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This dissertation explores various channels for default clustering. The proba-

bility of extreme default losses in U.S. corporate portfolio is much greater than

that estimated from model containing only observed macroeconomic variables.

The additional sources of default clustering are provided by direct contagion

and latent frailty factor. We build a top-down proportional hazard rate model

with self-exciting specification. We develop efficient methods of moment for

parameter estimation and goodness-of-fit tests for the default counting process.

Our estimates are based on U.S. public firms between 1970 and 2008. We find

strong evidence that contagion and frailty are equally important in capturing

large portfolio losses. Our empirical findings can be used by banks and credit

portfolio managers for economic capital calculations and dynamic risk manage-

ment.
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CHAPTER 1

INTRODUCTION

It is well accepted that corporate defaults are correlated and default rates

vary significantly over time. In this paper, we build a top down aggregate haz-

ard rate model for multi-period corporate defaults. We analyze macro, conta-

gion and frailty effects in decomposing default risk among U.S. firms.

We are particularly interested in the sources for extreme portfolio losses. In-

cluding all macroeconomic, contagion and frailty factors provides an adequate

assessment for tail distribution of portfolio losses. This methodology sheds light

on application in portfolio credit risk in reality. For example, portfolio managers

can use this to calculate the quantity of capitals he or she needs to set aside to

withstand large losses at the high confidence level. Furthermore, it also pro-

vides key tools for estimating probabilities of losses to senior tranche collater-

alized debt obligations (CDOs). This senior tranche suffer losses only when the

losses of underlying bond collateral pool exceed a high percentile.

There are various sources of default clustering in the correlated corporate

default literature. One prevailing source is macroeconomic conditions. Exam-

ples of this can be found in [56], [21], [25] and many others. These business-

cycle related variables affect default probabilities of most firms in the economy.

In bottom-up doubly stochastic models, the conditional default hazard rate for

each firm is determined by common macroeconomic factors and firm-specific

variables. The default clustering effect is reinforced through movement of com-

mon observable factors. Defaults are independent conditioning on these com-

mon variables. In practice, it is convenient to specify the dynamics of corporate

defaults in terms of its intensity. The doubly-stochastic approach makes the
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reduced-form model easy to compute and calibrate to the real data.

The authors in [12] show that the defaults in the U.S. industrial firms be-

tween 1979 and 2003 can not be captured appropriately by doubly-stochastic

models. They transform the time scale using the sum of individual default

intensities and test whether defaults on this transformed time scale arrive ac-

cording to a Poisson distribution. Their research indicates that conditioning

on available macroeconomic and firm-specific information is not sufficient for

the degree of observed default clustering, and hence rejects the joint hypothe-

sis of the specification of individual default intensities and the conditional in-

dependence assumption. [45] argue that we can not reject the assumption of

conditional independence if we use a different specification of firms’ default

intensities. They also indicate that the test procedure in [12] may not capture

Hawkes’ type contagion and contagion through covariates in the time transfor-

mation. From these findings, two other important sources of default clustering

have emerged in the credit risk literature.

A first line of research shows that firms are exposed to a dynamic latent

factor, also known as frailty. [18] highlight that the frailty factor can capture

default clustering above and beyond macroeconomic and firm-specific variables

observed in the market. The unobserved factor picks up additional components

omitted in the model and hence can have a big impact on the conditional default

rates of other surviving firms. The frailty models can be found in [14], [42] and

[43].

A second way of inducing default correlation is to use direct contagion.

More specifically, the default event of one firm either directly triggers the de-

fault of other firms or increases their default probabilities. Some examples of
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early contagion models include [13], [39] and others. They specify default con-

tagion as local interaction in networks. [2] and [1] discuss an aggregate con-

tagion that feeds back into the hazard rate dynamics. They use the Hawkes

model to explore the empirical role of direct contagion. Hawkes processes, or

self-exciting processes, are a class of counting processes whose intensities de-

pend on the arrival of past events. In this model, a default of one firm will

raise the likelihood of failure of other firms. For example, the bankruptcy of

auto parts manufacturer Delphi in 2005 jeopardized the financial condition of

General Motors, Delphi’s main purchaser.

These empirical findings imply that both contagion and frailty are important

sources of default clustering. The two components generate similar effect on the

conditional hazard rate but through different channels. In particular, they ex-

hibit jumps when other firms default in the portfolio. Nevertheless, contagion

and frailty have different economic foundations. The influence of contagion

is channeled through the complex business relationships among firms. This is

typical for firms in the same sector. For instance, the collapse of Penn Central

caused 24 transportation companies to go bankrupt on the same day in 1970. On

the other hand, the impact of frailty is less direct. The conditional probability

of surviving firms is influenced by new information that updates the posterior

distribution of latent variables. To illustrate, the collapse of Enron in 2001 re-

vealed the faulty accounting practice that could have been used in other firms,

and therefore increased the likelihood of failure of other firms. Both contagion

and frailty can be present empirically.

Most of credit risk literature uses bottom up approach for modeling default

correlation. While this method is ideal for analyzing default risk for individual
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firm, it makes the model calibration computationally intensive if we want to

do risk management from a portfolio perspective. [31] introduce the top down

method and focus on the default hazard rate at aggregate level. This model

has a parsimonious structure and hence facilitates analysis for portfolio credit

derivatives such as credit default swaps and collateralized debt obligations. In

this work, we adopt a top-down aggregate default intensity for the hypothetical

portfolio. Specifically, the Cox proportional hazard rate is introduced, which

includes both macro and frailty factors. Furthermore, a Hawkes specification

as in [35] is also used in default intensity to account for the direct contagion

effect. The empirical result suggests that the model can capture the dramatic

fluctuation of U.S. corporate default rates during 1970-2008.

All these tools can be utilized to address the risk analysis and market valua-

tion of collateralized debt obligations (CDO). A CDO is an asset-backed security

whose underlying collateral is typically a portfolio of bonds or bank loans. A

CDO allocates interest income and principal repayment from a collateral pool of

different bonds, and repackage the cash flow according to a prioritized scheme.

A standard approach is simple subordination and the prioritized collection of

securities are called tranches. Senior CDO tranches get paid before mezzanine

and lower subordinated tranches are paid, with any residual cash flow paid to

an equity tranch.

CDOs are important to credit risk researchers for studying correlated default

risk. CDOs motivate researchers to identify the joint distribution of default risk

across firms since they are portfolio credit derivatives. The joint distribution

cannot be inferred from the marginal distributions of single-name instruments.

The clustering of defaults have a substantial impact on the market valuation

4



of CDOs. Researchers are also seeking computationally tractable methods to

calculate the prices of CDOs effectively.

Both [18] and [2] use maximum likelihood estimation for estimating model

parameters. The major challenge in doing so is that the likelihood function be-

comes intractable since the frailty factor is not adapted to observation filtra-

tion. In this project, we use a different estimation technique - Efficient Method

of Moments (EMM) introduced by [29]. EMM is used particularly when es-

timating nonlinear non-Gaussian systems with latent variables. First, a semi-

nonparametric model (SNP) is proposed for the approximation of transition

densities. The SNP estimating equation is based on an expansion using Hermite

functions. The leading term of expansion is considered as a parametric model

that approximates the underlying process. A Method-of-Moment-type objective

function is then constructed using the log-likelihood of the SNP score generator

as moments. The parameters are estimated using a minimum chi-squared crite-

rion. One important advantage of EMM is one obtains the goodness-of-fit test

statistics directly from asymptotic results.

We also performed in-sample tests based on the above chi-squared statistics

to assess model adequacy. Comparisons among different specifications suggests

the full benchmark model is preferred to the model without contagion or frailty.

In addition, the posterior mean of frailty is computed by the particle filtering

method. Out-of-sample predictions indicate that including frailty in the model

can better capture the tail distribution of extreme portfolio loss.
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1.1 Related Literature

In the credit risk literature, the structural model of default timing is introduced

by [50]. A firm defaults when its asset price drops to a sufficient low level rel-

ative to its liability. It is assumed that the firm’s asset V follows a geometric

Brownian motion:

dVt = µVtdt + σVtdWt (1.1)

where W is a standard Brownian motion in a fixed probability space. To better

understand this model of a firm, they think assets are consisted of very liquid

and tangible securities. The price of the asset is the price of these liquidly traded

securities.

Now assume that the firm has issued two types of claims: debt and equity

at time 0. Debt is a zero-coupon bond with a face value of D and maturity date

T . The payoffs at date T to debt BT and equity S T , are given as

BT = min(D,VT ) = D −max(D − VT , 0)

S T = max(VT − D, 0)

The firm is considered to be run by the equity owners. At maturity of the

debt, equity holders pay the face value of the debt if the asset value is higher

than D. If assets are worth less than D, equity owners do not want to pay D since

that have limited liability. Bond holders then get the remaining asset and take

over the firm. From the structure of the payoffs, equity can be viewed as a call

option on firm’s asset. Debt can be viewed as the difference between a riskless

bond and a put option on firm’s asset. We can apply Black-Scholes formula

([50]) to price these options.
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Under the structural model, [10] and [57] explain how to construct the dis-

tance to default. [21] argue that the distance to default covariate is the most sta-

tistically significant variable in their default prediction model. For a given firm,

the distance to default is the number of standard deviations of asset growth by

which a firm’s market value exceeds a liability measure. Mathematically, this is

defined as

Dt =
log(Vt

Lt
) + (µ − 1

2σ
2)T

σ
√

T
(1.2)

where Lt is a liability measure at time t, known as the ”default point” in practice.

Following the standard result by Moody’s KMV ([10]), Lt is measured as the

firm’s book value of short-term debt, plus one half of its long-term debt based

on its quarterly accounting balance sheet. The asset value Vt and volatility σ are

not directly observed, and hence we need to estimate them according to a call

option pricing formula.

[57] take the initial asset value Vt to be the sum of S t (end-of-quarter stock

price times number of shares outstanding), and the book value of total debt.

They take the riskless rate r to be the one-year T-bill rate. They solve for the

asset value Vt and volatility σ by iteratively applying the following equation

S t = VtΦ(d1) − Lte−rTΦ(d2) (1.3)

σ = sdev(ln(Vt) − ln(Vt−1)) (1.4)

where

d1 =
ln(Vt

Lt
) + (r + 1

2σ
2)T

σ
√

T
(1.5)

and d2 = d1−σ
√

T . Φ(·) is the standard normal cumulative distribution function

and sdev(·) represents sample standard deviation.

In the structural model, we need assumptions in the behavior of firm’s asset

and threshold value for triggering default. It is sometimes difficult to observe
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the value of firm’s asset in practice and the static assumption regarding the de-

fault trigger is also not reasonable. [38] and [22] proposed to use an alternative

called reduced-form or intensity-based model. They directly model the con-

ditional hazard rate based on the information filtration without knowledge of

firm’s asset and liability. The reduced-form model is easier to calibrate to the

real default data.

In recent years, researchers have focused attention on portfolio credit risk

models. Understanding the default correlation among constituent firms is

essential for market evaluation and risk management of credit derivatives.

Reduced-form models of portfolio credit risk can be distinguished by the way

in which the intensity of the default process is specified. In a bottom up model,

the portfolio intensity is an aggregate of the constituent intensities. [21], [12]

and [45] provide a good summary of bottom up portfolio models. In a top

down model, the portfolio intensity is specified without reference to individ-

ual constituents. This parsimonious setup can be found in [31], [4] and [48]. [30]

provides an extensive survey for comparison among these two approaches.

Consider a portfolio of credit sensitive securities. The ordered portfolio de-

fault times are represented by a sequence of stopping times T1 < T2 < ... that

is strictly increasing and defined on a complete probability space (Ω,F , P). The

right-continuous and complete filtration F = (Ft)t≥0 represents the information

flow. P can be the actual probability or a risk-neutral measure. The stopping

time Tn denotes the n-th default time in the portfolio. Let N be the process that

counts default events, given by

Nt =
∑
n≥1

1{Tn≤t}. (1.6)

As is shown in [51], for a given filtration, the default process N can be specified
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in terms of its compensator, which is the non decreasing predictable process A

such that N − A is a local martingale. The compensator contains the expected

upward tendency of the default process. [51] shows the compensator in the

limit form

At = lim
ϵ↓0

1
ϵ

∫ t

0
E[Ns+ϵ − Ns|Fs]. (1.7)

The limit holds weakly in L1. Equation (1.7) emphasizes the dependence be-

tween compensator and filtration. If the times are predictable, i.e. if an event is

announced by a sequence of pre-default times, then A is equal to N. As an exam-

ple, consider the familiar first passage credit models that derived from [3]. Here,

a firm defaults if its continuous firm value process falls below a constant barrier.

This definition of the default event generates a predictable default time. On the

other hand, if the available information is insufficient to determine the precise

firm value or default barrier, then the default times are totally inaccessible or

unpredictable. In this case defaults come as a surprise and the compensator

A is continuous. Unpredictable default times can conveniently be modeled in

terms of a non negative, adapted intensity λ that satisfies

At =

∫ t

0
λsds (1.8)

almost surely. If the compensator is of the form (1.8), the credit model is inten-

sity based.

In a top down model the process λ is specified directly. In a bottom up

model, λ is an aggregate of constituent intensity processes. The structure of

the information filtration F determines the key properties of a portfolio credit

model. The filtration should always be fine enough to distinguish the arrival of

events. Therefore the smallest filtration that supports a portfolio credit model is

the filtration generated by the default process N itself. Bottom up and top down
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models are based on distinct filtrations.

A bottom up model filtration usually contains much more information than

the minimal filtration. It is always fine enough to distinguish the identity of each

defaulter so that the constituent default times τk are stopping times. The filtra-

tion may contain additional information about systematic and idiosyncratic risk

factors. A constituent default time τk generates a default process Nk that is zero

before default and one afterwards. If the model is intensity-based, there is a

strictly positive intensity process λk that represents firm k’s conditional default

rate. Mathematically, Nk
t −
∫ t

0
(1 − Nk

s )λk
sds is a local martingale.

Since the portfolio default process N is the sum over the constituent default

processes Nk and defaults occur at distinct dates almost surely, the portfolio

intensity is given by

λ =
∑

k

(1 − Nk)λk, (1.9)

see the references in [31]. The portfolio intensity λ is zero after all firms have

defaulted.

In a top down model the researcher specifies the portfolio intensity λwithout

reference to the constituents. The dependence structure is implicit in this spec-

ification. The goal is to establish an intensity model that is more parsimonious

than the bottom up portfolio intensity, which follows a complicated process that

is driven by the constituent processes and depends on all single name param-

eters. This is achieved by choosing a model filtration F that is coarser than the

bottom up model filtration. Typically, the top down model filtration is not fine

enough to distinguish the identity of a defaulter. This means that an event ar-

rival can be observed, but not the identity of the defaulted name.
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Instead of describing the constituent intensities, we focus on the interarrival

intensity for the portfolio. In other words, we change the perspective from the

firm default times τk to the ordered default times T k. The top down portfolio

intensity coincides with the portfolio intensity generated by an exchangeable

bottom up model for which all the constitute intensities are identical.

An intensity is usually specified as a stochastic process. We now concentrate

on a family of multivariate point processes of correlated event times, whose

arrival intensity is driven by an affine jump diffusion. Affine jump diffusion

and its application in asset pricing are covered intensively in [20]. In their pa-

per, ordinary differential equations characterize the transform of an affine point

process and its probability distribution. The moments of an affine point process

have a closed form, which yields computational tractability in applications.

Suppose the intensity is influenced by a set of risk factors that follow stochas-

tic processes on their own. This setup facilitates the inclusion of exogenous

jump diffusion risk factors that are related to event arrivals. [2] and [48] impose

the presence of diffusive risk factors, which replicate the fluctuation of market

prices. Suppose X is a Markov process and it represents a vector of stochas-

tic risk factors. The intensity λ depends on both state vector X and the default

counting process N. The transform of (X,N)T is computationally tractable if X is

taken to be an affine jump diffusion.

We call a point process affine if its event arrival intensity is an affine function

of an affine jump diffusion and its jump sizes are drawn from a fixed distribu-

tion. A Markov process X in a state space D ⊂ Rd×R+ is an affine jump diffusion

11



in the sense of [20] if X is a strong solution to the stochastic differential equation

dXt = µ(Xt, t)dt + σ(Xt, t)dWt +

m∑
i=1

ζ idZi
t , X0 ∈ Rd (1.10)

where W is an Rd-valued standard Brownian motion, µ : D → Rd is the drift,

σ : D → Rd×d is the volatility and each Zi is a Rd-valued point process. The

component processes of each vector Zi share event times and differ only in jump

sizes, and we denote their common intensity by λi(Xt, t) for some λi : D → R+.

The jump sizes are drawn from a distribution νi on Rd
+. Each parameter ζ i is a d-

dimensional diagonal matrix. The drift, volatility and jump coefficient functions

are bounded and continuous on R+, and they are assumed to have the following

affine structure:

µ(x, t) = K0(t) + K1(t)x,K0(t) ∈ Rd,K1(t) ∈ Rd×d

(σ(x, t)σ(x, t)T ) jk = (H0) jk(t) + (H1)(t) · x,H0(t) ∈ Rd×d,H1(t) ∈ Rd×d×d

λi(x, t) = Λi
0(t) + Λi

1(t) · x,Λi
0(t) ∈ R,Λi

1(t) ∈ Rd, i = 1, 2, ...,m.

To illustrate the affine point process, we consider a simple example. Suppose

the intensity is driven by a one dimensional risk factor X with a single jump term

L. L shares common event times with the default counter N. The jump sizes of

L are governed by the distribution ν. Assume K0(t) = κc for κ ≥ 0 and c > 0,

K1(t) = −κ, H0(t) is a matrix of zeros, H1(t) is a tensor of zeros except (H1)111 = σ
2,

X0 = c and ζ = δ ≥ 0. Let Λ0(t) = 0 and Λ1(t) = 1. Then the intensity λ satisfies

the stochastic differential equation

dλt = κ(c − λt)dt + σ
√
λtdWt + δdLt. (1.11)

The intensity drifts stochastically toward level c with diffusive fluctuations. Fur-

thermore, the point process depends on the past events. This is exactly the same

specification given in [2].
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Proposition 1 in [20]lays down the foundation for conditional transform of

an affine jump diffusion. This transformation is computationally tractable and

useful in pricing credit derivatives as argued by [24]. Suppose T is the terminal

date. Let t ≤ T and u ∈ Rd+k. The conditional transform of (d + k) dimensional

affine jump diffusion Y = (X,Z)T is given by

ψ(u, Yt, t,T ) = E(exp(u · YT )|Ft). (1.12)

Under the technical conditions stated in [20], we have

ψ(u,Yt, t,T ) = exp(α(u, t,T ) + β(u, t,T ) · Yt) (1.13)

where the coefficient functions β(t) = β(u, t,T ) and α(t) = α(u, t,T ) satisfy the

ordinary differential equations

∂tβ(t) = −K1(t)Tβ(t) − 1
2
βT H1(t)β(t) −

m∑
i=1

Λi
1(t)(θi(ζ iβ(t)) − 1) (1.14)

∂tα(t) = −K0(t)Tβ(t) − 1
2
βT H0(t)β(t) −

m∑
i=1

Λi
0(t)(θi(ζ iβ(t)) − 1) (1.15)

with boundary conditions α(T ) = 0 and β(T ) = u and jump transform

θi(c) =
∫
Rd+k
+

ec·zdνi(z) (1.16)

[24] extends the work to differentiate the transform with respect to u to get an

exponential transform under some regularity conditions. This extended trans-

form embodies the joint distribution of the risk factor X and the point process

N. For example, a tranche swap and an option on credit index can be priced.

From the above affine point process, it is indicated that the intensity can

depend on the path of the underlying counting process. This process is called a

self-exciting process, who is a special case of a self-affecting or path-dependent

point process.
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A basic example is a Hawkes process, introduced in [35], which is specified

by a positive constant c and a nonnegative function d(·). The Hawkes intensity

is given by the Stieltjes integral

ht = c +
∫ t

0
d(t − u)dNu = c +

∑
k:T k<t

d(t − T k). (1.17)

In this specification, the intensity of N is updated with default information along

the path. The first default arrives according to a Poisson process with constant

intensity c. In other words, T1 is exponential distributed with parameter c. At

the first default, the intensity is updated according to the function d(·). The

second default arrives with deterministic intensity c+d(t−T1) at time t. The k-th

default arrives with intensity c+
∑k−1

i=1 d(t−Ti). The intensity of N at t is influenced

by every default in the interval [0, t] as specified by the function d(·).

[36] shows that the Hawkes process can be represented as a Poisson cluster

process. Consider a homogeneous Poisson process with intensity c, whose ar-

rivals represent macroeconomic shocks. A shock implies a default, which can

have negative ripple effect on other surviving firms and trigger a cluster a new

defaults. Given the originating default, the cluster is described by an indepen-

dent nonhomogeneous Poisson process with deterministic intensity function

d(u). Each default can generate further clusters. The Hawkes process is the

superposition of the original and the spawned Poisson processes.

Consider a simple example where d(·) is an exponential decay function:

d(u) =
k∑

j=1

α je−β ju (1.18)

with
∑k

j=1
α j

β j
< 1 for some k ≥ 1. The constant parameters α j control the jump

size in the Hawkes intensity at the default times. The constant parameters β j

control the decay of the influence of a default on the current intensity.
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In the statistical literature, it is well recognized some unobservable random

variable can affect the underlying process. Such variable is called a frailty and

cannot be observed. They summarize the effects of all the systemic or specific

variables that were not put into the basic model. Frailty models have been well

known for a long time in survival analysis. In the finance area, they have been

proposed recently in the credit risk area. For instance, [7], [55] [14] and [18] im-

pose an indirect influence on the surviving firms by Bayesian updating of the

conditional distribution of the latent frailty variables. [55] introduces frailties as

static multiplicative factors in the reduced-form model, which allows a closed

form formula for the likelihood estimation. These latent factors are often as-

sumed to be Gamma distributed and strong contagion effect can be imposed by

the correlation of frailties.

It is not realistic to assume that the frailty over thirty years are static. The un-

observed factors that drive the credit risk should be time-dependent. [18] extend

the prior methodology to allow a frailty covariate to vary over time according to

an autoregressive time-series specification. [26] models the information-driven

default contagion where investor only observe noisy price processes of credit

derivatives, which leads to a nonlinear filtering problem. [2] proposes affine

jump diffusion model for analyzing U.S. corporate defaults. The contagion ef-

fect is worked through the self-exciting property of the default counting process.

In their article, the diffusion process may not be adapted to the observation fil-

tration. Default correlation is caused by exposure of firms to the diffusion risk

factor and uncertainty about the risk level.

[19] allow for three types of credit risk: idiosyncratic or firm-specific default

risk, industry-wide default risk in a specific sector and systematic risk in the
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whole economy. They focus on individual names and sum up to a portfolio

level. Their affine jump diffusion framework leads to exponential affine solu-

tions for survival probabilities, and hence yields analytical tractability for CDO

valuations.

[48] also decompose the default risk into three categories in their empirical

analysis of CDOs. However, they model portfolio credit losses directly. They

allow portfolio losses to occur as the realizations of three separate Poisson pro-

cesses, each with a different jump size and intensity process. They conduct an

extensive empirical analysis of CDO pricing, and provide direct estimates of the

nature and degree of default clustering across firms expected by the markets.

1.2 Data

Data on default timing was provided by Moody’s Default Risk Service. They

contain detailed information on issuer’s domicile, industry, rating, as well as

default date and default type. The sample period is from January 1970 to March

2008. An issuer is included in our hypothetical portfolio if it is not sovereign,

and its effective domicile is the United States and has a senior rating, which is

a rating generated by Moody’s senior rating algorithm described in [34]. As of

March 2008, the data set contains a total of 5471 firms.

We use the same definition of default as Moody’s Default Risk Service.

Moody’s definition of default includes three types of credit events:

1. A missed or delayed disbursement of interest and/or principal, including

delayed payments made within a grace period;

16



2. Bankruptcy, administration, legal receivership, or other legal blocks (per-

haps by regulators) to the timely payment of interest and/or principal;

3. A distressed exchange occurs where: (i) the issuer offers debt holders a

new security or package of securities that amount to a diminished finan-

cial obligation (such as preferred or common stock, or debt with a lower

coupon or par amount, lower seniority, or longer maturity); or (ii) the ex-

change had the apparent purpose of helping the borrower avoid default.
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Figure 1.1: The number of defaults for each year between 1970 and 2008.

A repeated default by the same issuer is included in our default events if it

is not within one year of the initial default and the issuer’s rating is enhanced

above Caa after the initial event. We exclude defaults within the same corporate

family which occur less than one year apart. We do not treat exits such as merger

and acquisition as default.
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We observe 1253 defaults during the sample period in the economic wide

portfolio. Let {Tk}nk=1 denote the ordered default dates in the portfolio. The

resolution of events is one day and hence there exists multiple events on the

same day whose exact default time can not be distinguished. Although the dif-

ference between simultaneous and nearly-timed default is not critical, it is an

important distinction for the measurement and estimation procedure. It is not

likely that two or more firms would default literally simultaneously unless there

is a parent-subsidiary relationship, which is excluded in our default counting.

Consequently, we take random perturbation to those dates with more than one

default to avoid simultaneous events:

T ′k = Tk + U (1.19)

where U is uniform distribution in [− 1
365×0.5, 1

365×0.5]. After this transformation,

we can see the exact default time for each event and hence there is only one

event at one default time. The new sequence of default events T ′1 < T ′2 < ... < T ′n

is strictly increasing and there is no default between two default dates. Figure

1.1 illustrates the total number of defaults in each year.

The macroeconomic time series are observed on a monthly basis. These data

series are obtained from Moody’s Economy.com.
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CHAPTER 2

PORTFOLIO DEFAULT INTENSITY MODELING

This section provides a detailed specification of portfolio intensity model.

We build a top-down default hazard rate model that incorporates the time-series

dynamics of stochastic covariates. Our method can predict term structures of

corporate default probabilities over multiple future periods.

We fix a probability space (Ω,F , P) where F = {Ft, t ≥ 0} is a complete in-

formation filtration and P is actual data-generating probability measure. Let

G = {Gt, t ≥ 0} represent a market observation filtration. Since we treat all the

firms in one hypothetical portfolio, these constitute firms are fixed in the begin-

ning. In other words, although the number of active firms fluctuates over time,

the total number of firms in the portfolio are considered as static. This treatment

is different from that of bottom up approach in most literature, where intensi-

ties of individual firms become zero upon default and they exit the portfolio

immediately. Let N denote the default counting process with increment one.

Nt =

n∑
k≥1

1{T ′k≤t} (2.1)

Define a non-negative progressively-measurable process λ to be the default in-

tensity for the portfolio. The process Nt −
∫ t

0
λsds is a local martingale with re-

spect to F. We can interpret the intensity in such a way that conditional on Ft,

the probability of credit events between time t and t+∆t is approximately λt∆t for

small ∆t. This is measured in events per unit time, which is one year throughout

the paper.

The severe default clustering during some years motivates us to use

self-exciting specification following [35], where the portfolio intensity surges
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quickly in response to default clusters. [11] and [44] provide a rigorous study of

such path-dependent point processes. If we assume the whole default history

starts on the first day of our sample period (January 1st 1970), then the self-

exciting default intensity exists for our point process as proved in [36]. Mathe-

matically, we define the portfolio default intensity as follows:

λt = exp(α + β · Xt + ηYt) +
∫ t

0
δe−γ(t−s)dNs. (2.2)

Where Xt is a vector of macro-economic factors and Yt is unobserved frailty.

exp(α) serves as a baseline hazard rate. As long as α is finite, the hazard rate

defined in (2.2) is non-explosive. The market observation filtration G = (Gt)t≥0 is

generated by the observed variables

{Xs, 0 ≤ s ≤ t} ∪ {T ′k : for such k that T ′k ≤ t}.

Xt and Nt are hence adapted to the observation filtration Gt. Because G is smaller

than F, the unobserved factor Y is not necessarily measurable with respect to G.

The self-exciting specification is similar as the analysis in [31].

If δ = 0, then we have a top-down proportional hazard rate model which

parallels the setup in [18]. If we let η = 0 and δ = 0, then we obtain a point pro-

cess that is doubly stochastic. More specifically, the top-down doubly stochastic

model is defined in [17]: for each t ≥ 0, s > 0

P(Nt+s − Nt = k|Ft ∨ Gt+s) =



p(k,
∫ t+s

t
λudu), k < m − Nt

∞∑
i=m−Nt

p(i,
∫ t+s

t
λudu), k = m − Nt

0 k > m − Nt

(2.3)

where p(i, .) is the probability mass function of a Possion variable. This is a sim-

plified model that does not take default contagion and latent factor into account.

20



2.1 Macro Economic Factors

[21] built a forecasting model for credit risk that incorporates the time-series

properties of a small group of macro factors. They also include firm-specific

variables like KMV’s ”distance to default” which proves to have considerable

explanatory power in their default models. In our top-down model, however,

we concentrate primarily on macroeconomic conditions that are related to busi-

ness cycle. We hence ignore the idiosyncratic risk factors. [25] have done exten-

sive research on including multiple macroeconomic factors into hazard function

of their Cox regression model. They specify three broad classes of macroeco-

nomic variables: the overall level of economic activity (e.g., the unemployment

rate, inflation rate), the direction in which the economy is moving (e.g., GDP

and IP growth rate) and conditions in the financial markets (e.g. interest rates

and stock market returns). Inspired by their empirical findings, we consider

these variables in our regression models: Chicago Fed National Activity Index

(CFNAI), growth rate of industrial production, 3-month Treasury bill rate, 10-

year Treasury yield, slope, annual S&P 500 return, annual volatility of S&P 500

and TED spread. The CFNAI is a composite series that summarizes economic

behavior including production and income, unemployment rate, and personal

consumption. Slope is the difference between 10 year and 1 year Treasury bill

rates, which reflects the term structure of yield curve. The TED spread is de-

fined as the difference between 3-month LIBOR and 3-month T-bill rate, which

serves as an indicator for credit spread.

Empirical default studies often introduce macroeconomic factors as contem-

poraneous variables. In practice, however, it is very likely that these macroeco-

nomic variables would have a delayed effect on defaults. As suggested by [25],
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we also allow lagged values of covariates to enter our model. We define each

variable as a weighted average over a fixed window with exponentially declin-

ing weights. Let {xt, t = 0, 1, ..., T } be the raw monthly data series for a given

variable. Xt represents the weighted value in the model. Xt is given by

Xt =

∑K
j=0 ω

jxt− j∑K
j=0 ω

j
(2.4)

where K is the length of the lag window and ω is the exponential decay factor.

The new covariate includes data in the current month. We identify our lagged

period to one year and hence choose K = 12 months. We let ω = 0.83 so that

the impact of variable 12 months ago is roughly 10 % of its current counter-

part. Note that there is no priori best choice for both parameters and the results

are not sensitive to different choices of values. We also want our covariates to

have the same magnitude so that we can compare their relative importance in

determining the hazard rate. Therefore, we scale our weighted covariates by

their standard deviations, and this procedure results in series of covariates with

standard deviation one.

In order to pick fewer variables, we simply run regression model using

monthly default number of firms against all the above macro factors. We use

Mallows’ CP statistic as in [49] to choose the best regression model. If P predic-

tors are selected from a total set of K variables (P < K), CP statistic is defined

as:

CP =
S S EP

S S E f ull
− N + 2P (2.5)

where S S Ep is the error sum of squares for the model with P predictors, S S E f ull

is the error sum of squares for the full model with K predictors and N is sample

size. When a model has little bias, the expectation of CP is close to P + 1. We

prefer the model with smaller CP statistic.
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The smallest CP gives a model with four statistically significant factors: 1-

year S&P 500 return, 3-month T-bill rate, slope and annual industrial production

growth rate. This resulting CP is a little larger than 5 and the model turns out to

be relative parsimonious specification.

2.2 Modeling Stochastic Covariates

We want to specify continuous-time dynamics for the macroeconomic factors

and build a forecasting default hazard rate model. [21] use first-order Gaussian

vector autoregression to model their covariates. We propose to apply stochastic

differential equations to model the evolution of macroeconomic variables. The

continuous-time specification can better characterize the risk factor dynamics in

reality.

Let S t be the trailing 1-year S&P 500 stock return. Let us consider a stochastic

volatility model with a leverage effect (correlation between stock return and

volatility):

dS t = a1(a0 − S t)dt + exp(ut)dW (1)
t

dut = b1(b0 − ut)dt + σ1(ρ1dW (1)
t +

√
1 − ρ2

1dW (2)
t ) (2.6)

where W (1) and W (2) are independent Brownian motions with respect to (Ω,F ,P).

In order to achieve parameter identifiability, we need to prefix some parame-

ter values. We estimate a0 from simple Ornstein-Uhlenbeck process instead of

stochastic volatility model. After that, we assume the Brownian motion driv-

ing the volatility factor is independent of that in the stock return. We obtain

the following result: a0 = 0, b0 = −0.65, σ1 = 0.50 and fix them in our two-factor
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stochastic volatility model. Stock return data is stationary and usually has mean

close to zero which is also the case here.

Cox-Ingersoll-Ross (CIR) process is historically popular in modeling short

term interest rates in academia. However the oversimplified specification can

hardly fit the actual data well. We also proposed 2-factor stochastic volatility

model for 3-month T-bill rates rt.

drt = ϕ1(ϕ0 − rt)dt +
√

rt exp(vt)dW (3)
t

dvt = κ1(κ0 − vt)dt + σ2dW (4)
t (2.7)

where W (3) and W (4) are independent standard Brownian motions with respect

to (Ω,F ,P). The interest rate model is known to be difficult to calibrate because

of some huge spikes in 70s and 80s. Therefore, we detrend and smooth the time

series. For the purpose of identifiability, we estimate ϕ0 = 2.20 and κ0 = −0.51

from one-factor CIR process drt = ϕ1(ϕ0 − rt)dt +
√

rt exp(κ0)dW (3)
t , and afterwards

we prefix ϕ0 and κ0 in the stochastic volatility model.

The Ornstein-Uhlenbeck (OU) processes are specified for both slope Ct and

annual growth rate of industrial production pt. The OU process can be treated

as continuous version for AR(1) model. Note that during some periods, slope

could be negative and hence the OU model is appropriate in this case.

dCt = θ1(µ1 −Ct) + σ3(ρ2dW (3)
t +

√
1 − ρ2

2dW (5)
t ) (2.8)

dpt = θ2(µ2 − pt) + σ4dW (6)
t (2.9)

where W (5) and W (6) are independent standard Brownian motions with respect

to (Ω,F ,P). We impose correlation between slope and 3-month T-bill rate. No-

tice that all the Brownian motions W (i), i = 1, 2, ..., 6 are independent. For the

same identifiability reason, we estimate µ1 = 1.30, σ3 = 0.35 and µ2 = 0.60 from
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independent one-factor OU processes and fix them in our model.

2.3 Contagion and Frailty

The contagion is modeled as Hawkes process:∫ t

0
δe−γ(t−s)dNs =

∑
k:Tk<t

δe−γ(t−Tk). (2.10)

Mathematically, the intensity jumps up each time a firm defaults, and decreases

exponentially afterwards. Whenever one firm defaults, it jeopardize the credit

conditions of surviving firms. This effect is substantial within firms in the same

industry sector and the same corporate family. Our extended model with direct

contagion can better assess extreme default clustering in adverse environment.

Furthermore, the portfolio intensity can have frailty effect simultaneously

although it has different economic mechanism. The frailty yt is a latent variable

that is not directly observed by market players. The impact of frailty is through

information update and is less direct than contagion. We can view frailty as cor-

rection to the portfolio intensity besides macro covariates, it could be different

macroeconomic variable at various time periods. For instance, it represented de-

fection in mark-to-market methods and accounting rules among the corporate

when Enron went bankrupt. It could be potential large consumer loan losses

when the credit crunch accelerated in September 2008.

We assume that the frailty factor is orthogonal to the existing macroeconomic

variables since it provides an additional channel for credit risk. We also assume

the frailty is detrended in the sense that it is mean reverting around level 0. Each

time there is latent shock in the economy, its effect would decay steadily as time
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passes by. This motivates us to use the Ornstein-Uhlenbeck process as in [18] to

model frailty Yt:

dYt = −κYtdt + dW (7)
t (2.11)

Y0 = 0

where W (7)
t is a standard Brownian motion with respect to (Ω,F ,P) and is inde-

pendent of W (i)
t , i = 1, ..., 6. The parameter κ is a non-negative mean reversion

rate of Y. The transitional density of OU process is normal and hence facilitates

the filtering procedure of its posterior path. Without loss of generality, we fix

the volatility coefficient to be unity because the scaling parameter η before Yt

plays the same role in this model. Furthermore, the starting value and mean

reverting level of Y are set to be 0 because the nonzero value can be absorbed in

the constant term α in the aggregate intensity. The frailty model can capture the

accumulative effect of various types of unobserved fundamental shocks to de-

fault intensity. The default contagion can be reinforced through two channels:

direct ripple effect of other firms’ defaults and unobserved economic factor.
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CHAPTER 3

ESTIMATION VIA EMM

This section develops estimators for unknown parameters in the aggregate

default intensity model. Often, simple and tractable models are proposed ini-

tially by researchers to describe observed phenomena. [18] and [2] both take

advantage of maximum likelihood estimation for their time-series credit risk

models. Nevertheless, the MLE approach becomes difficult when tractable

likelihood function is not available. With the difficulty of obtaining the like-

lihood, researchers often turn to moment matching methods, such as minimum

chi-square in the statistics literature or GMM in the economics literature, as a

method to overcome computational difficulties. However, even moment match-

ing methods such as the vanilla GMM, suffer computational difficulties espe-

cially when unobservable variables enter the model nonlinearly. These unob-

servable lead to multiple integrals in the criterion function in which standard

numerical techniques are not applicable. Prominent examples are continuous

time interest rate and stochastic volatility type models. The use of simulation,

such as Monte Carlo, offers an avenue to overcome these otherwise intractable

estimation problems.

[29] propose the efficient method of moments (EMM) for estimating chal-

lenging time series models in finance. This method becomes particularly useful

when we are considering a nonlinear dynamic system with unobserved vari-

ables. The basic procedure of EMM consists of two steps. The first step is to

estimate the joint density of the observed data. This approximating density is

called the auxiliary model. The second step is to use the scores from the auxil-

iary model as moments to construct a minimum chi-squared estimator or GMM
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type estimator. These scores are then evaluated using the simulation output

of the so-called structural model, which is a model believed to have generated

the observed data. The objective function is then minimized with respect to the

parameters of the structural model. There are a whole host of diagnostic tests

available under this approach. In particular, the standardized objective function

asymptotically follows a chi-squared distribution with degrees of freedom equal

to the number of scores less the number of model parameters. This provides an

overall goodness-of-fit test.

More formally, let {xt}+∞t=−∞ ∈ RM denote a M-dimensional discrete, stationary

stochastic process. Denote {x̃t}Tt=−L as realizations from the process xt. Let π de-

note the vector of unknown parameters for a dynamic system. If the observed

stochastic process {xt}Tt=1 is stationary, then a time invariant transition density

exists for any finite lag L. Denote these transition densities by:

{p0(x0|π), [pt(xt|xt−1, ..., xt−L+1, π)]T
t=1}

where L represents a finite lag. We estimate π by means of the score functions

∂
∂θ

log ft(xt|xt−1, ..., xt−L+1, θ) from a sequence of approximating densities:

{ f0(x0|θ), [ ft(xt|xt−1, ...xt−L+1, θ)]T
t=1}

where θ is a vector of parameters in this auxiliary model. Write yt−1 =

(xT
t−1, ...x

T
t−L+1)T , then the auxiliary densities can be expressed in a more compact

way [ ft(xt|yt−1, θ)]T
t=1}. For simplicity, we often omit the time subscript and write

x and y for the contemporaneous value and lagged state vector.
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3.1 Projection

In our application of the EMM, we use the SNP approach of [29] as the score

generator. In essence SNP projects onto the image space of Hermite polynomi-

als of degree K to approximate the data density function. Hermitian densities

are easy to evaluate and differentiate. Also, the moments are easy to evalu-

ate since they correspond to higher moments of the Gaussian and can be com-

puted using standard recursions. The idea is the leading term of expansion is

a parametric model that approximates the process and higher order terms cap-

ture deviation from this approximation. To be more precise, let P(z) denote a

multivariate polynomial of degree Kz:

PKz(z) =
Kz∑
|α|=0

aαzα (3.1)

where zα = zα1
1 · z

α2
2 · · · z

αM
M and |α| = ∑M

i=1 |αi|.

A non-normalized Hermite function has the form

PKz(z)
√
ϕ(z) (3.2)

ϕ(z) is a M-dim multivariate Gaussian density:

ϕ(z) ∝ N(0, IM) =
1

(2π)M/2 exp(−1
2

zT z).

Let zt represent a stationary innovation process. Let h(z) be its probability

density, then
√

h(z) is squared integrable. We know Hermite functions are or-

thogonal basis for L2 space under a weighted Sobelov norm. Thus they are are

dense in L2. Consequently it can be shown that the following Hermite expan-

sion exists for
√

h(z): √
h(z) =

∞∑
|α|=0

aαzα
√
ϕ(z). (3.3)

29



When Kz is large enough, the truncated expansion√
hKz(z) =

Kz∑
|α|=0

aαzα
√
ϕ(z) (3.4)

provides a reasonable approximation for
√

h(z). Thus the truncated density can

be written as

hKz(z) =
PKz(z)2ϕ(z)∫
PKz(s)2ϕ(s)ds

. (3.5)

The polynomial enters as a square to ensure positivity.
∫

PKz(s)2ϕ(s)ds is a nor-

malizing constant since the integral of a density should equal to 1.

We reduce the stochastic process xt to an innovation process zt by introducing

a location and a scale function. Thus, we define the following location-scale

transformation:

x = Rz + µ (3.6)

where R is an upper triangular matrix and µ is a M-dimensional vector. Through

this transformation, we generate a family of densities

f (x|θ) ∝
PKz[R

−1(x − µ)]2ϕ[[R−1(x − µ)]

|det(R)|
∫

PKz(s)2ϕ(s)ds
. (3.7)

If we write Σ = RRT , then

f (x|θ) ∝ PKz[R
−1(x − µ)]2 · NM(x|µ,Σ) (3.8)

where θ consists of coefficients of P(z), µ and R. If Kz equals zero, the result

density is Gaussian. When Kz is positive, the corresponding density is Gaussian

with modified shape, which can capture heavy-tail behavior.

To allow for heterogenous innovation, it proves to be more appropriate to

let coefficients of polynomial depend on the lagged value y. More specifically,

write P(z, y) in a rectangular expansion:

P(z, y) =
Kz∑
|α|=0

(
Ky∑
|β|=0

aαβyβ)zα (3.9)
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where β = (β1, β2, · · · , βML), |β| = ∑ML
i=1 |βi| and xβ = ΠML

i=1 (xi)βi . P(z, y) can be assumed

to depend on LP ≤ L lags of y by putting some elements of matrix A = [aαβ] to 0.

Because P(z, y)2/
∫

P(s, y)2ϕ(s)ds is a homogeneous function of the coefficients of

the polynomial P(z, y), P(z, y) can only be determined to within a scaler multiple.

To achieve a unique representation, we restrict the constant term a00 = 1

It is advantageous in applications to allow the scale R to depend on y be-

cause it reduces the degree Ky required to achieve an adequate approximation

to the transition density p(x|y, π). Therefore, we describe the conditional density

f (x|y, θ) by the modified location-scale transformation

xt = Ryt−1zt + µyt−1

µy = b0 + Byt−1

Σyt−1 = Ryt−1R
T
yt−1

(3.10)

where b0 and B are constant vector and matrix respectively. µyt−1 depends on

Lu ≤ L lags, which is achieved by putting leading columns of B to 0.

Two choices of Ry that have good results in applications are an ARCH-like

moving average and a GARCH-like ARMA specification. Let vech(R) denote a

vector of length M(M + 1)/2 containing the elements of the upper triangle of Ry.

vech(Ryt−1) = ρ0 +

Lr∑
i=1

P(i)|yt−1+Lr+i − µyt−2−Lr+i | (3.11)

where ρ0 is a vector of length M(M + 1)/2, P(1) through P(Lr) are M(M + 1)/2 by M

matrices. |y − µ| take element-wise absolute values of y − µ. This scale function

depends on Lr lagged innovations yt − µyt−1 and Lr + Lu ≤ L lagged yt in total.

For a GARCH specification, let

vech(Ryt−1) = ρ0 +

Lr∑
i=1

P(i)|xt−1+Lr+i − µyt−2−Lr+i | +
Lg∑
i=1

diag(G(i))Ryt−2−Lg+i (3.12)
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where G(i), i = 1, ..., Lg are vectors of length M(M + 1)/2. The SNP version of

GARCH is expressed in terms of absolute value of lagged residuals and stan-

dard deviations.

The SNP density in this case is

f (xt|yt−1, θ) ∝ P2[R−1
y (xt − µy), yt−1] · NM(xt|µy,Σy). (3.13)

We shall distinguish various lag values appearing in different components

of the expansion. The number of lags in µy is denoted by Lu; the number of lags

in Ry is Lr, and the number of lags in the y part of polynomial is Lp. Besides,

large values of M can generate a large number of interactions (cross product

terms) for even modest setting of Kz. Accordingly, we introduce two additional

tuning parameters, Iz and Iy, to filter higher order of interactions. Iz = 0 means

no interaction coefficients of z are set to 0. Iz > 0 indicates that coefficients

corresponding to interactions zα of order larger than Kz − Iz are set to 0. Similar

definition applies for yβ and Iy. In summary, Lu, Lr, Lg determine the location-

scale transformation x = Ryz + µy and hence the nature of the leading term of

the expansion. Kz,Ky, Iz and Iy determine the degree of P(y, z) and hence the

property of the innovation process zt.

If Kz,Ky and Lr are put to 0, then the SNP model defines a Gaussian vector

autoregression. If Ky and Lr are put to 0, then the model defines a non-Gaussian

vector autoregression model with homogeneous innovation. If Kz and Ky are set

to 0, then the model defines a Gaussian ARCH model. If Kz > 0,Ky > 0, Lp >

0, Lu > 0 and Lr > 0, then the model defines a general nonlinear process with

heterogeneous innovation.

The tuning parameters of the SNP density is characterized by (Lu, Lr, Lp,
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Kz, Iz,Ky, Iy). They may be determined by a statistical model selection criterion.

One that works well is the Schwarz BIC criterion as in [8], which is computed

as

ℓT (θ) =
1
T

T∑
t=1

log f (x̃t|ỹt−1, θ) (3.14)

θ̂ = arg max
θ
ℓT (θ) (3.15)

BIC = −ℓT (θ̂) + (1/2)(pθ/T ) log(T ) (3.16)

where pθ is the number of components in θ and x̃t is observed time series

data. ℓT is the log likelihood for the sample. θ̂ is the quasi-maximum likeli-

hood estimator, by fitting the SNP model to the realizations {x̃t}. We choose

(Lu, Lr, Lp,Kz, Iz,Ky, Iy) to minimize the BIC. The criterion rewards good fits to

actual data but penalize good fit obtained from excessive parameterizations.

A strategy found to work well is to move upward along a tree structure using

the BIC criterion. Expand first in Lu with Lr = Lp = Kz = Ky = 0 until the BIC

turns upward. Next, expand Lr with Lp = Kz = Ky = 0; then expand Kz with

Kx = 0; and finally expand Lp and Ky.

3.2 Estimation

Our objectives are to estimate the vector of unknown parameters π and to

test the hypothesis that the structural model under consideration generated

the observed data {x̃t}Tt=−L. It is usual in practice that p(xt|yt−1, π) does not

have an analytic expression. However, the key feature of this data generat-

ing process is that it is relatively easy to compute the expectation of this non-

linear function given values for the structural parameters. The expectation
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Eπ(Ψ) =
∫
Ψ(x−L, · · · x0|π)p(x−L, · · · x0|π)dy−L · · · dy0 can be calculated by simula-

tion. For given π, we generate sample path {x̂t}Nt=−L from the system where N is

sufficient large so that the Monte Carlo error is negligible.

We can construct a Method of Moments (MoM) estimator by specifying a

moment function

Ψ̃(x−L, · · · x0) =



x0 − µ̃1

x2
0 − µ̃2

...

xk
0 − µ̃k

x−1x0 − γ̃1

...

x−Lx0 − γ̃L


where µ̃ j =

1
T

∑
x̃ j

t , and γ̃h =
1
T

∑T
t=h+1 x̃t x̃t−1. Compute the moment equation

m(π) = Eπ(Ψ̃) =
∫
Ψ̃(x−L, · · · x0|π)p(x−L, · · · x0|π)dy−L · · · dy0 (3.17)

The moment function can be approximated by computing

m(π) =
1
N

N∑
t=1

Ψ̃(x̂t−L(π), · · · x̂t(π)) (3.18)

when N is large enough. Here x̂(π) are drawn from the true data generating

distribution p(.|π), or known as the structural model defined by stochastic dif-

ferential equations. The estimators are solved by equation m(π) = 0.

If a solution can not be found by the above estimating equations, for example

when the number of moment equations is greater than the number of param-

eters pπ, we should resort to minimum chi-squared estimation. A strategy for

minimum chi-squared estimation is to mimic the first order conditions (scores)

of the quasi maximum likelihood estimator in (3.15). This method minimizes
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the quadratic form of moment equations. As seen later, the optimal weight-

ing matrix for forming the minimum chi-square criterion depend only on the

auxiliary model and it is easily computed. The moment equations for EMM es-

timator are obtained from so-called score generator, which is the score function

∂
∂θ

log f (xt|yt−1, θ) of the auxiliary model f (xt|yt−1, θ).

Using the score generator and the actual data {x̃t}Nt=−L, recall the quasi-

maximum likelihood estimation of the score generator

θ̂ = arg max
θ

1
T

T∑
t=1

log ft(x̃t|ỹt−1, θ). (3.19)

Define the moment function

m(π, θ) = Eπ[log
∂

∂θ
ft(xt(π)|yt−1(π), θ)] (3.20)

which is computed by averaging over a long simulation:

m(π, θ̂) =
1
N

N∑
t=1

log
∂

∂θ
ft(x̂t(π)|ŷt−1(π), θ̂). (3.21)

Typically pθ > pπ. The minimum chi-squared estimator is defined

π̂N = arg min
π

mT (π, θ̂)Î−1
N m(π, θ̂) (3.22)

where ÎN is an estimate of the variance
√

Nm(π, θ̂), which you can consider as a

weighting matrix.

If you believe the score estimator approximates the data generating process,

a good estimator of variance is proposed by [29]

ÎN =
1
N

N∑
t=1

[
∂

∂θ
log f (x̃t|ỹt−1, θ̂)][

∂

∂θ
log f (x̃t|ỹt−1, θ̂)]T . (3.23)

If the belief is not as strong as above, then an estimator is

ÎN =

(n)1/5∑
τ=−(n)1/5

ω(
τ

[n1/5]
)S̃ Tτ
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where

ω(x) =


1 − 6|x|2 + 6|x|3 0 ≤ x ≤ 1

2

2(1 − |x|)3 1
2 ≤ x ≤ 1

and

S̃ Nτ =


1
N

∑N
t=1+τ[

∂
∂θ

log f (x̃t|ỹt−1, θ̂)][ ∂
∂θ

log f (x̃t−τ−1|ỹt−τ−1, θ̂)]T τ ≥ 0

S̃ N,−τ τ < 0

3.3 Asymptotics and Goodness-of-fit

Some asymptotic results were established for EMM estimators in [28] and [29].

If π0 denotes the true value of π and θ0 is an isolated solution of the moment

equation m(π0, θ) = 0, then under regularity conditions specified by [27] and

[29], Theorem 1 in [29] states that

lim
N→∞

π̂N = π
0 a.s.

√
N(π̂N − π0)→ N(0, [(M0)T (I0)−1(M0)]−1)

lim
N→∞

M̂N = M0 a.s.

lim
N→∞
ÎN = I0 a.s.

where M̂N = M(π̂N , θ̂N) M0 = M(π0, θ0),M(π, θ) = ∂
∂π

m(π, θ) and

I0 = Eπ0[
∂

∂θ
log f (x0|y−1, θ

0)][
∂

∂θ
log f (x0|y−1, θ

0)]T .

Under the null hypothesis that {p0(x0|π), [p(xt|yt−1, π)]T
t=1} is correct model, then

L0 = N · mT (π̂N , θ̂)Î−1m(π̂N , θ̂) (3.24)

is asymptotically chi-squared distributed with pθ − pπ − 1 degree of freedom.
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The estimator is root-n consistent and asymptotically normal with an asymp-

totic distribution that depends on both the structural model and the score gen-

erator. [29] have shown that if there exists a local smooth mapping of the struc-

tural parameters into the parameters of the score generator (Assumption 3 in

[29]), then the estimator has the same asymptotic distribution as the maximum

likelihood. In other words, the estimator is as efficient as maximum likelihood

estimator under the structural model. If the score generator closely approxi-

mates the structural model, even though it does not nest it, then the estimator is

nearly efficient. [28] showed that if the score generator is the SNP density, then

the efficiency of EMM estimator can be made close to that of MLE by making

K = Kz + Ky large enough.

Based on that, we can carry out goodness-of-fit test. A Wald confidence inter-

val on an element πi of π can by constructed in the usual way from an asymptotic

standard error of
√
σ̂ii. A standard error can be computed numerically from the

Jacobian m(π, θ) and we take the estimated asymptotic variance
√
σ̂ii to be the

ith diagonal element of Σ̂ = 1
N [m̂T (ÎN)−1m̂]−1. These intervals which are symmet-

ric, are sometime misleading because they do not reflect the rapid increase in

the EMM objective function when πi approaches a value for which the system

is explosive. Confidence interval obtained by inverting the criterion difference

test L0 can address this issue and are therefore more advantageous. To invert

the test, one puts in the interval those π∗i for which L0 for the hypothesis π0
i = π

∗
i

is less than the critical point of a chi-square on one degree of freedom. To avoid

re-optimization one may use the approximation

π̃N = π̂N +
ρ∗i − ρ̂iN

σ̂ii
Σ̂(i) (3.25)

in the formula for L0 where Σ̂(i) is the i-th column of Σ̂.
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When L0 exceeds the chi-squared critical point, diagnostics that suggest im-

provements to the system are desirable. This is because that

√
Nm(π̂N , θ̂) −→ N(0, I0 − M0[(M0)T (I0)−1(M0)]−1(M0)T )

inspection of the t-ratios

TN = S −1
N

√
Nm(π̂N , θ̂)

where S N = (diag{Ĩ − M̂[(M̂)T (Ĩ)−1(M̂)]−1(M̂)T }) and M̂ = M(π̂N , θ̂) can suggest

reasons for failure. Different elements of the score correspond to different char-

acteristics of the data and large t-ratios reveal those characteristics are not well

approximated.
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CHAPTER 4

PARTICLE FILTERING FOR POSTERIOR FRAILTY PATH

Since the frailty factor is unobserved, we need to infer its the posterior distri-

bution. Through this procedure, we can interpret the model better and apply it

to the computation of portfolio losses. The model under our consideration falls

into the class of nonlinear, non-Gaussian state space models for which we apply

particle filtering and smoothing algorithms. In this section, we first introduce

the framework of Bayesian filtering, and then methods of particle filtering are

illustrated.

4.1 Bayesian Filtering and Smoothing Framework

[6] provides a detailed survey for Bayesian filtering and its rich variations in the

literature. State space models provide a convenient framework for analyzing a

dynamic system via transition and measurement equations. The state variable

xt is not directly observed and carries information about the evolution of the sys-

tem. The state also follows a first-order Markov process p(xt|x0:t−1) = p(xt|xt−1). It

satisfies the transition equation

xt = f (xt−1, dt). (4.1)

The observations yt are independent given the state variables xt. The yt are

related to xt through the measurement equation

yt = g(xt, vt) (4.2)

where dt and vt are i.i.d. random variables with known probability density func-

tions. The functions f (·) and g(·) are known but can be nonlinear. The transition
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density p(xt|xt−1) and measurement density p(yt|xt) are determined by the den-

sities of dt and vt. In general, the state variable xt can be either discrete-valued,

continuous-valued or mixture of the two.

All information about the latent states {xt}Tt=0 given the observations {yt}Tt=1

can be extracted from the joint posterior distribution p(x0:T |y1:T ). Estimating re-

cursively of the posterior distribution is the main goal of the optimal filtering

and forecasting.

The first marginal we are interested in is the one-step ahead predictive den-

sity of the state variable

p(xt|y1:t−1) = p(xt|y1, ..., yt−1) (4.3)

which utilize information up to time t−1 to make one-step ahead forecast of the

state. The second marginal is the filtering distribution

p(xt|y1:t) = p(xt|y1, ..., yt) (4.4)

which uses contemporaneous observations. Finally the smoothing distribution

carries all the information in the sample to estimate the past realizations of the

state

p(xt|y1:T ) = p(xt|y1, ..., yT ). (4.5)

In the following, we present a detailed derivation of recursive Bayesian es-

timation, which is the principle of sequential Bayesian filtering. The predictive

density is computed through Chapman-Kolmogorov equation. We compute the

posterior density for the current state via Bayes rule:

p(xt|y1:t) =
p(y1:t|xt)p(xt)

p(y1:t)

=
p(yt, y1:t−1|xt)p(xt)

p(yt, y1:t−1)
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=
p(yt|y1:t−1, xt)p(y1:t−1|xt)p(xt)

p(yt|y1:t−1)p(y1:t−1)

=
p(yt|y1:t−1, xt)p(xt|y1:t−1)p(y1:t−1)

p(yt|y1:t−1)p(y1:t−1)

=
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)
. (4.6)

As shown in the above formula, the posterior density p(xt|y1:t) is described

by three terms: The prior p(xt|y1:t−1) defines the knowledge of the model

p(xt|y1:t−1) =
∫

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (4.7)

where p(xt|xt−1) is the transition density of the state. The likelihood p(yt|xt) deter-

mines the measurement equation. The denominator is the normalizing constant

p(yt|y1:t−1) =
∫

p(yt|xt)p(xt|y1:t−1)dxt. (4.8)

Calculation or approximation of these three terms are essential in the Bayesian

filtering and smoothing.

The criterion of optimality used for Bayesian filtering is the Bayes risk of

minimum mean-squared error (MMSE). It can be defined in terms of prediction

of filtering error

E[∥ xt − x̂t ∥2 |y1:t] =
∫
∥ xt − x̂t ∥2 p(xt|y1:t)dxt (4.9)

where the conditional mean x̂t = E[xt|y1:t]. Bayesian filtering is optimal in a

sense that it explores the posterior distribution which integrates all available

information expressed by probabilities. Optimal filters are analytically available

in only a few cases. One is the Kalman filter, which computes the marginal

density exactly when the functions f (·) and g(·) are linear and both dt and vt are

Gaussian.
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4.2 Particle Filters

The assumptions needed for Kalman filter may not hold in mant practical situ-

ations. Many dynamic systems are better assessed as nonlinear/non-Gaussian

framework. Therefore, researchers, for example [9] and [15], have devoted to

approximating the filtering and smoothing distribution when it is impossible

to evaluate them analytically. We focus our attention on the sequential Monte

Carlo approach for sequential state estimation. Sequential Monte Carlo tech-

nique, also called particle filtering, is a kind of recursive Bayesian filter based

on a Monte Carlo simulation known as importance sampling.

The working mechanism of particle filters is as follows: The state space is

partitioned into many parts, where the particles are filled according to some

probability measure. The higher the probability, the denser the particles are

concentrated. The particle system updates along the time via the state equa-

tion. The posterior density can be approximated by the empirical distribution

of the state variables via random sampling. Since the posterior distribution is

unknown or hard to sample from, we would rather choose alternative distribu-

tion called proposal distribution for efficient sampling.

To avoid integration in this Bayesian framework, the posterior density is em-

pirically represented by a weighted sum of Np samples drawn from the posterior

distribution

p(xt|y1:t) ≈
1

Np

Np∑
t=1

δ(xt − x(i)
t ) ≡ p̂(xt|y1:t) (4.10)

where {x(i)
t , i = 1, ...,Np} are i.i.d. samples drawn from p(xt|y1:t). When Np is

sufficiently large,p̂(xt|y1:t) approximates the true posterior p(xt|y1:t). Using this
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approximating density, we can estimate the mean of a function of states

E[ϕ(xt)|y1:t] ≈
∫

ϕ(xt) p̂(xt|y1:t)dxt

=
1

Np

Np∑
i=1

∫
ϕ(xt)δ(xt − x(i)

t )dxt

=
1

Np

Np∑
i=1

ϕ(x(i)
t ). (4.11)

Because it is usually impossible to sample directly from the true posterior,

it is common to sample from the so-called proposal distribution denoted by

q(xt|y1:t). Therefore

E[ϕ(xt)|y1:t] =
∫

ϕ(xt)
p(xt|y1:t)
q(xt|y1:t)

q(xt|y1:t)dxt

=

∫
ϕ(xt)

p(y1:t|xt)p(xt)
p(y1:t)q(xt|y1:t)

q(xt|y1:t)dxt

=
1

p(y1:t)

∫
ϕ(xt)Wt(xt)q(xt|y1:t)dxt (4.12)

where

Wt(xt) =
p(y1:t|xt)p(xt)

q(xt|y1:t)
. (4.13)

Equation (4.12) can be rewritten as

E[ϕ(xt)|y1:t] =

∫
ϕ(xt)Wt(xt)q(xt|y1:t)dxt∫

p(y1:t|xt)p(xt)dxt

=

∫
ϕ(xt)Wt(xt)q(xt|y1:t)dxt∫

Wt(xt)q(xt|y1:t)dxt

=
Eq(xt |y1:t)[Wt(xt)ϕ(xt)]

Eq(xt |y1:t)[Wt(xt)]
. (4.14)

By drawing i.i.d. samples {x(i)
t } from q(xt|y1:t), we can approximate E[ϕ(xt)|y1:t] by

E[ϕ(xt)|y1:t] ≈
1

Np

∑Np

i=1 Wt(x(i)
t )ϕ(x(i)

t )

1
Np

∑Np

i=1 Wt(x(i)
t )

=

Np∑
i=1

W̃t(x(i)
t )ϕ(x(i)

t ) (4.15)
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where

W̃t(x(i)
t ) =

Wt(x(i)
t )∑Np

j=1 Wt(x(i)
t )
. (4.16)

In sequential importance sampling (SIS) filtering, the importance weights

W (i)
t can be updated recursively

W (i)
t ∝ p(x(i)

t |y1:t)

q(x(i)
t |y1:t)

∝
p(yt|x(i)

t )p(x(i)
t |x(i)

t−1)p(x(i)
t−1|y1:t−1)

q(x(i)
t |x(i)

t−1, yt)q(x(i)
t−1|y1:t−1)

= W (i)
t−1

p(yt|x(i)
t )p(x(i)

t |x(i)
t−1)

q(x(i)
t |x(i)

t−1, yt)
. (4.17)

Unfortunately, after a few iterations of the algorithm, the majority of the

probability mass will be allocated to only a few particles. Hence the distribu-

tion of the importance weights become more and more skewed as time goes

along. This phenomenon is called weight degeneracy in the literature. In order

to solve this problem, [33] introduced a resampling step to the SIS algorithm

which replicates the particles with high importance weights and discards the

ones with low importance weights. The simplest resampling algorithm is multi-

nomial resampling, which draws new particles from a multinomial distribution

with probabilities equal to the normalized importance weights. Improvements

have been made in [37] etc. It is not optimal to resample at each iteration as this

increases the variation in the estimates. Instead, it should be conducted only

when the variance of importance weights grows. [47] introduced a measure for

degeneracy called effective sample size Ne f f

Ne f f =
Np

1 + Varq(.|y1:t)[W̃(x0:t)]

=
Np

Eq(.|y1:t)[(W̃(x0:t))2]
≤ Np. (4.18)
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In practice, the true Ne f f is not available. Its estimate is given in

N̂e f f =
Np∑Np

i=1(W̃ (i)
t )2

. (4.19)

When N̂e f f is below a predefined threshold NT (say Np/2 or Np/3), the re-

sampling procedure is conducted. When N̂e f f < NT , then each sample is ac-

cepted with probability min{1,W (i)
t /NT } and the rejected samples are restarted

and rechecked at all previously violated thresholds. The method is computa-

tionally expensive as t increases. The algorithm of SIS particle filter with resam-

pling is summarized as follows:

For time steps t = 0, 1, 2...

1. For i = 1, ...,Np, draw samples x(i)
t ∼ q(xt|x(i)

t−1, y1:t) and set x(i)
0:t = {x

(i)
0:t−1, x

(i)
t }.

2. For i = 1, ...,Np, calculate the importance weights W (i)
t according to 4.17.

3. For i = 1, ...,Np, normalize the importance weights W̃ (i)
t according to 4.16.

4. Calculate N̂e f f according to 4.19, return if N̂e f f > NT , otherwise generate a

new particle set {x(i)
t } by resampling with replacement Np times from the

previous set {x(i)
0:t} with probabilities P(x( j)

0:t = x(i)
0:t) = W̃ (i)

0:t. Reset the weights

W̃ (i)
t =

1
Np
.

The most important part of any particle filter is the choice of proposal distri-

bution. The proposal density should be chosen to approximate the target den-

sity as closely as possible, and hence will keep the variance of the importance

weights low. A convenient choice is the transition density of the state variables

which is the prior distribution in a Bayesian framework

q(xt|x(i)
t−1, y1:t) = p(xt|x(i)

t−1). (4.20)
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Substituting (4.20) into (4.17) leads to a simple update of the importance

weights

W (i)
t ∝ W (i)

t−1 p(yt|x(i)
t ). (4.21)

If the particles are resampled at every iteration, the importance weight update

simplifies further to W (i)
t ∝ p(yt|x(i)

t ). This is the original particle filtering algo-

rithm of [33] known as sampling importance resampling (SIR) filter or bootstrap

filter.

Let us compare SIS and SIR filters. Both of the two filtering techniques use

importance sampling. The difference is that in SIR filter, the resampling is al-

ways performed; whereas in SIS filter, importance weights are calculated se-

quentially, resampling is only taken when needed. The choice of proposal dis-

tributions in SIS and SIR plays a vital role in their final performance. Last, in

both procedures, resampling is suggested to be done after filtering because re-

sampling brings extra randomness to the current samples.

Although the transition density of the state variable is convenient, it does

not include the current observation in the proposal density. Theoretically, it was

shown ([58]) that the choice of proposal distribution q(xt|x(i)
t−1, y1:t) = p(xt|x(i)

t−1, yt)

minimizes the variance of importance weights W (i)
t conditioning on x(i)

t−1 and

y1:t. By this argument, the importance weights can be recursively updated

as W (i)
t ∝ W (i)

t−1 p(yt|x(i)
t−1). However, this optimal proposal distribution can only

be calculated analytically in special cases, and the evaluation of the integral

p(yt|x(i)
t−1) =

∫
p(yt|xt)p(xt|x(i)

t−1)dxt can be tedious. There is no universal choice

for proposal distribution, and choosing appropriate proposal density is usually

problem dependent.
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4.3 Auxiliary Particle Filter

Finding a proposal density that utilizes the current observation yt in a computa-

tionally efficient manner can be very challenging. On the other hand, a potential

weakness of generic particle filters is the approximation of filtered density is not

sufficient to characterize the tail behavior of the true density. This effect is more

significant when outliers exist. [53] and [54] introduced so-called auxiliary par-

ticle filter (APF). The main idea is to augment the existing particles with high

importance weights in a sense that the predictive likelihood p(yt|x(i)
0:t−1) are large

for these good particles. The APF varies from SIR in the way that it reverses

the order of sampling and resampling, which is possible when the importance

weights are dependent on xt.

By inserting the likelihood inside the empirical distribution, we can rewrite

the filtered density as

p(xt|y1:t) ∝ p(yt|xt)
∫

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1

∝
Np∑
i=1

W (i)
t−1 p(yt|xt)p(xt|x(i)

t−1) (4.22)

where p(xt−1|y1:t−1) =
∑Np

i=1 W (i)
t−1δ(xt−1 − x(i)

t−1). By introducing an auxiliary variable

ξ ∈ {1, ...,Np} that serves as index of the mixture component, the augmented joint

density p(xt, ξ|y1:t) is updated as

p(xt, ξ = i|y1:t) ∝ p(yt|xt)p(xt, ξ = i|y1:t−1)

= p(yt|xt)p(xt|ξ = i, y1:t−1)p(ξ = i|y1:t−1)

= p(yt|xt)p(xt|x(i)
t−1)W (i)

t−1. (4.23)

A sample can be drawn from joint density (4.23) by neglecting the index ξ, by

which a set of particles {x(i)
t }

Np

i=1 are drawn from the marginal density p(xt|y1:t) and
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the index ξ is simulated with probabilities proportional to p(ξ|y1:t). Therefore,

(4.22) can be approximated by

p(xt|y1:t) ∝
Np∑
i=1

W (i)
t−1 p(yt|x(i)

t , ξ
i)p(xt|x(i)

t−1) (4.24)

where ξi denotes the index of the particle x(i)
t at time step t−1, namely ξi = {ξ = i}.

The proposal distribution used to draw {x(i)
t , ξ

i} is chosen as a factorized form

q(xt, ξ|y1:t) ∝ q(ξ|y1:t)q(xt|ξ, y1:t) (4.25)

where

q(ξ|y1:t) ∝ p(yt|µ(i)
t )W (i)

t−1 (4.26)

q(xt|ξ, y1:t) = p(xt|x(i)
t−1) (4.27)

where µ(i) is a value (e.g. mean or mode) associated with p(xt|x(i)
t−1). Thus the true

posterior is further approximated by

p(xt|y1:t) ∝
Np∑
i=1

W (i)
t−1 p(yt|µξ=i

t )p(xt|xξ=i
t−1). (4.28)

From (4.26) and (4.27), the important weights are recursively calculated as

W (i)
t = W (i)

t−1

p(yt|x(i)
t )p(x(i)

t |x
(ξ=i)
t−1 )

q(x(i)
t , ξ

i|y1:t)

∝ p(yt|x(i)
t )

p(yt|µ(ξ=i)
t )

. (4.29)

The APF is basically a two-stage procedure: At the first stage, simulate parti-

cles with large predictive likelihoods; at the second stage, reweigh the particles

and draw the augmented states. The auxiliary variable can be applied for SIS or

SIR filters. An auxiliary SIR filtering algorithm is summarized below.

For time step t = 1, 2, ...:
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1. For i = 1, ...,Np, calculate µ(i)
t (e.g. µ(i)

t = E[p(xt|x(i)
t−1)]).

2. For i = 1, ...,Np, calculate the first-stage weight W (i)
t = W (i−1)

t p(yt|µ(i)
t ) and

normalize weights W̃ (i)
t =

W(i)
t∑Np

j=1 W( j)
t

3. Use the resampling procedure in SIR filter to obtain new {x(i)
t , ξ

i}Np

i=1.

4. For i = 1, ...,Np, sample x(i)
t ∼ p(x(i)

t |x(i)
t−1, ξ

i), and update the second-stage

weights W (i)
t according to (4.29).

In general, the second stage weights are much less variable than for the orig-

inal SIR method. By making proposal density with high conditional likelihoods

we reduce the sampling cost from particles with low likelihoods and so will not

be resampled at the second stage. This improves the statistical efficiency of the

sampling procedure. In generic particle filters, estimation is usually performed

after the resampling step, which is less efficient because resampling introduces

extra random variation. APF essentially overcomes this problem by conducting

one-step ahead estimation based on the estimate µ(i)
t that characterizes p(xt|x(i)

t−1).

4.4 Particle Filter for Aggregate Default Intensity

We apply the particle filtering technique to infer the posterior mean of frailty

path E[ηYt|Gt]. The state variable is xt = (ut, vt, Yt) where ut and vt are latent

volatilities while Yt is frailty factor. The observation vector is yt = (S t, rt,Ct, pt,Tt).

Since the SIR particle filter usually gives poor estimation results, we adopt auxil-

iary particle filtering method to calculate posterior paths. The proposal distribu-

tion we use is the transition density of the state variable: q(xt|x(i)
t−1, y1:t) = p(xt|x(i)

t−1)

and set µ(i)
t = E[p(xt|x(i)

t−1)].
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Note that all the components of state vector xt satisfy OU processes, and

hence their transition densities are Gaussian. In particular, we have

p(ut|u(i)
t−1) ∼ N(u(i)

t−1e−b1∆t + b0(1 − e−b1∆t),
σ2

1

2b1
(1 − e−2b1∆t)) (4.30)

p(vt|v(i)
t−1) ∼ N(v(i)

t−1e−κ1∆t + κ0(1 − e−κ1∆t),
σ2

2

2κ1
(1 − e−2κ1∆t)) (4.31)

p(Yt|Y (i)
t−1) ∼ N(Y (i)

t−1e−κ2∆t,
1

2κ2
(1 − e−2κ2∆t)) (4.32)

where ∆t is the time interval between time step t-1 and t. In our simulation, we

take ∆t = 1
365 . Next, we will calculate the likelihood p(yt|x(i)

t ) in the importance

weight updating procedure:

p(yt|x(i)
t ) = p(S t, rt,Ct, pt, Tk|x(i)

t )

= p(Tk|S t, rt,Ct, pt, x
(i)
t )p(S t, rt,Ct, pt|x(i)

t )

= p(Tk|S t, rt,Ct, pt,Y
(i)
t )p(S t|x(i)

t )p(rt|x(i)
t )p(Ct|x(i)

t )p(pt|x(i)
t )

= p(Tk|S t, rt,Ct, pt, x
(i)
t )p(S t|u(i)

t )p(rt|v(i)
t )p(Ct)p(pt) (4.33)

where the fourth equality holds because Ct and pt are not latent. Let us calculate

the three terms in 4.33 respectively. Given the volatility ut, the stock return S t

satisfies OU process and hence its conditional density is Gaussian:

p(S t|u(i)
t ) ∼ N(S 0e−a1t + a0(1 − e−a1t),

e2u(i)
t

2a1
(1 − e−2a1t)). (4.34)

Conditioning on the volatility vt, the 3-month T-bill rate is a CIR process. The

transition density of the CIR process is known to be a noncentral chi-squared

distribution. However, due to the complicated structure of this distribution, we

do not use it for practical purpose. Alternatively, we approximate the density

with a normal distribution after discretizing the SDE with an Euler scheme. The

conditional density is evaluated as

p(rt|v(i)
t ) ∼ N(e−ϕ1∆trt−1 + ϕ0(1 − e−ϕ1∆t), e2v(i)

t rt−1∆t). (4.35)
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The distributions of slope and annual IP growth rate are Gaussian since both

satisfy OU processes:

p(Ct) ∼ N(C0e−θ1t + µ1(1 − e−θ2t),
σ2

3

2θ1
(1 − e−2θ1t))

p(pt) ∼ N(p0e−θ2t + µ2(1 − e−θ2t),
σ2

4

2θ2
(1 − e−2θ2t)).

The conditional distribution for the default timing T is given as:

p(Tk > t|Tk−1 = s, X,Y (i)) = exp(−
∫ t

s
(eα+β·Xt+ηY (i)

u +

∫ u

0
δe−γdNv)du) (4.36)

The density for this hazard rate model does not have an analytic form. The

macro vector Xt and frailty Yt are generated from stochastic equation system.

4.5 Bayesian Smoothing

Particle filtering techniques can be easily extended to the smoothing problem,

where the future observations can be used to estimate the current state. In

the Bayesian filtering framework, the goal is to estimate the posterior density

p(xt|y1:t+τ). There are three kinds of smoothing: fixed-point smoothing, fixed-

lag smoothing and fixed-interval smoothing. Fixed-point smoothing is to ob-

tain smoothed estimate of state xt at a fixed point t for all τ ≥ 1. Fixed-lag

smoothing is concerned with smoothing of data where there is a fixed delay

τ. Fixed-interval smoothing deals with smoothing of a finite set of data. More

specifically, the purpose is to achieve p(xt|y1:T ) for fixed T and all t in the interval

[1,T ].
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In our default hazard problem, we want to compute the FT -conditional pos-

terior distribution of the frailty process Y , where T is the final date of our sam-

ple. This is the conditional distribution of the latent state given all the available

default and macroeconomic data through the end of the period.

In the fixed-interval smoothing, we first run a particle filter to obtain p(xt|y1:t)

for 1 ≤ t ≤ T . Secondly in the backward step, the smoothing process is recur-

sively updated by

p(xt:T |y1:T ) = p(xt+1:T |y1:T )p(xt|xt+1:T , y1:T )

= p(xt+1,T |y1:T )p(xt|xt+1, y1:t)

= p(xt+1,T |y1:T )
p(xt+1|xt, y1:t)p(xt|y1:t)

p(xt+1|y1:t)
(4.37)

where the second equality results from first-order Markov assumption. In above

derivation, p(xt:T |y1:T ) denotes current smoothed estimate, p(xt+1:T |y1:T ) denotes

future smoothed estimate, and p(xt|y1:t) is the current filtered estimate.

We have the following distribution

p̂(x1:T |y1:T ) =
Np∑
i=1

W̃ (i)
T δ(x1:T − x(i)

1:T ) (4.38)

where {W̃ (i)
T }

Np

i=1 are the importance weights in time step T . By marginalization,

we obtain the approximated fixed-interval smoothing distribution for any 1 ≤

t ≤ T

p̂(xt|y1:T ) ≈
Np∑
i=1

W̃ (i)
T δ(xt − x(i)

t ). (4.39)

In practice, this method is usually infeasible because of the weight degen-

eracy problem. At final time step T , the state trajectories {x(i)
1:T }

Np

i=1 have been

resampled many times, and hence there are only a few distinct trajectories at
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time t < T . [16] proposed a new fixed-interval smoothing algorithm as follows.

Their algorithm is based on the formula initiated by [40]

p(xt|y1:T ) = p(xt|y1:t)
∫

p(xt+1|y1:T )p(xt+1|xt)
p(xt+1|y1:t)

dxt+1. (4.40)

We use an alternative approximation of the smoothing distribution:

p̂(xt|y1:T ) =
Np∑
i=1

W̃ (i)
t|Tδ(xt − x(i)

t ). (4.41)

The smoothing distribution has the same support {x(i)
t }

Np

i=1 as the filtering distribu-

tion, but the importance weights are different. The algorithm with new weights

{W̃ (i)
t|T }

Np

i=1 is as follows:

1. Initialization at time t = T

For i = 1, ...,Np, W̃ (i)
T |T = W̃ (i)

T ;

2. For k = T − 1, ..., 1 :

For i = 1, ...,Np, evaluate the importance weights

W̃ (i)
t|T =

Np∑
j=1

W̃ ( j)
t+1|T

W̃ (i)
t p(x( j)

t+1|x
(i)
t )

[
∑Np

l=1 W̃ (l)
t p(x( j)

t+1|x
(l)
t )]

. (4.42)

The algorithm is based on the following argument. Use approximation

(4.41), we have ∫
p(xt+1|y1:T )p(xt+1|xt)

p(xt+1|y1:t)
dxt+1 ≈

Np∑
i=1

W̃ (i)
t+1|T

p(x(i)
t+1|xt)

p(x(i)
t+1|y1:t)

(4.43)

p(x(i)
t+1|y1:t) can be approximated by

p(x(i)
t+1|y1:t) =

∫
p(x(i)

t+1|xt)p(xt|y0:t)dxt

≈
Np∑
j=1

W̃ ( j)
t p(x(i)

t+1|x
( j)
t ). (4.44)
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By substituting the above formula to (4.40), an approximation of p(xt|y1:T ) is

thus given

p̂(xt|y1:T ) = [
Np∑
i=1

W̃ (i)
t δ(xt − x(i)

t )]
N∑

j=1

W̃ ( j)
t+1|T

p(x( j)
t+1|xt)

[
∑Np

l=1 W̃ (l)
t p(x( j)

t+1|x
(l)
t )]

=

Np∑
i=1

[
Np∑
j=1

W̃ ( j)
t+1|T

W̃ (i)
t p(x( j)

t+1|x
(i)
t )

[
∑Np

l=1 W̃ (l)
t p(x( j)

t+1|x
(l)
t )]

]δ(xt − x(i)
t )

=

Np∑
i=1

W̃ (i)
t|Tδ(xt − x(i)

t ). (4.45)

This algorithm requires storage of the marginal distributions p̂(xt|y1:t) includ-

ing weights and particles for all t ∈ {1, ...,T }. The memory requirement is O(T Np)

and its complexity is O(T N2
p). This method is typically computationally inten-

sive.
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CHAPTER 5

STOCHASTIC POINT PROCESS SIMULATION

Point processes with stochastic intensity has wide application in credit risk.

In this project, we need to simulate the default timing according to our aggre-

gate intensity in order to make out-of-sample forecast and to assess portfolio

losses.

5.1 Related Simulation Method

If the intensity is a deterministic function of time t, then N is a non-

homogeneous Poisson process and we can generate the interarrival times by

the inverse method from the inter-arrival time distribution, the order statistics

property of the Poisson process, or the thinning scheme of [46]. In more gen-

eral case, the intensity is state-dependent and is governed by random risk fac-

tors that follows stochastic processes. Some point processes are self-exciting, in

which case the intensity depends on the past events. Under this circumstance,

the time-scaling method is widely accepted in stochastic point process simula-

tion. It is based on a result of [52], which implies that under mild conditions,

any counting process can be transformed into a standard Poisson process by a

change of time that is given by the counting process compensator, or cumulative

intensity. Thus, the event times can be generated by re-scaling Poisson arrivals

with the compensator.

Mathematically, if the default counting process has intensity λ, the compen-

sator is At =
∫ t

0
λsds and it is continuous. Suppose the compensator A increases

to ∞ almost surely. For s > 0, define A−1
s = inf{t : At > s}. The process A−1

s is con-
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tinuous and strictly increasing. The time change change theorem of [52] implies

that process NA−1 is a standard Poisson process on [0,∞) in the right continuous,

time-changed filtration G generated by the stopping time sigma-fields FA−1
s

for

s ≥ 0. Let Tk denote the k-th default time, the random variables

S k = ATk =

∫ Tk

0
λsds (5.1)

are the arrival times of a standard G-Poisson process in [0,∞). Conversely, the

k-th default time is the hitting time of A to the random variable S k almost surely,

Tk = A−1
S k
= inf{t :

∫ t

0
λsds > S k}. (5.2)

To simulate N by re-scaling of Poisson arrivals we need to generate a trajec-

tory of the intensity λ. The continuous-time path of the compensator must be

approximated on a discrete grid. However, the approximation of a continuous-

time process by a discrete-time process introduces bias into the simulation esti-

mator. The size of the bias is often unknown, and a very fine time discretization

may be required to reduce the bias to an acceptable level. Even more compu-

tational effort may be required to verify that the bias is sufficiently small. All

these issues make the time-change method computationally expensive.

This drawback leads to some exact simulation method that eliminates the

need to discretize the compensator. [32] project the point process onto its own

filtration, and then sample it in this coarser filtration. The projected intensity,

which is the conditional expectation of the intensity in the reference filtration,

is deterministic between event times. This property facilitates exact sampling

of the point process by sequential thinning or the inverse transform scheme.

This method is also related to the scheme developed by [5] for a jump-diffusion

with state-dependent intensity that is almost surely bounded from above. The
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boundedness property allows [5] to generate the jump times by state-dependent

thinning.

5.2 Default Event Simulation

We follow the argument in [23] and [32] to simulate default counting process.

We propose to project the default intensity λ onto the sub-filtration generated

by the point process itself. We do not require exact simulation as in [32] since

the stochastic system driving macro variables are complex and hence it is im-

possible to obtain an analytic solution for intensity projection.

We adopt discretization to approximate stochastic differential equations for

macro covariates. The Milstein scheme as in [41] is used for the approxima-

tion. The observation window is one week, or namely ∆t = 1
52 . The simulated

macro covariates are held constant between two observation points. After con-

ditioning on the sub-filtration, the projected intensity evolves deterministically

between events and jumps at default times. Due to the special exponential de-

cay structure for the intensity, the intensity is decreasing between two events if

these two defaults happen within one week. The post-event intensity can serve

as a dominating process before the next event in this case. This leads to the

thinning procedure in simulation. If there is no default within one week, then

the intensity jumps after one week because macro variables are updated every

week. In this case, the counting process can be considered as an inhomogenous

Poisson process.

The algorithm to simulate default events is listed below:

57



1. Simulate macro covariates on a weekly basis.

2. Simulate the first event time T1 according to inhomogenous Poisson pro-

cess, where the intensity updates every week, set k = 1.

For k=1,2,... until the time horizon:

3. Draw Zk ∼ Exp(λTk).

4. Set Vk = Tk + Z1 + ... + Zk.

5. Draw U ∼ U(0, 1), if U ≤ λVk
λTk

and Zk ≤ ∆t

then set Tk+1 = Vk.

Else increase k by 1, go to step 3 and update the intensity.

This algorithm re-defines the dominating Poisson process after each rejection

of a candidate time or weekly time grid. The acceptance probability is increased

by the updated bound for λ.
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CHAPTER 6

MAJOR EMPIRICAL RESULTS

This section shows the fitted model for the dynamic system via EMM. We

also compare various models that contain different variables. In-sample tests

and out-of-sample forecasts are performed respectively.

The macroeconomic vector under consideration is X = (S k, rk,Ck, pk)459
k=1 where

each component consists of monthly data and satisfies the stochastic differential

equations defined in 2.6-2.9. Recall that {T ′k}nk=1 are the revised default dates in

the portfolio. Define interarrival times: Ak = T ′k − T ′k−1, k = 1, ..., n and T ′0 = 0

The probability distribution of Ak is given

P(Ak > t|T ′k−1 = s, Y) = exp(−
∫ s+t

s
(exp(α + β · Xu + ηYu) +

∫ u

0
δe−γdNv)du)

dYt = −κYtdt + dW (7)
t . (6.1)

In our hazard rate model, the two latent volatility functions u and v and the

frailty factor Y are not directly observed. Therefore, the likelihood function be-

comes intractable, which makes the maximum likelihood estimation impracti-

cal. This problem can be easily solved by applying efficient method of moments.

6.1 The Fitted Model

Let us look at the empirical results for macroeconomic factors. The preferred

SNP model for the 4-dim macro vector is an AR(1)-GARCH(1,1)-Kz(4)-Iz(1), or

in other words (Lu, Lg, Lr, Lp,Kz, Iz,Ky, Iy) = (1, 1, 1, 1, 4, 1, 0, 0). The EMM estima-

tion results for macroeconomic variables are reported in Table 6.1.
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Table 6.1: EMM estimates for monthly trailing 1-year S&P 500 stock re-
turn, 3-month T-bill rate, slope and annual IP growth rate.

Coefficient Standard Error

a1 0.2803 0.0426

b1 0.8625 0.1337

ρ1 -0.2128 0.0748

ϕ1 0.3146 0.1268

κ1 0.5629 0.0856

σ2 1.2265 0.1274

θ1 0.0878 0.0163

ρ2 -0.6324 0.2016

θ2 0.6405 0.1590

σ4 1.1106 0.3176

Strong mean-reverting behavior was found for all macroeconomic variables.

For the S&P 500 stock return, the leverage effect is well interpreted by the neg-

ative correlation between return and volatility. Both models for S&P 500 stock

return and 3-month T-bill rate have no difficulty in capturing the volatility clus-

tering in the actual data. We also find out that slope is negative correlated with

short term interest rate. This is common because the long term interest rate is

relatively stable. When the short term interest rate is raised, it increases more

compared to long term rate, and hence the slope, which is just the difference, is

reduced.

Denote π = (α, β1, β2, β3, β4, δ, γ, η, κ) and hence pπ = 9. Table 6.2 shows the

estimated coefficient values for macro covariates as well as parameters for con-

tagion and frailty. The parameters for both contagion and frailty are highly
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Table 6.2: EMM estimates for coefficients of full default intensity model.

Coefficient Standard Error

constant α 2.1733 0.3842

SP 500 stock return β1 0.8645 0.2072

3-month T-bill rate β2 -0.1823 0.0470

slope β3 0.3583 0.1170

annual IP growth rate β4 -0.5275 0.2083

contagion loss size δ 1.6231 0.4472

contagion decay speed γ 2.3374 0.3825

frailty volatility η 0.3194 0.1274

frailty mean reversion κ 0.2286 0.0737

statistically significant.

The SNP model for the interarrival times A is (Lu, Lg, Lr, Lp,Kz, Iz,Ky, Iy) =

(1, 1, 3, 1, 6, 0, 0, 0) and the corresponding pθ = 14. The degree of freedom is

pθ − pπ − 1 = 4. The chi-square value defined in equation 3.22 is 5.7961 and

the corresponding p-value in the goodness-of-fit test is 0.2149. The p-value is

much larger than significance level α = 0.05, which suggests the model is well

fit. Figure 6.1 illustrates the fitted portfolio default intensity measured in events

per year. We can observe that the estimated default hazard rate can capture the

dramatic fluctuation of annual default numbers.

Let us interpret the economic intuition behind this model. The positive co-

efficient of S&P 500 stock return is unexpected sign since people believe that

when the broad stock market is strong, it would dramatically reduce the default

hazard rate. However, it could be the case that the default risk increases when
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Figure 6.1: The estimated portfolio default intensity vs actual default
number each year between 1970 and 2007.

the bubble bursts after boom years in stock market. Similar finding is also pre-

sented in [18]. The negative coefficient for 3-month T-bill rate implies that high

interest rates decrease default risk. Central banks often raise interest rates to

curb inflation when the economy is growing too fast and hence the hazard rate

should be lower. The positivity of slope coefficient indicates that the default

intensity is high when people are demanding more premium for holding long

term instruments. The negative coefficient for annual IP growth rate is quite

straightforward since the default hazard rate is lower when the whole economy

is expanding. The parameter for the jump size is moderate for a single default

event. Nevertheless, if many firms go bankrupt in a short period of time, the

contagion has a great impact on the conditional hazard rate of surviving firms.

This is well-known global ripple effect in the credit market. Default by one
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firm tends to weaken the conditions of others in the same sector. The annual

volatility for unobserved frailty is η̂ = 31.94%, which is highly economically

significant.

Table 6.3: EMM estimates for coefficients of aggregate intensity model
without frailty.

Coefficient Standard Error

constant α 2.2945 0.3842

SP 500 stock return β1 0.9031 0.2375

3-month T-bill rate β2 -0.1546 0.0404

slope β3 0.3078 0.1284

annual IP growth rate β4 -0.6173 0.1735

contagion loss size δ 1.5791 0.3465

contagion decay speed γ 2.2569 0.4825

Table 6.4: EMM estimates for coefficients of aggregate intensity model
without contagion.

Coefficient Standard Error

constant α 2.8276 0.3614

SP 500 stock return β1 1.0358 0.1290

3-month T-bill rate β2 -0.1713 0.0536

slope β3 0.3685 0.1094

annual IP growth rate β4 -0.5732 0.2046

frailty volatility η 0.3805 0.1427

frailty mean reversion κ 0.2639 0.0952

We are interested in the relative importance of each component in our inten-

sity model. We assume here that magnitude of proportional hazard rate part is
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twice as large as that of Hawkes-type contagion. A positive shock to stock re-

turn covariate by one standard deviation increases the default intensity roughly

by exp(α+βXt+ηtYt)
λt

(eβ1 − 1) ≈ 2
3 (e0.8645 − 1) ≈ 91.59%. When 3-month T-bill rate suffers

a negative shock by one standard deviation, the default intensity is increased

by about exp(α+βXt+ηtYt)
λt

(e−β2 − 1) ≈ 2
3 (e0.1823 − 1) ≈ 13.33%. Similar calculations

yield that the one standard deviation impact to slope and IP growth rate will

affect default intensity by 28.73 % and 46.31 % respectively. This implies that

S &P 500 stock return is of greater importance among the macro factors. A pos-

itive jump in frailty by one standard deviation amplifies the default intensity

roughly by exp(α+βXt+ηtYt)
λt

(e
η
2κ − 1) ≈ 2

3 (e0.3194/(2∗0.2286) − 1) ≈ 67.40%. The influence of

direct ripple effect can be analyzed under two different credit conditions. Un-

der mild contagion environment when only one default occurs and also assume

the default intensity is around 30, the default intensity is increased roughly by

δ
λt
≈ 1.6231

30 = 5.41%. On the other hand, if 10 defaults occur in a short period

and assume the default intensity is around 80, the default intensity ramps up

by about 10δ
λ
≈ 10∗1.6231

80 = 20.23%.

Table 6.5: Goodness-of-fit test for default hazard models

Full Without Without Without

Model Frailty Contagion Both

Degree of freedom 4 4 5 5

χ2 statistics 5.7961 8.1947 10.0619 12.1453

p-value 0.2149 0.0847 0.0735 0.0328

Let us compare the full benchmark model to the alternative models after

removing the frailty and contagion factor respectively. Table 6.3 and Table 6.4

report the estimated coefficients in the default intensity models without frailty
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and contagion respectively. The signs and magnitudes of the macroeconomic

covariate coefficients are similar to those in the full model. Note that the con-

stant coefficient α in the model excluding contagion is greater than its counter-

part in the full model. All these parameters remain statistically significant. Table

6.5 compares the goodness-of-fit test statistics for all these models. The models

excluding frailty or contagion shows adequate fit, although their p-values are

significantly lower. These two models have similar p-values which indicates

that frailty and contagion play roughly equally important roles in our data pe-

riod. For contrast, we also list the test result for model containing only macroe-

conomic covariates. The p-value 0.0328 is not significant at α = 0.05 level. This

implies that model without contagion and frailty can not depict properly the

evolution of default intensity over the years, and hence is rejected.

6.2 The Posterior Distribution of Frailty

One interesting quantity is the mean function of posterior path of the frailty

given the observable, i.e. E[ηYt|Gt]. This posterior distribution is important to

interpret the frailty model and apply it to the portfolio loss calculation. We

apply particle filtering algorithms covered in the previous section. The results

demonstrate the effectiveness of particle filter for continuous time stochastic

processes. The importance of recovering latent frailty is crucial for forecasting

portfolio default intensity and risk management.

We compute the Gt-conditional posterior distribution of the frailty process Y.

This is the posterior distribution of frailty Y given contemporaneously available

information of historical defaults and macro covariate data. Figure 6.2 shows
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Figure 6.2: Posterior mean E(ηYt|Gt) of the scaled frailty factor given con-
temporaneously available information Gt

the posterior mean of the frailty factor accompanied by one standard deviation

bands. The path is estimated by averaging 4000 samples of Y from auxiliary

particle filter. We observe substantial fluctuation of frailty effect over time. The

frailty factor can be positive or negative. In particular, the latent frailty level

rises rapidly when there is negative shock in the economy. Global events such

as 1990 gulf war and 2000 internet bubble drive the frailty up in a short time

period. We also observe that the frailty path takes large negative values during

years 2003-2006 before credit crunch. This indicates that model without frailty

overestimate default probabilities given macroeconomic conditions at that time.

However, the frailty variable moves quickly towards its mean value 0 in the

second half of 2007 because the severe changes in macro factors can explain

high default risk in global credit crisis.

66



1970 1975 1980 1985 1990 1995 2000 2005 2010
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Year

F
ra

ilt
y 

F
ac

to
r

Figure 6.3: Posterior mean E(ηYt|GT ) of the scaled frailty factor given all
available information GT

While most credit risk managers need posterior distribution of Yt given cur-

rent information Gt, we are also interested in obtaining frailty path given all

information GT at the final time T . We compute the posterior distribution of

Y given all available information through the end of sample period by using

particle smoothing algorithm. Figure 6.3 illustrates the GT -conditional poste-

rior mean of the frailty process E[ηYt|GT ] with one standard deviation bands.

Similar fluctuation pattern is observed. The conditional mean is less choppy

compared to that conditioning on contemporaneously information. This may

be explained by the fact that the algorithm uses all available information and

hence can smooth volatility of frailty path.
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6.3 In-sample Test and Out-of-sample Prediction

We estimate the aggregate hazard rate model from a subset of the observation

period and the goodness-of-fit tests are executed in each sub-period. All the

observation windows start in January 1970 but end at different horizons in in-

crement of one year. Table 6.6 shows the estimation results and in-sample test

p-values. The p-values of all these sub-models exceed the 5% level, which indi-

cates good fits overall.

Table 6.6: EMM estimation results for the benchmark model in different
observation periods starting 01/70 and ending at various dates
before 01/07. The p-values are from the goodness-of-fit tests in
minimum chi-squared estimation.

End 01/01 01/02 01/03 01/04 01/05 01/06 01/07

α 2.0923 2.1785 2.1086 2.1662 2.1372 2.1758 2.1806

β1 0.8403 0.9041 0.8738 0.8674 0.8961 0.8529 1.0945

β2 -0.1702 -0.1692 -0.1538 -0.1784 -0.1683 -0.1812 -0.1840

β3 0.3385 0.3729 0.3540 0.3638 0.3762 0.3629 0.3577

β4 -0.5312 -0.5196 -0.5280 -0.5114 -0.5248 -0.5083 -0.5237

δ 1.6245 1.6863 1.5428 1.6046 1.6161 1.6229 1.6273

γ 2.2836 2.3195 2.2561 2.2762 2.3267 2.3638 2.3146

η 0.3762 0.3618 0.3894 0.3485 0.3547 0.3782 0.3612

κ 0.2573 0.2437 0.2802 0.2957 0.2782 0.2628 0.2739

p-value 0.1992 0.1628 0.1734 0.1835 0.2109 0.1936 0.2068

We use these fitted models to perform out-of-sample forecasts. Four different

models are taken into account: (i) our benchmark full model, (ii) model without

frailty, (iii) model without contagion, and (iv) model excluding both frailty and

68



2000 2001 2002 2003 2004 2005 2006 2007 2008
0

20

40

60

80

100

120

140

160

Year

N
u

m
b

e
r 

o
f 

D
e

fa
u

lt

 

 

Actual
Full model
No frailty
No contagion
Without both

Figure 6.4: Predicted number of defaults from different models

contagion. In particular, we simulate credit event arrivals on one-year forecast

window. For example, the model estimated from observation horizon 1970-2001

is used to predict the total number of defaults in 2002. The estimated model pa-

rameters are fixed in the subsequent year and the macroeconomic variables are

generated from the stochastic differential equation system. Posterior frailty path

is generated through particle filter conditioning on contemporaneous informa-

tion. The arrival dates of defaults are generated from the hazard rate model.

In each forecasting period, 10,000 paths were simulated. Figure 6.4 shows the

predicted number of default events from different model specifications and re-

alized default number in each year.

Some important observations are that all these models underestimate the

number of credit events during dot-com bubbles. The full model that includes
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macro factors as well as frailty and contagion stands out as the best fit. The

model excluding contagion considerably underestimates the default number in

year 2001 and 2002 because the ripple effect is dominant during these recession

years. Models without frailty does not capture the tail loss distribution very

well. In other words, these models underestimate the probabilities of unusually

low portfolio losses and of unusually high portfolio losses. The model without

frailty and the model without contagion can hardly surpass each other in the

forecast competition. The model containing neither frailty or contagion is the

worst fit and fails to capture the default clustering phenomenon.
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Figure 6.5: Quantiles of the realized number of defaults with respect to
the predicted portfolio loss distribution as implied by different
models

Let us focus on the distribution of portfolio losses from the above simula-

tion. We calculate the quantile of the realized number of defaults with respect

to these distributions. Figure 6.5 shows these quantiles in the same plot. The
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quantiles for the full model are distributed relatively evenly in the interval [0.3,

0.8]. This indicates that the full model provides an accurate assessment of port-

folio credit risk. On the other hand, the quantiles of the model without both

variables cluster around 0 and 1, which suggests this model is a poor fit. It sig-

nificantly underestimate the probabilities of extreme high and low losses. The

quantiles for the rest two models lie in between and are slightly less extreme.

In order to further illustrate the role of frailty effect on the tail distribution of

portfolio loss, we perform out-of-sample forecast based on the full benchmark

model and model without frailty. The observation period is 01/70 to 01/02 and

the prediction using fitted model is run in subsequent 6 years.
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Figure 6.6: The probability density of the total number of defaults between
01/2002 and 12/2007. The solid line denotes the forecast made
by the fitted full frailty model. The dotted line represents the
prediction by the model without frailty.

Figure 6.6 shows the probability density plot for forecast default events be-
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tween 2002 and 2007. The density plot for model with frailty is more heavy-

tailed in both ends. The actual total number of defaults is 276 during the forecast

horizon. This realized number of defaults roughly corresponds to 77% quantile

of the distribution implied by the full frailty model, and it is around 90% quan-

tile of the distribution implied by the model without frailty. Thus, the predic-

tion made by hazard rate model without frailty significantly underestimates the

probability of extreme events. The full frailty model has a 95% quantile and 99%

quantile of 301 and 322 respectively, which exceeds the realized default number

276. This indicates this model can capture severe default clustering in the past

few years. We conclude that the frailty effect is of great importance in analyzing

the tail distribution of portfolio loss.
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CHAPTER 7

APPLICATION IN CREDIT PORTFOLIO

7.1 Portfolio Intensity

We now apply the top-down framework to model the credit portfolios and bank

loans. One thing that restricts the application of our approach is the large size

of the hypothetical portfolio. In industry, only credit card loans or auto loans

can have as many as 5000 individual constitutes that is of the similar size in our

economic wide portfolio. However, most CDS/CDO portfolios have about 100

constitutes. In order to utilize our method in these credit portfolios, we have to

narrow down the big portfolio to its small subset.

As usual, let λt represent the intensity for the original hypothetical portfolio.

Let ht denote intensity of a specific credit portfolio. The individual names in

the small pool are within the economic wide portfolio. Suppose ρ is a company

category index set where the category set can be various industry sectors or

different credit ratings. Let Qρ
t denote the number of ρ-category firms in the big

portfolio surviving up to time t. Let Mρ
t denote the number of ρ-category firms

in the small credit portfolio surviving up to time t. If Qt is the total number of

firms that have survived up to time t, then Qt =
∑
ρ Qρ

t .

Recall that T1 < T2 < ... are ordered default dates in the real economy. We

model the intensity for ρ-category firms in the big portfolio as follows:

λ
ρ
t = λt ·

Qρ
t− + ξ1{de f ault∈ρ at time t}

Qt− + ξ1{t=Tk for some k}
(7.1)

where ξ > 0 controls the impact of a new default at time t. Typically we choose

ξ ≥ 1. If there is no default at time t, the intensity simplifies to λρt = λt
Qρ

t
Qt

. Obvi-
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ously, we have
∑
ρ λ

ρ
t = λt. The intensity for ρ-category firms in the small pool

can be specified as:

hρt = λ
ρ
t ·

Mρ
t

Qρ
t
. (7.2)

In this case, the intensity is proportional to the number of surviving firms in the

portfolios. Then, we can easily model the intensity for the small credit portfolio

by summing up over all ρ categories:

ht =
∑
ρ

hρt = λt

∑
ρ

Qρ
t− + ξ1{de f ault∈ρ at time t}

Qt− + ξ1{t=Tk for some k}
· Mρ

t

Qρ
t

(7.3)

So far our argument is based on actual probability measure. In the next sec-

tion, we will switch to risk-neutral measure and apply it in pricing portfolio

credit derivatives. [19] indicates that there is little empirical evidence to distin-

guish the actual and risk-neutral dynamics of default intensities.

7.2 Portfolio Credit Derivatives

A portfolio credit derivative is considered as a contingent claim on the portfolio

loss, which bears the correlated default risk in a reference portfolio such as loans

and bonds. Index swaps are most popular portfolio credit derivatives. They

are bilateral contracts, in which one party provides default protection on the

reference portfolio, and the other party pays a premium for the protection. They

can be considered as a form of insurance.

We adopt the valuation approach of [24] for index swaps. We assume that

there are no arbitrage opportunities or market frictions. We fix a risk-neutral

probability measure P∗ with respect to a constant risk-free interest rate r > 0.

The basic valuation problem is to determine the fair premium for the contract.
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Suppose the index swap is based on a portfolio with n constituent names.

These single-name credit swaps have common notional that normalizes to 1,

common maturity date T and common quarterly swap premium payment dates

{tm}. Let Lt =
∑n

k=1 lk be a credit portfolio loss process, where lk is the loss for

the k-th individual name. The protection seller agrees to cover losses once there

is a default in the reference portfolio. The protection buyer agrees to make a

periodic payment at dates {tm}. The value of default leg Dt is calculated through

the discounted cumulative losses. By Fubini Theorem and integration by parts,

we obtain

Dt = E∗t [
∫ T

t
e−r(s−t)dLs]

= e−r(T−t)E∗t [LT ] − Lt + r
∫ T

t
e−r(s−t)E∗t [Ls]ds (7.4)

where r is risk-free interest rate and E∗t denotes the risk-neutral expectation

given available information up to time t . The cash flow that protection buyer

pays at tm is a fraction I of the portfolio notional that have survived until time

tm. The value of premium payment is given by

Pt(I) = I
∑

m

e−r(tm−t)(n − E∗t [Ñtm]) (7.5)

where Ñt is default counter in the credit portfolio. Here we neglect premium ac-

cruals and day count revision. The fair index swap spread at time t is calculated

by equating default leg and premium leg. In other words, we solve for I from

equation Dt = Pt(I). The spread only depends on expected defaults in the time

horizon (t,T ].

We value index swap premium under the risk-neutral measure P∗. The de-

fault counting process and loss process are specified in terms of a risk-neutral

intensity h∗. The risk neutral intensity h∗ is the counterpart to the actual inten-
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sity h in the last section. Let risk-neutral portfolio intensity h∗t satisfy affine jump

diffusion framework as in [2]:

dh∗t = κ
∗(c∗ − h∗t )dt + σ∗

√
h∗t dWt + δ

∗dLt (7.6)

where κ∗, c∗, σ∗ and δ∗ are risk-neutral parameters with condition 2κ∗c∗ ≥ (σ∗)2.

For convenience, we assume the loss at each default is constant. In industry, the

recovery value is widely accepted as 40%, and in other words the loss at default

is 60%. Hence, the loss process is defined as:

Lt =

n∑
k=1

lk =

n∑
k=1

0.6 · 1{Tk≤t}. (7.7)

7.3 Estimation Results

We derive the risk neutral default intensity from market credit default swap

spread. We use CDX North America 5-year generic series as index swap data.

We have found similar results as that in [1].

We calibrate our model to two real index swap series. One is CDX North

America Investment Grade 5Y market index and the other is CDX North Amer-

ica High Yield 5Y market index. 5-year maturity CDS contracts are the most liq-

uid index swaps in the market. The CDX Investment Grade and High yield se-

ries consist of 125 and 100 equally weighted names respectively. Both series are

taken from Bloomberg. The investment grade indices start on 10/21/2003 and

end at 3/31/2008. The high yield series range from 11/4/2005 to 3/31/2008.

Both indices are rolled over every 6 months and what we have are on the run se-

ries. We apply the calibration procedure proposed in [24]. We fit the data to our

model on a weekly basis. More specifically, we use every Wednesday close data
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during our sample period. If Wednesday data is not available, we use average

number of Tuesday and Thursday data. The parameter vector θ = (κ∗, c∗, σ∗, δ∗)

and risk-free rate is r = 5%. We want to numerically solve the nonlinear opti-

mization problem

min
θ

∑
m

(Marketm − Modelm(θ))2 (7.8)

where {Marketm} are market quotes and {Modelm(θ)} are index spread series de-

rived from our model. We restrict the parameter space in a finite subspace and

perform a grid search in that region. For example, we set the parameter space of

CDX IG series Θ = [0, 5] × (0, 10] × [0, 5] × [0, 5] × (0, 20]. The optimization is ini-

tialized at values drawn uniformly from the parameter space Θ, and is repeated

for each of 100 independent draws. The optimal parameter θ∗ is the minimum

value of the optimization problem obtained by gradient-based method among

all 100 runs. The estimation results are listed in Table 7.1.

Table 7.1: Grid search estimates of the risk-neutral parameters

Index κ∗ c∗ σ∗ δ∗

IG 0.48 0.91 0.83 0.24

HY 1.73 1.56 1.85 1.32

We can calculate the risk-neutral intensity h∗ for CDX portfolio from the

above estimation results. In order to get the actual intensity, we take advantage

of the full default history of economic wide portfolio. The intensity h for CDX

portfolio is calculated using equation 7.3 where we set ξ = 2. Here ρ denotes

Moody’s credit rating category. Since defaults in investment grade portfolio

are very rare, we treat Aaa,Aa,A and Baa as one category, represented by IG.

Therefore ρ = {IG, Ba, B,Caa,Ca,C}.
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We measure the default risk premium by the ratio of risk-neutral portfolio

intensity h∗ to actual intensity h. Figure 7.1 illustrates the fitted ratios h∗
h for the

5-year IG and HY CDX portfolios.
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Figure 7.1: Ratio of risk-neutral portfolio intensity h∗ to actual intensity h
for 5 year CDX contracts. Upper panel: CDX NA Investment
Grade portfolio; Lower panel: CDX NA High Yield portfolio

The risk-neutral intensity indicates the market price for protection against

instantaneous defaults in the reference portfolio given current information. The

actual intensity measures the expected number of instantaneous defaults in the

portfolio given default history and macroeconomic factors. From the graph, we

find that both ratios are significantly greater than 1 because investors demand

substantial compensation for bearing correlated default risk. The ratio of high

yield is smaller than that of investment grade for the reason that there is no

default in CDX IG portfolio during sample period. We also find out the intensity

ratios vary dramatically over time. The ratio increased quickly in May 2005
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when credit ratings for General Motors and Ford are downgraded. It gradually

declined to bottom in February 2007. It surged quickly to peak in August 2007

when subprime crisis hit the U.S. credit market.
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CHAPTER 8

CONCLUDING REMARKS

8.1 Conclusion

We establish a top-down default intensity model for analyzing multi-period

U.S. corporate defaults during 1970-2008. We carefully examine macro, con-

tagion and frailty effects in explaining default clustering phenomenon. U.S.

corporate default rates change over time well beyond levels of model that only

includes observed macro covariates. A default event has a significant impact on

the conditional default rate of surviving firms. The default clustering is either

due to direct ripple effect or information update. These two sources, contagion

and frailty, are equally important in capturing default clustering.

We use stochastic volatility models and Ornstein-Uhlenbeck processes to de-

scribe stochastic macroeconomic covariates. A Hawkes specification is utilized

for modeling contagion effect. Since the volatility and frailty factors are not di-

rectly observed, the usual maximum likelihood estimation becomes intractable.

We propose to apply efficient method of moments in parameter estimation. This

approach is particularly efficient in nonlinear system with latent variables. The

goodness-of-fit tests are naturally embedded in the estimation procedure. We

use the chi-square statistics to measure model adequacy in various specifica-

tions. We find out that a model without frailty underestimates the probability

of extreme events for large portfolio loss.

Although our model is based on a large hypothetical portfolio, we can apply

proportional approach to model intensity in a much smaller subset. From the
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index swap series, it is indicated that people demand much more risk premium

for bearing correlated default risk under risk-neutral measure. These useful

findings can be used by banks and asset managers of credit portfolios. They can

estimate the capital needed to allocate in order to withstand default losses at

high confidence level and perform dynamic risk management.

8.2 Future Research

In this dissertation, the frailty path is assumed to follow OU process. Although

this parsimonious model facilitates the filtering step of posterior distribution, it

may fail to capture the richness of frailty path over the years. More sophisticated

specification could be introduced. For instance, more Brownian motion factors

could be included in the model to provide additional shocks to the economy.

The top down approach considers all the firms in one single portfolio. On the

other hand, we can also break down these firms into different sectors. Besides

common macroeconomic covariates, we can add idiosyncratic variables that are

present in a particular sector. Furthermore, the contagion factor should be more

prevalent at a sector level than at an economy-wide level. As for frailty, we can

have both common Brownian motion and sector-wise independent Brownian

motions in the stochastic model.

It is also interesting to investigate frailty parameters from a Bayesian per-

spective. Since frailty is latent, uncertainty about the frailty mean reversion and

volatility parameters could lead to an increase in the tail risk of portfolio losses.

We can specify the prior distribution of these two parameters, and afterwards,

the marginal posterior distributions of mean reversion and volatility can be in-
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ferred. The influence of parameter uncertainty on portfolio losses can be studied

accordingly.
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