
Tests for Equality of Variances with Paired Data 

* CHARLES E. McCULLOCH 

The normal theory test for equality of variances with paired data is shown 

to be nonrobust to violation of the assumption of normality. Nonparametric 

tests are shown to provide a much safer alternative with little loss of 

efficiency. 
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1. INTR.OOOCTIOII AND ROTATIOII 

The F-test for equality of variances in two independent normal samples 

is well-known to be nonrobust to the assumption of normality. For example, 

see Conover er aJ. (1981). Pitman (1939) proposed a test for paired, 

normally distributed data based on the correlation between the sums and 

differences within the pairs. Ekbohm (1981) conjectured that Pitman's test 

would also be nonrobust, though calculations by Bansal and Srivastava 

(1977) had not supported this conjecture for the two-sided test. They 

concluded that, "In each case the sum of the two-tail contents is not very 

different from the normal theory value. Hence, on the whole, the two-sided 

test is very little affected by nonnormality as compared to one-tailed 

tests." Bell, Rothstein and Li (1982) conducted a simulation which showed 

the size of Pitman's test could be larger than nominal for nonnormal 

distributions. They recommended the use of a method proposed by Rothstein 

er al. (1981), which jackknifes the log of the ratio of the sample vari-

ances. In Section 2 below, some calculations are done which shed light on 

the sensitivity of Pitman's test. A simple alternative test is proposed. 

In Section 3 are reported the results of a simulation study which is more 

extensive than the one described in Bell, Rothstein and Li (1982). 

We now establish the basic notation. 

(Xn,Yn) denote i.i.d. pairs of observations and let Dim Xi-Yi (1SiSn) and 

Pitman (1939) noted that Cov(Si,Di) • a 2 -a 2 and X y 

thus a test of H0 :a~=a~ is equivalent to H0 :p08 =0, where pDS denotes 

the population correlation between 01 and s1 . When (X1 ,Yi) are bivariate 

normal, (Di,Si) are also bivariate normal and therefore a test of H0 :p08-o 

can be made referring r 08 , the Pearson product-moment correlation coeffi-
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cient between Di and Si to the usual tables for significance. Explicitly, 

the two-sided test of H0 :a~·a~ versus HA:a~~a~ is given by: reject 

H0 if and only if lrnsl ~ ra. This test is recommended, for example, in 

Snedecor and Cochran (1980, p. 190); a table of r can also be found there 
a 

(Table Al1(i)). Finally, we will also need the following notation: 

and 
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2. PERFORMARCE OJ' PITMAR' S STATISTIC Aim Aif ALTERIIIAl'IVE 

The behavior of Pitman's test statistics under H0 :p08-o and hence the 

size of the test can be elucidated by calculation of Var(ntr08 ). Kowalski 

(1972) states that, "It is the variance of r which is most vulnerable to 

nonnormality • • ·." Also, for normally or approximately normally distrib-

t uted data when p08 mO, the distribution of n r 08 is well approximated by a 

standard normal distribution. Thus, calculation of Var(nfr08 ) should give 

valuable information. 

Before deriving the variance and the normal approximation, it is 

useful to note the following algebraic identity 

Lemma 

.. 

To derive the asymptotic distribution of r 08 we use the known fact 

that (m 2 , 0 ,m1 , 1 ,m0 , 2 ) is asymptotically multivariate normal (Cramer, 1946, 

p. 366) and hence a multivariate delta method can be applied. In the case 

of p08=0, the asymptotic distribution takes a simple form. 

Proposition. Let r 08 be the Pearson product-moment correlation of Di•Xi-Yi 

and Si•X1 +Y1 , where (Xi,Yi) are i.i.d. such that ~4 • 0 , ~0 • 4 and ~2 • 2 are 

finite and nonzero. 

(2.1) 

Proof. We follow the development of Serfling (1980, pp. 122-124). Regard-

ing r 08 as a function of its numerator and denominator we see that, under 

P08•0, it can be approximated by the (nonzero) differential 

(S2 -S2 )/E [(<s2 +S 2 ) 2 -4S2 )t] Since the numerator is asymptotically normal, X Y X Y XY . 
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the asymptotic distribution of ntrDS will also be normal. Since Pns•O, the 

mean will be zero and the variance can be calculated as 

where Var (·) denotes asymptotic variance and E [·]denotes asymptotic w w 

mean. To the requisite orders of n, 

Var(S~-S~) • Var(S~) + Var(S~) - 2Cov(S~,S~) 

~ [J14,0 
n-3 ] 1 [ n-3 a~] ... - -- a~ + - J1 n-1 n 0,4 n-1 

2 
+ 0 (~) - - { 11 -2a~ ] n 2,2 

1 
[J14,0 + llo 4 - 2J12 21 + o (~) .. -

n ' ' 
and 

Thus, 

Two Corollaries are immediate. 

Corollary: If, in addition to the assumptions of the Proposition, (Xi,Yi) 

are bivariate normal, then (2.1) simplifies to 

Corollary: If, in addition to the assumptions of the Proposition, Xi and 

Y1 are uncorrelated with J14 , 0-l10 , 4 , then (2.1) simplifies to 

t 1 
Var(n rDS) • 2 (~+2) 

where~ • kurtosis of Xi and Yi. 
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These corollaries shed much light on the behavior of rDS as a test 

statistic. Under the conditions of the second Corollary we see that the 

variance is larger (smaller) than the normal distribution case whenever the 

kurtosis is greater (less) than zero. Thus, for sample sizes large enough 

for the normal approximation to be valid, the size of the test will be 

larger (smaller) than nominal according as the kurtosis is greater (less) 

than zero. For an extreme case like the exponential distribution with ~·6, 

the variance will quadruple (nominal size .OS would be exceeded by a factor 

of 6). Such effects will not dissipate as the sample size increases. 

In the more general case, the size of the test will be larger 

(smaller) than nominal according as ~4 /a~-~2 , 2 /a~ is greater (less) than 

2(1-p~y). This is a multivariate version of heavy tailedness. 

An easy way to simulate correlated pairs of variables is to generate 

w1 and w2 which are independent with mean zero and variance one and then 

set 
X • ~ + aXWl 

(2.2) 
Y • ~y + ay(pW1+(1-p 2 ) w2) 

In investigating the correlation between X and Y, the means and variances 

<~x·~y·a~,a~) are irrelevant and it is easiest to take ~x=~y·O and 

ax•ay•l. In that case, the general formula for Var(ntr05 ) also simplifies 

as shown below. 

Proposition: Assume that the covariance structure between X and Y is the 

same as that of w1 and pW1 + (l-p 2 )tw2 , where w1 and w2 are independent 

with means zero, variance one and common fourth moment ~4 • E[Wll • ~W+3. 

Then 
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Var(ntr ) • 1 {p2 (3-p4)+(p4-I)) 
DS 2 

. t [ 2+k"w(l-pz > 1 
( 2. 3) 

Proof: Straightforward computations show that, under (2.2), 

E[X] • E[Y] • 0 

E[X2 ) • E{Y2 ) .. 1 

E[XY] - p 

E[X't] - }14 

E[Y't] - p'*p4 + 6p2 ( 1-p2) + (1-p2 )2}1 
4 

E[xzyzJ - p2p4 + (l-p2) 

Plugging these in to (2.1) yields (2.3). 

Remarks: Depending on whether the kurtosis is greater than or less than 

zero, the variance has its minimum or maximum at p=O. Figure 1 illustrates 

the two cases k"w•2 and k"w•-1.2 (the kurtosis for a uniform distribution). 

Thus Pitman's test can be expected to have maximum type I error rate at 

p•±1 for distributions with kurtosis less than zero and at p•O for distri-

butions with kurtosis greater than zero. It also implies that kurtosis 

greater than zero will lead to a liberal test, while kurtosis less than 

zero will lead to a conservative test. 

In their simulation study, Bell, Rothstein and Li (1982) found that 

the empirical sizes of Pitman's test were consistently too large. The 

results on Var(ntrDS) indicate why this is so since all of the distribu­

tions they used were heavy-tailed. However, the results also indicate that 

no simple change, such as an increase of the critical values, will improve 

the approximation to the null distribution. Thus, the suggestion by Bell, 
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Rothstein and Li (1982) to try to improve that approximation is probably 

not easily achieved. 

Bell, Rothstein and Li (1982) also evaluated a nonparametric test 

proposed by Rothstein ec a1. (1978). That test calculates the n pseudo-

values L-1' L_z• L 
-n 

(removing one observation at a time) for log 

g2fg2 
X y and rejects Ho: a2 •a2 

X y versus HA: a2J~.a2 
X y if jnti:;sLj exceeds a t-

distribution quantile with n-1 degrees of freedom. As an alternative to 

the above suggestion and to Pitman's test, we propose the use of Spearman's 

rank correlation coefficient on the Di and s 1 , denoted by rns· 

The use of ;DS has several advantages over the jackknife procedure. 

It is easily computed, it has an extensively tabulated distribution in the 

null hypothesis case of independence and it has known asymptotic relative 

efficiency to Pitman's test under a variety of distributions. In the next 

section we evaluate these tests via a simulation study. 
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3. A SIMDLAriOR STUDY 

A simulation study was performed to compare the size and power of five 

tests: 

PEARS: Pitman's test which uses Pearson's product-moment correla-

tion coefficient as a test statistic. The test is: reject 

H0 iff lrDSI ~ ra' where ra denotes the usual normal theory 

critical values. 

SPEAR: The proposed test based on Spearman's rank correlation 

coefficient. 

~ 

where r denotes the usual critical values (given in 
a 

Snedecor and Cochran, 1980, Table A11(ii)). 

JRATIO: Jackknife tests based on, respectively, log S~/S~, rDS' 

and Fisher's z-transform of rns· In each case, calculate 

JFISHER: pseudo-values L_1 , L_ 2 , L_3 ,···,L-n 

reject H0 if it is bigger than the critical value. In each 

case, preliminary simulations were run to see if the normal 

or t-distribution percentage points provided a better 

approximation to the critical values. The t-distribution 

was used for JRATIO and JPEARS. Normal percentage points 

were used for JFISHER. These tests were studied in Bell, 

Rothstein and Li (1982) and Rothstein e~ a1. (1981). 

Details of the simulation techniques are given in the appendix. 

Figures 2, 3 and 4 show the size of the tests for normally distributed 

data (nominal a is .10), sample sizes 10, 27 and 52 and a range of values 

of Pns· Only JPEARS failed to control the size to an acceptable level. It 

was therefore eliminated from further study. JRATIO appeared to be 
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slightly liberal for values of p close to -1 or 1. The sizes of PEARS and 

SPEAR, a check on the simulation, were within sampling error of the nominal 

sizes in all cases (due to discreteness, the sizes of SPEAR for n•lO are 

.096, .048 and .01 for the .10, .05 and .01 tests). 

Next, the sizes of the tests were investigated under nonnormal 

distributions. Using the device described by (2.2), X andY were generated 

from Wi which had exponential (EXPO), uniform(0,1)(UNIF), normal(0,1) 

contaminated with 10% normal(0,9) (N/N) and 5% and 1% standard Cauchy 

contaminating a normal(O,l) (N/C5 and N/C1). 

Figures 5, 6 and 7 show the sizes of the teats at a nominal a of .10 

for these nonnormal distributions. Only SPEAR came close to controlling 

the type I error rate. Performance of the other tests was especially poor 

for the exponential, N(0,1)/5% C(O,l) and the N(O,l)/10% N(0,9) 

distributions. 

Finally, Figure 8 shows the power of the tests for normal distribu­

tions. Of course, PEARS has the highest power, but the nonparametric tests 

are competitive. In view of the poor control of type I error by PEARS for 

nonnormal distributions, this seems like a small price to pay to achieve 

close to the proper size. 
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4. CONCLUSIOBS 

Theoretical results predicting the sensitivity of Pitman's test to the 

kurtosis of the underlying distribution were upheld by a simulation. 

Pitman's test was found to greatly exceed the nominal size for distribu­

tions with high kurtosis. A test based on Spearman's rank correlation 

coefficient was much better at controlling the type I error rate at close 

to nominal. It performed better than a nonparametric jackknife procedure 

proposed by Rothstein e~ a1. (1981). The test based on Spearman's correla­

tion also has advantages in terms of ease of computation and tabulation of 

its null distribution. 
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APPERDIX 

All simulations were run on an IBM PC-XT. Uniform pseudo-random 

numbers were generated via the method of Wichmann and Hill (1982). Normal 

pseudo-random numbers were generated via an acceptance-rejection version of 

the Box-Muller algorithm. All other distributions were generated using 

inverse c.d.f.'s. 

Each simulation utilized 3,600 replications. This number was chosen to 

estimate the size of the tests at a nominal et•.10 to within ±. 01 

(2 .9(.1) 01) 
3600 - • • The different tests were compared using common random 

numbers. More simulations were run than are reported here. The following 

additional simulations were performed: 

N • 27 p • 0,.9 all nonnormal distributions 

N • 27 p 0,.9 variance ratio a l, 1.5, 2, 3, 4, normal 

N • 52 p • .9 UNIF, N/C5, EXPO 

Various nonnormal power studies. 

Also, information for a nominal alpha of .05 and .01 was recorded in 

all the simulations. The details are available from the author. 
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FIGURE 2: Emprrrc sfzes at alpha=0.7 
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FIGURE 3: E mplrlc sizes at alpha=0.7 
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FIGURE 5: Empiric sizes at alpha=O.l 
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FIGURE 6: Empiric sizes at alpha=0.7 
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FIGURE 7: Empiric sizes at alpha=O.l 
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