TransFig: Portable Figures for TEX

Micah Beck*

TR 89-967
February 1989

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*This research was supported by NSF grant DCR 85-21394

TransFig: Portable Figures for TEX
Version 1.4-TFX Release 4

Micah Beck
Department of Computer Science
Upson Hall, Cornell University
Ithaca, New York 14853

TransFig is a mechanism for integrating figures into TEX documents.
Several “graphics languages” exist which achieve such integration, but none
1s widely enough used to be called a standard. TransFig’s goal is to main-
tain the portability of TEX documents across printers and operating en-
vironments. The central mechanism in TransFig is Fig code, a graphics
description format which is produced by the Fig interactive graphics ed-
itor. TransFig provides an automatic and uniform way to Translate Fig
code into various graphics languages and to integrate that code into a TEX
document.

1 TransFig

The TransFig package includes several translators between F 1g code and
other graphics languages (see figure 1). Programs shown in dashed boxes
are not part of the TransFig distribution, but are compatible with it. These
translators can be used directly to produce various graphics languages from
Fig code, but do not in themselves provide document portability. Each
graphics language requires different macro files to be loaded, or has a dif-
ferent command for specifying that a figure be included in the document.

TransFig allows these differences to be hidden behind a uniform TEX
interface. If this interface is followed, then a Makefile created by the
transfig command will translate Fig code into any of these graphics lan-
guages without changing the TgX document. To change to a different
graphics language, it is necessary only to rerun transfig, and then make.
Make can also be used to keep the translated code up to date when figures
change.

"The author’s Internet mail address is beck@cs. cornell. edu

fig |p1¢2f1g|

Fig code

T

fig2tex fig2ps fig2latex | |[fig2epic fig2pic

o

PiCTeX Post LaTeX (E)EPIC v
macros Script commands commands | —t~p-i-c- !
tpic
specials

Figure 1: Fig Code Translations

The graphics in this manual were created using Fig and integrated into
the document using TransFig.

1.1 File Name Conventions

Suppose that a document is to include a set of figures which are stored in
Fig code form. These should be in files with the name suffix .fig, for in-
stance figurel.fig, figure2.fig,...figuren.fig. TransFig will create
files figurel.tex, figure2.tex,...figuren.tex for \input to the TEX
document, and in some cases will create files with other suffixes. Addition-
ally, TransFig creates a file named transfig.tex which must be \input at
the start of the document.

\documentstyle{article}
\input{transfig} TransFig macro file
\begin{document}

\begin{figure}
\begin{center}
\input{figurei} i’th TransFig figure
\end{center}

\end{figure}

Figure 2: Layout of a TransFig TEX Document

1.2 Transfig TEX Documents

In order to use TransFig, a TEX file must follow the format shown in
figure 2. The the file transfig.tex must be \input before any TransFig
figure is encountered. At the point where the ith figure figurei is to be
inserted, the file figurei.tex is \input.

1.3 Using TransFig
The transfig command has the form

transfig [option]... [[control]... filename]...
Where option is one of the following:

-L language to translate into the specified language (default pict ex).
-M makefile to name the output makefile makefile (default Makefile).

-T tezfile to name the output TEX macro file tezfile (default
transfig.tex).

The language specifiers pictex, postscript, latex, (e)epic and tpic,
indicate translation into PiCTEX macros, PostScript, IATEX picture envi-
ronment, (E)EPIC macros, or tpic specials, respectively. See section 2 for

3

further details about these languages. The special language specifier null
causes the figures to be replaced by empty boxes of the appropriate size.

A control specifier sets a parameter which governs the translation of all
files to its left in the argument list, until it is overridden. A control specifier
must be one of the following:

-m magnification to scale figures by magnification (default 1.0).
-f font to set the default font family (default cmr).

-s size to set the default font size (default 12 x magnification).

Each file name specifies a Fig file, either with or without the fig
suffix. TransFig creates a file called Makefile to apply the appropriate
translator to the named files, and creates an appropriate transf ig.texfile.
Thus, to create a Makefile which will translate all figures in a directory
to IATgXpicture environment, with Computer Modern Bold as the default
font family, the command would be

transfig -L latex -f cmb *.fig

After running transf ig, simply run make to create the appropriate TEX
files. Make should be rerun whenever a Fig file is changed to recreate the
corresponding TgX file. To change between graphics languages, simply
run make clean to remove the files created by transfig, and then rerun
transfig.

1.4 Text in Figures and Portability

In order to be translatable into different graphics languages, F ig code
used in TransFig documents should use only those features which are sup-
ported by all of them. In particular, some graphics languages support
more sophisticated processing of text which is part of the figure than oth-
ers. PICTEX, for example, allows full use of TEX commands in text strings,
while PostScript does not.

The standard way to use text in TransFig figures is to use only straight
text with no TEX commands. The text font is determined by the translator
or the graphics language. A document which makes use of TEX commands
in text can still be created as a TransFig document, but it will not be
portable.

Similarly, some graphics languages have controlling commands which
are not understood by all (such as PiICTEX’s \nopictures). To create a
portable TransFig document, these commands should not be used. How-
ever, if portability is not an issue (as when developing a document), then
they can be used at any point after the \input{transf ig} command.

2 Graphics Languages and Fig Translators

TransFig’s goal is to provide a framework for including graphics which
maintains the portability of TEX documents across printers and operating
environments. The central mechanism in TransFig is Fig code, a graphics
description format which is produced by the Fig interactive graphics editor.
If this code is widely used as an intermediate form for figures, the builders
of other graphics tools may be attracted to produce compatible output.
The reference guide in appendix A describes Fig code in more detail.

2.1 Translations From Fig

TransFig currently translates Fig code into these graphics languages:
PiCTEX, PostScript, INTgX picture environment, and (E)EPIC. The Fig
translation programs corresponding to these languages are fi g2tex, fig2ps,
fig2latex, and fig2epic. The TransFig package also includes Fig2pic,
which translates Fig code into the PIC graphics language. The transfig
command supports the translation of Fig code into tpic specials (see be-
low) using translation programs fig2pic and tpic, which is not part of the
TransFig package. Each language may be appropriate in different operat-
ing environments or for different applications. A short description of each
language is given below:

PiCTEX is a set of TEX macros which implement simple graph-
ics objects directly in TEX. PiCTEX makes no use of pre-
or post-processors; the DVI files it generates are completely
standard, and can be printed or previewed in any environ-
ment where TEX is used. This result is achieved by us-
ing TEX integer arithmetic to do all plotting calculations,
and by drawing the figure using the period character as a

5

“brush”. As a result PICTEX is quite slow and requires a
large internal TEX memory.

PostScript (Ps) is a powerful graphics language which is gain-
ing acceptance as a standard. In an environment where DVI
code is translated into Ps before being printed, it is usu-
ally possible to insert a separately generated PostScript
file into a document, using the TEX \special command.
However, the resulting Ps file can only be previewed using
a PS previewer, and must be printed on a PS printer, such
as the Apple LaserWriter.

IATEX picture environment is a restricted graphics facility im-
plemented within IATEX. It is a standard part of every ver-
sion of IATEX, is processed quickly, and does not require a
large internal TEX memory. However, not every graphics
object which can be described with Fig code can be drawn
using the IATEX picture environment. Restrictions include
a limited set of slopes at which lines can be drawn, and no
ability to drawn splines.

EPIC is an enhanced version of the IATEX picture environment
which removes many restrictions. It uses no facilities out-
side of those needed for the IATRX picture environment.

EEPIC 1s a further enhancement of EPIC which uses tpic specials
to implement general graphics objects. It is subject to the
same software requirements as tpic.

tpic specials are a set of \special commands which produce
graphics instructions in the DVI file produced by TEX. How-
ever, the graphics in the resulting DVI file can only be pre-
viewed or printed using software which understands these
commands.

When TgX processes the file transfig.tex, it will print the message
“TransFig: figures in language” indicating which graphics language is
in use.

2.2 The Fig Graphics Editor

The interpretation of Fig code was originally defined by the F 1g graphics
editor and the program £2p, which translates Fig code into the PIC graphics
language. The Fig code reference guide in appendix A is derived from the
file FORMAT1.4 which is distributed with Fig Version 1.4 Release 2. It reflects
the operation of that release of Fig, and indicates intended uses for certain
fields which were not yet defined.

It is possible to extend the description of Fig code by specifying inter-
pretations for the undefined fields. This has been done in the TransFig
extension to Fig code (TFX), which is described in appendix B. TFX is sup-
ported by the TransFig translators, and by a version of the F 1g graphics
editor called Fig 1.4.FS.

Certain features of Fig code are specified by the file FORMAT1 .4 and so
are described in appendix A, but are not implemented in Fig Release 2.
Fig 1.4.FS implements these features, as well as the TFX extension. In
addition, it implements various enhancements to the F 1g user interface.

2.3 The pic to Fig Translator

The PIC-to-Fig translator allows graphics to be described in PIC, the lan-
guage of Brian Kernighan’s graphics preprocessor for Troff. The Fig code
produced by pic2figis compatible with that produced by Fig, and can be
edited with Fig. This translator allows users to create figures without em-
ploying a graphics editor. Pic2figis a modified form of the tpic program,
which was adapted from PIC itself.

3 Related Software

Software availability is subject to change, and this list may not be com-
pletely up to date.

EPIC is an enhancement of the IATEX picture environment which removes
many restrictions. It uses only the facilities which implement the
IATEX picture environment. EPIC was developed by Sunil Podar at
the State University of New York at Stonybrook, and is available via
anonymous FTP from CS.CAYUGA.ROCHESTER.EDU.

EEPIC is a further enhancement of EPIC which uses tpic specials (see be-
low) to implement general graphics objects. It is subject to the same
software requirements as tpic, although there is an “emulation pack-
age” which will implement most of EEPIC using the same facilities
as EPIC. EEPIC was developed by Conrad Kwok at the University of
California at Davis, (kwok@IRIS.UCDAVIS.EDU), and is available via
anonymous FTP from IRIS.

Fig is an interactive graphics editor in the style of MacDraw which runs
under the Suntools/SunView windowing system. It produces inter-
mediate code which can be translated into a variety of graphics lan-
guages, including PIC, Postscript, and PiCTEX.

Fig was developed by Supoj Sutanthavibul at the University of Texas
at Austin, (supoj@SALLY.UTEXAS.EDU), and is available via anony-
mous FTP from SALLY.

Fig 1.4.FS is a version of Fig Version 1.4 Release 2 which implements
various enhancements to the user interface, and also uses the TFX
extension to the definition of Fig code. Fig 1.4.FS was developed
by Frank Schmuck at Cornell University and is supported by Micah
Beck (beck@CS.CORNELL .EDU). It is available via anonymous FTP from
SVAX.CS.CORNELL.EDU.

F2p, F2ps translate from Fig code to the PIC graphics language and to
PostScript, respectively. These programs are distributed along with
some versions of Fig, but updated versions (Fig2pic and Fig2ps) are
available as part of the TransFig package.

Fig2tex, Fig2ps, Fig2latex, Fig2epic, Fig2pic translate from Fig code
to PICTEX macros, Postscript, INTEX picture environment commands,
(E)EPIC macros, and the PIC graphics language, respectively. They
are part of the TransFig package, and support the TFX extension to
Fig code. Fig2pic and Fig2ps are updated versions of F2p and F2ps
respectively.

IATEX is a standard macro package used for describing documents in TEX.
Part of this package is the IATEX picture environment, a restricted

8

graphics facility. The capabilities of this facility are described in sec-
tion 5.5 of IATEX, A Document Preparation System by Leslie Lamport.

Pic2fig is a version of Brian Kernighan’s PIC graphics preprocessor for
Troff. Pic2fig, which is a modified form of tpic (see below), has been
altered to produce Fig code. For Pic2fig distribution information,
contact Micah Beck of Cornell University (beck@CS.CORNELL .EDU).

PiCTEX is a set of macros for describing graphics in TgX documents.
PiCTEgX is implemented entirely within standard TgX, and requires no
pre- or post processing programs or special fonts. The main problem
in using PiCTEX is its slow operation (all calculations are done us-
ing TEX’s integer arithmetic) and large memory requirements. Many
PiCTEX users have turned to C implementations of TEX in order
to obtain memory sizes larger than are possible using the standard
Web/Pascal version.

PiCTEX was developed by Michael Wichura at the University of
Chicago (wichura@GALTON.UCHICAGO.EDU), and is available via anony-
mous FTP from A.CS.UIUC.EDU. It is also included as contributed soft-
ware with the Unix TEX distribution.

tpic is a version of Brian Kernighan’s PIC graphics preprocessor for Troff.
tpic has been altered to produce TEX \special commands which are
understood by some DVI print drivers and previewers. For information
about distribution of tpic, contact Tim Morgan of the University of
California at Irvine (morgan@ICS.UCI.EDU).

TransFig was developed by Micah Beck at Cornell University
(beck@CS.CORNELL . EDU), with major contributions by Frank Schmuck,
now of IBM, and Conrad Kwok of UC Davis. It is available via anony-
mous FTP from SVAX.CS.CORNELL.EDU.

Xfig is a version of the Fig graphics editor which can be compiled for either
the Suntools or X Windows Version 11 windowing systems. Xfig was
developed by Ken Yap at Rochester University
(ken@CAYUGA . CS.ROCHESTER. EDU) and is available via anonymous FTP
from CAYUGA.

A Fig Code Reference Guide

This guide describes the code produced by Fig version 1.4, which is not
compatible with the code produced by Fig version 1.3. A Fig 1.4 code file
has the following structure:

#FIG 1.4

global parameters
object description
object description

A.1 Comment Lines

The very first line is a comment line containing the version of the Fig format.
Programs which interpret Fig code verify compatibility by checking the first
line for this comment. All other lines which contain the character # in the
first column are treated as comments and are ignored.

A.2 Global Parameters

The first non-comment line consists of two global parameters:
fig resolution coordinate_system

Fields in a line of a Fig file are separated by blanks or tabs; newlines
terminate object descriptions. The fields of lines in Fig files are described
throughout this guide by tables like the one below. The fields must appear
in the order given in the table.

| Type | Field | Units (values) |
int fig_resolution pixels/inch
Fig value: 80
int coordinate_system | 1: origin at lower left corner
2: origin at upper left corner
Fig value: 2

10

The Type column specifies the type of the field, and is either int(eger),
float, or string. The notation + following the type indicates that the values
0 or -1 are interpreted as default values in this field. The rightmost column
of this table either defines the units in which the field is expressed, or lists
the possible values which the field can take. The notation DEFAULT in this
column indicates that no value other than the default values are allowed.
It is intended that future versions of Fig will define other values for these
fields, but that the default values will remain legal, thus providing backward
compatibility. These defaulted fields are discussed further in section A.5

The basic unit of position in Fig files is the pixel. While figures in a
Fig file are described at this resolution, the figure can be drawn at a higher
or lower resolution. Pixels are square, and so fig_resolution represents
position resolution in both the x and y dimensions.

Some values are expressed as symbols and their numerical values are
also listed. These symbols are defined in the header file object .h.

A.3 Object Descriptions
The rest of the file contains objects descriptions, having one of six types:
1. Ellipse.
2. Polyline, including Polygons and Boxes.
3. Spline, including Closed/Open Control/Interpolated Splines.
4. Text.
5. Circular Arc.

6. Compound object which is composed of one or more objects.
The following group of common fields appear in several object descrip-

tions, and so the are described here, and later are simply referred to by the
indicator common fields.

11

| Type | Field | Units (values) |

int line_style SOLID_LINE 0
DASH_LINE 1
DOTTED_LINE 2

int line_thickness | pixels

int + | color DEFAULT

int + | depth DEFAULT

int + | pen DEFAULT

int + | areafill DEFAULT

float | style_val pixels

For the dashed line style, the style_val specifies the length of a dash. For

dotted lines it indicates the gap between consecutive dots.

Arrow lines are used to describe optional arrows at the ends of Arc,
Polyline, and Spline objects. If an object has a forward arrow, then an arrow
line describing it follows the object description. If an object has a backward
arrow, then an arrow line describing it follows the object description and

the forward arrow description, if there is one.
An arrow line consists of the following fields

| Type | Field | Units (values) |
int 4+ | arrow_type DEFAULT
int 4+ | arrow_style DEFAULT
int + | arrow_thickness | DEFAULT
int arrow_width pixels
int arrow_height pixels

12

A.3.1 Ellipse Objects

| Type | Field | Units (values) —]

int object_code 0_ELLIPSE 1

int sub_type T_ELLIPSEBY RAD 1
T_ELLIPSE BY DIA 2
T_CIRCLEBY.RAD 3
T_CIRCLEBYDIA 4

common fields

int direction 1

float | angle radians

nt center.x, center_y | pixels

int radius_x, radius_y | pixels

int start_x, start_y pixels

int end_x, end_y pixels

The Ellipse object describes an ellipse (or circle) centered at the point
(center_x, center_y) with radii radius_x and radius_y, and whose x-axis
is rotated by angle from the horizontal. If the object describes a circle,

then radius_x and radius_y must be equal.

The fields start_x, start_y, endx and end.y are used only by Fig,
and are not used in drawing the object. If the ellipse is specified by radius,
then (start.x,start_y) is (centerx,center.y), and (end_x,end_y) is a
corner of a box which bounds the ellipse.
diameter, then (start_x,start_y) and (end_x,end_y) are the two corners

of the box which bound the ellipse.

A.3.2 Polyline Objects

I Units (values)

LType | Field

nt object_code 0-POLYLINE 2
int sub_type T_POLYLINE 1
T_BOX 2
T_POLYGON 3
common fields
int forward_arrow, | 0: no arrow
backward_arrow | 1: arrow

13

If the ellipse is specified by

The Polyline object description has an addition points line following any
arrow lines. The line consists of a sequence of coordinate pairs followed by
the pair 9999 9999 which marks the end of the line.

X1 Y1 X2 Y2... Xp ¥n 9999 9999
| Type | Field | Units (values) |
lint | x;,y: | pixels |
The Polyline object describes a piecewise linear curve starting at the
point (x1,y;) and passing through each point (x;,y;) for 1 = 2...n. If
sub_type is T_BOX or T_POLYGON then (x1,y;) and (x,, y,) must be identical.

If sub_type is T_BOX, then the line segments must all be a vertically oriented
rectangle.

A.3.3 Spline Objects

| Type | Field | Units (values)
int object_code 0O_SPLINE 3
int sub_type T_OPEN_NORMAL 0
T_CLOSED_NORMAL 1
T_OPEN_INTERPOLATED 2
T_CLOSED_INTERPOLATED 3

common fields
int forward_arrow, | 0: no arrow
backward_arrow | 1: arrow

The Spline object description has a points line following any arrow line
which has the same format as described above for the Polyline object de-
scription. If the sub_type of the spline is T_OPEN_INTERPOLATED or
T_CLOSED_INTERPOLATED, then an additional control points line follows the
points line. The line consists of a sequence of coordinate pairs, two coordi-
nate pairs for each point in the points line.

1x; 1y, rx; ry, 1x; 1y, rx; ry,... 1x, ly, rx, ry,
| Type | Field | Units (values) |
Lﬂoat] 1x;, 1y, rx;, Ty, [pixels]

The interpretation of Spline objects is more complex than of other object
descriptions, and is discussed in section A.4.

14

A.3.4 Text Objects

| Type | Field | Units (values)]

int object_type 0_TEXT 4

int sub_type T_LEFT_JUSTIFIED 0
T_CENTER_JUSTIFIED 1
T RIGHT_JUSTIFIED 2

int + | font DEFAULT

int + | font_size DEFAULT

int + | pen DEFAULT

int + | color DEFAULT

int + | depth DEFAULT

float | angle radians

int + | font_style DEFAULT

int height, length | pixels

int X, ¥ pixels

string | string

The positioning of the string is specified by the sub_type. The values
T_LEFT_JUSTIFIED, T_CENTER_JUSTIFIED, and T-RIGHT_JUSTIFIED specify
that (x,y) is the left end, center and right end of the baseline, respectively.
The height and length fields specify the box that the text fits into. These
specifications are accurate only for the fonts used by Fig.

The string field is an ascii string terminated by the character ’\01°.
This terminating character is not a part of the string. Note that the string
may contain the new-line character ’\n’.

15

A.3.5 Arc Objects

| Type | Field | Units (values) I
int object_code 0_ARC 5
int sub_type T_3_POINT_ARC 1

common fields
int direction 0: clockwise
1: counter
int forward_arrow, 0: no arrow
backward_arrow 1: arrow
float | center.x, center_y | pixels
int X1, Y1, X2, Y2, X3, V3 pixels

The Arc object describes a circular arc centered at the point
(center_x, center_y), starting at (x;,y;), passing through (x,,y,), and end-
ing at (x3,y3). It is drawn either clockwise of counter-clockwise as specified
by direction. Note that this description is quite overdetermined, as the
center and direction of the arc can be deduced from the three points of the
arc which are specified.

A.3.6 Compound Objects

| Type | Field | Units (values) |
int object_type 0_COMPOUND 6
int upperright_corner.x | pixels
int upperright_corner.y
int lowerleft_corner.x
int lowerleft_corner.y

The Compound object description describes a compound ob ject bounded
by the rectangle determined by the points

upperright_corner_x,upperright_corner_
19 g PP g y
lowerleft_corner x,lowerleft_corner.

y

It consists of all the objects following it until an object whose object_type
field is 0_END_COMPOUND (-6) is encountered. Compound objects may be
nested.

16

A.4 Splines

Specifying the interpretation of a Spline object description is more prob-
lematic than other graphics objects. A graphics object description can be
viewed as having two parts: an abstract description of the locus of points
which make up the object; and a set of appearance parameters which spec-
ify how the abstract object is to be represented. For example, a circular arc
has a very precise and well understood abstract definition, independent of
the width of the line used to draw it. Unfortunately, the abstract specifica-
tion of splines is more complex. The following descriptions come at second
hand; the author of this guide is not versed in spline algorithms, and so
may have garbled them. Hopefully, they will give the knowledgeable reader
some idea of the intended meaning of Spline objects.

Fig splines come in two major varieties: B-splines and Interpolated
splines. Each of these is available in open or closed versions. If the sub_type
field has the values T_OPEN_NORMAL or T_CLOSED_NORMAL then it describes a
B-spline. In these cases, the points line which follows contains the control
points for the spline. The spline does not actually pass through these
points, but they determine where it will pass, which is generally quite close
to the control points. B-splines are quite smooth.

If the sub_type field has the values T_OPEN_INTERPOLATED or
T_CLOSED_INTERPOLATED then it describes an interpolated spline. In these
cases, the points line which follows contains the interpolation points through
which the spline will pass. In addition, a control points line follows the
points line, which specifies two control points (1x;,1y;) and (rx;, ry;) for
each interpolation point. The i’th section of the interpolated spline is
drawn using the Bezier cubic with the four points (x;,y;:),
(rxi,v%;), (1xi41,1y;4;), and (Xi41,¥it1). Interpolated splines are not as
smooth as B-splines.

For either type of closed splines, the first and last points on the point line
(x1,y1) and (xn,yn) are identical. For closed interpolated splines, the last
pair of control points on the control points line, (1x,,1y,) and (rx,,ry,)
are the same as (1xy,1y,) and (rxy, ry,) respectively.

17

A.5 Defaulted Fields

Certain fields can only take a default value; the values 0 and -1 are both
used as defaults. They are identified in the field tables by the notation
DEFAULT in the the rightmost column. It is intended that future versions of
Fig code will define other values for these fields, but that the default value
will remain legal, thus providing backward compatibility. One extension to
Fig code is TFX, discussed in appendix B, which defines fields for text font
specification and area fill.
The intended use of some of these fields is discussed below:

depth This value adds a half dimension to Fig. It is useful
when we have overlapping filled objects and we want one
to obliterate another. An object can have only one depth
(including compound objects). An object that is in less
depth can obscure the one with greater depth if they over-
lap.

area_fill The stipple pattern (which will be aligned) for filling
object internals. For example, a filled arc will look like a
piece of pie.

pen This will define the shape of pen used in drawing ob jects.
It also includes the the stipple pattern for line filling. The
default pen is a circular pen with black filling.

color The color used to draw an object and its area fill.

B TransFig Extension to Fig Code (TFX)

Section A.5 discusses fields which are not used in Fig code version 1.4.
These fields have intended uses, but the interpretation of values in these
fields are not defined. This section describes an extension to the interpre-
tation of Fig code which gives an interpretation to some of these fields.
Because this extension is implemented by the Fig code translators in the
TransFig package, it is called the TransFig eXtension to Fig code, abbre-
viated TFX.

A TFX Fig code file will be correctly processed by Fig code translators
which do not implement TFX; the fields defined by the extension are ignored.

18

Conversely, since TFX extends the definition of Fig code, non-TFX Fig files
are correctly processed by TFX translators.

The first line of a TFX Fig Code file is modified to indicate that the
extension is used.

#FIG 1.4-TFX

The following Fig code fields are defined by TFX.

| Type | Field | Units (values) |
int depth no units
int + | areafill | DEFAULT
BLACK_FILL 1
DARK_GRAY FILL 2

MEDIUM_GRAY FILL 3
LIGHT_GRAY FILL 4
WHITE FILL 5

I Type] Field | Units (values) |
int + | font DEFAULT
ROMAN
BOLD
ITALICS
MODERN
TYPEWRITER
int + | font_size | points

[NV

Ot W

Depth, discussed in section A.5, determines which filled objects will obscure
other objects. Many graphics languages cannot fully implement area fill.
If the font (or font_size) field holds a default value, then the object is
assigned a font (or size) which approximates the appearance of the fonts
used by the Fig graphics editor. The font_style field is not used.

19

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif

