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All organisms engage in trophic interactions, as consumers of or as resources for other 

organisms in a food web.  And all organisms move through space, sometimes dispersing to a 

new location, where they still engage in trophic interactions, but in a different food web.  As a 

result, dispersal connects not just populations of organisms across space, but also the food 

webs in which they exist.  This dissertation comprises five studies examining how dispersal 

and trophic interactions combine to influence the spatial dynamics of populations and food 

webs.  In addressing this topic, I utilize theoretical and empirical approaches, with the 

empirical component focused on a system of freshwater rock pools on Appledore Island, 

Maine, USA. 

In Chapter One, I use a set of mathematical models describing a simple two-patch 

predator-prey metapopulation to show that the inherent variation in the timing of demographic 

events (called demographic stochasticity) qualitatively alters the effect of dispersal on trophic 

interactions.  Chapter Two describes the dominant food chain in the Appledore rock pools and 

shows how the age structure of the apex predator (Trichocorixa) population drives within-

pool trophic dynamics through allometric increases in per capita consumption rates.  I begin 

exploring dispersal in the Appledore pools in Chapter Three, where I examine the ability of  

Larus gulls to disperse invertebrates between pools.  I combine experimental and 

observational studies to show that gull-mediated dispersal occurs frequently enough to 

homogenize the taxonomic composition of the pools and may be the main mode of dispersal 

for many taxa that cannot actively disperse.  The apex predator Trichocorixa, however, can 



 

fly among pools, and their flight is the focus of Chapter Four, where I show that 

Trichocorixa’s high, yet variable, dispersal rate combines with high, and variable, rates of 

population turnover to cause complex spatial population dynamics.  And in Chapter Five, I 

explore how Trichocorixa’s actions as a frequent disperser and a voracious predator may 

combine to drive the spatial dynamics of their prey Moina.  In particular, because 

Trichocorixa emigrates frequently more when Moina are in lower densities, they are not 

likely to drive local Moina populations extinct, potentially promoting spatial food-web 

persistence. 
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CHAPTER 1 

 

 

DEMOGRAPHIC STOCHASTICITY REDUCES THE SYNCHRONIZING EFFECT OF 

DISPERSAL IN PREDATOR–PREY METAPOPULATIONS
1
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effect of dispersal in predator–prey metapopulations. Ecology 93:1517–1524.  Copyright 

Ecological Society of America 2012; reprinted under terms of copyright agreement. 
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ABSTRACT 

 

Dispersal may affect predator–prey metapopulations by rescuing local sink 

populations from extinction or by synchronizing population dynamics across the 

metapopulation, increasing the risk of regional extinction. Dispersal is likely influenced by 

demographic stochasticity, however, particularly because dispersal rates are often very low in 

metapopulations. Yet the effects of demographic stochasticity on predator–prey 

metapopulations are not well known. To that end, I constructed three models of a two-patch 

predator–prey system. The models constitute a hierarchy of complexity, allowing direct 

comparisons. Two models included demographic stochasticity (pure jump process [PJP] and 

stochastic differential equations [SDE]), and the third was deterministic (ordinary differential 

equations [ODE]). One stochastic model (PJP) treated population sizes as discrete, while the 

other (SDE) allowed population sizes to change continuously. Both stochastic models only 

produced synchronized predator–prey dynamics when dispersal was high for both trophic 

levels. Frequent dispersal by only predators or prey in the PJP and SDE spatially decoupled 

the trophic interaction, reducing synchrony of the non-dispersive species. Conversely, the 

ODE generated synchronized predator–prey dynamics across all dispersal rates, except when 

initial conditions produced anti-phase transients. These results indicate that demographic 

stochasticity strongly reduces the synchronizing effect of dispersal, which is ironic because 

demographic stochasticity is often invoked post hoc as a driver of extinctions in synchronized 

metapopulations. 

 

INTRODUCTION 

 

Dispersal is a fundamental process in predator–prey metapopulations, as the 

movements of individuals connect spatially separated patches of locally interacting prey and 
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predators (Hanski 1998). Dispersing individuals can increase metapopulation persistence by 

rescuing local populations (subpopulations) from extinction or recolonizing patches after local 

extinctions (Brown and Kodric-Brown 1977). In these situations, dispersal is able to 

overcome the risk of local extinction that would otherwise occur as the result of either 

deterministic factors or demographic stochasticity. The benefits of dispersal come with a 

potential cost, however, as dispersing individuals may synchronize predator–prey dynamics 

across patches. If local dynamics are cyclical, for example classic predator–prey cycles, 

dispersal can synchronize patches in ‘‘phase lock’’ (local dynamics are synchronized with 0-

time lag) (Jansen 1999). As a result, all subpopulations will be small, and thus susceptible to 

demographic stochasticity, at the same time (Earn et al. 2000; Hastings 2001). In such 

situations, rescue is unlikely and the entire metapopulation may go extinct due to 

simultaneous local extinctions, each the result of local demographic stochasticity. 

Although demographic stochasticity contributes to local and metapopulation-wide 

extinction risk, it may also influence predator–prey dynamics at both spatial scales (Chesson 

1978; Bonsall and Hastings 2004). Demographic stochasticity has the largest effect when 

population events (e.g., births) are infrequent due to small population sizes, low per capita 

rates, or both. If local predator–prey dynamics are cyclic, local population sizes will often be 

small enough for demographic stochasticity to affect local dynamics. In addition, per capita 

dispersal rates are generally very low in metapopulations, often orders of magnitude lower 

than birth or mortality rates (Hanski 1998). Dispersal and, by extension, regional dynamics 

are therefore likely to be strongly affected by demographic stochasticity, even when 

subpopulations are large enough that demographic stochasticity does not influence local 

dynamics (Chesson 1978). 

Despite the potential influence of demographic stochasticity on dispersal, we currently 

know little about its effects on metapopulations. Most models of predator–prey 

metapopulations are based on deterministic equations, particularly ordinary differential 
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equations (ODEs), which show that any amount of dispersal by either trophic level will 

eventually synchronize local dynamics unless patches differ in quality (Murdoch et al. 1992, 

Jansen 1999; Hastings 2001). Although ODE models provide a tractable starting point and 

useful deterministic comparison, they cannot directly speak to the effects of demographic 

stochasticity. 

This study aims to determine the effect of demographic stochasticity on the ability of 

dispersal to synchronize dynamics in a predator–prey metapopulation. To that end, I 

developed three models of a predator–prey metapopulation: two with demographic 

stochasticity and a deterministic model for comparison. The first stochastic model was a pure 

jump process (PJP) model, which treated all population processes (e.g., births) as Poisson 

processes. As a result, population sizes were integers only and changed via discrete jumps 

with inherent stochasticity. The second model utilized stochastic differential equations 

(SDEs), and was the continuous approximation to the PJP. In the SDE, population sizes 

changed continuously, but still with intrinsic stochasticity. The two stochastic models were 

compared to an ODE, in which population sizes changed deterministically and continuously. 

The ODE was the law of large numbers approximation of the SDE model. The three models 

thus form a hierarchy of complexity and exhibit the same mean-field behavior, and so were 

directly comparable. The PJP and SDE generated similar results, which differed qualitatively 

and quantitatively from those of the ODE, suggesting that demographic stochasticity strongly 

alters metapopulation dynamics by reducing the synchronizing effect of dispersal and 

spatially decoupling trophic interactions. 

 

METHODS 

 

I based my study on a two-patch extension of the Rosenzweig-MacArthur (1963) 

predator–prey model (RM model), which has been used to study dispersal and synchrony 
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(e.g., Hastings 2001) and has been applied to empirical systems (e.g., Vasseur and Fox 2009). 

Locally, prey (N) grew according to logistic growth, prey were consumed by predators (P) via 

a Holling Type-II functional response then converted into predators, and predators 

experienced density-independent mortality. Local dynamics occurred similarly in the two 

patches (i and j), and between-patch dispersal for both trophic levels was linear and density 

independent. 

In order to model demographic stochasticity appropriately, both the PJP and SDE 

models required that all population processes (e.g., births) be represented as independent 

terms. This necessitated two algebraic rearrangements (detailed in Appendix 1.A) of the 

classical ODE version of the RM model. First, logistic population growth actually represents 

the combination of two demographic processes: births and deaths (independent of predation). 

I decomposed the prey logistic growth term into separate terms for prey birth and predator 

independent prey mortality, assuming that birth was density dependent and mortality was 

density independent (as it was for the predators; see Appendix 1.A). Second, the predation 

term in the prey equation combines predation events that do and do not directly lead to the 

birth of a new predator. That is, not all of the prey required to produce a new predator are 

consumed exactly when that new predator is born. Thus, I decomposed the predation term in 

the prey equation into separate terms for predation events that do and do not lead to predator 

birth, assuming that the birth of a predator is linked to the consumption of a single (final) prey 

individual (see Appendix 1.A). 

As a result of these rearrangements, the two-patch version of the RM system I used 

here was represented via 14 separate demographic processes (listed in Table 1). All three 

representations of the RM model (PJP, SDE, ODE) derived directly from these 14 processes 

(Table 1.1). Next, I briefly outline the three models, see Appendix 1.A for additional details. 
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Table 1.1.  State changes and propensities (or rates) for each of the 14 population processes in 

the two-patch predator-prey model. 

 

Process, k State Change, (ΔX)k Propensity or rate, pk(X) 

Prey birth, patch i (1,0,0,0)
T
         

  

  
     

Prey mortality, patch i (-1,0,0,0)
T
      

Predation, no predator birth, patch i (-1,0,0,0)
T
 

          

     
 

Predation, predator birth, patch i (-1,1,0,0)
T
 

      

     
 

Predator mortality, patch i (0,-1,0,0)
T
      

Prey birth, patch j (0,0,1,0)
T
         

  

  
     

Prey mortality, patch j (0,0,-1,0)
T
      

Predation, no predator birth, patch j (0,0,-1,0)
T
 

          

     
 

Predation, predator birth, patch j (0,0,-1,1)
T
 

      

     
 

Predator mortality, patch j (0,0,0,-1)
T
      

Prey dispersal, patch i to j (-1,0,1,0)
T
      

Prey dispersal, patch j to i (1,0,-1,0)
T
      

Predator dispersal, patch i to j (0,-1,0,1)
T
      

Predator dispersal, patch j to i (0,1,0,-1)
T
      

 

Notes. The first five processes occur within patch i, the next five processes occur within patch 

j, and the final four processes occur between patches.  X
T
 is a vector of the four population 

sizes (Ni, Pi, Nj, Pj) and the vector (ΔX)k
T
 represents the change in the population sizes for 

process k.  For the PJP and SDE models, pk represents the propensity of k. For the ODE 

model, pk represents the rate of k. For all simulations, the following within-patch parameter 

values were used: prey intrinsic growth rate r = 0.5 d
-1

, prey mortality rate mN = 0.1 d
-1

, prey 

carrying capacity KN = 950 prey ind., conversion rate c = 0.2 prey ind. predator ind.
 -1

, 

maximum predator attack rate a = 1.1 prey ind. d
-1

, predator half-saturation level hN = 320 

prey ind., and predator mortality mP = 0.1 d
-1

. Dispersal rates for prey (δN) and predators (δP) 

varied across simulations.  
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Pure Jump Process (PJP) Model 

 

PJP models are a variety of continuous-time Markov chain models, which restrict 

population sizes to integers and treat all population processes as occurring via discrete 

‘‘jumps’’ in continuous time (Kurtz 1970; Gillespie 1977; Allen 2011). In the PJP, each 

demographic process k was described by two entities: the state-change vector (ΔX)k, which 

described how all population sizes would change as a result of k occurring, and the propensity 

function pk (X), which determines the likelihood of k happening given the current state of the 

population X (Table 1.1), specifically that the probability of k happening in a small time 

interval Δt is pk(X)Δt. For example, take the process of predator mortality in patch i. This 

process occurred with propensity p(X) = mPPi and resulted in the state change (ΔX) = (0, -1, 

0, 0), where (ΔX) = the change in population sizes of Ni, Pi, Nj, and Pj, respectively (only the 

predator subpopulation in patch i changed in size).  

I used Gillespie’s (1977) ‘‘direct method’’ version of the stochastic simulation 

algorithm to implement the PJP. At time t, the waiting time until the next event (τ) was 

randomly drawn from an exponential distribution with an expected value equal to [p0(X)]
-1

, 

where p0(X) was the sum of all the propensity functions given X (Table 1.1). The specific 

type of that event (i.e., which demographic process occurred) was then determined randomly, 

where the probability of the event being of process type k is pk(X)/p0(X). The system was then 

updated by replacing t with t + τ and X with X + (ΔX)k. 

 

Stochastic Differential Equation (SDE) Model 

 

A continuous-state, but still stochastic, analog to a PJP model is an SDE model, which 

is derived through a Gaussian approximation for the net effect of the many discrete jumps that 

occur in each small time interval when the population size is large (Kurtz 1978). This 
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approximation is analogous to the central limit theorem for the sum of many independent 

random variables, and resulted in each demographic process k being represented as a 

continuous diffusion process whose mean and variance approximate those of the PJP when 

the population size is large. The system described by the PJP model was thus approximated 

by the SDE in the sense of Itô: 

 

 

                       (1.1) 

 

in matrix–vector notation (see Appendix 1.A  for a full depiction of the model), where the 

mean                    , C was the square-root of the covariance matrix (C
2
), which 

accounted for the variability of demographic events as well as any correlations among events 

(e.g., dispersal of prey from patch i to patch j), and Bt  was a vector of independent Brownian 

motions (one for each population process) (Kurtz 1978; Allen 2011). 

Thus, the first term on the right-hand side of Equation 1.1 describes the expected 

values of the changes in population sizes given the current state of the populations, Xt, and the 

second term describes the variation in those changes. The variation (stochasticity) in the SDE 

derived directly from the underlying demographic process. 

 

Ordinary Differential Equation (ODE) Model 

 

Finally, the familiar ODE version of the two-patch RM model can be formulated as a 

continuous-state, deterministic analog to the PJP and SDE models by taking the limit as 

population sizes approach infinity (Kurtz 1970). As a result of the law of large numbers 

approximation, the variance surrounding the population processes became infinitesimal and 

dropped out of the model. Because the resulting ODE was entirely deterministic, the algebraic 

rearrangements outlined above canceled out (see Appendix 1.A), and the model was 
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                  (1.3) 

 

where Ni were prey and Pi were predator densities in patch i. Patch j was described by a 

similar set of equations with the subscripts i and j switched. Other variables are dispersal rates 

for prey (δN) and predators (δP), prey intrinsic growth rate (r), mortality rate for predators 

(mP), prey carrying capacity (KN), conversion rate (c), maximum predator attack rate a, and 

predator half-saturation level hN. 

 

Model Comparison 

 

Because the SDE and ODE models were formulated through subsequent 

simplifications that did not affect the (approximate) mean-field behavior of the RM model 

system as described by the PJP, direct comparisons of the outputs from the three models were 

valid (Kurtz 1970; Kurtz 1978; Allen 2011; see also Appendix 1.A). For each of the three 

models, I conducted simulations to evaluate the influence of dispersal on between-population 

synchrony. I chose values for the within-patch parameters (see Table 1.1) that generated 

unstable, cyclical local predator–prey dynamics (Rosenzweig and MacArthur 1963), and thus 

represented a situation where dispersal among patches could synchronize dynamics in phase 

lock. To focus on how dispersal influences synchrony in each model, without the effect of 

local extinctions, I chose parameter values that did not cause population sizes to cycle too 

close to 0. In a single-patch version of the ODE, prey cycled between 95 and 567 individuals 

and predators between 119 and 245 individuals. Single-patch versions of the PJP and SDE 

displayed similar dynamics (Appendix 1.B). 
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For all three models, I ran simulations using two initial conditions. First, following 

Hastings (2001), I started with one patch empty and the other near a peak in the predator–prey 

cycle (prey = 420 individuals, predators = 240 individuals). These conditions are likely to 

arise in situations when a local population has gone extinct or a new patch has just opened and 

may result in transient dynamics where the two patches are nearly out of phase (antiphase) for 

an extended period of time (Hastings 2001). The second set of initial conditions was with both 

patches at the same densities near the cycle peak (prey = 420 individuals, predators = 240 

individuals). Because the ODE model is entirely deterministic, the only possible result for the 

latter set of initial conditions is complete in-phase synchrony, regardless of dispersal rates. 

Due to stochasticity, such a result is not guaranteed for the PJP or SDE models. 

For these two starting conditions, I explored the effects of dispersal by varying δN and 

δP values from 0.0001 to 1.0 d
-1

 (or 0.1% to 1000% of the mortality rates), covering the 

dispersal parameter space evenly on a log10 scale. For the ODE model, I used a 100 × 100 grid 

(10,000 parameter combinations). The computational intensity of the PJP and SDE models 

limited the number of simulations I could conduct, so I used a 19 × 19 grid (361 

combinations). I ran each simulation for 1000 model days, enough for ~ 20 cycles in the 

single-patch system. 

The models produced data at varying frequencies: I conducted simulations of the ODE 

and SDE models using a time interval of 0.01 day, and the PJP model generated data after 

each event (variable number of data per model day). To standardize the data sets across the 

three models, I censused all population sizes at the beginning of each model day, generating 

1001 data points for each simulation. For all analyses, I used the second half of each time 

series (days 500 to 1000) to eliminate the influence of short-term aperiodic transients, instead 

focusing on long-term dynamical behavior, including persistent transients. I calculated 

synchrony between the two subpopulations independently for prey and predators using the 

Pearson product-moment correlation coefficient on raw abundances with a 0-time lag, which 
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is an appropriate metric for measuring in-phase synchrony when patches do not differ in 

parameter values (Bjørnstad et al. 1999; Liebhold et al. 2004), as is the case here. To account 

for variability in the PJP and SDE, I ran 10 replicate simulations per parameter combination 

and summarized the replicates using the mean between-patch correlation for each trophic 

level. Ten replicates were sufficient to characterize the dynamics and the mean was an 

appropriate summary statistic (Appendix 1.C). 

All simulations were conducted in R (R Development Core Team 2010) using the 

odesolve (Setzer 2008), GillespieSSA (Pineda-Krch 2008; Pineda-Krch 2010) and yuima 

(YUIMA Project Team 2012) packages for the ODE, PJP, and SDE, respectively. 

 

RESULTS 

 

Despite the three models describing the same system, they generated quite different 

results (Figure 1.1). In particular, the stochastic PJP (Figure 1.1A, B) and SDE (Figure 1.1C, 

D) models produced nearly identical results, which differed qualitatively from the results of 

the deterministic ODE model (Figure 1.1E, F). Hence, the SDE approximation captures 

important features of the dynamics of the PJP model not captured by the ODE approximation. 

For the initial condition where one patch was full and the other empty, most dispersal 

rates in the ODE model generated very strong synchrony between patches for both prey and 

predators (Figure 1.1E, F). Indeed, 90% of all parameter combinations used with the ODE 

under these initial conditions gave correlations over 0.9 for both trophic levels. The remainder 

of the parameter combinations generated out-of-phase dynamics for the ODE (areas of blue in 

Figure 1.1E, F). Both areas of antiphase were long-term transients caused by the prey in patch 

j initially exceeding the typical local maximum prey density (Appendix 1.B). When δN = δP = 

0.0001 d
-1

, the populations became synchronized but not until ~ 33,000 model days 

(Appendix 1.B). When δN = 0.00022 d
-1

 and δP = 0.0025 d
-1

, the populations became  
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Figure 1.1. Correlation in sizes between the two subpopulations for the (A, C, E) prey and (B, 

D, F) predators as a function of prey and predator dispersal rates (on a log10 scale). Data are 

from simulations initiated with one patch full and one empty for the (A, B) pure jump process 

(PJP), (C, D) stochastic differential equations (SDE), and (E, F) ordinary differential 

equations (ODE) models. (See Appendix 1.D for results from simulations where both patches 

started full.) Correlations are from the second half of the time series and the PJP and SDE 

data are means of the 10 replicate simulations. The boxed data points in panels A–D relate to 

the data shown as time series in Figure 1.2; for each boxed point, the lowercase letter (a–h) 

indicates the corresponding panel in Figure 1.2. Lines mark the mortality rates for the two 

trophic level (0.1 d
-1

 for both). 
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synchronized after ~ 2000 model days (Appendix 1.B). The presence of these antiphase 

transient dynamics in the ODE was sensitive to the initial conditions (previously noted by 

Hastings 2001), as the simulations where both patches started full were perfectly correlated 

for all dispersal values (Appendix 1.D).  

In contrast to the ODE, both the PJP and SDE models generated much less synchrony 

over the dispersal parameter space, never resulted in antiphase dynamics, and were not 

sensitive to initial conditions (Figure 1.1; also see Appendix 1.D for sensitivity to initial 

conditions). Rather, the areas of asynchrony in the PJP and SDE were due exclusively to the 

values of the dispersal parameters. In the PJP model when one patch started full and the other 

empty, only 34.9% and 18.6% of dispersal parameter combinations gave between-patch 

correlations over 0.9 for the prey and predators, respectively. Similarly for the SDE, 35.3% 

(prey) and 19.3% (predators) of parameter combinations generated correlation values > 0.9. 

High correlations were similarly uncommon when both patches started full for both models 

(PJP, 34.9% for prey and 18.8% for predators; SDE, 35.2% for prey and 18.6% for predators; 

Appendix 1.D). 

Asynchronous dynamics in the PJP and SDE models were located in the same three 

areas of the dispersal parameter space (Figure 1.1A–D). Naturally, low dispersal rates by both 

predators and prey caused both trophic levels to be uncorrelated between the patches (lower 

left corners of Figure 1.1A–D). The additional areas of asynchrony were less intuitive: low 

dispersal by prey coupled with high dispersal by predators gave low prey correlation only 

(upper left corners of Figure 1.1A, C) and low dispersal by predators coupled with high 

dispersal by prey gave low predator correlation only (lower right corners of 1.1B, D). This 

was again in contrast to the ODE, where the two trophic levels had near-identical correlation 

values for all dispersal rates. The situations in the PJP and SDE where only one of the species 

was tightly correlated were the result of a hump-shaped relationship between the dispersal rate 

of the more dispersive species and the correlation of the less dispersive species (correlation 
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first increases then decreases along the y-axis in Figure 1.1A, C and along the x-axis in Figure 

1.1B, D). The decrease in correlation with very high dispersal rates of only one trophic level 

resulted from a spatial decoupling of the predator–prey interaction (as predicted from general 

theory; see Van de Koppel et al. [2005]). 

For example, when prey had a very low dispersal rate (0.0001 d
-1

) and predators were 

highly dispersive (1.0 d
-1

) (PJP, Figure 1.2a, b; SDE, Figure 1.2e, f ), predators interacted with 

the prey regionally, yet the prey were interacting with predators locally. Under these 

conditions, an increase in prey in patch 1 (due to births) led to an increase in predators in 

patch 1 (via consumption and conversion), but because the predator dispersal rate was so 

high, the new predators were instantly split equally between the two patches. As a result, there 

were fewer predators (and a lower predation rate) in patch 1 and more predators (and a higher 

predation rate) in patch 2 than expected, given the change in local prey densities. The increase 

in predation that occurred in patch 2 was unrelated to the prey density in patch 2. This 

mechanism could be thought of as a spatial variation of apparent competition (sensu Holt, 

l977), where two subpopulations of prey share a “common” predator, which is acting as a 

single population due to high dispersal. Under lower predator dispersal rates (~ 0.1d
-1

), 

predators moved enough to correlate their subpopulations, but were more coupled to the local 

prey populations through the trophic interaction, and the dispersal of predators was able to 

synchronize the prey. 

A similar mechanism generated the other area of asynchrony, where prey disperse 

frequently and predators rarely (PJP, Figure 1.2c, d; SDE, Figure 1.2g, h). Under this 

scenario, an increase in predators in one patch led to a decrease in prey in that same patch, but 

this effect was quickly split between the two patches as prey dispersed from the second patch 

to the first, equalizing the prey densities. As a result, the effect of predation was less in the 

first patch than would be expected, and there was an effect of predation in the second patch 

even though none was expected. The effect of predation experienced in the second patch was  
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Figure 1.2. Representative time series of (a, c, e, g) prey and (b, d, f, h) predator 

subpopulations from (a–d) PJP and (e–h) SDE model simulations where dispersal rates 

spatially decouple the trophic interaction: (a, b, e, f) high predator dispersal and low prey 

dispersal or (c, d, g, h) low predator dispersal and high prey dispersal. Panel letters (a–h) 

coincide with the regions of parameter space marked in Figure 1.1. For each panel, the letter 

indicates the region in Figure 1.1 marked with the corresponding letter. The two patches are 

represented by different line colors, and the data are from the second half of the time series. 

High dispersal by predators (1.0 d
-1

) and low dispersal by prey (0.0001 d
-1

) resulted in 

correlations of (a, b) 0.623 for prey and 0.940 for predators in the PJP, compared to (e, f ) 

0.631 for prey and 0.923 for predators in the SDE. Low dispersal by predators (0.0001 d
-1

) 

and high dispersal by prey (1.0 d
-1

) resulted in correlations of (c, d) 0.986 for prey and 0.210 

for predators in the PJP, compared to (g, h) 0.982 for prey and 0.324 for predators in the SDE.  
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independent of the local predator population density, and again the trophic interaction was 

spatially decoupled. The equalization of prey densities through dispersal led to the predator 

subpopulations experiencing identical per capita growth rates, but the predator densities were 

free to drift because predator dispersal was too infrequent to equalize them (hence the similar, 

but offset, trajectories in Figure 1.2d, h). This mechanism is quite similar to classical 

competition, where the two subpopulations of predators were sharing a “common” prey 

resource, which was dispersing so frequently as to act as a single population. Similar to the 

predators, when prey dispersed less frequently (δN ≈ 0.1 d
-1

), they still moved enough to 

correlate their subpopulations, but were more coupled to the local predator populations 

through the trophic interaction, and were able to synchronize the predators. Thus, for dispersal 

of one trophic level to synchronize the other in the presence of demographic stochasticity, 

they must disperse enough to synchronize themselves, but not so much that they spatially 

decouple the trophic interaction. When both prey and predators were highly dispersive, the 

“local” trophic interaction scaled directly to the regional level. 

 

DISCUSSION 

 

When modeling populations, it is often convenient to use deterministic systems, such 

as ODEs, making the simplifying assumption that demographic stochasticity does not strongly 

alter dynamics. When populations are large and events occur frequently, the ODE approach is 

a valid approximation (Kurtz 1970; Allen 2011). This assumption may not be appropriate for 

predator–prey metapopulations, however, where per capita dispersal rates are low and 

populations are often small (Hanski 1998). I have shown here that instead formulating the 

metapopulation using a model including demographic stochasticity substantially reduced the 

synchronizing effect of dispersal, at least when one or both trophic levels had low dispersal 

rates. 
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The reduction in synchrony occurred even though local dynamics were not 

significantly affected by the addition of demographic stochasticity (Appendix 1.B; one-patch 

versions of the three models gave similar dynamics), suggesting that the driver of the 

differences between the deterministic and stochastic models was dispersal between patches. 

Specifically, dispersal was a much weaker synchronizing force in the stochastic models than 

in the deterministic model. Stochastic dispersal was unable to synchronize predator–prey 

dynamics unless dispersal rates of both trophic levels were very high (Figure 1.1), despite 

subpopulation sizes rarely being very small (Figure 1.2). This finding agrees with previous 

theoretical research showing that demographic stochasticity can have pervasive effects even 

when subpopulation sizes are large, if per capita dispersal rates are small (Chesson 1978). 

Considering that demographic stochasticity is often invoked post hoc as a potential driver of 

regional extinctions in synchronized metapopulations (e.g., Earn et al. 2000; Hastings 2001) it 

is ironic that building it into the model a priori reduced the synchronizing effect of dispersal, 

limiting the role of demographic stochasticity in causing regional extinctions. 

The striking similarity between the PJP and SDE, relative to the ODE, (Figures 1.1, 

1.2; Appendix 1.A) suggests that the differences between the stochastic and deterministic 

models were driven exclusively by the presence or absence of demographic stochasticity, 

rather than the discreteness of the PJP or some combination of discreteness and stochasticity. 

Compared to the deterministic approximation (transitioning from stochastic SDE to 

deterministic ODE), which caused a marked change in dynamics, the continuous 

approximation (transitioning from discrete PJP to continuous SDE) did not alter the ability of 

dispersal to synchronize predator–prey dynamics in the simulations I conducted. This is not to 

say that the discreteness of individuals never alters metapopulation dynamics, however. For 

example, the discreteness of individuals could likely affect both local and regional dynamics 

if population sizes were regularly low enough to generate extinctions. However, it is currently 

unknown if the discreteness of individuals will alter predator–prey metapopulation dynamics 
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on top of the influence of demographic stochasticity, and how small subpopulations must be 

to enact this effect. 

Predators and prey in metapopulations often have very different dispersal rates, 

typically with predators being more dispersive (Van de Koppel et al. 2005). It is therefore 

significant that the deterministic and stochastic models differed in their predicted dynamics 

for situations when one trophic level was much more dispersive than the other. In the PJP and 

SDE models, having only one highly dispersive species spatially decoupled the trophic 

interaction and altered metapopulation dynamics by introducing a spatial analog to 

competition or apparent competition (Holt 1977). This result is entirely unexpected from an 

ODE-perspective, which instead predicts that dispersal of either trophic level should 

synchronize both (Murdoch et al. 1992; Jansen 1999), but agrees with verbal theory 

predicting a decoupling of trophic interactions when consumers and resources vary in their 

spatial scales or dispersal rates (Van de Koppel et al. 2005). 

Although I restricted the model system to two patches and only considered one set of 

local parameters, the stochastic and deterministic models generated qualitatively distinct 

outcomes. This divergence needs to be explored in situations of increasing model complexity: 

additional patches, varying parameters between patches, environmental stochasticity, and 

more reticulated food webs. It is currently unknown if adding complexity will exacerbate or 

lessen the difference between the models. Further, the ecological relevance of these results 

remains to be tested explicitly and empirically, especially considering that the divergence 

between the deterministic model and the stochastic models depends on the rates of dispersal: 

the stochastic models differed from the ODE except when dispersal rates were high for both 

trophic levels. Laboratory microcosms particularly lend themselves to testing the predictions 

of the models formulated here as dispersal rates can be directly manipulated, confounding 

factors like the abiotic environment can be controlled tightly, and they generate large amounts 

of data necessary for model fitting and selection (e.g., Bonsall and Hastings 2004; Vasseur 
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and Fox 2009). 

These demographically stochastic modeling approaches are also applicable to field 

systems (e.g., Pineda-Krch et al. 2007) and may provide important insights into 

metapopulation dynamics in situ. Considering that synchrony is a major concern for species 

persistence in fragmented landscapes (Earn et al. 2000), determining the biological relevance 

of these theoretical results has significant implications for the management and conservation 

of predator–prey metapopulations. Under conservation planning guided by a PJP or SDE 

model, dispersal could be promoted to facilitate persistence without having to worry about 

synchrony and regional extinctions as much as previously thought based on ODE models. 
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CHAPTER 2 

 

 

PREDATOR ONTOGENY DETERMINES TROPHIC CASCADE STRENGTH IN 

FRESHWATER ROCK POOLS 
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ABSTRACT 

 

Ontogenetic changes in consumers can influence the magnitude and outcome of direct 

and indirect ecological interactions.  Although most research has focused on qualitative 

changes in diet (i.e., shifts in trophic guild between life-history stages), quantitative effects of 

ontogeny, such as allometric scaling in per capita consumption rates, could also influence 

food webs by modulating the relative importance of top-down control.  I examined the effect 

of predator ontogeny on per capita consumption rates, selectivity between prey species, and 

the resulting food-web consequences using a system of freshwater rock pools on Appledore 

Island, Maine, USA.  The rock pools house a simple tri-trophic food chain consisting of 

chlorophyte algae consumed by cladoceran grazers (Moina macrocopa and Daphnia pulex), 

which are then preyed upon by the aquatic insect Trichocorixa verticalis (Corixidae).  Lab 

studies showed that Trichocorixa grows substantially during its life history, with allometric 

increases in per capita predation rates (consuming both Moina and Daphnia).  Predation rates 

were significantly higher on Moina than Daphnia in single-prey experiments and all instars of 

Trichocorixa significantly preferred Moina in choice experiments.  In a mesocosm 

experiment, predation by Trichocorixa on zooplankters created a top-down trophic cascade by 

releasing phytoplankton from grazing and the strength of the cascade increased significantly 

with Trichocorixa life-history stage.  Further, adult Trichocorixa were strong enough 

predators to reduce cladoceran densities over the duration of the experiment.  Similar trophic 

dynamics appear to occur in the field, as the densities of Moina populations in three separate 

pools decreased markedly after the local Trichocorixa population molted into adults.  Taken 

together, these results indicate that consumer ontogeny can affect food-web and ecosystem 

dynamics without qualitative niche shifts if per capita feeding rates change substantially over 

the consumer’s life history.  Given the prevalence of both allometrically scaling consumption 

rates and dynamically structured predator populations, top-predator demography may be an 
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important driver of the trophic structure and dynamics of food webs. 

 

INTRODUCTION 

 

Most animal species grow substantially as they develop from neonate to adult (Peters 

1983; Werner 1988), and many key ecological and physiological parameters, such as per 

capita consumption rate and metabolism, scale allometrically with body size (Mittelbach 

1981; Peters 1983; Kooijman 1993; Brown et al. 2004).  As a result, the strengths and 

outcomes of ecological interactions may change as a function of the size distributions of 

interacting species (Werner and Gilliam 1984; Persson 1987; Persson et al. 1998; Cohen et al. 

2003; Hildrew et al. 2007a).  At the extreme, ontogenetic changes result in individuals 

qualitatively shifting their diet or habitat use at a critical point in their life history (e.g., 

metamorphosis), a phenomenon that is known as an ontogenetic niche shift (Werner and 

Gilliam 1984) and can have significant effects on the dynamics of populations, food webs, 

and ecosystems (Polis and Strong 1996; Woodward and Hildrew 2002; Rudolf 2007; Rudolf 

and Lafferty 2011).  However, even if individuals do not shift their diet or niche qualitatively 

as the grow, individual growth often results in important quantitative changes in vital rates 

(Kooijman 1993; Brown et al. 2004) which may influence the strength of ecological 

interactions.   

In particular, many predators show strong increases in per capita consumption rates as 

they develop and grow (Thompson 1975; Mittelbach 1981; Peters 1983; Shine 1991; 

Kooijman 1993; Aljetlawi et al. 2004).  Although common, increased consumption with size 

is not universal among predators: some species show negative or hump-shaped relationships 

between individual size and per capita consumption rate (e.g., Persson 1987; Byström and 

Andersson 2005).  Regardless of the specific relationship between size and consumption, any 

ontogenetic change in the per capita predation rate may influence population and food-web 
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dynamics by altering the strength of the predator-prey trophic link and the relative importance 

of top-down control in the food web (Alford 1989; de Roos et al. 2003).  However, the 

broader ecological effects of any ontogenetic changes in individual vital rates depend upon 

the size-structure of the population, particularly whether it is stable or dynamic (Kooijman 

1993).   

For example, if the size structure of a predator population is stable, the overall rate of 

consumption by the population will depend only on population density, even if larger 

predators consume more prey items per capita.  Conversely, if the size distribution of the 

predator population is dynamic (e.g., due to non-overlapping generations or size-dependent 

mortality rates) and individuals display an ontogenetic change in predation rate, the overall 

rate of consumption will fluctuate as a function of the size distribution, even if the total 

population size remains constant.  As a result, consumer demography may play an important 

role in dictating the dynamics of consumer-resource interactions by causing fluctuations in 

predation strength and may even introduce novel, destabilizing feedbacks between consumer 

populations and their resources (de Roos et al. 1990; Persson et al. 1998; de Roos and Persson 

2002; de Roos et al. 2003).  Given the complexity of ecosystems, however, the trophic 

consequences of predator ontogeny and related changes in individual consumption rates will 

likely depend upon the food-web context in which the consumer-resource interaction occurs 

(Hairston and Hairston 1997; Hildrew et al. 2007b; Jones and Jeppesen 2007).   

In a simple food chain with three trophic levels, consumption by the top predator is 

predicted to decrease the density of intermediate consumers, potentially indirectly increasing 

the biomass of the basal resource via a trophic cascade (Hairston et al. 1960; Paine 1980; 

Strong 1992; Polis 1999; Schmitz et al. 2000; Shurin et al. 2002).  It may therefore be 

expected that more voracious predators with stronger trophic links (higher per capita 

predation rates) will cause stronger trophic cascades, all else being equal (Paine 1980; Pace et 

al. 1999).  Indeed, variation in consumption rates among apex predators is a major factor 
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influencing the presence and strength of trophic cascades across ecosystems (Hairston and 

Hairston 1993; Polis 1999; Borer et al. 2005; Hambright et al. 2007).  Similarly, 

ontogenetically driven variation in a particular top predator’s consumption rate may shift the 

relative importance of top-down and bottom-up control within the food chain and determine if 

a trophic cascade occurs in that ecosystem.  However, despite the near ubiquity of ontogenetic 

growth of consumers and relationships between body size and per capita consumption rate, 

the effects of ontogenetic changes in predator consumption rates on trophic dynamics within 

ecosystems remain poorly studied (de Roos et al. 2003). 

 Here I examine the role of predator ontogeny, and thus size, on the rate of predation 

and the strength of top-down control in a system of freshwater rock pools on Appledore 

Island, Maine, USA.  The pools contain a simple tri-trophic food chain of phytoplankton 

(primarily chlorophyte algae) consumed by herbivorous zooplankton (primarily Moina 

macrocopa and Daphnia pulex [Cladocera, Daphniidae]) which are in turn preyed upon by 

Trichocorixa verticalis (Hemiptera, Corixidae) (J.G. Morin et al., unpub. data).  Trichocorixa 

is a potentially voracious consumer (Wurtsbaugh 1992) that grows substantially in size during 

its ontogeny (Kelts 1979; see also Results).  Adult Trichocorixa prey strongly enough upon 

Artemia (brine shrimp) in the Great Salt Lake, USA to release diatoms from grazing pressure 

and cause a trophic cascade (Wurtsbaugh 1992).  However, little else is known about the 

trophic ecology of this geographically widely distributed and highly invasive aquatic insect 

(Tones and Hammer 1975; Tones 1977; Kelts 1979; Wurtsbaugh and Berry 1990; Van de 

Meutter et al. 2010).   

Putatively a “generalist omnivore” (Kelts 1979), Trichocorixa possesses piercing and 

sucking mouthparts typical of Hemiptera that make it capable of consuming a wide range of 

resources (e.g., filamentous algae, zooplankton, dipertan larvae).  In the rock pools studied 

here, Cladocera (Moina in particular) are by far the most abundant and available potential 

resource for Trichocorixa, as filamentous algae are not found in the pools and the chironomid 
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larvae present construct protective cases that deter predation (Dillon 1985; J. L. Simonis, pers. 

obs.).  By comparison, the cladocerans are widely distributed among pools and often reach 

densities exceeding 1,000 individuals L
-1

 (Simonis 2012) due to the high productivity of the 

pools (Loder et al. 1996).  However, the two species of Cladocera present are not necessarily 

equally accessible prey for Trichocorixa, as Daphnia individuals are nearly 4.4 times larger 

than Moina individuals (by mass, see Results) and also exhibit a much lower intrinsic rate of 

population growth (J. L. Simonis, unpub. data).  Therefore, the cascading effects of 

Trichocorixa predation on the food web may depend upon which species of cladoceran is 

present in the rock pool. 

The goals of this study were to determine the effect of top-predator ontogeny on 

predation rate and trophic structure in the Appledore rock-pool ecosystem.  I used laboratory 

feeding experiments to show that all life history stages of Trichocorixa consume both prey 

species (Daphnia and Moina), yet prefer Moina, and that per capita consumption rates scale 

allometrically with predator body size.  This increase in predation rate with ontogeny led to a 

significant increase in the strength of top-down control in a mesocosm experiment.  The 

trophic effect of Trichocorixa ontogeny was evident in unmanipulated rock pools as well, as 

cladoceran densities decreased markedly after Trichocorixa developed into adults.  These 

results indicate that even without a qualitative shift in feeding niche, top predator ontogeny 

can influence food-web structure and trophic dynamics. 

 

METHODS 

 

Study System 

 

Trichocorixa (Hempitera, Corixidae) is an aquatic insect that is native to saline and 

freshwater habitats across North America (Tones and Hammer 1975; Tones 1977; Kelts 1979; 
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Wurtsbaugh and Berry 1990) and has also invaded wetlands in Iberia, Africa, and New 

Caledonia (Jansson 1982; Sala and Boix 2005; Van de Meutter et al. 2010).  Its ontogeny 

includes seven life-history stages: egg, five juvenile instars (each lasting 5 – 10 days), and 

adult.  Trichocorixa overwinters as eggs, hatching commences in spring or early summer, and 

there are typically two or three partially-overlapping generations per year, resulting in a 

dynamic population age structure (Tones 1977; Kelts 1979; see also Results).  Individuals 

grow substantially over their ontogeny from approximately 1 mm (body length) as first instar 

juveniles to approximately 5 mm as adults (Kelts 1979; see also Results).  On the Isles of 

Shoals Archipelago (Gulf of Maine, USA), Trichocorixa is commonly found in freshwater 

rock pools that sit above the high tide line.  Appledore, the largest island in the archipelago 

and home to the Shoals Marine Laboratory (SML), is 38.5 ha with approximately 1,500 rock 

pools, which range in size from ca. 1.0 to 30,000 L.  The Appledore pools contain a relatively 

simple food web that is dominated by a tri-trophic food chain of chlorophyte algae, consumed 

by Moina and Daphnia, which are, in turn, preyed upon by Trichocorixa (J. G. Morin et al., 

unpub. data).  Although other species of aquatic invertebrates are found in the pools (e.g., 

chironomids, ostracods, and cyclopoid copepods), the most abundant prey for Trichocorixa 

are cladocerans, and in particular, Moina (Simonis 2012).   

All Trichocorixa used in experiments reported here were collected from rock pools on 

Appledore Island in May and June 2009, held in 20 L plastic buckets in the laboratory at 

SML, and fed ad libitum on a mixture of Daphnia and Moina.  Individual Trichocorixa used 

in the experiments were identified to instar based on body shape, size, color, and wing 

development, following Kelts (1979).  Separate laboratory cultures of Daphnia and Moina for 

use as prey in experiments were maintained in 20 L buckets and fed rock-pool algae. 

 

Characterizing Predator and Prey Sizes 
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To determine the length and weight of each non-egg Trichocorixa life-history stage, I 

removed 22 individuals of each instar from the laboratory culture and placed them separately 

into 20 mL scintillation vials containing filtered well water for 24 hours prior to freeze-killing 

them at -20° C.  After thawing, I measured each individual’s length using digital calipers 

under a dissecting microscope (4-10 × magnification), then after drying at 60° C for 48 hours, 

I weighed each individual on an ultra-micro balance (Sartorius SE2).  I fit a standard length-

weight regression to the individual-level data using non-linear least squares regression in R 

(nls function; R Core Development Team 2011) and calculated the average length and dry 

weight for each instar.  I also used the laboratory cultures to determine the average sizes of 

Daphnia and Moina.  I photographed 20 non-gravid female individuals of each species under 

a dissecting microscope (4-10 × magnification), measured their lengths using ImageJ software 

(Abramoff et al. 2004), and converted the lengths to dry weights using published relationships 

(McCauley 1984).    

 

Functional Response Experiments 

 

 I used a set of functional response experiments to quantify predation rates and 

determine how they are influenced by predator age class and prey species identity.  Single 

Trichocorixa individuals of known instar were placed into glass jars containing 100 mL of 

filtered (0.45 µm) well water and non-gravid, adult female prey of either Daphnia or Moina.  

To standardize hunger levels among predators, I starved all Trichocorixa individuals for the 

24 hours preceding the start of a feeding trial.  Prey abundances used were 1, 2, 4, 8, 10, 12, 

15, 20, 25, 30, 40, 50, 75, and 100 individuals per jar, giving densities between 10 and 1,000 

prey L
-1

, which spans most of the range seen in the Appledore rock pools (Simonis 2012).  

Experimental jars were placed in a temperature-stable room (mean: 18 °C, range: 16-20 °C) 

with fluorescent lamps (“plant and aquarium”, Phillips 40W) on a 12:12 light:dark cycle.  
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After 24 hours, I removed the predators from the jars and enumerated the remaining prey.  I 

did not replace prey during the trials and no predators or prey were reused between trials.  I 

conducted duplicate trials for each of the six predator instars at each of the 14 prey densities 

for the two prey species, giving 336 total trials.   

I fit the data using the Rogers Random Predator Equation, which is a Type-II 

functional response adapted to account for depletion of prey during feeding (Rogers 1972).  

To test if handling time or attack rate (the functional response parameters) changed with 

predator ontogeny, I allowed both parameters to scale allometrically with predator mass 

(using the average dry mass for each instar).  I included both prey species in the same analysis 

and used a dummy variable approach to test if either the intercept values or the allometric 

scaling of the functional response parameters varied between prey species.  For example with 

attack rate, a:  

 

 

                                   (2.1) 

 

where ai is the intercept attack rate when consuming Moina, as is the scaling effect of predator 

mass on attack rate when consuming Moina, d is the dummy variable to account for prey 

species identity (equal to 0 when prey were Moina, equal to 1 when prey were Daphnia), and 

Δai and Δas are the differences in the intercept and scaling parameters, respectively, between 

Daphnia and Moina prey items.  Model fitting was conducted using maximum likelihood and 

the mle2 function in the R package bbmle (Bolker and R Core Development Team 2011), and 

the significance of each parameter was determined using Likelihood Ratio Tests (LRTs) 

based on corrected AIC (AICc) values. 

 

Prey Choice Experiment 
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 I determined the preference of each Trichocorixa instar for the two prey species 

(Daphnia and Moina) using a choice experiment.  Predators of known instar were starved for 

24 hours, then placed singly into glass jars containing 200 mL of filtered (0.45 µm) well water 

and 20 non-gravid, adult females each of Daphnia and Moina (40 cladocerans total, the only 

density used) and the jars were placed in the same temperature and light conditions as above.  

After 24 hours, I removed the predators and counted the remaining prey.  I conducted ten 

replicate trials for each Trichocorixa instar, for 60 total trials.  I did not replace prey during 

the trials and did not reuse any predators or prey.   

 I quantified predator preference using the Chesson-Manly alpha metric (hereafter: 

αCM; Manly 1974, Chesson 1978) with Manly’s (1974) approximation to account for prey 

depletion.  The expected value of αCM under no preference with two prey types is 0.50 for 

both species, if predators attack the prey types equally.  However, Trichocorixa have a much 

higher predation rate on Moina than Daphnia (see Results; attack rate on Moina is 2.84 × 

attack rate on Daphnia), perhaps due to differences in size or behavior between prey species, 

which caused greater detection of the former.  Accounting for the difference in attack rates, I 

recalculated the expected value of αCM to be 0.7399 for Moina and 0.2601 for Daphnia 

(following the methods of Chesson 1983, which are appropriate for situations with prey 

depletion).  I calculated the selectivity of each Trichocorixa instar towards Moina and 

evaluated the significance of these selectivities using t-tests with µ0 = 0.7399.  I also regressed 

αCM against instar to determine if selectivity changed with ontogeny. 

 

Food Web Mesocosm Experiment 

 

 I then used a mesocosm experiment to determine if predation by Trichocorixa is 

strong enough to affect zooplankton population densities and cascade to indirectly affect algal 

biomass, and if the age-structure of the Trichocorixa population mediates the strength of the 
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cascade.  Four Trichocorixa treatment levels were used: predators absent, small juveniles (2
nd

 

and 3
rd

 instars), large juveniles (4
th

 and 5
th

 instars), and adults.  First instar Trichocorixa were 

not used in this experiment due to their high mortality rates in captivity.  In July 2009, I 

collected and combined water from five representative rock pools around Appledore Island.  I 

filtered (30 µm) the water, removing all zooplankton and Trichocorixa, but leaving the 

phytoplankton.  Mesocosms (40 L Rubbermaid totes) were placed outdoors in an 

experimental array and filled with 30 L of the rock-pool water mixture that had an initial 

phytoplankton density of 800 µg chlorophyll-a L
-1

.  I then inoculated all of the mesocosms 

with a mixture of zooplankton from the same five pools (supplemented with individuals from 

the zooplankton lab cultures) to create initial densities of 40 Daphnia L
-1

 and 125 Moina L
-1

.  

These phytoplankton and zooplankton densities are within the range of rock pools on 

Appledore (Simonis 2012; see Results).   

The mesocosm communities were left to equilibrate for four days before the 

Trichocorixa treatment was established.  To minimize any among-mesocosm variation that 

might have developed during these four days, I removed 5 L from each mesocosm, combined 

and homogenized this volume in a large bucket, removed a small volume (1 L total) to 

quantify chlorophyll and zooplankton densities (following methods described below), and 

then redistributed the remaining volume equally back among the mesocosms.  I then added 

fifteen Trichocorixa individuals to each of the predator-present mesocosms according to the 

treatment levels outlined above.  Each treatment level was replicated four times, for 16 total 

mesocosms, and the treatment levels were arranged physically in a 4 × 4 Latin Square design.  

I covered all of the mesocosms with 1 mm mesh screening to prevent any immigration or 

emigration by Trichocorixa or other organisms and reinforced the mesh with chicken wire to 

exclude gulls (Larus spp.).  The experiment ran for 12 days after the addition of Trichocorixa, 

which likely encompassed three generations of the dominant prey species, Moina (Nandini 

and Sarma 2000).  I checked the mesocosms every three days and removed and replaced any 
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Trichocorixa that had molted out of their treatment-level instar class or had died.   

On the final day of the experiment, I sampled the mesocosms for phytoplankton and 

zooplankton densities.  Prior to sampling, I gently stirred the mesocosms to homogenize the 

water column without resuspending flocculent detritus.  I sampled chlorophyll-a as a proxy 

for phytoplankton biomass (Wetzel and Likens 2000) by collecting duplicate water samples 

from each mesocosm and filtering them onto glass-fiber filters (Whatman GF-F), with a pre-

filtration step using a 75 µm sieve to remove zooplankton.  The GF-F filters were kept frozen 

and dark until analyzed.  I extracted chlorophyll-a from the filters in the dark for 24 hr in cold 

ethanol (90%) and measured fluorescence on a desktop fluorometer (Turner Designs TD-

700), with HCl acidification to correct for phaeopigments (Nusch 1980).  To estimate 

zooplankton densities, I filtered each mesocosm in its entirety through a 75 µm mesh and 

preserved the contents in 95% ethanol until I counted them under a dissecting microscope.  

When necessary due to high densities, I subsampled the zooplankton samples following 

standard protocols (Wetzel and Likens 2000).  The reported and analyzed grazer densities for 

were total cladocerans (Moina and Daphnia together), due to the very low densities of 

Daphnia in all mesocosms (see Results).  

I analyzed the phytoplankton and zooplankton data separately using ANOVAs to 

determine the overall significance of the Trichocorixa effect and incorporating two 

independent a priori contrasts (Gotelli and Ellison 2004) to address my specific, directional 

hypotheses.  The first contrast tested whether the presence of Trichocorixa (of any instar) 

induced a trophic cascade.  That is, did the three treatment levels with Trichocorixa present 

have significantly lower densities of zooplankton and significantly higher densities of 

phytoplankton than the no-Trichocorixa controls?  The second contrast used a linear ordered 

term to test if older instars caused significantly stronger top-down effects.  That is, did later 

instar treatment levels have significantly lower zooplankton densities and significantly higher 

phytoplankton densities?  Both the zooplankton and phytoplankton data were log10-
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transformed prior to analyses to homogenize variances and normalize residuals.  I conducted 

the ANOVAs (with a priori contrasts) in R (R Core Development Team 2011).   

 

Trophic Dynamics in the Field 

 

 Finally, I explored the trophic consequences of Trichocorixa predation and ontogeny 

in situ by sampling a set of three rock pools every 2 – 4 days from 22 May to 15 August 2009 

(29 sample dates).  At each pool on a sample date, I collected duplicate 500 mL samples 

haphazardly from throughout the water column using a large-bulb pipette, removed all 

invertebrates from the water via a 75-µm mesh sieve, and preserved the plankton in 95% 

ethanol until I enumerated the samples under a dissecting microscope.  If any species were 

present in high densities, I counted replicate representative subsamples.  I also identified all 

Trichocorixa present to instar, based on size and morphology (Kelts 1979; see also Results).  I 

quantified algal biomass in all three pools on each sample date, by collecting a small volume 

of water from each pool (typically < 50 mL) and processing using the methods described 

above for chlorophyll-a.  The volumes of the pools were all approximately 300 L, thus each 

sampling removed only ~ 0.3% of any population present at that time.   

 

RESULTS 

 

Predator and Prey Sizes 

 

 Trichocorixa grew substantially during its ontogeny (Figure 2.1), with first instar 

juveniles weighing 0.020 ± 0.002 mg (dry weight) and measuring 1.24 ± 0.02 mm (max. 

length), compared to adults, who were nearly 45 times heavier and over four times as long at 

0.864 ± 0.070 mg and 5.07 ± 0.09 mm (all data means ± SEM, N = 22 individuals per instar).  
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This growth corresponded to individuals approximately doubling their body weight at each of 

the five molts.  Despite the generally good fit of the instar-specific means and the overall 

length-weight regression to the raw data (92% of deviance explained), there was substantial 

variation among individuals within each instar (mean within-instar coefficient of variation 

[CV] for dry weight = 0.34).  However, this variation remained relatively constant across life 

history stages (range in dry weight CV: 0.26 - 0.40) and did not change predictably as a  

 

 

 

 

Figure 2.1.   Length-weight relationship for Trichocorixa (N = 132; 22 individuals from each 

of six instars).  The grey open circles are individual data and the black filled circles are instar 

means with 95% CIs (the first instar is the smallest, and each subsequent instar is larger).  The 

solid line is the length-weight regression fit to the individual data: dry weight = 0.00586 × 

length
3.077

.  The open triangle and square are the mean length-weight for Moina and Daphnia 

(respectively) used in the laboratory experiments. 
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function of ontogeny (regression of dry weight CV against instar, P = 0.38).   

The size of the prey used in the experiments was both consistent within, and quite 

different between, the two species (Figure 2.1), with Daphnia (0.053 ± 0.003 mg, 2.02 ± 0.05 

mm, mean ± SEM, N = 20) being substantially larger than Moina (0.012 ± 0.001 mg, 1.23 ± 

0.02 mm, mean ± SEM, N = 20).  As a result, individuals from the two prey species 

potentially represented large differences in energetic rewards for the predator, depending on 

conversion efficiency.  Also, Trichocorixa individuals grow through the size spectrum of the 

prey: first instar Trichocorixa are nearly identical in size to Moina but not until the third instar 

were individual predators larger than Daphnia (Figure 2.1).  This overlap in predator and prey 

sizes does not necessarily preclude consumption, as Trichocorixa uses piercing mouth parts to 

fluid-feed on its prey and so is not limited by mouth gape size.  However, the predator-prey 

size overlap could still influence the ability of different predator instars to capture and subdue 

their prey.   

 

Functional Response Experiments 

 

All six instars of Trichocorixa were able to feed on both prey species and the 

functional response curves took a saturating (Type II) shape (Figure 2.2).  Attack rate and 

handling time both had significant intercept values (Table 2.1; ai = 1.642, hi = 0.0114, both P 

< 0.001) and scaled allometrically: attack rate increased and handling time decreased as 

functions of predator mass (as = 0.483, hs = -0.6162, both P < 0.001).  Three of the four 

parameters differed significantly between the prey species, all showing increased predation 

rates on Moina.  Trichocorixa had a higher attack rate intercept and a lower handling time 

intercept when preying upon Moina compared with upon  Daphnia (respectively, Δai =           

-1.065, P <0.001; Δhi = 0.0111, P = 0.007) and Trichocorixa’s handling time decreased more 

rapidly with increasing predator biomass when consuming Moina compared with Daphnia   
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Figure 2.2.  Functional responses for each of six Trichocorixa instars feeding on (A) Moina 

or (B) Daphnia.  All data were fit with a single model based on the Rogers Random Predator 

Equation with allometric scaling of parameters across instars and differences in all parameters 

between prey species (see Methods, Equation 2.1, and Table 2.1).  Note the difference in y-

axes between (A) and (B). 
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(Δhs = 0.2074, P = 0.047).  The scaling of attack rate with predator mass did not significantly 

differ between the prey species (Δas; P > 0.05).   

Although per capita predation was much higher on Moina than on Daphnia for all six 

Trichocorixa instars (Figure 2.2, Table 2.2), the total mass of Daphnia consumed was 

substantially higher than the total mass of Moina consumed, a result of the size difference 

between the prey species (Daphnia is 4.4 times larger than Moina in dry weight; Figure 2.1).  

Consequently, mass-specific consumption (mass of prey consumed ÷ mass of predator) was 

much higher for Trichocorixa of all instars when preying upon Daphnia than when preying 

upon Moina (Table 2.2).  Despite the increase in the number of prey consumed with predator 

ontogeny, the increase in prey mass consumed by each instar was less than the growth in 

 

 

Table 2.1.  Best fit parameters from the functional response model.   

 

Parameter Estimate Std. Error P 

ai  1.642 0.112 < 0.001 

Δai -1.065 0.108 < 0.001 

as 0.483 0.039 < 0.001 

hi 0.0114 0.0012 < 0.001 

Δhi 0.0111 0.0042 0.007 

hs -0.6162 0.0586 < 0.001 

Δhs 0.2074 0.1043 0.047 

 

 

Notes. Both attack rate and handling time were allowed to scale allometrically with predator 

biomass (Equation 2.1) and the resulting four parameters could differ between prey species.  

The scaling term for attack rate (as) did not differ significantly between the prey species (Δas; 

LRT, P > 0.05) and thus was removed from the model.  Translation of these parameters into 

instar- and prey-specific functional response parameters is shown in Table 2.2   
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predator biomass between instars, causing predator mass-specific consumption to decrease 

monotonically with increasing instar (Table 2.2). 

 

 

Table 2.2.  Estimated functional response parameters  and amount of prey eaten by each 

Trichocorixa instar. 

 

 

 Predator   Predicted Prey Eaten  

Prey Instar 

Mass  

(mg. dry 

wt.) 

Attack 

Rate (d
-1

) 

Handling 

Time (d) 
Number 

Mass 

(mg. dry 

wt.) 

Predicted  

DSC (%) 

M 1 0.0381 0.339 0.085 8.61 0.1042 273.8 

 2 0.0850 0.500 0.052 13.61 0.1646 193.7 

 3 0.1297 0.613 0.040 17.25 0.2087 160.9 

 4 0.2410 0.826 0.027 24.27 0.2936 121.8 

 5 0.4945 1.169 0.018 35.55 0.4301 87.0 

 6 0.9916 1.635 0.011 50.18 0.6071 61.2 

D 1 0.0381 0.119 0.086 5.81 0.3069 806.3 

 2 0.0850 0.176 0.062 8.26 0.4361 513.2 

 3 0.1297 0.215 0.052 9.93 0.5241 404.0 

 4 0.2410 0.291 0.040 12.97 0.6846 284.0 

 5 0.4945 0.411 0.030 17.61 0.9300 188.1 

 6 0.9916 0.575 0.023 23.58 1.2448 125.5 

 

 

 

Notes. M: Moina; D: Daphnia.  See Equation 2.1 for parameters.  The predicted number and 

dry weight of prey eaten was determined using the functional responses with 100 initial prey.  

Predicted daily specific consumption (DSC) was calculated as the predicted mass of prey 

eaten divided by the average mass of the Trichocorixa instar and displayed as a percentage.   
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Prey Choice Experiment 

 

 When given both prey species together, Trichocorixa strongly preferred Moina over 

Daphnia (across all predator instars, αCM for Moina = 0.9296 ± 0.0141, mean ± SEM, N = 60) 

and all six Trichocorixa instars displayed significant preference for Moina, even after 

accounting for the difference in their attack rates between the two prey species (Figure 2.3A; 

P < 0.001 for the first four juvenile instars, P = 0.026 for fifth instar juveniles, P = 0.019 for 

adults).  Despite all predator instars preferring Moina, older Trichocorixa were significantly 

less selective towards Moina than were younger individuals (regression of αCM against instar, 

slope = -0.032, P < 0.001).  As expected given the functional responses (Figure 2.2), older 

predators consumed significantly more prey individuals in total (Poisson regression of total 

prey eaten against instar, slope = 0.18, P < 0.001).  There was also a significant positive 

correlation between the number of prey individuals consumed from the two species (Figure 

2.3B; r = 0.45, P < 0.001).   

 

Food Web Mesocosm Experiment 

 

The Trichocorixa treatment had significant effects on the densities of cladoceran 

grazers (F3,12 = 4.53, P = 0.02) and phytoplankton (F3,12 = 3.66, P = 0.04) in the mesocosm 

experiment (Figure 2.4).  Regardless of instar, the presence of Trichocorixa led to a decrease 

in the density of cladocerans and an increase in the density of phytoplankton (a priori 

contrasts between treatments with and without Trichocorixa, cladocerans: contrast = -0.116, P 

= 0.009; phytoplankton: contrast = 0.074, P = 0.024; Figure 2.4).  Further, the strength of both 

responses was significantly greater in the treatments containing later life-history stages of the 

predators (a priori linear contrasts among treatments with Trichocorixa, cladocerans: contrast 

= -0.344, P = 0.019; phytoplankton: contrast = 0.207, P = 0.049; Figure 2.4).  In the control  



 43 

 
 

Figure 2.3.  Trichocorixa choice between prey species (Daphnia and Moina) across 

Trichocorixa instars.  (A) Preference of each Trichocorixa instar for Moina (as measured by 

αCM; points are means with 95% CIs) in relation to the expected value given the differences in 

attack rates on the two species (dashed horizontal line; αCM = 0.7399).  (B) Individual 

predator data showing the relationship between the number of prey consumed from each 

species.  Data in (B) were slightly jittered in both the X and Y directions and the 1:1 line was 

added to aid interpretation.  
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mesocosms, the density of cladocerans increased and phytoplankton decreased substantially 

from the start of the experiment (dashed lines in Figure 2.4), indicating that the zooplankton 

can suppress phytoplankton densities in the absence of Trichocorixa.  This effect also 

appeared to occur before the addition of Trichocorixa, as algal concentrations dropped from 

800 to 719 µg chlorophyll-a L
-1

 during the four day equilibration period.  In contrast, adult 

Trichocorixa on average slightly suppressed the density of the zooplankton trophic level, 

leading to a small average increase in phytoplankton density relative to the starting densities 

(Figure 2.4; three of four “adult” mesocosms had reduced zooplankton densities and increased 

phytoplankton densities).  The increase in phytoplankton density observed in the presence of 

adult Trichocorixa was almost certainly not the result of excretion by the predators or grazers, 

since nutrient concentrations are extremely high in the Appledore rock pool water as the result 

of a steady input of gull guano (Sze 1981; Loder et al. 1996).   

 Despite the strong preference of Trichocorixa for Moina and the higher rate of 

predation on Moina compared to Daphnia, all of the mesocosms were dominated by Moina at 

the end of the experiment.  Indeed, Daphnia was only found in three of the mesocosms and 

always at much lower densities than Moina.  There was no clear relationship between the 

Trichocorixa treatment level and the presence of Daphnia: they were found in one mesocosm 

containing adult predators (17 Daphnia L
-1

) and two containing small juvenile predators (1 

and 2 Daphnia L
-1

).  This decrease in Daphnia densities appears to have begun before the 

predator treatment was imposed: during the four day equilibration period, the density of 

Daphnia decreased from 40 to 18 individuals L
-1 

(compared to an increase in Moina from 125 

to 205 individuals L
-1

).  This suggests that some aspect of the mesocosm environment was 

unfavorable for Daphnia.  One likely factor may have been the high phytoplankton densities, 

as Daphnia is not commonly found in rock pools with over 250 µg chlorophyll-a per L (J. L. 

Simonis, unpub. data).  Also present in the mesocosms were Brachionus (rotifer), 

Acanthocyclops (copepod), and chironomid larvae.  However, these taxa were generally at  
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Figure 2.4.  Influence of Trichocorixa presence and stage on the density of (A) cladocerans 

(Moina and Daphnia combined) and (B) phytoplankton (measured as chlorophyll-a) after 12 

days (data are back-transformed means ± standard deviations; N = 4 for each treatment level).  

The dashed horizontal lines represent the density of each trophic level just prior to 

Trichocorixa addition (A: 223 cladocerans L
-1

; B: 719 µg chlorophyll-a L
-1

).  Treatments are 

represented along the x-axis: Control (no Trichocorixa), Small Juveniles (2
nd

 and 3
rd

 instars), 

Large Juveniles (4
th

 and 5
th

 instars), and Adults.   
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low densities and none displayed changes in density significantly associated with the predator 

treatment (data not shown). 

 

Trophic Dynamics in the Field 

 

 All three pools followed in the field survey had populations of chlorophyte algae, 

Moina, and Trichocorixa, but no Daphnia (Figure 2.5).  There were also populations of 

Brachionus and populations chironomid larvae in all three pools.  However, the chironomids 

were at relatively low densities (average: 8.6 ind. L
-1

) and typically in protective cases 

attached to the benthos, which prevent predation by Trichocorixa (J. L. Simonis, pers. obs.).  

The survey began when the first generation of Trichocorixa was in the 3
rd

 – 5
th

 instars and 

lasted through the hatching and partial development of a second generation (Figure 2.6).  The 

first generation reached adulthood 2 – 2.5 weeks into the survey (Figure 2.5B).  Trichocorixa 

population densities were relatively constant at near 5 individuals L
-1

 during the survey period 

(Figure 2.5A), except when the population densities temporarily exploded (ca. Julian Date 

190-210, maximum of 116 individuals L
-1

) due to the hatching of the second generation 

(Figure 2.6).  However, the second Trichocorixa generation appears to have experienced high 

mortality among the youngest instars, as population densities decreased markedly after the 

hatching and there was relatively low recruitment to later instar stages (Figures 2.5A, 2.6).   

In all three pools, Moina densities were high at the beginning of the survey, decreased quickly 

after Trichocorixa populations became dominated by adults, and increased again later in the 

summer following the mass mortality of the second generation of Trichocorixa (Figures 2.5C, 

2.7).  All three Moina populations experienced large decreases in their intrinsic growth rates 

following the development of Trichocorixa into adults (based on the four sample dates 

immediately preceding and the four dates immediately following the date on which 

Trichocorixa adults were first found; average change in growth rate was -0.3473 d
-1

, and the  
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Figure 2.5.  Time series of (A, B) Trichocorixa, (C) Moina, and (D) algae densities in three 

rock pools during the summer of 2009.  Panel (B) shows the percentage of adults in the three 

Trichocorixa populations.  Each set of point and line types represents a different pool and are 

consistent across panels.  Note the log10 scales of the y-axes in (A, C, D). 

 

 

 



 48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6.  Combined age distribution of the three Trichocorixa field populations.  

Successive instars are stacked on top of each other (darkness increasing with stage from white 

for 1
st
 instar to black for adults). 
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three populations declined from 0.135 d
-1

 to -0.194 d
-1

, from 0.056 d
-1

 to -0.208 d
-1

, and from 

-0.001 d
-1

 to -0.450 d
-1

).  The decrease in Moina density after the occurrence of Trichocorixa 

adults was also followed by the expected increase in algal density (Figures 2.5D, 2.7), 

reflecting the trophic cascade seen in the mesocosm experiment (Figure 2.4).  The temporal 

dynamics of all three trophic levels were strongly synchronized across the three pools (Figure 

2.7): average cross-correlation coefficients were 0.685 for the algae, 0.579 for Moina, and 

0.690 for Trichocorixa (using a 0-time lag with log10 densities and averaging the three 

possible pairwise cross-correlation coefficients for each trophic level).  And despite small 

among-pool differences in the timing of Trichocorixa developing into the adult stage, the 

resulting grazer-algal dynamics are quite similar in amplitude and duration, as shown by the 

consumer-resource phase planes (Figure 2.7). 

 

DISCUSSION 

 

Here I have combined lab and field experiments with field survey data in a freshwater 

ecosystem to highlight the role that ontogenetic changes in top predator consumption rates 

play in structuring food webs.  Similar to many other predator taxa, Trichocorixa grew 

substantially during its life history, with concomitant increases in consumption rates 

(Thompson 1975; Mittelbach 1981; Peters 1983; Shine 1991; Kooijman 1993; Aljetlawi et al. 

2004).  The allometric increase in per capita consumption by Trichocorixa manifested in the 

rock-pool food web as an increase in top-down control with predator ontogeny, as 

demonstrated experimentally and observed in field data.  Similar to other field populations of 

Trichocorixa (Tones 1975; Kelts 1979), the populations surveyed here showed a non-stable 

stage structure with partially overlapping generations (Figure 2.6), which led to a dynamic 

rate of predation and caused the strengths of direct and indirect effects of Trichocorixa 

predation on lower trophic levels to fluctuate through time.  This type of demographically   
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Figure 2.7.  Phase planes depicting the relationship between Moina and algae densities in 

each of the three pools shown in Figure 2.5 (point and line types matching those in Figure 

2.5).  The circled point is the beginning of the time series and the boxed point represents the 

first day adult Trichocorixa were found in the pool.   
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driven variation in predation strength may be common given the prevalence of both 

allometrically scaling consumption rates and dynamically structured predator populations 

(Peters 1983; Ebenman and Persson 1988; Werner 1988; Kooijman 1993), and indicates that 

the inclusion of stage- or size-specific information may be important for understanding the 

trophic structure and dynamics of food webs (Alford 1989; Hairston and Hairston 1997; de 

Roos et al. 2003).   

 However, the degree to which top predator ontogeny influences trophic dynamics is 

likely mediated by other factors, such as the complexity of the particular food web (Hairston 

and Hairston 1997; Hildrew et al. 2007b).  Changes in top predator consumption rates are far 

more likely to have straightforward cascading effects in a simple tri-trophic food chain like 

the (dominant) chain in the Appledore rock pools than they are in a more complex food web 

with many constituents and linkages.  Indeed, Trichocorixa is capable of consuming a wider 

variety of resources than what is present and accessible in the rock pools (e.g., filamentous 

algae, dipteran larvae; Kelts 1979).  The higher food-web complexity found in other 

ecosystems Trichocorixa inhabits could alter the trophic influence of this species, and its 

ontogeny, on food-web structure and dynamics (Polis and Strong 1996; Hairston and Hairston 

1997).  For example, the presence of alternative resource types that supplement the diet of 

young Trichocorixa instars could help meet the high energetic demands of these stages, 

thereby reducing mortality rates, but may also induce a classic ontogenetic niche shift.   

  In addition to food-web complexity, population structure within other trophic levels 

may also modulate the trophic effect of ontogenetic changes in the top predator.  For example, 

many species at lower trophic levels also grow considerably over their lifetimes, which likely 

has consequences for their trophic interactions as both resources and consumers.  This is the 

case in the Appledore pools, as both Moina and Daphnia grow considerably during their own 

ontogeny (Anderson et al. 1937; Martínez-Jerónimo and Gutierrez-Valdivia 1991), which 

likely influences both their vulnerability to predators and their grazing rates (Murdoch and 
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Scott 1984; Knoechel and Holtby 1986).  Although it is currently unknown how selective or 

efficient Trichocorixa is when preying upon cladocerans of different sizes within the same 

species, many other predatory aquatic insects show strong selection for, and higher predation 

rates on, smaller prey size classes (e.g., Thompson 1975; Pastorok 1981; Murdoch and Scott 

1984; Ranta and Espo 1989).  Indeed, Trichocorixa is negatively size selective when preying 

upon Artemia brine shrimp (Wurtsbaugh 1992), which corresponds to the preference for the 

smaller cladoceran species (Moina over Daphnia) shown in the present study (Figure 2.3) and 

suggests a general preference for smaller prey items.  Considering that the rates at which 

cladocerans graze on phytoplankton is also strongly size-dependent (Knoechel and Holtby 

1986; Kooijman 1993; DeMott et al. 2010), selection by Trichocorixa for specific size classes 

of cladocerans may have cascading effects on phytoplankton densities and dynamics.  Such 

size-specific interactions have the potential to alter the dynamics of tri-trophic food webs 

qualitatively by introducing Allee effects or stabilizing population cycles (de Roos et al. 

2003).  It is therefore likely that the complete picture of the food-web consequences caused by 

ontogenetically variable predators such as Trichocorixa results from a combination of 

predator and prey population size structures.   

Despite potential confounding factors, such as prey size distributions, increased 

predation by older Trichocorixa did appear to cause a large reduction in Moina populations in 

situ (Figures 2.5, 2.7).  All three pools had Trichocorixa populations, and therefore there was 

no control situation (pool without predation) for comparison, but these observed patterns were 

similar across pools (despite differences in timing of maturity among pools) and were 

consistent with those expected, based on the results of my lab and mesocosm experiments.  In 

particular, Moina densities decreased substantially following the first Trichocorixa generation 

reaching adulthood.  This strong reduction in prey densities had important consequences for 

the Trichocorixa populations and subsequently for the rest of the rock-pool food web.  First, 

after reducing Moina to near-extinction, the adult Trichocorixa densities decreased, perhaps 
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driven by flighted emigration in response to low resource densities, an expectation for motile 

predators based on optimal foraging theory (Charnov 1976) which has been shown to occur in 

this system (adult Trichocorixa have higher emigration rates when Moina densities are lower; 

Simonis 2012).  The reduced predation that resulted from the decrease in adults may have 

contributed to the persistence of the Moina populations in the pools, despite their reaching 

very low densities, and would therefore point to the role of predator dispersal in stabilizing 

locally unstable food webs at larger spatial scales (Murdoch and Stewart-Oaten 1989; Simonis 

2012).  The Moina populations did eventually rebound from the crashes, but not until after the 

second generation of Trichocorixa hatched and crashed (Figures 2.5-2.7).  The period of low 

Moina densities may have been prolonged by predation following the hatching of the second 

generation, and also may have contributed to the mass mortality seen in the early instars of the 

second generation (ca. Julian Day 200; Figures 2.5, 2.6), as these young stages have high 

energetic demands (see daily specific consumption in Table 2.2) that may not have been met 

by the low densities of prey present at the time.  This high juvenile mortality resulted in 

generally low recruitment of the second Trichocorixa generation in these populations (Figures 

2.5A, 2.6), which could promote longer term persistence of the local Moina populations. 

Ontogenetic shifts in feeding ecology, such as those shown here for Trichocorixa, are 

widespread among animal taxa and can strongly influence the structure and dynamics of food 

webs (Peters 1983; Werner and Gilliam 1984; Werner 1988; Polis and Strong 1996; Persson 

et al. 1998; Rudolf and Lafferty 2011).  Although most research has focused on the food-web 

effects of qualitative feeding shifts, many predators exhibit less extreme, but still important, 

quantitative changes in feeding rates with ontogeny (Peters 1983; Kooijman 1993).  Here I 

have shown that an ontogenetic allometric increase in the per capita rate of predation by 

Trichocorixa verticalis on cladoceran zooplankton strengthened the trophic cascade to 

primary producers in freshwater rock pools.  As a result, predation by adult Trichocorixa led 

to much stronger top-down control than did predation by juvenile Trichocorixa.  Just as 
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among-taxa differences in predation rates and efficiencies may dictate the presence or 

strength of trophic cascades across ecosystems (Hairston and Hairston 1993; Polis 1999; 

Borer et al. 2005), ontogenetic variation in predation rates within top predator taxa may 

influence trophic dynamics within ecosystems.  As a result, the size-structure of predator 

populations may play an important role in dictating when or how strongly trophic cascades 

will appear within a particular ecosystem.  These results indicate that quantitative ontogenetic 

changes in predator feeding may also have significant food-web consequences, and suggest 

that merging of population and food web ecology may be necessary to understand and predict 

field ecosystem dynamics more accurately (Alford 1989; Hairston and Hairston 1993; de 

Roos et al. 2003; Cohen et al. 2003, Hildrew et al. 2007a). 
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CHAPTER 3 

 

 

BATHING BIRDS BIAS ΒETA-DIVERSITY: FREQUENT DISPERSAL BY GULLS 

HOMOGENIZES FAUNA IN A ROCK-POOL METACOMMUNITY
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ABSTRACT 

 

Metacommunity theory predicts that regional dispersal of organisms among local 

habitat patches will influence spatial patterns of species diversity.  In particular, increased 

dispersal rates are generally expected to increase local (α) diversity, yet homogenize local 

communities across the region (decrease β–diversity), resulting in no change in regional (γ) 

diversity.  These predictions have met with mixed experimental results, and remain poorly 

tested in field metacommunities, where other ecological factors may also influence species 

diversity.  Here, we use a system of freshwater rock pools on Appledore Island, Maine, USA 

to test the effects of dispersal rate on species diversity in metacommunities.  The pools exist 

in clusters (metacommunities) that experience different levels of dispersal imposed by gulls 

(Larus spp.), which we show to be frequent passive dispersers of rock-pool invertebrates.  

Although previous research suggests that waterbirds may disperse aquatic invertebrates, our 

study is the first to quantify the rate at which such dispersal occurs and determine its effects 

on species diversity.  In accordance with metacommunity theory, we found that 

metacommunities experiencing higher dispersal rates had significantly more homogeneous 

local communities (reduced β–diversity) and that γ–diversity was not influenced by dispersal 

rate.  However, α–diversity in the rock pools was not significantly influenced by dispersal, as 

predicted by metacommunity theory.  Rather, local diversity was significantly positively 

related to local habitat size.  These results indicate that regional dispersal and local factors 

(here, habitat size) can interact to produce patterns of species diversity in metacommunities 

that are counterintuitive until their effects are disarticulated. 

 

INTRODUCTION 

 

A principal goal of metacommunity ecology is to elucidate how processes occurring 
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locally (within patches of habitat) and regionally (among habitat patches) combine to dictate 

observed patterns of species diversity across spatial scales (Leibold et al. 2004; Holyoak et al. 

2005).  Dispersal, the movement of organisms between distinct patches of habitat, is a 

fundamental ecological process that determines the spatial distribution of individual species 

and therefore likely influences patterns of species diversity (Hanski 1999; Clobert et al. 

2001).  While models vary in their specific predictions (Chave and Leigh 2002; Mouquet et 

al. 2002; Mouquet and Loreau 2003; Chase et al. 2005), metacommunity theory generally 

predicts a positive relationship between local species diversity (α–diversity) and dispersal 

rate, as increasing dispersal allows additional species to colonize patches (Figure 3.1).  At the 

same time, this increased colonization is expected to homogenize the composition of species 

among habitat patches, thereby reducing among-patch variation (β–diversity) with increasing 

dispersal rates (Chave and Leigh 2002; Mouquet and Loreau 2003; Figure 3.1).  As a result of 

the increase in α–diversity and decrease in β–diversity, regional species diversity (γ-diversity) 

is expected not to change with increasing dispersal (Mouquet and Loreau 2003; Chase et al. 

2005; Figure 3.1).  In some metacommunities, however, dispersal rates may become high 

enough for species to not be limited by colonization, at which point local ecological processes 

or factors (e.g., competitive exclusion, keystone predation) are expected to determine species 

diversity both locally and regionally.  Above this threshold dispersal rate, β–diversity is 

predicted to remain constant near 0 (communities are homogenized by high dispersal) and α–

diversity is expected to decrease (due to, e.g., competitively superior species dominating 

across the region), causing γ-diversity to decrease (Mouquet and Loreau 2003; Chase et al. 

2005; Figure 3.1).  These theoretical predictions have been tested experimentally, but a recent 

meta-analysis by Cadotte (2006) has indicated that the current body of experimental research 

is inconclusive regarding the effects of dispersal rate on species diversity in 

metacommunities.  Further, metacommunity theory has seldom been applied to explain 

observed patterns of species diversity in field systems, where other factors such as habitat size 
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and resource density may also strongly influence species diversity (Rosenzweig 1995; Post et 

al. 2000; Driscoll and Lindenmayer 2009). 

Here, we use a field ecosystem of freshwater rock pools on Appledore Island, Maine, 

USA (hereafter Appledore; Figure 3.2) to test the predictions of metacommunity theory 

regarding the influence of dispersal on species diversity.  Approximately 1,500 rain-filled 

freshwater rock pools are patchily distributed on Appledore above the high-tide line, housing 

a community of 16 invertebrate taxa including rotifers, insects, and crustaceans (Table 3.1).  

For their inhabitants, the rock pools represent habitat “islands” embedded in an uninhabitable  

 

 

 
 

 

Figure 3.1.  General theoretical predictions for the effect of dispersal on α–, β–, and γ–

diversity (dashed, dotted, and solid black lines, respectively) in metacommunities (modified 

from Mouquet and Loreau 2003; Chase et al 2005; as well as references therein).  The vertical 

solid grey line indicates the threshold level of dispersal above which local processes are 

expected to determine species diversity patterns. 
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Figure 3.2.  A: Appledore Island, Maine, USA (white star), as part of the Isles of Shoals 

Archipelago, in relation to coast of New Hampshire and Maine, USA.  Portsmouth, NH is 

depicted by the black arrow.  B: Locations of observations for gull visitations (red circles), 

sampling points for diversity survey (blue triangles), and the central pond (orange star).  C: 

An area of rock pools (shaded and numbered) on the eastern side of Appledore, as represented 

by the black rectangle in (B).  Not all pools in the aerial photo of (C) are shaded and marked.  

Photos courtesy of J. Morin.   
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Table 3.1.  Fraction of gulls (Larus spp.) carrying rock-pool invertebrates, ordered from most 

to least dispersed invertebrates.  

 

 

 

Taxon 
Freq. of 

Occurr. 

Exiting 

Pools 

(of 25) 

Near 

Pools 

(of 25) 

Central Pond 

(of 2) 

Total 

(of 52) 

Moina macrocopa (C) 0.42 5 1 1 7 

Brachionus rubens (R) 0.77 5 0 0 5 

Acanthocyclops vernalis (C) 0.49 3 1 1 5 

Aedes sp. (I) 0.20 3 1 0 4 

Trichocorixa verticalis (I) 0.86 3 0 0 3 

Daphnia pulex (C) 0.22 1 0 1 2 

Chironomidae sp. (I) 0.89 0 0 1 1 

Ostracoda sp. (C) 0.67 0 1 0 1 

Ephydra sp. (I) 0.04 1 0 0 1 

Dytiscidae sp. (I) 0 1 0 0 1 

Chydorus sphaericus (C) 0.11 0 0 0 0 

Harpacticoida sp. (C) 0.02 0 0 0 0 

Amphipoda sp. (C) 0.01 0 0 0 0 

Epiphanes sp. (R) 0 0 0 0 0 

Bosmina sp. (C) 0 0 0 0 0 

Daphnia laevis (C) 0 0 0 0 0 

 

 

 

 

Notes. The number of gulls carrying each taxon is listed for each of the three classes of gulls 

(exiting pools, near pools, in the central pond) and in total.  Parenthetical letters indicate the 

larger taxonomic classification (C: crustacean, R: rotifer, I: insect).  The five insects are the 

only taxa capable of actively dispersing between pools.  Freq. of Occur. (frequency of 

occurrence) indicates how common each taxon was in the survey of 90 pools (see Materials 

and Methods); taxa observed in the rock pools at other times but not during this survey were 

included with frequency = 0. 
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matrix of exposed granite bedrock.  Although the insect species present can actively disperse 

among pools by flying during specific periods in their life histories, the rest of the taxa must 

rely on external mechanisms (e.g., wind, animals) to passively disperse among pools.  One 

potential dispersal agent for rock-pool fauna are the large breeding populations of Herring 

Gulls and Great Black-Backed Gulls (Larus argentatus and L. marinus, respectively) on 

Appledore (Ellis and Good 2006).  We have routinely observed gulls visiting the pools to 

drink, swim, or bathe (Figure 3.3).  If the gulls carry any rock-pool invertebrates on them 

externally, such visits represent potential dispersal events and the existing variation in gull 

density among rock pool clusters on Appledore (Figure 3.4A) constitutes a gradient of 

dispersal imposed upon the metacommunities.   

Following Darwin’s clever experiment showing that ducks could passively disperse 

freshwater snails among isolated wetlands (Darwin 1859), many ecologists have reported 

observations of waterbirds dispersing aquatic invertebrates, including taxa otherwise lacking 

the capacity to disperse between habitats (Maguire 1963; Bilton et al. 2001; Figuerola and 

Green 2002; Bohonak and Jenkins 2003; Charalambidou and Santamaría 2005; Frisch et al. 

2007; Green et al. 2008).  These observations have established that waterbirds can act as 

dispersal agents for aquatic invertebrates, yet there is a lack of quantitative data regarding the 

frequency and efficacy of waterbird-mediated dispersal of aquatic invertebrates.  As a result, 

the effects of such dispersal on the spatial distributions of species and patterns of species 

richness in aquatic communities remains speculative (Figuerola and Green 2002; Bohonak 

and Jenkins 2003).  Therefore, the goals of this study were first to quantify rates of gull-

mediated dispersal in the rock-pool system and then to examine how invertebrate α–, β–, and 

γ–diversity vary among clusters of rock pools (metacommunities) in response to increasing 

rates of passive dispersal by gulls.   

To determine if Larus if could disperse rock-pool invertebrates, we captured 52 gulls 

in the field, placing each into a plastic tub containing filtered well water to assess if they were 
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Figure 3.3.  Adult (A. B) and juvenile (C, D) gulls visiting Appledore rock pools.   
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Figure 3.4.  Gulls (Larus spp.) frequently visit rock pools on Appledore Island.  A: Dispersal 

rate (visits by gulls carrying invertebrates pool
-1

 day
-1

) increases significantly as a function of 

local gull density (gulls pool
-1

).  Data are seasonal averages (± SEM) for the eight 

observational areas (see Figure 3.2B), dispersal rates were estimated as described in Materials 

and Methods, and the line is the best-fit RMA regression using average values for both 

variables.  B:  Histogram of the frequency of visits by gulls pools across all eight sites and 

four time periods.  Note the breaks in both axes.  
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carrying live animals (Materials and Methods).  Twenty-five of the birds were intercepted as 

they exited pools, 25 were captured near pools but had not been in a pool for > 20 minutes, 

and the remaining two were captured from the central pond (Figure 3.2B).  To scale up these 

results, we next quantified how frequently gulls visit the rock pools using modified scan 

sampling (Altmann 1974) at eight sites around Appledore that experienced varying gull 

densities (Figure 3.2N; Materials and Methods).  We then used a Monte Carlo modeling 

approach and combined the transportation and visitation data sets to quantify the average rate 

at which gulls dispersed invertebrates among the rock pools and how this rate varied as a 

function of gull density within a metacommunity (Materials and Methods).  Here we are 

focusing on external transport (on feathers, feet, etc.), as we have found no conclusive 

evidence that Larus disperses invertebrates internally (no viable invertebrates or eggs were 

found in 100 fresh fecal deposits; Simonis and Fetzer unpub. data).   

Finally, we quantified the effects of this gull-mediated dispersal on rock-pool 

invertebrate diversity by sampling 90 pools in 10 clusters (metacommunities) around 

Appledore during July 2011 (7–10 pools per cluster; Figure 3.2B; Materials and Methods).  

For each pool we measured the total number of taxa present (α–diversity) and for each 

metacommunity we determined the taxonomic variation among pools (β–diversity; as 

multivariate dispersion using Sørensen’s index of similarity; Sørensen 1948; Anderson et al. 

2006; Anderson et al. 2011) and the total number of taxa present in the cluster (γ–diversity).  

The clusters varied in local bird density (range: 0 – 2.06 gulls pool
-1

) and thus varied in the 

level of bird-mediated dispersal they experienced (Figure 3.4A).  We also measured the 

volume and the chlorophyll-a concentration (proxy for resource density) of each rock pool, to 

test the effects of habitat size and resource density on species diversity (Rosenzweig 1995; 

Post et al. 2000).  The significance of dispersal rate, pool volume, and resource density as 

predictors of  α–, β–, and γ–diversity were tested using separate regressions for each diversity 

metric (Materials and Methods). 
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RESULTS AND DISCUSSION 

 

Larus gulls are indeed capable of transporting aquatic invertebrates between rock 

pools on Appledore.  In total, 20 of the 52 (38.5%) birds tested were found to be carrying at 

least one live invertebrate, with the maximum number of taxa being three (Table 3.2, average 

number of taxa on those 20 birds was 1.44) and the maximum number of invertebrates on any 

bird being 18 (17 Brachionus and one Trichocorixa).  Birds exiting pools were significantly 

more likely to be carrying live animals than birds that had not recently visited pools (64% vs. 

8%, χ
2

df=1 = 17.01, P = 0.0005).  However, the fact that some birds not recently in pools 

harbored live aquatic invertebrates indicates the potential for rock-pool fauna to persist on 

gulls for an extended period of time outside of water (at least 20 minutes).  These 

invertebrates likely persisted due to the gulls’ dense feathers and preening oil (Gill 2007), 

which promote the creation of temporary aquatic microhabitats (J. L. Simonis pers. obs.).  

The length of time for which these microhabitats can harbor living aquatic organisms is 

unknown, but our data indicate that some remain habitable for 20 minutes or longer.  The 

invertebrates found on the birds comprised the majority of rock-pool fauna (10 of 16 taxa, or 

62.5%) and were generally also the most common taxa in the pools (Table 3.1).  Moina 

macrocopa, one of the most abundant invertebrates in the pools, was found on seven gulls  

 

 

 

Table 3.2. Number of invertebrate taxa found on gulls (Larus spp.) 

 

 

Class 0 Taxa 1 Taxon 2 Taxa 3 Taxa 

Recently exited pool 9 10 6 0 

Near pool 23 1 0 1 

Central Pond 0 1 0 1 

 

 

Notes. For each class of gulls, the number of birds carrying 0 – 3 invertebrate taxa is listed. 
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(13.5% of total), the most of any taxon (Table 3.1).   

Our field observations indicate that this gull-mediated dispersal of aquatic 

invertebrates occurs frequently in the Appledore system, as birds visited rock pools at an 

overall rate of 0.65 visits pool
-1

 hr
-1

 (409 visits seen in 628 pool-hours of observation; SD: 

2.04).  However, visits were not evenly distributed among pools (Figure 3.4B): only 175 

(27.9%) of the pools were visited during observations and the vast majority of those pools 

(92%, 161 of 175) were visited four or fewer times, yet one pool was visited 34 times in an 

hour.  As a result, the distribution of visits was overdispered: the variance of visitation rates 

was 6.4 times higher than the mean visitation rate (4.16 and 0.65, respectively).  The rate of 

visits by gulls also varied considerably among locations and months (range: 0 – 3.4 visits 

pool
-1

 hr
-1

, SD: 0.73) and a significant portion of this variation was predicted by the local 

density of gulls, such that pools were visited more frequently when there were more gulls in 

the area (Figure 3.5; ranged major axis [RMA] regression slope = 0.73, R
2
 = 0.43, P = 

0.0003).   Of the observed visits, 10.3% (42 of 409) were by gulls going between multiple 

pools within 20 minutes, which represents a higher chance of transporting invertebrates, given 

the increased prevalence of invertebrates on gulls that have recently exited pools (Table 3.2).  

 The Monte Carlo combination of our experimental and observational data suggest that 

a typical pool is visited by gulls at a rate of 9.15 visits pool
-1

 day
-1

 (range: 6.82 – 12.11, SD: 

0.67) and 13.8% of those visits involved birds carrying viable invertebrates (range: 10.1% – 

18.0%, SD: 1.0%), leading to an average rate of 1.26 visits by birds carrying invertebrates 

pool
-1

 day
-1

 (range: 0.84 – 1.88, SD: 0.13).  However, all pools are not equally likely to 

receive gulls carrying invertebrates, as there was large spatial variation in gull densities 

(seasonal averages within clusters, range: 0.30 – 2.54 gulls pool
-1

, SD: 0.72).  Indeed, the 

expected rate of gull-mediated dispersal (from the Monte Carlo analysis) increased 

significantly as a function of the density of gulls within the cluster (Figure 3.4A; ranged major 

axis [RMA] regression using seasonal averages of gull density and dispersal rate, slope = 
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1.29, R
2
 = 0.893, P = 0.0019).  It is important to note that these calculations did not include 

the ability of taxa to establish populations upon arriving, nor take into account that some taxa 

may already be present in the recipient pool.  Nevertheless, our results demonstrate the high 

potential for Larus to be an important dispersal vector for invertebrates in the Appledore rock 

pools.  In particular, gulls are likely the main mode of dispersal for the vast majority of rock-  

 

 

 

 
 

 

Figure 3.5.  The rate of visits by gulls to pools significantly increases as a function of the 

local density of gulls (individuals pool
-1

), across the four observation periods (denoted by 

different symbols).  The line is the best-fit RMA regression.   
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pool taxa that cannot actively disperse between habitats (Table 3.1).  Indeed, the rate of gull-

mediated dispersal is much higher than the frequency of rain-induced overflows (average rate: 

0.05 overflows pool
-1

 day
-1

), the other major vector of passive dispersal in the rock pools (K. 

E. Pellowe and J. L. Simonis, unpub. data). 

Our survey of faunal diversity indicates that this frequent dispersal by Larus 

significantly influences spatial patterns of invertebrate species diversity in the Appledore rock 

pools (Figure 3.6).  In particular, metacommunities experiencing higher levels of gull 

dispersal had significantly more similar local communities (lower β–diversity with increasing 

dispersal rate; Figure 3.6B; RMA regression, slope = -0.096, R
2
 = 0.60, P = 0.008), as 

predicted by metacommunity theory (Chave and Leigh 2002; Mouquet and Loreau 2003; 

Figure 3.1).  This result was not influenced by our using multivariate dispersion to quantify 

β–diversity: we obtained a similarly significant negative effect of dispersal on β–diversity if 

we used Whittaker’s (Whittaker 1960) original equation, β = γ/α
*
 (where α

*
 is the average α–

diversity for the cluster; RMA regression, slope = -0.272, R
2
 = 0.615, P = 0.004), not 

surprising given the strong positive correlation between the two measures of β (Pearson 

correlation coefficient = 0.87, P = 0.001).  Neither volume nor resource density was a 

significant predictor of β–diversity (using either the variance or average to summarize the 

values among pools within clusters).   

Although metacommunity models predict that α–diversity should increase with 

dispersal rate up to a threshold (Mouquet et al. 2002; Mouquet and Loreau 2003; Figure 3.1), 

we found no significant relationship between dispersal rate and local taxonomic richness (α–

diversity did increase with dispersal, but not significantly so, P = 0.48; Figure 3.6A).  That is, 

clusters of pools experiencing higher rates of gull-mediated dispersal tended to have more 

similar local communities, but those pools did not have higher local taxon richness.  α–

diversity was also not affected by local resource density, but was significantly higher in larger 

pools (Poisson mixed-model regression, slope = 0.12, deviance explained = 9.8%, P = 0.037).    
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Figure 3.6.  Effect of gull-mediated dispersal rate (estimated based on local gull density, see 

Figure 3.4B) on rock-pool taxon diversity (A: α–diversity, B: β–diversity, and C: γ–diversity).  

Points are the mean (± SEM) for α– and β–diversity, numbers next to the points indicate the 

sample size (number of pools sampled in the cluster), and the line in each panel represents the 

best-fit RMA regression between dispersal rate and diversity (fit using mean values for α– and 

β –diversities).  Only the relationship for β–diversity was significant, but the best-fit lines for 

α– and γ–diversity were included (dashed and grayed) to show trends.  β–diversity was 

measured as multivariate dispersion using Sørensen’s index of similarity (Sørensen 1948; 

Anderson et al. 2006; Anderson et al 2011) and the range of possible β–diversity values using 

this metric was 0 – 0.671.   
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Metacommunity theory does predict that local factors will influence species diversity, but 

typically only after dispersal is high enough to fully homogenize local communities (i.e., 

when dispersal is no longer limiting; Chave and Leigh 2002; Mouquet and Loreau 2003; 

Chase et al. 2005; Figure 3.1).  In the Appledore system, however, habitat size significantly 

affected local diversity despite dispersal never being high enough to overcome limitation and 

fully homogenize local communities (β–diversity was always above 0 and still declining with 

increasing dispersal; Figure 3.6B).  This result indicates that local factors may be important 

determinants of species diversity in metacommunities, even when dispersal rates are low.   

As predicted by metacommunity theory (Mouquet and Loreau 2003; Chase et al. 

2005; Figure 3.1), we found no significant relationship between γ–diversity and dispersal 

(gull density), indicating that transport by gulls did not contribute significantly to the number 

of species present in a cluster of pools (P = 0.41; Figure 3.6C).  This result is also consistent 

with our observation that most pool visits are by gulls residing (nesting or roosting) nearby or 

within the cluster of pools, not by gulls coming from other parts of the island (J. L. Simonis, 

pers. obs.).  While it is possible that gulls moving between different parts of Appledore may 

introduce taxa into clusters where they were previously absent, our data suggest that this 

longer-distance dispersal is too infrequent to influence patterns of species diversity.  γ–

diversity was also not significantly predicted by pool volume or resource density (using 

average values for the clusters).  The lack of a relationship between γ–diversity and dispersal 

rate is predicted for low to moderate dispersal rates in metacommunity models, but in 

particular resulting from a balance between increased α–diversity and decreased β–diversity 

(Mouquet and Loreau 2003; Chase et al. 2005; Figure 3.1).  Although we did observe an 

increase in β–diversity with dispersal rate, α–diversity did not change significantly along this 

axis.  This seemingly paradoxical finding (significant change in β–, but not α– or γ–diversity, 

with dispersal) appears to result from the high amount of variance in α–diversity that was 

unexplained by dispersal (the R
2 

for the RMA regression of α–diversity against dispersal = 
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0.144).  As predicted by theory (Chave and Leigh 2002; Mouquet and Loreau 2003; Chase et 

al. 2005; Figure 3.1), the relationship between α–diversity and dispersal rate was indeed 

positive (estimated slope = 0.671; Figure 3.6A), albeit not statistically significantly so, 

perhaps due to the influence of rock-pool volume on local species richness.  These results 

indicate that processes and factors occurring at different spatial scales (here, regional dispersal 

and local habitat size) can combine to create counterintuitive patterns of species diversity in 

metacommunities and highlight the importance of studying the influence of dispersal in field 

settings, where other processes and factors are also at play.   

As has been observed in other systems (Maguire 1963; Bilton et al. 2001; Figuerola 

and Green 2002; Bohonak and Jenkins 2003; Charalambidou and Santamaría 2005; Frisch et 

al. 2007; Green et al. 2008), waterbirds (here Larus) have the ability to disperse invertebrates 

among local habitat patches.  However, we have gone further than previous work to quantify 

both the rate of gull-mediated dispersal and its effects on the taxonomic diversity of the 

Appledore rock-pool metacommunity.  Our results demonstrate that where dispersal of 

aquatic invertebrates by waterbirds occurs frequently, it can have significant consequences for 

spatial patterns of species diversity.  However, species diversity in the rock-pool 

metacommunity was not influenced by just dispersal: α–diversity increased with habitat 

volume (c.f. Post et al. 2000), indicating that both local and regional processes interact to 

determine spatial patterns of aquatic faunal diversity.  The relative significance of waterbird-

mediated dispersal for species diversity in larger aquatic ecosystems (e.g., lakes) remains to 

be tested, but once again, Darwin’s keen insights (Darwin 1859) have been borne out. 

 

MATERIALS AND METHODS 

 

Quantifying Gull-Mediated Dispersal 
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We used juvenile gulls for the capture experiment, as they commonly visit the pools 

(juveniles accounted for 42% of observed visits, despite being only 25% of the observed 

population), could not escape our capture by flying, and are considerably easier to handle than 

adults.  Of the 52 birds, 25 were intercepted as they were exiting rock pools, 25 were captured 

from near pools (< 5 m from a pool) but had not been in a pool for at least 20 minutes, and the 

remaining two were captured from the central pond on Appledore (Figure 3.2B).  For the 25 

gulls exiting pools, we observed the birds enter the pool, recorded the lengths of their visits, 

and captured them as they exited the pools of their own volition.  The time the bird spent in 

the pool did not significantly affect whether it was carrying invertebrates (logistic regression, 

P > 0.2).  Upon capture, each bird was placed into a tub (40 L Rubbermaid Roughneck
TM

 

Tote) containing 20 L of filtered well water for up to five minutes or until it actively 

attempted to exit the tub, at which point it was released (for animal care considerations).  The 

time a gull spent in the tub did not affect whether invertebrates were found (logistic 

regression, P > 0.6).  After each trial, we filtered the water through a 30-µm sieve, and put 

everything retained into a 250 mL bottle, which we placed on ice until we could examine the 

sample under a dissecting microscope (< 2 hr later).   

We documented the frequency of gulls visiting pools at eight sites around Appledore 

that varied in local gull density (Figures 3.4B, 3.2A).  Observations were made within a three-

day window and were repeated in May, June, July, and August 2010 to account for temporal 

variation in visitation rates across the summer (the period of the year when gulls nest on 

Appledore).  We haphazardly shuffled the observation order and time-of-day for each area 

across months to incorporate any variation in visitation behavior due to time of day or 

weather.  Each observation session was preceded by an acclimation period of 15 minutes and 

lasted for one hour.  The observation pools were defined as being at least 10 m from the 

observer (J.L.S.) yet still within a clear line of sight (by naked eye). The modified scan 

sampling (Altmann 1974) regimen involved constantly scanning all pools in the observation 
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area and noting when gulls entered which pools and for how long they stayed.  Individual 

gulls were also tracked (using, e.g., age, band, and spatial location), allowing us to determine 

whether any individuals entered multiple pools and the duration of any breaks between visits.  

We determined the local density of gulls by counting the number of individuals present at 

fifteen-minute intervals during the hour of observation (starting at time 0), averaging the five 

counts, and dividing by the number of pools in the cluster. 

 We used a Monte Carlo permutation approach to combine the data on gulls 

transporting invertebrates with those on gulls visiting pools and determine the overall gull-

mediated dispersal rate.  Each run of the permutation model determined how many times a 

typical pool was visited by gulls in total, and in particular by gulls carrying live invertebrates, 

during the summer.  Conservatively, we assumed that gulls only visited pools during daylight 

hours, because we have no observations during nighttime.  We calculated the total number of 

daylight hours for each of the four months by using sunrise-sunset data from NOAA for 

Appledore Island.  Within each month, we determined the number of times the pool was 

visited by gulls (in total) by randomly drawing from the distributions of visits per hour.  We 

then used binomial distributions to determine the fraction of those gulls that were carrying 

invertebrates.  For each visit, we first determined whether or not that bird had recently been in 

another pool using our field observation rates (probability of recent visit = 0.103), and then 

determined whether or not that gull was carrying an invertebrate using our experimental data 

(if the gull was recently in another pool, the probability of it carrying an invertebrate = 0.64; 

if not, probability = 0.08).  We permuted this model 10,000 times in total, using R (R 

Development Core Team 2011).  Note that by drawing randomly from the observational data 

on visitation rates, we assumed that there was nothing about a pool that made it inherently 

attractive to gulls and that the pools we selected for our observations represented an unbiased 

sample.   

To quantify the effect of local gull density on the gull-mediated dispersal rate 
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experienced by metacommunities, we conducted a similar Monte Carlo analysis separately for 

each of the eight clusters (Figure 3.2B) during each of the four months.  We determined the 

distributions of visitation rates for each of the 32 cluster × month combinations and used these 

in place of the full distribution (which included all data) in the methods outlined above to 

calculate the average rate of gull-mediated dispersal experienced by a typical pool in that 

metacommunity at that time.  All other aspects of the Monte Carlo approach remained the 

same.  We then determined the (across-season) average dispersal rate experienced by each 

metacommunity and regressed this against the (across-season) average local gull density using 

RMA regression. 

 

Effects of Dispersal on Taxonomic Diversity 

 

At each of the 10 clusters (metacommunities), we determined the local gull density 

following identical methods to those used in the 2010 observational study, and converted this 

value to an expected gull-mediated dispersal rate for the metacommunity, given the regression 

shown in Figure 3.4A.  One cluster had no gulls present, for which the regression predicted a 

slightly negative dispersal rate; we set the dispersal rate of this metacommunity to zero.  We 

then sampled 7–10 representative pools within the metacommunity by collecting 250–2000 

mL of water (ca. 5% of the volume of each pool) haphazardly from throughout the pool using 

a large-bulb aquatic pipette (i.e., turkey baster).  The volume was filtered through a 30-µm 

sieve and everything retained was preserved in 95% ethanol.  We identified all individuals 

present to taxon (as presented in Table 3.1) and used the taxa present to calculate taxonomic 

diversities.  For each pool we quantified the total number of taxa present (α–diversity) and for 

each metacommunity we determined the taxonomic variation among pools (β–diversity) and 

the total number of taxa present in the metacommunity (γ –diversity).  For each pool, we also 

determined chlorophyll-a concentration (Nusch 1980; as a proxy for the density of algal 
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resources) and pool volume (assuming an inverted cone shape, c.f. Pajunen and Pajunen 

2007) to test alternative drivers of faunal diversity.  

We conducted a separate regression analysis for each of the three diversity metrics (α, 

β, γ).  Ideally, we would have used RMA regressions for each analysis because all three 

predictor variables (dispersal rate, producer biomass, and pool volume) were estimated and 

thus likely contained significant variation (Anderson et al 2011; Legendre 2011).  However, 

RMA regression does not allow for multiple predictor variables, random effects, weights, or 

non-normal response variables, which are also present in these analyses.  Therefore, we used a 

combination of different regression methods to analyze the diversity data.  For all three 

diversity metrics, the initial multiple regression models included the three predictor variables 

and all possible interactions, and model simplification proceeded through stepwise term 

deletion based on AIC scores.  We used a Poisson mixed-model regression to test the effects 

of all three predictor variables on α–diversity, as the data were grouped by metacommunity 

(i.e., pool cluster, a random effect) and discretely distributed (counts of taxa).  For β–

diversity, the initial multiple regression showed that only bird density was a significant 

predictor, and so we conducted the final analysis using RMA regression.  We used a weighted 

Poisson regression to test the effects of the predictors on γ–diversity, where the response 

variable (total taxa within the metacommunity) was weighted by the number of pools sampled 

in each cluster.  All analyses were conducted in R (R Development Core Team 2011)
 
using 

the lmodel2 (Legendre 2011), vegan (Oksanen et al. 2011), and lme4 (Bates et al. 2011) 

packages. 
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CHAPTER 4 

 

 

COMBINING DEMOGRAPHIC AND GENETIC APPROACHES TO STUDY THE 

COMPLEX STRUCTURE OF AN APEX-PREDATOR METAPOPULATION 
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ABSTRACT 

 

In spatially structured landscapes, dispersal connects local populations at larger spatial 

scales, often creating complex population dynamics.  When the dispersing species is also a 

strong interactor (e.g., apex predator) its dispersal likely also has consequences for spatial 

food-web and ecosystem dynamics.  Here I study the dispersal and spatial population 

dynamics of Trichocorixa verticalis, a mobile and voracious apex predator in a system of 

freshwater rock pools on Appledore Island (Maine, USA).  A field experiment shows that 

dispersal by T. verticalis is frequent (average rate: 0.18 immigrants pool
-1

 day
-1

) and that 

individuals can fly at least 50 m, far enough to colonize any pool on Appledore.  Yet 

seemingly paradoxically, local populations experience high turnover and T. verticalis is 

absent from ~ 50% of suitable pools at any time, indicating that their high dispersal is not able 

to prevent local extinctions or promote immediate recolonization of patches following 

extinctions.  In the same metapopulation, mitochondrial genetic diversity is shown to be very 

high within local populations and relatively small among populations, especially at increasing 

distance.  These results indicate that the combination of high dispersal and turnover generate 

complex demographic and genetic consequences in metapopulations.  

  

INTRODUCTION 

 

Dispersal is a fundamental biological process by which individuals moving between 

locations connect local populations at larger, regional spatial scales (Hanski 1999; Clobert et 

al. 2001).  At the very least, dispersal of individuals promotes gene flow and alters local 

population sizes, but it may also prevent local extinction in “sink” patches and promote 

colonization of available but empty habitat (Mayr 1963; MacArthur and Wilson 1967; Brown 

and Kodric-Brown 1977; Hanski 1999).  Because dispersing individuals are also engaged in 
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within-patch ecological processes, such as trophic interactions and nutrient recycling, 

dispersal also has the potential to connect food webs and ecosystems at larger spatial scales 

(Loreau et al. 2003; Holyoak et al. 2005; McCann et al. 2005).  Indeed, many dispersive 

species have large impacts on both the distribution of resources and the rate of ecosystem 

processes occurring within food webs (Kneitel and Miller 2003; Holyoak et al. 2005; Van de 

Koppel et al. 2005; Flecker et al. 2010).  In particular, mobile species that are strong 

interactors (e.g., apex predators, dominant competitors, key nutrient recyclers) may act as 

process subsidies (sensu Flecker et al. 2010) whose spatial distributions and movements 

determine the rates of important ecosystem processes across the landscape (Loreau et al 2003; 

McCann et al. 2005).  In such cases where mobile species are strong interactors, 

understanding their spatial population dynamics becomes crucial to determining how they 

influence food-web and ecosystem dynamics across space.  However, populations are often 

influenced by multiple ecological factors that vary across space and time, causing complex 

spatial dynamics that may be difficult to characterize (Harrison 1991; Hill et al. 1996; 

Harrison and Taylor 1997; Sutcliffe et al. 1997; Dunham and Rieman 1999; Hanski 1999; 

Clobert et al. 2001; Driscoll 2007).  In such situations, it is valuable to collect multiple types 

of data (e.g., demographic and genetic) on the same species and combine them to understand 

their spatial dynamics (Gaggiotti 2004; Hulsmans et al. 2007). 

Metapopulation theory offers a useful framework for understanding how dispersal 

influences the spatial distribution and dynamics of populations (Levins 1970; Harrison 1991; 

Hanski 1999), and predicting its accompanying influences on food webs and ecosystems 

(Loreau et al. 2003; Leibold and Miller 2004).  Theoretical studies suggest that the key 

parameters driving spatial population dynamics are the per capita rate of dispersal (and how it 

decays with distance) and the variability in local population size (Harrison 1991; Hanski 

1999).  At very low dispersal rates, local extinctions occur more frequently than can be 

countered by colonization, and the entire metapopulation is at risk of extinction.  As dispersal 
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rates increase, the frequency of colonization events will eventually approximate the frequency 

of local extinctions, generating a classic “Levins metapopulation” (Levins 1970), where local 

populations are still extinction-prone, but the metapopulation persists regionally through a 

balance of colonizations and extinctions (i.e., turnover).  The high rate of population turnover 

in Levins metapopulations is generally expected to generate local populations that are low in 

genetic diversity and genetically distinct from each other (Wade and McCauley 1988; 

Whitlock and McCauley 1990; Harrison and Hastings 1996).  With further increase in 

dispersal rates, local extinctions are expected to be rare and local population dynamics should 

be strongly influenced by dispersing individuals, effectively collapsing the metapopulation 

structure into a single, genetically panmictic population that is unaffected by the patchiness of 

the landscape (Slatkin 1985; Hanski 1999; Jansen 1999; Simonis 2012a).  In intermediate 

cases, however, dispersal may be high enough to influence local population abundances, but 

not high enough to prevent local extinctions (Sutcliffe et al. 1997; Hanski 1999).   

In addition to per capita dispersal rates, variation in local population size among 

habitat patches is also theorized to influence metapopulation dynamics by determining both 

the number of potential dispersers and the probability of local population extinction (Harrison 

1991; Hanski 1999).  Among-patch differences in local population abundance may result from 

variation in the quality or size of habitat patches (Pulliam 1988).  When large, variation in 

local population sizes can create “source-sink” dynamics, where “source” patches support 

large and genetically diverse populations with little risk of extinction that supply re-colonizers 

to genetically depauperate, small populations existing in extinction-prone “sink” patches 

(Boorman and Levitt 1973; Frankham 1997).  However, it is often the case that no patches are 

true “sources” completely safe from extinction, but rather that all experience some level of 

extinction risk, which varies as a function of local population size (Hanksi 1999).   

Resulting from the combination of dispersal and population-size effects on 

colonization and extinction rates, many species inhabiting fragmented landscapes exhibit 
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complex spatial population dynamics that may not be captured well by simple metapopulation 

models, such as the Levins model.  These metapopulations have been termed “mixed-

structure” by Harrison (1991) to encompass the fact that they display components of many 

classic metapopulation models.  Mixed-structure metapopulations are presumed to be 

prevalent, especially among motile consumers in highly fragmented landscapes (Driscoll 

2007), and therefore could play an important role in driving food-web and ecosystem 

dynamics across spatial scales (McCann et al. 2005).  However, mixed-structure 

metapopulations remain poorly documented empirically (Sutcliffe et al. 1997; Driscoll 2007), 

limiting current understanding of the influence of mobile consumers on spatial food-web and 

ecosystem dynamics (McCann et al. 2005).   

A major difficulty in empirically studying spatially structured populations, and mixed-

structure metapopulations in particular, is directly measuring dispersal and extinction rates, as 

well as describing how they affect population dynamics.  Indeed, dispersal is an inherently 

difficult ecological process to quantify directly, and is instead often inferred using indirect 

methods, such as stable isotopes or population genetics (Clobert et al. 2001).  However, 

indirect methods rely on assumptions derived from simple metapopulation models regarding 

how dispersal influences spatial populations, and therefore can give spurious effects when 

used to measure dispersal rates from observed dynamics, particularly in mixed-structure 

metapopulations (Bohonak 1999).  Ideally, metapopulation dynamics should be studied using 

a combination of methods (e.g., experimental, demographic, and genetic approaches), thereby 

limiting the assumptions that need to be made in interpreting results (Gaggiotti 2004). 

In the present study I quantify the effect of dispersal and variation in local population 

size on the spatial population dynamics of a strong interactor, the aquatic insect Trichocorixa 

verticalis.  T. verticalis is the apex predator in a system of freshwater rock pools, yet is the 

only taxon in the food chain capable of actively dispersing among pools.  This system affords 

the opportunity to combine direct and indirect methods for studying dispersal and spatial 



 96 

population dynamics in a trophically relevant species (Srivastava et al. 2004; Brendonck et al. 

2008).  Results from a combination of observational, experimental, and population-genetic 

studies indicate that T. verticalis disperses frequently among pools, albeit at a variable rate.  

At the same time, populations are absent from many suitable habitat patches and local 

populations exhibit high turnover rates.  Local populations also show high levels of genetic 

diversity, yet there is differentiation among populations at far distances.  These results 

indicate that high, yet variable, rates of dispersal and turnover may combine to generate 

complex metapopulation dynamics. 

 

METHODS 

 

Study System 

 

The system of focus in this study is the metapopulation of Trichocorixa verticalis 

(Hempitera, Corixidae) inhabiting freshwater rock pools on Appledore Island, Isles of Shoals, 

Maine, USA (Figure 4.1).  T. verticalis is a predatory aquatic insect native to saline and 

freshwater habitats across North America (Tones and Hammer 1975; Tones 1977; Kelts 1979; 

Wurtsbaugh and Berry 1990; Simonis 2012b) and has also invaded wetlands in Iberia, Africa, 

and New Caledonia (Jansson 1982, Sala and Boix 2005, Van de Meutter et al. 2010).  Similar 

to other corixids, T. verticalis undergoes incomplete metamorphosis and has a life history 

consisting of eggs, five flightless juvenile stages, and a flight-capable adult stage (Kelts 1979; 

Simonis 2012b).  T. verticalis overwinters as eggs and typically completes at least two 

generations each summer (J. L. Simonis, unpub. data; Tones 1977; Kelts 1979).   

On Appledore, T. verticalis is commonly found inhabiting the ca. 1,500 fishless 

freshwater pools that exist above the high-tide line (Simonis 2012b).  The pools contain a 

relatively simple food web, where T. verticalis is the apex predator, voraciously preying upon  
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Figure 4.1. A: The Isles of Shoals Archipelago, in relation to coast of New Hampshire and 

Maine, USA.  Portsmouth, NH, is depicted by the black arrow, Appledore Island by the large 

black star and White Island (location of the weather data) by the small white star.  B: 

Locations of clusters of pools sampled on Appledore for genetic analyses.  C: An area of rock 

pools (shaded and numbered) on the eastern side of Appledore near pool 350 (as marked in b).  

Note not all pools present in (C) are numbered and shaded.  All photos courtesy of J. Morin.   
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the cladoceran Moina macrocopa, the dominant grazer zooplankter.  A single adult T. 

verticalis can consume over 50 M. macrocopa per day (Simonis 2012b), a rate high enough to 

reduce the density of M. macrocopa and indirectly increase phytoplankton biomass via a 

trophic cascade (J. L. Simonis, in prep).  Given their strong influence on within-pool trophic 

dynamics, dispersal by T. verticalis constitutes an important process subsidy (sensu Flecker et 

al. 2010) to local food webs that could have trophic consequences at multiple spatial scales 

(Loreau et al. 2003; McCann et al. 2005; Simonis 2012b).   

Previous research on this metapopulation indicates that adult T. verticalis are indeed 

highly dispersive fliers (average per capita emigration rate: 0.207 d
-1

), but also that their 

dispersal rate is significantly affected by environmental conditions (Simonis 2012b).  In that 

experiment, the per capita rate of T. verticalis emigration was negatively related to local prey 

density (as expected for an optimal forager; Charnov 1976) and positively related to 

temperature.  These results, combined with the fact that only the adult life-history stage of T. 

verticalis can fly, suggest that although this species is highly mobile, its dispersal rate is not 

likely to be constant across space or time, a situation which may generate complex spatial 

population dynamics (Harrison 1991; Hill et al. 1996; Hanksi 1999).  

 

Field Measures of Immigration 

 

The first goal of this study was to quantify the rate and spatial extent of flight-based 

dispersal among pools by T. verticalis.  To do this, I conducted a field immigration 

experiment using 40 L Rubbermaid Roughneck
TM

 totes (hereafter “mesocosms”) as faux rock 

pools.  In May 2010, I distributed 20 mesocosms on the exposed rock among the pools around 

Appledore, such that each was within 20 m of the closest pool (average distance: 3.39 m, 

range: 0.1 m – 19.5 m), and within 55 m of the closest population of T. verticalis (average 

distance: 9.45 m, range: 0.1 m – 53.3 m).  I filled the mesocosms with 30 L of filtered well 
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water, added two small dowels for perches for immigrants, and introduced an inoculum of 

zooplankton and phytoplankton.  The plankton inoculum was made by combining live 

plankton samples from six pools around Appledore, and was devoid of any T. verticalis.  I 

then covered each mesocosm with 3.5 cm × 3.5 cm hex chicken wire to prevent water birds 

(i.e., Larus gulls) from entering, while still allowing dispersal of T. verticalis (Simonis 

2012b).  I checked the mesocosms every 2 – 4 days from May 21 until August 31 (29 total 

sample dates), removing and enumerating all immigrants.  On each sample date, I also noted 

if the immigrants had laid eggs, and removed them to prevent population establishment.  

Throughout the summer I maintained the overall water level in each mesocosm by adding 

filtered well water as necessary. 

 I also collected data on metapopulation, environmental, and temporal factors that 

could influence immigration rates for use in a predictive model.  Every week, I measured the 

straight-line distance to the closest population for each mesocosm and estimated the 

abundance of potential immigrants in the metapopulation by determining the number of T. 

verticalis adults (i.e., the potential dispersers) in five representative rock pools.  At each of the 

five pools, I sampled 2 L of water haphazardly from throughout the water column using a 

large-bulb pipette (turkey baster; ca. 1.5 cm diameter opening), filtered that volume through a 

30 µm mesh, counted the number of adult T. verticalis present, then immediately returned all 

sampled plankton to the pool.  Because T. verticalis dispersal is positively related to 

temperature (Kelts 1979; Simonis 2012b) and may be related to other weather phenomena, I 

also obtained local weather data from NOAA Station IOSN3, located on nearby White Island 

(Figure 4.1A; ca. 2 km SSW of Appledore).  For each sample date, I determined the 

minimum, maximum, mean, and coefficient of variation (cv) for temperature, wind, pressure, 

and dew point during the interval since the previous sampling date.  The immigration data 

showed a striking periodic trend where peaks in immigration appeared to align with the new 

moon (see Results), and so I also determined the cosine of the moon phase (describes the 
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intensity of moonlight) for each sample date.   

I modeled immigration using a generalized linear mixed model, where the response 

variable was the number of immigrants (Poisson-distributed) into each mesocosm on each 

sample date, weighted by the number of days since the last sample to account for the irregular 

sampling intervals.  I blocked the data by including individual mesocosm as a random 

variable.  To simplify the model, I first determined which, if any, summary statistic for each 

of the four weather variables best predicted immigration in a single-term model.  No summary 

of either atmospheric pressure or dew point significantly predicted immigration, and so they 

were not included in the model.  The best predictor for temperature was the interval maximum 

and for wind was the interval cv.  I also included calendar date as a predictor to account for 

any seasonal trends not attributable to other terms.  Thus, the full model included distance to 

the closest population (on a natural log scale), number of adults in the focal pools, maximum 

temperature, cv of wind, cosine of moon phase (intensity of moonlight, barring cloud cover), 

and Julian date as fixed predictors, mesocosm as a random effect, and the weighting term, 

with no interactions.  Interactions were not necessarily of interest and so were left out of the 

model to facilitate fitting.  I fit the model using the glmer function in the lme4 package in R 

(Bates et al. 2011; R Development Core Team 2012). 

 

Metapopulation Demography 

 

I used data from a three-year field survey of the Appledore metapopulation to 

elucidate the effects of T. verticalis dispersal and variation in local population size on their 

spatial dynamics.  In particular, I was interested in quantifying the spatial and temporal 

patterns in the fraction of pools occupied by T. verticalis and the frequencies of extinctions 

and colonizations.  In August of 2008 and June and August of 2009 and 2010, I visited 107 

representative pools spread around the periphery of Appledore and determined whether there 
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was a local population of T. verticalis present using a combination of water-column and direct 

observational sampling.  Water-column sampling occurred as described for the survey of the 

pools in the dispersal study, but I did not enumerate individuals.  Because of the possibility of 

not capturing T. verticalis if they were at low densities using this method (false absence), I 

also visually assessed the presence of T. verticalis in each pool by walking around its entire 

perimeter, gently tapping a meter stick on the benthos.  Changes in light intensity (due to my 

shading the pool) and vibrations in the water cause non-moving T. verticalis to begin to swim, 

allowing me to determine if individuals were present.  Additionally, I estimated the volume of 

each pool in 2009 and 2010 (assuming basins were shaped as inverted cones, following 

Pajunen and Pajunen 2007) and used a logistic regression to determine if occupancy was 

predicted by average pool volume (on a log10(x + 0.01) scale).  I determined the spatial 

location of each pool using a handheld GPS instrument (Garmin GPSmap 62s) and checked 

the coordinates of each pool against high resolution aerial imagery (Google Earth).  The 

farthest distance between any two pools in this data set was 868.5 m (ca. 90% of the 

maximum length of Appledore; Figure 4.1A). 

I determined the spatial autocorrelation in patterns of T. verticalis occupancy among 

pools to characterize the effect of dispersal on population presence and absence.  I quantified 

spatial autocorrelation among (volume-corrected) occupancy patterns using a multivariate 

extension of Moran’s I statistic (Moran 1950; Bertorelle and Barbujani 1995), where each 

pool had five data, one for each time point.  To quantify the overall pattern of spatial 

autocorrelation in occupancy, I weighted pairs of pools by the natural log of the distance 

between them, standardized such that the pair of pools the maximum distance apart had a 

weight of 0 and pools immediately adjacent to each other had a weight approaching 1.0 

(weight = 1 - log(distance + 0.1)/log(868.5 + 0.1), where 868.5 m was the maximum distance 

between pools in this data set) and calculated Moran’s I.  I determined the statistical 

significance of this I value with 10,000 Monte Carlo permutations, where I randomized the 
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occupancy patterns among pools, keeping the five data together (i.e., not randomizing 

separately within sample points).  To determine the relevant spatial scale of the 

autocorrelation, I then used a distance-class approach, where I included all pairs of pools 

closer than the distance class (weight = 1) and excluded any more distant pairs (weight = 0), 

calculated I, and determined the significance of I via permutation.  For this analysis, I used 

distance classes ranging from 1 m to 850 m (1, 2, 5, 10 and 20 m, then 50 to 850 m in 50 m 

increments).  These analyses were conducted in R (R Core Development Team 2012) using 

custom-written scripts. 

I used Hanski’s (1999) Incidence Function Model (IFM) to estimate colonization and 

extinction rates of pools in this survey.  In particular, I fit the observed incidence data using a 

Markov Chain Monte Carlo (MCMC) method of implicit statistical inference, as described by 

Moilanen (1999), which allowed me to fit all five time points together (and included the 

irregular interval between sample dates).  A key component of this model is the measure of 

each pool’s connectivity, S, which determines (once rescaled) how likely that pool is to be 

colonized:  

 

        
 

 
    

          for       (4.1) 

The total connectivity of pool i is described as the sum of its connectivities to all other pools 

(j ≠ i), which is a function of the distance between the pools (dij, influenced by the distance 

decay parameter α), the observed occurrences of a population in the other pool (pj), and the 

expected number of dispersers in that pool, if a population exists (1/6Vj
β
).  Total population 

size scales with habitat volume V (on a log10 scale) via the exponential parameter β and is then 

converted to the number of flight-capable adults by the 1/6 multiplier (the average fraction of 

the population that is adults; J. L. Simonis unpub. data).  These connectivity values are then 

converted to pool-specific colonization rates (Ci) by the scaling parameter y: 
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 . (4.2) 

Pool-specific extinction rates are determined by the volume of the pool, Vi and two 

parameters x and z: 

 

     
 

  
  for             (4.3) 

where V0 is the volume below which the extinction rate equals 1.0.  And finally, the predicted 

incidence (i.e., probability of occurrence in that pool, given the parameters) is calculated: 

 

     
  

          
 . (4.4) 

Thus, the IFM can be applied to observed metapopulation incidence data with five parameters 

(α, β, x, y, z) that describe two processes: colonization and extinction.  Following Hanski 

(1999), I estimated α and β independently of the incidence data and included those parameter 

values in the IFM, which I fit with observed incidence data to estimate x, y, and z and 

calculate C and E.   

I estimated α (the specific effect of distance on dispersal) from the immigration study 

by holding all other parameters at their median values to recalculate the intercept of the 

Poisson regression model.  I used data from an independent survey of 136 pools in June 2008 

to quantify the relationship between habitat volume and local population size (described by 

β).  For this survey, I followed the aforementioned methods to measure pool volume and 

population density, converted density to population size (via multiplication), and estimated 

the relationship between population size and habitat volume (on a log10(x + 0.01) scale) by 

fitting the data with a non-linear least squares regression model using the nls function in R (R 

Development Core Team 2012).  I then fit the MCMC version of the IFM model to the 



 105 

observed incidence data with these empirically derived estimates for α and β.  The maximum 

likelihood estimates for the remaining parameters (which describe how colonization scales 

with connectivity and how extinction scales with local population size; Hanksi 1999) were 

determined using a custom-written script (following Moilanen 1999), which was optimized 

via the mle2 function in the bbmle package in R (Bolker and R Core Development Team 

2012).  I used the resulting model fit to calculate extinction and colonization rates for each 

pool, and to estimate the pool volume below which the extinction rate is 1.0 (V0). 

 

Mitochondrial DNA Population Genetic Structure 

 

I used a population-genetic approach to elucidate the effects of T. verticalis dispersal 

and turnover on the genetic connectivity among pools and genetic diversity within pools.  In 

May 2011, I collected juvenile T. verticalis from 20 rock pools distributed in seven clusters 

(1-5 pools sampled per cluster) spread around the periphery of Appledore (Table 4.1, Figure 

4.1B).  All sampled T. verticalis were juveniles to assure that individuals had not recently 

flown in from another location.  I froze all samples at -20° C (while on Appledore) and then   

-80° C (in Ithaca, NY) until they were processed.  I determined the location of each pool 

using the same methods as for the demographic survey.  For each pool, I measured the density 

of T. verticalis and the volume of the pool (both as previously described), the number of other 

populations within a 5 m radius, and the distance to the closest T. verticalis population.  

I extracted and isolated total genomic DNA from 8 – 12 individuals from each pool 

(220 in total) using DNeasy
TM

 kits (QIAGEN).  For each individual, I then amplified and 

sequenced a 1347-bp fragment of the COI gene and the adjacent tRNA-leucine region of 

mitochondrial DNA (mtDNA) using the primers CI-J-1718 and TL2-N-3014 (Simon et al. 

1995) in a polymerase chain reaction (PCR).  This fragment spanned the final 1320 bp of the 

3’ end of the Cytochrome Oxidase I (COI) gene and the first 27 bp of the 5’ end of the 
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Table 4.1. Clusters, locations (UTM 19), demographic, and habitat variables of the 20 

populations of T. verticalis sampled in the genetic survey. 

 

 

Pool Cluster 
Easting 

(0368...) 

Northing 

(476….) 

Volume 

(log10 L) 

Density 

(ind. L
-1

) 

Pop.  

Size 

Closest 

Pop. (m) 

1 1s 155 0658 2.55 3 1059 1.31 

2 1s 154 0661 2.67 1 465 1.31 

30L 30s 180 1068 1.18 12 180 0.1 

31 30s 180 1066 2.38 9 2165 0.5 

32 30s 181 1064 2.33 17 3637 0.8 

33 30s 187 1068 3.42 18 47538 0.5 

34 30s 186 1071 1.09 26 319 3.2 

200 200s 505 1166 4.37 7 162771 0.49 

201 200s 509 1162 3.56 1.3 4894 1.7 

203 200s 512 1175 2.31 56 11555 0.97 

350 350 503 0940 3.63 39 165856 4.95 

401 400s 702 0795 2.51 0.7 217 1.68 

403 400s 703 0791 2.48 3 912 1.68 

410 400s 696 0779 2.77 20 11736 0.8 

411 400s 697 0777 2.49 8 2458 0.8 

566 560s 515 0436 2.29 44 8608 0.95 

567 560s 514 0439 2.46 1 290 0.95 

569 560s 509 0437 1.77 15 879 0.18 

570 560s 504 0434 2.70 28 13958 0.18 

795 795 125 0610 2.64 22 9527 18.25 

 

 

Note. For cluster locations see Figure 4.1B.   
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adjacent tRNA-leucine.  Each PCR was 10 µL total reaction volume, containing 1 µL DNA, 

6.9 µL ddH2O, 1 µL 10X buffer, 0.4 µL 50 mM MgCl2, 0.2 µL 10 mM dNTPs, 0.1 µL Taq 

polymerase, and 0.2 µL of each 10 µM primer, and covered with a drop of mineral oil.  The 

PCR sequence consisted of 35 cycles of 94° C for 50 s, 50° C for 45 s, and 72° C for 2 min 

and was conducted on a PXE 0.2 Thermal Cycler.  I purified the PCR products by adding 0.1 

µL Antarctic Phosphotase (New England Biolabs), 0.1 µL Exonuclease I (New England 

Biolabs), 0.2 µL 10X buffer, and 1.6 µL ddH2O directly to the PCR plate, and incubating at 

37° C for 45 min, then 90° C for 15 min.  As most PCR products were robust, I added an 

additional 10 µL ddH2O to each well post-incubation.   

I sequenced each PCR product in both the forward and reverse directions by adding 

2.1 µL ddH2O, 0.75 µL 5X buffer, 0.5 µL Big Dye v. 3.1 (Applied Biosystems), and 0.15 µL 

of the respective primer (forward or reverse) to 1.5 µL of the diluted PCR product.  The 

sequencing reaction consisted of 35 cycles of 94° C for 50 s, 50° C for 20 s, and 60° C for 4 

min and was conducted on a PXE 0.2 Thermal Cycler.  I purified the sequencing reactions 

products using Agencourt CleanSEQ beads and sent the resulting pure, labeled mtDNA to the 

Cornell University Life Sciences Core Laboratory Center, where it was sequenced on an ABI 

3730xl capillary DNA sequencer.  I aligned the forward and reverse sequences for each 

individual and created a consensus sequence using CodonCode Aligner (version 4.0.4; 

CodonCode Corporation), and trimmed the sequence down to the 1208-bp region for which 

all individuals had callable bases.  On this mtDNA region, 93 bases were variable, with 28 

being singletons and 65 being parsimony-informative.   

I used DnaSP (v5, Librado and Rozas 2009) and Arlequin (v3.5.1.3, Excoffier and 

Lischer 2010) to summarize the genetic data within and among populations.  Using DnaSP, I 

calculated haplotype abundance and diversity, nucleotide diversity (Jukes and Cantor 1969), 

and the average number of nucleotide differences between pairs of individuals; all analyses 

were conducted for each population separately and for the whole dataset.  I used simple linear 
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regressions to determine if within-pool haplotype diversity was significantly predicted by 

local population size, pool volume, the distance to the closest other T. verticalis population, or 

the density of T. verticalis populations within 5 m.  With an AMOVA in Arlequin, I then 

assessed the spatial hierarchical structure of genetic variation with three grouping levels: 

individuals within populations, populations within clusters, and among clusters.  The 

significance of this variation structure was tested using 10,000 permutations.   

To more directly examine the influence of dispersal on the population-genetic data, I 

then employed a combination of methods to analyze the explicit spatial structure of the 

genetic data.  First, I determined the spatial autocorrelation of the genetic data using a similar 

approach to that which I used for the population occurrence data, but with the focal data being 

the sequence of each individual (Bertorelle and Barbujani 1995) and assuming that 

individuals within the same pool were separated by a geographic distance of 0.0 m.  I reduced 

the data to just the 93 polymorphic sites in the sequence, but because some sites had more 

than two nucleotide states, I turned each base into a composite variable comprising four 

binary data (Bertorelle and Barbujani 1995), resulting in each individual having a data string 

of 372 bits.  I quantified the spatial autocorrelation across the whole dataset using 

standardized distances (the maximum distance between pools in this data set was 741 m) on a 

natural log scale, and then conducted a distance-class analysis using classes ranging from 0 m 

to 700 m (0 2, 5, 10, and 20 m, then 50 to 700 m in 50 m increments).  I also used classic 

measures of isolation by distance (Wright 1943) by calculating the between-population FST 

for each pair of pools (Tamura and Nei 1993) in Arlequin, then regressing the pairwise 

population genetic distances [FST / (1-FST)] against the natural logarithm of the straight-line 

Euclidian distances between the pools (Rousset 1997).  For this analysis, I used a ranged 

major axis regression, implemented via the lmodel2 package in R (Legendre 2011).  Finally, I 

determined the spatial scale at which populations were statistically significantly differentiated 

by calculating the P-value of the pairwise FST’s using randomization (10,000 permutations) in 
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Arlequin, correcting the P -values using the False Discovery Rate (Benjamini and Hochberg 

1995), and plotting the corrected P -values against geographic distance between populations. 

 

RESULTS 

 

Immigration Rates 

 

In total, 359 T. verticalis immigrated into the 20 mesocosms over the 101-day sample 

period, producing an average rate of 0.18 immigrants mesocosm
-1

 d
-1

, or an expected waiting 

time of 5.6 days between immigration events.  However, there was substantial temporal 

variation in T. verticalis immigration rates (min.: 0.00, max.: 1.08 immigrants mesocosm
-1

 

day
-1

; Figure 4.2A) as well as variation among mesocosms (min.: 0.00, max.: 0.62 immigrants 

mesocosm
-1

 day
-1

).  Only one mesocosm was not colonized at all during the entire study.  Of 

the 19 mesocosms that were colonized, eggs were found in 15 mesocosms on at least one 

sample date, indicating that dispersing adults are capable of starting new populations upon 

arrival into a vacant pool.  Typically fewer than five individuals arrived between sample dates 

(91.5% of the time when immigrants were found, it was fewer than five), yet there were two 

sample dates where more than 20 immigrants were observed in a mesocosm (different 

mesocosms in each instance).  The variation in the number of immigrants received by 

mesocosms was significantly affected by all parameters in the model (Table 4.2).   

Most relevant for this study, immigration rate decreased as a function of the distance 

from the closest population (slope: -0.728, on a natural log scale, P < 0.0001; Figure 4.2B; 

Table 4.2).  Mesocosms that were within 10 m of the closest population experienced an 

average rate of 0.192 immigrants mesocosm
-1

 day
-1

, and mesocosms further than this distance 

received 0.130 immigrants mesocosm
-1

 day
-1

.  However, dispersal did occur at far distances, 

as mesocosms that were 50 m or more from the closest population still experienced 
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Figure 4.2. A: Rate of immigration (immigrants mesocosm
-1

 day
-1

) by Trichocorixa to 

mesocosms over the course of Summer 2010.  Data are the mean (± SEM) immigration rates 

for the 20 mesocosms and the solid line is the prediction of the fitted Poisson regression based 

on immigration to individual mesocosms.  Both the data and the predicted line were converted 

to rates (divided the number of immigrants by the days between samples) for graphical 

representation.  Circles along the x-axis represent new and full moons (filled and open circles, 

respectively) and the dotted line marks the average immigration rate (0.18 immigrants 

mesocosm
-1

 day
-1

).  B: Rate of Trichocorixa immigration as a function of distance to the 

closest population (on a natural logarithmic scale).  The asterisks indicate that both the data 

and predicted line have been corrected for the influence of the other variables influencing 

immigration (Table 4.2) by holding all other model parameters at their median values.  Note 

that this correction can generate negative immigration rates.  The data were converted to 

immigration rates by dividing by the number of days since the previous sample and the 

prediction line was converted to a rate by dividing by the mean number of days since the 

previous sample (3.48 days).  The data were jittered slightly along both axes for presentation 

and note the break in the y-axis to display the extreme immigration rate of 6.44 immigrants 

mesocosm
-1

 day
-1

 (distance 0.4 m).  
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moderately high immigration rates (0.144 immigrants mesocosm
-1

 day
-1

).  In addition to the 

effect of distance, the immigration rate was also higher when there were more adults in the 

focal populations (slope: 0.032, P < 0.0001), when maximum temperatures were higher 

(slope: 0.067, P < 0.0001), when winds were less variable (slope: -0.925, P = 0.045), when 

there was less moonlight (slope: 0.733 as a function of cosine of moon phase, P < 0.0001), 

and later in the summer (slope: 0.016, P < 0.0001).  In combination, these six terms explained 

38.7% of the deviance in the individual mesocosm-level data and were able to capture the 

seasonal patterns observed in immigration quite well (Figure 4.2A; normalized root mean 

squared error on daily immigration totals = 7.53%).  Accounting for the other measured 

factors, this study estimated that the decrease in immigration as a function of distance was 

best described by α = -0.522 − 0.728 × log(dij). 

 

Metapopulation Demography 

 

Despite the high rate of dispersal, T. verticalis populations were, on average, found in 

only 49.7% of pools at any one time (min.: 40.2%, max.: 64.5%; Table 4.3).  Not surprisingly, 

larger pools were far more likely to have T. verticalis populations present than smaller pools 

(logistic regression; odds-ratio: 3.43, P < 0.001, 17% deviance explained; Figure 4.3A) and 

population size increased exponentially with habitat volume (on a log10 scale, estimated 

scaling parameter β = 7.977, P < 0.0001; Figure 4.3B).  Further, T. verticalis occupancy 

patterns were significantly positively spatially autocorrelated overall (I = 0.0411, P < 0.0001), 

and this autocorrelation held to distances of 850 m (Figure 4.4A).  The autocorrelation in 

occupancy was highest at 1 m and decreased almost monotonically as a function of distance 

(on a natural log scale) until converging to the expected value at 850 m, which included 

99.8% of distances.  Pool volume was not significantly spatially autocorrelated (using similar 

methods to the occupancy analysis; I = 0.013, P > 0.1), however, suggesting that the spatial 
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pattern in occupancy was not driven by a spatial pattern in habitat volume. 

The best-fit IFM parameter estimates were x = 2.468, y = e
14.581

, and z = 0.671 (all P < 

0.0001).  These values of x and z combine to predict that populations in pools with volumes 

less than ~ 7.1 L are doomed to extinction (V0 = 10
0.851

).  Of the 12 pools in the survey  

(11.2%) that had volumes below this fitted V0 value, only five had T. verticalis populations 

present on any sample date, but one such pool was occupied on four of five sample dates 

 

 

 

Table 4.2. Parameters in the immigration statistical model 

 

 

Parameter Range Med. SD Estimate SE(est) P 

Intercept     -5.41 0.636 < 0.001 

Distance from 

Closest Pop.    

(log scale, m) 

-2.30 – 4.07 1.66 1.72 -0.728 0.043 < 0.001 

Adults in 

Metapop. 
0 – 16  34 8.35 0.032 0.007 < 0.001 

Maximum 

Temperature  

    (°C) 

16.5 – 30.3  26.50 3.47 0.067 0.011 < 0.001 

Wind  

    (cv, raw: m s
-1

) 
0.25 – 0.66 0.45 0.09 -0.925 0.461 0.045 

Moon Phase  

    (cosine) 
-0.98 – 0.98 0 0.69 0.733 0.062 < 0.001 

Julian Date 149 – 243 194 28.55 0.016 0.001 < 0.001 

 

 

Notes. All parameters were fit using a weighted generalized linear mixed model, where there 

response data were counts of immigrants between intervals (weighted by interval length) and 

modeled using a Poisson distribution.  Range, Med. (median), and SD (standard deviation) 

refer to the values of the predictor variable, where Estimate, SE(est) (i.e., the standard error of 

the estimate) and P refer to the model fit.  Wind data were measured in meters per second, but 

since the coefficient of variation was used as the summary statistic, the predictor was 

technically unit-less. 
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 (Figure 4.3A).  These 12 extinction-prone pools contributed strongly to the average rate of 

extinction rate being higher than the average colonization rate (average extinction rate with all 

107 pools: 0.291 mo.
-1

 compared to 0.201 mo.
-1

 without the 12 extinction-prone pools; 

average colonization rate: 0.243 mo.
-1

; Table 4.3).  In contrast, twelve large pools were 

predicted to experience extinction rates below 0.05 mo.
-1

, but no pool was safe from 

extinction (min. Ei: 0.019 mo.
-1

).  As a result of variation in spatial occupancy patterns, IFM-

estimated colonization rates varied widely among pools (time averages, min.: 0.187 mo.
-1

, 

max.: 0.820 mo.
-1

) and across time (among-pool means, min.: 0.185 mo.
-1

, max.: 0.297 mo.
-1

). 

 

 

 

 

Table 4.3. Observed occupancy and IFM-predicted colonization and extinction rates. 

 

 

  2008  2009  2010 

  August June August June August 

Occupancy  0.626 0.409 0.645 0.402 0.411 

Ci (mo.
-1

) mean: 0.187 0.285 0.185 0.297 0.262 

 min.: 0.021 0.043 0.017 0.047 0.042 

 max.: 0.804 0.816 0.801 0.820 0.816 

Ei (mo.
-1

) mean: 0.291 … … … … 

 min.: 0.019 … … … … 

 max.: 1.000 … … … … 

 

 

Notes. Occupancy is shown as the fraction of pools occupied (out of 107).  Values for Ci and 

Ei were predicted for all pools using equations (4.2) and (4.3), respectively.  Ei is constant for 

pools across time and so is only shown for the first date.  
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Figure 4.3.  Effect of habitat volume (on a log10 scale) on the occurrence (A), size (B), and 

genetic diversity (C) of local T. verticalis populations.  Data were jittered slightly in the y-

direction for presentation in (A) and (B), but all regressions were fit with the raw data.  The 

volume below which the IFM predicts an extinction probability of 1.0 (V0 = 10
0.851 

L) is noted 

along each x-axis.  
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Figure 4.4. Spatial autocorrelation in T. verticalis population occupancy (A) and 

mitochondrial DNA variation (B) as a function of distance between pools (on a natural log 

scale).  In both panels, the open circles represent data that are significantly different from the 

expected value (dashed line) and filled circles represent data that are not significantly 

different from the expected value (determined by Monte Carlo permutations).  The open 

square in (B) at distance 0 m corresponds to individuals within populations.  The horizontal 

boxes just above the x-axis in (B) depict the distributions of between-pool distances within 

clusters (white box) and between clusters (grey box); the lines are means, the boxes are means 

± one standard deviation, and the whiskers are 95% CI. 
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Spatial Genetic Structure 

 

 Mitochondrial genetic diversity was very high in the Appledore T. verticalis 

metapopulation, both among and within populations (Table 4.4).  Fifty-nine haplotypes were 

present among the 220 individuals sampled across all pools (region-wide haplotype diversity: 

0.954 ± 0.005, mean ± SD) and each of the 20 populations sampled had at least five different 

haplotypes, generating within-population haplotype diversities between 0.618 and 0.985 

(mean: 0.903, SD: 0.099).  The high genetic diversity within populations is evident in the 

AMOVA results, as well (Table 4.5), as 90.07% of observed genetic diversity occurred 

among individuals within populations (F = 0.093, P < 0.0001).  Minor, yet significant, genetic 

variation was nevertheless present among populations within clusters (3.98% variation, F = 

0.042, P = 0.019) and among clusters (5.32% variation, F = 0.053, P = 0.016).  In agreement 

with the population persistence data, within-population genetic diversity was significantly 

higher in larger pools (Figure 4.3C; slope = 0.06, P = 0.027, R
2
 = 0.202).  However, within-

population diversity was not affected by local population size, the distance to the closest 

population, or the number of pools within 5 m (all P > 0.1).   

 Similar to the occupancy data, the genetic data were overall positively spatially 

autocorrelated (I = 0.0344, P < 0.0001) and this pattern held up to 450 m (Figure 4.4B).  

However, the genetic data showed a different pattern of decay in the spatial autocorrelation as 

a function of distance than did the occupancy data (Figure 4.4).  As expected, the genetic data 

were most autocorrelated within pools (distance class 0 m).  The autocorrelation remained 

high and was relatively unaffected by distance within clusters of pools (see white horizontal 

box in Figure 4.4B), then decreased markedly between 5 and 10 m and again remained   
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Table 4.4. Genetic data on the 20 populations of T. verticalis sampled in the genetic survey. 

 

 

Pool Cluster N 
Variable 

Sites 

Haplotype 

Diversity 

Nucleotide 

Diversity 

Avg. 

Nucleotide 

Difference 

1 1s 9 30 0.944 ± 0.070 0.0100 ± 0.001 12.06 

2 1s 11 32 0.945 ± 0.054 0.0099 ± 0.001 12.00 

30L 30s 12 34 0.833 ± 0.100 0.0076 ± 0.002 9.15 

31 30s 12 32 0.939 ± 0.048 0.0076 ± 0.001 9.18 

32 30s 12 39 0.955 ± 0.057 0.0085 ± 0.001 10.23 

33 30s 11 33 0.982 ± 0.046 0.0088 ± 0.001 10.62 

34 30s 12 27 0.758 ± 0.093 0.0071 ± 0.002 8.56 

200 200s 11 38 0.982 ± 0.046 0.0100 ± 0.001 12.07 

201 200s 12 33 0.970 ± 0.044 0.0090 ± 0.001 10.85 

203 200s 10 28 0.911 ± 0.077 0.0088 ± 0.001 10.58 

350 350 8 28 0.964 ± 0.077 0.0070 ± 0.002 8.43 

401 400s 12 33 0.833 ± 0.100 0.0068 ± 0.002 8.26 

403 400s 12 35 0.939 ± 0.058 0.0075 ± 0.001 9.06 

410 400s 12 37 0.985 ± 0.040 0.0081 ± 0.001 9.74 

411 400s 12 32 0.939 ± 0.058 0.0076 ± 0.001 9.18 

566 560s 11 19 0.618 ± 0.164 0.0069 ± 0.001 8.36 

567 560s 11 22 0.727 ± 0.144 0.0073 ± 0.001 8.80 

569 560s 10 32 0.956 ± 0.059 0.0069 ± 0.001 8.30 

570 560s 9 32 0.944 ± 0.070 0.0085 ± 0.002 10.20 

795 795 11 34 0.927 ± 0.066 0.0100 ± 0.001 12.04 

 

 

 

Notes. See Table 4.1. for location, demographic, and habitat variables.  Diversity values are 

means ± SD.  N = sample size. 
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relatively constant until decreasing rapidly at 300 m and converging to the expected value at 

450 m.  This positive genetic spatial autocorrelation over much of the range of distances 

between pools matches the weak, yet significant pattern of genetic isolation by geographic 

distance (RMA regression: slope = 0.0125, P = 0.044, R
2
 = 0.02, Figure 4.5A) and the 

observation that populations were not significantly differentiated until they were at least 400 

m apart (Figure 4.5B). 

 

DISCUSSION 

 

The combination of metapopulation demography and genetic data presented here 

indicate that T. verticalis exists in a mixed-structure metapopulation (sensu Harrison 1991) in 

the Appledore rock pools where high but variable dispersal rates and high turnover combine 

to cause complex spatial dynamics.  Dispersal by T. verticalis occurs frequently enough that 

pools are, on average, expected to receive an immigrant every 5.6 days.  Despite the high 

dispersal, however, T. verticalis is absent from approximately half of the available habitat 

 

 

 

Table 4.5. Analysis of Molecular Variance for the T. verticalis Appledore metapopulation.   

 

Source d.f. SS V % F P 

Among clusters 6 96.00 0.293 5.32 0.053 0.016 

Among populations within 

clusters 
13 96.80 0.219 3.98 0.042 0.019 

Within populations 200 997.94 4.990 90.07 0.093 < 0.0001 

Total 219 1190.74 5.502    

  

 

Notes. V = variance component, % = percentage variation explained, F = relevant F-statistic, 

P = significance (based on 10,100 permutations). 
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Figure 4.5.  Isolation by (Euclidian) distance among T. verticalis populations on Appledore 

Island. A: Pairwise genetic distances as a function of geographical distance, with line from the 

fitted RMA regression.  B: Statistical significance of pairwise FST comparisons as a function 

of geographical distance.  P values were corrected using the FDR and are graphed using a 

natural logarithmic axis.  For both (A) and (B), distance is plotted on a natural logarithmic 

axis and the data have been slightly jittered along the x-axis to show overlapping points. 
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patches, local populations experience frequent extinctions, and colonization and extinction 

rates are near-equal.  As predicted for metapopulations with high dispersal (Slatkin 1985; 

Harrison 1991), genetic diversity within local T. verticalis populations is high and populations 

are only genetically differentiated at distances approaching the size of Appledore (Figure 

4.5B).  Significant genetic differentiation among populations is expected when turnover rates 

are high, as seen here, but the absolute level of among-population differentiation was 

generally small and only significant at far distances, which may be expected for species that 

also have high dispersal rates (Slatkin 1985; Harrison and Hasting 1996; Hanski 1999).  These 

results indicate that, indeed, T. verticalis individuals are moving among pools and 

reproducing frequently upon immigration.  This matches the observation of common egg 

laying by recent immigrants in the dispersal experiment.  However, it is unknown if female 

immigrants are arriving with already fertilized eggs or are mating after they arrive. 

Intriguingly, the distance to which T. verticalis populations exhibit spatial 

autocorrelation in occupancy is similar to the distance to which there was positive 

autocorrelation in genetic variation, although the two data sets show somewhat different 

patterns of decay in autocorrelation with distance (Figure 4.4).  This result suggests that 

dispersal influences the occupancy and genetics of T. verticalis similarly at spatial scales 

approaching the size of the island, despite the difference in patterns of occupancy and 

genetics.  Given the widespread dispersal, local extinctions are likely a major factor causing 

the absence of T. verticalis from such a high fraction of suitable pools.  Indeed, local 

extinctions are frequent, but not uniformly likely across pools, as populations in large pools 

tend to be more persistent and have higher genetic diversity (Boorman and Levitt 1973; 

Pulliam 1988; Frankham 1997).  However, the T. verticalis metapopulation does not exhibit 

true “source-sink” dynamics, where local populations are exclusively sources or sinks, given 

that populations in large pools are still extinction-prone and there is high genetic diversity in 

populations inhabiting small pools.  
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These findings parallel other motile animals in fragmented landscapes, where dispersal 

had complex consequences that could only be described by a combination of metapopulation 

models (Hill et al. 1996; Sutcliffe et al. 1997; Dunham and Rieman 1999).  This is not to say 

that all motile animals in fragmented landscapes inhabit mixed-structure metapopulations, but 

that mixed-structure metapopulations and complex spatial population dynamics may be 

common among animals that are able to persist in fragmented landscapes where turnover rates 

are high (Harrison and Taylor 1997; Hanski 1999; Driscoll 2007).  This could have large 

ramifications for how dispersal affects ecosystems at larger spatial scales, as motile animals 

are often also strong interactors that act as spatial process subsidies (sensu Flecker et al. 2010) 

and therefore have large impacts on other species or key nutrients (McCann et al. 2005; Van 

de Koppel et al. 2005; McIntyre et al. 2007).  It is therefore important to elucidate what 

causes metapopulations to exhibit complex spatial dynamics, so that these dynamics can be 

better captured in models of spatial populations and food webs. 

One likely contributor to the complex structure of the T. verticalis metapopulation is 

the large variation in observed dispersal (Figure 4.2A).  Although the overall rate of 

immigration was 0.18 immigrants mesocosm
-1

 d
-1

, the rates varied between 0 and 1.08 

immigrants mesocosm
-1

 d
-1

, and nearly 75% (427 of 580) of observations resulted in no T. 

verticalis being found (i.e., a proximate immigration rate of 0 for that mesocosm on that day).  

This variation was driven by a combination of metapopulation structure (distance to closest 

population, population size and age structure), environmental conditions (temperature and 

wind), and temporal effects (seasonal trends, moon phase).  Although not studied explicitly 

here, T. verticalis dispersal rates are also influenced by the local availability of prey, such that 

emigration rates increase as local prey density decreases (Simonis 2012b).  Negative resource 

density-dependent dispersal is common among consumers, and may have profound effects on 

spatial food-web dynamics (Charnov 1976; Bowler and Benton 2005; Simonis 2012; Hanski 

1999).  Indeed, dispersal is influenced by a myriad of physiological, ecological, genetic, 
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environmental, and temporal factors (Clobert et al. 2001), resulting in observed dispersal rates 

that vary widely across space and time.  Significant temporal variation in dispersal rates can 

cause populations to fluctuate between conditions where colonization is less frequent than 

local extinction (putting the entire metapopulation is at extinction risk), approximately equally 

frequent to local extinction (Levins metapopulation), and more frequent than local extinction 

(creating a homogenized population) (Hill et al. 1996).  This was observed in the T. verticalis 

metapopulation, as the average pool-specific colonization rate fluctuated above and below the 

average pool-specific extinction rate throughout the metapopulation survey (Table 4.3).   

In addition to deterministic factors causing variation in dispersal rates, dispersal is a 

demographic process, and thus is also subject to intrinsic variation caused by demographic 

stochasticity (May 1973; Chesson 1978; Simonis 2012a).  Demographic stochasticity 

introduces random variation in the waiting time until the next demographic event occurs (e.g., 

until the next immigrant arrives), such that even if the expected dispersal rate were fixed (not 

influenced by deterministic factors), there would be random variation in realized dispersal 

rates.  For example, at the mean T. verticalis dispersal rate of 0.18 immigrants pool
-1

 d
-1

, 

83.5% of pools would be expected to receive no immigrants on a given day and 16.4% of 

pools would be expected to receive no immigrants within a given 10-day window (Figure 

4.6).  This inherent, demographic variation in realized dispersal is expected to cause local 

populations to be less connected than deterministically predicted, even when dispersal rates 

are high enough to expect a well-mixed metapopulation with synchronized local population 

dynamics (Chesson 1978; Ovaskainen and Hanski 2004; Simonis 2012a).  

In combination, deterministic factors and inherent demographic stochasticity will cause 

realized dispersal to deviate from the average expected value.  If this deviation is small, a 

constant dispersal rate may be an appropriate approximation, as assumed by most 

metapopulation models.  However, if realized dispersal varies widely from the average 

expected value, as was seen here for T. verticalis, the spatial dynamics of the population may 
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not be well captured by a model that assumes a fixed dispersal rate.  The interactive effects of 

deterministic variation and demographic stochasticity in dispersal on spatial population 

dynamics are currently not well understood (Chesson 1978; Simonis 2012a), but my study 

suggests that variation in realized dispersal rate is a major factor contributing to complex 

spatial population dynamics.  This variation could explain the absence of T. verticalis 

populations in approximately half the available pools on Appledore despite the high average 

rate of dispersal.   

Metapopulation dynamics are often also influenced by variation among local 

 

 

 

 
 

 

Figure 4.6.  The fraction of pools that have not yet received a Trichocorixa immigrant as a 

function of time, given a fixed immigration rate of 0.18 individuals pool
-1

 day
-1

.  This 

relationship is described by an exponential distribution, which corresponds to waiting times 

between events of a Poisson process.  The open circle and dashed lines represent the fraction 

of pools still uncolonized at time equals 5.6 days (i.e., the average waiting time; = 0.18
-1

), ca. 

37%. 
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population sizes, which is regulated by habitat size and determines local extinction rates 

(Harrison 1991; Driscoll 2007).  In many systems, all local populations are not equally likely 

to go extinct, due to variation in population size.  As a result, some populations may act as 

“sources” that consistently provide immigrants to extinction-prone “sink” populations 

(Boorman and Levitt 1973; Pulliam 1988).  This was the case in the T. verticalis system, as 

not all populations exhibited the same probability of extinction (Table 4.3), and larger pools 

were more likely to have persistent populations with higher genetic diversity (Figure 4.3).  

This effect of pool volume on extinction risk is likely driven by the relationship between 

population size and pool volume as well as the relationship between pool volume and the 

probability of a catastrophic drying event (Hulsmans et al. 2008).  Indeed, smaller pools are 

much more likely to dry entirely during the middle of the summer on Appledore (J. L. 

Simonis, pers. obs.).  However, pool volume was not a perfect predictor of persistence, as 

even the largest pools had a modest (10-20%) chance of a local extinction during the three 

years of my study, and the second largest pool in the survey had a population present on only 

three of the five sampling dates (Figure 4.3A).  T. verticalis extinctions in larger pools could 

have occurred due to catastrophic events, such as inundation with salt water during intense 

storm events (J. L. Simonis, pers. obs.), or local ecological factors, such as low prey density 

driving mass emigration (Simonis 2012b).   

Given the propensity for local extinctions in this system, it is likely that the 14% of T. 

verticalis populations that persisted through the (relatively short) duration of the 

metapopulation survey will go extinct sometime in the near future.  However, these pools did 

generally have below-average extinction rates (average Ei: 0.076
-1

) and temporally-averaged 

colonization rates that were about equal to the mean colonization rate for all pools across all 

sample dates (average Ci of persistent pools: 0.245 mo.
-1

, average Ci for all pools: 0.243
-1

), 

suggesting that they are comparatively buffered from extinction.  This type of 

metapopulation, where all local populations are extinction-prone but to varying degrees and 
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local extinctions are caused by a variety of factors, is likely common (Harrison 1991; 

Harrison and Taylor 1997).  However, the dynamical consequences of variable local 

extinction risk in metapopulations are not well understood (Harrison 1991; Hanski 1999).  It 

is likely that the persistence and dynamics of many spatially fragmented populations, 

including the T. verticalis metapopulation, result from a complex interaction between regional 

dispersal and local extinction-promoting processes (Harrison 1991; Hill et al. 1996), both of 

which are variable in space and time.   

Dispersal of strong interactor species, like the apex predator T. verticalis in the 

Appledore rock pools, not only influences their population, but also affects the spatial 

dynamics of the food webs and ecosystems of which they are constituents (Holyoak et al. 

2005; McCann et al. 2005; Van de Koppel et al. 2005; Flecker et al. 2010).  Indeed, 

consumption of zooplankton grazers by T. verticalis is strong enough to generate a top-down 

trophic cascade within pools (J. L. Simonis, unpub. data).  Furthermore, T. verticalis is the 

only species in this food chain capable of actively dispersing among the pools.  The prediction 

in such a situation, where the apex predator is also the most dispersive, is that dispersal by the 

predator will link local food webs at the regional scale, perhaps generating complex dynamics 

such as spatial apparent competition among prey populations (Van de Koppel et al. 2005; 

Simonis 2012a).  This expectation is based on the notion that highly dispersive consumers 

will exhibit spatially synchronized population dynamics.  As shown here with T. verticalis, 

however, highly dispersive apex predators can exhibit complex spatial population dynamics 

that are described best as mixed-structure metapopulations.  For example, despite being 

dispersive enough to link local populations, T. verticalis is frequently absent from suitable 

pools, perhaps providing refuges for prey populations (Huffaker and Kennett 1956; Murdoch 

and Stewart-Oaten 1989; Simonis 2012b).  As a result, predator dispersal may connect local 

food webs in a manner that is more complex than previously thought.  Considering the 

prevalence of mixed-structure metapopulations among motile animals (Hill et al. 1996; 
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Sutcliffe et al. 1997; Dunham and Rieman 1999), the consequences of complex 

metapopulation dynamics for food webs and ecosystems deserve further study, both 

theoretically and empirically. 
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CHAPTER 5 

 

 

PREY (MOINA MACROCOPA) POPULATION DENSITY DRIVES EMIGRATION RATE 

OF ITS PREDATOR (TRICHOCORIXA VERTICALIS) IN A ROCK-POOL 

METACOMMUNITY
1
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 
Published as: Joseph L. Simonis. 2012. Prey (Moina macrocopa) population density drives 

emigration rate of its predator (Trichocorixa verticalis) in a rock-pool metacommunity. 

Hydrobiologia. DOI 10.1007/s10750-012-1268-9. Copyright Springer 2012; reprinted under 

terms of copyright agreement.  
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ABSTRACT 

 

Dispersal connects spatially separated local food webs at a larger, metacommunity 

scale, and as a result, dispersal may both influence and be influenced by local food-web 

dynamics.  Here, I focused on a rock-pool metacommunity and used a combination of 

observational, experimental, and theoretical approaches to explore the role of local prey 

(Moina macrocopa) density on the rate of emigration by their predator (Trichocorixa 

verticalis) and in turn, the effect of predator emigration on the per capita predation rate 

experienced by local prey populations.  A lab feeding experiment quantified predation rates, 

demonstrating that indeed adult T. verticalis are voracious predators of M. macrocopa.  M. 

macrocopa densities vary over five orders of magnitude across both space and time in rock 

pools, and a mesocosm experiment showed that this variation significantly influences T. 

verticalis emigration: predators emigrated more rapidly when prey were in lower densities.  

Finally, computer simulations demonstrated that this pattern of dispersal by T. verticalis has 

the potential to relieve local M. macrocopa populations from predation when the prey are at 

low densities, thereby reducing the likelihood that local M. macrocopa populations will be 

driven extinct by predation from T. verticalis. 

 

INTRODUCTION 

 

Dispersal, the movement of organisms from one area to another, is a fundamental 

biological process that has potential ecological consequences for individuals, populations, 

food webs, and ecosystems (Ives et al. 1993; Hanski 1999; Clobert et al. 2001; Holyoak et al. 

2005).  Dispersing individuals connect otherwise separated local populations at larger spatial 

scales in what is known as a metapopulation (Hanski 1999).  However, local populations of 

potentially dispersing organisms are also embedded in food webs and engage in local trophic 
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interactions with predators, competitors, and resources.  Dispersal therefore also links food 

webs across space in a metacommunity and has the potential to influence both local and 

regional food-web dynamics (Holyoak et al. 2005; McCann et al. 2005).   

Simultaneously, aspects of the local food web can drive dispersal, setting up a 

feedback between local (trophic) and regional (dispersal) processes (French and Travis 2001; 

Hauzy et al. 2010).  At the very least, local population sizes, and thus the number of possible 

dispersers, are often dictated by local trophic interactions (Morin 1999).  Furthermore, many 

factors that influence dispersal are directly related to local food-web interactions, such as 

predator avoidance and resource acquisition (Charnov 1976; Clobert et al. 2001; Bowler and 

Benton 2005).  As a result, dispersal may both influence and be influenced by local food-web 

dynamics (Hauzy et al. 2010).   

For example, the dispersal rates of many consumers depend on the availability of local 

food resources.  Although some consumers disperse more frequently when resources are more 

abundant (forays, e.g., Bennetts and Kitchens 2000), most consumers emigrate away from 

areas more frequently when resources are less dense (Bernstein 1984; Ives et al. 1993; 

Kuussaari et al. 1996; French and Travis 2001; Kennedy and Hard 2003; Bowler and Benton 

2005; Hauzy et al. 2007).  Such negative resource-density-dependent (NRDD) dispersal is 

predicted by Optimal Foraging Theory (Charnov 1976) and could lead to consumers 

aggregating in areas of abundant resources (Readshaw 1973).  Indeed, even individually 

weak, negative responses of consumer dispersal rate to resource density can cause significant 

spatial aggregation of consumers at the metapopulation level (Ives et al. 1993).  Aggregation 

of predators may strongly influence the local predation risk experienced by prey individuals, 

and could even permit locally unstable consumer-resource interactions to persist regionally 

(Murdoch and Stewart-Oaten 1989).  Despite the pervasiveness of NRDD dispersal (Bowler 

and Benton 2005), its effects on metacommunity and food-web dynamics remain poorly 

understood, primarily because most metacommunity studies assume dispersal is density-
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independent (Hauzy et al. 2007; Hauzy et al. 2010).   

The present study uses a metacommunity system of freshwater rock pools to elucidate 

the influence of prey density on predator dispersal and the resulting effect on the local 

predation risk experienced by the prey.  The rock pools are found on Appledore Island, 

Maine, USA and contain a relatively simple three-level food chain (linear food web) 

consisting of the predatory water boatman Trichocorixa verticalis (Hemiptera, Corixidae), 

which consumes the herbivorous cladoceran Moina macrocopa (Daphniidae), which in turn 

grazes on phytoplankton (primarily chlorophyte algae) (J. G. Morin and J. L. Simonis, unpub. 

data).  T. verticalis is a voracious zooplanktivore (Wurtsbaugh 1992; see also Results) that 

consumes enough M. macrocopa to cause a strong local top-down trophic cascade within the 

rock pools (J. L. Simonis, unpub. data).  Additionally, although T. verticalis individuals are 

aquatic throughout their lives, they are able to fly as adults (Kelts 1979), and thus may 

connect food chains among rock pools through active dispersal (sensu Clobert et al. 2001).  

By comparison, both M. macrocopa and chlorophyte algae are not able to actively disperse 

among rock pools.  Rather, they must rely on external agents, such as birds (in particular 

Larus gulls) or overflowing water (during rain events), to passively disperse among pools 

(Bohonak and Jenkins 2003).   

Currently, the factors influencing the dispersal of T. verticalis are unknown, as are the 

consequences of T. verticalis dispersal for M. macrocopa.  Specifically, it is unclear if T. 

verticalis dispersal is related to the density of its prey, M. macrocopa.  Thus, the goals of the 

current study were to determine if the emigration rate of T. verticalis (predator) is dependent 

upon M. macrocopa (prey) density and to quantify the effect of T. verticalis dispersal on the 

predation risk experienced by M. macrocopa.  An important component of this second goal is 

quantifying the rate at which T. verticalis preys upon M. macrocopa.   

 

METHODS 
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Study System 

 

Appledore Island (38.5 ha) is the largest island in the Isles of Shoals archipelago (Gulf 

of Maine, USA) and home to the Shoals Marine Laboratory (SML).  Approximately 1,500 

freshwater rock pools, ranging in size from ca. 1.0 to 30,000 L, are patchily distributed above 

the high-tide line around the perimeter of Appledore (J. L. Simonis, unpub. data).  These 

pools contain a relatively simple food web that consists primarily of the chlorophyte-M. 

macrocopa-T. verticalis food chain outlined in the Introduction.  Although other species of 

aquatic invertebrates are found in the pools (e.g., Daphnia pulex, chironomids, ostracods, and 

cyclopoid copepods), M. macrocopa is by far the most abundant prey for T. verticalis: 

average densities of M. macrocopa are ca. 2,000 ind L
-1

, whereas all other potential prey 

typically have densities under 100 ind L
-1

 (see Results).  Similar to other corixids, T. verticalis 

undergoes incomplete metamorphosis and has a life history consisting of eggs, five juvenile 

stages, and adults (Kelts 1979).  Only the adult stage of T. verticalis has wings, and thus the 

ability to actively disperse among pools.  Further, adult T. verticalis are voracious predators of 

M. macrocopa (see Results) and additional field experiments have shown that consumption of 

M. macrocopa by adult T. verticalis is strong enough to induce a top-down trophic cascade in 

the rock pools (J. L. Simonis, unpub. data).     

 

Surveys of M. macrocopa Densities in Rock Pools 

 

 In order to determine the relevant range of M. macrocopa densities experienced by T. 

verticalis, I conducted two field surveys.  In early June 2008, I sampled 82 rock pools 

distributed around the entirety of Appledore to quantify spatial variation in M. macrocopa 

densities.  I selected the pools to be representative of biotic and abiotic environmental 
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variation present among pools.  At each pool, I collected duplicate samples of water (250 mL 

– 10 L each, depending on the volume of the pool) haphazardly from throughout the water 

column using a large-bulb pipette.  I processed the duplicate samples independently, but 

combined the data for presentation and analyses.  M. macrocopa and other invertebrates were 

removed from the water via a 75 µm mesh sieve and preserved in 95% ethanol until they were 

enumerated under a dissecting microscope.  When M. macrocopa was present in high 

densities, I counted representative subsamples.  I conducted the second survey to determine 

the temporal variation in M. macrocopa density within pools, by sampling a single (typical) 

pool every two-to-four days from May 22 to August 15, 2009 (29 total samples).  On each 

date, duplicate samples of 500 mL were taken and processed following protocols as outlined 

above.  The volume of this pool averaged 300 L (range: 250 – 425 L), thus each sampling 

removed only ca. 0.3% of the M. macrocopa present in the pool at that time. 

 

Predation by Adult T. verticalis on M. macrocopa 

 

I used a standard functional response experiment to quantify the rate of predation by 

adult T. verticalis on M. macrocopa.  Single adult T. verticalis were placed into glass jars 

containing 100 mL of filtered (0.45 µm) well water and non-gravid, adult female M. 

macrocopa as prey.  I collected all prey and predators for this experiment from ca. 10 rock 

pools, and kept them separately in the lab in 20 L containers with excess food (M. macrocopa 

was fed rock-pool algae and T. verticalis was fed M. macrocopa) for up to one week before 

they were used.  To standardize hunger levels among predators, I starved all T. verticalis 

individuals for the 24 hours preceding the start of a feeding trial.  Prey abundances used were 

1, 2, 4, 8, 10, 12, 15, 20, 25, 30, 40, 50, 75, and 100 individuals per jar, giving densities 

between 10 and 1,000 prey L
-1

, which covers most of the range seen in the Appledore rock 

pools (see Results).  I ran duplicate trials for each of the 14 prey densities.  Experimental jars 
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were placed in a temperature-stable room (mean: 18 °C, range: 16-20 °C) with fluorescent 

lamps (“plant and aquarium”, Phillips 40W) on a 12:12 light:dark cycle.  After 24 hours, I 

removed the predators from the jars and enumerated the remaining prey.  Prey were not 

replaced during the trials and I triplicated all initial and final prey counts to ensure accuracy.  

I fit the data using the Rogers Random Predator Equation (Rogers 1972), which is the 

standard Type-II functional response adapted to account for depletion of prey during the 

experiment, using maximum likelihood methods and the mle2 function in the R package 

bbmle (Bolker and R Core Development Team 2011). 

 

Effect of M. macrocopa Density on the Emigration Rate of T. verticalis 

 

 To determine if M. macrocopa density influenced the rate of emigration by adult T. 

verticalis from rock pools, I conducted a field experiment using 35 L mesocosms 

(Rubbermaid
TM

 totes).  I varied the prey density within each mesocosm between 0 and 1,000 

M. macrocopa L
-1

 (covering most of the range of prey densities measured in the field surveys, 

see Figure 5.1).  I structured the experiment as a duplicated regression design with two 

mesocosms at each of 20 prey density levels (0, 0.15, 0.25, 0.5, 1, 2, 3, 5, 7, 10, 15, 25, 35, 

50, 75, 100, 175, 275, 500, 1,000 M. macrocopa L
-1

), for 40 total experimental units.  I 

collected all prey and predators for this experiment from ca. 20 rock pools, and kept them 

separately in the lab in 80 L containers with excess food (M. macrocopa was fed rock-pool 

algae and T. verticalis was fed M. macrocopa) for up to one week before they were used.  Due 

to logistical constraints, I conducted the experiment in eight temporal blocks of five 

mesocosms each.  The five prey densities used in each block were determined randomly and 

the temporal blocks were initiated every other day.   

 I filled each mesocosm with 20 L of filtered (0.45 µm) well water and added the 

appropriate number of M. macrocopa to achieve the desired prey density.  For prey densities  
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Figure 5.1.  Variation in density of M. macrocopa across space (a) (multiple pools sampled in 

June 2008) and time (b) (multiple samples of the same pool during May-August 2009).  Note 

the x-axis is on a log10 scale. 
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above 25 individuals L
-1

, which were too high to count the exact number of individuals 

needed, I prepared a temporary “dense stock” of M. macrocopa and counted five replicate 

subsamples to determine how much of the “dense stock” was needed to achieve the desired 

density.  This volume was sieved to remove excess water prior to adding to the mesocosm.  I 

then added 10 adult T. verticalis to each mesocosm, along with four perches (30 cm bamboo 

sticks).  Mesocosms were covered with 13 mm hex chicken wire to prevent birds from 

entering them.  The five mesocosms were placed on a flat lawn on the SML campus and at 

least 200 m away from the closest source of potential immigrants (i.e., the closest rock pool 

with a T. verticalis population).  The mesocosms were also placed at least 5 m from each 

other to minimize possible movement of T. verticalis among them.  Because I could not mark 

individual T. verticalis, it is impossible to be certain that there was no movement among 

mesocosms or immigration from other sources.  However, in all of the runs of this 

experiment, not once were more than 10 T. verticalis found in a mesocosm, suggesting that 

immigration was minimal or nonexistent in this experiment.  

All trials began in the early afternoon (1:00 p.m. EST) and ran for 24 hours.  At the 

end of the trial, the number of remaining T. verticalis in each mesocosm was determined.  

Any dead predators were noted and removed from the analyses.  Because T. verticalis 

dispersal is likely positively temperature-dependent (increased flying attempts in warmer 

conditions; Kelts 1979), I also recorded water temperature of each mesocosm three hours after 

beginning a trial.  I analyzed the data with a mixed-model logistic regression in R using the 

glmer function in the lme4 package (Bates et al. 2011; R Development Core Team 2011).  

The response variable was the proportion of T. verticalis emigrating, with appropriate weights 

to account for trials with predator mortality.  The full model included M. macrocopa density 

[log10(density + 0.1)] and water temperature as fixed continuous predictors and temporal 

block as a grouping (“random”) factor, as well as all possible interaction terms.  Model 
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simplification proceeded through stepwise term deletion and comparison of AICc scores and 

likelihood ratio tests (LRT) (Pinheiro and Bates 2000; Burnham and Anderson 2002).   

 

Effect of Predator Dispersal on Per Capita Predation Risk 

 

I then quantified the effect of dispersal by T. verticalis on the predation risk 

experienced by M. macrocopa.  In particular, I determined the per capita predation risk to M. 

macrocopa as a function of prey density under three predator dispersal scenarios: no 

dispersal, prey-density-independent dispersal, and NRDD dispersal of T. verticalis.  The third 

scenario is what occurs in this system (see Results), whereas the first and second are 

hypothetical scenarios for comparison.  This exercise was conducted by computer simulation, 

with conditions identical for all three dispersal scenarios and mimicking the experiment: 20 L 

of water, prey densities ranging from 0 to 1,000 M. macrocopa L
-1

, 10 predators, and 24 hours 

(note, however, that per capita predation rates are undefined when prey density is equal to 

0.0).   

In both dispersal-present scenarios, the proportion of predators emigrating was 

calculated for the median water temperature measured during the emigration experiments 

(27.85 °C, since temperature was a significant predictor of predator emigration, see Results).  

In the hypothetical prey-density-independent dispersal situation, the proportion of predators 

emigrating (20.4%) was determined by fitting a logistic regression to the emigration data, but 

with only temperature and block effects and no interactions.  This model was similar to the 

best-fit model (see Results), except that it did not include prey density as a predictor term.  

Thus, the predicted proportion of predators emigrating was constant, regardless of prey 

density.  By comparison, the proportion of predators emigrating was negatively related to prey 

density in the NRDD scenario, as described by the best-fit model detailed in Results.   

For the purposes of these simulations, I made the simplifying assumption that 
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predators emigrated before consuming any prey.  After accounting for emigration, the 

remaining T. verticalis consumed M. macrocopa according to the fitted functional response 

(see Results).  The number of prey consumed was then divided by the total number of prey 

initially present (initial prey density × 20 L) to calculate per capita predation risk.  The 

simulation results were then plotted as per capita predation risk as a function of initial prey 

density for each of the three dispersal scenarios for visual comparisons.  All simulations were 

conducted in R (R Development Core Team 2011) and code is available from the author upon 

request. 

 

RESULTS 

 

Surveys of M. macrocopa Densities in Rock Pools 

 

 Population densities of Moina macrocopa varied over multiple orders of magnitude 

across both space and time (Figure 5.1).  In June 2008, populations of M. macrocopa were 

detected in 67 of the 82 pools sampled (81.7%), with densities ranging from 0.7 to 25,470 

individuals L
-1

 (median: 306.6; mean: 2,053; SD: 4,600.5 individuals L
-1

).  In comparison, 

Daphnia pulex, the other cladoceran zooplankter observed in the system, was only found in 

nine pools and in much lower densities (range: 0.5 – 465; median: 8.0 individuals L
-1

).  

Chironomid larvae are another possible prey item for T. verticalis (Kelts 1979), and were 

found in many pools (74 of 82), although generally at low densities (range: 0.2 – 700; median: 

13.6 individuals L
-1

).   

In 2009, the population density of M. macrocopa in the single pool sampled also 

varied substantially over time, although considerably less than seen among the pools in 2008.  

The population was detected in the pool on all 29 of the sample dates in 2009, with densities 

ranging from 4.0 to 3,367 individuals L
-1 

(median: 35.0; mean: 553.5; SD: 953.2 individuals 
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L
-1

).  D. pulex was only found on one date (1.0 individuals L
-1

), but chironomid larvae were 

present on 27 of the 29 sampling dates (density range: 1 – 24; median: 6.0 individuals L
-1

). 

 

Predation by Adult T. verticalis on M. macrocopa 

 

 Adult T. verticalis were able to readily capture and consume M. macrocopa in the lab 

feeding experiments, with the maximum number of prey consumed by a single predator being 

50 (Figure 5.2).  The functional response had a saturating shape (Type-II), described by both 

attack rate (1.562 d
-1

, standard error: 0.145, P < 0.00001) and handling time (0.011 d, 

standard error: 0.002, P < 0.00001).  Overall, the functional response fit the data well 

(normalized root mean square error: 8.86%).   

 

Effect of M. macrocopa Density on the Emigration Rate of T. verticalis 

 

 The best-fit statistical model describing the proportion of T. verticalis emigrating from 

the mesocosms included both the M. macrocopa density and temperature fixed effects as well 

as the blocking (random) effect.  None of the possible interaction terms were useful predictors 

(all P > 0.49 by LRT) and were dropped from the model.  There was a significant, negative 

effect of prey density [on a log10(x + 0.1) scale] on the proportion of predators emigrating 

(Figure 5.3a, odds ratio: -0.42, P = 0.0005).  The fitted relationship predicted that when there 

were no prey, 36.8% of the predators would emigrate within 24 hours; when the prey density 

was 1,000 individuals L
-1

, the predicted proportion emigrating dropped to 9.7% (with 

temperature held at 27.85 °C, the median temperature measured during the experiment).  

There was also a significant positive effect of temperature on the proportion of T. verticalis 

emigrating (Figure 5.3b, odds ratio: 0.10, P = 0.045).  However, the effect of prey density was 

much stronger and explained substantially more of the deviance in the response variable than 
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temperature did (magnitude of the prey density odds ratio is 4.2 times that of the temperature 

odds ratio; prey density explained 21.1% of the deviance, compared with 6.6% explained by 

temperature).   

 

Effect of Predator Dispersal on Per Capita Predation Risk 

 

 In the computer simulations, dispersal by T. verticalis substantially reduced the per 

capita predation risk experienced by M. macrocopa, regardless of whether their dispersal was 

dependent on prey density (Figure 5.4).  Under the hypothetical scenario of no predator 

dispersal, per capita predation risk decreased at an accelerating rate with the logarithm of 

 

 

 
 

Figure 5.2.  Functional response for adult T. verticalis feeding on M. macrocopa.  The line 

depicts the functional response, which was fit using the Rogers Random Predator Equation.  
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prey density (dashed line, Figure 5.4), the expected pattern for a Type-II functional response 

as predators become increasingly satiated (Holling 1959).  Density-independent predator 

dispersal (dotted line, Figure 5.4)  reduced predator densities the same amount across all prey 

densities, causing a decrease in the intercept of the predation risk-prey density curve, without 

changing its overall shape from that of the no-dispersal scenario.  In both of those 

hypothetical scenarios, the maximum per capita predation risk experienced by the prey 

occurs at the lowest prey density.  

In contrast, NRDD dispersal qualitatively altered the form of the predation risk-prey 

density curve from monotonic to hump-shaped (solid line, Figure 5.4).  Under this realistic 

scenario, the maximum predation risk occurs at an intermediate density (ca. 70 prey  

 

 

 

 
 

 

Figure 5.3.  Emigration rate of T. verticalis as a function of both (a) M. macrocopa density 

(on a log10 scale) and (b) temperature.  The solid lines are the predictions from the fitted 

mixed model logistic regression presented in text for each of the two main effects separately, 

with the other main effect held constant at the median value (a: temperature held at 27.85 °C; 

b: prey density held at 12.5 ind. L
-1

).  An open circle surrounding points denotes overlapping 

data (numeral indicates how many data are overlapping).    
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individuals L
-1

).  The decrease in predation risk at low prey densities is the result of predators 

emigrating more readily, thus relieving prey from predation more strongly, with decreasing 

prey density.  The decrease causes the predation risk curves for the two dispersal-present 

scenarios to cross at a prey density of ca. 10 individuals L
-1

, which corresponds to the 

predicted proportion of predators emigrating under the density-independent dispersal scenario 

(20.4%).  At prey densities below this value, M. macrocopa is relieved from predation due to 

NRDD dispersal by T. verticalis.  At densities above this value, T. verticalis disperses less 

frequently, and thus M. macrocopa experience an increase in predation risk, compared to the 

hypothetical situation where prey density does not influence predator dispersal.  Because 

some predators disperse even when prey densities are extremely high (Figure 5.3), the  

 

 

 

 
 

Figure 5.4.  Effect of predator (T. verticalis) dispersal on per capita predation risk for M. 

macrocopa.  The dashed line represents no dispersal, the solid line represents M. macrocopa 

density-dependent dispersal, and the dotted line represents hypothetical M. macrocopa 

density-independent dispersal (based on a logistic regression with only temperature and block 

effects).  For both dispersal models, temperature was held constant at the median value 

recorded during experiments (27.85 °C).  See text for details.  Note the x-axis is on a log10 

scale. 
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predation risk curve for the NRDD dispersal scenario lies intermediate to the relationships for 

the no-dispersal and density-independent dispersal scenarios at high prey densities. 

 

DISCUSSION 

 

Given the large spatial and temporal variation in the density of its most abundant prey 

(Moina macrocopa) observed in the Appledore rock pools (Figure 5.1), it is not surprising 

that Trichocorixa verticalis displayed a generally high dispersal propensity in the emigration 

experiments (ca. 20% of predators emigrated within 24 hours, regardless of prey density).  

Indeed, variable local resource density is one factor expected to select for dispersal as a life-

history strategy (Clobert et al. 2001; Bowler and Benton 2005).  However, the ultimate driver 

(or drivers) of dispersal by T. verticalis in the rock-pool system could be any combination of 

factors, including, e.g., habitat persistence and inbreeding avoidance (Clobert et al. 2001; 

Bowler and Benton 2005).  The current study cannot speak directly to the questions of the 

ultimate cause of dispersal by T. verticalis, but suggests that the availability of M. macrocopa 

as a food resource plays an important role in dictating T. verticalis dispersal among rock 

pools.   

Whatever the ultimate causes of dispersal, when a species is able to actively disperse 

among patches, individual predators must still make decisions about whether or not to 

emigrate based on their current environments (Bowler and Benton 2005).  By influencing the 

density of predators, these emigration decisions have consequences for the predation risk 

experienced locally by their prey.  In this proximate sense, prey density strongly affected 

predator dispersal in the rock pools of Appledore Island, as T. verticalis displayed a negative 

relationship between emigration rate and M. macrocopa density (NRDD dispersal, Figure 

5.3a).  Indeed, prey density was a much stronger driver of predator dispersal than temperature 

was, another proximate factor that has been suggested to influence dispersal by T. verticalis 
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(Kelts 1979).  This result of NRDD dispersal matches the general, intuitive predictions of 

classic Optimal Foraging Theory that consumer movement rates should be a negative function 

of resource density (Charnov 1976).  It should be noted, however, that not all consumer 

species disperse more frequently at lower resource densities (e.g., Nunes et al. 1997; Bennetts 

and Kitchens 2000).   

This pattern of NRDD dispersal by T. verticalis in response to M. macrocopa density 

causes a local positive numerical response between the two trophic levels, through which 

predators are predicted to aggregate (increase in density over time) in rock pools with higher 

prey abundances (Readshaw 1973; Murdoch and Stewart-Oaten 1989).  Because the local T. 

verticalis—M. macrocopa trophic interaction is described by a Type-II functional response 

(Figure 5.2), a positive numerical response introduces a refuge for prey from predation risk 

when prey are present at low densities (Figure 5.4) that would otherwise not exist.  In the 

absence of NRDD dispersal by T. verticalis (if individuals did not disperse or dispersed 

independent of prey density), predation risk would remain high at low prey densities, and T. 

verticalis predation could drive local M. macrocopa populations extinct (Figure 5.4).  

Conversely, in the presence of NRDD dispersal, as predation by T. verticalis reduces local M. 

macrocopa population densities, it also indirectly increases the rate of T. verticalis 

emigration, thereby lessening the future impact of predation and reducing the likelihood of the 

local M. macrocopa population going extinct from predation.  As a result, NRDD dispersal is 

predicted to convert an unstable local Type-II functional response into a stable Type-III 

functional response at the metacommunity scale (Murdoch and Stewart-Oaten 1989).  

However, this prediction remains to be explicitly tested. 

For the rock- pool metacommunity on Appledore Island, the per capita predation risk 

curves for NRDD and density-independent dispersal are predicted to cross at approximately 

10 M. macrocopa L
-1

 (Figure 5.4).  At densities below this level, local M. macrocopa 

populations are predicted to experience lower per capita predation rates than they would if T. 
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verticalis dispersal were independent of local prey density, resulting in an increase in the 

potential persistence of local M. macrocopa populations (i.e., a reduction in the likelihood of 

extinction due to predation).  Although the majority of M. macrocopa population densities 

measured in the surveys were above 10 individuals L
-1

, densities below 10 individuals L
-1

 

were observed in both the one-time survey of 82 pools in 2008 [19.4% of pools with 

detectable populations (13 of 67)] and the repeated sampling of the single pool in 2009 

[13.8% of sample dates (4 of 29)] (Figure 5.1), indicating that the decrease in the per capita 

predation rate at low prey densities is indeed relevant for populations in the field.  Indeed, the 

M. macrocopa population that I repeatedly sampled exhibited positive growth rates following 

all of the four days when the population density had dropped below 10 individuals L
-1 

(mean 

growth rate = 0.23 d
-1

), compared to only 41.7% (10 of 24) of growth rates being positive 

following days when the population was above 10 individuals L
-1

 (mean growth rate = -0.04 

d
-1

 for all 24 days).  However, without additional observational data and controlled 

experiments, it is unclear how important this release from predation at low prey densities is, 

relative to other factors (e.g., increased per capita resource densities), for the persistence of 

local M. macrocopa populations. 

Although M. macrocopa is the most abundant prey resource for T. verticalis in the 

rock pools, it is not the only potential prey item in this system.  Indeed, T. verticalis may 

consume a range of food types including, e.g., chironomid larvae (Kelts 1979), which are 

present and widely distributed in the rock pools.  However, the chironomid larvae construct 

protective cases that likely restrict the ability of predators such as T. verticalis to prey upon 

them (Dillon 1985).  Given the scant data on this predator, it is currently unknown if T. 

verticalis can use other potential food resources present in the rock pools, nor is it known if 

any single food resource (including M. macrocopa) provides all of the nutrients necessary for 

growth and development.  If T. verticalis does consume other prey items, it may lessen the 

specific effect of local M. macrocopa density on T. verticalis emigration.  If this were the 
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case, predator emigration would likely be a function local prey availability more generally.  

The results from this study suggest that local (trophic) and regional (dispersal) 

processes are intimately linked in the Appledore Island rock-pool system in a way that could 

influence metacommunity dynamics, not just through altering local predator-prey dynamics, 

but also by increasing the persistence of local M. macrocopa populations.  M. macrocopa is 

the both the dominant zooplankton grazer and the most abundant prey resource for T. 

verticalis in the rock pools, and thus is a key trophic link between algal production and T. 

verticalis.  Furthermore, M. macrocopa is not able to actively disperse among rock pools, but 

rather must rely on external mechanisms, such as gulls wading through pools or overflowing 

water connecting pools during rain events, to passively recolonize pools following local 

extinctions (as has been found for zooplankton in other rock pool systems, e.g., 

Vanschoenwinkel et al. 2008).  Therefore, by increasing the persistence of local M. 

macrocopa populations, NRDD dispersal by T. verticalis has the potential to affect the 

structure and function of rock-pool food webs at both the local and metacommunity scales. 
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APPENDIX  

 

1.A 

 

This appendix section includes more in-depth versions of the model development and 

mathematical comparisons shown in the main text of Chapter 1. 

 

Rearrangements of the Rosenzweig-MacArthur Model 

 

Here I explain the modifications of the RM model shown in Table 1.1. These changes 

allow all of the population processes to be represented as independent terms, a necessary 

condition for both the PJP and SDE models to appropriately model the variances associated 

with changes in population sizes. I start with standard logistic population growth of prey (N): 

 

 

       
 

  
  (1.A.1) 

 

where r is the intrinsic rate of growth and KN is the carrying capacity of the prey. This term 

encompasses two processes: prey birth and prey mortality (independent of predation). In order 

to include a separate term for prey mortality (mNN), but have there be no overall change in the 

equation, we need to introduce an opposite-sign term as well. For example, X = X + aX − aX 

= (X + aX) − aX = X(1 + a) − aX. Thus, for the logistic term, we add and subtract mortality 

and have (after rearrangement): 

 

       
 

  
            (1.A.2) 

 

        
 

  
             (1.A.3) 
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             (1.A.4) 

 

As a result, the prey birth (first term) occurs at a rate equal to the logistic growth rate plus the 

mortality rate, and death (second term) occurs at the mortality rate, thus overall population 

growth occurs at the logistic growth rate. Here I have formulated prey birth as density-

dependent (it includes the logistic growth term) and mortality as density-independent (it does 

not include the logistic growth term). It is also possible to make birth density-independent and 

mortality density-dependent or to make both birth and death density-dependent (Pineda-Krch 

2008). 

Next, we split apart the predation term in the prey equation: 

 

 

  
   

     
  (1.A.5) 

 

where a is the maximum attack rate of the predator, P is the predator population size, and hN 

is the half saturation constant of the predator. The issue is that this term does not directly 

match the term for predator birth in the predator equation: 

 

 

  
    

     
  (1.A.6) 

 

where c is the conversion rate of prey to predators. 

A choice must be made regarding whether the birth of new predators should be linked 

to the consumption of prey or be treated as an independent process. Here I have assumed that 

the birth of a predator is linked to the consumption of a single (final) prey individual and all 

other predation events do not directly result in predator birth. This is accomplished by again 
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adding and subtracting the same value, here caNP, to the numerator of the prey-equation term 

(1.A.5). 

Following rearrangements, we then achieve: 

 

  

  
                 

     
  (1.A.7) 

 

 

  
                 

     
  (1.A.8) 

 

 

 
          

     
  

    

     
  (1.A.9) 

 

 

 

Now, the second term in (1.A.9) is identical to (1.A.6) and represents predation events that 

lead to the birth of new predators, whereas the first term represents all of the predation events 

that do not lead to the birth of new predators. Note that this rearrangement requires that c be 

less than or equal to one, which makes biological sense in many cases: predators need to 

consume at least one prey individual before giving birth to a new predator. If c equals one 

(one prey individual is all that is required to create a new predator), then the first term in 

(1.A.9) is equal to 0 and drops out of the model. 

 

Relationship Between the ODE and PJP 

 

In the main text, I assert that the ODE model is the mean-field approximation of the 

PJP model, so long as the product of the state change vector (ΔXk) and propensity function 

(pk(X)) is equal to the associated rates of change in the ODE for all population processes k. 

Here I give a slightly more involved, albeit somewhat heuristic, explanation of this statement 

and the general relationship between ODE and PJP models. Readers interested in a proper and 
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full derivation of this relationship and applications of PJP (and SDE) models should consult 

Kurtz (1970; 1971; 1978), Gillespie (1977; 2007), Nisbet and Gurney (1982), Pineda-Krch 

(2008), or Allen (2011). 

A fundamental assumption of continuous-time Markov chain models is that all 

processes occur through “jumps” that cause population sizes to change by integer values (e.g., 

the birth of a whole individual). In a PJP, these processes are described by Poisson processes: 

events of process type k occur at rate λ = pk(X), where λ is the rate parameter of the Poisson 

distribution. Because the mean of a Poisson distribution is also equal to λ, if λ equals the rate 

of change in the ODE, then the mean rate of change in the PJP is what is expressed by the 

ODE (hence, the ODE is the mean-field approximation of the PJP). To fully realize this 

approximation, however, we need to address the consequence of the process (which 

populations change in size and in which direction) as well as the timing of specific events. 

For example, take predator mortality in patch i, pk(X) = λ = mPPi. Thus far, we have 

only accounted for the rate of the process, not for the fact that predator mortality results in a 

decrease in predator population size in patch i, nor that this process does not change the 

population size of either prey subpopulation or the predator subpopulation in patch j. To 

handle this bookkeeping, we introduce the state change vector, which accounts for the 

directionality (increase or decrease) and identity (which trophic level and subpopulation) of 

the population size changes associated with the process. Thus, for the process of predator 

mortality in patch i, ΔXk = (0, -1, 0, 0), where the elements of ΔXk are (ΔNi, ΔPi, ΔNj, ΔPj). 

Multiplying ΔXk and pk(X) for predator mortality in patch i results in ΔXk × pk(X) = (0, -mPPi, 

0, 0), which is how this process is represented in the ODE (as a negative term and only in the 

Pi equation).  

The final piece of this relationship is the timing of events in the PJP. In the ODE (and 

the SDE) all events happen continuously through continuous time, whereas in the PJP, all 

events happen discretely through continuous time, with their exact realizations (when an event 
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occurs) being stochastic. To determine the waiting time until the next event, we call upon the 

relationship between the Poisson and exponential distributions: the waiting time between 

events of a Poisson process are exponentially distributed, with the same rate parameter (λ) as 

the Poisson and with the expected value equal to the inverse of the rate (1/ λ). Thus, as long as 

we use an exponential distribution with a rate parameter equal to the rate parameter in the 

Poisson distribution to determine the timing of the next event, then the ODE is the mean-field 

approximation of the PJP. 

We can then extend this to systems with multiple processes. We first account for all 

processes k by making sure that ΔXk × pk(X) is equivalent to how they are represented in the 

ODE model (in magnitude, sign, and identity), as was done for predator mortality in patch I 

above. It is straightforward to see that this is indeed the case for the model system described 

in the main text. Note that the ODE, as depicted in the main text, does not include the 

rearrangements as shown in Table 1 and described above, as they cancel back out (as stated in 

the main text). 

Next, we determine the timing of events. If we have k processes, with corresponding 

propensities p1(X), p2(X), … pk(X), then the propensity of an event of any process type 

happening is simply the union (sum) of the individual propensities:  p1(X)  +  p2(X) +  …  + 

pk(X)  =  p0(X). The Poisson distribution with the rate parameter λ = p0(X) describes all of the 

individual process types en masse, and the waiting time until the next event (of any process 

type) occurs is given by the exponential distribution with λ = p0(X) and expected value = 

(p0(X))
-1

. Because each process type k contributes to p0(X) in proportion to its own propensity 

pk(X), the identity of the next event to occur can be determined randomly, where the 

probability of the event being of type k is simply pk(X) ÷ p0(X). Using this approach, we can 

draw two random numbers to determine when the next event happens and what process type it 

is. As a result, the ODE approximates the PJP in mean-field.  
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As stated in the main text, the SDE can be thought of as the continuous Gaussian 

approximation of the PJP model generated by applying a Central Limit Theorem-type 

approximation for the net effect of the many discrete jumps that occur in a small time interval 

when the population size is large (Kurtz 1978). As a result, the SDE and PJP models have the 

same mean-field behavior. In the next section, I show that the ODE is also the mean-field 

approximation of the SDE. Thus, the ODE is an approximation of the SDE, which is an 

approximation of the PJP and the three models form a natural hierarchy with directly 

comparable outputs. 

 

Articulation of the SDE Model 

 

In the effort of simplification of presentation in the main text, the SDE model was 

given in matrix-vector form: 

 

 

                       (1.A.10) 

 

which shows the change in each of the four population sizes (dXt). Here I present the full 

versions of the matrices in the model. 

First, the 4 × 1 matrix (dXt), which represents the changes in the four population sizes 

at time t, is simply: 

 

 

     

 
 
 
 

   

      
      
      

      

   

 
 
 
 

 

 

where, e.g., dNi(t) is the change in the size of the prey population in patch i at time t. 
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Next is the “drift vector” μ, which is the 4 × 1 matrix that describes the expected 

values of the changes in population sizes. First, I show the matrix in its full form, which 

includes all of the processes as displayed in Table 1.1: 

 

  

 
 
 
 
  

   

   

   

   

  

 
 
 
 
 

 
 
 
 
 
 
 
 
 

  

        
  

  

            
          

     

  
      

     

            

      

     

                  

        
  

  

            
          

     

  
      

     

            

      

     

                  

  

 
 
 
 
 
 
 
 
 

 

 

However, because this component is deterministic, the algebraic rearrangements cancel back 

out, and we are left with the simplified version: 

 

  

 
 
 
 
  

   

   

   

   

  

 
 
 
 
 

 
 
 
 
 
 
 
 
 

  

      
  

  

   
     

     

             

      

     

                       

      
  

  

   
     

     

            

      

     

                  

  

 
 
 
 
 
 
 
 
 

 

 

which matches the ODE representation of the two-patch R-M model. Hence, the ODE is also 

the mean-field approximation of the SDE. 

We next have the 4 × 14 “diffusion matrix” C, where C
2
 is the covariance matrix that 

describes the variance associated with each of the 14 processes and any covariance among 

process (such as dispersal of prey from patch i to patch j). For each process, the variance is 

equal to the expected value, because we are taking the normal approximation to the Poisson 
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distribution (where mean = variance = λ). Obviously, only the populations affected by a given 

process will experience any (co)variance associated with it (e.g., only prey in patch i are 

affected by the first process, which is the birth of prey in patch i). Negative signs indicate that 

the process results in a decreased population size. Any process affecting two populations (e.g., 

dispersal of prey from patch i to patch j) is given a non-zero term in both rows, indicating 

covariance. In the RM system, all processes with covariance exhibit negative covariance (e.g., 

dispersal of prey from patch i to patch j decreases population size in i but increases it in j), 

hence the opposite signs for the two terms.  

To convert these variances to standard deviations (which is in proper units, and 

necessary to describe the diffusion process), we simply take their square roots. Although 

taking the square root of a matrix is often less trivial, it can be shown that if the matrix C is 

populated by the standard deviation of each process and correlations among process are 

accounted for (that is C is populated with the square roots of the variances and covariances, 

also moving the negative signs out of the square roots), as it is in this formulation (shown 

below), then it satisfies the property CC
tr
 = C

2
 (Allen 2011). 

Thus, the matrix C is (ellipses denote the continuation of the matrix): 
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Each of the 14 columns in the matrix corresponds to a different process k, and from left to 

right, the processes match with those listed from top to bottom in Table 1 in the main text.  

The matrix C is then multiplied by the time-derivative of the 1 × 14 matrix B, which 

contains a separate term bk for each process. Each bk represents an independent continuous-

time stochastic process with mean 0 and unit variance (Brownian motion). The product of 

these matrices is then a 4 × 1 matrix that describes the total variation (with appropriate 

correlation) for the change in size of each population. 
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1.B 

 

This appendix section includes time series of simulations from the single-patch 

(Figure 1.B.1) and two-patch (Figure 1.B.2) versions of the PJP, SDE, and ODE models 

discussed in Chapter 1. Further, I have included representative time series of simulations from 

the two-patch ODE model where dispersal parameters generated long-term, but still transient 

anti-phase dynamics (Figures 1.B.3, 1.B.4). For all time series, local parameter values are as 

described in the main text. 
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Figure 1.B.1. Typical dynamics from the single-patch versions of the PJP (A, B), SDE (C, 

D), and ODE (E, F) models, shown as time series (A, C, E) and corresponding phase planes 

(B, D, F) for days 500-1000. In the time series plots, prey are represented by the solid line, 

predators by the dashed line. 
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Figure 1.B.2. Typical prey (A, B, C) and predator (D, E, F) dynamics from the second half of 

simulations of the two-patch versions of the PJP (A, D), SDE (B, E), and ODE (C, F) models 

with δN = δP = 0.00599 (one of the combinations used in the main text simulations). For all 

three models, one patch is delineated by the black lines and the other by the red lines. (In the 

ODE, the red line was dashed to make it stand out.) The PJP simulation resulted in second-

half correlations of 0.379 (prey) and 0.397 (predators), compared to the mean second-half 

correlations of 0.468 (prey) and 0.441 (predators), as displayed in Figure 1.1. The SDE 

simulation resulted in second-half correlations of 0.467 (prey) and 0.456 (predators), 

compared to the mean second-half correlations of 0.440 (prey) and 0.397 (predators), as 

displayed in Figure 1.1. The ODE simulation shown resulted in correlations of 1.0 for both 

prey and predators. 

 

  



 170 

 
 

Figure 1.B.3. Transient anti-phase dynamics for prey (A) and predator (B) in the two-patch 

ODE model generated when δN = δP = 0.0001. One patch is delineated by the black lines and 

the other by the red lines. Note the breaks in time along the x-axis. 

 

 

 
 

Figure 1.B.4. Transient anti-phase dynamics for prey (A) and predator (B) in the two-patch 

ODE model generated when δN = 0.00022 and δP = 0.0025. One patch is delineated by the 

black lines and the other by the red lines. Note the breaks in time along the x-axis. 
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1.C 

 

This appendix section details the replicate-to-replicate variation of the PJP and SDE 

models discussed in the main text of Chapter 1 and shows that (1) the mean was a suitable 

statistic for summarizing the correlations of the replicates and (2) 10 replicate simulations 

were adequate for each dispersal parameter combination. 

 

The Mean as an Appropriate Summary Statistic for Replicate Simulations 

 

For each of two combinations of dispersal rates (δN = δP = 0.0001 d
-1

 and δN = δP = 

0.01668 d
-1

), I conducted 50 replicate simulations with each of the two models. For all 

simulations, I used the same procedures and local parameter values as discussed in the main 

text and started with one patch empty and the other full. I calculated the correlations between 

the prey and predator subpopulations for each simulation using the second half of the time 

series, and plotted the distributions of these correlations for the two dispersal values (Figures 

1.C.1 and 1.C.2 for the PJP and 1.C.3 and 1.C.4 for the SDE). For both trophic levels at both 

dispersal rates, the correlations were approximately normally distributed, symmetrical, and 

not strongly bi-modal, indicating that the mean correlation was an adequate summary statistic 

for a series of replicate simulations. The correlation distributions were generally similar for 

the two model types.  
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Figure 1.C.1. Histogram of the between-patch correlation values for the prey (A) and 

predators (B) in each of the 50 simulations of the PJP model when δN = δP = 0.0001 d
-1

. The 

solid black lines indicate the mean correlation of the 50 simulations (prey = -0.015, predators 

= -0.007) and the dashed green lines indicate the value used in the main text Figure 1.1 (prey 

= -0.055, predators = -0.070). 
 

 

 
 

Figure 1.C.2. Histogram of the between-patch correlation values for the prey (A) and 

predators (B) in each of the 50 simulations of the PJP model when δN = δP = 0.01668 d
-1

. The 

solid black lines indicate the mean correlation of the 50 simulations (prey = 0.779, predators = 

0.735) and the dashed green lines indicate the value used in the main text Figure 1.1 (prey = 

0.809, predators = 0.771). 
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Figure 1.C.3. Histogram of the between-patch correlation values for the prey (A) and 

predators (B) in each of the 50 simulations of the SDE model when δN = δP = 0.0001 d
-1

. The 

solid black lines indicate the mean correlation of the 50 simulations (prey = -0.024, predators 

= -0.014) and the dashed green lines indicate the value used in the main text Figure 1.1 (prey 

= -0.088, predators = -0.082). 
 

 

 
 

Figure 1.C.4. Histogram of the between-patch correlation values for the prey (A) and 

predators (B) in each of the 50 simulations of the SDE model when δN = δP = 0.01668 d
-1

. The 

solid black lines indicate the mean correlation of the 50 simulations (prey = 0.765, predators = 

0.724) and the dashed green lines indicate the value used in the main text Figure 1.1 (prey = 

0.727, predators = 0.692). 
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Appropriate Number of Replicate Simulations 

 

To determine the appropriate number of replicate simulations for the two stochastic 

models, I conducted a simple random sampling procedure. I used the same procedure 

independently for both models using the correlation values calculated from the simulations 

run previously and described above. Again, I analyzed the data separately for each of the 

trophic levels at both of the dispersal rates (0.0001 d
-1

 and 0.01668 d
-1

). For each possible 

sample size X (all integers from 1 to 50), I drew X correlation values at random with 

replacement from the list of 50 possible values, and calculated the mean of the X correlations. 

I conducted 20 such random drawings for each sample size to determine the range and 

repeatability of the means. I graphed the 20 means for each sample size in Figures 1.C.5 and 

1.C.6 for the PJP and Figures 1.C.7 and 1.C.8 for the SDE (1.C.5 and 1.C.7: dispersal = 

0.0001 d
-1

 and 1.C.6 and 1.C.8: dispersal = 0.01668 d
-1

). 

For both models at both dispersal levels, fewer than five replicates gave high variation 

among the means, but 10 or more replicates tended to give repeatable mean correlations. 

Increasing the number of replicates beyond ten did not substantially decrease the variation 

among mean correlation values. Thus, I used 10 replicates for each parameter combination 

shown in Figure 1.1 in the main text. Note that for both models at both dispersal levels, the 

mean correlations for both predators and prey used in Figure 1.1 in the main text were very 

close to the overall mean of the 50 values (green vertical lines compared to black vertical 

lines in Figures 1.C.1−1.C.4) and well within the range of the possible means for 10 replicate 

samples (green dots compared to horizontal lines in Figures 1.C.5−1.C.8). 
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Figure 1.C.5. Distribution of the mean correlation of 20 samples at each size from 1 to 50 

simulations of the PJP model for prey (A) and predators (B) when δN = δP = 0.0001 d
-1

. The 

vertical lines indicate a sample size of 10 (used to create Figure 1.1), the horizontal lines show 

the mean correlations for the 50 simulations (pre = -0.015, predators = -0.007), and the green 

points indicate the correlation values used in the main text Figure 1.1 (prey = -0.055, 

predators = -0.070).  

 

 
 

Figure 1.C.6. Distribution of the mean correlation of 20 samples at each size from 1 to 50 

simulations of the PJP model for prey (A) and predators (B) when δN = δP = 0.01668 d
-1

. The 

vertical lines indicate a sample size of 10 (used to create Figure 1.1), the horizontal lines show 

the mean correlations for the 50 simulations (pre = 0.779, predators = 0.735), and the green 

points indicate the correlation values used in the main text Figure 1.1 (prey = 0.809, predators 

= 0.771).  
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Figure 1.C.7. Distribution of the mean correlation of 20 samples at each size from 1 to 50 

simulations of the SDE model for prey (A) and predators (B) when δN = δP = 0.0001 d
-1

. The 

vertical lines indicate a sample size of 10 (used to create Figure 1.1), the horizontal lines show 

the mean correlations for the 50 simulations (pre = -0.024, predators = -0.014), and the green 

points indicate the correlation values used in the main text Figure 1.1 (prey = -0.088, 

predators = -0.082).  

 

 
 

Figure 1.C.8. Distribution of the mean correlation of 20 samples at each size from 1 to 50 

simulations of the SDE model for prey (A) and predators (B) when δN = δP = 0.01668 d
-1

. The 

vertical lines indicate a sample size of 10 (used to create Figure 1.1), the horizontal lines show 

the mean correlations for the 50 simulations (pre = 0.765, predators = 0.724), and the green 

points indicate the correlation values used in the main text Figure 1.1 (prey = 0.727, predators 

= 0.692).  
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1.D 

 

This appendix section addresses the sensitivity of the three models of Chapter 1 to 

initial conditions.  

First, I graphically compared the correlations generated by the two initial conditions 

for each of the three models (Figures 1.D.1-1.D.6). Both the PJP (Figures 1.D.1, 1.D.2) and 

the SDE (Figures 1.D.3, 1.D.4) gave very similar results for the two initial conditions, 

whereas the ODE model generated distinctly different correlations under the two initial 

conditions (Figures 1.D.5, 1.D.6). In particular, the initial condition of one patch full and one 

patch empty generated lengthy antiphase dynamics (areas of negative correlation) for some 

parameter combinations, whereas the initial condition of both patches full generated complete 

synchrony for all dispersal levels. 

 Next, I ran the three models using a set of 100 randomly chosen initial conditions. For 

each of the starting points, I drew the initial densities of all four subpopulations independently 

and at random from a uniform distribution (between 0 and 420 individuals for prey and 0 and 

240 for predators). I then ran the PJP, SDE, and ODE models using prey and predator 

dispersal rates of 0.001 d
-1

 and the rest of the parameters as described in the main text of 

Chapter 1, and calculated the between-patch correlations for the prey and the predators using 

the last 501 data points in the time series. The same 100 random initial conditions were used 

for all three models. I conducted ten replicate PJP and SDE simulations for each initial 

condition and computed the mean correlation for the replicates. The distributions of 

correlations are shown in Figures 1.D.7 (PJP), 1.D.8 (SDE), and 1.D.9 (ODE). 

The initial conditions did not substantially affect the correlation values generated by 

the PJP model (Figure 1.D.7) or the SDE (Figure 1.D.8). For the PJP, the distribution of mean 

correlations was not strongly skewed, had a slightly positive expected value (mean for prey = 

0.081, for predators = 0.070), and had a small amount of variance, which was due to the 
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stochastic nature of the model (as to be expected, see Appendix 1.C). Generally all of initial 

conditions led to the same result in the PJP: approximately asynchrony (or slight positive 

synchrony). The mean correlations ranged between -0.098 and 0.332 for prey and between -

0.103 and 0.301 for predators. Similarly for the SDE, the distribution of mean correlations 

was not strongly skewed, had a slightly 28 positive expected value (mean for prey = 0.091, 

for predators = 0.082), and had a small amount of variance. Generally all of initial conditions 

led to the same result in the SDE: approximate asynchrony (or slight positive synchrony). The 

mean correlations ranged between -0.178 and 0.302 for prey and between -0.180 and 0.282 

for predators.  

In contrast, the initial conditions dictated the between-patch correlation generated by 

the ODE model (Figure 1.D.9). Approximately half of the initial conditions led to strong in-

phase synchrony in the ODE model (53 of 100 simulations gave prey and predator 

correlations over 0.9), yet the correlations ranged between -0.967 and 1.000 for prey and 

between -0.978 and 1.000 for predators. The wide range of correlations was due to the initial 

conditions generating various degrees of phase lag between the two patches. At the extreme 

end, the initial conditions generated complete antiphase between the patches which may 

persist for over 30,000 model days. More often they led to a less than perfect phase offset, and 

dispersal was able to slowly overcome the difference in population density between the 

patches, generating medium-length transients with intermediate correlations. 
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Figure 1.D.1. Correlation in densities between the two subpopulations for the prey (A, C) and 

predators (B, D) as a function of prey and predator dispersal rates (on a log10 scale) for the 

PJP model. Data are from simulations initiated with one patch full and one empty (A, B) or 

initiated with both patches full (C, D). Correlations are from the second half of the time series 

and are the means of 10 replicate simulations for each dispersal parameter combination. The 

thick lines mark mortality rates, (0.01 d
-1

 for both trophic levels). A and B are what were 

presented in Figure 1.1 in the main text of Chapter 1. 
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Figure 1.D.2. Relationship between the correlations generated by the PJP model under the 

two initial conditions (both patches full on the Y axis vs. one patch empty-one patch full on 

the X axis) for prey (A) and predators (B). Data points are the mean correlations for the ten 

replicate simulations run for a given set of dispersal parameters. The 1:1 line was added for 

comparison. 
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Figure 1.D.3. Correlation in densities between the two subpopulations for the prey (A, C) and 

predators (B, D) as a function of prey and predator dispersal rates (on a log10 scale) for the 

SDE model. Data are from simulations initiated with one patch full and one empty (A, B) or 

initiated with both patches full (C, D). Correlations are from the second half of the time series 

and are the means of 10 replicate simulations for each dispersal parameter combination. The 

thick lines mark mortality rates, (0.01 d
-1

 for both trophic levels). A and B are what were 

presented in Figure 1.1 in the main text of Chapter 1. 
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Figure 1.D.4. Relationship between the correlations generated by the SDE model under the 

two initial conditions (both patches full on the Y axis vs. one patch empty-one patch full on 

the X axis) for prey (A) and predators (B). Data points are the mean correlations for the ten 

replicate simulations run for a given set of dispersal parameters. The 1:1 line was added for 

comparison. 
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Figure 1.D.5. Correlation in densities between the two subpopulations for the prey (A, C) and 

predators (B, D) as a function of prey and predator dispersal rates (on a log10 scale) for the 

ODE model. Data are from simulations initiated with one patch full and one empty (A, B) or 

initiated with both patches full (C, D). Correlations are from the second half of the time series 

and are the means of 10 replicate simulations for each dispersal parameter combination. The 

thick lines mark mortality rates, (0.01 d
-1

 for both trophic levels). A and B are what were 

presented in Figure 1.1 in the main text of Chapter 1. 
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Figure 1.D.6. Relationship between the correlations generated by the ODE model under the 

two initial conditions (both patches full on the Y axis vs. one patch empty-one patch full on 

the X axis) for prey (A) and predators (B). Data points are the mean correlations for the ten 

replicate simulations run for a given set of dispersal parameters. The 1:1 line was added for 

comparison. 
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Figure 1.D.7. Distribution of correlation values for prey (A) and predators (B) in the PJP with 

random initial conditions and dispersal = 0.001 d
-1

 for both trophic levels. Data are mean 

correlations from 10 replicate simulations conducted for each initial condition. 

 

 

 

 
 

Figure 1.D.8. Distribution of correlation values for prey (A) and predators (B) in the SDE 

withrandom initial conditions and dispersal = 0.001 d
-1

 for both trophic levels. Data are mean 

correlations from 10 replicate simulations conducted for each initial condition. 
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Figure 1.D.9. Distribution of correlation values for prey (A) and predators (B) in the ODE 

with random initial conditions and dispersal = 0.001 d
-1

 for both trophic levels. Data are mean 

correlations from 10 replicate simulations conducted for each initial condition. 

 


