 Sources of DBI Tool Variation

In addition to actual performance counter results, computer architects use var-
ious tools to generate retired instruction counts. Dynamic Binary Instrumenta-

tion (DBI) is a fast way to analyze benchmarks, and it is important to know how
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Table 4.3: Potential overcounted dynamic instructions due to the r ep pre-
tix (only benchmarks with more than 10 billion are shown).

benchmark rep counts | % overcount
464.h264ref sss_main | 443,109,753,850 15.7%
464.h264ref fore_main | 45,947,752,893 14.2%
482.sphinx3 33,734,602,541 1.2%
403.gcc s04 33,691,268,130 18.8%
403.gcc c-typeck 30,532,770,775 21.7%
403.gcc expr2 26,145,709,200 16.3%
403.gcc g23 23,490,076,359 12.1%
403.gcc expr 18,526,142,466 15.7%
483.xalancbmk 15,102,464,207 1.2%
403.gcc cp-decl 14,936,880,311 13.6%
450.soplex pds-50 11,760,258,188 2.5%
453.povray 10,303,766,348 0.9%
403.gcc 200 10,260,100,762 6.1%

closely tool results match actual hardware counts.

The r ep Prefix

An issue with the Qemu and Valgrind tools involves the x86 r ep prefix. The
I ep prefix can come before string instructions, causing the the string instruction
to repeat while decrementing the ecXx register until it reaches zero. A naive
implementation of this prefix counts each repetition as a committed instruction,
and Valgrind and Qemu do this by default. This can cause many excess retired
instructions to be counted, as shown in Table 4.3. The count can be up to 443
billion too high for the SPEC benchmarks. We modify the DBI tools to count
only the r ep prefixed instruction as a single instruction, as per the relevant
hardware manuals. (Note that older versions of Pin matched real hardware

with regards to r ep, but versions newer than 29972 do not, possibly requiring

62



extra care when measuring instruction counts).

Floating Point Rounding

Dynamic Binary Instrumentation tools can make floating point problematic, es-
pecially for x86 architectures. Default x86 floating point mode is 80-bit FP math,
not commonly found in other architectures. When translating x86 instructions,
Valgrind uses 64-bit FP instructions for portability. In theory, this should cause
no problems with well written programs, but, in practice, it occasionally does.
The move to SSE-type FP implementations on newer machines decreases the

problem’s impact, although new instructions may also be sources of variation.

The art benchmark. The art benchmark uses many fewer instructions on
Valgrind than on real hardware. This is due to the use of the “==" C operator
to compare floating point numbers. Rounding errors between 80-bit and 64-bit
versions of the code cause the 64-bit versions to finish with significantly differ-
ent instruction counts (while still generating the proper reference output). This
is because a loop waiting for a value being divided to fall below a certain limit
can happen faster when the lowest bits are being truncated. The proper fix is to
update the DBI tools to handle 80-bit floating point properly. A few temporary
workarounds can be used: passing a compiler option to use only 64-bit floating
point, having the compiler generate SSE rather than x87 floating point instruc-
tions, or adding an instruction to the offending source code to force the FPU

into 64-bit mode.
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Thedeal I | benchmark. Thedeal | | SPEC CPU2006 benchmark is problem-
atic for Valgrind, much like art. In this case, the issue is more critical: the
program enters an infinite loop. It waits for a floating point value to reach an
epsilon value smaller than can be represented with 64-bit floating point. The
authors of deal | | are aware of this possibility, since source code already has a

#def i ne to handle this issue on non-x86 architectures.

Virtual Memory Layout

When instrumenting a binary, DBI tools need room for their own code. The
tools try to keep layout as close as possible to what a normal process would see,
but this is not always possible, and some data structures are moved to avoid
conflicts with memory needed by the tool. This leads to perturbations in the

instruction counts similar to those exhibited in Section 4.2.1.

4.3 Summary

Even though originally included in processor architectures for hardware debug-
ging purposes, when used correctly, performance counters can be used produc-
tively for many types of research (as well as application performance debug-
ging). We have shown that with some simple methodology changes, the x86
retired instruction performance counters can be made to have a coefficient of
variation of less than 0.002%. We have also done some preliminary examina-
tions of retired instruction counts on other architectures, these are available in

Appendix C.
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CHAPTER 5
32-BIT RISC RESULTS

Cycle-accurate simulators are one of the prevailing modeling tools in com-
puter architecture research. Unfortunately, the results generated by academic
“cycle-accurate” simulators can be misleading due to unknown levels of error.
More importantly, similar results can often be generated much faster using sim-
ulation techniques based on dynamic binary instrumentation (DBI). (Hereto-
fore, we use cycle-accurate simulations to refer to tools and results generated in
academia. Industry researchers and developers may have much more accurate
simulators, but since source code is not generally available to academics, we do

not discuss them here.)

In spite of their popularity, cycle-accurate simulators have several draw-

backs.

e Speed: Simulators are slow, often multiple orders of magnitude slower
than native execution. Many researchers commonly use “reduced-
execution” methods to compensate, yet these techniques can compound
simulation error if not applied carefully. We investigate these methods in
detail in Chapter 3.

e Obscurity: The simulation tools are rarely used outside the specialized
field of computer architecture research. Since the simulators themselves
are generally used to run a limited set of benchmark suites, bugs can lurk
in the code base.

e Code Forks: The code base for an academic simulation tool can quickly
become fragmented among the groups using it, or may cease to be main-

tained entirely. Bugs may be fixed at different times at different institu-
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tions. The source codes diverge so much that when a paper claims it uses
a particular simulator, that statement may have little meaning, since the
code used differs from the mainline (potentially so much so as to be un-
recognizable).

Generalization: Simulators are often highly configurable, since the au-
thors usually want a flexible tool that can model a multitude of different
hardware configurations. The end result is that a single simulator might
model many architectures, but it may not model any particular architec-
ture well. Furthermore, the more flexible a simulator, the easier it is to
configure it improperly, often in non-obvious ways.

Validation: Most simulators are not validated against real hardware, and
when they are, the results are rarely within 10% error, even after extensive
effort to model a known architecture as closely as possible [25, 56, 43].
Exceptions exist, of course, but the most commonly used academic tools
have diverged widely from any versions for which validation has been
attempted.

Documentation: Simulators are often poorly documented, both at a high
level and at the source-code level. This alone probably accounts for more
errors in simulation than any overt programming bugs. Researchers sim-
ply do not have the information needed to use them correctly.
Obsolescence: Most simulators are already outdated by the time they be-
come mature enough to run useful workloads. It is difficult to gain suf-
ticient documentation on modern processors to accurately implement in-
ternals, so well understood but obsolete processors are often modeled, in-

stead.
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e Tools: Many simulators require a special tool-chain to build suitable ex-
ecutables. The difficulty of using out-of-date toolchains (many need old
versions of libraries that are no longer available, for instance) leads to the
use of pre-compiled benchmarks that are rarely updated. New advance-
ments in compiler technology are thus lost, since the toolchain is rarely
complete enough to compile whole benchmark suites. Some of the more
interesting benchmarks may simply be left out due to toolchain difficul-
ties. This is yet another source of error in simulations [35].

e Operating System: Many simulators cannot model full operating systems.
Cain et al. [31] find that removing the OS from the simulation equation can

have a greater impact on results than ignoring effects of speculation.

These problems result in part from the lack of funding for building and
maintaining solid academic architectural tools. One or two students cannot
create and maintain a tool and use it for their doctoral research in a reason-
able amount of time, given today’s complicated architectures. Many academic
researchers end up using an unvalidated or poorly documented simulator mod-
eling a decade-old processor to run only small portions of a decade-old bench-
mark suite (that was compiled with a decade-old compiler). Needless to say,
using such an infrastructure is unlikely to represent “best practices” when per-
forming cutting-edge computer architecture research. Taking that setup and
scaling the configuration to match a hypothetical processor only tangentially
related to the original design can compound the accuracy problem. Eventu-
ally it becomes critical to know how big the potential error is; a small average

speedup of 5-10% (which is often sufficient for publication) might, in reality,
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be dwarfed by cumulative errors of the infrastructure. ! To that end, we con-
figure one commonly used cycle-accurate simulator to model a MIPS R12000,
and compare simulation versus machine results for five performance metrics.
To better understand the tradeoffs between types of simulation tools, we then
compare machine results to simulation results generated by a dynamic binary

instrumentation tool based on Qemu.

5.1 SESC Cycle-accurate Simulator

SESC [125] is a widely used cycle-accurate simulator. It can simulate CMP sys-
tems, but for comparison purposes, we only model a single-core system. The
simulator was originally built to model out-of-order MIPS processors, and thus
it runs MIPS binaries. It uses an elaborate configuration file that can specify ar-
chitectures very different from the initially modeled platform. No documenta-
tion of peer-reviewed validation is publicly available for SESC. The documenta-
tion distributed with the simulator includes a READVE. val i dat i on file show-
ing that results for a few microbenchmarks match hardware execution times

within about 20% for R10000 and R4400 MIPS-based machines.

We configure SESC to match our reference platform as closely as possible
(this required the help of the tool’s original author), which turns out to be dif-
ticult, despite our machine’s being almost exactly the same as the simulator’s
original design point. Major differences are that the R12000 has a unified 2-page,
64-entry software-controlled TLB (SESC apparently only handles separate data
and instruction TLBs), and the R12000’s off-chip L2 cache with a way-predictor

'We do not discuss issues involved with averages chosen to represent simulation statistics,
but see John Mashey [92].
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Table 5.1: Configuration of SGI Octane2 machine used for comparison

Processor 300MHz R12000
out-of-order, 4-issue
33 arch registers

64 physical registers
Memory Subsystem | L1i: 32kB, 2-way, 64B
L1d: 32kB, 2-way, 32B
L2 : 2MB, 2-way, 128B
2GB SDRAM, 1.0GB/s
Branch Predictor 2048 entry 2-bit

TLB Unified 64-entry

(which can affect L2 cache latencies in a way not easily modeled with SESC).
The branch predictor in the R12000 is deceptively non-trivial, and again it is not
possible to model exactly. (Many of the arcane architectural details are not suffi-
ciently documented for any simulator author to model exactly without “inside”

industrial information.)

We make a best attempt to configure SESC properly. The configuration for-
mat is poorly documented, and many necessary options are not described. Sam-
ple configurations lack necessary information, and source code is not well com-
mented. In the end, after we spent much time carefully researching and crafting
our configuration file, SESC’s author found 40 errors. This does not bode well
for others attempting to configure the tool without input from SESC authors.

The configuration file we used can be found in Appendix L.

We use a default version of SESC, checked out from the CVS server on
7 April 2008 and compiled with gcc version 4.2.4. We use the - k0x800000

- h0x23400000 - p2 command line options when running benchmarks.
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5.2 Reference Hardware

Our reference platform is an SGI Octane2 [156] with an R12000 MIPS proces-
sor [167, 111]. A summary of key features is listed in Table 5.1. The machine
runs Linux 2.6.22 patched to provide Octane support. The kernel is modified to

include the perfmon2 [51] performance counter infrastructure.

The R12000 allows the processor’s branch prediction method to be config-
ured at runtime (it is unusual for a processor to be that configurable). We
create a custom kernel module (available in Appendix K that sets the proper
Branch Diagnostic Register bits (cp0 register 22) to change the branch predic-
tion method on the fly. The processor defaults to a 2048-entry two-bit saturat-
ing counter dynamic prediction scheme. This can be changed to various static
schemes: always taken, always not-taken, and forward/taken-backward/not-
taken. A global pattern history table with a configurable number of bits can
be enabled, and the Branch Target Address Cache (BTAC) and Branch Return
Cache (BRC) can be individually disabled.

We run microbenchmarks to verify that the performance counters work
properly. We use pf non [51] to collect performance statistics. This tool enables
performance monitoring by a separate process, so the bookkeeping is handled
entirely by the OS kernel, inducing very little user-space overheard. Counts are

collected in aggregate for the full program, with no sampling.

There has been concern about the accuracy of MIPS performance counters:
Korn et al. [78] find up to 25% error with some counters on the R12000 and
R10000 under SGI IRIX. We do not detect similar error; potentially, the differ-

ences they see are due to their use of sim-outorder as a reference, which Desikan
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et al. [42, 43] found to have similar levels of error.

5.3 DBI-based Simulator

We use Qemu [18] to generate traces consumed by a set of small independent
simulators. Qemu uses dynamic retranslation at the basic-block level to convert
from one architecture (in this case MIPS) to another (in this case x86). We add

code hooks to output needed trace data.

For cache simulation we use the Dinero IV [48] Cache Simulator. Qemu
passes trace information in the Dinero file format over a named-pipe to Dinero
(which runs in a separate process). To determine branch prediction information
we write a custom branch predictor (source available on our website). This pre-
dictor runs in a separate process and obtains the full instruction stream (both
address and instruction value) from Qemu over a named-pipe. The predictor
decodes MIPS instructions and determines which are branches (taking special
care to handle the “predict taken” beql instructions properly). A branch is de-
termined to be taken or not by buffering an additional two instructions to see if

the address after the delay slot is PC+8.

Because each of our tools runs in a separate process, we can take advan-
tage of CMP and SMP systems better than most cycle-accurate simulators. Each
process can live on its own core, and running the branch predictor thread at the
same time as the cache thread adds negligible overhead on a four-processor ma-
chine. The limiting factor here is the cache simulator, not dynamic translation

and execution of the binary.
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Figure 5.1: The precompiled SPEC 2000 benchmarks available from the
SESC website have potentially been modified to reduce run-
time. A phase chart gathered with hardware performance
counters shows behavior of the provided precompiled binary
on top and that of a binary we compiled from original SPEC
sources (with gcc) on bottom.

5.4 Benchmarks

To evaluate the various simulation methods, we use SPEC CPU2000 [136]
benchmarks. To enable comparison with past uses of the SESC simulator, we
use the pre-compiled versions of the benchmarks provided on the SESC web-

site. All three of our test platforms can run these benchmarks unmodified.

Unfortunately the pre-compiled benchmarks have some limitations. Al-
though not documented as such, they are not plain CPU2000 binaries. Extra
printf() commands have been scattered throughout the code (presumably
for debugging purposes or for controlling partial simulation experiments), and
some benchmarks have been modified for faster run times. As an example, see
Figure 5.1, which shows that gzi p — as provided — only executes a small frac-
tion of the full benchmark. In addition, not all of the CPU2000 benchmarks are

included with the precompiled binaries. We run full reference input sets for all
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Table 5.2: Comparison of simulation times

| Method || Fastest | Slowest | Mean Slowdown |
R12000 15s (gzip.log) 57m23s  (swim) -
QEMU 13m52s (gzip.log) 1d20h20m47s  (sixtrack) 38x
SESC 2h17m38s (gzip.log) | 16d02h53m15s (mgrid) 393x
experiments.

5.5 Results

We run as many SPEC 2000 benchmarks as possible on the various platforms.
Relative run times are shown in Table 5.2. For the simulated results, we run on a

large cluster of 4-processor 3.46GHz Pentium D nodes, each with 4GB of RAM.

5.5.1 Absolute Results

Figure 5.2 shows actual and predicted L1 instruction cache miss rates. Our three
methods calculate instruction cache misses in different ways. For the perfor-
mance counter results, these graphs show decoded instructions versus instruc-
tion cache misses; for SESC and Qemu the graphs show graduated instructions
versus instruction cache misses. The number of instruction cache misses in the
floating point case is so small that a small absolute error can cause a large per-
centage error. Qemu has problems with the art benchmarks, which we are

investigating.

The reference system has write-back caches, which can introduce accuracy
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Figure 5.2: Instruction cache miss rate with integer benchmarks above and
floating point below.

issues with the performance counters. Memory accesses that occur while the
benchmark process is not running can change values in the cache. While we
attempt to run the benchmarks on an otherwise quiet system, other processes
and even the operating system can evict cache lines on the real system in ways
that cannot be modeled in the simulator. Similarly, values stored into cache
may not be accounted for by the performance counters if the actual write-back

to memory happens when in a different processor context.

Qemu does not follow wrong-path execution ? , which can account for some
of the differences from actual hardware. Likewise, SESC does not follow wrong-
path execution; the code path that models speculation is out of date, and is

thus disabled in the default configuration. Despite not executing wrong-path

“There has been work done to enable wrong-path execution support on Qemu [33, 32] but
the code involved has not been released.
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Figure 5.3: L1 data cache miss rate with integer benchmarks above and
floating point below.

instructions, results are quite accurate; this shows that full cycle-accuracy is not
always needed to generate good cache simulation results (and further supports
the conclusions of Cain et al. [31] regarding OS impact versus speculation, at

least in the case of Qemu).

Figure 5.3 shows L1 data cache miss rates, and Figure 5.4 shows L2 miss
rates. The latter is important, since L2 cache misses must traverse the processor
bus of a multiprocessor system. If the tool used records vastly incorrect numbers
of misses, multiprocessor simulations will generate erroneous data that could
influence a final design. SESC generally does poorly predicting L2 miss rates for
floating point benchmarks. This could indicate that the floating point pipeline

sections of the configuration file need further adjustment.
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L2 Cache Miss Rate = actual r12k Qemu/Dinero = SESC
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Figure 5.4: L2 cache miss rate with integer above and floating point below.
None of the simulations captures ntf ’s behavior well. None of
the simulation methods predicts the art benchmarks well.

The R12000 has a complicated off-chip cache. In order to save pins, the ma-
chine incurs significant overhead in changing cache ways. To mitigate this, it
uses a cache way-predictor, with a penalty on a miss. None of the simulators
model this aspect of the system, which can potentially become another source

of modeling error.

Figure 5.5 shows branch predictor results. The R12000 can predict and fetch
past up to four branches, so many speculative instructions can be in flight.
Qemu and SESC cannot model this. In fact, the R12000 branch predictor has

many hardware subtleties that neither Qemu nor SESC can model.

Figure 5.6 shows CPI results. Qemu does not model time, so we approximate

cycles with the formula:
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Figure 5.5: Branch miss rate with integer above and floating point below.
The hardware can have up to four outstanding branches; Qemu
and SESC do not model wrong-path execution.

|g le

cycles = + DL1,L 1y + L1 L2y + L2 L2 + BrinBrig

where |y is graduated instructions, L1y is L1 hit time (2 cycles), ifsis the
instruction fetch size (4 words), DL1, is L1 data accesses, L1, is L1 misses, L1
is L1 miss time (14 cycles), L2y is L2 misses, L2, is L2 miss time (120 cycles),

Brm is number of branch misses, and Bry is branch miss delay (2 cycles)

This is an empirical model that was arbitrarily chosen because it seems to
match well against the parameters we have. It is similar in idea to CPI gen-
eration functions for the R10000 presented by Luo et al. [88]. The L1 icache
parameter might be spurious; its primary effect is to limit the minimum IPC to
two, which is what is found on the SPEC benchmarks. In theory the R12000

can have an IPC of up to 5; more investigation is needed to explain this discrep-
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Figure 5.6: CPI results with integer above and floating point below.

ancy. The data cache misses should be hidden by out-of-order execution too,
although depending on the memory subsystem design this might not happen.
Luo et al. [88] found up to an 80% stall rate for one configuration of an R10000

processor.

CPI is the metric most often used in validation, so it is important to have
these values match hardware as closely as possible. There are many architec-
tural and software causes of cycle variation not modeled by either simulator.

Most notably, Operating System effects are not modeled.
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Figure 5.7: Always taken branch predictor miss rate, normalized against
dynamic two-bit results.
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Figure 5.8: Static branch predictor miss rate, normalized against dynamic
two-bit results.

5.5.2 Relative Results

Many researchers hold that absolute results are not as important with cycle-
accurate simulation, but that relative results are what matter most. As long as
the trends are consistent, then a simulator is still useful, even if the simulator is
unvalidated and the error is large. To investigate this, we configure our R12000
to use different branch predictors. We plot relative differences in the metrics to

see if consistent trends are visible.

Figure 5.7 shows the relative reduction in branch predictor miss rate when

going from a dynamic two-bit predictor to an always-taken predictor. The figure
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Figure 5.9: L2 cache miss rates with the always-taken predictor, normal-
ized against two-bit results.
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Figure 5.10: L2 cache miss rates with the static predictor, normalized
against two-bit results.

shows that trends are similar across all benchmarks, although Qemu results are
optimistic and SESC results are pessimistic. Figure 5.8 compares a static back-

ward /taken forward /not-taken predictor to the dynamic two-bit predictor.

Figure 5.9 shows how the always-taken predictor affects the L2 cache miss
rate compared to the two-bit predictor. Neither Qemu nor SESC models wrong-
path execution, so they exhibit identical memory access behavior even with dif-
tferent branch predictors. Neither simulation method can predict the significant
predictor-based changes in L2 behavior observed on actual hardware. Results

for the forward /backward static predictor, shown in Figure 5.10, are similar.
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Figure 5.11: TLB misses with always taken, normalized against two-bit.
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Figure 5.12: TLB misses with static predictor, normalized against two-bit.

Figures 5.11 and 5.12 show TLB behavior. Results are not shown for Qemu
because a trace-based TLB simulator was not available. On actual hardware,

the branch predictor seems to have minimal impact on TLB behavior. The MIPS

TLB is managed in software, usually

that it is easy for results to diverge. Also, MIPS has a unified instruction/data

TLB, which SESC cannot model.

Figure 5.13 and Figure 5.14 show the relative results for CPI. Qemu results

are close to those for the R12000, despite the cycle counts being based solely on

cache and branch predictor miss rates.

with random replacement. This means
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Figure 5.13: CPI with always taken normalized against two-bit results.
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Figure 5.14: CPI with static predictor normalized against two-bit results.

5.5.3 Summary

A summary of the absolute results is shown in Table 5.3. The weighted average

of the various metrics is taken across all benchmarks that run to completion

on all three platforms. This is a total of 22 benchmarks (19 integer, 3 floating

point) which, unfortunately, only represents a portion of the 48 SPEC CPU2000

benchmark/input pairs. SESC does not perform noticeably better than Qemu,

despite taking an order of magnitude longer to run.

Table 5.4 shows the percent error of the average relative performance differ-

ences. The CPI results show that these methods can be used to predict perfor-

mance with an average error of 15%. The L2 Cache results show that sometimes
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Table 5.3: Summary of results. The weighted average is across all of the
SPEC 2000 benchmarks which ran to completion on all three
platforms: 23 integer and 11 floating point (this is unfortunately
only a portion of the 48 available benchmark/input combina-

tions).

Bench | R12000 Qemu SESC
Metric Type | Weighted | Weighted % Weighted %
Average | Average Error | Average Error
L11$ Miss Rate Int 0.233% | 0.334% 43.5% | 0.248% 6.4%
FP 0.008% | 0.001% -83.9% | 0.006% -23.9%
L1D$ Miss Rate Int 3.928% | 4.260% 8.5% | 4.726%  20.3%
FP 5.230% 6.406% 22.5% | 6.485% 24.0%
L2% Miss Rate Int 0.058% | 0.051% -11.9% | 0.042% -27.6%
FP 0.127% | 0.107% -16.2% | 0.128% 0.4%
BrPred Miss Rate Int 18.9% 18.4% -2.7% | 27.0% 42.9%
FP 12.7% 18.2% 43.2% | 15.0% 18.4%
CPI Int 1.20 1.03 -14.6% | 1.47 22.6%
FP 1.09 1.41 29.3% | 1.60 46.4%

Table 5.4: Summary of relative results. The relative results compare the
relative results when moving from 2-bit branch predictor to ei-
ther taken or static. The error shown is the relative error between
the relative average means of all benchmarks on actual hard-
ware versus the predicted relative average means of the simu-
lated results. The results represent the 33 of the SPEC CPU 2000
benchmarks which ran to completion on all three platforms.

Brpred | Qemu | SESC

Metric Type % %
Error Error
) Taken | 64.1% | -28.0%
BrPred Miss Rate | oo | -11.00 | -44.9%
) Taken 5.6% 6.1%
L2 Miss Rate | qoie | 7.0% | 7.4%
CP| Taken | 11.5% | -7.1%
Static 0.1% | -10.9%
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results can be deceptive; even though neither QEMU nor SESC models wrong-

path execution, results still fall within 10% error for relative L2 cache miss rate.
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CHAPTER 6
64-BIT CISC RESULTS

Our work in Chapter 5 finds acceptable results when using DBI methods to
simulate an obsolete RISC processor; we extend this work to a more modern 64-
bit x86 platform. Memory access patterns on modern CISC (Complex Instruc-
tion Set Computer) systems differ from older RISC systems, with variable-sized
instructions, aggressive prefetching, and SSE vector-like memory accesses. Un-
fortunately CISC simulations run slower than RISC. The exact slowdown de-
pends on the simulator, but on the m5 simulator moving from Alpha to x86 has

a slowdown of at least a factor of two.

6.1 RISC/CISC differences

RISC chips, even sophisticated ones such as the MIPS R10000 or Alpha 21264 (as
simulated by common simulators), are missing many features found in entry-

level x86 processors.

Here are some CISC “features” that most RISC implementations do not have

to worry about:

Unaligned instructions

Variable length instructions

Instructions that cross cache lines

Complicated lock instructions

Complicated string instructions

e Hardware square-root and transcendental functions
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pop Decoder Cache

Complex pop issue logic, “fusing”

Self-modifying code

Micro-code assist on complex instructions (NaN, Denormals, Div/0, Un-

derflows)

6.2 Modern CPU Features

Cycle-accurate simulators tend to model older implementations of architec-
tures. Modern architectural features are often left out of a simulator as they do
not affect correctness, but can affect behavior. Modern implementations of RISC
chips (such as ARM, MIPS, Power and SPARC) might have these features, but
many simulators do not support them. Recent x86 binaries make use of these
features, and since comprehensive x86 simulators are a recent development, the

simulators have to handle these newer features to run the binaries properly.

There are many features that can affect architectural simulation but are not

commonly found in simulators:

Vector instructions (most modern RISC architectures have support, but are

not commonly used).

Hardware prefetch

Various software prefetch types (including non-temporal)

Large pages (2MB, 1GB)

Memory disambiguation predictor
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e Execute small loops out of instruction fetch unit (without accessing cache):
LSD Loop Stream Detector

e Trace caches

e Thermal trip support

e CPU frequency scaling

e MTRR/PAT Page attributes (set cache behavior at page level)

e ECC memory

e Return address prediction

e Stack pointer prediction

e Sophisticated branch prediction schemes

e Complicated memory hierarchies

e On-chip memory controllers

6.3 pop Concerns

The x86 architecture does not directly execute complex CISC instructions. Dur-
ing fetch and decode these complex instructions are broken down into RISC-like

instructions known as pops.

Since pops are “RISC-like”, RISC simulators can be repurposed to act
as backends for CISC simulators. This is a common simulation methodol-

ogy [53, 23, 129, 141, 134, 26], that as far as we know has not been validated.

Figure 6.1 shows L1 data cache accesses per uop on MIPS and three x86_64
architectures for the gzi p. pr ogr ambenchmark (complete pop phase diagrams
can be found in Appendix H). We measure pop counts using the counters listed

in Table 6.1.
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Table 6.1: Hardware performance counters used for pop experiments

| machine | Retired Instructions |  Retired pops |
Phenom retired_instructions retired_uops
Core2 instructions_retired uops._retired:any
Pentium D instr_completed:nbogus | uops_retired:nbogus
Pentium Pro inst_retired uops._retired
Atom instructions_retired uops_retired:any
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Figure 6.1: Data cache accesses per pop for gzi p. pr ogr am

An unexpected result is that the pop behavior varies between implementa-
tions of the same architecture. The set of uops is not fixed and architects are free
to change it at any time. Figure 6.1 shows that the MIPS instruction trace would
make a believable x86_64 pop stream, however it does not closely match any of
the existing machines. Care should be taken when using RISC results as a pop

substitute.

Figure 6.2 is an overall summary of uop versus instructions differences for
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Figure 6.2: Normalized uops per benchmark for three x86_64 implemen-
tations, a 32-bit x86, the m5 simulator, and two representative
RISC architectures.
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Table 6.2: Number of uops required for an assortment of x86 instructions

| instruction | Phenom | Core2 | Pentium D | Pentium Pro | Atom |
add %eax,%edx
32-bit int add 1 1 1 1 1
add mem,%eax
32-bit add from mem 1 1 2 2 1
imul %eax,%edx
32-bit int multiply 2 3 2 3 3
rep stosb
repeated string store 0.3 0.43 0.55 0.6 3
fadd 1.0,pi
floating point add 23 1 1 4 1
fsincos
floating point sincos 60 101 150 107 118
haddps
128-bit horizontal add 1 6 3 N/A 5
psllidg
128-bit shift 1 2 1 N/A 1

all of the SPEC CPU2000 benchmarks. The relative number of pops varies by
benchmark, even on the same architecture. The 32-bit machine has many more
pops, especially on floating point benchmarks; this is because the 32-bit pro-
gram is using x87 floating point, which produces many more pops than the
SSE-based floating point used on the x86_64 machines. The two comparison
RISC machines are roughly the same as the x86 machines. The m5 counts are in
general much too high; this is because the simulator’s pop generation has not

yet been matched to that of an actual machine.

Table 6.2 breaks out uop counts for a few selected instructions, to show why
it is difficult to make generic statements about pop behavior. An additional
challenge is that op counts may vary from run to run, because unlike the retired

instruction counters, the pop counts include microcode, exception, interrupt,
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and various other effects [10, 72]. There is not always a static mapping between
pops and instructions; operations like floating point transcendental functions

can take varying numbers of instructions depending on the operands involved.

Another issue with pops is that hardware performance counters do not al-
ways measure the same results across architectures. Kenneth Hoste [68] found
that some architectures “fuse” the pops, making it difficult to compare results,

specifically between Nehalem and Core2 implementations.

Due to all of the issues found with pops, retired instructions may be the
best base metric to use when comparing x86 implementations. This might seem
counter-intuitive, because it sacrifices some of the fine detail provided by the

knowledge of pop behavior.

6.4 Evaluation Methodology

We evaluate x86 simulation using three different methods: the Valgrind DBI

tool, the m5 cycle-accurate simulator, and hardware performance counters.

6.4.1 Valgrind DBI-based Simulator

To test DBI-based simulation we use the Cachegrind [112] tool that comes with
the Valgrind [113] DBI infrastructure. This tool simulates a configurable single-

core cache and also can simulate a simple branch predictor.

We configure the cache simulator to have the same basic cache configuration

as the Phenom hardware described in Table 6.3, which means the command line
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Table 6.3: Configuration of AMD Phenom machine used for comparison

Processor 2.2GHz Phenom
out-of-order, 3-issue

16 arch registers

L1 Instruction Cache | 64kB, 2-way, 64B

prefetch 2 lines on miss

L1 Data Cache 64kB, 2-way, 64B
write-allocate, write-back
LRU, ECC, MOESI, 3-cycles
L2 Cache 512kB, 16-way, 64B
non-inclusive victim
9-cycles, per-core

L3 Cache 2MB,, 32-way, 64B
non-inclusive victim

shared by all cores

Main Memory 2GB DDR2

integrated memory controller
built-in prefetcher

options
--tool =cachegrind --cache-si nryes --branch-si mryes

--11=65536, 2, 64 --D1=65536, 2, 64 --L2=524288, 16, 64.

The average slowdown while running Cachegrind is 29x over baseline.

6.4.2 mb>5 Cycle-accurate Simulator

We use the m5 [22] simulator as a reference cycle-accurate simulator for our
study. It is currently one of only two readily available academic simulators

capable of running x86 binaries, the other being PTLsim [172].

mb can simulate multiple architectures, but we are primarily interested in
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x86 emulation. m5 can run both standalone statically linked binaries in syscall
emulation mode, as well as full operating systems in full system mode. Unfor-
tunately full system mode has not been tested for x86, so we are limited to using

syscall emulation mode.

mb5’s x86 support is new; so new that it was not working when we started
this work. We contribute a large number of patches that allowed the SPEC
CPU2000 benchmarks to run correctly to completion on the simulator, and most
of these patches have been merged into the project. There are still some limita-
tions to x86 support, most notably that x87 floating point is not implemented;

only binaries compiled to use SSE instructions will work.

Another issue with m5 is that x86 support is so new that only the simple
atomic model of execution is supported. This treats each instruction as a sin-
gle atomic entity. The detailed (in-order) and out-of-order models are not sup-
ported, which limits the experiments that can be run. This is unfortunate, but
the only real alternative (PTLsim) has show-stopping issues as well, leaving us

with no clear best choice for our experiments.

We configure m5 to match our Phenom machine described in Table 6.3 as
closely as possible without requiring code changes to the simulator. This limits
our changes primarily to cache parameter settings. We cannot model a branch
predictor, as that requires the non-working detailed execution model; the same

is true for speculative execution.

We use a development version of m5 checked out of the code repository on
16 November 2009, with patches added that enable full x86 support (mainly

some missing syscalls and instruction corner cases). We also add code which
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adds extra statistics dumping (to print instruction count as well as pop count,

and to dump stats at regular intervals).

The average slowdown of m5 running in simple atomic mode with caches

enabled 2882 times slower.

6.4.3 Reference Hardware

Table 3.2 lists the machines used in our experiments. The performance counters

we use are listed in Table 6.4.

We primarily use the Phenom (summarized in Table 6.3) for gathering re-
sults, as the cache simulator we intend to use supports the MOESI protocol for
AMD-style machines. The Phenom has a complicated memory hierarchy. It has
a 64KB, 2-way, 64 byte linesize, L1 instruction cache; on a miss it assumes tem-
poral locality and fetches two lines, the missing line and the one following. It
has a 64KB, 2-way, 64 byte linesize, L1 data cache which is write-allocate, write-
back, ECC and an LRU replacement policy. Cache coherence is maintained with
a MOESI-like protocol, and there is a latency of 3-cycles. The L2 Cache is per
core, 512KB, 16-way, 64 byte linesize, non-inclusive victim, with a latency of
9-cycles. The L3 Cache is system wide, 2MB, 32-way, 64 byte linesize, which
behaves as a non-inclusive victim cache. The CPU has an integrated memory

controller with a built-in prefetcher.
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Table 6.4: Hardware performance counters used for our experiments. We
did not use all of the counters listed. Some of the counters have
known errata. We gathered this list from PAPI [102] and the
AMD and Intel reference manuals [10, 72].

| stat Phenom Core 2 Pentium D
Retired retired_instructions instructions_retired instr_completed:nbogus
Instructions
Retired retired_uops uops_retired:any uops_retired:nbogus
Hops
Elapsed cpu_clk_unhalted unhalted_core_cycles global_power_events:running
Cycles
L1 dCache data_cache_accesses [1d_all_ref front_end_event:NBOGUS
Accesses uops_type: TAGLOADS: TAGSTORES
L1 dCache data_cache_misses I11d_pend_miss n/a
Misses
L1 iCache instruction_cache_fetches Ili_reads uop_queue_writes:from_tc_build:from_tc_deliver
References
L1 iCache instruction_cache_misses [1i_misses bpu_fetch_request:tcmiss
Misses
L2 Cache data_cache_missses + 12_rgsts:self:any:mesi | bsq_cache_reference:rd_2ndL_miss:rd_2ndL _hits:
References instruction_cache_missses rd_2ndL_hite:RD_2ndL _hitm
L2 Cache I2_cache_miss:data + 12_lines_in:self:any bsg_cache_reference:RD_2ndL_MISS
Misses I2_cache_miss:instructions
Branch retired_branch_instructions br_inst_exec branch_retired:mmnp:mmnm:mmtp:mmtm
Instructions
Branch retired_mispredicted_branch_instructions br_missp_exec branch_retired:mmnm:mmtm

Misses




6.4.4 Benchmarks

We use the SPEC CPU2000 [136] benchmarks for evaluation purposes, as they
are long enough to provide interesting results, but at the same time short
enough that the cycle-accurate results have a chance of finishing within a few

weeks.

The benchmarks were compiled with- 8 -nsse3 -funroll-all-Ioops

-ffast-math -static.

The vort ex benchmarks and some of the per | bk benchmarks did not
run; this is a limitation of the benchmarks themselves with modern compilers,
and not an issue with our simulation methods. The same benchmarks fail on

actual hardware.
We run full reference input sets for all experiments.

We ran all of the simulations on a large cluster of 3.4GHz Pentium D ma-

chines, identical to the system herein referred to as “Pentium D”.

6.5 Absolute Results

We first investigate the absolute results returned by our various simulation
methods. These are the results for one hardware configuration, without varying

any of the simulation parameters.
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Figure 6.3: L1 data cache accesses per instruction. This plot shows that
cache accesses per instruction is consistent across all actual ma-
chines, as well as the simulators. The MIPS results are very
different. SimPoint results are shown for comparison
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6.5.1 Phase Behavior Results

Figure 6.3 shows the phase behavior of L1 data cache accesses per instruction
for gcc. 166 (full results for SPEC CPU2000 can be found in Appendix G). The
three actual hardware implementations give practically identical plots for this
metric, which is encouraging. Valgrind and m5 also give similar results. The
MIPS results, while showing similar patterns, has many more instructions so
any direct comparisons cannot be made. Also shown on the graph are the Sim-

Point results and the results of un-guided simulation.

6.5.2 L1 Instruction Cache

Figure 6.5 shows actual and predicted L1 instruction cache miss rates. Ac-
tual hardware measures icache references, while the DBI tools measure total
instructions. In order to convert between the two, the average instruction size
is needed. On RISC this is a fixed value, but x86 has variable-sized instructions.
We scale the results based on an average number of bytes per instruction (shown
in Figure 6.4). On our Phenom reference platform, a 16-byte load from icache
is considered an instruction reference. The actual hardware does aggressive
prefetching, always fetching the next block. The Valgrind rates are relatively
close to actual hardware. m5 reports results much lower than real hardware, we

have not yet determined the cause of this discrepancy.
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Figure 6.4: Average bytes per x86 instruction. For integer benchmarks the
average is 4.0, for floating point it is 5.1. These values are
needed when extrapolating cache miss rates when given only
total retired instruction count.

6.5.3 Data Accesses per Thousand Instructions

Figure 6.6 shows data cache accesses per thousand instructions for the SPEC
CPU2000 benchmarks. Most of the architectures show consistent results, and
Valgrind and m5 are roughly the same. The one confusing point is the 32-bit
result; the 32-bit binary generates many more cache accesses on the same ma-
chine and kernel than a 64-bit binary. This could be a compiler difference; it
could also be the program having to split 64-bit memory accesses into two sep-

arate accesses.
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Figure 6.5: Instruction cache miss rate with integer benchmarks above and
floating point below.

6.5.4 L1 Data Cache

Figure 6.7 shows L1 data cache miss rates for CPU2000. The gcc benchmarks
have very high miss rates, in ways that the simulators do not expect. The rate is
much higher than the miss rate when running the equivalent 32-bit binary. This
is possibly due to the expansion to 64-bit pointers, as gcc is a pointer-heavy
code. We conduct extra performance counter measurements that show the gcc

benchmarks software prefetch more than the other benchmarks; this could be

polluting the cache.

Figure 6.8 adds additional points to the previous graphs. All of the results
presented are either simulating a Phenom-like cache or else running on an ac-

tual Phenom. 32-bit results are displayed, showing in detail that the gcc bench-
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Figure 6.6: Data Accesses per Thousand Instructions for the SPEC
CPU2000 benchmarks
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Figure 6.7: L1 data cache miss rate with integer benchmarks above and
floating point below.

marks have vastly fewer cache misses than the equivalent 64-bit versions. The
32-bit floating point benchmark results are also different than 64-bit; this is pos-
sibly due to x87 versus SSE math differences. In most cases the simulators are
overly pessimistic about the data cache rates. This is possibly because none of
the simulators are modeling hardware prefetching, nor are they properly mod-
eling the cache as exclusive. PPC results are shown too, on PPC Valgrind con-
tigured with the same cache parameters as x86 Valgrind. Those results are dif-

ferent, again showing that RISC traces cannot predict CISC results.
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Figure 6.9: L2 cache miss rates, actual and simulated. The simulators are
pessimistic; in the case of gcc severely so.

6.6 L2 Cache

Figure 6.9 shows L2 miss rates for CPU2000 on x86_64, both actual and simu-
lated. The simulated results are pessimistic, severely so in the cases of gcc and
swi m While large in relative terms, the absolute differences in the rates are rel-
atively small. The benchmarks with the largest L2 error are also the ones that
have large error with the L1 data cache, so this error might just be the L1 error

propagating to the next level of the hierarchy.
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Branch Miss Rate = actual x86_64 Phenom valgrind/cachegrind =m5
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Figure 6.10: Branch predictor results for Valgrind and actual hardware.
mb currently cannot simulate branch prediction for x86_64

6.7 Branch Predictor

Figure 6.10 shows branch predictor results for Valgrind and actual hardware.
mb results are not shown, as m5 currently cannot simulate branch predictors on
x86_-64. The results match surprisingly well for the integer codes, considering
Valgrind is modeling a simplistic 16k 2-bit up/down counter predictor. The
results are not as good for floating point results, which is a bit surprising as
typically floating point branches should be easier to predict. This could mean

that the Phenom has a predictor specially optimized for floating point codes.
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Figure 6.11: CPI results with integer above and floating point below. Val-
grind cycle times are estimated based on cache and branch
predictor behavior.

6.8 CPI

Figure 6.11 shows CPI results. The Valgrind cycle counts are estimated, based
on a formula similar to the one in Section 5.5.1. The Valgrind results are im-
pressively good for integer benchmarks, though they are off for gcc (which is
unsurprising as the data cache results for gcc are poor, skewing the cycle esti-
mate). The Valgrind floating point results are poor, possibly due to the lack of
good branch prediction results. The m5 results are poor overall, as it is simu-
lating a simple atomic CPU where only one instruction finishes at a time. Since
it lacks any super-scalar simulation at all, the cycles are always going to be off

compared to an out-of-order processor.
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Figure 6.12: Relative instruction cache miss rate ratios when moving from
32-bit to 64-bit

6.9 Relative Results

As with the RISC results, we present results that compare how the various meth-
ods predict improvement when changing an architectural feature. Unlike the
RISC case, none of the chips we have support changing architectural features
on the fly. Instead, we compare results when moving from 32-bit to 64-bit on
the same machine. Real hardware, Valgrind, and m5 all support running both
32-bit and 64-bit x86 binaries. Unfortunately m5 cannot run the full CPU2000
benchmarks in 32-bit mode due primarily to unimplemented x87 floating point
support. This severely limits the number of benchmarks that can be compared

using mb.

6.9.1 L1 Instruction Cache

Figure 6.12 shows relative icache results when moving from 32-bit to 64-bit.

While in general the simulated results track actual performance counter data,
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Figure 6.13: Relative L1 data cache miss rate ratios when moving from 32-
bit to 64-bit

the ratio is not as close as it could be. This might have to do with actual hard-

ware engaging in hardware prefetching.

6.9.2 L1 Data Cache

Figure 6.13 shows relative L1 data cache miss rate ratios when moving from 32-
bit to 64-bit. These results track much better than the instruction cache results.
The primary outliers seem to be the gcc benchmarks (discussed earlier) and the

eon benchmarks.

6.9.3 L2 Cache

Figure 6.14 shows relative L2 miss rate ratios. Unfortunately the integer results
are not good. Valgrind and m5 cannot predict gzi p or gcc behavior; this is
possible because those benchmark’s actual performance is dramatically worse

when moving to 64-bit. Valgrind does a much better job at predicting floating
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Figure 6.14: Relative L1 data cache miss rate ratios when moving from 32-
bit to 64-bit
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Figure 6.15: Relative branch predictor miss rate ratios when moving from
32-bit to 64-bit

point behavior.

6.9.4 Branch Predictor

Figure 6.15 shows the relative change in branch predictor results when moving
from 32-bit to 64-bit. m5 is not represented, as currently it lacks branch predictor

support for x86 and x86_64. Unfortunately it turns out that Valgrind only prop-
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Figure 6.16: Relative CPI ratios when moving from 32-bit to 64-bit

erly predicts a subset of the integer benchmarks. One unexpected data point
is the wildly different branch predictor accuracy when moving to 64-bit on real

hardware.

6.9.5 CPI

Figure 6.16 shows relative CPI results. Unfortunately Valgrind does a poor job
of predicting, although this is not surprising as Valgrind’s cycle count is only
an estimate. mb5 is even worse, but it has its own issues with cycle count, as
described in the absolute results section. Without major changes to the simula-
tor, it is not possible to use these tools to predict an architectural change of this

magnitude.
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6.10 Summary

Unlike the RISC results found in Chapter 5, we find that current tools and sim-
ulators are not up to the task of predicting performance on CISC systems. It is
possible that a more faithful model of the underlying architectures would gener-
ate better results. It is also possible that the 32-bit to 64-bit comparison has too
many variables; the RISC branch-prediction study might have been an easier

target for this type of analysis. This area of research could use further study.
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CHAPTER 7
MULTI-CORE VALIDATION CONCERNS

Chip multi-processing (CMP) systems retain all the validation concerns
found with single-core systems (as described in Chapter 4) while adding new
and more complex issues. We briefly address the issues encountered when ex-

tending our simulation methodology work to handle multiple cores.

7.1 Performance Counters

Most CMP systems support per-core performance counter measurements.
There are some counter issues that do not occur on single core machines; for
example most CMP systems have some number of resources that are shared
between the cores, such as L3 caches or memory controllers. When measuring
statistics for these structures, it can be unclear which core owns these counts.
These troublesome shared resources are sometimes referred to as the “uncore”
and the perfmon2 tool makes it possible to count these. Unfortunately this often
involves extra work, or else forces counts to be taken system-wide even if the

thread of interest is only running on one of the cores.

7.2 Deterministic Execution

The problem of deterministic execution becomes even more pronounced once
more cores are added to a system. The theoretical rock of stability in our previ-
ous analysis, the retired instruction count, no longer has any guarantees. Once

multiple threads are running, most hope of deterministic execution are lost. The
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Operating System takes on a larger role, as scheduling decisions by the OS can

vastly change overall system performance.

When performing validation, is is important that the simulator is running
the same exact code as the real hardware. This is much harder on CMP systems.
Many cycle-accurate simulators do not even model the Operating System at all,
and even if they did, synching the scheduling decisions between a simulator

and actual hardware is not trivial.

If execution cannot be made deterministic, then comparisons between simu-

lation and hardware are meaningless.

There has been a lot of work toward deterministic multi-thread execution
(see Section 2.9). Unfortunately many of the implementations are at the hard-
ware level and thus require low-level architectural changes. Some recent exam-
ples of such solutions are Capo [98], DMP [44], Delorean [97] and Flight Data
Recorder [165].

An ideal deterministic execution method for validation work would be
software-only, require limited changes to the executables being run, and should
work unmodified on both real hardware and in a simulator. The recent
Kendo [114] project meets all of these criteria. Kendo uses hardware per-
formance counters to enforce deterministic context switching via a modified
version of the pthreads library. The retired_stores performance counter is
used as a reference count as they (like us) found that other counters like (re-
tired_instructions) include interrupt counts and other undesirable noise. Using
Kendo adds an average overhead of 16% to execution time, which is unfortu-

nate, but worth the sacrifice.
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For our validation work we would have liked to use Kendo, but unfortu-
nately despite originally saying it would be available for download, at the time
of writing this the authors were still not ready to release it. Thus our validation
attempts were made without the use of CMP determinism, with all the prob-

lems involved therein.
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CHAPTER 8
MULTI-CORE RESULTS

Our original plan was to generate multi-core results using Valgrind /Ruby,
mb5, and actual hardware performance counters and then compare the results.
This would have been a natural extension to the RISC results in Chapter 5 and

the single-core CISC results in Chapter 6.

Unfortunately the standalone Ruby CMP cache simulator was not mature
enough to do this type of research. The m5 simulator’s x86_64 support was also
not ready for this type of experiment. Nor were other x86_64 simulators such as

PTLSim.

We investigated maybe using other architectures, but were limited by the
hardware we had access to that performance counters were fully working. This

eliminated Alpha, MIPS and SPARC.

In then end, what we present are some preliminary results showing that we
get sane memory access patterns across DBI, cycle-accurate and real hardware.

However the actual end results of the cache simulations cannot be compared.
8.1 Methodology
We run experiments using some of the SPEC OMP [137] benchmarks. We com-

pile with the Intel ICC compiler, as the benchmarks for some reason do not scale

when compiled with gcc 4.4.
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8.1.1 Performance Counters

We run our tests on a 4-core AMD Phenom system running the 2.6.29 kernel

patched to enable perfmon?2 [51] performance counter support.

The Phenom system has rich performance counter support, allowing counts
on a per-core basis. Detailed overall system counts are available for shared re-

sources, such as the L3 caches and the memory controller.

8.1.2 DBI Simulation

Various DBI tools have support for CMP simulation. For user-space only tools,
this involves intercepting the various thread and process creation system calls
and handling the situation appropriately. Some DBI tools, such as Valgrind,
handle the multi-thread case but can only themselves run one thread at a time.
This in effect serializes the multi-thread execution. Despite this serialization,
CMP results can still be effectively used if the traces generated have enough in-
formation to re-create the parallel execution. Running in a serial fashion though

does cause a linear slowdown in execution for each additional thread being run.

Not all DBI tools force serialization on multi-thread executions. The Pin tool
is capable of spawning a separate DBI instance for each thread, allowing a pro-
gram to be simulated in a manner much closer to native execution [65]. This

could lead to faster trace generation than with Valgrind.

For collecting DBI CMP memory traces we use Valgrind 3.5 with a custom
tool (based on our exp-bbv tool) that generates memory and instruction traces.

These traces are fed into an external program via a named pipe that counts and
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Figure 8.1: equake_mrun times for varying number of threads, both on
actual hardware and Valgrind

analyzes the references.

8.1.3 Cycle-accurate Simulation

We had hoped to use m5 for x86_64 multi-threaded cache simulation. However
the user-mode support for multi-core is not working, and nor is the full-system
mode that would allow running multithreaded benchmarks on top of a full sim-
ulated operating system. In the end we did not conduct any cycle-accurate mul-

ticore simulations.

8.2 Results

Figure 8.1 shows run times when running equake_mon real hardware and on
Valgrind. On real hardware the benchmark scales with number of CPUs, al-

though not purely linearly. Valgrind has interesting behavior; one would expect
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Figure 8.2: equake_m retired instruction counts for varying number of
threads, both on real hardware and Valgrind

the total run time to stay approximately the same, as for the benchmark the same
amount of total work is being done, it is just being split between cores. For the
one and two thread cases this holds, but adding additional threads dramatically
increases the run times. This could be due to an artifact with Valgrind’s internal
thread scheduling mechanism, possibly conflicting with the way the OpenMP

library distributes the work among threads.

Figure 8.2 shows per-thread retired instruction counts for equake_mon real
hardware and on Valgrind. In each case there is a helper scheduler thread run-
ning in addition to the shown threads, but it is proportionally so few instruc-
tions it is not visible on the graph. The overall retired instruction counts grow
as threads are added due to multi-threading overheads. This overhead is higher
on real hardware, due to locking overheads from concurrent execution that do
not occur under the Valgrind DBI tool. It is encouraging that the relative ratio of
instructions per thread is consistent between real hardware and simulation. The
Valgrind tool allows running experiments on more threads than the actual hard-

ware has available; this allows running experiments for machines with more
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Figure 8.3: equake_m L1 dcache access counts for varying number of
threads, both on real hardware and Valgrind

cores than currently available.

Figure 8.3 shows per-thread L1 DCache accesses when running equake_m
on real hardware and Valgrind. As before, there is an additional helper thread
too small to be visible on the plots. It is encouraging that the relative ratios of
memory accesses per thread is similar between hardware and Valgrind. Espe-
cially note that thread one has proportionately more accesses in both instances.
We cannot explain why the total number of memory accesses drops when mov-
ing to 8 threads on Valgrind. We do not have 8-core hardware so we do not
know if the same thing happens on an actual machine. We find it encouraging
that the cache results for Valgrind match so closely, as it gives hope that once a
multi-threaded cache simulator is available that with proper tuning it can pro-

duce outputs just as good as its inputs.
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8.3 Summary

Even though we are not able to generate the results from CMP cache simulation
on x86, we have conducted preliminary experiments that show that the data
cache accesses that would be fed into the simulator are sane and match real
hardware. This gives hope that once a CMP simulator becomes available, that
methodology similar to our single-core methodology could be used for valida-

tion purposes.
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CHAPTER 9
CONCLUSION AND FUTURE WORK

Our goal is to speed simulation times of architectural simulations without af-
fecting accuracy. First we investigate reduced execution methods, concentrating
on the SimPoint methodology. We find that SimPoint has much higher accuracy
than other commonly used methods, but it can still take long run times when
attempting to generate high accuracy results. We next look at using DBI tools,
which run orders of magnitude faster than cycle-accurate simulation, to gener-
ate results using full input sets. We find that it is simple to get good results using
DBI means on RISC platforms. Unfortunately we find it is not as simple to get
good results on more modern CISC machines. We begin preliminary investiga-
tions of whether the DBI method of simulation would work on CMP systems,

as opposed to single core machines previously investigated.

9.1 Results Summary

Simulation time is of critical importance to most computer architects. Many are
willing to trade accuracy by any means necessary so that their experiments can

finish in a reasonable amount of time.

Figure 9.1 shows speed versus accuracy tradeoffs for the various simulation
methods that we investigate. The results are for the CPU2000 benchmarks. Not
all of these are actual results; approximations were made where DBI simulation
is 376x slower than native, function simulation is 390x slower than native, and
cycle-accurate simulation is 3900x slower than native (these values match the

ones found with Qemu and SESC in Chapter 5). The results also assume per-
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Figure 9.1: Speed vs Accuracy tradeoffs of the various simulation methods
on SPEC CPU2000, assuming perfect simulation

fect results, that is the simulators generate the same results that performance
counters would. Actual error rates will be worse, accumulating error from the
simulator. The results show that for accuracy, nothing can beat DBI. Full in-
puts can be run in the time it takes to run 20 SimPoints in the cycle-accurate
simulator. Assuming that the same accuracy can be obtained with DBI as with
cycle-accurate, using DBI is almost always the winner. There are other simula-
tion methods that might also compare favorably; the SimPoint results assume
functional fast-forwarding for each run. If a method such as SimSnap [143] is
used to leverage snapshots, so that fast forwarding is instantaneous, then the

slowdown times would be reduced even more.

The best possible comparison would involve having the full SimPoint mea-
surements and accuracy including simulator overhead for both cycle-accurate

and DBI, but unfortunately we did not have time to generate those results.
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9.2 Future Work

The most important future work is the completion of the CMP work started
in Chapter 8. The various projects involved, most notably m5 and gem5/ruby
are under heavy development and may become usable at any time. Barring
that, PTLsim also may gain full CMP support and be ready for the experiments
we need. Once that happens, there is hope that DBI methods can be validated

against both hardware and cycle accurate simulators on CMP systems.

Another future work is to make use of the faster execution times enabled by
DBI-based simulation. One major use would be modeling DRAM systems in
tull detail, possibly by using DRAMsim [150]. The main problem holding back
detailed DRAM simulation is slow simulation time, something that is addressed

by or DBI simulation methods.

9.3 Conclusion

DBI-based methods make the best of the speed versus accuracy tradeoff in com-
puter architectural simulation. We encourage researchers to use DBI methods if
possible, to allow running longer-running more complete simulations, includ-
ing simulations of overlooked (due to speed) subsystems, such as DRAM and
I/0O. Modern systems continue to grow in complexity, and without moving to
faster methodologies, such as DBI, we will rapidly lose the ability to have any

confidence in simulation results.
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APPENDIX A
THE LOST ART OF ASSEMBLY LANGUAGE PROGRAMMING

When debugging simulators and DBI tools, being well versed in various as-
sembly languages helps immensely. Assembly is optimal for designing small
test cases, especially ones where the simulator is having errors before getting
past the C library. Obscure bugs and reproducible test cases for external distri-

bution are also best done in assembly.

Once you are well versed in writing tiny assembly language, all the tools are

available to explore the nature of code density on modern processors.

A.1 Benefits of Code Density

Dense code yields many benefits. The L1 instruction cache can hold more in-
structions, which usually results in fewer cache misses [139]. Less bandwidth
is required to fetch instructions from memory and disk [38], and less storage
is needed to hold program images. With fewer instructions, more data fits
in a combined L2 cache. Also, on modern multi-threaded processors, multi-
ple threads share limited L1 cache space, so having fewer instructions can be
advantageous. Denser code causes fewer TLB misses, since the code requires
fewer virtual memory pages. Modern Intel processors, for instance, can exe-
cute compact loops entirely from the instruction buffer, removing the need for
L1 I-cache accesses. Finally, the ability to consistently generate denser code can
conserve power, since it enables smaller microarchitectural structures and uses

less bandwidth [63, 149, 177, 19, 15].
Obviously, these benefits can come at a cost. For example, a denser ISA
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Figure A.1: Sample output from the | i nux_| ogo benchmark

might require larger (and thus slower) pipeline decode stages, more compli-
cated compilers, smaller logical register set sizes (due to limitations in the num-
ber of bits available in instructions), or even slower and more complex func-
tional units. Compilers tend to optimize for performance, not size (even though
the two are inextricably related): obtaining optimal code density often requires
hand-tuned assembly language, which represents yet another tradeoff in terms
of programmer time and maintainability. The current push for using CISC chips

in the embedded market [133] forces a re-evaluation of existing ISAs.

A.2 Methodology

Investigations of code density often use microbenchmarks (which tend to be
short and not representative of actual workloads) or else industry standard
benchmarks (which are written in high-level languages and thus are limited
by compiler code generation capabilities). As a compromise, we take an actual

system utility, but convert it into pure assembly language in order to directly
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9Cl

Table A.1: Summary of investigated architectures

. . instrlen | op GP int unaligned | auto-inc hw stat | branch | predi-
Type arch endian* | bits . .
(bytes) args regs 1d/st address div flags delay cation

VLIW IA64 || little | 64 | 16/3" | 3 127,zero no yes no yes no yes
Alpha little 64 4 3 31, zero no no no no no no
ARM little 32 4 3 15,PC no yes no yes no yes
m88k big 32 4 3 31,zero no no Q only no optional no
RISC MicroBlaze big 32 4 3 31,zero no no Q only** no optional no
MIPS big 32/64 4 3 31,hillo,zero yes** no yes no yes no
PA-RISC big 32/64 4 3 31,zero no no part no yes no
PPC big 32/64 4 3 32 yes yes Q only yes no no
SPARC big 32/64 4 3 63-527,zero* no no Q only yes yes no
m68k big 32 2-22 2 16 yes yes yes yes no no

s390 big 32/64 2-6 2 16 yes no yes yes no no

CISC VAX big 32 1-54 3 16 yes yes yes yes no no
x86 little 32 1-15 2 8 yes yes yes yes no no

x86_64 little 32/64 1-15 2 16 yes yes yes yes no no

AVR32 big 32 2 2 15,PC yes yes yes yes no no

CRISV32 little 32 2-6 2 16,zero,special yes yes part yes yes no

Embedded -

SH3 little 32 2 2 16,MAC no yes part yes yes no

THUMB little 32 2 2 8/15,PC no yes no yes no no

6502 little 8 1-3 1 3 yes no no yes no no

8/16-bit PDP-11 little 16 2-6 2 6,sp,pc no yes yes** yes no no
z80 little 8 1-4 2 18 no lim no yes no no

* on the machine we used

¥ 16-byte bundle has 3 instructions

* register windows, only 32 visible

** many implementations




interact with the underlying ISA. We hand-optimize it for size, attempting to
create the smallest binary possible, even if this potentially creates slower code.
The program we choose, | i nux_l ogo [151], is a utility available with many
Linux distributions. When given a sufficiently large input set, its characteristics
are similar to the st ri ngsear ch benchmark included with the MiBench [60]
suite. The program executes various syscalls to gather system information, then
displays this info along with a colorful ASCII penguin (Figure A.1 shows sam-

ple output).

The stock | i nux_I 0go program contains a multitude of features and com-
mand line options; we remove all but the minimum for simplicity. Remaining
code is divided into two parts: the first decodes and displays the text logo,
which is packed using LZSS compression [176, 140]; the second prints system
information, which is gathered by reading the Linux / pr oc/ cpui nf o file, in
addition to invoking the unanme() and sysi nf o() syscalls. Major subroutines
include string copying, string searching, integer to ASCII conversion, and cen-
tering routines. The code makes system calls directly to avoid C library over-
heads. Code is assembled with the GNU assembler and is linked with GNU 1d.
Executables are stripped of non-essential data using the sstri p “super strip”
program [124], an enhanced version of the UNIX strip command. Executables

are tested on actual hardware or under an emulator where hardware is unavail-

able.

We attempt to optimize each architecture’s code to the minimum possible
size without corrupting correct results. For RISC architectures with fixed-length
instructions this is easier: typically, there is only one way to express an opera-

tion, so there are limitations to clever implementations. Optimizations are lim-
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ited to trying to load 32-bit constants in a small area, using registers instead of
memory, and using tail merging to shorten procedure lengths. CISC architec-
tures provide many more opportunities to decrease code size, but it is much
more difficult to track optimizations due to variable-length instructions. Opti-
mizing for density requires frequent disassembler checks to verify sizes of indi-
vidual instructions. Interestingly, we find that the “do-everything” super-CISC
instructions available on these systems can often be implemented with a smaller

set of simpler CISC instructions.

A.3 Architectural Notes

Table A.1 lists relevant features of the architectures of interest. We present a

broad overview of these architectures.

VLIW: Very Long Instruction Word (VLIW) architectures are designed to
take advantage of parallelism in code. If the code is not inherently parallel (and
ours is not), code density suffers, and many operations are wasted as nops.
Writing compact VLIW code can be hard: resolving dependences correctly is
a difficult task for compilers, and an even more difficult task for programmers
writing assembly by hand. VLIW can be designed with code density in mind:
e.g., the WM [161] architecture could exploit two operations per instruction in

over two-thirds of all cases. The only VLIW architecture we investigate is Intel’s

1A64 [71].

RISC: Reduced Instruction Set Computers (RISC) emphasize simple archi-
tectures with easy to decode instructions. Instruction length is fixed at four

bytes, which necessitates inefficiency in instruction encoding. These are load-
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store architectures, which require moving memory values into registers before
operating on them (this negatively impacts code density). Some of these archi-
tectures stretch the definition of “reduced”; the PowerPC architecture has nine
different add instructions, and has the r | wi mi (rotate left word immediate then
mask insert) instruction, which takes five parameters. We investigate the Al-
pha [36], ARM [11], m88k [100], MicroBlaze [164], MIPS [96], PA-RISC [67],
PowerPC [70], and SPARC [142] ISAs.

CISC: Complex Instruction Set Computers (CISC) tend to have high code
density. Most CISC architectures have variable-sized instructions, which makes
processor decode more complicated, but allows for dense code. An example of a
dense “complex” instruction is the x86 one-byte | odsb instruction, which both
loads a byte from memory and increments a pointer. Another impressively com-
plex instruction is the VAX mat chc, which does a full “find substring x inside
of string y in memory.” Compilers often have difficulty using these instructions
appropriately, so this potential for density can be wasted. Also, these instruc-
tions may not be shorter or faster than a set of simpler instructions performing
the same operations. We investigate the m68k [101], s390 [69], VAX [46], x86 [73],
and AMD64 [7] ISAs.

Embedded: Modern advances in CPU design have pushed the limits of what
qualifies as “embedded”. We use the term to refer to any architecture with a
tixed two-byte instruction length, but capable of running a modern 32-bit Linux
kernel. These processors tend to have consistently small code sizes, but can
still be beaten by variable-instruction length CISC systems. We investigate the
AVR32 [12], CRISv32 [14], SH3 [126], and ARM THUMB [11] ISAs.
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Table A.2: Correlations of architectural features to binary size

(é?,zrfef}:itézls Architectural Parameter

0.9381 Minimum possible instruction length
0.9116 Number of integer registers

0.7823 Virtual address of first instruction
0.6607 Architecture has a zero register

0.6159 Bit-width

0.4982 Number of operands in each instruction
0.3129 Year the architecture was introduced
-0.0021 Branch delay slot

-0.0809 Machine is big-endian

-0.2121 Auto-incrementing addressing scheme
-0.2521 Hardware status flags (zero/overflow/etc.)
-0.3653 Unaligned load/store available

-0.3854 Hardware divide in ALU

8 and 16 bit: For comparison purposes we investigate older processors with
smaller word sizes. Such CPUs are still used for embedded systems, and they
are designed for use where code density is a much more critical concern. We

investigate the 6502 [99], PDP-11 [45], and z80 [175] ISAs.

A4 Code Density Findings

Table A.2 shows how architectural features contribute to code size. A positive
correlation means that high values of the feature increase code size; a negative
correlation means that high values decrease code size. Figure A.2 shows to-
tal binary sizes across the investigated architectures and Figures A.3, A4, A.5,
and A.6 show code sizes of various components. We detail causes of these

trends below.
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Figure A.2: Total size of benchmarks (includes some platform-specific

code, so does not strictly reflect code density)
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Figure A.3: Size of LZSS decompression code
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Figure A.4: Size of string concatenation code (machines with auto-
increment addressing modes and dedicated string instructions
perform better)
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Figure A.5: Size of string searching code (unaligned load instructions help,
since four bytes at arbitrary offsets can be compared at once.
CISC architectures as well as avr32 and MIPS benefit)
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Figure A.6: Size of integer printing code (hardware divide helps code den-
sity)

Minimum instruction length: Short instruction encodings help most with
respect to reducing density. Architectures with variable-length instructions, es-
pecially those with useful single-byte instructions (like x86 and VAX), can ac-
complish much work with little code. Fixed-length ISAs can be dense if all in-
structions are 16-bit (like AVR32 and SH3); RISCs with fixed 32-bit instructions
generate less dense code; and the VLIW generates the least dense code of all

platforms studied. Figure A.3’s LZSS decompression clearly demonstrates this.

Number of integer registers: Having fewer registers reduces the number of
bits needed to encode instructions, increasing code density. There is a tradeoff,
in that having fewer registers generates more loads/stores from spilling in load-

store architectures.

Virtual address of first instruction: Operating system design decisions af-
fect code density. If the virtual address space is configured so programs start
near the bottom of virtual memory, then a 16-bit constant is enough to point to a
small program’s entire memory. Constant 32-bit pointer loads are at least dou-
ble the size of 16-bit loads on most architectures, and 64-bit pointer loads are
even more wasteful. Using small system call numbers can help, too; avoiding

large immediate constants saves space in executables.
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Existence of a zero register: Zero registers are normally found in RISC ar-
chitectures, so they tend to correlate with less dense code. A zero register can
be simulated using one load instruction and sacrificing a register, so the feature

offers few benefits with regards to code density.

Bit width: Having a narrower bit-width leads to denser code, mainly due to

shorter immediate values for pointer loads and branch offsets.

Number of operations in instruction: Operation count directly affects the

size of instruction encoding.

Year of introduction: Somewhat surprisingly, age does not correlate highly
with code density. This is due to the many embedded architectures introduced

recently.

Branch delay slots: Branch delay slots can decrease code density due to
added nops. For our benchmark, slots can often be filled, so branch delay slots

cause no problem.

Endianess: Endianess has little impact on code density unless the program

operates on data in a non-native format.

Status flags: Upon completion of ALU operations, these flags (or condition
codes) are set as side effects to indicate that the result was zero, negative, an
overflow, etc. These flags can lead to denser code by eliminating the need for
comparison instructions before conditional branches. Most RISC designs avoid
status flags, as they add complexity and ordering dependencies to out-of-order

Processors.
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Auto-increment addressing: Auto-increment addressing modes allow ac-
cessing consecutive memory addresses without requiring separate increment
instructions. This is especially useful for accessing arrays, of which C strings
are a subset. String copying and concatenation, as in Figure A.4, benefit from

these instructions.

Unaligned memory access: Allowing unaligned loads and stores leads to
smaller code, especially for string manipulation. Unaligned 16 and 32 bit loads
permit arbitrary simultaneous access to consecutive bytes in memory. If align-
ment is enforced, achieving the same results requires a series of memory, shift,
and logical operations. Results in Figure A.5 demonstrate benefits of this fea-

ture.

Hardware division: A hardware divide instruction is often slower than us-
ing the equivalent multiply by the reciprocal [59] or lookup table-based division
routines, but it almost always takes fewer bytes in the instruction stream. Some
architectures only implement single-bit division routines that require software
pipelining; this can lead to less space-efficient code than otherwise undesirable
algorithms such as iterative subtraction. Integer printing code benefits greatly

from hardware divide, as in Figure A.6.

A.5 Density of Compiler-Generated Binaries

Hand-optimizing large programs in assembly language is impractical under
most circumstances. We therefore evaluate compact code generation using more
traditional methods. We choose to experiment with the x86 architecture due to

its popularity and high code density.
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Figure A.7: Total size of generated executables, stripped of debugging in-
formation.

We use a variety of C compilers and libraries to determine how small an
executable we can generate using off-the-shelf tools. We use the GNU gcc 4.2
compiler (gcc 4.1 for uClibc runs), the Intel C compiler version 9.1.038, and the
SunStudio 12 compiler, all under Linux. We use GNU libc 2.7 and the embedded
uClibc 0.9.27.

We experiment with different compiler optimizations. In general, we use
- 33; this usually optimizes for maximum performance. We also evaluate - Cs,
which optimizes for size. In practice, resulting executables are very similar.
The primary differences are lack of loop unrolling, use of the hardware divide
instruction instead of the faster multiply by reciprocal method, lack of function

inlining, and less aggressive padding of function entry points.

Figure A.7 shows that executable sizes vary by many orders of magnitude.
This is because statically linked programs contain the entire C library, which

represents an overhead of at least 450KB (when using glibc).

By writing code that avoids the C library (and using system calls directly),

we obtain executables only twice as large as hand-optimized codes. The remain-

135



ing reasons for larger code are:

A.6

setting up the stack frame pointer at function entry — this can be turned
off with the compiler option - - - foni t - f r ame- poi nter;

writing back to memory using 32-bit constants — due to pointer aliasing
issues the compiler must frequently write values to memory using 5-byte
instructions. The optimized assembler avoids aliasing and places more
values in registers;

loading of constants inefficiently — there are various slow (but smaller)
ways to load small constants on x86; and

avoiding string instructions — the compiler simply does not use the x86

specialized string instructions.

Related Work

Most code density research addresses the compressibility of instruction code

[158,

82, 39, 20, 80, 166, 85, 149, 160, 130, 27]. Usually what is compressed is

compiler-generated RISC or VLIW code, with compression ratios typically in

the 50-70% range. We show here that embedded and CISC ISAs yield smaller bi-

naries than RISC. Adding compression to a RISC architecture likely negates the

speed benefits and decoder simplicity that initially motivated the move away

from CISC.

Previous work compares multiple architectures, but our work is unique in

the number (21) considered. Kozuch and Wolfe [79] measure entropy and com-

pressibility of six different architectures (VAX, MIPS, SPARC, m68k, RS6000 and
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PowerPC). Hasegawa et al. [63] compare SH3 code density to that of code gen-
erated by gcc on 10 other platforms (m68k, 1A32, 1960, Sparclite, SPARC, MIPS,
AMD?29k, m88k, Alpha, and RS6000). They find results roughly similar to ours,
though they find the SH3 architecture generates smaller code than the x86 and
m68k by a small margin. Flynn, Mitchell, and Mulder [54] compare code density

of synthetic architectures that do not model actual systems.

Phelan [123] investigates features added to Thumb-2 to increase code den-
sity. Thumb-2 uses specialized instructions for enhanced constant support, lim-
ited predication, and compare-against-zero. These are similar features to those
we find useful for density in Section A.4. Halambi et al. [61] investigate the ben-
efits of using a reduced Instruction Set Architecture (rISA), such as THUMB and
MIPS-16. They test hypothetical architectures, finding that a hybrid approach

unlike any current reduced architecture should perform best.

Massalin’s Superoptimizer [93] cleverly generates extremely dense (and
non-intuitive) m68k and IA32 code by exhaustive search, but it only operates

on small blocks of code (i.e., it’s a highly tuned peephole optimizer).

A.7 Conclusions and Future Work

A 1987 article by Chow and Horowitz [34] quotes an early MIPS-X design doc-

ument:

“The goal of any instruction format should be: 1. simple decode, 2.
simple decode, and 3. simple decode. Any attempts at improved

code density at the expense of CPU performance should be ridiculed
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at every opportunity.”

Two decades later, the debate between prioritizing code density versus decoder

simplicity in ISAs continues.

We investigate code density of 21 different architectures, and find that very
high density levels can be achieved with proper planning of an ISA. To thor-
oughly exploit ISA density there must be cooperation between the operating
system, system libraries, and compiler. On the x86 architecture, even after elim-
inating the C library and choosing maximum compiler options, a factor of two
in code density can still be realized by hand-optimizing the assembly code. This
is much gre