SCHOOL OF OPERATIONS RESEARCH
AND INDUSTRIAL ENGINEERING
COLLEGE OF ENGINEERING
CORNELL UNIVERSITY
ITHACA, NEW YORK 14853

TECHNICAL REPORT NO. 1032.

September 1992

Some Variants of Todd’s Low-Complexity Algorithm

by
Ai-Ping Liao?

1Center for Applied Mathematics, Cornell University, Ithaca, NY 14853.

Some Variants of Todd’s Low-Complexity Algorithm

Ai-Ping Liao!

Abstract

Todd [13] describes an interior-point algorithm for linear programming that
is almost as simple as the affine-scaling method and yet achieves the currently
best complexity of O(y/nt) iterations to attain precision ¢ based on the primal-
only potential function 9(z). In this paper we propose some variants of Todd’s
algorithm by considering two local models: (a). ¥—model: trying to reduce the
potential function 9(z) as much as possible; and (b). c—model: trying to reduce
the objective function ¢’z as much as possible, with polynomiality retained.
Numerical results are presented comparing these algorithms.

Key words. Linear Programming, interior point algorithm, potential func-
tion.

1Center for Applied Mathematics, Cornell University, Ithaca, NY 14853.

1

1 Introduction

Stemming from the seminal paper of Karmarkar [6], many polynomial-time interior-
point algorithms have been developed and many contributions have been made towards
both the theoretical and practical aspects of interior-point algorithms. Interior-point
algorithms can be roughly classified into the following categories: projective-scaling al-
gorithms, affine-scaling algorithms, path-following algorithms, and potential-reduction
algorithms. A very comprehensive bibliography for interior-point methods can be found
in Kranich [8].

Among the algorithms mentioned above, the affine-scaling algorithm, originally pro-
posed by Dikin [3] and rediscovered by Barnes [2] and Vanderbei-Meketon-Freedman [14],
has the simplest form and works well in practice although its polynomial status remains
unknown. The search direction used in the affine-scaling algorithm, called the affine-
scaling direction, together with the centering direction, the direction towards the an-
alytic center (Sonnevend [11]), forms the basic search direction for most interior-point
algorithms. Indeed, the polynomiality of most interior-point algorithms is obtained
by balancing the affine-scaling direction and the centering direction properly. One
nice way to handle the balance of these directions is the potential-reduction method.
Potential-reduction methods were first introduced by Karmarkar [6] and further studied
by Gonzaga [5], Ye [15], Freund [4], Kojima-Mizuno-Yoshise [7] and Anstreicher [1]. A
potential-reduction algorithm is motivated by seeking a constant reduction in a prop-
erly chosen potential function, and the balance between the affine-scaling direction and
the centering direction is automatically adjusted and polynomiality can be obtained.

Recently Todd [13] proposed a low complexity algorithm whose search direction is a
very simple combination of the affine-scaling direction and the centering direction. The
algorithm is based on a primal-only potential function ¥(z) and achieves the currently
best complexity of O(y/nt) iterations to attain precision ¢. The potential function ()
in Todd [13] is given implicitly and one only knows that its gradient lies somewhere in
a half-line. We note that Mizuno and Nagasawa [9] propose a strictly monotone variant
of Todd’s algorithm.

In this paper we will further study this potential function and propose some vari-
ants of Todd’s algorithm. In Section 2 we consider the)—model: trying to reduce the
potential function 1 (z) as much as possible based on the currently available informa-
tion. In Section 3 we consider another model, called the c—model: trying to reduce
the objective function ¢’ as much as possible, with polynomiality retained. We also
consider the c— model for the primal potential function:

67 (2,5) = ala(es) = 3 In(a;). (1)

Numerical results are presented in Section 4 comparing these algorithms.

2

2 The ¥y—model

We consider the linear programming problem in standard form:

min Tl

Az =b (P)
z2>0,

where A is m x n. Let F(P):= {z € R* : Az = b,z > 0} and F\(P):= {z € F(P):
z > 0}. We assume that F,(P) is nonempty, and that the set of optimal solutions of
(P) is nonempty and bounded. Let v(P) denote the optimal value of (P). The dual of
(P) is given by

max by

ATy +s=c (D)

s> 0.
Let F(D) := {s € R : ATy 4 s = c for some y and s >0} and F(D) = {s € F(D):
s > 0}. We note that the second assumption above implies that Fy(D) # @ which

can be proved by the alternative theorem. For any ¢ 2 0 we define the primal-dual
potential function to be

dq(z,s) := ¢ln(zTs) — Zln zj— Zln sj—nlnn (2)

for z € Fy(P) and s € Fy(D). Wealso use ¢(z, s) to denote é5(z,s) where § := n++/n.

All the algorithms we consider are in the affine-scaling framework, i.e., we first
find an initial point 2° € Fy(P), and at iteration k we take the affine transformation
z — % := X'z under which (P) is transformed to

Tz
b (P)

?

[y}l

in

1 :;,_,B
o il

z
2

where A := AX) and ¢ := Xyc. Also note that z*¥ — e — the all-ones vector. Find a
search direction in the scaled space, say d, and a step size A > 0. Set Z; := e+ Ad and
transform it back to the original space; we thus have z¥*! = X;z} = Xi(e + Ad) =
z* +)\Xk(i

In the scaled problem (P), the affine-scaling direction is given by

— & 1= —Pg¢, (3)
where Pj is the projection into the null space of A; the centering direction is
ep := Pge. (4)

3

If ¢, = 0, then it is easy to prove that all feasible points of (P) are optimal, and hence
z* is optimal in (P). We thus assume in the following that ¢, # 0. For each 3, we
define
d—ﬁ = -—ﬂép + e,. (5)
In particular we define d, 1= —ag, + €, Where a := Ege / égép, i.e.,
d, = argmin{||d|| : d = dg for some B}.

The search direction of Todd’s basic algorithm [13] is chosen as follows: if ||da|| > 0.3,
set d = d,/||d.]|; otherwise, set d = —&,/||c,||. The step size used in Todd [13] is 0.2.
By working with the primal-only potential function

() = min{$(z,s) : s € Fr(D)} = ¢(z, s(2)), (6)

Todd showed that his basic algorithm is an O(y/nt) iteration algorithm. About the
potential function ¢(z) we have the following property which is due to Todd [13]:

Proposition 2.1 If & € Fy(P) then inf{¢(Z,s) : s € F,(D)} is attained by a unique
3 € Fy(D). Write§ = s(2). If € Fy(P) with T < Tz, then T8 —2T3 < F5—-273,
where § = (%), § = s(&).

Note that ¢(A-1z,As) = ¢(z,s) for any positive definite diagonal matrix A. We
can therefore always scale so that our current iterate z* is e. We therefore focus on the
quantities in the scaled space and omit the overbars in our notation. For any ¢ > 0,
we denote

Is = —Pa(Vaty(e,5(e))) = ~Palr,rys(e) = ©)

_ q
= TaET T

=: —0cp + €p. (7)
The following is a standard result that can be found for instance in Ye [15].

Lemma 2.2 if Ad=0, ||d]| =1, and 0 < A < 1, then

do(e+ A, s) < ¢q(e,s) + AVagy(e, 8)Td + -2-—(—1—)\-2_————)‘) (8)

Thus if we can find a direction d with Ad = 0 such that dfd (= —V.¢,(e,s)"d)
is greater than or equal to some positive constant, we can reduce function ¢ by a
constant factor by choosing an appropriate step size A, and ¢ can be reduced by at
least as much. The larger of dfd, the more 3 can be reduced. Todd [13] shows that
the search direction d of his basic algorithm satisfies df d > 0.25.

Our first variant of Todd’s algorithm is motivated by trying to find a search direction
d so that dld is as large as possible, which in turn ensures a more promising reduction
for the potential function ¥(z) or a larger step size. We first investigate the value of

[1ds]l-

Proposition 2.3 For any ¢ >n+ v, ||ds|| = n, where n = % — Tfli'ﬁ .

Proof. Assume the contrary, so that ||ds]| < 7 for some ¢ > n + /n. Let s* =
e:“’ (e — ds) with s := s(e). We show in the following that

(a) st € F.,.(D)

(b) ls* — £e]| < 0.5,

(c) eTs+ < (1 _ m_)__.

The proof of () can be found in Todd [13] or Ye [15]. Suppose that (b) does not hold.
Then using the same argument of Ye [15] we have

eTs

T+
ge's
—e|® + I~

2
nels e~ el

ldsll? = (<) lls* ~

T+
q ge's
0.5%n LI
n+052 4n+1

which is a contradiction. (c) is true since
el'st els

— = —T;I—(eT(e —ds)) < %(n + llds]lx)

< %w«ﬁndan)

< (1-

f + 1)—'
Let g = n+ py/n for some p > 1. Using (b) and applying Lemma 1 of Ye [15] we have

nln(elst) — }; st — (nln(e”s) — zi:l ;) < 0.25. (9)

Using (c) we have

elst/n

pAIn(ET) = p/In(eTs) = Al
< l‘\/ﬁln(l‘\/ﬁ+n1)

1—1

IN

Adding (9) and (10) we have
¢q(e)3+) - ¢q(e, 3) < —1’:2._"’ +0.25 = -—-——1—— <0,

5

which contradicts the choice of s(e). Therefore ||ds|| > 7. o
Now we are ready to state our algorithm. As mentioned before we need only to
state the iterate in the scaled space.
Algorithm 1(in the scaled space):
Take fj < 7, say fj = 0.499 if n > 100.
If cTe, <0, let w=argmin{f>0: || - e, + e,|| > 7}; otherwise let w = argmin{g >
a: || = Bep+ el > 7} Set dy = —we, +ep and d = d,/\|d.]|- Take a step size Ao
(specified below), and set x4 = e + Aod.
We note that Proposition 2.3 ensures the existence of such w. This w can be obtained
by, at most, solving a quadratic equation of one variable.
Lemma 2.4 Suppose the search direction d is generated by Algorithm 1. Then d¥ds >
7.
Proof. If cJe, <0, since 6 := ;ri >0 and ||ds|| > 7, we thus have

did, = (=bc,+ ep)" (—wep + €5)

= dwllell* — (8 + "")Cgep + [lesl?
wW?epll” = (6 + w)cy e + llesl|” (since § 2 w)
Wepll® = (w +w)cgep + llesll?
1l
Therefore dfd = % > |ldo|l = 7.

Suppose cle, > 0. fw =, ie. || —ac + ep|| = 7, then
dgdw = dgda = dgda = ”danz'

Hence d}d = %%ff = |do|l > 7. fw # @, i.e., ||dal| < 7, then § > w (> a) (otherwise
a = ;& for some ¢ 2 n + /n contradicting Proposition 2.3) and

AVARY

i

djd, = (=bcp+ ep)” (—wep + &)
(=8 — a)ep — acy + e)T(—(w — a)e, — acy +)
(—(6 — @)ep + do) (—(w — @)cp + da)
= (6-a)w—a)lel”+ llda*
> (- a)llel + lldal® = l1dull”
Hence dfd = fi%% > ||du|| > 7. o
Note that we can take 7 = 0.4 and have dfd > 0.4 which is better than that of

Todd [13] (in which dfd > 0.25). If we take 7j = 0.4 then the step size can be taken,
for example, Ao = 0.4. Using Lemma 2.2 we have
(A -—29)7

¢q(6 + ’\Odrs(e)) S ¢‘1(e’3(6)) - 2(1 — 7—))
< (e, s(e)) — 0.02.

6

Or, if we seek larger decrease of the potential function we can take Ao = 0.2 and

dq(e+ Mod, s(€)) — dq(e, 5(€)) < 0.05. We thus have

Theorem 2.5 Algorithm 1 reduces the potential function ¢ (or 1) by at least a fired
positive constant at each iteration. If $(2°,°) = O(y/nt) for some s° € Fy(D), then
after O(y/nt) iterations we have =¥ with Tk —v(P) <278

One advantage of Algorithm 1 is that the parameter w can be used to induce a
lower bound as shown in the following procedure.
LB 1. Suppose the initial lower bound is zo. zo can be —oo. If w =0, 2p41 1= 2k
Otherwise, let zy := cTe — (n 4 v/n)/w and zk41 = max{zk, 24 }.

This procedure is similar to that in Todd’s first variant [13] and we also have

Lemma 2.6 Assume that cTe—zy, > eTs(e), so that zy, is a valid lower bound on v(P).
Then if zk41 is updated by LB 1, cTe — zx41 2> eTs(e) also, so that zxy1 is a valid lower
bound too.

Therefore a line search on the half line {e + Ad : A > 0} seeking to minimize

P . _Zj hlxj if Zg41 = —0O0,
¢y (2, 2k41) 1= { qln(cTz — zg41) — Ljlnz; if 2541 > —o00 (11)

can be employed and the O(,/nt) complexity preserved as shown in Todd [13]. Todd [13]
shows that a finite lower bound must be generated in O(4/nt) iterations. This argument
is also available for our procedure. However, in the following we show how to generate
z; > —oo if we know an upper bound of ¢(z°, s°), say #(z%,5°%) < k.

If w # 0 then the LB 1 gives z; > —o0. Otherwise, we have d,, = e,. Since
eTs(e) = (2°)7s(2°), (¢ — n)In((z°)"s(z%)) < «. Therefore

g 4 x
eTs(e) ~ (2°)Ts(z0) 2 ¢

We thus can take w = ¢2=* which does not alter our result. Hence z; = cfe—(n+
Vn)/q2™" = cTe — 2%

We mentioned above that Algorithm 1 can generate lower bounds; it can be, on the
other hand, improved by incorporating with a given lower bound. Suppose {zx} is a
sequence of lower bounds. During each iteration of Algorithm 1, if ¢Te — zk41 > €7 s(e)
and ?T?——-q;; > w we take F?}ZII as the modified w. By doing so the potential
function can be reduced by a larger amount or a larger step size can be employed. This
modification preserves the complexity of O(4/nt) iterations.

The following procedure, which can be found in Todd [13], generates better lower
bounds than those of LB 1.

LB 2. If there is some 8 > 0 with ¢, + (e — €,)/8 > 0, let B be the maximum one. Let

zpi=cle—cle—|le— e,]|2/B and set zg41 = max{zx, z4}.

7

With a lower bound we can improve our algorithm in two ways: first, the lower
bound may be used to improve our knowledge of the value of ds, thus a better search
direction can be obtained; second, it allows us to perform a line search seeking to
minimize qbf of (11) over a half-line hence a larger step size can be employed. By
combining these two strategies with the two lower bound generators, LB 1 and LB 2,
we have the following variants of Algorithm 1.

Algorithm 1a. Algorithm 1 with a line search using the lower bounds generated by
LB 1.

Algorithm 1b. Algorithm 1 with the modified direction using LB 1 and line search
with the lower bounds generated by LB 1.

Algorithm 1c. Algorithm 1 with the modified direction using LB 2.

Algorithm 1d. Algorithm 1 with the modified direction using LB 2 and line search
with the lower bounds generated by LB 1.

Algorithm le. Algorithm 1 with the modified direction using LB 2 and line search
with the lower bounds generated by LB 2.

We note that Algorithms la—1d have the complexity of O(y/nt) iterations, while
Algorithm le needs O(nt) iterations.

3 The c—model

As we know the “pure” affine-scaling algorithm works well in practice although its
polynomial status has not been verified. We thus consider the model that tries to be
as close to the affine-scaling algorithm as possible with polynomiality retained.

Let’s first modify Algorithm 1. We take 7 = 0.4. For maintaining a polynomial
complexity, we require that the search direction d = dg/ |lds]| for some B and satisfies
d¥d > 7 where 7 < 0.4 is a small positive constant. Under these constraints we want to

find such d with _Tl_nglli as large as possible. Since ds is unknown and the only information
about d;s is that 6 € I5 := [as, 00), where

a5 = { 0 if —cle, <0 and ||dsff 2 0.4 (12)

w otherwise,

we thus come to the problem

max:ggl—?
d = dg/||dg|| for some B, or d = —c,/||c5| (€)

dTd > 7 for all d € {ds : B € Is}
Lemma 3.1 The solution of problem (C) is given by

d= "cp/”Cp” if "c;l;da.s/”cp” 2T
ds,/\lds, |l otherwise

where

—b+V/b* —ac
Bo =
a
with
o = (asllell® = cpep)’ — llesll’s
b = (asllcpll* — cfep)(—ascy e + llesl®) + 727 s,
c = (—ascyep+llepl®)” = mllesll”.
Proof. We need only to consider the case when —cld,,/||co|| < 7. In this case,
problem (C) is equivalent to finding the largest 3 satisfying the constraints of (C).
Since —cy/|lcpll = limpco da/|ldsll, —cda,/llepll < 7 implies that there exists some
B. > 0 such that d% da,/||ds,|| < 7. On the other hand,
ddas/\|dull = lldull > 7. (13)

Thus, by the continuity, there must exist some fo > w > 0, such that
in‘odas/”dﬁo ” =T. (14)

Solving the above equation we thus get the solution stated in the lemma. The optimality
of this solution is verified by noting that d5d.,/||ds|| is a strictly decreasing function
for B € (w,00). o

Since fo > w, the search direction d = dg,/||dg, || satisfies —cI'd > 0. Therefore the
algorithm with the search direction given in the above lemma is strictly monotone in
the objective.

The solution given by Theorem 3.1 is complicated. For getting a simpler form of
the search direction we relax the model (C) with the following feasibility problem:

find d such that:
féf >0,
d = dg/||dg|| for some B,

dTd > 7 for all d € {dg : B € Is}.

(FC)

A simple formula of some solutions of (FC) is given in the following lemma.

Lemma 3.2 If0 < 7 < 0.2, then for any { such that (. < (< ¢~ with

cle .

ey = | (B l) ¥ —crep <0 and fldal > 04
(0, 0'412"72) otherwise,

d = d/|\d||, where

da,

lldas ||

—C

d= :
llesll

+¢

is a solution to (FC).

Proof. It is obvious by the definition of as that — Td > 0. We shall show in the
following that R
dTd > 7 for all d € {dg : B € Is}.

We first consider the case when

—cle, <0, ||do]l > 04 (15)

In this case, as = 0. Let d¢ = da, — Cl—ﬁl(fl—}-lcp, then d = d/||d|| = d¢/||d¢]|. By some

calculation we have

T L

dC da'5 - ”daGH C ”Cp” pda57 (16)
iz = 2 2 _ llda |l oy

”dC” - (1 +C)”dﬂéu 2(”Cp” pdaé' (17)

Subtracting half of (17) from (16) we thus have

Bday Nl | 1= C el
R

Since ||dy|| > 0.4, ||d¢|| > 0.4 (note that d; can be written in the form of (5) with
B = C%‘Eﬁ%) For any 0 < ¢ < 1, we have by (18),

(18)

ira,, - Bdus o 1]
Il

>022>2rT.

|

Now we suppose that (15) does not hold. In this case, a5 = w, thus —cld,; > 0.
We denote by 8 the angle between d and d,,. Obviously, cos @ > 1/4/1+ (2 and hence

Fday = g/ |d] = |[degll c050

lldas I/ /1 + ¢
> 0.4/y/14 ()2 =T,

Noting that d7dg > d¥d,, for any dg € {dg : B > as} since —cI'd > 0, the proof is
thus complete. a
Assume ¢ = n + \/n. Then the potential function ¥ (z) can be decreased by a
constant factor by taking a step in the direction defined in Lemma 3.1 or Lemma 3.2,
which leads to an algorithm of complexity of O(4/nt). In particular, if we take 7 = 0.2,
then we can take (, = 1 for all cases. We take (= {, = 1 and have
Algorithm 2(in the scaled space):
Take d = d/||d||, where

\Y

da& —Cp

+ 2.
lldagll llepll

10

d=

Set z, = e+ 0.25d.

It is easy to show that Algorithm 2 reduces the potential function 1 (z) by at least
0.008. We also note that all the search directions defined above lead to a strict decrease
in the objective function.

Let’s consider some modifications of Algorithm 2. As we mentioned in section 2, if
we have a lower bound then this lower bound can be used to improve our knowledge
of the value of ds. We now use the lower bound generator, LB 2, to modify Algorithm
2 and have
Algorithm 2a(in the scaled space):

If q/(cTe — zx41) > as, where {z:} is generated by LB 2, then we take q/(cTe — zky1)
as our new as and take d = d/||d||, where

7 da.s —%

= el Tl
Set 4 = e+ 0.25d.

We can also employ a line search to get a large step size and have
Algorithm 2b(in the scaled space):

Set ¢ = n + /m or ¢ = 2n. If ¢/(cTe — zx41) > as, where {21} is generated by LB 2,
then we take ¢/(cTe — zy41) as our new as and take d = d/||d||, where

. d —c
d=—4_ 2.
ldasll ~ llesll

Search on the half-line {e + Ad : A > 0} seeking to minimize

oF(z, 2k41) = gln(cTz — zx41) — Zln ;.
i

Let A, be the output of this search and set z; = e + A.d.
If we choose 7 = 0.001 in Lemma 3.2, then we have the following solution

d =d/|d|, (19)
where p
d= 28 (2
ldasll ~ llesll
and

100 otherwise. (20)

Use (19) as the basic search direction, incorporating with LB 2 for improving the search
direction and a line search, we have

Algorithm 3(in the scaled space):

Set ¢ = n+ y/n or ¢ = 2n. If ¢/(cTe — 2p41) > as, Where {21} is generated by LB 2,
then we take q/(cTe — zx41) as our new as and take d = d/||d||, where

daa —Cp
lldesll el

11

Cim { 1 if —cTe, <0, ||da]l > 0.4

d=

+¢

and ¢ is given by (20). Search on the half-line {e + Ad: A > 0} seeking to minimize

oF (z,2041) = gn(cTz — zr41) — Zln z;.
J

Let A, be the output of this search and set z4 = e + A.d.

Algorithm 2a has the complexity of O(+/nt) iterations, while Algorithm 2b and
Algorithm 3 have the complexity of O(nt) iterations since the line searches in Algorithm
2b and Algorithm 3 cannot guarantee a constant decrease for the potential function

().
We note that these models apply also to the algorithms of Freund [4], Gonzaga. [5]
and Ye [15] where the direction ds := —P4(Vady(e, 8)) is explicitly given by letting

§ = q/(eTs) in (7). We thus can get the corresponding c—models by replacing the
interval I5 in Lemma 3.1 and Lemma 3.2 with the singleton {6 := q/(eTs)}. These
variants maintain the same complexity as the original algorithms.

4 Computational results

The test problems were generated in the same way as in Todd [13], i.e., for a given m
and n, we generated each entry of A, y and s as an independent standard Gaussian

random variable, then set b = Ae and ¢ = ATy + |s|, where [s] := (Is;]); the initial
solution was z° = e. We also used the same termination criterion as Todd [13]:
(Tz —)/ max{L, |c"z|} < 107* (21)

where z = zF 4+ Apaxd® With Amax = max{X : ¥ + \dF > 0}

We tested the following algorithms: Algorithm 1 with 7 = 0.4 and the step size
Ao = 0.4; Algorithm la; Algorithm 1b; Algorithm Ic; Algorithm 1d; Algorithm 1le;
Algorithm 2 with ¢ = n + /n; Algorithm 2a with ¢ = n + /n; Algorithm 2b with
g = n+ +/n and ¢ = 2n; Algorithm 3 with ¢ = n + v/n and ¢ = 2n. We used
the termination criterion (21) and z; was generated either by LB 2, if the procedure
LB 2 was involved, or, otherwise, by LB 1. For one 50 x 100 problem, we tested all
these algorithms and the results are given in Table 1. All runs were performed using
PRO-MATLAB [10] Version 3.5h on a Sun SPARCstation 2.

Among these algorithms, Algorithm 2b and Algorithm 3 (both with ¢ = n ++/n
or ¢ = 2n) are the best. This is because Algorithm 2b and Algorithm 3 employ a line
search and a better lower bound generator (LB 2) which improve the search direction
and achieve a larger step size.

We solved ten random 50 x 100 problems using Algorithm 3. With ¢ = n+ Vn, the
average number of iterations was 12.5, with Ak/Amax typically 0.88; with ¢ = 2n, the
average number of iterations was 10.5 and the typical Ax/Amax was 0.97.

We also solved some larger problems and the results are reported in Table 2 which
gives the average number of iterations required for five random problems and Algorithm
3 (with ¢ = 2n). The data in the last 3 rows are taken from Todd [12], and we quote
them for a comparison. (Data in parentheses are the corresponding typical Ax/Amax-)

12

Table 1: Computational results on a 50 x 100 problem.

Algorithm Number of iterations | Typical Ax/Amax
Algorithm 1 167 0.08
Algorithm la 95 0.14
Algorithm 1b 95 0.14
Algorithm 1c 131 0.08
Algorithm 1d 104 0.10
Algorithm le 13 0.88
Algorithm 2 220 0.05
Algorithm 2a 208 0.05
Algorithm 2b, ¢ =n ++/n 12 0.88
Algorithm 2b, ¢ = 2n 11 0.98
Algorithm 3, ¢ =n ++/n 12 0.88
Algorithm 3, ¢ = 2n 11 0.98

Table 2: Computational results of Algorithm 3.

Todd’'s Variant 2
Todd’s Variant 3

12.2(0.96 ~ 0.99)
13.6(0.88 ~ 0.99)

13.6(0.96 ~ 0.99)
16.0(0.88 ~ 0.99)

13.8(0.96 ~ 0.99)
18.2(0.88 ~ 0.99)

100 x 200 360 x 400 300 X 600 160 x 8§00
Rlgorithm 3, ¢ = 2n 11.2(0.98) 11.8(0.98) 13.6(0.98) 14.0(0.98)
Affine.scaling 11.8(0.95) 12.8(0.95) 13.8(0.95) 14.4(0.95)

14.4(0.96 ~ 0.99)
19.2(0.88 ~ 0.99)

13

5 Conclusion

The potential function 1 (z) is the only primal-only function we know that can ensure
a bound of O(y/nt) iterations. Usually, given a potential function, the search direction
is defined as the projection of the negative of the gradient of this potential function.
However, here we do not know this quantity for the function 1(z); the only information
about ds := —Patp is that it lies somewhere in a half-line, i.e. ds = —6¢, + €, and
6 € Is:={B: B > as}. Trying to find a fo such that dg, /|ldg, | is as close to ds/||ds||
as possible leads to our first model: the y—model. On the other hand, it is well known
that the “pure” affine-scaling algorithm works well in practice, though its polynomial
status is still unknown. We thus try to find a search direction that is as close to the
affine-scaling direction as possible with polynomiality retained. This is the motivation
of our second model: the c—model.

By choosing different parameters in these models, we have different algorithms.
Especially, when there is a lower bound, we can use it to improve our knowledge of
the value of &, thus a better search direction can be obtained. We can also employ
a line search to get a larger step size. These two strategies associated with the lower
bound improve the efficiency of our algorithms dramatically. As a matter of fact, more
efficient algorithms can be obtained if there is a better lower bound generator.

Acknowledgment: I would like to thank Professor Michael J. Todd for his constant
help and encouragement. I am also very grateful to him for his studying the early
version of this paper and for his helpful suggestions and corrections.

14

References

[1]

[2]

3]

K. M. Anstreicher. A combined phase I — phase II scaled potential algorithm for
linear programming. Mathematical Programming, 52:429-439, 1991.

E. R. Barnes. A variation on Karmarkar’s algorithm for solving linear programming
problems. Mathematical Programming, 36:174-182, 1986.

L 1. Dikin. Iterative solution of problems of linear and quadratic programming.
Doklady Akademii Nauk SSSR, 174:747-748, 1967. Translated in : Soviet Mathe-
matics Doklady, 8:674-675, 1967.

R. M. Freund. Polynomial-time algorithms for linear programming based only
on primal scaling and projected gradients of a potential function. Mathematical
Programming, 51:203-222, 1991.

C. C. Gonzaga. Large steps path—following methods for linear programming,
Part II : Potential reduction method. SIAM Journal on Optimization, 1:280-292,
1991.

N. K. Karmarkar. A new polynomial-time algorithm for linear programming.
Combinatorica, 4:373-395, 1984.

M. Kojima, S. Mizuno, and A. Yoshise. An O(y/nL) iteration potential reduc-
tion algorithm for linear complementarity problems. Mathematical Programming,
50:331-342, 1991.

E. Kranich. Interior point methods for mathematical programming : A bibliogra-
phy. Discussion Paper 171, Institute of Economy and Operations Research, Fer-
nUniversitit Hagen, P.O. Box 940, D-5800 Hagen 1, West—Germany, May 1991.
The (actual) bibliography can be accessed electronically by sending e-mail to
"netlib@research.att.com’ with message 'send index from bib’.

S. Mizuno and A. Nagasawa. Strict monotonicity in todd’s low-complexity algo-
rithm for linear programming. Technical Report, Dept. Prediction and Control,
Tokyo Institute of Technology, Oh-Okayama, Meguro-ku, Tokyo 152, Japan, 1991,
to appear in Operations Research Letters.

C. B. Moler, J. Little, S. Bangert, and S. Kleiman. Pro-Matlab User’s Guide.
MathWorks, Sherborn, MA, 1987.

G. Sonnevend. An ”analytic center” for polyhedrons and new classes of global
algorithms for linear (smooth, convex) programming. In A. Prekopa, J. Szelezsan,
and B. Strazicky, editors, System Modelling and Optimization : Proceedings of
the 12th IFIP-Conference held in Budapest, Hungary, September 1985, volume 84

15

of Lecture Notes in Control and Information Sciences, pages 866-876. Springer
Verlag, Berlin, West-Germany, 1986.

[12] M. J. Todd. Playing with interior points. COAL Newsletter, 19:17-25, August
1991.

[13] M. J. Todd. A low complexity interior point algorithm for linear programming.
SIAM Journal on Optimization, 2:198-209, 1992.

[14] R. J. Vanderbei, M. S. Meketon, and B. A. Freedman. A modification of Kar-
markar’s linear programming algorithm. Algorithmica, 1(4):395-407, 1986.

[15] Y. Ye. An O(n®L) potential reduction algorithm for linear programming. Mathe-
matical Programming, 50:239-258, 1991.

16

