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Solvents play an important role in many technologically relevant chemical pro-

cesses and most biological systems, but thermodynamic phase-space sampling

complicates their description in ab initio calculations. Joint density-functional

theory (JDFT), which combines an electronic-density functional description of

the solute with a classical density-functional description of the solvent, avoids

phase-space sampling and enables an in-principle exact, intuitive description of

solvated systems. In this dissertation, we develop the key ingredients for ac-

curate joint density-functional calculations, derive simplified solvation models

from JDFT and test these methods on model electrochemical systems.

First, for the solute subsystem requiring a detailed electronic-structure de-

scription, hybrid density-functionals, which mix in a fraction of the exact ex-

change energy, provide greater accuracy than standard semi-local approxima-

tions to electronic density-functional theory. However, for periodic systems,

these functionals require denser Brillouin-zone sampling to resolve the zero

wave-vector singularity in the exchange energy. We show that truncating the

exchange kernel on the Wigner-Seitz cell of the ~k-point sampled superlattice

converges the energy of hybrid functionals exponentially with ~k-points, on par

with that of semi-local and screened-exchange functionals.

Next, practical JDFT calculations require computationally-efficient and ac-

curate free energy functional approximations for real liquids. We develop the



framework for treating molecular fluids starting with the exact free energy of

an ideal gas of rigid molecules. Within this framework, we construct a free en-

ergy functional for liquid water based on a microscopic picture of hydrogen

bonding, present a general recipe to construct functionals for liquids of small

molecules constrained to the bulk equation of state, and demonstrate that these

functionals adequately capture the cavity formation energies and non-linear di-

electric response of the solvent that are critical to a successful theory of ab initio

solvation.

Simplified solvation models could further reduce the computational cost and

enable a more intuitive description. However, standard polarizable continuum

models (PCM’s) that replace the solvent by a dielectric cavity along with em-

pirical corrections, require a plethora of adjustable parameters. We derive a

hierarchy of PCM’s as limits of JDFT and demonstrate chemical accuracy for

solvation energies of molecules with at most two adjustable parameters.

Finally, we study the underpotential deposition of Cu on Pt(111) as a model

electrochemical system for testing theories of ab initio solvation, and demon-

strate that an accurate solvation model is critical for a qualitatively correct de-

scription of the various adsorbate configurations on the surface, as well as for a

quantitative prediction of the electrochemical potentials for the transitions be-

tween these configurations.
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CHAPTER 1

INTRODUCTION

The fundamental laws of physics necessary to describe most of the material

world at the atomic scale, the electromagnetic interaction and non-relativistic

quantum mechanics, were known by the end of the first quarter of the twen-

tieth century. Owing to their characteristic energy and length scales, the other

fundamental interactions contribute negligibly to the properties of matter. Rel-

ativistic effects become moderately important for the heavier elements, but are

largely negligible for most properties of the elements in the first four rows of

the periodic table, which compose over 99% of the earth’s crust.

The spin-independent Schrödinger equation with the Hamiltonian,1

Ĥ = −
1
2

∑
i

∇2
i −

∑
α,Iα

1
2Mα

∇2
Iα+

∑
i<i′

1
|~ri − ~r′i |

−
∑
i,α,Iα

Zα
|~ri − ~RIα |

+
∑

(α,Iα)<(α′,I′
α′

)

ZαZα′

|~RIα −
~RI′

α′
|
, (1.1)

comprising the kinetic energy for a set of electrons at coordinates {~ri}with spins

{σi} as well as sets of nuclei of atomic numbers Zα and masses Mα at coordi-

nates {~RIα} with spins {ΣIα}, along with Coulomb interactions between all pairs

of particles,2 therefore adequately describes most properties at the atomic scale.

We then only need to solve that equation for the many-body wavefunction

Ψ({~riσi}, {{~RIαΣIα}}), antisymmetric in interchanges of any two electron coordi-

nates ∈ {~ri} of equal σi and symmetric or antisymmetric in any two like nuclear

1Here and throughout this dissertation, we use atomic units 4πε0 = e = ~ = me = kB = 1.
This leads to distances in bohrs, a0 = 4πε0~2/(mee2), and energies in Hartrees, Eh = ~2/(mea2

0).
Table E.1 lists the conversions from conventional units to these atomic units, for all relevant
physical quantities.

2In finite systems such as individual molecules or ions, the number of electrons may differ
from the sum of atomic numbers of all the nuclei in that system. However, for bulk matter, the
extensivity of thermodynamic properties depends upon the electrical neutrality of the system
[95].
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coordinates ∈ {~RIα} of equal ΣIα , depending on the spin of nuclear species α.

However, as Dirac succinctly summarized in 1929 [34],

The underlying physical laws necessary for the mathematical theory

of a large part of physics and the whole of chemistry are thus com-

pletely known, and the difficulty is only that the exact application of

these laws leads to equations much too complicated to be soluble. It

therefore becomes desirable that approximate practical methods of

applying quantum mechanics should be developed, which can lead

to an explanation of the main features of complex atomic systems

without too much computation.

1.1 Electronic structure methods

The first, almost universally employed, approximation to the full many-body

quantum mechanical problem (1.1) is the Born-Oppenheimer separation of elec-

tronic and nuclear motion [19]. In typical systems of interest, the energy scales

of center-of-mass motion of atoms and molecules (∼ 10−3Eh or room temper-

ature) are negligible on the electronic energy scale (∼ 1Eh), so that the typical

momenta in the nuclear and electronic degrees of freedom are comparable, im-

plying that 〈∇2
i 〉 ∼ 〈∇

2
Iα〉. Consequently the contribution of the nuclear kinetic

energy is smaller than the electronic kinetic energy by a factor ∼ 1/Mα < 10−3

and can be neglected as a first approximation. This leads to the many-body

Hamiltonian,

Ĥel = −
1
2

∑
i

∇2
i +

∑
i<i′

1
|~ri − ~r′i |

+
∑

i

V(~ri) + Unuc, (1.2)
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for the motion of electrons in an external potential due to fixed nuclei, V(~r) =

−
∑
α,Iα Zα/|~r − ~RIα |, with a constant energy contribution from nuclear repulsion,

Unuc given by the final term of (1.1). Within the Born-Oppenheimer approxi-

mation, the ground state energy of this Hamiltonian as a function of nuclear

coordinates, serves as the potential for nuclear motion.

The exact electronic structure problem, that is the determination of (ap-

propriately antisymmetric) eigenfunctions ψ({~ri}) of the many-body electronic

Hamiltonian (1.2), remains a rather formidable task. A brute force computa-

tional attempt of solving this problem for a tiny system, such as a single water

molecule with just 10 electrons and a sparse discretization of three-dimensional

space with 103 points, would require ∼ (103)10/(5!)2 numbers or ∼ 1015 terabytes

of memory just to store the wavefunction. It would therefore not fit on even

the largest compute clusters currently available. (Compare to 200 terabytes on

TACC Stampede deployed in 2013, for example.) Moreover, both the size of the

wavefunction and the computational effort scale exponentially with the number

of electrons.

The simpler problem of finding only the ground-state or lowest eigenfunc-

tion and energy permits a variational approach. By the Rayleigh-Ritz principle,

the ground state energy minimizes the expectation value of the Hamiltonian

over the space of all normalized antisymmetric wavefunctions,

E0 = min
ψ,〈ψ|ψ〉=1

〈ψ|Ĥel|ψ〉. (1.3)

Restricting the space of full many-body wavefunctions ψ({~ri}) to a practica-

ble subset then results in an approximate theory. In particular, selecting only

the wavefunctions of non-interacting fermionic systems, the Slater determinant

form ψ({~ri}) =
∑

p(−1)p ∏
i φi(~rpi) where {φi(~r)} is a set of orthonormal single-
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particle functions and p is a permutation, results in Hartree-Fock theory. For

simplicity, we drop explicit spin indices here and assume implicit sums over

spin in all energy terms (and a product in the wavefunction). The above varia-

tional principle simplifies to the minimization of the energy functional,

EHF[{φi}] = Unuc +
∑

i

∫
d~rφi

(
−
∇2

2
+ Vnuc(~r)

)
φi

+
∑

i, j

∫
d~r

∫
d~r′

φi(~r)φ∗i (~r)φ∗j(~r
′)φ j(~r′) − φi(~r)φ∗j(~r)φ∗i (~r′)φ j(~r′)

2|~r − ~r′|
(1.4)

over all sets of orthonormal single-particle functions. The example 10-electron

problem considered above would now require only 10 × 103 numbers or ∼

80 kilobytes of memory to store one set of orbitals, which would fit in the L2

cache of smartphone processors released in 2013. The computational effort and

storage requirements scale polynomially with the system size and number of

electrons. However, the predictions of Hartree-Fock theory for the structures of

molecules and solids and the energetics of processes at the atomic scale, are not

accurate enough to make it a useful first-principles theory of materials.

Hartree-Fock theory instead serves as a starting point for quantum chem-

istry methods. The single-particle orbitals that minimize the energy functional

(1.4) are the lowest eigenfunctions of the corresponding Euler-Lagrange equa-

tion with respect to one orbital. Extending that set to include higher ‘unoc-

cupied’ eigenfunctions leads to a useful basis for the many-body wavefunction.

First, the full many-body wavefunction can be expanded as a linear combination

of Slater determinants composed of orbitals selected from this set. Minimizing

over that space results in the configuration-interaction (CI) method, with the

level of approximation controlled by selecting the number of orbitals in the ba-

sis. This method also scales exponentially with the number of electrons, but

with a far more manageable prefactor making calculations of O(10) electrons
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possible. Another popular post-Hartree-Fock method, the coupled-cluster (CC)

approach, restricts the many-body wavefunctions to those obtained by an expo-

nential of a finite excitation operator applied to the Hartree-Fock wavefunction.

The computational cost of this approach scales polynomially with the number

of electrons, but with a high exponent: 6 when restricted to single and dou-

ble excitations (CCSD), and 7 when including triple excitations perturbatively

(CCSD(T)). This approach is extremely accurate when properly converged, but

it is practically applicable only to small molecular systems, and it is difficult

to converge with respect to the employed basis set. (See [156] for a detailed

description of these methods.)

Monte-Carlo methods provide an alternate route to sample the very high-

dimensional spaces characteristic of the many-body wavefunction. Varia-

tional Monte-Carlo (VMC) evaluates the expectation value of (1.3) for certain

parametrized classes of beyond Slater-determinant wavefunctions by statistical

sampling, and then optimizes the involved parameters. Diffusion Monte-Carlo

(DMC) stochastically solves an imaginary-time Schrödinger equation which

damps out the excited states in comparison to the ground state with the evo-

lution of time. These methods scale better to larger systems, including solids

with the assumption of periodic boundary conditions (see [43] for a review),

and routine calculations handle O(100) electrons (per simulation cell).

1.2 Electronic density-functional theory

Wave-function approximations are capable of describing electronic structure to

a high degree of accuracy, but as noted, require tremendous computational re-
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sources even for calculations of small systems with few electrons. The working

space of these methods, a large set of Slater determinants (CI, CCSD) or an en-

semble of electron configurations (QMC), contains an extraordinary amount of

detailed information about the entire spectrum of excitations, beyond just the

ground state energy which determines the dominant Born-Oppenheimer sur-

face and the equilibrium properties of matter. It must therefore be possible to

construct at least an approximate theory of the electronic ground state energy

that avoids all the extra information and associated computational overhead of

the many-body wavefunction. In fact, in the context of the Hartree-Fock ap-

proximation, Dirac [35] noted

The whole state of the atom is completely described by the elec-

tric density; it is not necessary to specify the individual three-

dimensional wave functions that make up the total electric density.

Thus one can deal with any number of electrons by working with

just one matrix density function.

Hohenberg and Kohn [68] showed that it is, in fact, possible to construct

an exact theory of the electronic ground state energy in terms of the electron

density alone. The constrained-search procedure introduced by Levy [92] most

easily motivates this theorem. The minimization over all many-body wavefunc-

tions in the variational principle (1.3) splits into a minimization over all possible

wavefunctions resulting in the same ground-state density, followed by a mini-

mization over all possible ground-state densities,

E0 = min
ψ
〈ψ|Ĥel|ψ〉

= min
n

[
min
ψ7→n
〈ψ|Ĥel|ψ〉

]
. (1.5)
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The key observation, then, is that the external potential on the electrons (which

arises from the Coulomb interactions with the nuclei) couples to the electron

density alone, so that the expectation value of the Hamiltonian (1.2) separates

to

〈ψ|Ĥel|ψ〉 = 〈ψ|Ĥint|ψ〉 +

∫
d~rV(~r)n(~r) + Unuc, (1.6)

where the internal part of the Hamiltonian, Ĥint, comprises only the electronic

kinetic energy and electron-electron Coulomb operators. Only the first part de-

pends on the wavefunction explicitly, and therefore

E0 = min
n

[
min
ψ 7→n
〈ψ|Ĥint|ψ〉︸           ︷︷           ︸
FHK[n]

+

∫
d~rV(~r)n(~r)

]
+ Unuc. (1.7)

The inner minimization yields a universal functional, FHK[n], independent of

the external potential on the electrons and hence the physical system. If this

universal functional for the internal electronic energy given the electron den-

sity were exactly known, then minimizing the total energy functional (1.7) with

respect to the electron density directly produces the exact ground state energy,

without ever working with the many-body wavefunction. Figure 1.1 summa-

rizes the reduction of the individual electron coordinate-based many-body de-

scription to the electron density level. In our tiny water example, the electron

density occupies a mere 8 kilobytes and would fit even in the L1 cache of smart-

phone processors.

The mapping from electron density to the energy of a many-electron sys-

tem extends beyond the ground state to the thermodynamic functions. Mermin

[108] showed that the equilibrium electron density of a finite-temperature sys-

tem completely determines its Helmholtz energy. The equilibrium Helmholtz

energy at temperature T minimizes the functional, A[ρ̂] = Tr[ρ̂Ĥ + T ρ̂ ln ρ̂] over

all density matrices, ρ̂, representing the state of an ensemble of many-electron
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Figure 1.1: Exact equivalence between many-body theory in terms of individual
electron coordinates (green dots on the left) and density-functional theory in
terms of total electron density (green cloud on the right), for static nuclei.

systems. As before, the coupling to the nuclear potential occurs exclusively

through the electron density n(~r) = Trρ̂n̂, and the constrained-search procedure

(minimizing over densities, followed by minimizing over density-matrices for

each density) yields

A0 = min
n

[
min
ρ̂7→n

Tr
{
ρ̂Ĥint + T ρ̂ ln ρ̂

}
︸                        ︷︷                        ︸

FT
HKM[n]

+

∫
d~rV(~r)n(~r)

]
+ Unuc. (1.8)

Once again, the inner minimization yields a universal functional, FT
HKM[n], inde-

pendent of the system or external potential. If explicitly known, this functional

would enable exact calculation of the equilibrium free energy of any many-

electron system by optimizing the electron density alone, again, without in-

volving many-body wavefunctions or density matrices. (See [123] for detailed

proofs of such density-functional theorems.)

This density-functional method, although exact in principle, requires knowl-

edge of a universal functional defined as the solution to a many-body problem

constrained to each electron density. The power of the method lies, however, in

being able to construct approximations to the universal functional constrained

to properties of special physical systems for which results are known exactly or
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approximated easily.

The history of density-based methods in fact predates the Hohenberg-Kohn

theorem by four decades, and begins with the Thomas-Fermi method [161, 41].

Within the density-functional perspective above, this method approximates the

universal functional by

FTF[n]s =

∫
d~reT(n(~r)) +

∫
d~r

∫
d~r′

n(~r)n(~r′)
2|~r − ~r′|

. (1.9)

The first term approximates the kinetic energy of the electrons of an inhomoge-

neous system as the integral of the kinetic energy density, eT(n) = 3
10 (3π2)2/3n5/3,

of a uniform electron gas of density n equal to the local electron density n(~r)

at each point in the system. The second term replaces the electron-electron

Coulomb repulsion by its mean-field estimate, known as the Hartree term. Un-

fortunately, this approximation does not capture chemical bonding and predicts

a set of unbound atoms as the equilibrium configuration for all systems.

Dirac [36] improved the model by accounting for the exchange energy or

Fock term (the second part of the final term of (1.4)) in a local-density man-

ner analogous to the kinetic energy. This amounts to replacing eT(n) with

eTX(n) = eT(n)+eX(n), where eX(n) = −3
4 (3/π)1/3n4/3 is the exchange energy-density

of the uniform electron gas of density n. This correction is not sufficient to im-

prove on Thomas-Fermi theory, however, as the deficiency lies in the description

of the kinetic energy. Further, replacing eT(n) with eTXC(n), the exact energy den-

sity of a uniform electron gas obtained from quantum Monte-Carlo calculations,

diminished by the mean-field repulsion, is also insufficient to describe chemical

bonding.

To remedy the poor description of electron kinetic energy in the approximate

density functional, Kohn and Sham [82] employed the exact kinetic energy of a
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non-interacting electron system with the same density as the interacting system,

TS [n] = min
ψNI 7→n

−1
2

∑
i

∫
d~rφi∇

2φi

 (1.10)

where ψNI is a Slater determinant composed of orthonormal orbitals {φi(~r)}. Con-

sequently, the variational problem for the ground-state energy reduces to3

E0 = min
{φi(~r)}

[
−

1
2

∑
i

∫
d~rφi∇

2φi +

∫
d~r

∫
d~r′

n(~r)n(~r′)
2|~r − ~r′|

+EXC[n]+

∫
d~rV(~r)n(~r)

]
+Unuc,

(1.11)

which still remains exact in principle because the exchange-correlation func-

tional is formally defined by

EXC[n] ≡ FHK[n] − TS [n] −
∫

d~r
∫

d~r′
n(~r)n(~r′)
2|~r − ~r′|

. (1.12)

The local-density approximation (LDA) [127] for this remaining piece, EXC[n] =∫
d~reLDA

XC (n(~r)), with the local function eXC(n) constrained to produce the exact

energy density of the uniform electron gas of density n [25], is now sufficient

for an accurate description of the geometries of molecules and solids, and to a

slightly lesser extent, energies of formation and chemical reactions.4

Exchange-correlation functionals beyond the local-density approximation

further improve the accuracy of the Kohn-Sham approach. Generalized-

gradient approximations (GGA’s) [128], EXC[n] =
∫

d~reGGA
XC (n(~r),∇n(~r)), addition-

ally use the gradient of the electron density ∇n to better account for the inhomo-

geneity in the system. Meta-generalized gradient approximations (mGGA’s)

[129], EXC[n] =
∫

d~remGGA
XC (n,∇n,∇2n, τ) improve the accuracy further by in-

cluding dependences on the Laplacian of the electron density and the orbital
3Except for subtleties of V-representability that can be resolved by working with ensembles;

see [123].
4This approach generalizes to spin-polarized systems by working with spin densities, n↑(~r)

and n↓(~r), instead of the total electron density, n(~r). In fact, most modern exchange and corre-
lation functionals are formulated in terms of the spin densities. We work predominantly with
non-magnetic systems here and drop the spin indices throughout for simplicity.
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kinetic energy density, τ = 1
2

∑
i |∇φi|

2 (which requires a slight generalization

of the Kohn-Sham formalism to include orbital dependence in the exchange-

correlation functional).

Electronic density functional theory with semi-local exchange-correlation

approximations (employing density and gradients) enable routine calculations

of ground state properties of systems with O(1000) electrons (per unit cell) on

standard workstations, and scale to over 106 electrons on supercomputers [20].

Additionally, they serve as a starting point for calculations employing the GW

approximation [63] for quasi-particles (see [72] for details) or the Bethe-Salpeter

equation [138] for optical excitations. The accuracy of semi-local density func-

tionals is sufficient for material properties such as lattice constants, equilibrium

geometries and elastic moduli, but do not meet the target accuracy ∼ 10−3Eh

necessary for reliably predicting chemical reactions at room temperature [177].5

Hybrid density functionals [13, 1], which mix in a fraction of the exact ex-

change energy (Fock term of 1.4), Ehyb
XC = αEX[{φi}] + (1 − α)EX[n] + EC[n] sig-

nificantly improve upon this accuracy by more effectively canceling the self-

interaction error introduced in the mean-field (Hartree) term.6 However, in pe-

riodic systems, these functionals traditionally suffer from poorer convergence

with the number of ~k-points used for Brillouin-zone sampling than semi-local

functionals, which increases their already much higher computational cost.

Chapter 2 traces this issue to the regularization of the integrable singularity at

zero wave-vector, and develops a method that brings the ~k-point convergence

of hybrid functionals on a par with that of traditional semi-local functionals.

5The energy scale for electronic excitations in many systems (∼ 1 eV) is typically much
larger than room temperature ≈ 0.026 eV; accounting for thermal nuclear motion in the Born-
Oppenheimer surface corresponding to the electronic ground state suffices for these systems.

6Hartree-Fock is exact and self-interaction free in the one-electron limit, whereas density-
functional theory with an approximate exchange-correlation functional is typically not.
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1.3 First-principles calculations for solvated systems

Electronic density-functional theory enables practical first-principles calcula-

tions of the ground-state structures and energies of molecules and solids. Min-

ima in the Born-Oppenheimer surface, that is the energy as a function of nuclear

coordinates, correspond to stable or meta-stable states in the electronic ground

state and infinite nuclear mass limit. The estimation of vibrational levels and

zero-point energies from the second derivatives of this surface at its minima, al-

lows perturbatively accounting for low temperatures and finite nuclear masses

in systems which involve excursions of nuclei that remain overall localized to a

small region of space.

A perturbative treatment of this nature is possible for solids and isolated

molecules; the latter in combination with kinetic theory approximates gases in

the dilute limit. Classical liquids [12] and dense gases, however, fall in neither of

these two extremes, since the nuclei neither remain localized nor do they move

in groups as molecules with negligible intermolecular interaction. Computer

simulations of even the equilibrium properties of liquids require either molec-

ular dynamics or Monte Carlo approaches to sample the thermodynamic phase

space of nuclear motion [4]. The most straightforward first-principles approach

to describe fluids [22] combines molecular dynamics with electronic density-

functional theory to compute forces on the nuclei in each configuration. This

requires tens to hundreds of thousands of time steps for adequate sampling,

and is therefore several orders of magnitude more expensive than calculations

for solid state systems of comparable size.

Solvents play a vital role in the structure of biological systems [93] and in the
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pathways of chemical reactions, in particular, at catalyst surfaces [166]. Elec-

tronic structure methods have the potential to lend insight to reaction mech-

anisms and aid the design of functional materials, but the computational cost

associated with phase-space sampling for the fluid restricts their widespread

application to such systems. Further, the estimation of free energy, the key quan-

tity in the determination of equilibria and reaction pathways, requires an addi-

tional thermodynamic integration within the molecular-dynamics based meth-

ods, further exacerbating the cost of these methods.

Electrochemical interfaces, involving a solid electrode surface in contact with

a liquid electrolyte with ionic species, have important technological applications

in catalysis, energy conversion and storage, and could tremendously benefit

from theoretical studies at the electronic structure level. The structure of the

interface including the identity and concentration of adsorbents is highly sensi-

tive to the potential applied to the electrode (which sets the chemical potential

of the electrons), which makes theoretical study of these systems challenging

and interesting.

Figure 1.2 illustrates possible approaches for dealing with systems of this

nature, using the example of underpotential deposition7 of copper on platinum

(which we study in detail in Chapter 9). In this system, a single crystal plat-

inum surface in an aqueous solution with cupric and chloride ions is covered

by different fractions of copper along with co-adsorbed chloride ions, depend-

ing on the electrode potential. A first-principles study of this system would

ideally calculate the free energy of various candidate structures on the surface

as a function of electrode potential, to determine the most stable configuration

7An underpotential deposition process is one that occurs at an electrode potential less favor-
able than the equilibrium potential for the corresponding bulk deposition.
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(a)

(b)

(c)

Figure 1.2: Practical approaches for first-principles calculations of solvated sys-
tems, (a) ignore solvent, (b) include explicit solvent molecules or (c) employ a
direct description of the equilibrium effect of the solvent, typically using a con-
tinuum approximation of some variety.

at each potential and the potentials for transitions between them. The first ques-

tion that such a study faces then, is how does one handle the electrolyte?

Many theoretical studies of such processes at solid-liquid interfaces ignore

the liquid altogether [87], and approximate the system by a solid-vacuum in-

terface (Figure 1.2(a)). The resulting simplification enables rapid exploration

of many configurations to glean a qualitative understanding of the system, but

the drastic approximation precludes quantitative predictions. The next level of

approximation replaces the liquid with a single snapshot of one or two mono-
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layers of solvent molecules on the surface [94], and requires intuitive placement

of those molecules to best represent the solvent effect (Figure 1.2(b)). Often,

no configuration of solvent molecules commensurate with the periodicity of

the surface structure can even approximate relevant low energy snapshots of

the solvent, necessitating larger, and hence more expensive, simulation cells.

Such an approach may be more accurate than replacing the liquid by vacuum,

but requires much more effort, human as well as computational. More im-

portantly, there is no guarantee that a single snapshot faithfully represents the

thermodynamically-averaged equilibrium effect of the solvent. The full molec-

ular dynamics approach gets around some of these difficulties, but at a pro-

hibitive computational cost. Additionally, the energy landscapes next to the

highly polar surfaces typical of these systems introduce difficulties in ensuring

ergodicity of the phase-space sampling.

Including explicit solvent molecules, either as a well-designed single snap-

shot or with molecular dynamics, introduces unnecessary complexity in the

study, which detracts from understanding the subsystem of interest (the cop-

per layer and co-adsorbed chloride ions in the current example). The ideal

method for studying such systems would therefore focus the electronic struc-

ture description precisely on that portion of the system, while abstracting away

the equilibrium effect of the liquid (Figure 1.2(c)). The following sections re-

view theoretical frameworks that permit such a description, and the remain-

der of this dissertation develops accurate and computationally-efficient meth-

ods within those frameworks to enable focused quantitative studies of solvated

systems.
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1.4 Classical density-functional theory

The study of solvated systems would benefit from an abstract description of

equilibrium properties of an inhomogeneous liquid, without invoking individ-

ual configurations of liquid molecules and phase-space sampling. We previ-

ously motivated electronic density-functional theory with a similar goal: avoid

the many-body wavefunction that works with individual electron coordinates

in treatments of the ground state properties of an electronic system. Not surpris-

ingly, it is possible to generalize the Hohenberg-Kohn and Mermin theorems to

enable a so-called classical density-functional description of liquids.

The equilibrium grand free energy of an arbitrary system composed of nuclei

and electrons governed by the Hamiltonian (1.1) in a set of external potentials

{Vα(~r)} acting on each nuclear species with chemical potential µα,8 is given by

Φ0 = min
P̂

Tr(ĤP̂ + T P̂ ln P̂) +
∑
α

∫
d~r(Vα(~r) − µα)Nα(~r)

 , (1.13)

where P̂ is a density matrix representing a grand-canonical ensemble of many-

body (electron + nuclear) wavefunctions, and the nuclear densities Nα are the

expectation values of the density operator N̂α(~r) in the density matrix P̂. As

before, since the external potential couples to the nuclear site densities alone,

the constrained search procedure yields

Φ0 = min
{Nα}

[
min

P̂7→{Nα}

Tr(ĤP̂ + T P̂ ln P̂)︸                        ︷︷                        ︸
ΦCDFT[{Nα}]

+
∑
α

∫
d~r(Vα(~r) − µα)Nα(~r)

]
. (1.14)

8The definition of chemical potentials of charged species requires some care since neutrality
is critical in the thermodynamic limit [95]. The simplest resolution is to work in a restricted
grand canonical ensemble where the individual particle numbers may vary with the constraint
of zero total charge. The energy of introducing neutral combinations of particles into the system
defines the chemical potentials up to an overall additive constant. Absolute chemical poten-
tials may be defined by coupling each species to an infinitesimal test charge δρ̃(~k) with a single
Fourier component and taking the limit ~k → 0 (see [164, 111] for details).
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Figure 1.3: Exact equivalence between many-body theory in terms of individual
nuclear (red and white circles on the left) as well as electronic coordinates (green
dots on the left) and classical density-functional theory in terms of nuclear site
densities alone (overlapping red and white clouds (or pink haze) on the right).

Exact predictions for physical systems require, in principle, the minimization

of a universal system-independent density functional ΦCDFT[{Nα}] coupled to

external potentials over nuclear densities alone, the electronic degrees of free-

dom having been integrated out. Figure 1.3 illustrates the reduction of the

many-body description of a collection of water molecules in a repulsive ex-

ternal potential to a classical density-functional description in terms of oxygen

and hydrogen site densities alone. Despite the prefix ‘classical’, the exact den-

sity functional is fully quantum-mechanical and does not even invoke the Born-

Oppenheimer approximation.

As before, the exact functional is unknown and must be approximated for

practical calculations. The derivation above establishes the existence of a truly

universal functional that describes all matter in terms of the densities of all nu-

clear species. However, it would be next to impossible to construct an approx-

imation for this ‘functional of everything’. Instead, we focus on a particular

substance, or even one thermodynamic phase of a substance, such as liquid wa-

ter, and construct an approximation for inhomogeneous configurations of just
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that material. Further, an approximate Hamiltonian suitable for the chosen ma-

terial, such as one composed of pair-potentials, can replace the full many-body

Hamiltonian in the above derivation (see appendix B of [57] for a proof), and

the free energy functional approximation can target reproducing the properties

of the simplified model instead.

The classical density functional theory of simple fluids consisting of par-

ticles interacting with pair-wise but orientation-independent interactions has

been studied extensively [12]. In particular, the hard sphere fluid consisting of

particles that interact with the pair potential U(ri j) = +∞ for ri j < 2RHS and 0

otherwise, where RHS is the radius of the hard sphere, has been studied in great

detail with computer simulations as well as density-functional theory. See [4]

for an introduction to computer simulations of liquids and [57] for the theory of

simple fluids. We briefly review the density-functional theory of simple classi-

cal liquids here and in Section 4.2.1, and refer the interested reader to chapter 6

of [57] for more details.

The free energy functionals for simple (mono-atomic) fluids are usually writ-

ten as9

ΦCDFT[N] = T
∫

d~rN(~r)(ln N(~r) − 1)︸                          ︷︷                          ︸
Φid[N]

+Fex[N], (1.15)

separating out the exact free energy of the ideal gas Φid[N], and approximat-

ing the remainder, the excess functional Fex[N]. Unfortunately, the local density

approximation Fex[N] ≈
∫

d~r fex(N(~r)), which works reasonably well in the elec-

9Here, we denote one-particle densities of nuclei by N(~r) instead of the more conventional
ρ(~r) in the classical density-functional theory literature. We adopt this notation in order to main-
tain clarity and reduce the number of superscripts and subscripts in the following when we
combine electronic and classical density functional theories. Throughout this dissertation, un-
less mentioned otherwise, N(~r) (with subscripts for distinguishing species) are nuclear densities,
n(~r) are electron densities, and ρ(~r) are charge densities.
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tronic case, is completely inadequate even for classical fluids with as simple a

Hamiltonian as the hard sphere fluid. The weighted-density approximation [31]

Fex[N] ≈
∫

d~rN(~r)Aex(w ∗ N(~r)), with a weight function w(r) constrained to repro-

duce the radial distribution function, gT (r), of the uniform fluid at temperature

T obtained from computer simulations, compares much more favorably with

computer simulations for predictions of inhomogeneous fluid properties. The

hard sphere fluid in one dimension permits an exact analytical solution to the

many-body problem [126]. This limit enables the construction of highly accu-

rate analytical functionals for the three dimensional hard sphere fluid [134, 159],

which do not require properties extracted from computer simulations as input.

The hard sphere fluid also forms the reference system for perturbative descrip-

tions of other simple fluids, such as the Lennard-Jones fluid with a 6-12 pair-

potential [125]. (See [135] for a review of functionals for the hard sphere fluid,

and Section 4.2.1 for a more detailed introduction to functionals for model flu-

ids.)

Model Hamiltonians for molecular (poly-atomic) fluids are typically con-

structed in the reduced interaction site model (RISM) framework, which consist

of pair-potentials between multiple sites (typically atom positions) with a rigid

molecular geometry [26]. The task of constructing free energy functionals for

these fluids is far more complicated; even the ideal gas free energy, Φid[{Nα}],

does not permit a closed-form analytical approximation and requires Monte-

Carlo computation methods [27]. Lischner et al. [96] show that, analogously to

the Kohn-Sham approach for electrons, switching from the site densities, {Nα},

to effective potentials for the ideal gas that would produce a given configura-

tion, {ψα}, as the independent variables enables an exact analytical expression

for the non-interacting fluid. However, their approach requires an angular mo-

19



mentum expansion that works only for model one-dimensional systems. Chap-

ter 4 generalizes this idea and employs the probability density for finding a

molecule at a given location and orientation, pω(~r), as the independent variable,

and enables practical classical density calculations for molecular fluids in real

three-dimensional systems.

Approximations for the excess free energy for molecular fluids [31, 33, 97]

typically require uniform fluid pair distribution functions from neutron scatter-

ing or computer simulation as input, which restricts their applicability to the flu-

ids and state points for which such data is available. Chapters 3 and 4 construct

approximate analytical free energy functionals for liquid water that adequately

capture the energetics of liquid configurations typically encountered in solvated

microscopic systems, without relying on fluid structure data. Chapter 5 extends

these approaches to other molecular liquids, particularly chloroform and car-

bon tetrachloride, whose dielectric response, unlike water, is not dominated by

rigid rotational response and requires the inclusion of molecular polarizability

effects.

1.5 Joint density-functional theory

Electronic density functional theory provides efficient computational predic-

tions for the ground-state structures of solids and molecules, and the energetics

of chemical bonding. On the other hand, classical density functional theory effi-

ciently describes inhomogeneous configurations of liquids at a coarser level af-

ter integrating out the electronic degrees of freedom. The first-principles study

of processes in solution ideally requires an accurate electronic-structure level
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description for part of the system, with a coarse-grained description of the equi-

librium effect of the surrounding solvent (as illustrated in Figure 1.2(c)). Joint

density-functional theory [130] introduces a variational theorem that allows an

in-principle exact description of precisely this nature, in terms of electron den-

sities for a portion of the system, and in terms of fluid nuclear densities for the

remainder.

The constrained-search procedure for the free energy of a many-body sys-

tem (1.1) in external potentials for the electrons, V(~r), as well as fluid nuclei,

{Vα(~r)}, establishes the existence of a universal functional Φ[ntot, {Nα}] in terms

of the total electron density and the fluid site densities (similarly to (1.7) and

(1.14)). Petrosyan et al. [130] further show that it is possible to formally par-

tition the total electron density into solute and solvent contributions, with the

solute component n(~r) integrating up to a fixed number of electrons associated

with the solute, and then integrate out the solvent component.10 As a result, the

equilibrium free energy of a solvated electronic system minimizes

Φ0 = min
n,{Nα}

ΦJDFT[n, {Nα}] +

∫
d~rV(~r)n(~r) +

∑
α

∫
d~rVα(~r)Nα(~r)

 , (1.16)

where ΦJDFT[n, {Nα}] is a universal functional of the solute electron density and

the solvent nuclear densities alone. Figure 1.4 illustrates the reduction of a

many-body description of a system in aqueous solution, for example, to a joint

density-functional description in terms of oxygen and hydrogen densities for

the solvent, which combines the reductions of electronic and classical density

functional theories (Figures 1.1 and 1.3 respectively) for the two subsystems.

10The exact functional is highly degenerate with respect to this partitioning because of the in-
distinguishability of electrons, but practical approximations break this degeneracy and localize
the solute electron density around the solute; see [130] for further details.
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Figure 1.4: Exact equivalence between many-body theory in terms of individual
nuclear (red and white circles on the left) as well as electronic coordinates (green
dots on the left), and joint density-functional theory in terms of electron density
(green cloud on the right) with discrete nuclei for part of the system and nuclear
site densities alone (overlapping red and white clouds (or pink haze) on the
right) for the remainder.

The unknown universal functional can now be decomposed exactly as

ΦJDFT[n, {Nα}] = FHK[n]︸  ︷︷  ︸
electronic

+ ΦCDFT[{Nα}]︸         ︷︷         ︸
liquid

+ ∆Φ[n, {Nα}]︸        ︷︷        ︸
coupling

, (1.17)

where FHK is the Hohenberg-Kohn (1.7) or Mermin (1.8) electronic density func-

tional, ΦCDFT is the exact free energy functional of the liquid (1.14), and the re-

mainder, ∆Φ ≡ ΦJDFT − FHK − ΦCDFT, is the free energy for the interaction of the

two systems.

In practice, we need to approximate each of the in-principle exact pieces of

(1.17), and the power of the framework lies in the capability of independently

selecting the level of approximation for each piece depending on the type of

system, desired accuracy and available computational resources.

First, for the electronic system, we can employ the Kohn-Sham formalism

(1.11) with any of the standard exchange-correlation functionals, or if necessary,

correlated quantum chemistry methods or quantum Monte Carlo methods as

we demonstrate in [140]. Next, we may treat the liquid free energy within the
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Figure 1.5: Solvation energies of organic molecules in water predicted by joint-
density functional theory, combining PBE [128] for electrons with scalar-EOS
for water (Chapter 5) using the density-only coupling (1.18) [91], compared to
experimental data from [157, 105].

rigid molecule classical density-functional theory formalism of Chapter 4, with

approximate excess free energy functionals such as those of Chapters 3, 4 and

5, or with other functionals available in the literature. (See [99] for a survey.)

Finally, we can approximate the interaction between the electronic system and

the fluid using a density-only electronic density functional approach [91]

∆Φ[n, {Nα}] = ETXC[n + nlq] − ETXC[n] − ETXC[nlq]︸                                          ︷︷                                          ︸
Kinetic-Exchange-Correlation

+

∫
d~r

∫
d~r′

ρel(~r)ρlq(~r′)
|~r − ~r′|︸                         ︷︷                         ︸

Coulomb

− s6

∑
i,α

∫
d~rNα(~r)

√
C6iC6 j fdmp

|~Ri − ~r|6︸                                   ︷︷                                   ︸
Dispersion

. (1.18)

Here, the first set of terms employs an orbital-free or density-only approxima-

tion of the kinetic energy as well as the exchange-correlation energy to estimate

the interaction between the electron density of the electronic system, n(~r), and

the liquid with a model electron density nlq[{Nα}] determined from the nuclear

site densities. As described previously, density-only functionals do not describe
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chemical bonding accurately, but here they only serve to estimate the mostly

repulsive interactions between non-bonded subsystems. The second term cap-

tures the mean field Coulomb interactions between the total charge density of

the electronic subsystem, ρel(~r) = n(~r)−
∑

i Ziδ(~r−~ri) (where solute nuclei of atomic

numbers Zi are fixed at coordinates ~ri), and the fluid, ρlq(~r) = nlq(~r) −
∑
α ZαNα(~r).

The third term employs the semi-empirical pair-potential corrections intro-

duced by Grimme [53] to estimate the dispersion interaction between the two

subsystems, which the approximate exchange-correlation functional of the first

term misses. (See Section 7.4 for details of the dispersion model.) This sim-

ple model assumes an additivity of the dispersion interactions, and contains

an empirical prefactor, s6, which absorbs some of the errors incurred in mak-

ing this ansatz. Figure 1.5 shows that joint density-functional theory with the

PBE generalized-gradient approximation [128] for the electrons, the scalar-EOS

free energy functional for liquid water (Chapter 5), and this density-only ap-

proximation to the coupling term, predicts the solvation energies of organic

molecules in water to an accuracy of 1.2 kcal/mol (1.9 mEh), with the afore-

mentioned single adjustable parameter, s6, in the dispersion model.

We can improve or simplify each of these approximations, as necessary, for

the system of interest and the study at hand. The full joint density-functional

approach sketched above, coupling a classical density functional to an elec-

tronic density functional via an approximation such as [91], is significantly less

computationally demanding than molecular-dynamics based methods, but still

about an order of magnitude more expensive than vacuum electronic density

functional calculations that simply ignore the solvent. Large scale exploratory

calculations of electrochemical and biological systems could benefit from an

even less computationally demanding description of the solvent, ideally one
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Figure 1.6: Effect of the solvent (water molecules, red and white circles on the
left) approximated in a polarizable continuum model primarily by placing the
electronic system in a cavity in a continuum dielectric slab (cyan solid labeled ε
on the right).

that adds negligible overhead compared to the vacuum calculation.

1.6 Polarizable continuum models

Polarizable continuum models (PCM’s) [163] are a class of highly-simplified low

cost solvation models that approximate most of the solvent effect by placing the

solute in a dielectric cavity, which is described by the macroscopic equations

of electrostatics in dielectric media even at these molecular length scales (Fig-

ure 1.6). These models then empirically account for additional energy contribu-

tions such as the free energy cost of forming a cavity in the liquid and dispersion

interactions between the solute and the solvent. (See Chapter 6 for a summary

and [163] for a detailed review.) These methods are extremely computationally

efficient, but require a large number of adjustable parameters for each of the en-

ergy contributions, which are then typically fit to the solvation energies of small

organic molecules.
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PCM’s are reliable and highly popular in the regime of their fit: properties

and reactions of small molecules in solution, but their application to electro-

chemical systems with interfaces between metallic or ionic surfaces with liquids

involves an uncontrolled extrapolation. Chapter 6 identifies nonlinear dielec-

tric response as the key solvent property important for these systems, and con-

structs a suitable PCM-like model within the framework of joint-density func-

tional theory that incorporates the nonlinear dielectric as well as ionic response

of an electrolyte. These models all share a somewhat uncontrolled cavity as-

sumption (see Chapter 7), but in Chapters 6-8, we extend the range of appli-

cability of such models by successively reducing the number of unphysical as-

sumptions.

The nonlinear PCM of Chapter 6 employs two fit parameters for each sol-

vent, a critical electron density, nc, that determines the cavity size, and an ef-

fective surface tension, τ, that empirically accounts for cavity formation and

dispersion in the molecular regime. Both parameters need to be refit for each

solvent of interest, and the effective surface tension, τ, fit to the molecular sol-

vation regime need not extrapolate reliably to solid surfaces in solution. Chap-

ter 7 traces the solvent dependence of the cavity size parameter to the loss of

finite-size effects in reducing solvent molecules to a continuum, and develops

an ab initio technique to compute finite-size corrections which enables the use of

a single parameter nc across solvents. Chapter 7 also develops a non-empirical

model for the cavity formation energy that compares well with classical density-

functional theory, and the semi-empirical dispersion model employed in (1.18)

[91], which capture the true dependence of these terms on the shape and size of

the cavity ranging from the molecular to the surface limits.
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Finally, Chapter 8 develops a nonlocal approximation to the electric response

of the solvent, which naturally captures the solvent molecule finite-size effects.

Combined with the weighted-density cavity formation and dispersion models

from Chapter 7, this nonlocal solvation model captures details of the solvent

without empiricism and at a level closer to full joint-density functional the-

ory, but at computational cost comparable to traditional polarizable continuum

models. Chapter 9 then applies this model to theoretically investigate the un-

derpotential deposition of copper on platinum, an experimentally well-studied,

model electrochemical system that serves as an ideal testing ground for theories

of the electrochemical interface.
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CHAPTER 2

IDEAL REGULARIZATION OF THE COULOMB SINGULARITY IN

EXACT EXCHANGE BY WIGNER-SEITZ TRUNCATED INTERACTIONS 1

Kohn-Sham electronic density-functional theory with an approximate ex-

change and correlation functional forms the basis for ab initio theoretical studies

of the ground-state electronic structure of materials, and is a key component of

joint density-functional descriptions of solvated systems. Standard semi-local

approximations to exchange and correlation in density-functional theory, such

as the local-density and generalized-gradient approximations, are remarkably

accurate for a variety of properties such as lattice constants and elastic moduli

of solids, as well as equilibrium geometries of molecules, but are not sufficiently

accurate for the energetics and kinetics of chemical reactions at room tempera-

ture [177].

Hybrid density functionals, which replace a fraction of the approximate

semi-local exchange energy with the exact non-local Fock exchange energy, im-

prove upon the accuracy of semi-local functionals and have been widely applied

for first-principles thermo-chemistry [13]. Variants of these functionals [1] en-

able calculations for solids and surfaces with accuracy sufficient for predicting

atomic-scale processes at room temperature. However, hybrid functionals re-

quire a greater number of ~k-points than semi-local functionals for comparable

accuracy in Brillouin-zone discretization for periodic systems. This increases

their already high computational cost and limits their applicability, so that prac-

tical studies of surface reactions and phenomena such as catalysis remain tanta-

lizingly out of reach.

1Published as ‘R. Sundararaman and T.A. Arias, Phys. Rev. B 87, 165122 (2013)’
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The need for finer ~k-point sampling in hybrid functionals stems from the

Brillouin-zone integrals over the singular Coulomb kernel in the exact exchange

energy of periodic systems. Similar operators also appear in GW [72] and BSE

[138] calculations, and so successful methods to address this issue have impli-

cations for excited state methods as well.

The discretization error in singular reciprocal space integrals critically de-

pends on the technique used to handle the singular contributions. The stan-

dard auxiliary-function approach [55, 169, 24] replaces the divergent terms with

an average around the singularity computed using an auxiliary function with

the same singularity as the Coulomb kernel. However, such methods that re-

place only the divergent terms lead to polynomial convergence (N−1
k ) with the

number of ~k-points Nk [24], compared to the standard exponential convergence

(exp(−aN1/3
k )) in the case of semi-local functionals.

Some hybrid functionals [66] achieve ~k-point convergence comparable to

fully semi-local functionals by replacing the exact exchange energy with a

screened exchange energy computed using a short-ranged kernel erfc(ωr)/r that

is not singular at long wave-vectors. The remaining long-ranged part erf(ωr)/r

is treated using a semi-local (generalized-gradient) approximation. The pre-

dictions of these functionals depend on the screening parameter ω due to this

additional approximation, and are less accurate than those of exact-exchange

hybrids for some properties such as elastic constants of periodic systems [112].

A method with comparable computational cost but with the exact 1/r kernel

would therefore be highly valuable.

One approach that shows promising results for the exact exchange energy

avoids the singularity by imposing a real-space cutoff on the Coulomb kernel
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with a length-scale dependent on the ~k-point mesh [146, 175, 69]. The spheri-

cal truncation employed in this approach, however, works well only for high-

symmetry crystals, whose Wigner-Seitz cells more or less resemble spheres. The

valuable gains afforded by such an approach in these special cases indicates the

need for a detailed understanding of why truncated potentials work for cal-

culating the exchange energy of periodic systems so as to point the way to a

general method applicable to all systems.

Following this program, Section 2.1.1 analyzes the singularity in the exact

exchange energy of periodic systems using a formalism based on Wannier-

function localization. This allows us to prove analytically that Wigner-Seitz

truncation of the Coulomb potential is the ideal regularization method with ac-

curacy limited only by Brillouin-zone discretization errors in the Kohn-Sham

orbitals themselves; Appendix C develops a set of techniques necessary to trun-

cate the Coulomb potential on Wigner-Seitz cells. Section 2.1.2 then general-

izes regularization methods for the exchange energy in three-dimensional sys-

tems to slab-like (two-dimensional) and wire-like (one-dimensional) geometries

using partially-truncated potentials. Finally, Section 2.2 compares truncated-

potential and auxiliary-function approaches for a variety of real materials with

high- and low-symmetry crystal systems, electronic structure ranging from in-

sulating to metallic states, and dimensionality ranging from three to one.

The results indicate that employing Wigner-Seitz truncated Coulomb kernels

is systematically more accurate than other methods for dealing with the singu-

larity in Fock exchange. Moreover, at equivalent Brillouin-zone sampling, the

accuracy of hybrid functionals which include exact exchange computed using

the Wigner-Seitz truncated method rivals that of functionals that only include
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screened exchange, and even that of semi-local functionals which include no non-

local exchange contributions whatsoever.

2.1 Exchange in periodic systems

The exact Fock exchange energy of a finite system with Kohn-Sham orbitals

ψiσ(~r) and corresponding occupation numbers fiσ is given by the non-singular

expression,

EX =
−1
2

∑
i, j,σ

fiσ f jσ

∫
d~r

∫
d~r′

ψiσ(~r)ψ∗jσ(~r)ψ∗iσ(~r′)ψ jσ(~r′)

|~r − ~r′|
. (2.1)

Here, we work with atomic units e2/(4πε0) = ~2/me = 1, so that the unit of

distance is the Bohr (a0) and the unit of energy is the Hartree (Eh). The exchange

energy is always a sum of independent contributions for each spin channel; the

rest of this section omits the spin index σ and the implicit sum over σ for clarity.

In a periodic system, the Kohn-Sham orbitals take the Bloch form ψ
~k
i (~r) =

ei~k·~ru~ki (~r), where u~ki (~r) are periodic functions normalized on the unit cell of volume

Ω and labeled by band index i as well as a wave-vector ~k in the Brillouin zone.

The exchange energy (2.1) of the periodic system per unit cell (per spin) is

EX =
−1
2

∑
i, j

∫
BZ

Ωd~k
(2π)3

∫
BZ

Ωd~k′

(2π)3 f ~ki f ~k
′

j

∫
Ω

d~r
∫

d~r′
ψ
~k
i (~r)ψ~k

′∗
j (~r)ψ~k∗i (~r′)ψ~k

′

j (~r′)

|~r − ~r′|
, (2.2)

where
∫

BZ denotes integration over the Brillouin zone. The conventional treat-

ment of this energy begins with a plane-wave expansion of the product of or-

bitals,

ψ
~k∗
i (~r)ψ~k

′

j (~r) ≡ ρ~k~k
′

i j (~r) = ei(~k′−~k)·~r
∑
~G

ei ~G·~rρ̃
~k~k′

i j ~G
, (2.3)

where ρ̃
~k~k′

i j ~G
are the Fourier components of those orbital products at reciprocal
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lattice vectors ~G. This treatment then rewrites (2.2) in Fourier space as

EX =
−Ω

2

∫
BZ

Ωd~k
(2π)3

∫
BZ

Ωd~k′

(2π)3

∑
i, j, ~G

f ~ki f ~k
′

j |ρ̃
~k~k′

i j ~G
|2K̃ ~G+~k′−~k, (2.4)

where the periodic Coulomb kernel K̃~q ≡ 4π/q2, so that for each ~k′ at ~G = 0, the

integral over ~q = ~k − ~k′ is singular at ~q = 0. This singularity is integrable since

near q = 0, the integral ∼
∫

4πq2dq 1
q2 .

The above approach, however, is problematic for any practical calculation

where Brillouin-zone integrals are approximated using a finite quadrature, that

is, as a weighted sum over a set of ‘~k-points’. In this chapter, we restrict our

attention to the commonly employed Gauss-Fourier quadratures, which corre-

spond to uniform ~k-point meshes such as the Monkhorst-Pack grid [109]. The

exchange energy computed in practice is therefore

EX =
−Ω

2N2
k

∑
~k,~k′,i, j, ~G

f ~ki f ~k
′

j |ρ̃
~k~k′

i j ~G
|2K̃ ~G+~k′−~k. (2.5)

where Nk is the total number of ~k-points used for Brillouin zone sampling. In

principle, the exchange energy would converge with increasing density of ~k-

points even if the singular terms are dropped, or equivalently, the Coulomb ker-

nel is regularized with K̃q=0 = 0, as usual. However, that results in anO(δq) error,

where δq is the typical distance between neighboring ~k-points, which leads to

an impractically slow N−1/3
k convergence.

Auxiliary-function methods [55] address this poor Brillouin zone conver-

gence of the Fock exchange energy by choosing a value for the G = 0, ~k = ~k′

term in (2.5) that captures the average contribution of 4π/|~k′ − ~k|2 in the neigh-

borhood of ~k = ~k′. These methods correct for the finite quadrature error by

setting this term to the difference between the exact integral and the discrete ~k-

point sum over the Brillouin zone of a function f (q) that matches the periodicity
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and the 4π/q2 singularity of the integrand in (2.4). For a uniform ~k-point mesh,

this amounts to replacing the Coulomb kernel K̃~q in (2.5) with

K̃aux
~q =


4π/q2, ~q , 0

Nk

∫
BZ

Ωd~k
(2π)3 f (~k) −

∑
δ~k f (δ~k), ~q = 0,

(2.6)

where the discrete sum runs over δ~k in the ~k-point difference mesh excluding

the Γ point.2

The original method of Gygi and Baldereschi presented such a function for

the face-centered cubic lattice which could be integrated analytically. Wenzien

and coworkers [169] constructed similar functions for a few other lattice sys-

tems and tabulated the corresponding q = 0 corrections numerically. Carrier

and coworkers [24] constructed a general function is applicable to all Bravais

lattices and prescribed a general scheme for computing the Brillouin zone in-

tegral. Below, when making comparisons to our truncated potential method,

we employ this last variant of the the auxiliary-function method because of its

generality, and refer the reader interested in further details of auxiliary-function

methods to [24].

With the correctly chosen G = 0 term for ~k = ~k′, the auxiliary function meth-

ods achieve N−1
k convergence [24] in the exchange energy. Duchemin and Gygi

[37] have generalized the method to achieve N−2
k convergence by introducing

corrections for the difference in curvature between the non-singular parts of the

auxiliary function and the true integrand which, in our notation above, amount

to correcting the Coulomb kernel at q = 0 as well as ~q that correspond to nearest

neighbor displacements in the ~k-point mesh. For many systems, this method

2 For a uniform ~k-point mesh, the difference mesh is uniform and Γ-centered even if the
original mesh is off-Γ.
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yields reasonable accuracy with modest ~k-point meshes; however the asymp-

totic polynomial convergence of the exchange energy is still slower than the

exponential convergence of the total energy of semi-local density functionals.

We next describe a method for calculating the exchange energy that achieves

this exponential convergence.

2.1.1 Real-space analysis of asymptotic convergence

An alternate scheme to improve the Brillouin zone convergence of exact ex-

change imposes a real-space cutoff on the Coulomb kernel in (2.5). This scheme

is reasonably accurate for high-symmetry crystals [146], but the reasons for its

success remain somewhat mysterious. Two possible explanations have been of-

fered. The first is that, with a suitably chosen cutoff, the method satisfies the

normalization constraints of the exchange hole [175]. The second is that the ef-

fective distinguishability of electrons amongst different ~k-point sampled super-

cells requires suppression of the exchange interaction between supercells [146].

These explanations do not elucidate the underlying reason for an infinite-range

interaction to be best numerically approximated by a finite-range one nor spec-

ify what form that finite-ranged interaction should take, and they do not lend

themselves to an analysis of the accuracy or convergence properties of such an

approximation. To provide such an explanation and to identify the ideal form

of the truncation, we now analyze the Fock exchange interaction computed on

finite ~k-point meshes in real space, and show that the need for truncating the

Coulomb potential arises both naturally and in a particular form.
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We start by rearranging the exchange energy of the periodic system (2.2) as

EX =
−1
2

∑
i, j,~R

∫
d~r

∫
d~r′

ρ̄
~R∗
i j (~r)ρ̄~Ri j(~r

′)

|~r − ~r′|
, (2.7)

a sum of Coulomb self-energies of the local products ρ̄~Ri j(~r) = w̄~0∗
i (~r)w̄~R

j (~r) of the

Wannier-like functions

w̄~R
i (~r) =

∫
BZ

Ωd~k
(2π)3 e−i~k·~Rψ

~k
i (~r)

√
f ~ki . (2.8)

Indeed, order-N calculations of the exchange energy [176] using maximally-

localized Wannier functions [107] employ similar transformations. In contrast,

we use (2.7), which is exactly equivalent to (2.2), only as a tool to analyze stan-

dard reciprocal-space methods.

In the case of insulators, where f ~ki = 1 for all occupied bands, the Wannier-

like functions of (2.8) are just the standard Wannier functions w~R
i and thus are

exponentially localized around the sites ~R [81]. For the case of metals, where

the occupations f ~ki are not constant, the w̄~R
i are linear combinations of Wannier

functions localized on different lattice sites

w̄~R
i (~r) =

∑
~R′

w~R′
i (~r)

∫
Ωd~k
(2π)3 ei~k·(~R′−~R)

√
f ~ki︸                     ︷︷                     ︸

Fi(~R′−~R)

, (2.9)

with coefficients Fi(~R′ − ~R) given by a Fourier transform of the square-root of

the band occupation. For metals in the ground state, the occupations are dis-

continuous at the Fermi surface which leads to a polynomially decaying Fi.

In particular, for metals in three dimensions with a compact two-dimensional

Fermi surface, Fi(~R) ∼ R−2 for large R. At finite temperature T , Fi also decays

exponentially with a length scale inversely proportional to T . Consequently,

the w̄~R
i in metals are localized polynomially at T = 0 and exponentially with a
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temperature-dependent decay length at T , 0.3 In all these cases, the localiza-

tion of w̄~R
i closely mirrors that of the one-particle density matrix [74].

Given the above properties of the Wannier-like functions w̄~R
i , each orbital

product ρ̄~Ri j(~r) is localized and diminishes with increasing R, since it is a product

of one function localized around ~0 and another around ~R. The magnitude of the

orbital product decreases exponentially for insulators and as R−2 for metals at

zero temperature, so that the corresponding Coulomb self-energies decay expo-

nentially and as R−4 respectively. The sum over unit cells in (2.7) converges in

all these cases.

Next, to understand the convergence properties of actual calculations, we

repeat the above transformations with a finite ~k-point mesh with Nk samples

instead of continuous integrals over the Brillouin zone. A uniform ~k-point mesh

centered on the Γ-point corresponds to Kohn-Sham orbitals that are periodic

on a supercell of volume NkΩ. For uniform meshes not containing the Γ-point

(off-Γ meshes), such as the Monkhorst-Pack grid, the orbitals share a common

Bloch phase on an NkΩ supercell. In all these cases, the orbital products ρ̄~Ri j(~r) are

periodic on that NkΩ supercell. Because of this periodicity, the expression for the

exchange energy (2.7) then remains unmodified except that one of the integrals

over space is restricted to a single NkΩ supercell. Converting the other integral

over all of space to a sum over integrals restricted to each NkΩ supercell, and

3Throughout this chapter, the energies we calculate are on the Born-Oppenheimer surface,
that is at fixed ionic positions. In this context, the electron temperature T controls the width of
the transition in the occupations f~ki at the Fermi energy, and is a commonly employed numerical
device to aid integrations over the Brillouin zone. For notational convenience, we define T = 0
to correspond to the situation where the occupations are strictly 1 below the Fermi energy and
0 above it, which indeed is the T → 0 limit of the Fermi function.
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using the periodicity of the orbital product,

EX =
−1
2

∑
i, j,~R

∫
NkΩ

d~r
∫

NkΩ

d~r′ρ̄~R∗i j (~r)K(~r − ~r′)ρ̄~Ri j(~r
′), (2.10)

with

K(~r) =
∑
~S

1

|~r + ~S |
, (2.11)

where ~S are lattice vectors of the effective superlattice of cell volume NkΩ which

arises from finite ~k-point sampling. The summand in (2.11) falls off only as 1/S

causing K(~r) to diverge for all ~r. In fact, K(~r) = 1
NkΩ

∑
~k, ~G ei(~k+ ~G)·~r 4π

|~k+ ~G|2
, so that it is

again the ~k = ~G = 0 component which needs special handling, as above.

Now consider a sufficiently dense ~k-point mesh such that the corresponding

supercell is much larger than the spatial extent of the localized w̄~R
i . In that case,

the periodic versions of ρ̄~Ri j at finite ~k-point sampling are identical (with expo-

nentially small errors) in one, appropriately centered, supercell to the original

non-periodic localized ones. Therefore, the contribution from the ~S = 0 term in

K(~r) to (2.10), apart from errors decaying exponentially with the density of the

~k-point mesh, is the true exchange energy of the infinite system (2.7). The non-

exponentially decaying errors in (2.10) arise from the contributions due to all the

other super-cells ~S , 0, which thus can be eliminated completely by truncating

the Coulomb potential so that K(~r) = 1/r.

Such truncation of the Coulomb potential on the Wigner-Seitz cell of the

~k-point sampled superlattice with supercell volume NkΩ, in practice simply

amounts to replacing K̃~q in the standard reciprocal-space expression (2.5) by the

Fourier transform of the truncated potential. The minimum image convention

(MIC) algorithm [106] employs

K̃WS
~q ≈

4π
q2

(
1 − exp

−q2

4α2

)
+

Ω

N~r

∑
~r∈WS

e−i~q·~r erf αr
r

, (2.12)
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and enables efficient construction of truncated kernels in the plane-wave ba-

sis. Appendix C derives this algorithm for arbitrary lattice systems as equation

(C.4); see Appendix C.1 for a detailed explanation of all the terms and approxi-

mations involved in (2.12). When such a truncated kernel replaces the periodic

Coulomb kernel, the remaining error in the exchange energy arises from the

deviations of the periodic ρ̄~Ri j from the infinite ones, within one supercell, as

discussed above. These deviations decay exponentially when the w̄~R
i are expo-

nentially localized, leading to exponential convergence of the exchange energy

with the number of ~k-points.

The general analysis we developed above not only allows us to establish the

Wigner-Seitz super-cell truncated potential as the natural method with ideal

asymptotic convergence, but also provides the framework for establishing ana-

lytically the convergence properties of other methods a priori by simply com-

paring the effective Coulomb kernels which they employ. Ultimately, each

reciprocal-space method prescribes a kernel K̃(~q) for use in (2.5), which trans-

lates to some K(~r) in the real space version (2.10). The error in any method com-

pared to the ideal case is governed by the discrepancy of K(~r) from 1/r, given

by

δK(~r) =
1

NkΩ

∑
~k, ~G

ei(~k+ ~G)·~rK̃(~k + ~G) −
1
r

(2.13)

for a particular ~k-point set.

Figure 2.1 compares the discrepancies in the effective Coulomb kernels of

various methods for a cubic lattice over a radial slice of the effective supercell

with different ~k-point meshes. δK is exactly zero within the domain of trunca-

tion for any truncated Coulomb potential, and hence it is zero for the Wigner-

Seitz truncated kernel in the entire supercell. Truncation on a sphere of volume
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Figure 2.1: Comparison of the discrepancy in the effective Coulomb Kernel from
1/r of various methods for computing the Fock exchange energy. This discrep-
ancy is plotted along the x-direction from the origin to the boundary of the cubic
Wigner-Seitz cell of the ~k-point sampled super-lattice of a simple cubic lattice of
lattice constant a. Both axes have been scaled to be dimensionless. The trun-
cated Coulomb potentials have zero discrepancy for most or all of the supercell.
The auxiliary-function methods shift the periodic kernel to minimize the overall
discrepancy, while the probe-charge Ewald-sum method pins the discrepancy at
the origin to 0.
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NkΩ, as proposed by Spencer and Alavi [146], achieves exponential convergence

as well, but exhibits its asymptotic properties starting at larger Nk since spheres

do not tessellate the space and this leads to some overlap between supercells.

The standard periodic kernel with G = 0 projected out has a large discrep-

ancy ∼ 1/L, where L is the linear dimension of the supercell, and hence ex-

hibits ∼ N−1/3
k convergence. The auxiliary-function methods add a constant off-

set to the periodic kernel by adjusting the G = 0 component, which is chosen

to minimize the discrepancy over the supercell with some weight which de-

pends on the choice of auxiliary function f (~q). The curvature corrections pro-

posed by Duchemin and Gygi [37] adjust the constant offset in addition to the

coefficients of eiδ~k·~r for the nearest-neighbors δ~k in the ~k-point mesh. For the

cubic supercell of length L plotted in Figure 2.1, this correction happens to be

(cos(2πx/L) − 1)/(πL) in the x slice. This additional freedom reduces the mag-

nitude of the discrepancy more rapidly with increasing Nk than the case when

only G = 0 is adjusted.

An interesting alternative to the auxiliary-function method with similar ac-

curacy is the probe-charge Ewald-sum method [120]. Here, the G = 0 compo-

nent of the Coulomb kernel is set to the potential at the origin from an array of

unit point negative charges placed at all points of the ~k-point sampled super-

lattice except the origin, a Coulomb sum which can be computed readily using

the Ewald method [38]. This amounts to adjusting the discrepancy at the origin,

δK(0), to zero, as can be seen in Figure 2.1. Alternately, this method attempts

to cancel the contributions from ~S , 0 supercells of (2.11) in (2.10) by neutraliz-

ing all those supercells with a point charge. This would be exact if each ρ̄ was

spherically symmetric, but in reality incurs an error asymptotically dominated
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by dipole-dipole interactions ∼ L−3 and hence converges as N−1
k with ~k-point

sampling.

The Wannier-function formalism presented here clearly establishes the ad-

vantage of the truncated-potential methods and elucidates the asymptotic con-

vergence of the exchange energy computed using different methods. Note that

none of these methods require Wannier functions in practice; each method pre-

scribes a different replacement for the periodic plane-wave Coulomb kernel

K̃q = 4π/q2 in the standard reciprocal-space expression (2.5). We compare the

accuracy of these methods and demonstrate their analytically-predicted asymp-

totic behavior for real materials in Section 2.2.

2.1.2 Extension to lower-dimensional systems

The preceding section shows how the integrable singularity in reciprocal-space

calculations of the exchange energy of systems with three-dimensional periodic-

ity can be regularized using auxiliary function methods or, ideally, by truncating

the Coulomb potential to the Wigner-Seitz cell simply by modifying the Fourier

transform of the Coulomb kernel. Reciprocal-space methods can also be applied

to systems with lower-dimensional periodicity by truncating the Coulomb po-

tential along a subset of lattice directions. Appendix C details these types of

truncations as well. Specifically, the exchange energy in these geometries can

be computed using (2.5) by employing a partially truncated Coulomb potential

given by (C.6) or (C.8) for K̃~q, and restricting the ~k-points sums to the two- or

one-dimensional Brillouin zone of the periodic directions alone. The exchange

energy still contains an integrable singularity, q−1 for slabs and ln q for wires,
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that again needs to be addressed just as it did for bulk systems. Before going

on to present results in the next section, here, we briefly describe how we ex-

tend each of the methods discussed above for bulk systems to the cases of these

lower-dimensional geometries.

First, the auxiliary-function method for these geometries replaces the G = 0

component of the appropriate partially truncated Coulomb kernel to obtain

K̃aux
~q =


K̃slab/wire
~q , ~q , 0

Ω⊥

(
Nk

∫
BZ‖

Ω‖d~k
(2π)d f (~k) −

∑
δ~k f (δ~k)

)
, ~q = 0,

(2.14)

where Ω‖ is the area/length of the two-/one-dimensional unit cell in the

periodic directions, BZ‖ is the corresponding Brillouin zone and Ω⊥ is the

length/area of the artificial periodicity along the truncated directions. The

auxiliary function needs to match the singularity of the truncated Coulomb

kernel, and we adapt Carrier and coworkers’ construction for arbitrary three-

dimensional lattices [24] to lower dimensions. For a slab with lattice basis vec-

tors ~a1 and ~a2 in the periodic directions, and corresponding reciprocal lattice

vectors ~b1 and ~b2, the function

f (~q) = 2π2
[
b2

1 sin2
(
~a1 ·

~q
2

)
+ b2

2 sin2
(
~a2 ·

~q
2

)
+

1
2
~b1 · ~b2 sin(~a1 · ~q) sin(~a2 · ~q)

]−1/2

(2.15)

is periodic on the reciprocal lattice with a single singularity in the Brillouin zone

at ~q = 0 for arbitrary lattice vectors. Similarly,

f (~q) = −2γ + ln
a2

sin2(~a · ~q/2)
(2.16)

is a suitable auxiliary function for a wire with lattice vector ~a along the peri-

odic direction, where γ is the Euler-Mascheroni constant. In this case, both the

integral and the sum in (2.14) can be performed analytically to yield K̃aux
0 =

2Ω⊥(ln 2Nka − γ).
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Next, the probe-charge Ewald compensation method generalizes trivially to

the slab and wire geometries, and only requires the substitution of the usual

three-dimensional Ewald sum with the appropriate lower-dimensional analog.

(See Appendix C.3 for details.) Interestingly, this method yields the same G =

0 component for the wire-geometry exchange kernel as the auxiliary function

method above, so that the two methods are identical for wires.

Finally, the Wigner-Seitz supercell truncated Coulomb potential requires no

modification for partially periodic systems. The truncation domain remains the

Wigner-Seitz cell of the ~k-point sampled super-lattice; one or two lattice direc-

tions have only a single ~k-point and the boundaries of the supercell coincide

with the unit cell in those directions. These Wigner-Seitz cells become increas-

ingly anisotropic with increasing Nk and spherical truncation is no longer a vi-

able option.

2.2 Results

The analysis of Section 2.1 identifies Coulomb truncation with its asymptotic ex-

ponential convergence as the natural choice for computing the exchange energy

of periodic systems, in comparison to auxiliary-function methods with polyno-

mial convergence. Here, we compare the accuracy of all these methods and

demonstrate their analytically-established asymptotic behaviors for real mate-

rials with a variety of electronic structures and dimensionalities.

Specifically, we consider four methods for computing the exact exchange en-

ergy, the Wigner-Seitz truncated potential introduced here, the spherical trunca-

tion of Spencer and Alavi [146], the probe-charge Ewald compensation method
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[120], and the auxiliary-function method with the general function applicable

to all lattice systems by Carrier and coworkers [24]. The first three of these

methods trivially generalize to lower dimensions, while the auxiliary-function

method requires minor modifications as detailed in Section 2.1.2.

We also compare the convergence of the exact exchange energy using the

above methods to that of the erf-screened exchange employed in the range-

separated HSE06 hybrid functional [85]. In this functional, the Coulomb ker-

nel in the non-local exchange energy is replaced by the short-ranged erfc(ωr)/r

with ω = 0.11a−1
0 , while the long-ranged part is approximated using a semi-local

functional. The screened exchange avoids the G = 0 singularity and the HSE06

functional has so far achieved superior ~k-point convergence compared to regu-

lar hybrid functionals with exact exchange [121]. Here, we demonstrate that em-

ploying Wigner-Seitz truncation for the exact exchange energy puts the conver-

gence of hybrid functionals employing the exact non-local exchange energy (e.g.

PBE0 [1]) on par with that of the screened-exchange functionals (e.g. HSE06)

and even that of semi-local functionals employing no non-local exchange what-

soever (e.g. PBE [128]).

2.2.1 Computational Details

We have implemented these methods in the open-source plane-wave density-

functional software JDFTx [154], where they are now publicly available. The

specifics of these implementations are that the auxiliary-function and probe-

charge Ewald methods simply replace only the ~G = 0 value of the ~k = ~k′

Coulomb kernel in (2.5) with a precomputed value. The truncated potential
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Table 2.1: Comparison of the average computation time for the exact exchange
energy using different regularization methods for hexagonal silicon carbide
with 8 × 8 × 8 ~k-point sampling. The timing statistics are from ten calculations
for each method on identical 12-core Xeon compute nodes.

Method Computation Time [s]
Wigner-Seitz truncated 555 ± 11

Spherical truncated 874 ± 12
Auxiliary function 552 ± 11

Probe-charge Ewald 543 ± 10

methods, on the other hand, alter K̃~q in (2.5) for all ~q = ~G + ~k′ − ~k. Spherical

truncation uses K̃~q defined analytically via (C.2). Wigner-Seitz truncation em-

ploys a precomputed kernel calculated by applying the MIC algorithm (C.4) on

the supercell, as detailed in Appendix C, and then redistributing the resulting

supercell kernel to unit cell kernels for each ~k′ − ~k.

Table 2.1 shows that the computational overhead for fetching the precom-

puted kernel from memory (look-up overhead) in the Wigner-Seitz truncated

method is negligible, and results in compute times equal to the auxiliary func-

tion and probe-charge Ewald methods, within run-to-run variations. In fact,

this overhead is negligible compared to that of the extra transcendental (co-

sine) evaluations in spherical truncation; precomputing the kernel also opti-

mizes spherical truncation and we report the analytical evaluation time here

only to illustrate the negligible look-up overhead. Next, the computational ef-

fort to calculate and predistribute the kernel is negligible compared to a single

evaluation of the exchange energy: a mere 1.4 s for the example of Table 2.1.

Finally, the memory overhead of the precomputed kernel is comparable to four

Kohn-Sham bands, and is therefore negligible for most systems.
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Table 2.2: Unit-cell parameters for the systems studied here, including citations
for experimental lattice constants and references to figures with corresponding
results. Na is the number of atoms in the primitive unit cell of each calculation.

System Unit cell Na a [Å] c [Å] Ref. Figure
2H-SiC Hexagonal 4 3.076 5.048 [2] 2.3,2.9(b)
3C-SiC FCC 2 4.3596 - [160] 2.2(b)
Ice XIc BCTa 6 4.385 6.219 [133] 2.4

Si FCC 2 5.431 - [62] 2.2(a),2.9(a)
Platinum FCC 1 3.924 - [62] 2.6,2.9(c)
Diamond FCC 2 3.567 - [62] 2.2(c)
Graphite Hexagonal 4 2.461 6.709 [62] 2.5
Graphene Hexagonal 2 2.46 10b PBEc 2.7

(8,0) SWCNTd Tetragonal 32 25b 4.32 PBEc 2.8

a Body-centered tetragonal.
b Coulomb potential is truncated along these directions.
c DFT lattice constants using the PBE functional [128].
d Single-walled carbon nanotube.

In order to study a large number of materials and ~k-point configurations

within the available computational resources, rather than performing fully self-

consistent calculations, we first determine converged Kohn-Sham orbitals of

a density-functional calculation using the semi-local PBE exchange and cor-

relation functional [128], and then compute the exchange energies from these

orbitals according to the above methods. The calculations employ norm-

conserving pseudopotentials at a kinetic energy cutoff of 30 Eh. Table 2.2 sum-

marizes the unit-cell parameters for the systems studied below.

Figures 2.2-2.8 show the deviations of the exact and screened exchange en-

ergies at finite ~k-point configurations from their ~k-point-converged values for a

variety of systems. The left-hand panels show this deviation for coarse ~k-point

meshes on a linear scale, while the right-hand panels illustrate the asymptotic
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convergence on a logarithmic energy scale. The base line of ~k-points is insuffi-

cient to reliably fit power laws and the dotted lines are only a visual guide with

the expected exponent for polynomial convergence. For the three-dimensional

systems, we study both isotropic and anisotropic ~k-point meshes. The plots ex-

plicitly label anisotropic ~k-point configurations, whereas the unlabeled points at

integer values of X ≡ N1/3
k correspond to X×X×X ~k-point meshes.

2.2.2 Insulators

We begin our computational studies with a sequence of semiconductors and

insulators in the high-symmetry diamond structure. Figure 2.2 compares the

deviation of the exchange energy of silicon, cubic silicon carbide and diamond

at various finite ~k-point configurations from the infinite limit for different sin-

gularity regularization methods.

While the order of magnitude of the error in the exact exchange energy

with coarse ~k-point meshes is comparable for all methods, Wigner-Seitz trunca-

tion typically yields significantly lower errors than do the other methods. The

Wigner-Seitz truncated and the probe-charge Ewald methods (red +’s and blue

+×’s respectively in Figure 2.2) exhibit smooth convergence for all~k-point meshes

including anisotropic ones, whereas the remaining methods incur higher er-

rors for anisotropic ~k-point meshes. The pattern of errors with ~k-points for each

method is similar for the three materials with the same underlying Bravais lat-

tice and point-group symmetries.

In contrast, the asymptotic exponential convergence of the truncated meth-

ods leads to orders of magnitude reduction in error for fine ~k-point meshes,
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Figure 2.2: Convergence of exact and screened exchange energies per unit cell
for three semiconductors and insulators in the diamond (zinc-blende) structure:
(a) silicon, (b) cubic silicon carbide (phase 3C), and (c) diamond. See last para-
graph of Section 2.2.1 for details. The non-monotonicity in the absolute asymp-
totic error of the auxiliary-function results is due to a change in sign of that error.
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Figure 2.3: Convergence of exact and screened exchange energies per unit cell
for hexagonal silicon carbide (phase 2H). See last paragraph of Section 2.2.1 for
details.

compared to the probe-charge Ewald and auxiliary-function methods, which

exhibit L−3 convergence. The exponential decay length of the error in the ex-

change energy with respect to L, taken here to be the nearest neighbor distance

in the effective ~k-point sampled super-lattice, decreases from 5.5 Å in silicon

through 3.5 Å in cubic silicon carbide to 2.5 Å in diamond. The correspond-

ing band gaps ∆ are 1.1 eV, 2.3 eV and 5.5 eV respectively. The decay length

varies roughly as ∆−1/2, similar to the density-matrix localization length scale

of tight-binding insulators [74]. Consequently, the relative accuracy of the trun-

cated methods for insulators increases dramatically with increasing band gap as

seen in Figure 2.2. Note that the accuracy of the truncated potential methods for

the exact exchange energy matches that of the screened exchange energy (red

+’s and green ×’s versus pink ∆’s), indicating that these methods are truly lim-

ited only by Brillouin-zone discretization errors in the underlying Kohn-Sham

orbitals.
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Figure 2.4: Convergence of exact and screened exchange energies per unit cell
for proton-ordered cubic ice. See last paragraph of Section 2.2.1 for details.

In high-symmetry materials, the accuracy of spherical truncation is similar

to Wigner-Seitz truncation for isotropic ~k-point meshes since the Wigner-Seitz

cell of the effective super-lattice is approximately spherical (rhombic dodecahe-

dron for the FCC unit cell in the zinc-blende structure). This is no longer the

case for lower symmetry crystals such as hexagonal silicon carbide (phase 2H

with the wurtzite structure) shown in Figure 2.3. In this anisotropic case, the ac-

curacy of the Wigner-Seitz truncated method (red +’s) continues to match that

of screened exchange (pink ∆’s). On the other hand, spherical truncation (green

×’s), although still exponentially convergent, is an order of magnitude less accu-

rate. Similarly, amongst the asymptotically L−3 convergent methods, the supe-

rior accuracy of the probe-charge Ewald method for anisotropic ~k-point meshes

in the high-symmetry crystal carries forward to superior accuracy overall for

lower-symmetry crystals, in comparison to the auxiliary-function method.

The differences between the methods are most dramatic for proton-ordered
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Figure 2.5: Convergence of exact and screened exchange energies per unit cell
for graphite. See last paragraph of Section 2.2.1 for details.

cubic ice XIc (the proposed ground state structure [133]) shown in Figure 2.4.

The highly-localized states in this material cause dramatic improvements in ac-

curacy for the truncated methods even for coarse ~k-point meshes. Once again,

lowered symmetry significantly favors the probe-charge Ewald method in com-

parison to the auxiliary-function method (blue +×’s versus cyan �’s).

2.2.3 Metals

As demonstrated above, the exponential localization of Wannier functions leads

directly to exponential convergence in the case of truncated Coulomb interac-

tion methods. In contrast, we expect the discontinuity at the Fermi energy in

the ground state to lead to algebraic convergence in metallic systems, which we

explore now.

Figure 2.5 shows the convergence behavior of the various methods for the
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case of graphite, which is semi-metallic. Once again, the probe-charge Ewald

and auxiliary-function methods exhibit L−3 convergence. Wigner-Seitz trunca-

tion no longer exhibits exponential convergence, but remains the most accurate

method for computing the exchange energy, with accuracy comparable to that

of screened exchange as before. Spherical truncation and the auxiliary-function

method are less accurate due to the lower symmetry of the crystal structure in

this case.

The exponents governing the localization in graphite are complicated by

the layered quasi-two-dimensional structure with weak inter-planar coupling

due to dispersion interactions. We analyze those details in the related two-

dimensional material graphene in Section 2.2.4, and here now focus on a sim-

pler, three-dimensional metal, platinum.

In simple metals, the Wannier-like functions w̄~R
i (~r) given by (2.9) decay ∼ r−2,

as discussed in Section 2.1.1. This leads to r−4 decay of the orbital products and

consequently ∼
∫ ∞

L
4πr2dr(1/r)r−4 ∼ L−2 errors due to truncation in the Coulomb

self energies in (2.10). The L−2 errors dominate the asymptotic convergence of

all the methods for metals at low temperatures, as shown in Figure 2.6(a) for

platinum. However, Wigner-Seitz truncation (red +’s) continues to yield the

highest accuracy for exact exchange in practice, particularly for coarse ~k-point

meshes.

At finite Fermi temperature T for the electrons, the exponential decay length

scales as at/T , where a is the lattice constant and t is the typical band width.

When the number of ~k-points along each dimension exceeds approximately t/T ,

this decay length plays an analogous role to the Wannier-function length scale

of insulators. For example, for a metal with bandwidth t = 5 eV, an electron
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Figure 2.6: Convergence of exact and screened exchange energies per unit cell
for face-centered cubic metallic platinum at electron temperatures, (a) T = 0.1 eV
and (b) T = 1 eV. See last paragraph of Section 2.2.1 for details. The non-
monotonicity in the exponentially-convergent results in (b) for exact exchange
with truncated-potentials and screened exchange is due to a change in sign of
the error near N1/3

k ∼ 12.
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temperature, T ∼ 1 eV is necessary to obtain exponential convergence beyond

5 ~k-points per dimension. Figure 2.6(b) shows the restored exponential conver-

gence of the truncated methods and screened exchange, and the L−3 conver-

gence of the other methods, in this regime.

2.2.4 Lower dimensional materials

In lower dimensional semiconducting or insulating systems, we should expect

the localization of the underlying Wannier functions to allow for exponential ~k-

point convergence with an appropriately chosen method from Section 2.1.2. For

the metallic cases, the reduced dimensionality can lead to different exponents

for the polynomial convergence, which we also explore here.

The semi-metallic behavior of the two-dimensional material graphene is par-

ticularly interesting. In this case, the localization properties are determined by

the phase twist of Bloch functions in k-space about the Dirac points.4. The two-

dimensional Fourier transform of that phase twist yields an r−2 decay of the

Wannier-like functions. The orbital products fall off as r−4 leading to truncation

errors in the Coulomb self energies in (2.10) that scale as
∫ ∞

L
2πrdr(1/r)r−4 ∼ L−3.

Figure 2.7(a) shows that all methods, therefore, exhibit L−3 asymptotic conver-

gence for graphene at zero temperature. The errors oscillate with a period of

3 ~k-points per dimension because the discrete ~k-point mesh includes the Dirac

points when the sampling is a multiple of 3.

At sufficiently high temperatures, the exponential length scale at/T of the

Wannier-like functions becomes relevant at practical ~k-point meshes, just as in
4Near these points, the energy varies linearly with momentum, so that the electrons behave

like massless relativistic fermions described by the Dirac equation
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Figure 2.7: Convergence of exact and screened exchange energies per unit cell
for graphene at electron temperatures, (a) T = 0 and (b) T = 1 eV. See last para-
graph of Section 2.2.1 for details. The non-monotonicity in the exponentially-
convergent results in (b) for Wigner-Seitz truncated exact exchange is due to a
change in sign of the error near N1/2

k ∼ 11.
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Figure 2.8: Convergence of exact and screened exchange energies per unit cell
for the semiconducting (8,0) single-walled carbon nanotube. See last paragraph
of Section 2.2.1 for details.

three-dimensional metals. Figure 2.7(b) shows that this length scale restores the

exponential convergence of the Wigner-Seitz truncated method and screened

exchange (red +’s and pink ∆’s respectively).

Truncation on a three-dimensional sphere is no longer meaningful in these

lower dimensional materials, and it gives reasonable results only for interme-

diate ~k-point meshes which minimize the aspect ratio of the supercell. Analyti-

cally Fourier transforming the Coulomb potential truncated on the appropriate

‘lower-dimensional spheres’, finite cylinders in two-dimensional materials and

finite right prisms in one-dimensional materials, is no longer possible. Wigner-

Seitz truncation using the MIC algorithm (C.4) is clearly the method of choice

in these geometries.
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Finally, in one dimensional systems, the probe-charge Ewald and auxiliary-

function methods are identical as proved in Section 2.1.2. As Figure 2.8 shows,

for a semiconducting (8,0) single-walled carbon nanotube (SWCNT), both of

these methods yield rather poor L−3 convergence, in contrast to the exponential

convergence of the Wigner-Seitz truncation and the screened exchange interac-

tion for this system.

2.2.5 Total Energy Convergence

The results in the preceding sections demonstrate that calculation of exact ex-

change with Wigner-Seitz truncation, with relatively few exceptions, generally

requires fewer ~k-points to reach a given level of convergence than all other

methods. Moreover, we have seen that calculation of the long-ranged exact ex-

change, when performed with the Wigner-Seitz truncated method, competes

with the short-ranged screened exchange of the HSE06 functional, which mod-

els the long-ranged components of the exchange energy within a semi-local ap-

proximation. We now ask whether the Wigner-Seitz method makes it possible

to evaluate exact-exchange functionals on the same, relatively modest ~k-point

meshes needed for semi-local density-functional theory calculations?

To address the above issues, Figure 2.9 compares the total energy conver-

gence of a purely semi-local density functional (PBE [128]), a standard hybrid

functional (PBE0 [1]) employing exact exchange computed using various stan-

dard approaches as well as our Wigner-Seitz approach, and a hybrid functional

(HSE06 [85]) employing short-ranged screened exchange. The results in Fig-

ure 2.9 show that the total energy convergence of the exact-exchange hybrid
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HSE06 (screened exchange)
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X
 treated using:

    Wigner-Seitz truncation
    Spherical truncation
    Probe-charge Ewald offset
    Auxiliary-function offset

Figure 2.9: Total energy convergence (per unit cell) of the semi-local functional
PBE and the screened-exchange hybrid functional HSE06 compared to the hy-
brid functional PBE0 with exact exchange computed using various methods for
(a) silicon (b) hexagonal silicon carbide (phase 2H) and metallic platinum at (c)
T = 0.1 eV and (d) T = 1 eV.
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functional PBE0, when computed using truncated potentials, is indeed com-

parable to that of the screened-exchange hybrid functional HSE06. Moreover,

computing exact exchange with truncated methods not only matches the con-

vergence of traditional semi-local density functionals, but sometimes even out-

performs their convergence for insulators (as in Figure 2.9a,b).

Spherical truncation yields similar convergence to Wigner-Seitz truncation

for high-symmetry insulators (green ×’s versus red +’s in Figure 2.9a), and is

less accurate for lower symmetry ones (Figure 2.9b), as expected. The auxiliary

function and probe-charge Ewald methods limit the total energy convergence

of PBE0 to L−3 (cyan �’s and blue +×’s in Figure 2.9(a,b,d)), in contrast to the

exponential convergence of PBE and HSE06.

The r−2 localization of the Wannier-like functions in metals at low temper-

ature limit the convergence of all methods, including the semi-local function-

als (Figure 2.9c). The L−2 errors in the tails of the Kohn-Sham orbitals lead to

L−2 errors in the Kohn-Sham kinetic energy, which dominate in this situation.

Consequently, all methods for treating exchange yield total-energy convergence

of PBE0 similar to that of PBE and HSE06 for low-temperature metals, with

Wigner-Seitz truncation only marginally better than the others.

At sufficiently high electron temperatures (Figure 2.9d), the exponential

length scale at/T becomes relevant at practical ~k-point configurations as before,

leading to exponential total-energy convergence of the semi-local functionals.

As in the case of insulators, the auxiliary-function methods limit the accuracy of

the hybrid functional while the truncated-potential methods yield total-energy

convergence for the exact-exchange hybrid functional on par with the screened-

exchange and traditional semi-local functionals.
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2.3 Summary

Hybrid density-functionals enable high-accuracy predictions within Kohn-

Sham theory, but state-of-the-art methods for computing such functionals ne-

cessitate dense ~k-point meshes in calculations of periodic systems due to the

regularization methods commonly employed for the singular Coulomb inte-

grals in the exact-exchange energy. Analyzing the exchange energy in a real-

space formalism based on Wannier functions reveals that the dominant errors

at finite ~k-point meshes arise from the resultant artificial periodicity of the Wan-

nier functions. Truncating the Coulomb potential on the Wigner-Seitz cell of

the effectively-sampled super-lattice is therefore the ideal method to minimize

these errors.

Wigner-Seitz truncation systematically yields the most accurate exchange

energy for systems with different electronic structures and dimensionalities,

and delivers ~k-point convergence for hybrid functionals on par with that of

screened-exchange and even traditional semi-local functionals. Along with the

accurate free energy functional and polarizable continuum approximations to

solvent effects presented in the following chapters, this brings us one step closer

to widespread ab initio studies of processes such as catalysis at solid surfaces that

require chemical accuracy.5

5In the quantum chemistry literature, chemical accuracy refers to the energy accuracy neces-
sary to make reasonable predictions for chemical reactions at room temperature, and is usually
taken to be around 1 kcal/mol ≈ 1.6 mEh ≈ 1.7kBT at 298 K. [156].
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CHAPTER 3

BONDED-TRIMER FREE ENERGY FUNCTIONAL FOR LIQUID WATER 1

Joint density-functional theory provides a rigorous framework to treat the

electronic structure of solvated systems without thermodynamic phase-space

sampling by employing a classical density-functional description of the solvent

environment. In practice, this requires an accurate and computationally effi-

cient free energy functional approximation for the liquid of interest. The most

accurate, currently available functionals for polar molecular fluids such as water

[31, 33, 96, 97, 180] rely, however, on direct correlations (from neutron scattering

or computer simulation) at each temperature and pressure of interest, restricting

their efficiency and applicability.

This chapter addresses the need for a computationally efficacious micro-

scopic theory of water that is capable of providing accurate free energies un-

der inhomogeneous conditions without the dependence on fluid structure data.

The strategy is to identify a simple effective microscopic Hamiltonian which

(a) reproduces the equation of state for homogeneous water and (b) is readily

represented by a free-energy functional even in the inhomogeneous case.

Statistical associating fluid theory (SAFT) [50], based on Wertheim’s ther-

modynamic perturbation theory [171], is one such approach which has been

successfully applied to the study of vapor-liquid interfaces [49], with model pa-

rameters for water determined from the equation of state [29]. However, the

predictions of this theory have not yet included quantities of interest in solva-

tion methods such as cavity formation energies and dielectric response, partly

1Published as ‘R. Sundararaman, K. Letchworth-Weaver and T.A. Arias, J. Chem. Phys. 137,
044107 (2012)’. KLW contributed to the Bayesian ensemble-of-models error estimation.
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due to the relative complexity of the model Hamiltonian. Below, we develop

an alternate simpler Hamiltonian based upon microscopic intuition about hy-

drogen bonding, and we demonstrate that the resulting functional (also based

on Wertheim theory) leads to a relatively accurate free-energy description of

inhomogeneous water, especially given the simplicity of the underlying model.

3.1 Model molecular Hamiltonian and equation of state

Within the constraints of condition (b) above, a natural starting point would be

the standard approach of perturbations about the hard-sphere fluid,2 for which

Fundamental Measure Theory [134, 159, 58, 135] provides a highly accurate

functional. The hard-sphere diameter required to reproduce bulk properties can

be inferred from the excluded volume in the equation of state, and fits [77] to

experimental data suggest a value that strongly decreases with temperature and

is ∼ 3.3 Å at 298 K. This is clearly incompatible with the almost temperature-

independent ∼ 2.8 Å location of the first peak in the experimentally observed

oxygen-oxygen partial radial distribution [145].

This incompatibility stems from the discrepancy between the close-packed

coordination of the hard-sphere fluid and the tetrahedral coordination favored

by water. Water prefers the formation of open tetrahedral networks at lower

temperatures, which leads to empty space, ‘voids’, within cages of water

molecules, as manifested by the temperature-dependent excess excluded vol-

ume in the equation of state. Consequently, we propose a reference fluid con-

sisting of a compound object (Figure 3.1(a)): a hard sphere of radius RO at the

2The hard sphere fluid does not include orientational degrees of freedom; we treat the orien-
tational degrees of freedom of a molecular liquid exactly at the level of an ideal gas of orientable
rigid molecules, and only employ the excess free energy of the hard sphere fluid. See the dis-
cussion following (3.6) for details.
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Figure 3.1: (a) Tangentially bonded hard-sphere model for liquid water: O (oxy-
gen) sphere with two V spheres in contact diametrically opposite to the H (hy-
drogen) sites (b) Residual for the equation of state (3.1) fit to experimental data
[56, 61], compared to the semi-empirical Jeffery-Austin equation of state [77].

O (oxygen) site with smaller spheres of radii RV at two void sites V placed in

contact (at a distance σOV = RO + RV) along two of the conjugate tetrahedral di-

rections to the hydrogen bond directions. For our model, we take the O-H dis-

tance to be 1 Å with a tetrahedral H-O-H angle, as in the frequently employed

SPC/E interatomic potential model [15]. The geometry of this compound object

is chosen to favor closest approach along the hydrogen bond directions.

Our ansatz for the intermolecular Hamiltonian is the repulsive pair potential

corresponding to the tangentially bonded hard-sphere trimer of Figure 3.1(a),

perturbed by an isotropic attractive pair potential Ua(r) between the O sites.

The equation of state of this fluid is well approximated by

p(n,T ) = pid + pex
HS − 2n2T

∂ ln gHS
OV

∣∣∣
σOV

∂n

∣∣∣∣∣∣∣
T

−
κn2

2
, (3.1)

where the first three terms correspond to the BHS equation of state [6] for a

fluid composed of molecules with tangentially-bonded hard spheres, and the

final term is the mean-field contribution from the as yet undetermined attractive

perturbation Ua(r), with κ ≡ −
∫

dr4πr2Ua(r).
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The BHS equation of state is based on Wertheim perturbation theory [171]

about the hard sphere mixture, consisting of density n of O-spheres and 2n of

V-spheres. The pressure of this reference system is pHS = 3nT + pex
HS, where we

separate and collect the O(n) ideal gas parts to elucidate the connection with the

density functional (3.6). For pex
HS, we employ the accurate generalization [59] of

the Carnahan-Starling excess pressure to hard sphere mixtures

pex
HS = T

[
n0n3

1 − n3
+

n1n2

(1 − n3)2

(
1 +

n2
3

3

)
+

n3
2

12π(1 − n3)3

(
1 −

2n3

3
+

n2
3

3

)]
, (3.2)

where n0 = 3n, n1 = (RO + 2RV)n, n2 = 4π(R2
O + 2R2

V)n and n3 = 4π
3 (R3

O + 2R3
V)n are

the uniform fluid fundamental measures.3

First order Wertheim perturbation for the bonding constraints accounts for

the fixed O-V separation and not the V-O-V angle; nonetheless it has been shown

to well approximate the equation of state of objects with this geometry [6]. We

accumulate its contribution at O(n) into the first term of (3.1): this exactly cor-

rects the ideal gas mixture value of 3nT to the rigid-molecule ideal gas value of

pid = nT . (We use this fact later to restore the intramolecular bond angle con-

straints in the model for inhomogeneous water.) The remaining contribution of

this perturbation, the third term of (3.1), corrects the excluded volume effects of

the hard sphere mixture to account for the O-V distance constraints. There,

gHS
OV

∣∣∣
σOV

=
1

1 − n3
+

n2Rhm

(1 − n3)2 +
2(n2Rhm)2

9(1 − n3)3 , (3.3)

is the contact value of the O-V partial radial distribution in the hard sphere mix-

ture with Rhm = RORV/σOV .

As motivated earlier, the temperature dependence of the exclusion volume

is a critical feature of the equation of state for water [77]. Because the location of
3The fundamental measure n0 has the dimensions of density (a−3

0 ), n1 of number per unit
area, and n2 of number per unit length, while n3 is dimensionless.
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the first peak in the O-O partial radial distribution does not change appreciably

with temperature, we attribute this dependence to changes in the radii of the

V spheres, modeled as a decreasing function RV(T ) = R(0)
V e−T/TV to qualitatively

capture the effect of the empty spaces in the open tetrahedral network. This

leads to a model equation of state (3.1) with only four adjustable parameters

(R(0)
V , TV , κ, and RO), which we fit to experimental data for the bulk liquid and

vapor [56] including data for the supercooled liquid [61].

The root mean-square error in the ratio of the pressure to the ideal-gas pres-

sure, p/nT , is 4.8 × 10−2 for the current 4-parameter fit, which compares very

favorably with 2.9 × 10−2 for the standard semi-empirical Jeffery-Austin equa-

tion of state [77] (comparison in Figure 3.1(b)), especially considering the fact

that the latter fit employs more than twice as many (∼ 9) adjustable parameters.

Beyond providing a reasonable fit to the equation of state, the key advantage

of the present work is that these results stem directly from a model microscopic

Hamiltonian, which we exploit below to construct a theory for inhomogeneous

water.

To ensure that our model parameters are indeed independent and physically

meaningful, we employ Bayesian error estimation following [21, 110]. Specifi-

cally, we generate a canonical ensemble of parameter sets (Figure 3.2) with a

Metropolis walk in parameter space, where the residual is the ‘energy’ and the

‘temperature’ is 2C0/Np where C0 is the minimum residual and Np = 4 is the

number of fit parameters. The optimum parameters with standard deviations
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Figure 3.2: Metropolis sampling of a canonical ensemble of parameters, shown
in all six projections of the four-dimensional parameter space. One hundred
random samples (+) are drawn from the full set (·) for error estimation of all
subsequent results; ×’s mark the optimum parameter set.

thus estimated are

R(0)
V = (1.290 ± 0.049)Å

TV = (258.7 ± 12.3)K

κ = (1.805 ± 0.074) × 105KÅ
3

RO = (1.419 ± 0.010)Å. (3.4)

The modest eccentricities of the ensemble slices in Figure 3.2 indicate that

the covariances of these parameters are nominal, suggesting that the parameters

have physical meaning rather than merely controlling a flexible fit function for

the equation of state.

An advantage of this ensemble-of-models approach, which we exploit be-

low, is that one can estimate how well the fit to bulk data constrains all sub-

sequent predictions, including those for inhomogeneous water, by evaluating
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those predictions for a sampling of the ensemble of parameters (indicated in

Figure 3.2 as +’s), instead of just the one optimum parameter set.

3.2 Model for inhomogeneous water

So far, we have discussed the implications of our model molecular Hamilto-

nian for properties of bulk liquid water. The application of this model in ab

initio solvation theories requires description of the free energy for microscopi-

cally inhomogeneous configurations of liquid water, such as those surrounding

molecules in solution.

Capturing the behavior of inhomogeneous water requires information be-

yond merely the integrated strength κ of the pair-potential interaction Ua(r).

This work demonstrates that the simplest next step, including information

about the range of the interaction, suffices to capture surprisingly well the main

features of the short-range correlations in the liquid. To this end, we employ the

attractive-part of the Lennard-Jones potential

Ua(r) =
−9κ

8π
√

2σ3
U


(σU/r)6 − (σU/r)12, r ≥ 21/6σU

1/4, r < 21/6σU

(3.5)

which has the correct long range r−6 tail for the orientation-averaged interaction

of a dipolar fluid.4 We fit the range σU to reproduce the bulk surface tension

at 298 K (based on calculations with the free-energy functional below), finding

σU = 2.62 Å. When applied to inhomogeneous water, the model is therefore

4Despite the r−12 short-ranged repulsion lacking a physical origin, the Lennard-Jones inter-
action potential is highly popular in molecular dynamics and fluid theory. The predictions of
the free energy functional we present here are not very sensitive to the details of the repulsive
part of the perturbation potential, most of which is replaced by the hard sphere functional after
separating out the attractive part.
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Figure 3.3: Partial radial distribution functions from the density functional (3.6)
(bundle of thin red lines for the ensemble, with results for optimum parameters
highlighted by dashed line) and Monte Carlo simulations for the model Hamil-
tonian (blue circles), compared to experimental pair correlations of water from
Soper et al. [145] (green dot-dashed line)

sensitive to one additional fit parameter, in comparison to its application to bulk

water.

To evaluate the viability of this simple model Hamiltonian for describing in-

homogeneous water, we first compute its pair correlation functions5 (for each

5The pair correlation functions or partial radial distributions, gαβ(r), are defined as the prob-
ability of simultaneously finding atoms α and β at two points separated by r in a uniform in-
teracting fluid, divided by the square of the corresponding probabilities for a non-interacting
system at the same density.
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of the state points for which experimental correlations were measured in Soper

et al. [145]) directly with canonical-ensemble Monte Carlo simulations of 2048

molecules. The comparison (Figure 3.3) between the behavior of this model mi-

croscopic Hamiltonian (circles) and the actual experimental correlations in phys-

ical water (green dash-dot line) is remarkable given the highly simplified form

for the model. Although the secondary peaks in the O-O correlations of this

model Hamiltonian do appear more at the characteristic distances for a hard-

sphere rather than at those for a tetrahedrally bonded fluid, the temperature

and pressure dependence of the locations and heights of the first O-O peak com-

pare reasonably to water. Similarly, although the first two peaks of the O-H and

H-H correlations are fused into a single broader peak, the general location and

particle content of these peaks are in reasonable agreement for such a simple

model. These details could be corrected in future work by fitting perturbation

pair potentials of zero integral ∆Uαβ(r) with α, β ∈ {O,H} to the experimental

correlation data, but the focus of the present work is the quality of predictions

which can be made from a simple microscopic model with very few adjustable

parameters (five) constrained purely by the macroscopic data.

Having established a short-ranged microscopic model Hamiltonian which re-

produces relatively well the experimental correlations in water, we turn next to

development of a corresponding free-energy functional. The form of this func-

tional,

Φ[ψ] = Φid + Φex
HS + Φb +

1
2

∫
nO (Ua ∗ nO) , (3.6)

with nO(~r) being the oxygen density and Ua given by (3.5), mirrors the equation

of state (3.1), and is composed of the ideal gas free energy, hard sphere excess

functional, bonding correction and mean field perturbation.
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We start with the exact grand free energy functional for the ideal gas of ori-

entable rigid molecules and thereby restore exact treatment of the intramolec-

ular bond-angle constraints; this approach is consistent with Wertheim theory

since the latter yields the exact rigid-molecular ideal gas pressure pid = nT at

O(n) in the uniform limit. The free energy of the inhomogeneous ideal gas with

chemical potential µ in external site potentials Vα(~r) is written as

Φid[ψ, n[ψ]] =
∑
α

∫
d~rnα(~r)(Vα(~r) − ψα(~r))

− (µ + T )
∫

d~rnO(~r), (3.7)

employing ideal gas effective potentials [26, 27] ψα(~r) for α ∈ {O,H,V} as the

sole independent variables [96]. Here, the site densities are dependent variables

computed using

nα(~r) =
δ

δψα(~r)

∫
dωd~r′

4π2 exp
−1
T

∑
α′,i

ψα′(~r′ + ω ◦ ~Rα′i), (3.8)

where ω ∈ SO(3)/Z2, where ω◦ denotes the corresponding rotation for a vector,

and where ~Rαi are the site coordinates for a molecule in the reference orientation

centered at the origin with i = 1 for α = O and i ∈ {1, 2} for α ∈ {H,V}. Note that

we have simplified the above expression using the Z2 rotation symmetry of the

molecule about its dipole axis.

To treat the hard sphere mixture excess free energy Φex
HS, we use the ‘White-

Bear mark II’ version of fundamental measure theory [58] (incorporating Tara-

zona’s tensor modifications [159])

Φex
HS = T

∫ [
n0 ln

1
1 − n3

+
n1n2 − ~nv1 · ~nv2

1 − n3
f2(n3)

+
n3

2 − 3n2~n2
v2 + 9~nv2n̄m2~nv2 −

9
2Trn̄3

m2

24π(1 − n3)2 f3(n3)
 , (3.9)
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in terms of the scalar, vector and tensor weighted densities ni = wO
i ∗ nO + wV

i ∗ nV

for i ∈ {0, 1, 2, 3, v1, v2,m2}, where

f2(n3) = 1 +
n3(2 − n3) + 2(1 − n3) ln(1 − n3)

3n3

and f3(n3) = 1 −
2n3 − 3n2

3 + 2n3
3 + 2(1 − n3)2 ln(1 − n3)

3n2
3

. (3.10)

(See the comprehensive review by R. Roth [135] for details.) Note that this func-

tional corresponds exactly to the hard sphere excess pressure (3.2) in the uni-

form fluid limit.

Next, Φb accounts for the tangential bonding constraints on the hard-sphere

exclusion effects; note that the contribution from Wertheim perturbation to the

ideal gas part has been absorbed into the exact rigid-molecule ideal gas free

energy Φid. The Helmholtz-energy density for this term in the uniform fluid

limit is determined from the third term of (3.1) to be −2nT ln gHS
OV(σOV), which we

generalize to the inhomogeneous version

Φb =

∫
−2n0T

3
ln

 1
1 − n3

+
ζn2Rhm

(1 − n3)2 +
2ζn2

2R2
hm

9(1 − n3)3

 , (3.11)

with the vector correction factor ζ = 1 − |~nv2|
2/n2

2. We include this factor here

following the proposal of Yu et al. [179], where ζ was introduced in analogy

with the occurrence of the vector weighted densities in the hard sphere mixture

functional in order to improve agreement with Monte Carlo calculations. Fi-

nally, the last term in (3.6) describes the attractive perturbation potential within

a mean-field picture.

The partial radial distribution functions implied by the free energy func-

tional (3.6), as evaluated from its analytic second variational derivatives using

the Ornstein-Zernike relation, are in excellent agreement with the Monte Carlo

simulations (circles and corresponding curve in Figure 3.3). (The minor artifacts
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in the interior of the hard cores are caused by the bonding correction, whose in-

homogeneous generalization is not perfect.) The small spread in these results

with variation of parameters in the ensemble exemplifies how tightly the bulk

data indeed constrain these predictions within the assumed model.

3.3 Predictions for the inhomogeneous liquid

To evaluate the predictions of the above density functional for the inhomoge-

neous fluid, we perform direct minimization of (3.6) using the nonlinear con-

jugate gradients algorithm [42] with the values of ψα(~r) on a discretized grid

as the independent variables. The orientation integrals involved in evaluating

the site densities from the site potentials (3.8) are discretized using quadratures

on SO(3)/Z2. The calculations presented below are performed on radial or pla-

nar d = 1 dimensional grids 6 where the azimuthal symmetry simplifies the

orientation quadrature from SO(3) ≡ S2 × S1 to S2, which we tessellate using a

recursively subdivided icosahedron. 7

We find remarkable agreement with available data for the behavior and free

energies of microscopically inhomogeneous aqueous systems that resemble wa-

ter surrounding solvated molecules, especially given that only bulk data, includ-

ing the bulk surface tension at a single temperature, were employed in determin-

ing the limited number of parameters in the functional. For example, Figure 3.4

compares our prediction of the temperature dependence of the interfacial ener-

6An implementation of this free energy functional in d = 3 dimensions is available in the
open source plane-wave electronic density functional theory software, JDFTx [154], and sup-
ports efficient orientation quadratures based on platonic solid rotation groups and spherical
t-designs [52], in addition to outer product quadratures on Euler angles.

7The results obtained at a subdivision depth of 3 (642 quadrature nodes) are within 0.1% of
those at depth 4 (2562 nodes), and we used the latter for generating all the plots in the chapter.
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Figure 3.4: Energy of the vapor-liquid interface as a function of temperature,
compared to the experimental values for surface tension [32].

gies with experimental data. Over the entire range of accessible temperatures

at standard atmospheric pressure, we find the experiment to lie within the rela-

tively narrow variations within our ensemble of models. Moving beyond planar

interfaces, Figure 3.5 explores the radial distribution around hard spheres and

the variation of free energy of hard-sphere insertion with radius, and demon-

strates that the predictions of our model are in qualitative agreement with the

SPC/E molecular dynamics results [70]. The contact densities and the free en-

ergies from our model are somewhat higher than those from the SPC/E model

results, a situation which could potentially be improved in future work by in-

cluding additional perturbation pair-potentials.

In addition to the bulk and short-ranged correlations described above, a suc-

cessful theory of solvation requires accurate dielectric response. Apart from

expelling water from a region of space, a solvated molecule also imposes ex-

tremely strong electric fields on the water molecules immediately surrounding

it. The water molecules, which possess a permanent dipole moment, reorient in
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response to this field. To include this effect, following Lischner et al. [97], we

add a scaled mean-field long range electrostatic correction

Φε =
Aε(T )

2

∑
α,β∈{O,H}

ZαZβ

∫
nαK ∗ nβ, (3.12)

where the site charges Zα are taken to be the SPC/E values [15] and K ≡

4π
G2(1+(G/Gc)4) with Gc = 0.33 is the Coulomb kernel with a high frequency (short

range in space) cutoff [97]. The prefactor Aε(T ) = 1 − T/(7.35 × 103 K) serves

to correct for dipole correlations beyond mean field, and is fit to reproduce the

bulk dielectric constant at small field. Fig. 3.6 shows that the nonlinear response

at high fields (which is not fit) is well captured by the interplay between Φε and

Φid.
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3.4 Summary

This chapter presents a computationally tractable free-energy functional for

studies of inhomogeneous water based upon a microscopic Hamiltonian con-

strained by experimental data for the bulk equation of state. Following this

approach gives a remarkably high-quality fit to the equation of state with only

four tightly constrained parameters. With one additional parameter, the range

of the model interaction, the resulting functional captures the free energies as-

sociated with inhomogeneous systems such as the liquid-vapor interface and

the embedding free energy of microscopic objects, as well as essential features

of the partial radial distributions and density profiles around microscopic ob-

jects. With long-range corrections, the model gives an accurate description of

the non-linear dielectric response.

The bonded-trimer functional for water shows good promise for capturing

the key quantities which require description in solvation studies, based on cal-

culations in one-dimensional planar and spherical geometries. The next chapter

sets up the general machinery necessary to perform calculations with such func-

tionals for real three-dimensional systems, including those with strong electric

fields.
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CHAPTER 4

CLASSICAL DENSITY-FUNCTIONAL THEORIES OF

RIGID-MOLECULAR FLUIDS 1

The bonded-trimer water functional of Chapter 3 is based on a model Hamil-

tonian written in terms of oxygen, hydrogen and exclusion sites constrained by

a rigid molecular geometry. A critical component of this functional is the exact

free energy of the ideal gas of rigid molecules expressed in terms of effective

ideal-gas site potentials as independent variables [96], but that approach suf-

fers from numerical problems in practical solvation calculations. This chapter

presents a more general framework for the classical density-functional theory of

molecular fluids, addresses these numerical issues, and introduces a simplified

free energy functional for liquid water that is more accurate than the bonded-

trimer model, and is easier to generalize to other liquids.

Free-energy functional approximations for fluids of spherical particles often

employ thermodynamic perturbations about the hard sphere fluid described

accurately by fundamental measure theory [134, 135]. These may be extended

to model polar fluids such as the Stockmeyer fluid [46], but the accuracy of such

theories for real molecular fluids is not satisfactory.

Molecular fluids are best described within the reduced interaction-site mod-

els (RISM) [26], which express the interactions in terms of a few sites on each

molecule, usually on atomic centers constrained by a rigid model molecular ge-

ometry. The free energy functional descriptions in terms of these site densities,

however, is complicated by the molecular geometry constraints; even the ideal-

1Preprint online as ‘R. Sundararaman and T.A. Arias, arXiv:1302.0026’ (under review in
Comp. Phys. Comm.)

77



gas free-energy is no longer expressible as an analytical closed-form functional

of the site-densities alone. An explicit functional can be written by introduc-

ing effective ideal-gas site potentials as auxiliary variables [27], but this still re-

quires inversion of an integral equation to obtain these potentials from the site

densities, a problem which can be solved explicitly only in some limits such as

reducing the molecule to a point [33], and requires an expensive Monte Carlo

integration for the general case.

The above inversion problem can effectively be avoided [96] by switching to

the site potentials as the independent variables instead of the site densities. This

method was applied successfully to fluids of hydrogen chloride [96] and water

[97] in one dimensional (planar) geometries. The convergence of free energy

minimization with respect to these independent variables turns out to be quite

slow, however, particularly in the presence of strong electric fields.

This chapter presents a simple general scheme of choosing independent vari-

ables that can generate the site densities for the free-energy functional treatment

of molecular fluids. In Section 4.1, we demonstrate the site-potential solution as

a special case of this general scheme and present other representations with bet-

ter iterative convergence during free energy minimization. In Section 4.2, we

construct a simplified semi-empirical excess functional for liquid water which

adequately captures the properties most critical to successful ab initio treatment

of solvation within the framework of joint density-functional theory. Finally in

Section 4.3, we detail the computational implementation of the above theories

in the open-source plane-wave density-functional theory software JDFTx [154],

using the basis-independent DFT++ algebraic formulation [75], and present nu-

merical studies of the molecular classical density-functional framework and the
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free energy functional for liquid water.

4.1 Free energy of an ideal gas of rigid molecules

The site-density-functional theory of molecular fluids is based on functional ap-

proximations to the in-principle exact free-energy functional

Φ[{Nα(~r)}] = Φid[{Nα}] + Fex[{Nα}], (4.1)

where Φ is the grand free energy of the interacting fluid, Φid is the exact grand

free energy for the molecular ideal gas, that is a system of non-interacting

molecules with the same density, Nα(~r) are the densities of distinct sites (in-

dexed by α) in the molecule, and Fex captures the effect of all the interactions

and correlations. Minimizing the free energy over all allowed densities yields

the equilibrium densities and free energy.

The heart of the inversion problem lies in the fact that the site densities Nα(~r)

are not independent variables, but are constrained by the assumption of a rigid-

molecular geometry. For definiteness, let the molecule geometry be specified

by ~Rαk, the positions of the sites for a molecule centered at the origin in some

reference orientation. Here, α indexes the distinct sites while k indexes multiple

sites of the same type equivalent under the symmetry of the molecule (e.g. for

a 3-site water model, α ∈ {O,H}, k = 1 for α = O and k ∈ {1, 2} for α = H.)

4.1.1 Treatment of site-density constraints

The inversion problem in the original approach of [27, 33], which includes ideal-

gas effective potentials ψα(~r) as auxiliary independent variables in addition to
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the site densities, is avoided in [96] by switching to ψα(~r) as the sole independent

variables. The site densities and ideal-gas free energy in the presence of external

site potentials Vα and for chemical potentials µα are then expressed in terms of

the ψα(~r) using

Φid[{ψα(~r)}] = Ω(ni)[{ψα}] +
∑
α

∫
d~rNα(~r)(Vα(~r) − µα − ψα(~r)) (4.2)

Ω(ni) ≡ −NrefT
∫ ∏

α,k

e−ψα(~rαk)/T d~rαks({~rαk}) (4.3)

Nα(~r) ≡
δΩ(ni)

δψα(~r)
, (4.4)

Here, the reference density Nref sets the zero of chemical potential and the con-

straint function s({~rαk}) picks out configurations {~rαk} which satisfy the rigid

molecule geometry (i.e. equivalent to {~Rαk} under rotations and translations).

Employing a spherical harmonic expansion of the constraint function, [96]

and [97] specialize (4.3) for diatomic and triatomic molecules respectively. How-

ever, that expansion also becomes computationally challenging as one moves to

calculations without planar symmetry. Instead, we transform (4.3) to

Ω(ni) = −NrefT
∫

d~rdω
8π2

∏
α,k

e−ψα(~r+ω◦~Rαk)/T (4.5)

where ω ∈ SO(3) is a rotation and ω◦ ~R is the result of rotating vector ~R by ω, and

we directly discretize the integral over orientations as described in Appendix A

for practical calculations in three dimensions.

It is instructive to further transform the above equations to

Φid = T
∫

d~rdω
8π2 pω(~r)

(
ln

pω(~r)
Nref

− 1
)

+
∑
α

∫
d~rNα(~r)(Vα(~r) − µα) (4.6)

Nα(~r) =
∑

k

∫
dω
8π2 pω

(
~r − ω ◦ ~Rαk

)
(4.7)
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with

pω(~r) = Nref

∏
α,k

e−ψα(~r+ω◦~Rαk)/T . (4.8)

Here, pω(~r) represents the probability density of finding a molecule centered

at location ~r with orientation ω. For an ideal molecular gas, pω(~r) is simply a

product of Boltzmann factors for each site given that ψα(~r) are ideal-gas effective

potentials since they equal Vα(~r) − µα when Φid is minimized.

Note that, given the explicit expressions for the ideal-gas free energy (4.6)

and site densities (4.7), pω(~r) is a natural choice for the independent variables

for unconstrained free-energy minimization. Section 4.3.2 demonstrates that

conjugate-gradients minimization over pω(~r) as the independent variables con-

verges much faster than minimization over the {ψα(~r)}. A possible disadvantage

of using pω(~r) is the increased memory requirement, but practical calculations

of reasonable size are possible using the efficient orientation quadratures of Ap-

pendix A. Moreover the superior convergence properties can be retained, while

mitigating the memory requirements, by switching to compressed multipole rep-

resentations of pω(~r), as we now discuss.

4.1.2 Representations of the Orientation Density

Our first task in this development is to demonstrate that minimizing free energy

functionals over pω(~r) yields the same results as minimizing over {ψα(~r)}. To
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demonstrate this we employ a constrained search procedure, to find

Φ = min
pω(~r)

(
Φid[pω(~r)] + Fex[{Nα}]

)
= min

pω(~r)

(
T

∫
d~rdω
8π2 pω(~r) ln

pω(~r)
Nref︸                        ︷︷                        ︸

−S id[pω(~r)]

+Fid-ex[{Nα}]
)
,

which follows because all the terms in Φid are explicit site-density function-

als except for the molecular ideal gas entropy (S id) contribution separated out

above. Next, the minimization over all pω(~r) can be performed by minimizing

over those pω(~r) that yield a specific set of site densities {Nα(~r)}, and then mini-

mizing over all {Nα(~r)},

Φ = min
{Nα(~r)}

(
min

pω(~r)7→{Nα(~r)}
T

∫
d~rdω
8π2 pω(~r) ln

pω(~r)
Nref

+ Fid-ex[{Nα}]
)
.

Finally, the inner, constrained minimization over pω(~r) that leads to given site

densities can be performed explicitly by introducing Lagrange multipliers ψα(~r)

for each Nα(~r) constraint. It is straightforward to verify that the Euler-Lagrange

equation for that extremization is precisely (4.8), so that the result of free energy

minimization over pω(~r) is exactly the same as the ideal-gas effective potential

methods of [27, 96].

To generalize this approach, we note that the exact equivalence between

minimization over pω(~r) and minimization over {ψα(~r)}, shown above using con-

strained minimization at fixed site densities, holds only when the external po-

tential takes the form of external site potentials Vα(~r) and couples only to the site

densities. In principle, we could go beyond the reduced-interaction site model

and consider arbitrary orientation dependent external potentials Vω(~r) (of which

site potentials Vα(~r) are a special case). From this perspective, the minimiza-

tion over {ψα(~r)} can be reinterpreted as a minimization over only those pω(~r)

that maximize the molecular ideal gas entropy S id[pω(~r)] subject to site-density
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constraints {Nα(~r)} (whose Lagrange-multiplier constraints become the site po-

tentials.) The variational principle implies that this procedure will always re-

sult in a free-energy greater than or equal to direct, unconstrained minimization

over pω(~r), with equality guaranteed only when the external orientation poten-

tial Vω(~r) can be reduced to site potentials Vα(~r).

These considerations lead to the perspective of the {ψα(~r)} as a compressed rep-

resentation of pω(~r), with decompression carried out by maximizing the entropy

subject to constraints for which the {ψα(~r)} are Lagrange multipliers. From the

most general perspective, then, any set of functional constraints {Xi = X̂i[pω(~r)]}

corresponds to a maximum-entropy compressed representation of pω(~r), where

the independent variables χi for the free-energy functional minimization are the

Lagrange multipliers for the corresponding Xi constraint in the maximization of

S id[pω(~r)]. Specifically,

Φ = min
{χi}

(
Φid

[
pω(~r)[χi]

]
+ Fex

[
{Nα[pω(~r)[χi]]}

]
,
)

(4.9)

where pω(~r)[χi] is the solution of

δ

δpω(~r)

TS id[pω(~r)] +
∑

i

(X̂i[pω(~r)] − Xi)χi

 = 0. (4.10)

Here, Φid[pω(~r)] and Nα[pω(~r)] are given by (4.6) and (4.7) respectively. Note

that i typically includes a continuous index such as ~r, and
∑

i then denotes the

corresponding integrals.

From this new perspective, picking X̂i[pω(~r)] = Nα[pω(~r)] yields the ideal-gas

site-potential representation with χi = ψα(~r) as the independent variables and

pω(~r) given by (4.8). Similarly, picking X̂i[pω(~r)] = pω(~r) yields the trivial self-

representation, with pω(~r) as the independent variables. As shown earlier, both

these representations are exact when the external potentials are site potentials,
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while the former is a variational approximation to the latter in the most general

case of orientation potentials.

The advantage of this general framework is that we can develop new, phys-

ically motivated representations which then are guaranteed to be variational

approximations. Of particular interest are representations based on multipole

probability densities

M̂ j
m1m2

(~r)[pω(~r)] =
2 j + 1

8π2

∫
dωpω(~r)D j

m1m2
(ω), (4.11)

where D j
m1m2(ω) are the Wigner D-matrices [174] (irreducible matrix representa-

tions of SO(3)). The Lagrange-multiplier independent variables µ j
m1m2(~r) result-

ing from this choice then generate the orientation probability

pω(~r)[µ j
m1m2

(~r)] = Nref

∏
j

+ j∏
m1,m2=− j

exp
−µ j

m1m2(~r)D j
m1m2(ω)

T

 . (4.12)

By the completeness of the D j
m1m2 on SO(3), this representation is exact if all com-

ponents j→ ∞ are included. In practice, we truncate the expansion at finite j.2

We find below that including terms up to j = 1 is sufficient for many prac-

tical problems, particularly when the external potential is dominated by strong

electric fields. We choose to label the corresponding independent variables for

this truncation as µ(~r) for j = 0 and ~ε(~r) for j = 1, because they correspond to

the ideal-gas effective local chemical potential and local electric field (up to fac-

tors of T and the molecule’s dipole moment). Section 4.3.2 below compares the

accuracy and convergence properties of this {µ,~ε} representation to those of the

site-potential ({ψα}) representation and the self-representation (pω).

2 This expansion in j is different from the spherical harmonic expansion of Ω(ni) for triatomic
molecules introduced in [97]. In particular, truncating expansion (4.12) at j = 1 retains the exact
nonlinear dielectric response for axisymmetric molecules, whereas the corresponding trunca-
tion in [97] would incur a 20% error in the O(E2) term of ε(E) at room temperature.

84



Finally, we would like to point out that this general perspective opens up a

promising avenue for excess functional development. Our framework enables

the computation of site densities and multipole densities irrespective of the in-

dependent variables used for minimization, which facilitates the generalization

of site-density excess functionals Fex[{Nα}] to combined site-multipole function-

als Fex[{Nα}, {M
j
m1m2}] or even to full orientation density functionals Fex[pω]. In

particular, it should now be possible to combine the best features of site-density

functionals, which better capture short-ranged correlations, with those of mul-

tipole functionals, which allow for analytically derivable longer-ranged correla-

tions.

4.2 Excess functionals

So far we have focused on accurate and efficient representations of the ideal gas

of rigid molecules. These need to be combined with good approximations for

the excess functional Fex[{Nα}] to obtain a practicable theory for inhomogeneous

liquids.

4.2.1 Excess functionals for model fluids

The fluid of hard spheres has been extensively studied theoretically as well as

with computer simulations. Within classical density-functional theory, it is ac-

curately described by Rosenfeld’s fundamental measure theory [134], which sat-

isfies several rigorous conditions such as reducing to the exact Percus functional

in the inhomogeneous one dimensional limit [126] and reproducing the Percus-
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Yevick pair correlations [170] in the bulk three dimensional limit.

There are several variants of the fundamental measure theory functional cor-

responding to different bulk equations of state and regularizations for the zero-

dimensional limit. (See [135] for a detailed review.) The excess functional Fex

for the highly accurate ‘White Bear mark II’ variant [58] based on the Carnahan-

Starling equation of state for the bulk hard sphere fluid [23], including tensor

regularizations due to Tarazona [159], is

ΦHS[N] = T
∫

d~r


n0 ln

1
1 − n3

+ f2(n3)
n1n2 − ~nv1 · ~nv2

1 − n3
+

f3(n3)
n3

2 − 3n2|~nv2|
2 + 9

(
~nv2 ·

~~nm2 · ~nv2 − Tr
~~n3

m2
2

)
24π(1 − n3)2

 , (4.13)

with

f2(n3) ≡ 1 +
n3(2 − n3) + 2(1 − n3) ln(1 − n3)

3n3
and

f3(n3) ≡ 1 −
2n3 − 3n2

3 + 2n3
3 + 2(1 − n3)2 ln(1 − n3)

3n2
3

,

where the ni’s are scalar (i = 0, 1, 2, 3), vector (i = v1, v2) and rank-2 tensor (i =

m2) weighted densities defined as ni(~r) ≡ wi ∗ N ≡
∫

d~r′wi(~r − ~r′)N(~r′) for hard

sphere density N(~r). The weight functions wi are spherical measures of various

dimensions (volume, surface etc.) given by

w0(~r) = δ(RHS − r)/(4πr2), ~wv1(~r) =
~r
r
δ(RHS − r),

w1(~r) = δ(RHS − r)/(4πr), ~wv2(~r) =
~r

4πr2 δ(RHS − r),

w2(~r) = δ(RHS − r), ~~wm2(~r) =

(
~r~r
r2 −

1
3
~~1
)
δ(RHS − r),

and w3(~r) = θ(RHS − r). (4.14)

The hard sphere fluid also serves as an excellent reference for perturbation

theory for other model systems. We briefly mention a few examples here; see
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chapter 6 of [57] for a detailed review. For example, the pair-potential for the

Lennard-Jones fluid

ULJ = 4ε
[(
σ

r

)12
−

(
σ

r

)6
]

(4.15)

with energy scale parameter ε and range parameterσ is often split into repulsive

and attractive parts [168] as

UR(r) =


ε + 4ε

[(
σ
r

)12
−

(
σ
r

)6
]
, r < 21/6σ

0, r ≥ 21/6σ

(4.16)

UA(r) =


−ε, r < 21/6σ

4ε
[(
σ
r

)12
−

(
σ
r

)6
]
, r ≥ 21/6σ.

(4.17)

The free energy functional for this fluid can be approximated by treating the

fluid interacting with UR(r) alone using fundamental measure theory, typically

with a hard sphere radius RHS = σ/2, and then accounting for the effects of UA(r)

perturbatively. Mean field perturbation then leads to the excess functional

F(MF)
ex [N(~r)] ≈ ΦHS[N] +

1
2

∫
d~r

∫
d~r′N(~r)UA(|~r − ~r′|)N(~r′), (4.18)

and several beyond-mean-field approaches have been developed to improve

upon this starting point.

Of particular interest is the recent approach of Peng and Yu [125] to recast

the mean-field term into a nonlinear weighted-density form

F(MWF)
ex [N(~r)] ≈ ΦHS[N] +

∫
d~rN(~r)ALJ

att(wA ∗ N), (4.19)

with the mean-field weight function set to the normalized perturbation poten-

tial

wA(r) =
UA(r)∫

4πr′2dr′UA(r′)
=

9

8
√

2πσ3


1/4, r < 21/6σ(
σ
r

)6
−

(
σ
r

)12
, r ≥ 21/6σ.

(4.20)
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Here, ALJ
att(N) ≡ ALJ(N) − AHS(N) is the difference between the Helmholtz energy

per particle for the uniform Lennard-Jones fluid and the uniform hard sphere

fluid at the same bulk density N. Peng and Yu demonstrate that this functional

does an excellent job of reproducing the inhomogeneous density profiles and

vapor-liquid interface energies in comparison to Monte Carlo simulations of

the Lennard-Jones fluid.

4.2.2 Excess functional for liquid water

The situation for a polar molecular fluid such as water is much more compli-

cated than the model fluids mentioned above. Most approaches to the excess

free energy of inhomogeneous water [31, 33, 97] are constructed to reproduce

the pair-correlations in the uniform fluid limit obtained by computer simula-

tions or from neutron-scattering data. They can be reasonably accurate for mod-

est inhomogeneities, but their practicality is limited as they are tied to the tem-

perature and pressure of the simulation/experiment data that they are based

on, and usually lack a simple analytic formulation.

An alternate strategy is based on identifying a simple model Hamiltonian for

which an approximate analytic free energy functional is readily formulated, and

then constraining the parameters of the model Hamiltonian to the bulk prop-

erties of the fluid, such as the equation of state. Wertheim’s thermodynamic

perturbation theory [171] is a useful framework for generating free energy func-

tionals; one class of Hamiltonians considered for water within this framework is

based on tetrahedral association sites for hydrogen bonds [29], but these models

have yet to successfully predict the quantities relevant to solvation such as pair
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correlations, cavity formation energies and dielectric response, partly due to the

relative complexity of the model Hamiltonian.

Recently, we proposed an alternative model Hamiltonian [153] based on cap-

turing the effects of the empty space in the tetrahedral hydrogen bond network

by attaching ‘void’ spheres to the molecule in the directions conjugate to the

tetrahedral hydrogen-bond directions. The bonding constraints in the result-

ing rigid trimers of hard spheres was also treated using Wertheim perturbation

theory, but the relative simplicity of that model enabled an accurate free en-

ergy functional description of the inhomogeneous fluid capable of predicting

the aforementioned quantities relevant for solvation.

This ‘bonded-trimer’ free energy functional for water is adequately accurate

for cavity formation energies, dielectric response and the height and particle

content of the first peak in the pair correlation. However, the secondary peaks in

its pair correlation occur at the characteristic distances for a close-packed hard

sphere fluid rather than for a tetrahedrally-bonded one. Evidently the cavity

formation energies are not sensitive to this deficiency in the secondary structure

of the pair correlation; the height of the first peak and the exclusion volume

(location of pole) in the equation of state are the important factors, which are

captured correctly by the bonded void spheres ansatz.

Here, we present a simplified free energy functional for water which retains

only the critical features of the bonded-trimer model [153], while eliminating the

complexity of Wertheim perturbation. This functional employs a hard sphere

reference with a weighted density term constrained to reproduce the equation

of state in the spirit of the approach of [125] for the Lennard-Jones fluid. Because

of the polar nature, we need to distinguish between short-ranged orientation-
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averaged interactions with a r−6 tail similar to the Lennard-Jones pair potential

and long-range orientation-dependent interactions with a r−1 tail between in-

dividual charged sites resulting in r−3 for neutral molecules with a net dipole

moment.

We deal with the long range orientation-dependent part by taking advantage

of the rigid molecule site-model capability developed in Section 4.1. In partic-

ular, we adopt the molecule geometry and site charges of the popular SPC/E

pair potential model [15] for molecular dynamics simulations of water, which

consists of an O site with charge ZO = +0.8476 e− and two H sites with charge

ZH = −0.4238 e− in a bent geometry with an O-H distance of 1 Å and a tetrahedral

H-O-H angle (cos−1(−1/3) ≈ 109.5◦).

For the shorter-ranged orientation-dependent part, we assume a Lennard-

Jones interaction between the O-sites since it has the correct r−6 tail.3 We arrive

at the excess functional ansatz

FH2O
ex [NO(~r),NH(~r)] ≈ ΦHS[NO] +

∫
d~rNO(~r)AH2O

att (wA ∗ NO)

+
Aε(T )

2

∑
α,β∈{O,H}

ZαZβ

∫
d~r

∫
d~r′Nα(~r)K(|~r − ~r′|)Nβ(~r′), (4.21)

by adding a long-range polar correction (third term) to the Lennard-Jones func-

tional of [125] (first two terms). The following paragraphs specify the Helmholtz

energy function AH2O
att (N), the dipole correlation factor Aε(T ) and the modified

Coulomb kernel K(r). We shall refer to this excess functional (4.21) as ‘scalar-

EOS’ because the excess free energy density is attributed to the scalar moment

of the orientation density and is constrained to the equation of state.

3As in Chapter 3, the predictions of this functional are relatively insensitive to the precise
functional form of the interaction potential, and we employ the Lennard-Jones form because it
is commonly used in the molecular dynamics and fluid theory literature.
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In (4.21), ΦHS is the White Bear mark II fundamental theory functional, given

by (4.13), for a fluid of hard spheres of radius RHS. The second weighted density

term employs the mean-field weight function wA(r) given by (4.20) with σ =

2RHS.

The third term of (4.21) is the mean-field electrostatic interaction between

the charge-site densities scaled by a dipole-correlation factor Aε(T ). Following

[97], the Coulomb kernel K(r) is attenuated at high frequencies as

K̃(G) =
4π
G2

1 +

(
G
Gc

)4−1

(4.22)

with Gc = 0.33 bohr−1. The dipole correlation factor, Aε = εb/(εb − 1) −

3T/(4πNbulk p2
mol), is constrained to reproduce the bulk linear dielectric constant,

εb, where Nbulk is the bulk density of the liquid and pmol is the permanent dipole

moment of each molecule (see [97] for details). Without the correlation factor,

i.e. with Aε = 1, the SPC/E molecular geometry would yield a static dielectric

constant of 19.7 at room temperature instead of the experimental value of 78.4.

The single parameter fit

Aε(T ) = 1 −
T

7.35 × 103 K
(4.23)

reproduces the bulk linear dielectric constant over the entire liquid phase with

a relative RMS error ∼ 1%.

Next, we constrain FH2O
ex to reproduce the correct Helmholtz energy density

for the uniform fluid of molecular density N, which may be obtained by inte-

grating the equation of state (p(N,T )). Note that the third term of (4.21) does

not contribute to the uniform fluid free energy, and hence AH2O
att must be the dif-

ference between the per-molecule Helmholtz free energy in water and the hard

sphere fluid. Using the Jefferey-Austin equation of state [77] for water, this con-
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strains

AH2O
att (N) =

αT
λb(T )

ln
1

1 − λb(T )N
− (aVW + b∗T )N

− 2T f ∗∗(T )
1 + C1

1 + C1 exp (N−ρHB)2

σ2

ln
Ω0 + ΩHBe−εHB/T

Ω0 + ΩHB

− T
VHSN(4 − 3VHSN)

(1 − VHSN)2 (4.24)

up to a temperature-dependent constant which is absorbed into the arbitrary

reference for the chemical potential µ. The first two lines of (4.24) represent

the free energy density corresponding to the excess pressure for liquid water

as parametrized in [77] by fits to experimental data for bulk liquid water, and

the definitions of the numerous constants and functions of temperature may be

found therein.4 The last line of (4.24) subtracts the uniform fluid per-particle

free energy corresponding to ΦHS given by (4.13), with VHS = 4πR3
HS/3.

Now, (4.21) is completely specified except for the value of the hard sphere

radius RHS. Unlike the Lennard-Jones fluid, there is no prescribed pair potential

from which it may be derived. We require that calculations with the excess

functional (4.21) result in the surface-energy of the planar water liquid-vapor

interface in agreement with the experimental surface tension of 72.0×10−3 N/m

at room temperature 298 K, and obtain

RHS = 1.36 Å, (4.25)

which corresponds to a peak in the oxygen-oxygen partial radial distribution

at 2RHS = 2.72 Å, in agreement with experimental data [145]. The details of

the planar interface calculation are presented in Section 4.3.1, and tests of the

accuracy of the scalar-EOS functional for inhomogeneous liquid water are in

Section 4.3.3.
4 Note that the constants listed in [77] are in SI/CGS units, and should be converted to atomic

units (with kB = 1) before substitution in (4.24). See Table E.1 for the relevant conversion factors.
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4.3 Results

The efficient rigid-molecular ideal gas representations of Section 4.1 combined

with the excess functional for water from Section 4.2.2 forms a practical theory

of inhomogeneous liquid water as we show below. We use this system to study

the convergence properties of the various molecular ideal gas representations

in Section 4.3.2, and then test the accuracy of the scalar-EOS water functional

against experiment and molecular dynamics simulations in Section 4.3.3.

4.3.1 Discretization

The free energy functional approximations presented here involve integrals

over space and orientations, which must all be discretized in a practical cal-

culation. The discretization of three dimensional space may be performed in a

variety of bases including plane-waves, wavelets and specialized bases such as

planar and radial one dimensional grids for high symmetry cases.

We present the details of the numerical formulation of the free energy func-

tionals for rigid-molecular liquids using the basis-independent algebraic for-

mulation developed for electronic density-functional theory [75]. Within this

formulation, the physics is expressed in terms of a handful of abstract opera-

tors independent of the basis, while the implementation of these operators in

code is basis dependent. This allows for the same top-level physics code to

be used with multiple basis sets with no modification. A three-dimensional

plane-wave basis implementation of the fluid framework and excess function-

als (using the notation and operators described below) is distributed with the
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open-source electronic density-functional theory software JDFTx [154], which

specializes in solvated ab initio calculations. An analogous code base for high-

symmetry one-dimensional basis sets, suitable for development and testing of

new fluid functionals, is distributed as a sub-project of JDFTx [152].

Here, we briefly introduce the notation and operators required for classi-

cal density-functional theory; see [75] for a detailed description. A function of

space f (~r) is expanded in terms of basis functions {bi(~r)} with coefficients f̃i (of-

ten written as a vector f̃ ) i.e. f (~r) =
∑

i f̃ibi(~r).

The overlap of two functions f (~r) and g(~r) is∫
d~r f ∗(~r)g(~r) =

∑
i, j

f̃ ∗i g̃ j

∫
d~rb∗i (~r)b j(~r)︸             ︷︷             ︸

Oi j

= f̃ †Og̃ (4.26)

which defines the basis overlap matrix O (which would be diagonal for orthog-

onal basis sets). Similarly, any linear operator reduces to a matrix. For example,∫
d~r f ∗(~r)∇2g(~r) = f̃ †Lg̃ defines the Laplacian matrix Li j =

∫
d~rb∗i (~r)∇2b j(~r).

The density functionals also involve integrals over nonlinear functions

which of course cannot be reduced to basis-space matrices like the linear op-

erators considered above. Consequently, the basis sets are accompanied by a

quadrature grid consisting of a set of nodes {~r j} over which integration of non-

linear functions is performed. A function f (~r) sampled on this quadrature grid

f j = f (~r j) is denoted simply by the vector f . This introduces the linear basis-to-

real space operator I defined by f = I f̃ with matrix elements I ji = bi(~r j), and

the real-to-basis space operator, J = I−1
left.

5 Armed with these operators, we can

5 J = I−1 is the natural choice when the number of basis functions equals the number of
quadrature grid points, which is the case for the plane-wave basis for example. When the num-
ber of grid points exceeds the number of basis functions, one possibility is to use the left-inverse
as indicated so that JI = 1, although this is not necessary.
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discretize the commonly encountered integral
∫

d~r f (~r)A(g(~r)) = f̃ †OJA(Ig̃) =

f †J†OJA(g) where A is some nonlinear function (which operates element-wise

on vectors).

In the particular case of plane-wave basis on a periodic unit cell, the quadra-

ture grid ~r j is a uniform parallelepiped mesh, the basis functions are e−i ~G·~r for

reciprocal lattice vectors ~G, and the operators I and J are implemented as

Fast Fourier Transforms. O is the scalar matrix Ω, and L is the diagonal ma-

trix −Ω| ~G|2, where Ω is the unit cell volume. For a detailed specification of these

operators, see [75] for the three-dimensional plane-wave basis, [10] for a multi-

resolution (wavelet) basis, and Appendix B for the planar, cylindrical and spher-

ical one-dimensional grids.

In fact, the six operators introduced above (counting hermitian adjoints sep-

arately) are the only ones required for electronic density functional theory in

the local density approximation (LDA).6 The advantage of writing code in this

framework is that implementing a new basis only requires reimplementing this

small number of operators.

To express the classical density functionals, we need to introduce two addi-

tional operators. Firstly, the computation of weighted densities involves convo-

lutions h(~r) =
∫

d~r′ f (~r − ~r′)g(~r′), which may be discretized using a basis depen-

dent tensor Ck
i j to h̃k =

∑
i, j C

k
i j f̃ig̃ j, which we also denote by h̃ = f̃ ∗ g̃ for brevity.

Integrating the defining relation multiplied by basis functions, we see that the

convolution tensor elements must be

Ck
i j =

∑
l

(O−1)kl

∫
d~r

∫
d~r′b∗l (~r)bi(~r − ~r′)b j(~r′). (4.27)

6The generalized gradient approximation (GGA) would additionally require gradient and
divergence operators. See [75] for details.
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Ck
i j is symmetric under i ↔ j when the space is translationally invariant, and

reduces to the element-wise multiply Ck
i j = Ωδkiδk j for the plane-wave basis, as

is well known.

Secondly, the rigid molecule formalism of Section 4.1 requires sampling

functions with arbitrary displacements in order to generate orientation densi-

ties from the effective site potentials, and to generate the site densities from the

orientation densities. This requires the inclusion of a translation operator de-

fined by T~a f (~r) = f (~r+~a) in our toolkit. This may be discretized to g̃i =
∑

j(T~a)i j f̃ j

where f̃ and g̃ are the discretizations of f (~r) and f (~r+~a) respectively. The natural

translation operator for a given basis set obtained by integrating the definition

multiplied by basis functions is

(T~a)i j =
∑

k

(O−1)ik

∫
d~rb∗k(~r)b j(~r + ~a), (4.28)

and satisfies T †
~a = T−~a by definition. In the plane-wave basis, this operator takes

the diagonal form (T~a)i j = δi je−i ~Gi·~a.

However, this ‘Fourier’ translation operator introduces severe ringing in

functions that have components that extend up to the Nyquist frequency. This

can be quite problematic for the classical density-functional theory of rigid

molecules, particularly since positive functions can ring negative on transla-

tion, leading to artificial and unphysical regions of negative site densities even

when pω ≥ 0, due to numerical truncation errors. The free energy functionals

evaluated for these negative site density artifacts can be unphysically favorable

which encourages further ringing, resulting in a numerical divergence.7

We remedy this by using inexact translation operators which have the prop-
7In principle, we could zero out the contributions to the free energy from regions of negative

site densities (arising from numerical errors). However, this results in a highly non-analytic
energy landscape with extremely poor convergence for minimization algorithms
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erty that they map the set of functions with all-non-negative samples on the

quadrature grid onto itself. The action of the translation operator on the quadra-

ture grid S~a ≡ IT ~aJ can be viewed as sampling the function on the grid with

displacement ~a. The natural translation operator for the plane-wave basis cor-

responds to a sampling operator S based on Fourier interpolation. Amongst

the piece-wise polynomial spline interpolations, only the constant spline (pick

nearest neighbor) and linear spline (linear interpolation in each cell) guarantee

non-negative results for a non-negative sample set; we denote the correspond-

ing approximate sampling operators by SC and SL respectively.

The discretization of spatial integrals in the rigid-molecule classical density

functional framework can be achieved using the above operators; the final in-

gredient is the discretization of the orientation integrals. We achieve this by

using a quadrature rule directly on SO(3)/G, where G is the symmetry group of

the fluid molecule, so that∫
ω∈SO(3)

dω
8π2 f (ω)→

∑
i

Wi f (ωi) (4.29)

with a finite set of orientationsωi and weights Wi. Appendix A describes various

methods for the generation of quadrature rules on SO(3)/Zn ranging from outer

product quadratures on Euler angles to uniform sampling sets based on platonic

solid rotation groups. Section 4.3.2 explores the convergence of the orientation

integrals with quadrature for the scalar-EOS water functional (symmetry group

Z2), and the list of explored quadratures is summarized in Table A.1.

We can now discretize the molecular ideal gas free energy (4.6) given the

orientation density pωi on the quadrature grid for each discrete orientation and

the site densities Ñα in the chosen basis set, as

Φid = T 1̃†OJ
∑

i

Wi pωi

(
ln

pωi

Nref
− 1

)
+

∑
α

Ñ†αO(Ṽα − µα1̃) (4.30)
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Note that all unary real functions are understood to operate element-wise on

vectors on the quadrature grid, unless otherwise specified.

The expression of the orientation density on the quadrature grid in terms of

the independent variables for minimization depends on the chosen representa-

tion. In the self representation, the independent variables are p̃ωi in basis space

and therefore pωi = I p̃ωi . The independent variables in the site-potential repre-

sentation are ψ̃α and the orientation density is generated using (4.8) as

pωi = Nref exp

−1
T
I

∑
α,k

Tωi◦~Rαk
ψ̃α


= Nref exp

−1
T

∑
α,k

Sωi◦~Rαk
Iψ̃α

 , (4.31)

where the latter expression with an approximate sampling operator S is used in

practice. In the multipole representation, the independent variables are µ̃ j
m1m2(~r)

for |m1|, |m2| ≤ j ≤ jmax and the orientation density is generated using (4.12) as

pωi = Nref exp

−1
T
I

jmax∑
j=0

+ j∑
m1,m2=− j

D j
m1m2

(ωi)µ̃ j
m1m2

 , (4.32)

which simplifies for jmax = 1 in terms of independent variables µ̃ and ~̃ε to

pωi = Nref exp
−I

(
µ̃ + (ωi ◦ ẑ) · ~̃ε

)
T

. (4.33)

Finally, the site densities are generated from the orientation density by a

discretization of (4.4), given by Nα ≡
δ
δψα

Ω(ni), with Ω(ni) = −T 1̃†OJ
∑

i Wi pωi and

pωi given by (4.31), so that8

Nα = Diag(J†O1̃)−1
∑

i

Wi

∑
k

S
†

ωi◦~Rαk
Diag(J†O1̃)pωi . (4.34)

8This is derived from dΩ =
∫

δΩ
δψ

dψ = 1̃†OJDiag( δΩ
δψ

)dψ, which leads to Diag(J†O1̃) δΩ
δψ

= ∂Ω
∂ψ†

.
Here, Diag(x) is the diagonal operator with the elements of x on its diagonal, i.e. Diag(x)y =

Diag(y)x is the element-wise multiplication of x and y.
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For the translationally invariant plane-wave basis set, the above expression is

equivalent to Nα =
∑

i Wi
∑

k S−ωi◦~Rαk
pωi , the intuitive discretization of (4.7), and

this holds approximately for other three-dimensional basis sets. However, (4.34)

holds even when S~a is generalized to a non-uniform translation S~a(~r), which is

required for the reduced-dimensionality basis sets of Appendix B.

Moving on to excess functionals, the hard sphere excess free energy ΦHS[N]

given by (4.13) is discretized by replacing
∫

d~r → 1̃†OJ and computing the

integrand element-wise on the quadrature grid, where the weighted densities

are computed from convolutions in basis space ni = I(w̃i ∗ Ñ). These convo-

lutions may be computed efficiently in the plane-wave basis by multiplying

with the analytic Fourier transforms of the weight functions (4.14), but in other

bases, they should be computed with specialized routines that take advantage

of the finite range of the weight functions. (See [135] for examples.) The ex-

cess free energy of the Lennard-Jones fluid [125], given by (4.19), discretizes to

F(MWF)
ex = ΦHS[N] + Ñ†OJALJ

att(I(w̃A ∗ Ñ)). The convolution w̃A∗ is trivial in the

plane-wave basis, but may require specialized routines in other basis sets due

to the polynomial tail of the Lennard-Jones weight function.9

Finally, the scalar-EOS excess functional for water (4.21) is discretized to

FH2O
ex = ΦHS[NO] + Ñ†OOJAH2O

att (I(w̃A ∗ ÑO))

+
Aε(T )

2

∑
α,β∈{O,H}

ZαZβ(w̃K ∗ Ñα)†Ō(−4πL−1)Ō(w̃K ∗ Ñβ). (4.35)

Here, the high-frequency cutoff Coulomb Kernel (4.22) has been rewritten in

terms of the bare Coulomb operator, (−4πL−1)Ō, computed by solving the Pois-

9 For example, in wavelet bases, this may be performed by decomposition into a finite-
ranged part treated at all grid levels, and a bandwidth-limited long-range part performed using
the Fourier method on the coarsest grid.
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son equation,10 and by applying the high-frequency cutoff to the site densities

instead (integration by parts). This is equivalent to an effective charge distribu-

tion for each site, described by the convolution kernel

w̃K(G) = 1/

√
1 +

(
G
Gc

)4

. (4.36)

This modification has no effect for the plane-wave basis, but is important for

other basis sets because it decomposes the long-range convolution with K̃(G)

into a short-ranged convolution ((4.36) is confined exponentially in real space),

and the solution of Poisson equation which is a standard operation in any basis

set [75, 10].

4.3.2 Convergence

Section 4.3.1 presented the discretization of the general rigid-molecular ideal

gas framework of Section 4.1 with various choices for the independent vari-

ables, and excess functionals including the scalar-EOS functional for liquid wa-

ter constructed in Section 4.2.2. Next, we briefly discuss the minimization of the

liquid free energy given a set of external potentials, compare the performance of

the different choices of independent variables, and explore the accuracy of the

discretization of the orientation integrals.

The free energy of the fluid for a particular excess functional and choice of

independent variables is expressed in the basis-independent algebraic formula-

tion of [75], including the operators introduced in Section 4.3.1. The gradient

of the free energy with respect to the independent variables may be derived
10Ō is the overlap operator with the null-space of L projected out, and L−1 is understood

to be the inverse of L in orthogonal complement of the null-space with zero projection in the
null-space. See [75] for details.
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in the same notation in a straightforward manner as shown in [75], and the

computational cost for evaluating the gradient is comparable to that for the free

energy. We can therefore minimize the free energy functional to find the equilib-

rium configuration of the fluid directly using the non-linear conjugate gradients

method [42].

First, we compare the convergence of the conjugate gradients method for

different choices of independent variables. For the remainder of this section,

we work with the scalar-EOS functional for water at a temperature of 298 K

in the three-dimensional plane-wave basis set, and perform all calculations us-

ing JDFTx [154]. We focus on two physical systems which capture different

extremes of the typical external potentials encountered in ab-initio solvation:

water surrounding a microscopic hard sphere, and water in a parallel plate ca-

pacitor with a strong enough electric field that the rotational dielectric response

of the fluid almost saturates because of almost complete alignment of all fluid

molecules with the field.

The hard sphere system consists of an external potential VO(~r) = V0θ(R − |~r|)

which excludes the O sites of water from a sphere of radius R, with no potential

on the H sites (VH(~r) = 0). We pick R = 4 Å, a reasonable size for the region

excluded by a molecule solvated in water, and V0 = 1 Eh (≈ 27.2 eV) which is

sufficient to completely exclude the liquid from that region. The calculations are

performed in a cubic unit cell of side 32 bohrs (≈ 17 Å) with a 128 × 128 × 128

fast Fourier transform (FFT) grid; the grid spacing of 0.25 bohrs corresponds

roughly to the charge density grid of a typical electronic density-functional the-

ory calculation at a wave-function kinetic energy cutoff of 20 Eh.

The parallel plate capacitor system consists of two plates 112 bohrs apart,
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(a) 4 Å hard sphere (b) Capacitor with E0 = 1 V/Å

Figure 4.1: Convergence of conjugate gradients minimization of the free energy
of scalar-EOS water (a) surrounding a hard sphere of radius 4 Å, and (b) in a par-
allel plate capacitor with externally applied field strength E0 = 1 V/Å (typical in
the first solvation shell of a polar molecule), for different independent variables.
The difference of free energy from the final equilibrium value as a function of
iteration count is shown on a logarithmic scale for the self representation {pω}
(solid red line), the site-potential representation {ψα} (blue dashed line), and the
multipole representation {µ,~ε} (thicker green dotted line). The fainter green dot-
ted line is the difference of the free energy in the {µ,~ε} representation from the
converged value within that representation (which is variationally higher than
the equilibrium value). Note the rapid exponential convergence in the self and
multipole representations, compared to the site potential representation.

with an external potential corresponding to an applied electric field of E0 =

1 V/Å (1010 V/m), which is typical in the first solvation shell of a polar molecule,

and corresponds to a regime of strongly non-linear dielectric response. (See

Figure 4.8.) Repulsive potentials of strength 1 Eh on both the O and H sites con-

fine the fluid to the region between the capacitor plates. The calculation is per-

formed in a periodic cell of length 256 bohrs containing two capacitors back-to-

back so that the cell has no net dipole, and is sampled using a one-dimensional

FFT grid with 4096 points. The transverse dimensions are translationally invari-

ant, and the free energies reported are per bohr2 of transverse area.

102



Figure 4.1 shows the convergence of the Polak-Ribiere variant of the nonlin-

ear conjugate gradients algorithm [132] for the hard-sphere and capacitor sys-

tems with the site-potential ({ψα}), j = 1 truncated multipole ({µ,~ε}) and self

({pω}) representations of the orientation density as independent variables. The

initial guess in each case corresponds to a uniform bulk density of water in the

allowed regions and no density in the disallowed regions, with a uniform orien-

tation distribution for the sphere geometry, and a dipolar orientation distribu-

tion corresponding to bulk linear dielectric response for the capacitor geometry.

The 7-design quadrature with 96 nodes on SO(3)/Z2 (see Table A.1) was used

for orientation sampling.

The self representation ({pω}) exhibits the best exponential convergence, and

is the method of choice when it is practical to store the orientation density. The

multipole representation ({µ,~ε}) also converges quite rapidly, but it is a varia-

tional approximation and will result in a higher free energy than that in {pω}.

Note that for a typical molecule cavity formation (the hard sphere case), the

error in the {µ,~ε}-representation is ∼ 4 × 10−5 Eh or ∼ 0.03 kcal/mol, which is

negligible in the computation of solvation energies. Likewise, the relative error

in the free energy of the strong-field capacitor corresponds to an error of less

than ∼ 1% in the effective dielectric constant, which again is acceptable in the

calculation of solvation energies. Finally, the site-potential representation ({ψα})

of [27, 96] exhibits the poorest convergence, particularly in the strong electric

field case. Although the {ψα} entropy will eventually converge to the same value

as that of the {pω} representation, the approximate {µ,~ε} representation yields a

more accurate free energy at practical iteration counts.

Next, we turn to the convergence of the free energies with respect to the
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(a) 4 Å hard sphere (b) Capacitor with E0 = 1 V/Å

Figure 4.2: Convergence of free energy with orientation quadrature for the two
systems considered in Figure 4.1. The orientation quadratures studied are listed
in Table A.1, and the free energy at the Euler(12) quadrature (which has 3456
nodes on SO(3)/Z2) is used as the reference in computing relative errors for all
the smaller quadratures. Note that the error due to the orientation quadrature
plateaus at jmax ∼ 7 for the sphere geometry, and at jmax ∼ 10 for the strong-
field capacitor; these would therefore be reasonable choices in ab initio solvation
calculations for non-polar and strongly-polar molecules respectively.
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Figure 4.3: Convergence of density profiles with orientation quadrature for the
two systems considered in Figure 4.1. The plotted site-densities are scaled by
their corresponding bulk values, so that the profiles equilibrate at 1 far from the
sphere / plates. Note that the densities at the lowest and highest quadratures
are indistinguishable for the hard sphere, whereas the densities become similar
to the fully-converged ones only around jmax ∼ 10 for the strong-field capacitor.
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discretization of the orientation integrals. Figure 4.2 shows the relative error in

the free energy for each orientation quadrature in Table A.1 compared to the Eu-

ler(12) quadrature (taken to be the converged value) for the two systems consid-

ered above. The quadratures are sorted by jmax, the maximum degree of Wigner

functions D j
m1m2 for which they are exact. (See Appendix A for details.) The error

in the free energy decreases rapidly with quadrature size and plateaus at a frac-

tional error ∼ 10−7 at jmax ∼ 7 for the hard sphere, limited by other discretization

errors. For the highly polarized case (induced by the capacitor), higher quadra-

tures are needed for the same level of accuracy, and the plateau occurs ∼ 10−4

at jmax ∼ 10. A reasonable choice for jmax for a typical system should therefore

range from 7 to 10 depending on the strength of electric fields involved.

Figure 4.3 shows the density profiles next to the hard sphere and the walls

of the capacitor for various orientation quadratures. In the case of the hard

sphere, the density profiles are virtually identical for all considered quadratures,

as is expected given that the relative error in the free energy is ∼ 10−4 even for

the Octahedron group, one of the lowest quadratures considered with jmax =

3. However, there are qualitative differences in the density profiles near the

capacitor walls for jmax = 3 from the converged ones at jmax = 23 (Euler(12)

quadrature), and the differences begin to disappear only around jmax = 10. At

these field strengths, the orientation distribution is highly polarized (close to

saturation) and hence requires a dense orientation quadrature to resolve. (In

the limit of an infinite electric field, the orientation distribution approaches a δ-

function centered on the orientations for which the permanent dipole moment

of the molecule is parallel with the field.)
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4.3.3 Accuracy of water functionals

Finally, we turn to a comparison of the excess functionals for water suitable for

ab initio solvation methods. In particular, we focus on the scalar-EOS functional

of Section 4.2.2, the bonded-trimer functional [153] and the functional of Lis-

chner et al. [97]. The last functional is based on experimental correlations func-

tions, which we will refer to as the ‘fitted-correlations’ functional. We perform

all calculations on one-dimensional planar or radial grids, using the Fluid1D

sub-project of JDFTx [152]. We use the Euler(20) orientation quadrature, with

nα = 1 to exploit rotational symmetry in the transverse directions. (See Ap-

pendix B.)

First we examine the partial pair correlation functions gαβ of the bulk fluid

computed using the Ornstein-Zernike relation for the rigid-molecular fluid

which may be written as

h̃ = (1 − Ĩc̃N̄)−1 Ĩc̃Ĩ, (4.37)

which is a matrix equation in Fourier space for each wave vector k. Here,

h̃αβ(k) is the Fourier transform of gαβ(r) − 1,11 Ĩαβ(k) = j0(kRαβ) is the intra-

molecular structure factor with Rαβ being the distance between sites α and β

within the molecule, N̄ is the bulk number density of fluid molecules, and

c̃αβ(k) is the Fourier transform of the direct correlation function cαβ(~r − ~r′) =

(−1/T )δ2Fex/δNα(~r)δNβ(~r′) evaluated in the limit of the uniform fluid.12

11In fact, h̃αβ(k) are related to the partial static structure factors S αβ(k) by S αβ(k) = 1+Nbulkh̃αβ(k),
where Nbulk is the bulk density of the liquid. The partial static structure factors, in turn, are ob-
tained from static structure factors for neutron diffraction in water, heavy water and mixtures of
the two, taking advantage of the marked differences in neutron scattering lengths of hydrogen
and deuterium nuclei. See [145] for details.

12 The relation (4.37) may be generalized to mixtures of rigid-molecular fluids by replacing
N̄ with a diagonal matrix with the bulk number density of each component in the mixture, and
setting Ĩαβ = 0 when α and β belong to different components of the mixture.
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Figure 4.4: Partial radial distributions (site-site correlation functions) for the
scalar-EOS water functional (solid red lines), bonded-trimer functional [153]
(long-dashed green lines) and fitted-correlations functional [97] (short-dashed
blue lines), compared to experimental pair correlations of water from Soper et
al. [145] (black dotted lines). The position and location of the first gOO peak for
scalar-EOS and bonded-trimer are in reasonable agreement with experiment,
but the remaining structure resembles that of a close-packed hard sphere fluid
rather than a tetrahedrally bonded one. The fitted-correlations functional is de-
fined only at 298 K and captures the features of the correlation functions by con-
struction, but suffers from short-ranged artifacts due to the bandwidth-limited
fitting procedure of [97].

The direct correlation functions are computed analytically in Fourier space

for a set of wave vectors corresponding to the spherical Bessel function ba-

sis with 1024 basis functions and a radial extent rmax = 64 bohrs (see Ap-

pendix B), and the pair correlation functions are computed via (4.37) using nu-

merical spherical Bessel transforms. Figure 4.4 compares the pair correlations

for all three functionals under consideration compared against those obtained
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by Soper et al [145] from neutron diffraction data by empirical-potential struc-

ture refinement (EPSR).

The scalar-EOS functional correctly captures the location and height of the

first peak in gOO(r), but produces a secondary structure reminiscent of the close-

packed coordination of the hard sphere fluid rather than the tetrahedral coordi-

nation exhibited by experimental water. The split hydrogen peaks in the exper-

imental data are fused into a single broader one with the same particle content.

These are qualitatively the same features as the bonded-trimer functional, but

with slightly better agreement for the scalar-EOS functional. After all, the mo-

tivation for the scalar-EOS functional was to simplify the bonded-trimer func-

tional because it captured free energies of cavity formation reasonably despite

not exhibiting features of tetrahedral correlation. The fitted-correlations func-

tional reproduces some of the features of the experimental partial radial dis-

tribution functions by construction, but exhibits ringing artifacts at short dis-

tances, because it fits the experimental partial structure data in a limited range

of wave-vectors. The missing data at low wave-vectors (see [97]) leads to the ar-

tifacts in the gαβ predicted by this functional; the reference experimental correla-

tions in Figure 4.4, on the other hand, use molecular dynamics with an empirical

potential to refine the data at low wave-vectors (see [145]).

Next, we examine the free energies of planar liquid-vapor interface for each

functional. The calculations are performed on a one-dimensional planar grid of

length 96 bohrs with 768 sample points and basis functions. For each temper-

ature, the pressure is adjusted to the boiling point, which corresponds to equal

chemical potentials and bulk grand free energy densities for the two phases. The

hard sphere radius RHS = 1.36 Å for the scalar-EOS functional was determined
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Figure 4.5: Energy of the planar vapor-liquid interface for the scalar-EOS and
bonded-trimer water functionals as a function of temperature, compared to the
experimental values for surface tension [32]. Both functionals fit the range pa-
rameter of the Lennard-Jones pair potential to the experimental surface tension
at 298 K, and the scalar-EOS functional reproduces the temperature dependence
more accurately than the bonded-trimer one. (The fitted-correlations functional
is omitted from this plot, since it is defined only at 298 K.)

by matching the interface energy obtained from such a calculation at 298 K to

the experimental value for the surface tension 72.0 mN/m.13 Figure 4.5 com-

pares the temperature dependence of this interface energy against experimental

values for the surface tension. The scalar-EOS functional captures the trend in

the experimental data slightly better than the bonded-trimer functional.

The planar interface energies provide a means to calibrate the liquid func-

tionals against experimental measurements, and the excellent agreement for the

temperature dependence after adjusting the surface tension at one temperature

is promising. However, the applicability of a functional for molecular solva-

tion calculations depends on its ability to accurately describe the free energies

13 The attraction range parameter σU in the bonded-trimer model [153] and the smoothing
parameter r0 of the fitted-correlations model [97] were also fit to reproduce the surface tension
at 298 K using similar calculations.
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Figure 4.6: Variation of the spherical cavity formation free energy (solvation
energy of hard spheres that expel the oxygen sites of water from their interior),
with the radius of such spheres, compared to the SPC/E molecular dynamics
results of [70]. The SPC/E model underestimates the bulk surface tension of
water by 10% [167], and we have included a scaled version of the SPC/E data
as a reasonable estimate for real water. The scalar-EOS functional agrees with
the bulk-scaled SPC/E data accurately, while the fitted-correlations functional
systematically underestimates and the bonded-trimer functional overestimates
the free-energy of cavity formation.

required to form cavities of molecular dimensions. A standard test case is the

solvation free energy for microscopic hard spheres in the fluid. We compute the

cavity formation energies for hard spheres of radii R ranging from 0 to 9 Å, with

external potentials VO(r) = (1 Eh)θ(R − r) and VH(r) = 0 that exclude the oxygen

site of water from the interior of the spheres. The calculations are performed on

a one-dimensional radial grid of extent rmax = 64 bohrs (≈ 34 Å) with 512 sample

points and basis functions.

Figure 4.6 compares the variation of the hard sphere solvation energy per

surface area with sphere radius for all three functionals with SPC/E molecular

dynamics estimates for the same from [70]. For large spheres, the surface cur-

vature effects become negligible and the surface energy approaches the planar
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sites of water from their interior, for spheres of radius 2, 4, 6, 8 and 10 Å, com-
pared to the SPC/E molecular dynamics results of [70]. The fitted-correlations
functional misses the secondary peaks in the profiles, while the scalar-EOS and
bonded-trimer functional overestimate the contact density and the secondary
structure, with best agreement provided by the scalar-EOS model.

surface tension; whereas for small enough spheres the cavity formation energy

is proportional to the volume (∆Φ = NbulkT × (4πR3/3), so that ∆Φ/(4πR2) ∝ R).

Note that all three functionals agree perfectly with the molecular dynamics re-

sults in the small radius limit, and they all approach the bulk experimental

surface tension in the large radius limit (after overshooting the bulk value in

the bonded-trimer case). However the SPC/E model underestimates the bulk

surface tension to be 65 mN/m [167] compared to the experimental value of

72 mN/m, and therefore the molecular dynamics results for the sphere solva-

tion energies are also underestimated by a similar amount for the larger spheres.

Consequently, we include the molecular dynamics results scaled up by the ratio

of experimental to SPC/E surface tensions as a reasonable estimate for the hard
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sphere cavity formation energy of real water in Figure 4.6 (in addition to the un-

scaled values).14 The scalar-EOS functional significantly outperforms bonded-

trimer and fitted-correlations in its agreement with the bulk-scaled molecular

dynamics results, and is the best candidate for an accurate density functional

description of cavity formation energies in liquid water.

We next examine the distribution of water around these spherical cavities of

selected sizes in Figure 4.7. As expected from the results for the free energies,

the density profiles of the scalar-EOS functional are in closest agreement with

the SPC/E molecular dynamics results of [70]. The bonded-trimer functional

overestimates the structure in the liquid, which is expected since it also overes-

timated the structure in the pair correlations (Figure 4.4). The fitted-correlations

functional severely underestimates the secondary structure in the density pro-

files despite better qualitative agreement with the experimental pair correlation

functions. This is primarily because it incorporates the direct correlations at

the bulk liquid density as a quadratic perturbation and does not account for

changes in these correlations at the vacuum-liquid interface.

Finally, we turn to the last key ingredient for a successful theory of solvation:

nonlinear dielectric response. For liquid water, the response arising from rota-

tions of the strongly polar molecules dominates over the response arising from

the polarization of the molecules; Chapter 5 treats liquids where the latter re-

sponse is important. The typical electric fields in the vicinity of polar molecules

are ∼ V/Å i.e. 1010 V/m, which corresponds to strong non-linearities and sig-

nificant dielectric saturation. Here, we examine the nonlinear dielectric constant
14 The TIP4P/2005 pair potential for water captures the bulk surface tension much more ac-

curately than SPC/E [167], and it would be interesting to compare our density functional results
to simulations of microscopic hard sphere solvation with that model. However, such results for
TIP4P/2005 (analogous to [70] for SPC/E) have not yet been published to our knowledge.
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Figure 4.8: Nonlinear dielectric response of the water functionals compared to
SPC/E molecular dynamics results from [178]. All three functionals provide
essentially the same dielectric response, as this is determined by a competition
between the molecular ideal gas entropy and the scaled mean field electrostat-
ics. The minor differences arise from differences in the equations of state due to
electrostriction (change of bulk-density in strong fields). The fitted-correlations
functional has an unphysical instability accompanied by a rapid increase in den-
sity and drop in dielectric constant at an external field ≈ 2 V/Å, due to an un-
derestimation of the compressibility at high pressures by its polynomial excess
free energy density model.

defined by ε(E0) = E0/(E0 − 4πP), where E0 is a macroscopic externally applied

field and P is the corresponding bulk polarization density in the liquid.

At equilibrium, a liquid in a macroscopic parallel-plate capacitor adopts uni-

form density and polarization except for microscopic regions around the plates.

The free energy of that capacitor is dominated by the bulk; the regions next to

the plates only contribute via long-range interactions of the bound sheet-charge

densities ±P in the liquid. Accounting for the interaction of these sheet charges

with the external field, and with each other via the scaled mean-field Coulomb

interaction, we can show that the effective free energy density minimized by the
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macroscopic capacitor at equilibrium is

φ(pω) = T
∫

dω
8π2 pω

(
ln

pω
Nref
− 1

)
−

∑
α

µαNα + fex({Nα})

− ~E0 · ~P + Aε(T )
4πP2

2
. (4.38)

Here, fex is the excess-free energy density of the uniform fluid (which is deter-

mined entirely by the equation of state) and ~P =
∫

dω
8π2 pωω ◦ ~Pmol is the polar-

ization density, with ~Pmol being the dipole moment of the fluid molecule in its

reference orientation. We therefore minimize this free energy density on a pla-

nar grid with a single grid point to obtain the equilibrium P for each applied E0,

thereby avoiding the need for setting up a capacitor in a large simulation cell.

All three functionals considered here employ the same scaled mean-field

electrostatic interaction constrained to produce the bulk dielectric response as

proposed by Lischner et al. [97]. The physics of dielectric saturation is cap-

tured by an interplay of this term with the entropy of the ideal gas of rigid

molecules, which again is common to all three functionals. Consequently, their

nonlinear dielectric response is very similar and compares quite well with the

SPC/E molecular dynamics results [178] as shown in Figure 4.8. The minor

differences between the functionals are due to the different uniform fluid ex-

cess free energy densities ( fex) which correspond to different approximations

to the equation of state of the fluid. The fitted-correlations functional employs

a polynomial model for fex obtained from the bulk modulus and its pressure

derivative at standard room temperature and atmospheric pressure [97], which

underestimates the bulk modulus at high compression. This causes the instabil-

ity at high fields associated with a rapid increase in density, seen as a drop in

the dielectric response at ≈ 2 V/Å in Figure 4.8.
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4.4 Summary

This chapter constructs a general framework for the classical density-functional

theory of rigid-molecular fluids that avoids the inversion problem associated

with site-density constraints by switching to the orientation density as the key

variable. The independent variables in previous solutions, such as ideal-gas ef-

fective site potentials, are compressed maximum-entropy representations of the

orientation density. With this perspective, we can motivate other representa-

tions with superior convergence properties, that result in variational approxi-

mations to the free energy.

The self-representation, directly minimizing over the orientation density

{pω}, exhibits the fastest convergence for conjugate gradients minimization, but

requires memory in proportion to the size of the quadrature for orientation

integrals. The site-potential representation {ψα}, although exact in principle,

is impractical because of its poor convergence, particularly in the presence of

strong electric fields. The multipole representation {µ~ε} exhibits comparable

convergence to the self-representation without the memory overhead, is effec-

tively more accurate than {ψα} at practical iteration counts despite being a (vari-

ational) approximation, and enables efficient large-scale ab initio solvation in

polar molecular fluids within the framework of joint density-functional theory.

In addition to the general framework for polar fluids, this chapter constructs

a practical free energy functional for liquid water which improves on the ac-

curacy of earlier functionals, while minimizing complexity and avoiding over-

parametrization. The central idea of this ‘scalar-EOS’ functional, a hard sphere

fluid plus a weighted-density perturbation with a Lennard-Jones form, is easily
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extensible to other fluids. The next chapter establishes this recipe for construct-

ing free energy functionals for molecular solvents and incorporates molecular

polarizability effects, which are important for nonpolar fluids, in the dielectric

response.
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CHAPTER 5

LIQUID FREE ENERGY FUNCTIONALS THAT INCLUDE MOLECULAR

POLARIZABILITY 1

Chapter 4 establishes a general framework for practical classical density

functional calculations of fluids of rigid molecules, and presents a simplified

excess functional for liquid water that adequately captures the cavity forma-

tion free energy and nonlinear dielectric response, critical for ab initio solva-

tion methods. This ‘Scalar-EOS’ functional augments a hard sphere fluid with a

Lennard-Jones weighted density term, constrained to the bulk equation of state

and surface tension of the fluid. These short-ranged terms determine the cavity-

formation free energies, while the nonlinear dielectric response follows from a

competition between the ideal gas entropy and long-range Coulomb interac-

tions between charged sites on the solvent molecules.

The short-ranged terms generalize to other fluids of small molecules, as Sec-

tion 5.1 demonstrates for the weakly polar solvent, chloroform, and the nonpo-

lar solvent, carbon tetrachloride. The dielectric response of water is dominated

by molecular rotation, and the approach of Chapter 4 ignores contributions from

the electronic and vibrational polarizability of the molecules, which are much

more important for the less polar solvents. In fact, polarizability and rotations

contribute almost equally to the dielectric constant of chloroform, while the

dielectric response of carbon tetrachloride is entirely due to polarizability. In

addition, the scaled mean-field Coulomb ansatz to account for rotational cor-

relations is strictly valid only for fluids of diatomic molecules [96] and certain

1Co-author credits: K. Letchworth-Weaver helped develop the procedure for determining
the microscopic parameters of the solvent molecule and performed the electron-density model
fits of Section 5.3
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triatomic molecules [97]. Section 5.2 presents a modified perturbation scheme

that incorporates molecular polarizability contributions, and replaces the scaled

mean-field ansatz with a local dipole-density approximation applicable to the

rotational and polarization correlations of arbitrary fluids. Finally, Section 5.3

details how the microscopic properties of the solvent molecule required to ap-

proximate the fluid free energy functional may be completely determined by

electronic density-functional calculations.

5.1 ‘Scalar-EOS’ recipe for free energy functionals

The task of constructing free energy functional approximations for real molec-

ular fluids that capture the detailed microscopic structure in inhomogeneous

configurations is extremely challenging. Most approaches obtain the partial

radial distributions of the fluids by construction, using structure factors from

constituent dependent diffraction experiments, such as anomalous X-ray scat-

tering and neutron diffraction with isotope substitution, or molecular dynamics

simulations as input [33, 31, 97, 96, 180]. Such methods therefore rely on ex-

perimental data available for few liquids at few state points, or the construction

and testing of a pair potential model followed by extensive molecular dynamics

calculations. Consequently, they are not easily applicable to a new solvent or

even previously studied solvents under different conditions.

Functionals that reproduce pair correlations and triplet functions would ac-

curately describe properties of weakly inhomogeneous fluids, close to the ref-

erence bulk condition, but they may fail for interfaces, confined geometries and

in strong external potentials. On the other hand, the usefulness of a free energy

functional in ab initio solvation is determined by its accuracy for the free en-
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ergies of forming cavities or interfaces of arbitrary microscopic geometries, and

for the interaction with the charge distribution of the electronic system, which is

dominated by its dielectric response. Analogous to the local density functional

approximation providing remarkable accuracy for electronic density-functional

predictions for the structure of matter despite missing details in the structure of

the exchange-correlation hole, free energy functionals with imperfect pair cor-

relations can successfully describe solvent effects in electronic structure calcula-

tions.

The scalar-EOS water functional of Chapter 4 predicts incorrect secondary

structure in the partial pair correlation functions (Figure 4.4), but it is sub-

stantially more accurate for the free energies of microscopic cavity formation

than the ‘fitted-correlations’ functional [97] which is constrained to experimen-

tal pair-correlation functions. Here, we examine the accuracy of the scalar-EOS

construction for other molecular fluids, particularly the weakly polar chloro-

form (CHCl3), which has a permanent dipole moment, and the non-polar car-

bon tetrachloride (CCl4) with no permanent dipole.

The scalar-EOS approximation for the grand free energy of an inhomoge-

neous molecular fluid with probability density pω(~r) of finding a molecule with

orientation ω ∈ SO(3) at position ~r is

Φ[pω] = Φid[pω] + ΦHS[N0] +

∫
d~rN0Aatt(wA ∗ N0) + Φε[pω]. (5.1)

Here, Φid[pω] is the exact free energy of the ideal gas of rigid molecules with ori-

entation density pω (see Section 4.1). ΦHS[N0] is the excess free energy of a hard

sphere fluid with density N0(~r) =
∫

dω
8π2 pω(~r) and with an as yet undetermined

hard sphere radius RHS; this term is approximated using fundamental measure

theory [134, 159, 135]. The third term of (5.1) is a weighted density ansatz for
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the contributions from intermolecular attractions, with the per-molecule excess

Helmholtz energy function Aatt(N), constrained to the bulk equation of state,

and attributed to a convolution of the scalar moment, N0, of the orientation den-

sity. The weight function wA is taken to be of the normalized Lennard-Jones

form given by (4.20) with range σ = 2RHS. The last term of (5.1), Φε , accounts

for long-range orientation-dependent Coulomb interactions and vanishes in the

uniform fluid limit.

The fundamental assumption above is the separation of the contributions

from interactions into short-ranged (r−6 and faster) orientation-averaged and

long-range orientation-dependent parts. The hard sphere and weighted density

terms capture the short-ranged part, while Φε captures the long-ranged part. We

next focus on the short-ranged part, which primarily determines the accuracy

for cavity-formation energies, and explore the long-ranged part responsible for

dielectric response in detail in Section 5.2.

The short-ranged part of the free energy functional (first three terms of (5.1))

is completely specified at this stage, except for the per-molecule excess free

energy function Aatt(N) for a uniform fluid of density N, and the hard sphere

radius RHS. The equation of state of the fluid, p(N,T ), determines the grand

free energy density of the uniform fluid and results in the differential equa-

tion A′att(N) = (p(N,T ) − pHS(N,T ))/N2, where pHS(N,T ) is the Carnahan-Starling

equation of state of the hard sphere fluid [23]. This determines the free energy

function Aatt(N) up to a constant which can be absorbed into the reference chem-

ical potential for the fluid. For water, the Jefferey-Austin equation of state [77]

results in the free energy function (4.24), and for the less polar fluids, the generic
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Table 5.1: Hard sphere radii, RHS, for which scalar-EOS functionals reproduce
the bulk surface tension at T = 298 K (experimental values from [62]), compared
to van der Waals radii, RvdW, from [131, 14].

Fluid RHS [Å] RvdW [Å]
H2O 1.36 1.385

CHCl3 2.06 2.53
CCl4 2.17 2.69

Tao-Mason equation of state [158] results in the free energy function

ATM
att (N) =

αT
λb

ln
1

1 − λbN
− T (α − B)

N − A1

(
eκTc/T − A2

) tan−1(
√

1.8b2N2)

2
√

1.8b


− T

VHSN(4 − 3VHSN)
(1 − VHSN)2 . (5.2)

Tao et al. relate the temperature-dependent functions α(T ), b(T ) and B(T ), as

well as the constants λ, κ, A1 and A2, to the critical point (Tc, Pc) and acentricity

factor, ω, generically for several fluids; see [158] for details. The final term of

(4.24) subtracts the free energy corresponding to the Carnahan-Starling hard-

sphere equation of state, with the hard sphere volume VHS = 4πR3
HS/3.

The final step of the scalar-EOS recipe constrains the hard sphere radius, RHS

to reproduce the bulk liquid-vapor surface tension. Table 5.1 shows the thus

obtained hard sphere radii for the three fluids considered here, and compares

them to the van der Waals (vdW) radii, RvdW, defined in terms of the effective

exclusion volume in the equation of state [131, 14]. The hard sphere radius for

water is approximately equal to its vdW radius, whereas those for chloroform

and carbon tetrachloride are smaller than their vdW radii. This discrepancy is

likely because of a softer interaction in these fluids compared to water, which

spreads out the first peak in the pair-correlations over a larger range of radii.

Contrast the O-O distribution in water (Figure 4.4) with the C-C distribution
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Figure 5.1: Partial C-C radial distributions for carbon tetrachloride as predicted
by the Scalar-EOS density-functional theory, compared to molecular-dynamics
results from [143]. Despite differences in the detailed structure, the onset of
the first peak and its particle content (evident from the cumulative distribution
N<(r)) agree. The hump in gCC(r) between 2 and 4 Å, prior to the onset of the first
peak, is a typical artifact introduced when adding a weighted-density perturba-
tion to the hard sphere functional (see also [125, 153, 179], for example). This
feature is unphysical and even becomes negative at small radii, but its integral∫ 2RHS

0
dr4πr2gCC(r) ≈ 0, and it contributes negligibly to the free energies of typical

inhomogeneous fluid configurations encountered in molecular solvation.

in carbon tetrachloride (Figure 5.1). The first O-O experimental peak in water

is much narrower and overlaps with the onset of the much broader classical

density-functional peak, whereas the C-C peak in CCl4 is broader than the clas-

sical density-functional one. In both cases, the classical density-functional dis-

tributions resemble that of the reference hard sphere fluid, but the onset of the

first peak and its particle content agree with experimental measurements and

molecular dynamics results. This simple ansatz poorly describes further details

of the pair correlations, but evidently captures just enough features of the fluid

correlations to accurately predict the free energy of forming microscopic cavi-

ties.

Extensive SPC/E [15] molecular dynamics simulations by Huang et al. [167]
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provide a reasonable reference estimate for the cavity formation energies in wa-

ter, but to our knowledge, similar simulation results have not yet been pub-

lished for carbon tetrachloride and chloroform. However, the accuracy of con-

tinuum solvation models [30] that employ scaled-particle theory [131] to esti-

mate the cavity formation energy enables an indirect reference for comparison.

Figure 5.2 shows that the spherical cavity formation energies predicted by the

scalar-EOS functional and scaled-particle theory agree for small cavities of size

comparable to the solvent molecule, which fall in the regime tested by contin-

uum solvation models. The predictions of the two theories diverge for larger

spheres, however, with the scalar-EOS functional correctly asymptoting to the

bulk surface tension by construction, while scaled-particle theory asymptotes

to that of the hard sphere fluid. Molecular dynamics results for these systems

would be highly valuable in order to further test the free energy functional.

5.2 Dielectric response including molecular polarizability

The first three terms of the scalar-EOS free energy functional (5.1) describe a

hard sphere fluid perturbed by short-ranged orientation-averaged attraction.

The final term, Φε[pω], accounts for long-ranged interactions between charged

sites on the solvent molecules, which in competition with the rotational entropy

from the first term, describes the dielectric response. Following [96, 97], Chap-

ter 4 approximates the long-ranged correction by the mean-field Coulomb in-

teraction with two modifications. First, it attenuates the Coulomb kernel in re-

ciprocal space at high wave numbers corresponding to the molecular length

scale, in order to minimize intramolecular contributions. Second, it introduces

an overall scale factor constrained by the bulk linear dielectric constant to ac-
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Figure 5.2: Free energy per surface area for creating microscopic spherical cavi-
ties in (a) chloroform and (b) carbon tetrachloride, predicted by the scalar-EOS
free energy functional compared to scaled-particle theory [131, 14].

count for beyond-mean-field effects. Here, we examine these modifications and

propose a new functional form for Φε[pω] that generalizes to other solvents and

includes contributions due to molecular polarizability.

In Chapter 4, the orientation density pω(~r) determines densities Nα(~r) of sites

on the solvent molecule with charge Zα, which then participate in the scaled-

mean field Coulomb interaction

Φε[pω] =
Aε

2

∑
α,β

ZαZβ

∫
NαK̂Nβ (5.3)
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with a modified Coulomb kernel K̂, specified in reciprocal space as K̃(G) =

4π/G2
(
1 + (G/Gc)4

)−1
. This high frequency cutoff serves to minimize the effects

of the Coulomb interaction at the molecular length scale; this intramolecular

contribution primarily results in a self-interaction error in the mean-field pic-

ture. Lischner et al. set the cutoff frequency Gc = 0.33 bohr-1 by examining the

crossover of the direct correlation functions for water, extracted from neutron

diffraction data, from the long-ranged ∼ 1/G2 behavior to a more structured

short-ranged behavior [97]. We retain this intuitive picture, but motivate the

high frequency attenuation from an alternate perspective that does not require

the direct correlation functions.

The Coulomb kernel at length scales larger than the solvent molecule does

not contribute to the self-interaction error in the mean-field term, and should

remain unmodified; say K(r > 2RvdW) = 1/r, since the vdW diameter 2RvdW

is a reasonable estimate for the typical nearest-neighbor distance in the liquid.

This constraint is implicitly satisfied by the ansatz K(r) = wMF(r) ∗ 1/r ∗ wMF(r)

with a unit-norm short-ranged weight function wMF(r) which satisfies wMF(r >

RvdW) = 0. Note that we choose a separable convolution in real-space, or equiv-

alently a separable product in reciprocal space, so that the resulting interac-

tion may be expressed as the bare Coulomb interaction acting on sites with

spherical charge distributions, ZαwMF(r), replacing point charges, Zα. This in-

terpretation of evaluating the mean-field term on an effective charge density,

ρMF(~r) =
∑
α ZαwMF ∗ Nα(~r), then easily generalizes to multiple response channels

(such as polarizations) and for mixtures of fluids.

Now consider a δ-function perturbation of one of the fluid site densities star-

ing from the uniform fluid. The self-interaction error in the above ansatz for
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this configuration is simply the self-energy of the spherical charge distribution

wMF(r), up to constants including the magnitudes of the site charge and test per-

turbation. Minimizing this self-energy under the constraint wMF(r > RvdW) = 0

results in placing all the charge on the surface of the constraining sphere,

wMF(r) =
δ(r − RvdW)

4πR2
vdW

, (5.4)

or equivalently, w̃MF(G) = j0(GRvdW) in reciprocal space. Intuitively, the in-

tramolecular interaction is minimized while preserving the intermolecular in-

teraction, by distributing the charge on each site to a sphere that roughly cir-

cumscribes a solvent molecule.

Next, we account for molecular polarizability effects so as to extend the ap-

proach to fluids for which rotations do not dominate the dielectric response to

the same extent as in water. In general, the susceptibility, χ(~r,~r′), of a molecule

to electric potentials arising from electronic polarization and vibrations can be

expanded in an eigenbasis χ(~r,~r′) =
∑

i Xiρi(~r)ρi(~r′). However, directly employ-

ing such a response in the classical density-functional description would re-

quire evaluating that nonlocal operator for each discrete orientation sampled

by pω(~r), making it prohibitively expensive. Molecular dynamics simulations

demonstrate that it is reasonable to approximate the full nonlocal response by

coupled dipole and monopole polarizabilities on each solvent site [143], or even

independent dipole polarizabilities on each site [28]. Here, we employ a non-

local generalization of the latter approach which approximates the response by

extended-dipole polarizabilities on each site, resulting in the model susceptibil-

ity,

χmodel(~r,~r′) = −
∑
α

χα∇
′wα(|~r′ − ~Rα|) · ∇wα(|~r − ~Rα|) (5.5)

for one molecule with sites at positions ~Rα, with dipole polarizabilities χα and
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with normalized range functions wα(r). In terms of the amplitudes, ~Pα, of the

polarization along Cartesian directions at each site, the potential energy for a

polarized state of that molecule is Φpol =
∑
αP

2
α/2χα with a corresponding in-

duced charge ρ(~r) =
∑
α
~Pα · ∇wα(|~r − ~Rα|). In fact, the above susceptibility to

electric potential φ(~r) results from the Euler-Lagrange equation that minimizes

the energy Φpol +
∫

d~rφ(~r)ρ(~r). Section 5.3 determines the χα and wα(r) that best

reproduce the response of a single solvent molecule calculated using electronic

density-functional theory.

The nonlocal susceptibility for a molecule assumed above is the most gen-

eral form that efficiently generalizes to a fluid specified by site-densities Nα(~r)

alone, rather than depending on the full orientation density pω(~r) in a non-

trivial manner. The potential energy function generalizes to the functional

Φpol[{~Pα(~r)}] =
∑
α

∫
NαP

2
α(~r)/2χα in terms of internal variables ~Pα(~r), with the

corresponding charge density simplifying to ρ(~r) = −∇ ·
∑
α wα ∗ Nα

~Pα after inte-

grating by parts. This charge density correctly describes the interaction of the

polarization of the fluid with an external electric potential, but suffers from self-

interaction errors when included in the mean-field term. Analogous to the solu-

tion for the rotational response, we replace wα(r) by a molecule-sized spherical

shell wMF(r) in the contribution to the mean field effective charge ρMF, in order

to preserve the intermolecular interactions while suppressing the intramolecu-

lar ones.

Finally, we address beyond-mean-field effects that critically affect the dielec-

tric response. In the bulk dielectric response limit (response to small uniform

electric fields), the free energy functional corresponding to a fluid of molecules

with dipole polarizability χ and number density N, interacting with mean-field
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interactions alone reduces to a free energy density function P2/Nχ+ 1
24πP2− ~P · ~D

in terms of the polarization density ~P as the independent variable. The first

term is the potential energy of the molecules in the polarized state, the sec-

ond term is the mean-field interaction of the bound charge in the fluid, which

in this case reduces to a long-ranged interaction between sheet charges at the

surface of the dielectric (assuming a parallel-plate capacitor geometry), and the

final term is the interaction with the externally applied field, ~D. Spatially av-

eraging the microscopic quantities in the original molecular picture shows that

~D = ~E + 4π~P, where ~D and ~E are precisely the standard external and total elec-

tric fields entering the Maxwell equations of macroscopic media [137]. There-

fore, the equilibrium polarization, ~P = Nχ~D/(1 + 4πNχ) results in a net electric

field ~E = ~D − 4π~P = ~D/(1 + 4πNχ), and hence predicts a dielectric constant of

εb = 1 + 4πNχ. In the dilute or low polarizability limit, this expression is correct

to O(Nχ), but it is impractically inaccurate for any real fluid.

The Clausius-Mossotti relation accounts for local enhancements in the elec-

tric field interacting with each molecule of the fluid, relative to the mean electric

field in the medium. In particular, it places each molecule in a dielectric cav-

ity within which the field is a factor C = 1 + (εb − 1)/3 larger than the mean

field. Solving for εb = ~D/ ~E from ~P = NχC ~E (response to enhanced field) and

~E = ~D − 4π~P results in the familiar relation, εb = (1 + 2 × 4πNχ/3)/(1 − 4πNχ/3).2

Adding a correlation term (C−1 − 1)P2/Nχ to the free energy function above,

implements the response to an enhanced field by effectively scaling the suscep-

tibility by a factor C. Further note that theories of the bulk dielectric constant

2When 4πNχ/3 approaches and exceeds unity, the Clausius-Mossotti picture predicts a diver-
gence in the dielectric response of the material. This corresponds to the Goldhammer-Herzfeld
criterion for the polarization catastrophe [65], where the instability towards infinite polarization
is interpreted as a transition to a metallic phase. The final column of Table 5.2 shows that this
criterion is not met for the fluids considered in this chapter.
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Table 5.2: Field enhancement factors for the rotational and polarization re-
sponse of water, chloroform and carbon tetrachloride, as constrained by (5.6)
using the experimental dielectric constants from [62], compared to that of the
Clausius-Mossotti dielectric cavity (labeled by superscript CM). The final two
columns report the isotropic dipole polarizability, χpol =

∑
α χα obtained from

electronic DFT in Section 5.3 (with corresponding experimental values from [62]
in parentheses), and its combination with the density, 4πNbulkχpol/3, that enters
the Goldhammer-Herzfeld criterion for the polarization catastrophe [65]; these
liquids remain insulating dielectrics since that combination is less than unity.

Fluid Crot CCM
rot Cpol CCM

pol χpol[a3
0] 4πNbulkχpol/3

H2O 4.07 26.5 1.20 1.26 10.3 (9.8) 0.21 (0.20)
CHCl3 2.28 1.91 1.25 1.36 62.6 (64.1) 0.29 (0.30)
CCl4 - - 1.26 1.38 77.6 (75.6) 0.30 (0.29)

beyond Clausius-Mossotti, such as the Onsager reaction-field method [116] or

the Kirkwood bond-restriction approach [80], can all be recast into the above

form, but with a different specification of the enhancement factor, C. Within

the density-functional perspective, we constrain C = (εb − 1)/(4πNχ) to repro-

duce the experimental bulk dielectric constant and generalize the P2 term to

the inhomogeneous fluid. Notice that in the bulk limit, the P2 correlation term

can be combined with the mean-field term to obtain a scaled mean-field term,

which presents an alternate derivation of the approach of Chapter 4 and [96, 97].

However, in going to the inhomogeneous fluid, scaling the mean-field term

introduces spurious contributions at other multipole moments; the monopole

contributions are particularly unphysical and problematic when dealing with

solutions containing ionic species.

In the general case of a fluid with a permanent molecular dipole mo-

ment pmol, the total dipole susceptibility includes a rotational contribution

χrot = p2
mol/(3T ), in addition to site polarizabilities of strength χα; the field-

enhancement factors for each contribution would be different in principle.
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Within the constraints of available experimental data, we assume separate en-

hancement factors for rotations, Crot, and polarizations, Cpol. At high frequen-

cies, the rotational response freezes out and the polarizations alone produce the

high frequency dielectric constant, ε∞, while both contribute to the static dielec-

tric constant, εb. These constrain the enhancement factors

Cpol =
ε∞ − 1

4πNbulk
∑
α χα

and Crot =
εb − ε∞

4πNbulk p2
mol/3T

. (5.6)

Table 5.2 compares the enhancement factors for the rotational and polariza-

tion contributions with those predicted by the Clausius-Mossotti cavity. As

expected, the values agree for the electronic polarizability response for all three

fluids, and reasonably so even for the low dielectric-constant rotational response

of chloroform, but are completely different for the rotational response of water.

The bulk field enhancement factors do not specify a unique functional for

the inhomogeneous fluid. The long-ranged parts of experimental correlation

functions are also not sufficiently accurate to distinguish between different in-

homogeneous generalizations, and so we propose the simplest form to avoid

over-parametrization. The potential energy functional for polarization is ex-

plicitly quadratic, exactly as in the bulk linear response limit, and we assume an

identical inhomogeneous form for the correlation functional so that Cpol simply

enhances the site susceptibilities. For the rotational response, whose ‘potential

energy’ is the far more complicated nonlinear ideal gas entropy, we generalize

(C−1
rot − 1)P2

rot/Nχrot to a weighted polarization-density functional employing the

mean-field weight function wMF to reflect the cavity assumed in the Clausius-

Mossotti derivation.

Collecting the polarizability potential energy, the mean-field interactions

and the correlation functional, the final ansatz for the dielectric perturbation
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functional is

Φε =
∑
α

∫
d~r

NαP
2
α

2Cpolχα
+

∫
d~r

∫
d~r′

ρMF(~r)ρMF(~r′)
2|~r − ~r′|

+
C−1

rot − 1
Nbulk p2

mol/3T

∫
d~rP̄2

rot, (5.7)

with the total mean-field effective charge density,

ρMF =
∑
α

ZαwMF ∗ Nα(~r) − ∇ ·
∑
α

wMF ∗ Nα
~Pα, (5.8)

and the weighted rotational polarization-density,

~̄Prot = wMF ∗

∫
dω
8π2 pω(~r)ω ◦ ~pmol, (5.9)

where ω◦ ~pmol is the dipole moment of the molecule at orientation ω. Interaction

of the fluid with an external electric potential, φ(~r) takes the form
∫

d~rφ(~r)ρ(~r)

with the real charge density,

ρ(~r) =
∑
α

ρα(r) ∗ Nα(~r) − ∇ ·
∑
α

wα(r) ∗ Nα
~Pα, (5.10)

where ρα(r) and wα(r) are spherical charge-density profiles and polarizability

range functions respectively, for each site, obtained from electronic density-

functional theory calculations in Section 5.3.

At this stage, the free energy functional has the orientation density, pω, and

the polarization amplitudes, ~Pα, as independent variables. The Euler-Lagrange

equations for minimizing this functional (including an interaction with an ex-

ternal electric potential) with respect to ~Pα show that at the minimum, all those

amplitudes can be expressed as

~Pα(~r) = Cpolχα
[
wMF(r) ∗ ~ε(~r) − wα(r) ∗ ∇φ(~r)

]
(5.11)

in terms of an auxiliary vector field ~ε(~r) (which equals the electric field from

ρMF at the solution). In practice, we use the above relation to minimize the
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free energy functional with pω expressed using one of the ideal gas represen-

tations of Chapter 4, and this auxiliary field ~ε(~r) as independent variables. We

have revised the rigid-molecular fluid framework in the open-source electronic

density-functional software, JDFTx [154], to include polarizability contributions

as detailed above.

Figure 5.3 compares the nonlinear dielectric response predicted by the scalar-

EOS free energy functional with and without molecular polarizability. The dif-

ferences are minor and occur only at very high fields for water; adding polar-

izability slightly increases the response relative to rotation-only DFT as well as

molecular dynamics [178] results with the SPC/E pair potential model [15] that

only captures the rotational response of rigid molecules. In chloroform, the pre-

dicted dielectric constants differ significantly at any finite field and agree only

in the zero-field limit by construction. Carbon tetrachloride has no permanent

dipole moment and presents no rotational contribution to the bulk dielectric

response. The electronic polarizability contribution increases with field in the

present model due to electrostriction: the density of the fluid increases in re-

sponse to the applied electric field. Molecular dynamics predictions for the

nonlinear response in CHCl3 and CCl4 using pair potential models with site

polarizabilities, such as those of [28, 143], would be invaluable for testing the

density functional predictions, but are unfortunately unavailable in the litera-

ture.

132



 0

25

50

75

D
ie

le
ct

ri
c 

co
ns

ta
nt

, c−
(E

0)

(a) H2O

SPC/E molecular dynamics
Scalar−EOS DFT

Rotation−only Scalar−EOS DFT

 0

 1

 2

 3

 4

D
ie

le
ct

ri
c 

co
ns

ta
nt

, c−
(E

0)

(b) CHCl3

 0

 1

 2

0 0.5 1 1.5 2 2.5 3

D
ie

le
ct

ri
c 

co
ns

ta
nt

, c−
(E

0)

Externally applied field, E0 [V/Å]

(c) CCl4

Figure 5.3: Nonlinear dielectric response of (a) water, (b) chloroform and (c)
carbon tetrachloride, predicted by scalar-EOS free energy functionals with and
without polarizability contributions.
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5.3 Ab initio determination of solvent molecule parameters

The bulk equation of state and the surface tension of the fluid completely con-

strain the short-ranged part of the scalar-EOS functional. However, the electric

response, which dominates the interaction of the fluid with electronic systems

in solvated electronic-structure calculations, is sensitive to microscopic details.

The geometry, electron and net charge distribution, and susceptibility of each

constituent solvent molecule affect both the short-range and long-range elec-

tric response of the fluid. Here, we establish the procedure for determining all

these microscopic parameters from electronic density-functional calculations of

a single solvent molecule.

A solvent molecule in a liquid environment differs significantly from an iso-

lated or gas phase molecule. Pair potential models created for molecular dy-

namics simulations of liquids are calibrated to reproduce only the thermody-

namic properties of the liquid state, but they may capture these differences in-

directly. For example, the dipole moment of the SPC/E model water molecule

[15] is 2.35 Debye, in agreement with estimates of 2.3-2.5 Debye [47] based on

cubic susceptibility measurements, and in contrast to the gas phase moment

of 1.85 Debye. We account for the effect of the surrounding liquid by per-

forming the electronic structure calculation of one quantum-mechanical solvent

molecule in contact with a bath of implicit solvent molecules. To determine

the microscopic parameters for a given solvent, we typically employ the non-

linear polarizable continuum model of Chapter 6, which approximates solvent

effects in an electronic density-functional calculation of a molecule by surround-

ing it with a continuum nonlinear dielectric. This solvation model can cap-

ture the increased liquid-phase dipole moment and other relevant properties of
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the quantum-mechanical solvent molecule, even for polar solvents where the

saturation of the dielectric response at high electric fields becomes important.

In principle, we could obtain the solvent parameters self-consistently within a

solvation model which includes full microscopic detail. In practice, however,

we find that the parameters determined from a properly constrained and suf-

ficiently detailed polarizable continuum model is adequate for joint density-

functional calculations.

First, we obtain the geometry of the solvent molecule directly from the re-

laxed nuclear positions, {~Rα}, within the solvated electronic density-functional

calculation. Table 5.3 shows that the bond lengths and angles, thus obtained,

agree reasonably with popular molecular dynamics models for water, chloro-

form and carbon tetrachloride.

Next, the valence electron density from the solvated electronic density-

functional calculation is expanded as a sum of spherical contributions around

each atom of the solvent molecule. The exponential tails of the electron den-

sity play an important role in determining the separation between the solute

and solvent via the coupling functional [91] in joint density functional theory as

well as in the nonlocal polarizable continuum model (Chapter 8). However, the

details of the electron density near the core are unimportant for solute-solvent

coupling and the contribution to the electric interaction from spherical charge

distributions that do not overlap depends only on their norms. We can there-

fore rearrange both the electron and nuclear densities within the core region

to optimize representability on a Fourier grid without changing the interaction

energies. For each electron density center, we employ a cuspless exponential

function ∝ (r + a)e−r/a which is smooth at the origin and has the correct asymp-
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Table 5.3: Microscopic solvent parameters for water, chloroform and carbon
tetrachloride from electronic density-functional theory, compared to molecular
dynamics models ([78] for H2O, [28] for CHCl3 and [143] for CCl4) wherever
applicable.

Solvent Property Density-functional Molecular Dynamics
H2O rOH 0.967 Å 0.9572 Å

θHOH 104.2◦ 104.52◦

qO -0.826 -0.8476
qH +0.413 +0.4238

Zel
O , a

el
O 6.826, 0.32 a0 -

Zel
H , a

el
H 0.587, 0.31 a0 -

χO, a
pol
O 3.73 a3

0, 0.32 a0 -
χH, a

pol
H 3.30 a3

0, 0.39 a0 -
CHCl3 rCCl 1.804 Å 1.76 Å

rCH 1.091 Å 1.07 Å
θHCCl 107.8◦ 107.6◦

qC -0.256 +0.5609
qH +0.244 -0.0551
qCl +0.004 -0.1686

Zel
C , a

el
C 4.256, 0.43 a0 -

Zel
H , a

el
H 0.756, 0.26 a0 -

Zel
Cl, a

el
Cl 6.996, 0.44 a0 -

χC, a
pol
C 6.05 a3

0, 0.36 a0 5.92 a3
0, -

χH, a
pol
H 9.13 a3

0, 0.41 a0 0.911 a3
0, -

χCl, a
pol
Cl 15.8 a3

0, 0.46 a0 12.89 a3
0, -

CCl4 rCCl 1.801 Å 1.783 Å
qC -0.980 -0.6052
qCl +0.245 +0.1513

Zel
C , a

el
C 4.980, 0.44 a0 -

Zel
Cl, a

el
Cl 6.755, 0.44 a0 -

χC, a
pol
C 5.24 a3

0, 0.35 a0 -
χCl, a

pol
Cl 18.1 a3

0, 0.47 a0 -
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totic exponential behavior. We then fit the valence electron density n(r) to the

model form

nmodel(~r) =
∑
α

Zel
α

rα + ael
α

32π(ael
α )4

exp
(
−rα/ael

α

)
, (5.12)

where rα = |~r− ~Rα| is the distance from nucleus α, Zel
α is the norm and ael

α is the ex-

ponential length scale associated with the electron density component at site α.

We constrain the norms of all sites Zel
α to match the lowest multipole moments,

employing as many moments as necessary to constrain them (up to dipole for

water, quadrupole for chloroform, and octupole for carbon tetrachloride). We

then perform a nonlinear least-squares fit for the widths ael
α , minimizing the

difference between n(~r) and nmodel(~r) weighted by the squared distance to the

closest nucleus min(r2
α). The core regions are included in the fit, but have little

effect because the points in the exponential tails are more heavily weighted by

the residual.

Figure 5.4 compares the valence electron density and the site-spherical

model for water. Note that the electron density tails are reproduced well, and

the residual in the core regions has zero multipole moments to high order by

construction and therefore does not contribute to the electric interaction with

another non-overlapping molecule.

The remaining contribution to the charge density, from the core electrons

and the nuclei, has norm Znuc
α (determined by the pseudopotential choice for

valence/core separation). This charge is confined to the interior regions of the

molecule (does not overlap with the cores of other molecules), so for optimum

Fourier resolvability, we smooth it with a gaussian distribution of standard de-

viation σnuc
α = R0α/6. These distributions then become effectively zero to numer-

ical precision at the atomic vdW radius R0α, which is a reasonable estimate for
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Figure 5.4: Error in the spherical decomposition of the electron density of a wa-
ter molecule at each point in space, plotted against distance to nearest nucleus.

the typical approach distance of that site to any other atom. Table 5.3 shows the

electron density fit parameters and the implied site charges qα = Znuc
α − Zel

α .

Our site charges agree reasonably with those of common pair potentials for

the highly polar liquid water, whose thermodynamic properties are sensitive to

these parameters in molecular dynamics simulations. However, in weakly po-

lar or nonpolar fluids, the bulk thermodynamic properties do not constrain the

multipole moments, since the magnitude of the Coulomb interaction is insignifi-

cant compared to the magnitude of the dispersion interaction. Thus, unsurpris-

ingly, the empirically determined molecular dynamics site charges for chloro-

form [28] differ significantly from our ab initio values. The carbon tetrachloride

site charges of [143], determined from coupled-cluster calculations in vacuum,

do not include polarization effects due to surrounding solvent molecules and
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result in an octupole moment of 7.92 Debye-Å2. (See Table E.1 for conversions

to atomic units.) Our ab initio model includes solvent effects and produces a

octupole moment of 13.2 Debye-Å2 in much better agreement with the experi-

mental value of (15 ± 3) Debye-Å2 [39].

From these fits, the total charge density kernel for interactions of the classical

fluid with external electric potentials is then given by

ρα(r) =
Znuc
α

(σnuc
α

√
2π)3

exp
(
−r2

2(σnuc
α )2

)
−

Zel
α

32π(ael
α )4

(
r + ael

α

)
exp

(
−r
ael
α

)
. (5.13)

Finally, the electronic polarizability χ(~r,~r′) in Kohn-Sham electronic density

functional theory is formally related to the susceptibility of the corresponding

non-interacting system,

χNI(~r,~r′) = −4
∑
c,v

ψc(~r)ψ∗v(~r)ψ∗c(~r′)ψv(~r′)
εc − εv

, (5.14)

by χ̂−1 = χ̂−1
NI − δ

2EHXC[n]/δn2. Here, (ψv, εv) and (ψc, εc) are occupied and un-

occupied Kohn-Sham orbital-eigenvalue pairs respectively, and EHXC[n] is the

sum of the Hartree term and the exchange-correlation functional. In practice,

we compute a large number of unoccupied Kohn-Sham eigenpairs of the sol-

vated solvent molecule, compute χ̂ from χ̂NI as a dense matrix in the occupied-

unoccupied basis ({ψ∗c(~r)ψv(~r)}), and then diagonalize χ̂ to obtain an eigen-

expansion χ(~r,~r′) =
∑

i Xiρi(~r)ρi(~r′). We find that 1000 unoccupied orbitals and

500 eigenvectors in the final expansion results in better than 1 % convergence

in the total dipole polarizability of the molecule. The penultimate column of

Table 5.2 shows that the calculated isotropic linear dipole polarizabilities are

within 5 % of the experimental values [62] for all three liquids.

The classical density functional requires the polarizability in the model form,

χ̂model given by (5.5). In order to properly represent the exponential tail regions
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with a smooth core region, we once again pick the cuspless exponential form

wα(r) =
r + apol

α

32π(apol
α )4

exp
 −r

apol
α

 (5.15)

for the normalized range functions. We then fit the site dipole polarizabilities,

χα, and their nonlocality widths, apol
α , to minimize Tr

(
(K̂(χ̂ − χ̂model))2

)
, which

effectively measures the error in the screening operator ε̂−1 = 1− K̂χ̂, where K̂ is

the Coulomb operator. Table 5.3 lists the so obtained polarizability parameters

for all three solvents. Note that the width parameters for a particular species

are relatively similar in different solvents, while the strengths differ. Also, the

empirically-fit solvent-independent polarizability parameters [9] used for each

atom in the chloroform pair-potential model [28] compare reasonably to our ab

initio parameters for C and Cl, but significantly underestimate the response at

the H site.

The procedures outlined above for extracting basic microscopic information

from ab initio calculations of a single solvated solvent molecule are highly de-

tailed and do employ least-squares fitting and some simplifications (such as as-

suming each site is isotropic). However, if the appropriate approximations are

carefully chosen, the result is a powerful tool which is completely generalizable

to any type of fluid molecule. Even if experimental or molecular dynamics data

is not available to benchmark a particular solvent, these techniques extract the

key information required to construct a free energy functional.

5.4 Summary

This chapter builds on the rigid molecule framework of Chapter 4 and extends

the scalar-EOS excess functional ansatz to other solvents. Adding molecular
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polarizability modes to the dielectric perturbation terms in the functional, and

replacing the scaled mean-field correlation ansatz with a weighted polarization-

density correlation functional constrained to the static and high frequency di-

electric constants, enables the extension of this approach to less polar and non-

polar solvents such as chloroform and carbon tetrachloride. Electronic density-

functional calculations on a single solvent molecule constrain the molecular ge-

ometry, site charge profiles and site polarizability functions. This eliminates the

dependence on molecular dynamics pair potential models of the solvent and en-

ables a classical density functional description that relies only on experimental

bulk properties and ab initio computed microscopic properties.

The free energy functionals developed here form the basis for the fluid terms

in joint density-functional solvated electronic-structure calculations [91]. The re-

mainder of this dissertation utilizes the insights gained in constructing this joint

density-functional approximation to construct minimally-empirical simplified

solvation models.

141



CHAPTER 6

POLARIZABLE CONTINUUM MODELS WITH NONLINEAR

DIELECTRIC AND IONIC RESPONSE 1

The previous chapters develop accurate free energy functional approxima-

tions for liquids, which when coupled to electronic structure methods within

the framework of joint density-functional theory, enable a quantum mechanical

description of solvated systems without the need for thermodynamic phase-

space sampling. The resulting methods [91] are much less computationally de-

manding than standard molecular dynamics methods, but are still an order of

magnitude more expensive than Kohn-Sham electronic density-functional cal-

culations that ignore the solvent.

Polarizable continuum models (PCM’s) [163] are a class of highly efficient

simplified theories which capture the effect of the fluid by placing the elec-

tronic system in an appropriately chosen dielectric cavity, optionally with cor-

rections for physical effects such as cavity formation energies and dispersion

interactions. The overhead for computing solvation corrections is negligible in

these approaches and they are ideally suited to study complex solvated systems

where computational cost is the limiting factor. However, the efficiency of these

models typically comes at the cost of empiricism and a loss of key physical fea-

tures of the fluid.

The empiricism of PCM approaches has been partially mitigated by con-

1Preprint online as ‘D. Gunceler, K. Letchworth-Weaver, R. Sundararaman, K.A. Schwarz
and T.A. Arias, arXiv:1301.6189’, and under review at Mod. Sim. Mat. Sci. Eng.. RS devel-
oped the theory for nonlinear dielectric response and co-developed the theory for nonlinear
ionic fluids with KLW. DG performed the solvation fits and the ionic surface calculations. KLW
suggested the study of the ionic surfaces and performed the metal surface calculations. KAS
provided the chemistry insights, and co-wrote much of the paper with RS.
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structing variants of the model [130, 90] that are highly simplified approxima-

tions within the framework of JDFT. So far, PCM approximations [130, 90, 40, 8]

have replaced the fluid with a linear dielectric response which turns out to be

adequate for the solvation of most molecules and some surfaces, such as those

of metals. However, the highly polar surfaces typical of electrochemical sys-

tems impose strong electric fields on solvents that invoke a highly nonlinear

response; linear response approximations lead to qualitatively incorrect results

as we demonstrate in Section 6.2.4.

This chapter presents a systematic framework (Section 6.1.1) for developing

PCM-like approximations within joint density-functional theory, and uses it to

construct a nonlinear polarizable continuum model (Sections 6.1.3 and 6.1.4)

that is both inexpensive and sufficiently accurate to account for complex reac-

tions, including those occurring on ionic surfaces. We show that the nonlin-

ear dielectric model reproduces molecule solvation energies (Section 6.2.2), and

with the inclusion of nonlinear ions, potentials of zero charge for metallic sur-

faces (Section 6.2.3) with accuracy similar to that of the linear model. Finally,

we demonstrate that the inclusion of nonlinear dielectric saturation effects fa-

cilitates accurate predictions for the free energies of ionic surfaces in solution

(Section 6.2.4).

6.1 Theory

6.1.1 Joint density-functional theory framework for PCM’s

Joint density-functional theory establishes an exact variational principle for the

free energy of a solvated system in terms of the equilibrium electron density
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of the solute and the nuclear densities of the solvent. So far, we split this free

energy as (1.17) and approximated the electronic density-functional, classical

density-functional and coupling terms independently.

The use of a classical density-functional theory for the liquid within JDFT is a

powerful tool for studying solvated electronic systems. However, the complex-

ity of the theory can occasionally obscure an intuitive physical interpretation

of the results. This intuition may be better obtained from simpler and possibly

less accurate versions of the theory that capture the bare minimum of physical

effects required to describe the systems and properties of interest.

Polarizable continuum models (PCM) are highly simplified theories that ac-

count for liquid effects by embedding the electronic system in a dielectric cav-

ity. The linear response approximation in PCM, however, is inadequate for the

study of electrochemical systems that involve liquids in strong electric fields.

Here, we develop a general framework for constructing PCM-like approxima-

tions within joint density-functional theory, which we use in the following sec-

tions to construct a nonlinear PCM with the same optimizable parameters as

those of the linear model.

We start by dividing the liquid contributions to the free energy functional

into physical effects assumed to be separable in polarizable continuum models,

and rewrite the last two terms of (1.17) in the following form

Adiel ≡ Φlq + ∆A

= Aε[s, ~ε] + Aκ[s, {ηi}] +

∫
d~r

∫
d~r′

ρlq(~r′)
|~r − ~r′|

(
ρel(~r) +

ρlq(~r)
2

)
+ Acav[s]. (6.1)

Dielectric response dominates the electrostatic interaction of a fluid consisting

of neutral molecules alone, and the first term Aε captures the corresponding in-
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ternal energy. In addition to neutral solvent molecules, electrolytes typically

include charged ions that contribute an additional monopole response. The op-

tional term, Aκ, accounts for the internal energy of the ions if present in the

solution. The densities of the molecules and ions of the solvent are modulated

by the cavity shape function s(~r), which in turn is determined by the electron

density n(~r).

The third term of (6.1) is the mean field electrostatic interaction of the liquid

bound charge density ρlq with itself and the electronic system of total charge

density ρel. Here, ρlq ≡ ρε + ρκ includes dielectric and ionic contributions, while

ρel ≡ n + ρnuc includes contributions from the electrons and the nuclei (or pseu-

dopotential cores) of the subsystem treated using electronic density-functional

theory. The contributions from all remaining effects of the fluid, such as cav-

ity formation and dispersion, are gathered into the final term of (6.1), Acav, and

are assumed to depend only on the shape of the cavity s(~r). We detail specific

approximations for each of these terms in the following subsections.

So far, the dielectric and ionic responses are still fully general, except for the

mean-field assumption in their interaction with each other and the electronic

system. In reality, these responses are nonlinear as well as nonlocal, while con-

ventional polarizable continuum models [130, 163, 90, 40, 8] assume both lin-

earity and locality. In this chapter, we retain the local response approximation,

but develop a nonlinear theory for the microscopic dielectric and ionic response

in Sections 6.1.3 and 6.1.4 respectively. We obtain a linear PCM comparable to

[90] and [8] in Section 6.1.5 as the low-field limit of our general nonlinear the-

ory. Chapter 8 presents a PCM that incorporates the nonlocal response of the

solvent.

145



6.1.2 Cavity shape function s(~r), and dependent energy Acav

Polarizable continuum models replace the liquid by a dielectric cavity sur-

rounding the electronic system. In variants of the model suitable for treating

solid surfaces (which typically require a plane-wave basis), the dielectric con-

stant is smoothly switched from the vacuum value of 1 to the bulk static di-

electric constant of the liquid, εb [130, 90, 40, 8]. The spatial modulation of the

dielectric constant may be written as ε(~r) = 1 + (εb − 1)s(~r), so that s(~r) ∈ [0, 1]

describes the shape of the cavity.

Further, these variants of PCM assume that the cavity shape s(~r) = s(n(~r)) is

determined entirely by the local electron density. The exact functional form of

s(n) is not important so long as it switches smoothly between 0 at high electron

densities and 1 at low electron densities, and rapidly approaches the extreme

values away from the transition region. Following [130], we here use

s(n) =
1
2

erfc
ln(n/nc)

σ
√

2
(6.2)

where the parameter nc sets the critical electron density around which the cavity

smoothly ‘switches on’, and σ controls the width of that transition.2

In the following subsections, we develop an ab initio theory for the nonlin-

ear dielectric and ionic response of solvents, which we find to be the dominant

effects at the charged or highly polar surfaces in electrochemical systems be-

cause of the strong electric fields. The cavity shape function, however, includes

unknown parameters that are typically fit [163, 8] to reproduce the solvation

energies of small organic molecules. These solvation energies are sensitive to
2This functional form is not derived from underlying physical principles and is chosen

purely for its numerical properties: smoothness and rapid approach to 0 and 1 away from the
transition region; others [40, 8] have successfully employed other functional forms satisfying
these properties.
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other free energy contributions such as cavity formation and dispersion, which

although negligible in the electrochemical systems of interest, cannot be ignored

during the determination of fit parameters.

These additional free energy contributions have complicated dependences

on the shape of the cavity, for which several empirical approximations have

been developed (see [163] for a review). Andreussi and coworkers [8] demon-

strated that a simple empirical model expressing the sum of all these effects as

an effective surface tension for the cavity works reasonably well for the solva-

tion energies of small organic molecules. Since we need the additional effects

only as auxiliary contributions during the fit to the molecular solvation data, we

adopt their simplified model here by writing

Acav[s] = τ

∫
d~r

∣∣∣∣∣~~∇s
∣∣∣∣∣︸     ︷︷     ︸

S

, (6.3)

where S is a surface area estimate for the cavity described by s(~r), and τ is the

effective surface tension that is determined by fitting to solvation energies.

6.1.3 Nonlinear dielectric internal energy, Aε

The dielectric response of liquids includes contributions from molecular polar-

izability as well as rotations of molecules with permanent dipole moments. The

response of highly polar solvents such as water is dominated by rotations. With

increasing field strength, the molecular dipoles increasingly align with the elec-

tric field, eventually saturating the rotational response. The polarizability re-

sponse, which includes electronic polarizability and vibrations of the molecules,

typically becomes stronger at higher fields. It is therefore important to consider

147



all these contributions even for solvents whose linear response is dominated by

rotations.

The typical electric fields encountered in solvation can significantly saturate

the rotational response of solvents, but are usually insufficient to access the non-

linear regime of the remaining contributions. We therefore split the internal

energy of the dielectric Aε into rotational Arot and polarization Apol parts, and

construct a nonlinear theory for the rotational part alone.

Within the polarizable continuum ansatz, the liquid consists of molecules

distributed with the bulk density Nmol modulated by the cavity shape function

s(~r). The internal energy corresponding to linear polarization response with an

effective isotropic molecular dipole polarizability,3 χmol, is

Apol[~Ppol] =

∫
d~rNmols(~r)

~P2
pol(~r)

2χmol
, (6.4)

where ~Ppol(~r) is the induced dipole moment per molecule. This dipole moment

contributes a bound charge, ρpol(~r) = −~∇ · (Nmols(~r)~Ppol(~r)).

Physically, the nonlinearity of the rotational response arises from a competi-

tion between the rotational entropy of the molecules and their interaction with

the self-consistent electric field. We therefore begin with the exact rotational en-

tropy for an ideal gas of dipoles with the cavity-prescribed density Nmols(~r) at

temperature T , then approximate rotational correlations, and write

Arot[pê, l] =

∫
d~rT Nmols(~r)

∫ dê
4π

pê ln pê − l(~r)
(∫

dê
4π

pê − 1
)
−
α~P2

rot(~r)
2

 . (6.5)

3Each molecule in the fluid responds to a local electric field which is enhanced relative to
the mean electric field, for example, the field enhanced by a dielectric cavity in the Clausius-
Mossotti picture (see Section 5.2 for details). Here, χmol, the response to mean electric fields, is
constrained to the bulk optical dielectric constant in (6.8), includes the field enhancement factors
(Table 5.2) relative to the actual dipole polarizability, and is therefore an effective polarizability.
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Here, pê(~r) is the probability that a molecule at location ~r has its dipole oriented

along unit vector ê, the second term of (6.5) constrains the normalization of pê(~r)

with Lagrange multiplier field l(~r), and the final term describes correlations with

an as yet undetermined prefactor α.

The final term of (6.5) captures the correlations in dipole rotations within a

‘local polarization density approximation (LPDA)’. We choose the simplest pos-

sible form for this correction, quadratic in the local dimensionless polarization

~Prot(~r) =
∫

dê
4π pê(~r)ê, and constrain the prefactor α to reproduce the bulk linear di-

electric constant εb. Finally, the rotational response contributes a bound charge

ρrot(~r) = −~∇·(pmolNmols(~r)~Prot(~r)) within the local response approximation, where

pmol is the permanent molecular dipole moment.

The Euler-Lagrange equation for minimizing the total free energy with re-

spect to pê implies that, at equilibrium, the orientation distribution must be of

the form pê ∝ exp(~ε · ê) for some vector field ~ε(~r). Using the remaining Euler-

Lagrange equations to eliminate ~Ppol(~r) and l(~r) in favor of ~ε(~r), the sum of (6.4)

and (6.5) simplifies to

Aε[~ε(~r)] =

∫
d~rT Nmols(~r)

[
ε2

(
f (ε) −

α

2
f 2(ε) +

X
2

(1 − α f (ε))2
)
− ln

sinhε
ε

]
, (6.6)

with corresponding dielectric bound charge

ρε(~r) = −~∇ ·
[
pmolNmols(~r)~ε ( f (ε) + X(1 − α f (ε)))

]
. (6.7)

Here, f (ε) = (ε coth ε − 1)/ε2 is the effective dimensionless rotational suscepti-

bility defined by ~Prot = f (ε)~ε, and X ≡ χmolT/p2
mol is its counterpart for the linear

polarization response.

The resulting theory for the dielectric has four solvent-dependent param-

eters (Nmol, pmol, X and α), of which the bulk molecular density, Nmol, is di-
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rectly measurable. The effective molecule dipole moment in the liquid, pmol,

differs from the gas-phase value, and in principle, can be determined from mea-

surements of the lowest order nonlinear response coefficient [47]. However,

such measurements are difficult and not readily available for most solvents. In-

stead, we compute pmol as the self-consistent dipole moment of a single solvent

molecule in a solvated ab initio calculation employing a nonlinear polarizable

continuum description of the same solvent. The resulting dipole moment for

the solvents used in this work are listed in Table 6.3. Note that pmol is larger than

the gas phase dipole moment for all these solvents because charged centers in

the molecule are surrounded by bound charges of the opposite sign which fa-

vor an increase in the polarization, as shown for water in Figure 6.2. We also

find that for water, pmol = 0.94ea0 gratifyingly agrees with the SPC/E molecu-

lar dynamics model value of 0.92ea0 [15], in contrast to the gas phase value of

0.73ea0.

The remaining solvent-dependent parameters, the correlation factor for ro-

tations α and the combination X ≡ χmolT/p2
mol, are constrained to reproduce the

bulk static and high frequency dielectric constants, εb and ε∞ respectively. Using

the bulk linear response of the above functional, we can analytically show that

X =
T (ε∞ − 1)

4πNmol p2
mol

and α = 3 −
4πNmol p2

mol

T (εb − ε∞)
, (6.8)

since the rotational response freezes out and does not contribute to ε∞. In prin-

ciple, ε∞ should be the dielectric constant at infrared frequencies between the

rotational and vibrational resonances, but in the absence of experimental data

in that frequency regime, we use the readily measurable optical dielectric con-

stant, which is the square of the refractive index.

We have therefore produced a density-functional theory for the nonlinear
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Figure 6.1: Comparison of the effective dielectric constant of water as a function
of uniform externally applied field E0 for the nonlinear PCM model (6.6) com-
pared to SPC/E molecular dynamics results [178] and classical density func-
tional predictions (Chapter 4). The effective dielectric constant is defined by
ε = E0/E, where E = E0 − 4πP is the net electric field including the screening
due to the dielectric polarization density P. Within this theory, this response
is determined entirely by bulk liquid properties εb, ε∞ and Nmol, along with the
molecule dipole moment pmol obtained from a self-consistent ab initio calcula-
tion solvated with the present model.

dielectric response of an arbitrary solvent constrained entirely by measurable

macroscopic properties. The response at field strengths relevant for solvation

is not accessible experimentally,4 but it has been estimated using molecular dy-

namics. Figure 6.1 demonstrates that the bulk nonlinear dielectric response of

the present theory is in excellent agreement with molecular dynamics results

for water[178] using the SPC/E pair potential model [15]. The present theory,

which uses LPDA for rotational correlations, produces essentially the same non-

4The present approach does not account for dielectric breakdown, which is typically caused
by the acceleration of small concentrations of charge carriers by strong fields to energies large
enough to free more carriers, resulting in an avalanche. Moreover, the high electric fields sur-
rounding molecules and surfaces in solution are microscopic (few Å), and their net potential
difference is small (few Volts) and therefore insufficient to cause dielectric breakdown.
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linear response to uniform electric fields as classical density functional theories

with the scaled mean-field electrostatics approximation [97]. The minor differ-

ences between the present theory and the classical density functional results

(Chapter 4) shown in Figure 6.1 are due to electrostriction; the latter theory ac-

counts for changes in the equilibrium fluid density in the presence of a strong

uniform electric field.

6.1.4 Nonlinear ionic system internal energy, Aκ

The previous section derived the dielectric response of liquids from the dipo-

lar rotational and polarization response of liquid molecules to the local elec-

tric field. Ionic species in the liquid introduce Debye screening by contributing

an additional monopolar response, which changes the local ionic density in re-

sponse to the local electric potential. A simple description of this response at

the linearized Poisson-Boltzmann level suffices for many electrochemical sys-

tems [90]. For the electrode-electrolyte interface, this level of theory corresponds

roughly to the Gouy-Chapman-Stern model, but misses the nonlinear capaci-

tance effects due to ion adsorption. Here, we explore whether a full Poisson-

Boltzmann treatment within the polarizable continuum model ansatz captures

these additional details.

To represent the internal free energy of an ionic system comprising several

species of charge Zi and bulk concentrations Ni each, we employ the exact ex-

pression for the ideal gas of point particle ions, approximating finite-size effects
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with a local density approximation, and write

Aκ[{ηi(~r)}] = T
∑

i

∫
d~rNis(~r)

[
(ηi(ln ηi − 1) + 1)︸               ︷︷               ︸

Ideal gas

+
(x(~r) − x0)2

x0(1 − x0)2(1 − x(~r))2︸                      ︷︷                      ︸
Hard sphere

]
. (6.9)

The density of each ionic species is Nis(~r)ηi(~r), represented in terms of the

enhancement ηi(~r) relative to the cavity prescription of Nis(~r). The charge-

weighted sum of these densities contribute a net ionic bound charge ρκ =∑
i ZiNis(~r)ηi(~r).

The first ideal gas term in (6.9) along with the mean-field electrostatic inter-

action in the third term of (6.1) correspond to the Poisson-Boltzmann theory.

That theory, however, does not limit the density of the ions in solution and

presents an unphysical instability associated with an infinite build-up of ions

at regions of strong external potential. We resolve this instability by enforcing

a packing limit on the ions via the second term of (6.9). This term captures lo-

cal hard sphere correlations in terms of the packing fraction x(~r) =
∑

i ViNiηi(~r),

where Vi = 4πR3
i /3 is the volume per ion for each species (with ionic radius Ri).

The functional form of this term is constrained to reproduce x(~r) → x0 ≡
∑

i ViNi

in the bulk and to match the divergence in the equation of state of the hard

sphere fluid [23] as x(~r)→ 1.

6.1.5 Linear limit

The free energy functional (6.1) with dielectric free energy Aε given by (6.6) and

optional ionic free energy Aκ given by (6.9) constitutes our nonlinear polariz-

able continuum model. Here, we show that the conventional linear polarizable

continuum model is a limit of this more general theory.
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The rotational response from the dielectric is approximately linear when the

energy scale of the molecular dipoles interacting with the field is much lower

than the temperature (pmol|~∇φ| � T ), where φ(~r) is the total electrostatic poten-

tial. Similarly, the ionic response is approximately linear when Z|φ| � T . Using

the Euler-Lagrange equations to eliminate ~ε(~r) and ηi(~r) in favor of ~∇φ(~r) and

φ(~r) respectively, expanding the free energy to quadratic order, and simplifying

using (6.8) and the definition κ2 ≡ 8πNionZ2/T , we find

Aε + Aκ =
1

4π

∫
d~rs(~r)

(εb − 1)
|~∇φ|2

2
+ κ2φ

2

2

 , (6.10)

with the corresponding total bound charge at linear order

ρlq(~r) =
1

4π

[
(εb − 1)~∇ · (s(~r)~∇φ) − κ2s(~r)φ

]
. (6.11)

The Euler-Lagrange equation for this simplified linear-response functional

in terms of the single independent variable, φ, can be rearranged into the famil-

iar modified Poisson equation (or Helmholtz equation for non-zero κ)

~∇2φ(~r) + (εb − 1)~∇ · (s(n(~r))~∇φ(~r)) − κ2s(n(~r))φ(~r) = −4πρel(~r). (6.12)

Finally, substituting the solution of (6.12) in the fluid free energy functional

(6.1) with the dielectric and ionic energies given by (6.10), yields an equilibrium

value for Adiel in the linear limit

A(linear)
diel = Acav +

1
2

∫
d~rρel(~r)

(
φ(~r) −

∫
d~r′

ρel(~r′)
|~r − ~r′|

)
. (6.13)

Thus, the free energy functional approach to polarizable continuum models re-

duces, in the linear limit, to the standard approach [90, 8] of replacing the vac-

uum Poisson equation with one modified by the fluid.
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6.1.6 Periodic systems and net charge

An important class of applications of the nonlinear polarizable continuum

model, and joint density-functional theory in general, is the study of electro-

chemical systems. These systems pose an interesting challenge as they often

involve charged metal or doped semiconducting surfaces. The periodic bound-

ary conditions necessary to accurately describe the delocalized electronic states

of such systems complicate the addition of charge, since the energy per unit cell

of a periodic system with net charge per unit cell is divergent.

Including a counter electrode [118] to keep the simulation cell neutral avoids

this problem, but leads to wasted computational effort on irrelevant portions of

the system and complicates the separation of physics at the two electrodes. In-

troducing Debye screening due to ions in the electrolyte neutralizes the unit cell

with fluid bound charge and naturally captures the physics of the electrochem-

ical double layer [90]. More importantly, unlike the Poisson equation obtained

without ionic screening, the Helmholtz equation for the electrostatic potential

with screening (6.12) has a well-defined constant offset (‘zero’ of potential) in pe-

riodic boundary conditions. The resulting Kohn-Sham eigenvalues, and hence

the electron chemical potential, correspond to a zero reference point deep within

the fluid, and this enables calibration of the electron chemical potential in DFT

against electrochemical reference electrodes. (See [90] for details.)

The electrostatic potential in the nonlinear polarizable continuum model is

not obtained from a Helmholtz equation, and the bound charge in the ionic

system does not neutralize a net charge in the electronic system at an arbitrary

value of the independent variables ηi(~r). Here, we present the modifications re-

quired to correctly handle periodic systems within the nonlinear ionic screening
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model.

The mean-field Coulomb energy per unit cell of volume Ω for the entire sys-

tem with total charge density ρtot = ρel + ρlq can be written in the plane-wave

basis as U = 1
2Ω

∑
~G K̃ ~G|ρ̃tot( ~G)|2. Here, ρ̃tot( ~G) =

∫
Ω

d~rρtot(~r) exp(−i ~G · ~r) for re-

ciprocal lattice vectors ~G, and K̃ ~G = 4π/G2 is the plane-wave basis Coulomb

kernel. The divergent contribution at G = 0 vanishes for neutral unit cells with

Qtot ≡ ρ̃tot(0) = 0.

The G−2 divergence results from the long-range 1/r tail of the Coulomb ker-

nel. We can analyze the effect of the divergence by making the Coulomb kernel

short-ranged on a length scale L much larger than the unit cell, and set L → ∞

at the end. The exact form of the regularization is not important; picking the

Gaussian-screened potential erfc(r/L)/r (which is also used in the Ewald ap-

proach for computing Coulomb energies of periodic arrays of point charges

[38]) results in the regularized Coulomb energy

UL =
∑
~G,0

2π
G2Ω

|ρ̃tot( ~G)|2 +
πL2

2Ω
Q2

tot. (6.14)

Note that the first term employs the standard Coulomb kernel in the plane-wave

basis which drops the G = 0 term by invoking a neutralizing background, and

the second term contains the divergent part depending only on the total charge

per unit cell.

At finite but large L, the second term of UL penalizes Qtot , 0 and favors equi-

librium configurations with small Qtot. The Euler-Lagrange equation for the net

charge Qtot is λ ≡ ∂A/∂Qtot = −πL2Qtot/Ω, where A is the total free energy exclud-

ing the divergent second term of (6.14). Note that ∂A/∂Qtot is finite for systems

capable of adjusting their total charge, such as fluids with ionic screening, so
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that as L → ∞, Qtot → 0 in such a manner that λ ∝ QtotL2 remains finite. The

absolute potential is also well defined in this situation with a G = 0 contribution

of ∂UL/∂Qtot = πL2Qtot/Ω = −λ. Finally, note that

U∞ =
∑
~G,0

2π
G2Ω

|ρ̃tot( ~G)|2 − λQtot (6.15)

results in the same Euler-Lagrange equation and equilibrium free energy as

(6.14) in the L → ∞ limit, and therefore the divergent term in the Coulomb en-

ergy reduces to a charge-neutrality constraint imposed by Lagrange multiplier

λ.5

We incorporate this Lagrange multiplier constraint into the ionic free energy

in plane-wave calculations, and retain the standard plane-wave Coulomb ker-

nel with G = 0 projected out for all electrostatic interactions. The constraint can

be solved analytically for local nonlinear ions (Section 6.1.4) in the commonly

encountered case of a ‘Z:Z’ electrolyte consisting of two species of charge +Z

and −Z (labeled with indices i = +,−) with bulk concentrations Nion each. In

this situation, we can show that substituting η±(~r) = exp(±(µ0 + µ±(~r))), where

µ0 ≡ −Zλ/T is obtained by solving the neutrality constraint, reduces the con-

strained minimization over η±(~r) to an unconstrained minimization over µ±(~r).

In particular, the neutrality constraint Q+eµ0 + Q−e−µ0 + Qel = 0 yields

µ0 = ln

√
Q2

el − 4Q+Q− − Qel

2Q+

, (6.16)

where Q± ≡ ±NionZ
∫

d~rs(~r)e±µ(~r) and Qel ≡
∫

d~rρel(~r) is the total charge of the

electronic system. In this case, and for other joint density-functional theories

5As noted in Section 1.4, the grand canonical ensemble with charged particles is constrained
to include only overall neutral configurations, but with different individual particle numbers.
Within this ensemble, the chemical potential of one charged species is dependent on the rest so
as to maintain neutrality, which here is enforced by the Euler-Lagrange equation with respect to
the Lagrange multiplier λ.
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which include ionic screening, the constraint contribution to δAdiel/δρel(~r) in the

electron potential establishes the absolute reference for the Kohn-Sham eigen-

values and the electron chemical potential required for ab initio electrochemistry

[90].

6.1.7 Implementation

The nonlinear polarizable continuum model presented here and its linear coun-

terpart have been implemented in the open source plane-wave electronic struc-

ture software JDFTx [154], designed for joint density-functional theory. The

electronic density-functional theory segment of this software is based on con-

jugate gradients minimization [132] of an analytically continued total energy

functional [11], expressed in the DFT++ algebraic formulation [75]. The fluid

segment of JDFTx also employs the plane-wave basis and is discretized in the

algebraic formulation for classical density-functional theories (Chapter 4).

The valence electron density n(r) needs to be augmented with a core electron

density in order to prevent overlap of the fluid with the pseudopotential cores

[90]. Hence, we compute the shape function using (6.2) with ncav(~r) = n(~r) +

ncore(~r), where ncore is the partial core density used for nonlinear core corrections

[98].

The electrostatic interactions between the fluid and the material described

in the electronic structure portion of the calculation, involve the total charge

density (both electronic and nuclear) of the latter, ρel(~r) = n(~r) + ρnuc(~r). Here,6

the nuclear charge density, ρnuc(~r) = −
∑

i Zie−(~r−~ri)2/(2w2)/(2πw)3/2 is widened by a
6Note that we employ an electron-is-positive charge convention, so that ρnuc < 0 and the

charge of the electron is +1 in atomic units.
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Gaussian resolvable on the charge density grid. The widened nuclear density

is used only in the interaction with the fluid; the internal energies of the elec-

tronic system employ point nuclei in all terms. This width does not affect the

interaction energy since the fluid and nuclear charge densities do not overlap,

and the nuclear charge is spherically symmetric. However, it shifts the poten-

tial relative to the zero-width case, which we compensate for exactly by adding

the correction −2πw2 ∑
i Zi/Ω to the electron potential, where Ω is the unit cell

volume.

Finally, regarding algorithms, the linear polarizable continuum models are

minimized by solving the Helmholtz (or Poisson) equation (6.12) at every elec-

tronic iteration. Appropriate preconditioners for the involved linear conjugate

gradients solver have been developed previously [90]. The free energy of the

nonlinear polarizable continuum model is minimized using the Gummel iter-

ation [54], where the electronic system and the fluid are alternately minimized

while holding the state of the other one frozen. This method is guaranteed to

be globally convergent because of the variational principle, and typically con-

verges adequately in 5-10 alternations for most systems studied. The fluid free

energy Adiel is minimized with the scalar fields ηi(~r) and vector field ~ε(~r) as inde-

pendent variables; the diagonal preconditioner in reciprocal space 7

Kη( ~G) =

[
Z(1 − α/3)

pmol

]2 G2

(G2 + κ2/εb)2 (6.17)

for the η channels with the identity preconditioner on the ~ε channel yields satis-

factory convergence for the nonlinear conjugate gradients algorithm [132].

7This preconditioner is derived from an approximation to the Hessian of Adiel with respect to
ηi(~r) and ~ε(~r) in the bulk linear limit.
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6.2 Results

Strong microscopic electric fields at liquid interfaces typical of electrochemical

systems necessitate a theory for the nonlinear response of the liquid environ-

ment, such as the nonlinear polarizable continuum model of Section 6.1. Sec-

tion 6.2.2 calibrates the undetermined parameters of this theory against exper-

imental solvation energies of molecules. For these molecules, and for metallic

surfaces in Section 6.2.3, we find results comparable to linear PCM’s. However,

for surfaces of ionic solids in Section 6.2.4, we find that inclusion of nonlinear

effects are necessary in order to obtain qualitatively correct results.

6.2.1 Computational Details

We perform all calculations in this chapter using the open source plane-wave

density functional software JDFTx [154] at a plane wave cutoff of 30 Eh (1 Eh ≡ 1

hartree ≈ 27.21 eV). These calculations employ norm-conserving pseudopoten-

tials generated by the Opium pseudopotential generator [117] with the PBE ex-

change and correlation functional [128]. The pseudopotentials for metal atoms

include partial core corrections [98], which are necessary to prevent the overlap

of the fluid density with the pseudopotential cores, as described in Section 6.1.7.

The choice of exchange-correlation functional for molecular and surface sys-

tems is not straightforward [101], and some argue that semi-local approxi-

mations can be inadequate for these systems [16]. Hybrid functionals which

include exact exchange, or quantum Monte Carlo methods, are likely to be

more accurate but are significantly more expensive than semi-local methods
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and hence unsuitable for rapid screening calculations. Here, we use the semi-

local revTPSS exchange-correlation functional [129] which shows considerable

promise for accurate calculations of surface phenomena including surface for-

mation energies and molecular adsorption energies [151].

Molecular geometries for the calculations of Section 6.2.2 are from the Com-

putational Chemistry Comparison and Benchmark Database [115]. The surface

geometries employed in Sections 6.2.4 and 6.2.3 are constrained to the optimized

bulk geometry for the central layer, while the remaining layers are fully relaxed

for both the vacuum and fluid calculations. The fluid models assume room tem-

perature, T = 298 K, for all calculations.

6.2.2 Calibration to molecular solvation energies

The nonlinear dielectric response of Section 6.1.3 is completely constrained by

ab initio and experimentally determined parameters, listed in Table 6.3 for the

solvents studied in this chapter. However, the cavity shape function and the

cavity formation and dispersion terms, which are integral features of any polar-

izable continuum model, are unknown microscopic quantities that are typically

constrained by a fit to solvation energies. Here, we fit the two unknown cavity

parameters for the nonlinear model and its linear limit to the same molecular

solvation dataset using the same procedure, in order to facilitate a fair compar-

ison between linear polarizable continuum models and our nonlinear theory.

The molecular solvation dataset must contain experimental data that is both

reliable and readily available. Organic molecules solvated in water satisfy this

criterion and are commonly used in fitting parameters for polarizable contin-
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Table 6.1: Fitted parameters of the nonlinear and linear polarizable continuum
models (PCM) and the corresponding RMS errors for solvation energies of the
molecules listed in Figure 6.3.

nc (a−3
0 ) τ (Eh/a2

0) RMS Error [kcal/mol (mEh)]
Nonlinear PCM 1.0 × 10−3 9.5 × 10−6 0.95 (1.5)
Linear PCM 3.7 × 10−4 5.4 × 10−6 1.05 (1.7)

Nonlinear Linear
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Figure 6.2: Bound charge density in solvent water around a water molecule in
the nonlinear and linear models. The smaller hydrogen atoms produce stronger
fields on the solvent compared to the oxygen, resulting in much stronger satu-
ration effects in the negative bound charge density surrounding the hydrogens.
In spite of the increased bound charge density, the linear model yields approxi-
mately the same solvation energy as the nonlinear one because of compensation
by the increased cavity size.

uum models [8, 163]. The molecules used in our fit are listed in Figure 6.3, and

the known solvent parameters for water are listed in Table 6.3. Of the remaining

parameters, we set the shape function width parameter σ = 0.6 as in [130, 90]

since the solvation energies are somewhat insensitive to it. We then determine

the cavity transition electron density nc and the effective cavity surface tension

τ by a nonlinear least squares fit to the molecular solvation energy dataset.

The resulting fit parameters and optimized RMS error in solvation energy for

the nonlinear and linear versions of the model are summarized in Table 6.1. The
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Figure 6.3: Solvation energies of molecules in water predicted by the nonlinear
and linear polarizable continuum models compared against the experimental
values from [157, 105].

smaller nc, and hence larger cavities, for the linear model as compared to the

nonlinear one offset the overestimation of electrostatic interactions because of

the lack of saturation effects. The lowered cavity surface tension τ in the linear

model then compensates for the increase in cavity area. Figure 6.2 demonstrates

the consequences of these differences in the solvent bound charge density sur-

rounding a water molecule. The solvation energies predicted by the two mod-

els are in agreement as seen in Figure 6.3, in spite of significantly larger bound

charge densities in the linear case. Because of this cancellation, the linear model

yields comparable accuracy to the nonlinear one for the solvation of organic

molecules in water, but this is no longer the case when stronger electric fields

come into play, as in some of the electrochemical systems we study next.
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Table 6.2: Offset between theoretical and experimental PZC’s, VSHE, determined
by a fit using the systems of Figure 6.4(a), with corresponding RMS errors. VSHE

represents the potential difference between an electron solvated deep in the
fluid and the Standard Hydrogen Electrode. Vdip represents the potential aris-
ing from the dipole moment at the fluid-metal interface, and is obtained as the
difference between the theoretical PZC and the work function, averaged over
the systems considered for each fluid model.

VSHE (V) Vdip (V) RMS Error (V)
Nonlinear PCM 4.62 0.46 0.09
Linear PCM 4.68 0.40 0.09

6.2.3 Solvation of metallic surfaces

Unlike the typical electrochemical interface, noble metal electrodes in electrolyte

are less prone to complex chemical interactions at the surface, making them

suitable candidates for an initial evaluation of our theory. Reactions are highly

sensitive to the electron chemical potential, which in experiments is typically

reported relative to the standard hydrogen electrode (SHE). The potential of the

SHE relative to vacuum is difficult to establish experimentally; the estimates

from different experimental methods range from 4.4 V to 4.9 V [165]. To make

direct contact with experimental electrochemical observables, this experimen-

tally uncertain quantity can be calibrated [90] in density-functional theory by

comparing the theoretical chemical potentials for solvated neutral metal sur-

faces against the experimental potentials of zero charge (PZC’s), which are the

measured electrode potentials of neutral surfaces. The calibrations of the refer-

ence electrode potential within the linear and nonlinear models are remarkably

similar, as shown in Figure 6.4(a) and Table 6.2.

The potential of zero charge includes contributions from the work function,

which is essentially independent of the fluid theory, and from the dipole mo-
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Figure 6.4: (a) Potentials of zero charge (PZC’s) for the (111), (100) and (110) sur-
faces (left to right) each for silver (circles), gold (triangles), and copper (squares),
predicted by the nonlinear and linear theories, compared to experiment [165].
The diagonal line for each theory compares theoretical and experimental values
up to an overall fitted offset. (See Table 6.2.) The silver and gold surfaces are
solvated in aqueous 1 M NaF electrolyte (ionic radii Na: 1.16 Å F: 1.19 Å), while
the copper surface is in aqueous 1 M KClO4 electrolyte (ionic radii K: 1.52 Å and
ClO4: 2.26 Å). (b) Charge on a Pt(111) surface in 1 M aqueous KClO4 as a func-
tion of potential relative to the standard hydrogen electrode (SHE) for the two
theories.

ment in the interfacial layers of the liquid. The minor differences in the calibra-

tions of the two theories stem from this dipole moment contribution, as shown

for aqueous electrolytes in Table 6.2. The variation of surface charge with elec-

trode potential is also similar for the two models, as shown for the solvated

Pt(111) surface of Figure 6.4(b). In particular, the derivative of that variation,

the so-called ‘double-layer’ capacitance, at the potential of zero charge is 14 and

15 µF/cm2 for linear and nonlinear PCM respectively, which agrees well with

an experimental estimate of 20 µF/cm2 [122] for the above system.

The agreement in the results of the linear and nonlinear theories demon-

strated in Figures 6.4(a,b) and Table 6.2 is because of the same cancellation of

errors at play for solvation of molecules. The linear theory misses saturation

in the rotational dielectric response, thereby overestimating it, yet compensates

165



with an increase in cavity size. This cancellation of errors is possible since the

typical magnitudes of electric fields under typical operating potentials are sim-

ilar to those of the molecular case, as shown in Figure 6.7.

Both models predict an approximately linear variation of surface charge with

electrode potential (Figure 6.4(b)), which corresponds to a constant capacitance.

This prediction contrasts with the experimental observation of a capacitance

minimum at the potential of zero charge [122] because of ion adsorption on

the electrode surface. The formation of this so-called inner Helmholtz layer

between the solid surface and the solvent is precluded by the cavity ansatz of

polarizable continuum models. These details require either a higher level of

theory capable of describing layering effects of ions such as a classical density-

functional approach, or the inclusion of explicit ions into the quantum mechan-

ical calculation. Nonetheless, both the linear and nonlinear PCM adequately

describe the basic features of the ideal electrochemical interface, and are suit-

able for describing chemical reactions at metal electrode surfaces so long as all

chemical bonds are treated quantum-mechanically.

6.2.4 Solvation of ionic surfaces

The surfaces of electrodes typically contain ionic compounds whose structure

and composition vary with the chosen electrolyte and operating conditions. Re-

actions at the surface of a lithium metal anode, for example, can form Li2O,

LiOH and LiF at the solid electrolyte interface [79, 141]. Here, we study these

surfaces in contact with different organic solvents typical of battery systems as

a testbed for fluid models applicable to these systems.
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Table 6.3: Parameters describing water and commonly used lithium battery
solvents, Dimethyl Carbonate (DMC), Tetrahydrofuran (THF), Dimethylfor-
mamide (DMF), Propylene Carbonate (PC) and Ethylene Carbonate (EC). The
vacuum dipoles (pvac) and self-consistent solvated dipoles pmol are computed
using density-functional theory as described in Section 6.1.3. All remaining pa-
rameters are constrained by measured bulk properties [148].

Solvent εb ε∞ pvac (ea0) pmol (ea0) Nmol (a−3
0 ) τ (Eh/a2

0)
Water 78.4 1.78 0.73 0.94 4.938 × 10−3 9.5 × 10−6

DMC 3.1 1.87 0.16 0.16 1.059 × 10−3 2.05 × 10−5

THF 7.6 1.98 0.69 0.90 1.100 × 10−3 1.78 × 10−5

DMF 38.0 2.05 1.50 2.19 1.153 × 10−3 2.26 × 10−5

PC 64.0 2.02 1.97 2.95 1.039 × 10−3 2.88 × 10−5

EC 90.5 2.00 1.93 2.88 1.339 × 10−3 3.51 × 10−5

The solvents selected for this study are listed in Table 6.3. Because of the

dearth of experimental data for corresponding solvation energies, we here use

the cavity shape parameters determined by the fit in Section 6.2.2. We replace

the effective surface tension τ by the experimental surface tension, ignoring dis-

persion effects which are insignificant on the scale of the electrostatic energies in

these highly polar systems. All remaining physical parameters that determine

the dielectric response are constrained by experiment and ab initio calculations,

as discussed in Section 6.1.3.

The linear and nonlinear models predict similar solvation energies for the

aforementioned ionic compounds of lithium in solvents with low dielectric con-

stants, as shown in Figure 6.5. However, with increasing dielectric constant, the

magnitude of the solvation energy increases more rapidly for the linear model,

leading to disagreement by up to a factor of two for the most polar solvents.

The linear model overestimates the electrostatic interaction because of a lack of

saturation effects, but unlike the molecular case, the increase in cavity size is

insufficient to compensate for this error. In fact, for lithium fluoride in ethy-
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Saturation effects are stronger next to the smaller Li+ cations which produce
significantly stronger fields on the solvent compared to the larger F− anions. In
contrast to a water molecule in liquid water (Figure 6.2), these effects are strong
enough to qualitatively alter solvation energies, as shown in Figure 6.5.
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pensated by the increase in cavity size.

lene carbonate, as seen in Figure 6.6, the linear model overestimates the bound

charge density by an order of magnitude. Indeed, in this case, the result is a

qualitative difference in the predicted stability of the solvated surface relative

to the solid, with the linear model even predicting the solid to be thermody-

namically unstable with respect to the formation of surfaces in this system.

The qualitative inadequacy of the linear model for ionic surfaces derives

from the significantly stronger electric fields in these systems compared to sol-

vated molecules and metallic surfaces. Figure 6.7 compares the average dimen-

sionless electric field ε (defined in section 6.1.3) and the corresponding rota-

tional susceptibility at the solute-solvent interface for all the systems discussed

above. The least polar neutral ionic surface still imposes a higher electric field

than the most polar molecule or charged metallic surface at chemically relevant
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electrode potentials. The order of magnitude reduction in rotational suscepti-

bility because of saturation effects in the ionic surfaces, compared to the modest

reduction in other cases, necessitates a nonlinear theory for the study of these

systems.

6.3 Summary

Ab initio studies provide key insights into chemical processes in a wide range

of systems, but have not yet approached electrochemistry with a realistic de-

scription of the electrolyte environment. Continuum solvation models provide

an intuitive and computationally-efficient description of the environment and

enable a focused study of the complex subsystems that require treatment at the

electronic structure level. Our results indicate that standard polarizable con-

tinuum models fit to molecular solvation data perform poorly when applied to

polar surfaces. Consequently, one must exercise caution when attempting to ap-

ply standard solvation models available in both quantum chemical [163, 45, 113]

and condensed matter [8, 48] ab initio software packages. As an alternative, the

nonlinear theory presented here and implemented in [154] leverages the compu-

tational simplicity of the standard polarizable continuum models and extends

their applicability to systems with the strong electric fields associated with ionic

surfaces in electrochemical systems.

The importance of nonlinear solvent response depends on the strength of lo-

cal electric fields at the interface, which in turn varies dramatically with system

type, as highlighted in Figure 6.7. For systems with moderate field strengths,

such as the molecules and metal surfaces studied here, the linear models can
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compensate for the overestimated electrostatic response through an increase in

cavity size. However, for systems with higher field strengths, such as ionic sur-

faces, this compensation is insufficient. The nonlinear polarizable continuum

model developed here consistently describes all of these systems, and along

with the technique developed in Section 6.1.6 to determine the electron chem-

ical potential, enables electronic structure predictions for real electrochemical

systems as a function of electrode potential.

This chapter presents a general framework for developing polarizable con-

tinuum models, and focuses on the dominant electric response while employing

a simple empirical form for the remaining energy contributions such as cavity

formation and dispersion. The parameters determining the cavity size and these

auxiliary energy contributions are fit to solvation energies and are expected to

depend on the solvent. The next chapter develops a more detailed description

for these auxiliary terms and attempts to construct a PCM whose parametriza-

tion is somewhat less solvent dependent.
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CHAPTER 7

WEIGHTED-DENSITY FUNCTIONALS FOR CAVITY FORMATION AND

DISPERSION ENERGIES 1

The polarizable continuum model of Chapter 6 develops a nonlinear theory

of the dielectric and ionic response and adopts a simple effective surface tension

model [8] for cavity formation and dispersion energies. This approach then fits

two parameters, the electron density determining the cavity size (nc) and the

effective surface tension (τ), to solvation energies of molecules in the solvent

of interest. However, the actual cavity formation and dispersion energies are

not proportional to the cavity area (see Figure 4.6 for the size dependence of

the cavity formation energy), and the accuracy for solvation energies relies on

cancellation of errors arranged for by the fit. Consequently, the fit parameters

lack physical meaning and are highly solvent-dependent.

Traditional polarizable continuum models [163] adopt a much more com-

plicated parametrization. They typically invoke two cavities, a smaller one

bounded by the ‘solvent excluded surface’ (SES) and a larger one bounded by

the ‘solvent accessible surface’ (SAS). The SAS bounds the region of space ac-

cessible to centers of the solvent molecules such that spheres centered on the

solvent molecules do not overlap with spheres centered on solute atoms. The

SES bounds the region of space which overlaps with any solvent sphere with

center placed on or outside the SAS. The radii used in determining the solute

and solvent spheres are taken to be atomic van der Waals (vdW) radii, or are

fit to solvation datasets per atom, and sometimes per functional group. The

electric response is computed on the SES cavity and the cavity formation and

1Co-author credits: D. Gunceler performed the solvation energy fits.
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dispersion energies are computed on the SAS cavity. (See [163] for details.) The

SAS cavity corresponds to the region of space from which fluid molecule centers

are excluded, as in the hard sphere solvation calculations of chapters 3, 4 and 5,

and therefore enables a more rigorous analysis of the cavity formation energy

than the empirical cavity of Chapter 6. However, methods of this class typically

require a much larger set of adjustable parameters, such as solvent-dependent

scale factors on the vdW radii to determine the cavity used for computing the

electrostatic contributions.

This chapter develops the methods necessary to combine the best of both

approaches above. Section 7.1 analyzes the nonlocality in the solvent response

in order to define an ‘electrostatic radius’ that sets the spacing between the

solvent-center cavity and that used for electric response, without any fit pa-

rameters. Section 7.2 then develops a technique to generate cavities spaced by

such a distance, but still determined by a single critical electron density nc. Sec-

tions 7.3 and 7.4 present intuitive models for the cavity formation and disper-

sion energies respectively, that capture the correct cavity shape and size depen-

dence of those terms. Finally, Section 7.5 presents solvation energy results for

the resulting polarizable continuum model for water, chloroform and carbon

tetrachloride and demonstrates the possibility of almost solvent-independent

parametrization of simplified solvation models.

7.1 Electrostatic radii of solvents

The fundamental need for empirical parameters in polarizable continuum mod-

els arises from the locality assumption: the nonlocal response of the solvent is

replaced by that of a continuum dielectric. This assumption is compensated for
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by choosing the boundary of the dielectric appropriately: the optimum bound-

ary lies between the SAS (solvent centers) and SES (solvent edges) and is se-

lected by fitting some cavity size parameter, critical electron density nc or radius

scale factor depending on the approach, to solvation energies. Here, we analyze

the nonlocal response of the solvent, obtained from electronic density-functional

calculations of one solvent molecule, to determine the distance of this optimum

dielectric boundary from the solvent-center surface (SAS).

We start by computing the charge density of a single solvent molecule ρmol(~r)

using electronic density-functional theory, and expanding its electronic and vi-

brational susceptibility obtained from density-functional perturbation theory in

an eigen-basis

χmol(~r,~r′) = −
∑

i

Xiρi(~r)ρi(~r′) (7.1)

with normal modes of strength Xi with characteristic charge density ρi(~r).

Next, consider a single solvent molecule with its center pinned at the origin

that is free to rotate and in thermal equilibrium at temperature T . In the absence

of any external fields, this molecule adopts all orientations ω ∈ SO(3) with equal

probability pω = 1 (normalized so that
∫

dω
8π2 pω = 1). With a perturbing field, the

orientation density is altered to first order in the field and in each orientation,

the molecule is polarized by the field, again to first order. By collecting the total

induced charge at first order, we can show that the net susceptibility of the free

rotor at T is

χT (~r,~r′) =

∫
dω
8π2

−1
T
ρmol(ω ◦ ~r)ρmol(ω ◦ ~r) −

∑
i

Xiρi(ω ◦ ~r)ρi(ω ◦ ~r′)


= −

∫
dω
8π2

∑
i=0

Xiρi(ω ◦ ~r)ρi(ω ◦ ~r′). (7.2)

The second line simplifies the notation by extending the sum over polarizability
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modes to include rotation as mode 0 with strength X0 = 1/T and characteristic

charge density ρ0(~r) = ρmol(~r).

Finally, in order to estimate the extent of the nonlocality of the response,

we adopt a simple model of the solvent consisting of a fixed distribution of

free-rotor solvent molecules at temperature T . The net susceptibility of a semi-

infinite slab of such a solvent with bulk molecular density Nbulk is therefore

χ(~r,~r′) = −

∫
d~RNbulkθ(~R · ẑ)

∫
dω
8π2

∑
i=0

Xiρi(ω ◦ ~r − ~R)ρi(ω ◦ ~r′ − ~R). (7.3)

Approximating the interaction between molecules at the mean-field level, the

bound charge density in the solvent is then ρbound = χ̂φtot ≡
∫

d~r′χ(~r,~r′)φtot(~r′),

where φtot is the total electrostatic potential. For an applied external potential

φext, the total potential then satisfies the self consistency relation

φtot = φext + K̂ρbound = φext + K̂χ̂φtot

⇒ (1 − K̂χ̂)φtot = φext, (7.4)

where K̂ is the Coulomb operator.

To this model solvent slab, we apply a uniform external field normal to the

slab with φext(~r) = −Dz, and numerically solve the one-dimensional integral

equation (7.4) with the non-local χ̂ given by (7.3) to obtain the total potential

and bound charge density in the solvent. Figure 7.1 shows the resultant bound

charge density at the interface for liquid water. In contrast, the bound charge

density in a continuum dielectric would be a δ-function centered at z = 0.

The interaction energy of this bound charge with a sheet charge σδ(z + L)

for some large enough L so that the two charge densities do not overlap is

UNL = σ
∫

dzρbound(z)(z + L). Similarly, the interaction energy of this sheet charge

with a continuum dielectric bounded at z = −Rel is Uε = σ(L − Rel)
∫

dzρbound(z).
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Figure 7.1: Determination of electrostatic radius, shown here for water, as the
first moment of the bound charge density at the interface of the solvent slab
with model nonlocal response given by (7.3), under a uniform externally ap-
plied field.

The magnitude of the bound charge for the nonlocal response and a continuum

dielectric with the same bulk dielectric constant are identical, and therefore the

interaction energies Uε = UNL for all L if

Rel ≡ −

∫
dzρbound(z)z∫
dzρbound(z)

. (7.5)

This defines the electrostatic radius of a solvent, Rel, as the distance by which

a continuum dielectric boundary should be placed closer to the source charge

compared to the solvent-center surface in order to match the energetics of the

nonlocal response in a planar geometry. At lowest order, this optimum dis-

tance is unaffected upon moving from a planar interface to the cavity geometry

around an electronic system, and we set the separation between the electric re-

sponse cavity and the SAS to Rel, computed ab initio as detailed above.
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Figure 7.2: Relation between various cavity surfaces in a PCM description of an
ethylene molecule in water. The solvent accessible surface (SAS) is obtained by
expanding the base cavity, which roughly corresponds to the SES, by the solvent
van der Waals radius (RvdW). The electric response is smaller than the SAS by
the electrostatic radius, Rel, and is hence obtained by expanding the base cavity
by RvdW − Rel. The base cavity is then expected to be a property of the solute
alone, and hence solvent independent.

7.2 Cavity expansion

The electrostatic radius (Rel) defined above links the cavity for electrostatic re-

sponse to the surface of solvent centers (SAS). In traditional PCM’s, the SAS is

determined from the union of atom-centered spheres of radii equal to the sum of

solute atom and solvent vdW radii. Combining that definition of the SAS with

the ab initio computed Rel would eliminate solvent-dependent scale parameters

in the cavity determination. However, our goal is to take a step forward and

avoid atom-dependent parameters, if possible.

Here, we transfer the physical intuition behind the atomic vdW radius ap-

proach to the isodensity approach, where the cavities are determined from the
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electron density. vdW radii are defined in terms of the distance of nearest ap-

proach of two closed-shell electronic systems [102], and hence are expected to

be a reasonable descriptor for the typical spacing between solute and solvent

molecules in the domain of validity of solvation models; in any case, covalent

bonds with the solvent would require inclusion of the bonded solvent molecules

in the quantum-mechanical calculation.

Consequently, we propose the following program (see Figure 7.2). The elec-

tron density of the solute is thresholded at a critical density nc to determine a

base cavity, which corresponds roughly to the SES of traditional models. This

cavity is a property of the solute alone, and the resulting nc can therefore ex-

pected to be independent of the solvent.

The solvent-center cavity used for computing the cavity formation and dis-

persion energies is obtained by expanding this base-cavity by the solvent vdW

radius, RvdW, which can be defined in terms of the equation of state and other

thermodynamic properties of the fluid [131], and has been tabulated for many

fluids [14]. The cavity for electric response is expected to be Rel smaller than the

solvent-center cavity as discussed previously. We therefore obtain this cavity by

expanding the base cavity by RvdW − Rel.

At this stage, all cavities required for the model can be determined from a

single critical electron density nc, along with thermodynamic and ab initio com-

puted properties of the solvent. In the rest of this section, we develop a practical

method to construct the expanded cavities in a plane-wave basis calculation.

Only the exponential tail regions of the electron density participate in the

determination of the cavity, since the nearest approach of closed shell systems
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Figure 7.3: Accuracy of electron density expansion functional for (a) water with
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approximately planar electron density tail. In the upper (lower) panels, the solid
black lines show the original electron density (cavity), the dashed red lines plot
the corresponding quantities for the electron density expanded by 1 Å, and the
dotted blue lines plot the original quantity shifted outwards by 1 Å.

only involves overlap of these low electron density regions. It turns out that we

can exploit this exponential structure to much more reliably expand the electron

density rather than the cavities obtained by thresholding them.

Isodensity PCM’s describe the cavities by functions s(~r) that smoothly switch

from 0 in the cavity to 1 in the bulk fluid. Following [130] and Chapter 6, we

employ the error-function form

sR[n](~r) =
1
2

erfc
ln(ηR[n]/nc)

σ
√

2
, (7.6)

except we use ηR[n], the electron density expanded by R, instead of the original

electron density n to obtain an expanded cavity. In particular, the electrostatic

cavity is sel ≡ sRvdW−Rel and the solvent-center cavity is sSAS ≡ sRvdW .
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Finally, we specify the functional ηR[n] that expands the exponential tails

of the electron density. Convolving the electron density by a weight func-

tion with range R almost achieves the required task, since the result at any lo-

cation is dominated by the highest electron density within the range, which

would be from R ‘inwards’ from that location. In particular, with a spher-

ical kernel w(r) = θ(R − r)/2πR3 (with a convenient dimensionless normal-

ization), a planar electron density n = exp(−z/a) yields a convolved density

n̄ = exp(−(z − R)/a) × a2(R − a)/R3 + O(exp(−(z + R)/a)), which exhibits the de-

sired shifting of the exponential tail but includes an undesirable prefactor that

depends on the electron density length scale, a. A gradient of the convolu-

tion picks up a factor of 1/a, and can be combined with the above to eliminate

this dependence. In fact, |R∇n̄|2/n̄ = exp(−(z − R)/a)) + O(a/R) and R � a for

typical electron densities. This form, however, rapidly approaches zero in the

core region of pseudized electron densities. A sum of the convolved density,

n̄ = n ∗ θ(R − r)/2πR3, and the combination with its gradient,

ηR[n] = n̄ +
|R∇n̄|2

n̄
(7.7)

retains the leading order electron density length-scale independence and re-

mains non-zero in the pseudopotential cores. Figure 7.3 demonstrates the accu-

racy of this functional in expanding realistic electron densities and the resulting

cavities. The errors in cavity separation for planar electron densities, the regime

of the above construction, are only ∼ 0.01 Å, whereas they approach ∼ 0.03 Å for

worst-case spherical densities with curvature radii comparable to the expansion

radius R. Typical separations between solute and solvent atoms, which do not

form covalent bonds with each other, are ∼ 3 Å, so that the worst-case error

above results in a 1 % error in the capacitance of the dielectric cavity, and hence

a 1 % error in the electrostatic contribution to the solvation energy. This com-
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ponent of the energy typically varies from ∼ 10 mEh for organic molecules to

∼ 100 mEh for ions, so that the worst-case error would be ∼ 1 mEh (room tem-

perature) for ions, which is within the target accuracy of ∼ 1 kcal/mol (1.6 mEh)

for simplified solvation models.

7.3 Weighted-density cavity formation model

The analyses of Sections 7.1 and 7.2 establish a solvent-center cavity and a di-

electric cavity within an iso-density approach with a single critical electron den-

sity parameter nc. The remaining ingredients necessary to form a complete po-

larizable continuum description of the solvent are models for the sub-dominant

contributions beyond the mean-field electrostatic interactions, such as the cav-

ity formation and dispersion energies, given the solvent-center cavity described

in term of the shape function, sSAS(~r).

The simplest approximation to the cavity formation free energy is an effec-

tive surface tension model, with an empirical tension parameter fit to solvation

free energies. This accounts for the reduced free energy per unit surface rela-

tive to the bulk surface tension for microscopic molecular cavities, but therefore

underestimates the cavity contribution for a planar interface, which should in

fact be the bulk surface tension. A model accounting for the cavity geometry is

necessary to describe both limits accurately.

The cavities in traditional polarizable continuum models are typically com-

posed of spheres. Scaled-particle theory (SPT) [131], based on the statistical

mechanics of hard sphere fluids, provides an accurate estimate of the free en-

ergy of inserting a hard sphere of arbitrary size into a hard sphere fluid. PCM’s
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employ various combination rules [163] to estimate the free energy for forming

a cavity composed as a union of spheres, such as applying SPT to a sphere of

surface area or volume equal to that of the cavity, or linearly combining the cav-

ity formation energy of spheres weighted by exposed surface area. (See [30] for

a detailed comparison of these methods.)

These combination rules do not result from physical principles and have pri-

marily evolved from empirical evidence. Furthermore, isodensity PCM’s pro-

duce arbitrary-shaped cavities that do not decompose into spheres for which

SPT may be applied. In principle, classical density functional theory with free

energy functional approximations, such as those of chapters 3-5, can provide an

estimate of this term. This involves minimizing a free energy functional in an

external potential that excludes the fluid from the interior of the cavity, which

incurs a significant computational cost compared to the solution of the modified

dielectric equation for the electrostatic term. Here, we motivate a low compu-

tational cost, closed-form physical model for the cavity-formation energy for

arbitrary cavities that compares favorably with classical-density functional re-

sults.

We start from the intuitive picture of surface tension resulting from the en-

ergy cost of missing neighbors for the molecules at the surface of the fluid. A

convolution of the cavity shape function, s̄ = w ∗ s, with a normalized short-

ranged weight function w(r), measures the neighborhood of a molecule, ranging

from 0 for an isolated molecule, through 1/2 for a surface molecule, to 1 for a

molecule in the bulk. In particular, we select the spherical shell weight function

w(r) = δ(r − σvdW)/4πσ2
vdW with the solvent vdW diameter σvdW = 2RvdW, so as

to estimate the fraction of nearest neighbor molecules present at each location.
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We then make a weighted-density ansatz for the cavity formation free energy,

Gcav = pV +
∫

d~r f (s̄) with an as yet undetermined local function f , after sepa-

rating out the ideal gas contribution pV for a cavity of volume V =
∫

(1 − s) in a

fluid at pressure p and temperature T .

Next, we constrain the undetermined function to known physical limits. The

free energy to form a cavity of volume V that is much smaller than molecular

dimensions in a fluid of bulk density Nbulk at temperature T , is dominated by

ideal gas contributions and reduces to (p + NbulkT )V to lowest order in V . On the

other hand, the weighted density ansatz above yields Gcav = f (1) + ( f ′(1) + p)V +

O(V2) in the limit of small cavities, which implies f (1) = 0 and f ′(1) = NbulkT .

The opposite regime of droplets corresponds to fluid at bulk density in the

interior of some volume V , with zero density outside. When we take the limit

V → 0, this configuration contains NbulkV � 1 molecules on average (no longer a

droplet in the conventional sense), and its free energy corresponds to that of ex-

tracting and isolating NbulkV molecules from the bulk fluid. The free energy re-

quired to isolate one molecule from the bulk fluid is related to its vapor pressure,

pvap, as T (ln NbulkT
pvap
−1). In this limit, the ansatz predicts Gcav = f (0)+ f ′(0)V+O(V2),

yielding the constraints f (0) = 0 and f ′(0) = NbulkT (ln NbulkT
pvap
− 1).

In addition to these four constraints from the droplet and cavity limits, we

require the model to reproduce the bulk surface tension σbulk for planar inter-

faces. The simplest function f (s̄) that can satisfy these five constraints is a fourth

order polynomial, and solving for the constraints for that functional form yields
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the model free energy

Gcav[s] = p
∫

(1 − s̄)

+ NbulkT
∫

s̄(1 − s̄)
[
s̄ + (1 − s̄)γ + 15

(
σbulk

NbulkTRvdW
−

1 + γ

6

)
s̄(1 − s̄)

]
, (7.8)

where γ ≡ ln NbulkT
pvap
− 1.

This specifies a model for the free energy associated with forming a cavity of

arbitrary shape described by a shape function s(~r), constrained entirely by bulk

measurable properties of the solvent, with no adjustable parameters. Figure 7.4

compares the predictions of this model against classical density functional the-

ory calculations using the free energy functional approximations of Chapter 5

for all constant curvature surfaces: spherical and cylindrical cavities as well as

droplets. The model reproduces the high positive and negative as well as zero

curvature results by construction (small cavity, small droplets and planar inter-

face limits respectively). The weighted density ansatz with the spherical shell

weight function of radius RvdW perfectly ‘interpolates’ between these limits for

all solvents considered, ranging from the highly polar (water) to the non-polar

(carbon tetrachloride). The results are also in agreement with scaled-particle

theory in its domain of validity: small spherical cavities, but the present model

is valid for arbitrary geometries and does not require combination rules for ap-

plication to PCM free energies for solvated molecules.

Figure 7.5 further explores the accuracy for non-spherical geometries by con-

sidering the cavity formation energy for dumbbell-shaped objects composed

as the union of two spherical cavities, as a function of the separation between

the sphere centers. The weighted-density model best reproduces the classical

density-functional results, including the non-monotonicity around separations

for which the two cavities just touch; this corresponds to a highly non-analytical
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bon tetrachloride as predicted by the weighted density model (7.8) and scaled-
particle theory [131] (valid for spherical cavities only) compared to classical
density functional results for spherical and cylindrical cavities (fluid outside
surface) as well as droplets (fluid inside surface).
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equal to the solvent RvdW, which results in solvent-center cavities of diameter
d = 4RvdW = 5.54 Å, and for which the isolated cavity formation energy is
Gd

cav = 4.3 kcal/mol (6.9 mEh).

geometry involving cusps and infinite surface curvatures. Further, the minor

deviations from the density-functional results are only for this problematic non-

analytical geometry. On the other hand, amongst the traditional PCM combi-

nation rules, only the Claviere-Peirotti method (C-SPT) [86] that combines the

sphere results weighted by the exposed surface areas exhibits size-consistency,

that is it evaluates to twice the cavity formation energy for two infinitely sepa-

rated spherical cavities, compared to that for a single cavity. The other methods

that apply scaled-particle theory to a sphere with either surface area or volume

equal to the non-spherical cavity (SPT-S and SPT-V respectively [30]) sacrifice

the size consistency, but are more accurate for small separations where the re-
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sulting cavity approaches a sphere. Clearly, as expected, the weighted density

model consistently exhibits the best results for highly non-spherical geometries.

7.4 Dispersion model

The final energetic contributions relevant to solvation free energies are the dis-

persion interactions between the solute and the solvent, and to a lesser extent,

the Pauli repulsion between the electrons of the solute and the solvent at their

interface. Quantum chemistry solvation methods sometimes couple solvent

polarizabilities to virtual excitations in the solute system to obtain a physical

model for the dispersion interactions [7]; such methods are much more expen-

sive than standard electronic density-functional calculations, require unoccu-

pied levels and can be prohibitively expensive in plane-wave basis calculations.

On the other hand, empirical pair-potential estimates for these additional terms

[163] are moderately accurate and efficient for use in density-functional calcula-

tions.

Here, we neglect the repulsion energies and adopt a simplified empirical for-

mulation for the dispersion energies (which absorbs the error introduced by ne-

glecting repulsion) based on the pair-potential dispersion corrections employed

in electronic density-functional theory [53, 162]. For simplicity, we adapt the

form introduced by Grimme [53], which expresses the dispersion corrections

for a system with a collection of atoms at positions ~Ri as

Edisp = −s6

∑
i< j

√
C6iC6 j

r6
i j

fdmp

(
ri j

R0i + R0 j

)
, (7.9)

where ri j ≡ |~Ri − ~R j|, C6i are effective interaction strengths for each atom type

derived from ab initio atomic polarizabilities, and R0i are atomic vdW radii (tab-
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ulated for all main group elements in [53]). The damping function fdmp(x) =

1/(1 + e−d(x−1)) with d = 23 serves to attenuate the short-ranged contributions to

the correction, since they are partially captured by the approximate exchange-

correlation functional, and the empirical scale parameter s6 compensates for dif-

ferences between various exchange-correlation functionals.

In adapting this pair-potential model to describe solvent-solute interactions

in PCM, we make two modifications. First, the damped r−6 potential is still

singular at zero separation and not integrable (
∫

dx4πx2 fdmp(x)/x6 = ∞). This

makes no difference since atoms never get close enough for this unphysical be-

havior to contribute, but the lack of integrability precludes evaluating the inter-

action with continuous distributions of atoms using a convolution. Therefore,

we eliminate the x = 0 singularity and instead employ the value and derivative

matched piecewise function

fdmp(x) =


1/(1 + e−d(x−1)), x > 0.03

0.00114x6, x ≤ 0.03
(7.10)

which is identical to the original function at all relevant distances.

Second, the simplified PCM description of the solvent does not specify spa-

tial distributions for each atom of the solvent molecule, but only the distribution

of the solvent molecule centers, Nbulks(~r). Consequently, we additionally assume

a uniform orientation distribution of the molecules comprising the cavity result-

ing in a spatial distribution N j(~r) = Nbulks(~r) ∗ δ(r − Rsolv
j )/4π(Rsolv

j )2 for atom j of

the solvent molecule that is at a distance Rsolv
j from the center of the solvent

molecule. This results in a model solvent-solute dispersion interaction

Edisp[s] = −s6

∑
i, j

∫
d~rN j(~r)

√
C6iC6 j

|~Ri − ~r|6
fdmp

 |~Ri − ~r|
R0i + R0 j

 , (7.11)
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where the index i runs over the atoms of the explicit electronic system and j

over the atoms of one solvent molecule. The empirical scale factor s6 absorbs

the errors arising from the neglect of repulsion as well as the uniform orienta-

tion distribution assumption, in addition to those inherent to the pair-potential

approximation, such as the neglect of three-body (Axilrod-Teller) terms and be-

yond.

The disadvantage of this simplified description is the introduction of one

solvent-dependent empirical parameter, which we mitigate in the following fits

to solvation energies. In particular, we show that this single parameter can be

calibrated to the solvation energy of a single non-polar molecule which is domi-

nated by the dispersion interaction. Along with the solvent-independent nc, this

allows the application of the method to an arbitrary solvent without requiring

extensive fits to solvation energy data sets.

7.5 Solvation energies

The previous sections establish the relations between the cavity for electric re-

sponse and that of the solvent centers, and formulate weighted-density models

for the cavity formation and dispersion energies that capture the true shape and

size dependence of these contributions. Combining these with the nonlinear

electric and ionic response of Chapter 6, we arrive at the modified nonlinear

polarizable continuum model,

Adiel = Aε[sel, ~ε] + Aκ[sel, µ] +

∫
d~r

∫
d~r′

ρlq(~r′)
|~r − ~r′|

(
ρel(~r) +

ρlq(~r)
2

)
+ Gcav[sSAS] + Edisp[sSAS]. (7.12)
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Table 7.1: Fit parameters and residuals for nonlinear PCM with weighted-
density cavity formation and dispersion terms

Solvent nc [a−3
0 ]

s6 RMS error [kcal/mol (mEh)]
Fit Fixed Fit Fixed

H2O
1.0 × 10−2

0.54 0.50 1.1 (1.8) 1.2 (1.9)
CHCl3 1.31 1.08 0.6 (1.0) 1.0 (1.6)
CCl4 1.24 1.20 0.5 (0.8) 0.6 (1.0)

Here, the first two terms, the dielectric and ionic response, employ the elec-

trostatic cavity, sel(~r), whereas the final two terms, for cavity formation and

dispersion, employ the solvent-center cavity, sSAS(~r). The solute electron den-

sity determines both cavities with a single critical density, nc, according to (7.6).

Bulk solvent properties and ab initio calculations on a single solvent molecule

determine all terms in this model, except nc and the dispersion scale factor, s6.

The critical density nc corresponds to the base cavity in Figure 7.2, which

we expect to be a property of the solute alone and hence solvent-independent.

(The solvent-dependence of the electrostatic cavity size is due to the nonlocal-

ity of the true response of the solvent; this effect enters the calculation of the

electrostatic radius in Section 7.1 and we no longer expect it to affect the base

cavity size and nc.) The dispersion scale factor, s6, absorbs errors due to the ne-

glect of repulsion terms and the assumption of isotropic solvent distribution in

(7.11), and may depend on the solvent. We therefore fit a single nc and an s6 per

solvent to the solvation energies of several small molecules in water, chloroform

and carbon tetrachloride. Table 7.1 shows the resulting fit parameters and resid-

uals, and Figure 7.6 shows the solvation energies of each molecule compared to

experimental data from [157, 105].

A single nc indeed fits the solvation energies of vastly different solvents,
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Table 7.2: Fit parameters and residuals for nonlinear PCM with empirical cavity
surface tension

Solvent nc [a−3
0 ] τ [Eh/a2

0] RMS error [kcal/mol (mEh)]
H2O 1.0 × 10−3 9.5 × 10−6 1.0 (1.6)

CHCl3 2.4 × 10−5 −9.2 × 10−6 0.8 (1.3)
CCl4 1.2 × 10−4 −9.0 × 10−6 1.1 (1.8)

ranging from the small polar water, to the much larger non-polar carbon tetra-

chloride. The dispersion factor s6 varies between the solvents, but remains

within 35% of the range 0.75-1.2 covered by different electronic functionals in

[53].

In contrast, the original nonlinear PCM of Chapter 6, which employs an em-

pirical surface tension τ on the surface of the electric response cavity to account

for both cavity formation and dispersion, requires wildly different nc’s for the

three solvents, covering three orders of magnitude, as Table 7.2 shows. Further,

the effective surface tensions for the less polar solvents, chloroform and car-

bon tetrachloride, are negative since the attractive dispersion effects dominate

over the repulsive cavity formation energies. This negative tension contributes

a strong attractive well to the electron potential, which occasionally renders the

electronic density functional unstable with respect to leaking electrons into the

cavity. It is therefore advisable to avoid the effective surface tension approach

of [8] and Chapter 6 for nonpolar dispersion-dominated solvents.

More importantly, the current model with physical cavity formation and

dispersion terms obtains the same accuracy as the previous models, and does

so with fewer parameters. Indeed, Table 7.1 shows that the fit results in ∼ 1

kcal/mol (1.6 mEh) accuracy for all three solvents, which is sufficient for the
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Figure 7.6: Solvation energies predicted by nonlinear PCM with weighted-
density cavity formation and dispersion terms for molecules in (a) water, (b)
chloroform and (c) carbon tetrachloride, compared to experiment. Phenol and
acetic acid seem to be outliers in (b) and (c), probably due to a weak chemical
bond between the solute and solvent in the experiment that is missed by the
solvation model.

192



study of chemical reactions in solution.

Finally, the use of a common nc for all solvents makes it easier to extend the

method to other solvents, requiring the determination of a single fit parame-

ter s6 for each new solvent. In the absence of extensive data for a new solvent,

it should be possible to use the solvation energy of just one solute to calibrate

this single parameter. The ideal molecule for this purpose should be large, po-

larizable and non-polar, so that dispersion interactions dominate its solvation

energy and constrain s6 reliably. Figure 7.6 shows that fixing s6 to reproduce the

solvation energy of benzene in each solvent only marginally worsens the errors

relative to the full fits. The resulting ‘fixed’ s6 parameters are similar to the fit

ones, and the residual remains in the ∼ 1 kcal/mol (1.6 mEh) regime, as Table 7.1

shows.

7.6 Summary

The polarizable continuum model presented in this chapter replaces the empir-

ical cavity determination and effective cavity surface tension approximations of

Chapter 6, with a single solvent-independent isodensity parameter and phys-

ical models for the cavity formation and dispersion free energy contributions

that capture the correct cavity-shape dependences of those terms.

One key ingredient that allows a solvent-independent parametrization of the

cavity sizes is the electrostatic radius of Section 7.1 which is based on the non-

local response of the solvent molecule, and hence accounts for finite-size effects

of the molecule. The next chapter takes this approach to its logical conclusion,

and presents a non-empirical polarizable continuum model with a single cavity
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that directly evaluates the nonlocal response of the solvent.
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CHAPTER 8

NONLOCAL POLARIZABLE CONTINUUM MODELS

Traditional polarizable continuum models treat the effect of solvents on the

electronic structure of solutes, as the response of a continuum dielectric sur-

rounding the solute. This drastic simplification of the solvent effect necessitates

several empirical parameters governing the cavity shape and size as well as for

the cavity formation and dispersion corrections, typically fit to a database of

solvation energies.

Chapter 6 incorporates nonlinear dielectric response in the minimal isoden-

sity PCM of [8], which requires only two fit parameters for each solvent: a criti-

cal electron density, nc, that determines the cavity size, and an effective surface

tension, τ, to empirically account for cavity formation and dispersion contribu-

tions. Chapter 7 develops non-empirical models for these additional terms and

prescribes a first-principles method to account for solvent molecule finite-size

effects by appropriately sizing the continuum dielectric. The resulting polar-

izable continuum model fits the solvation energies of vastly different solvents

with a single critical density, nc. For each solvent, it requires the adjustment

of a single semi-empirical parameter, the dispersion scale factor, s6, which Sec-

tion 7.5 determines from the dispersion-dominated solvation energy of a single

nonpolar molecule.

The solvent independence of the cavity size parameter in Chapter 7 stems

from the introduction of an electrostatic radius - the extra length of continuum

dielectric necessary to reproduce the electric interaction of the solvent in a paral-

lel plate capacitor. The electrostatic radius, in turn, results from a simple ansatz

that approximates the nonlocal response of a solvent by the linear response of
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freely orientable and polarizable solvent molecules in thermal equilibrium. The

calculation of this property requires the solution of a one-dimensional integral

equation, only once per solvent. However, the final model requires construc-

tion of two cavities, one corresponding to solvent molecule centers for the non-

empirical cavity formation and dispersion terms, and another smaller by the

electrostatic radius for the dielectric response.

In this chapter, we replace the effect of the solvent directly by a nonlocal

dielectric response which eliminates the need for multiple cavities. Section 8.1

presents an intuitive solvent-independent model for this single solvent-center

cavity based on the overlap between the solute and solvent electron densities.

Section 8.2 derives the nonlocal response of the solvent as a linear-response ap-

proximation to the classical density-functional theory of Chapter 5, and presents

an angular momentum expansion which enables practical calculations with this

model at computational cost comparable to traditional polarizable continuum

models. Finally, Section 8.3 demonstrates the accuracy of this model for the sol-

vation energies of organic molecules in a variety of solvents including water,

chloroform and carbon tetrachloride, with a single semi-empirical dispersion

scale factor for each solvent, constrained to reproduce the solvation energy of a

single nonpolar molecule.

8.1 Density-product cavity determination

The fundamental assumption in all polarizable continuum models is the forma-

tion of a cavity, that is the exclusion of the solvent from a region of space occu-

pied by the solute. Variants of the model differ in the details of determining this

cavity; most models require two cavities, a relatively physical one correspond-
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ing to the centers of the solvent molecules which enters calculations of the cav-

ity formation and dispersion energies, and a somewhat empirical one for the

electric response. The previous chapter established a scheme for constraining

the second empirical cavity to the physical solvent-center cavity via the electro-

static radius derived from the nonlocal response, and this chapter subsequently

eliminates the need for the second cavity altogether. Here, we develop a uni-

versal prescription for the cavity of solvent centers from an intuitive picture of

solute-solvent electron density overlap.

Traditional polarizable continuum models [163] construct the solvent-center

cavity from the exclusion of a sphere with the vdW radius of the solvent, by

spheres with atomic vdW radii centered on the solute atoms. This follows from

the basic intuition of vdW radii determining the distance of nearest approach of

two closed-shell non-bonded atoms or molecules [102]. Chapter 7 generalizes

this approach to isodensity PCM’s by determining a base cavity that roughly

corresponds to the atomic vdW radii from the solute electron density, and then

expanding that cavity by the solvent vdW radius. A critical electron density

parameter, nc, fit to solvation energies in multiple solvents, determines this base

cavity.

The interaction potential of two neutral closed-shell atoms comprises pri-

marily the Pauli repulsion between the electrons and the attractive dispersion

interactions. With reducing separation between the atoms, the former rises

sharply when the electron densities begin to overlap, while the latter varies

more gradually. The repulsive interaction, and hence the electron density over-

lap, should therefore dominate the determination of the approach distance. In-

deed, Figure 8.1 shows that the atom separation, R12, at which the electron den-
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Figure 8.1: Atom separation, R12, at which electron density overlap equals n̄c =

1.2 × 10−3 a−3
0 , compared to sum of van der Waals radii, R1 + R2, for all pairs of

atoms with vdW radii tabulated in [62, 102]. Differences between LDA, GGA
and Hartree-Fock densities affect the correlation negligibly. This later enables a
definition of the cavity shape as a function of the electron density overlap (8.2)
which transitions from 0 to 1 at distance R12 ≈ R1 + R2 from the solute nuclei
(where 1 is solute and 2 is solvent).

sity overlap n̄(R12) =
∫

d~rn1(~r)n2(~r) crosses a threshold value of

n̄c = 1.2 × 10−3 a−3
0 (8.1)

correlates well with the sum of vdW radii [62] of the two atoms. Here, n1(~r)

and n2(~r) are spherical electron densities of the two atoms (all-electron densi-

ties computed using OPIUM [117]), centered R12 apart, and we obtain n̄c by
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minimizing
∑

i j(Ri + R j − Ri j)2. The minor differences between ground state den-

sities from Hartree-Fock theory and electronic density functional theory with

PZ-LDA [127] or PBE-GGA [128] exchange-correlation approximations do not

affect these results.

The above correlation provides a universal threshold on the density prod-

uct that can estimate the approach distance of non-bonded systems. We utilize

this capability to determine the cavity for simplified solvation models without

requiring any fits to solvation energies. In particular, the cavity shape functional

s(~r) =
1
2

erfc ln
n0

lq(r) ∗ n(~r)

n̄c
(8.2)

smoothly transitions from vacuum (s = 0) to bulk fluid (s = 1) as the overlap of

the electron density of a solvent molecule centered at ~r with the solute electron

density, n(r), crosses the universal overlap threshold n̄c. In principle, the over-

lap depends on the orientation of the solvent molecule, whereas the cavity only

prescribes the spatial distribution. For simplicity, we assume a uniform orienta-

tion distribution of solvent molecules, which results in an orientation-averaged

overlap measured by the convolution n0
lq(r) ∗ n(~r). Here,

n0
lq(r) =

∫
dn̂
4π

nlq(rn̂) (8.3)

is a spherical average of the solvent molecule electron density nlq(~r), obtained

from a solvated electronic density-functional calculation as Section 5.3 de-

scribes. Therefore, ab initio data completely constrains this cavity prescription

for any solvent.
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8.2 Spherically-averaged liquid susceptibility ansatz (SaLSA)

Having determined the orientation-averaged distribution of solvent molecules

from the solute and solvent electron densities, we next need to describe the in-

teractions between the two subsystems in this configuration. Sections 7.3 and

7.4 already prescribe non-empirical approximations for the the cavity formation

and dispersion energies for a solvent configuration specified by a spatial distri-

bution of centers, Nbulks(~r), while assuming a uniform orientation distribution.

We now treat the nonlocal electric response of the solvent in this configuration,

completely constrained by ab initio and bulk properties of the solvent, to com-

plete our non-empirical simplified solvation model.

We begin with a free energy functional for the solvent (following Chapter 5),

Φ[pω] = Φ0[N0] + T
∫

d~r
∫

dω
8π2 pω(~r)

[
ln

pω(~r)
Nbulks(~r)

− 1
]

+
∑
α

∫
d~r

Nα(~r)Pα(~r)2

2Cpolχα
+

C−1
rot − 1

Nbulk p2
mol/3T

∫
d~r

(∫
dω
8π2 pω(~r)ω ◦ ~pmol

)2

+

∫
d~r

∫
d~r′

ρel(~r) +
ρlq(~r) − ρ0

lq(~r)

2

 1
|~r − ~r′|

(ρlq(~r′) − ρ0
lq(~r′)), (8.4)

in terms of pω(~r), the probability of finding a solvent molecule centered at ~r

with orientation ω ∈SO(3), and ~Pα, the amplitude of polarization at each solvent

molecule site, as independent variables. Briefly, the second term is the rotational

entropy at temperature T , the third term is the potential energy for molecular

polarization with site susceptibilities χα, the fourth term is a polarization den-

sity functional for rotational correlations for a solvent molecule with permanent

dipole moment pmol, and the final term is the mean-field interaction of the liquid

charge density

ρlq(~r) =
∑
α

ρα(r) ∗ Nα(~r) − ∇ ·
∑
α

wα(r) ∗ Nα
~Pα, (8.5)
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with itself as well as with the solute charge density ρel(~r). We calculate the liq-

uid site densities Nα(~r) from the orientation density (Chapter 4), and derive all

involved parameters from bulk properties and ab initio calculations of a single

solvent molecule. For example, the bulk static and high frequency dielectric

constants, εb and ε∞ constrain the local field enhancement factors,

Cpol =
ε∞ − 1

4πNbulk
∑
α χα

and Crot =
εb − ε∞

4πNbulk p2
mol/3T

. (8.6)

(See Chapter 5 for details.)

The primary difference, here, is that we have collected all the contributions

that depend only on the spherically-averaged density N0 =
∫

dω
8π2 pω(~r), such as

the chemical potential, hard-sphere free energy and weighted-density excess

functional into the first term, Φ0[N0]. We also move the mean-field Coulomb in-

teractions involving the liquid charge density in the initial uniform-orientation

and unpolarized configuration, ρ0
lq, given by (8.5) with pω = Nbulks(~r) and ~Pα = 0,

into the first term of (8.4). All subsequent terms of (8.4) are then exactly zero in

that initial configuration.

We now assume that the orientation-independent interactions determine the

cavity, for which the s(~r) given by (8.2) provides a reasonable guess, and that

the cavity formation and dispersion terms absorb the resulting energy contribu-

tions (the scale factor in the dispersion term can absorb the so-called repulsion

energy as demonstrated by the polarizable continuum model of Chapter 7). Af-

ter assuming this PCM-like energy separation, we calculate the nonlocal elec-

tric contribution from the free energy functional (8.4), perturbatively about the

cavity-prescribed initial configuration.

The perturbative treatment of (8.4) begins with an angular momentum ex-

pansion of the orientation density, pω(~r) = Nbulks(~r)(1 +
∑

lmm′ xl
mm′(~r)Dl

mm′(ω)),
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where Dl
mm′(ω) are Wigner D-matrices (irreducible representations of SO(3)

[174]). We then expand the free energy to quadratic order in the independent

variables xl
mm′(~r) (rotation) and ~Pα(~r) (polarization), formally solve the corre-

sponding linear Euler-Lagrange equations and substitute those solutions back

into the quadratic form. After some tedious but straightforward algebra in-

volving orthogonality of D-matrices, addition of spherical harmonics and their

transformation under the D-matrices, as well as Fourier transforms to simplify

convolutions (see Appendix D for details), we can show that the resulting free

energy to second order is exactly

ΦSaLSA =
1
2

∫
d~rρel(~r)

[
(K̂−1 − χ̂)−1 − K̂

]
ρel(~r). (8.7)

Here, K̂ is the Coulomb operator and χ̂ is the nonlocal ‘spherically-averaged

liquid susceptibility’ (SaLSA), expressed conveniently in reciprocal space as

χ̂( ~G, ~G′) ≡ −Nbulk s̃( ~G − ~G′)
∑
lm

Cl
rot

T
Pl(Ĝ · Ĝ′)

4π
ρ̃lm

mol(G)ρ̃lm∗
mol(G

′)

−
∑
α

Ñ0
α( ~G − ~G′)Cpolχα ~G · ~G′w̃α(G)w̃∗α(G′), (8.8)

where f̃ ( ~G) denotes the Fourier transform of f (~r) for any f .

The first term of (8.8) is the rotational response from a cavity-prescribed dis-

tribution, Nbulks, of molecules with charge density ρmol, decomposed into angu-

lar momentum channels as ρ̃mol( ~G) =
∑

lm ρ̃
lm
mol(G)Ylm(Ĝ). The prefactor Cl

rot = Crot,

the field enhancement factor for l = 1, and it equals unity for all other l.

The second term of (8.8) is the polarization response from molecule sites

with non-local polarizabilities χα with range function wα(r) (Chapter 5). The site

densities, N0
α, correspond to the initial configuration of pω = Nbulks(~r) (i.e. with

xl
mm′ = 0); the polarization contributions from finite xl

mm′ configurations appear
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only at higher order in perturbation theory. In fact, N0
α(~r) = Nbulks(~r) ∗ δ(r −

Rα)/4πR2
α for a site at a distance Rα from the solvent center, which is exactly the

site density set involved in the dispersion interaction term (Chapter 7).

For practical calculations, we rearrange (8.7) to ΦSaLSA =
∫

(φ−φ0)ρel/2, where

φ0 = K̂ρel is the electrostatic potential in vacuum and φ is the total (mean-

field) electrostatic potential which solves the modified Poisson-like equation

(∇2 + 4πχ̂)φ = −4πρel.

The l = 1 rotational and polarization terms in χ̂φ have the structure ∇ · w ∗

N(~r)w ∗ ∇φ which resembles the Poisson equation for an inhomogeneous dielec-

tric, except for additional convolutions with weight functions w̃(G). Therefore,

retaining only the l = 1 terms and reducing the molecules to points so that w̃(G)

becomes a constant, recovers the usual local dielectric limit employed by PCM’s.

For neutral solvent molecules, the l = 0 term captures the interaction of the

solute with a spherical charge distribution of zero net charge, and is zero except

for small contributions from non-zero but negligible overlap of the solute and

solvent charges. However, note that the response easily generalizes to mixtures,

and for ionic species in the solution, the l = 0 terms convert the Poisson-like

equation to a Helmholtz-like equation (with additional convolutions that in-

troduce the nonlocality). This naturally captures the Debye-screening effects

of electrolytes, resulting in well-defined absolute potentials necessary for the

study of electrochemical systems [90].

Practical calculations with our nonlocal SaLSA approach employ a plane-

wave basis, where the convolutions are essentially of zero cost, and truncate

the angular momentum expansion at finite l. The iterative conjugate gradients
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Table 8.1: Convergence of the nonlocal dielectric energy ΦSaLSA with the maxi-
mum included angular momentum, lmax for several solutes in water.

Solute ΦSaLSA [kcal/mol (mEh)]
lmax = 0 lmax = 1 lmax = 2 lmax = 3

Water -1.4 ( -2.3) -6.2 ( -9.8) -6.3 (-10.0) -6.5 (-10.3)
Methanol -1.4 ( -2.3) -5.0 ( -8.0) -5.1 ( -8.2) -5.3 ( -8.4)
Ethanol -1.6 ( -2.5) -5.0 ( -7.9) -5.1 ( -8.1) -5.3 ( -8.4)
Isopropanol -1.7 ( -2.8) -5.1 ( -8.2) -5.3 ( -8.4) -5.4 ( -8.7)
Benzene -1.7 ( -2.7) -3.9 ( -6.2) -4.0 ( -6.4) -4.1 ( -6.6)
Methylamine -1.4 ( -2.2) -4.3 ( -6.8) -4.4 ( -7.0) -4.5 ( -7.2)
Toluene -1.9 ( -3.1) -4.2 ( -6.7) -4.4 ( -6.9) -4.5 ( -7.2)
Phenol -2.2 ( -3.5) -6.8 (-10.9) -7.0 (-11.1) -7.2 (-11.4)
Anisole -2.2 ( -3.5) -5.5 ( -8.7) -5.6 ( -8.9) -5.8 ( -9.2)
Pyridine -2.0 ( -3.2) -5.4 ( -8.7) -5.6 ( -8.9) -5.7 ( -9.1)

method, with a diagonal preconditioner derived from the bulk response, rapidly

converges the solution of this modified Poisson-like equation. Truncated up to

l = 1, the cost of this nonlocal Poisson solve is only a factor of 2-3 higher than

that of the standard local case. The computational cost scales quadratically with

the highest included angular momentum, lmax. The higher angular momenta

l > 1 have successively smaller contributions because of the usual properties of

multipole expansions for the interactions between two mostly non-overlapping

charge distributions. Consequently, the l = 1 term dominates for pure solvents,

whereas the l = 0 term dominates for electrolytes (solutions with ions). Ta-

ble 8.1 shows the convergence of ΦSaLSA with lmax for several solutes in water.

The dominant contribution is from l = 1, as expected. In the following, we

truncate calculations at l = 2 as a reasonable trade-off between computational

effort and accuracy, noting that the typical contributions from l = 3 are less than

0.2 kcal/mol (0.3 mEh), well within the typical accuracy ∼ 1 kcal/mol (1.6 mEh)

achievable in solvation models.
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Table 8.2: Fit parameters and residuals for the SaLSA nonlocal solvation model

Solvent s6 RMS error [kcal/mol (mEh)]
Fit Fixed Fit Fixed

H2O 0.68 0.61 1.5 (2.4) 1.8 (2.9)
CHCl3 1.34 1.18 0.7 (1.1) 1.3 (2.1)
CCl4 1.62 1.53 0.7 (1.1) 0.8 (1.3)

8.3 Solvation energies

The spherically-averaged liquid susceptibility ansatz (SaLSA) results in the free

energy, ΦSaLSA given by (8.7), with the nonlocal response χ given by (8.8), and

with all microscopic parameters from ab initio calculations of a solvated solvent

molecule (Chapter 5). The correlation of atomic vdW radii with the convolu-

tion of solute and solvent electron densities thresholded on a universal critical

density product (8.1), prescribes a cavity shape function s(~r) given by (8.2) with

no adjustable parameters. Finally, the cavity for nonlocal response is precisely

the cavity bounding solvent centers and is therefore directly applicable in the

physical weighted-density models for cavity formation and dispersion energies

of Chapter 7. Combining these terms results in the SaLSA nonlocal solvation

model,

Adiel = ΦSaLSA + Gcav[s] + Edisp[s], (8.9)

which bulk solvent properties and ab initio calculations completely constrain,

except for the dispersion scale factor, s6, in Edisp[s].

Following the approach of Chapter 7, we fit the s6 for each solvent to

molecule solvation energies. Table 8.2 shows that the SaLSA model fits the sol-

vation energies with an accuracy of ∼ 1 kcal/mol (1.6 mEh) for all solvents, with-

out adjusting the cavity size parameter, n̄c. In fact, the residuals in the solvation
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energies are only 50% worse compared to the polarizable continuum model of

Chapter 7; the latter also fits its cavity size parameter to solvation. The opti-

mum s6 parameters differ for the three fluids, but remain within 35% of the

range 0.75-1.2 covered by different electronic functionals in [53], just as for the

PCM of Chapter 7.

Finally, calibration of s6 to a single non-polar molecule can replace the sol-

vation fit, thereby simplifying the extension of the approach to other solvents.

In fact, fixing s6 to the solvation energy of benzene works for water, chloroform

as well as carbon tetrachloride, as Figure 8.2 shows, similar to the case of Chap-

ter 7. Table 8.2 shows that this ‘fixed’ s6 is similar to the fit values, and the

residual is less than 2 kcal/mol (3 mEh) in all cases. This allows the construction

of a simplified solvation model that captures microscopic details of the solvent

response, which is adequate for first principles calculations of processes in solu-

tion and requires the solvation energy of only a single molecule in that solvent

as input.

8.4 Summary

This chapter combines the nonlocal electric response of the solvent, derived

from the linear response of classical density functional theory, with the non-

empirical cavity formation and dispersion functionals of Chapter 7. With the

angular momentum expansion of Section 8.2, this enables a non-empirical sol-

vation model that captures details of the solvent effect at a level comparable to

full joint density functional theory, but at computational cost comparable to tra-

ditional empirical polarizable continuum models. This combination of accuracy,
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Figure 8.2: Solvation energies predicted by the SaLSA nonlocal solvation model
for molecules in (a) water, (b) chloroform and (c) carbon tetrachloride, compared
to experiment. Phenol and acetic acid seem to be outliers in (b) and (c), probably
due to a weak chemical bond between the solute and solvent in the experiment
that is missed by the solvation model.
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rigor and efficiency make it the ideal candidate for studies of complex solvated

systems, which we demonstrate next for a well-studied model electrochemical

system: the underpotential deposition of copper on platinum.
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CHAPTER 9

UNDERPOTENTIAL DEPOSITION

Electrochemical interfaces are a key component of many technologically im-

portant systems involving catalysis, energy conversion and storage, such as fuel

cells and batteries. The large number of solvent and adsorbent configurations

highly sensitive to the electrode potential, significantly complicates first princi-

ples studies of such systems.

Ab initio solvation theories can mitigate some of this complexity by abstract-

ing the effect of the solvent, thereby enabling a focused study of the configu-

rations and reactions of adsorbents on the surface. Here, we apply our nonlo-

cal solvation theory to understand in full microscopic detail, an experimentally

well-studied and prototypical electrochemical process: the underpotential de-

position of copper on the (111) surface of single-crystalline platinum.

9.1 Experimental studies and phenomenology

The application of sufficiently negative (reductive) potentials on an electrode

immersed in a solution containing metal ions, reduces those ions and results in

bulk electro-deposition of metal on the surface. Additionally, for many pairs

of metals, a single monolayer of one metal deposits on a surface of the other

at an under potential, that is, at a potential less favorable than for bulk deposi-

tion. This phenomenon of under-potential deposition (UPD) has several tech-

nological applications since it enables precise synthesis of heterogeneous metal

interfaces, and it also serves as an archetype for fundamental studies of electro-

chemical processes; see [64] for an extensive review.
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The basic reason for underpotential deposition is that the heterogeneous

binding between the two metals is stronger than the homogeneous binding of

the depositing metal to itself. Indeed, metal pairs that exhibit underpotential

deposition also display analogous phenomena in vapor adsorption [119]. How-

ever, the process in solution is far more complicated and highly sensitive to the

composition of the solution because of competing adsorbates [173], as well as to

the structure of the electrode surface [114].

Voltammetry, the measurement of electrode current while scanning the elec-

trode potential, finds a peak in the current at the potential where the monolayer

deposition occurs. For the electro-deposition of copper on the (111) surface of

platinum (denoted by Cu/Pt(111)) from an acidic sulphate solution containing

Cu2+ cations, this peak occurs at an under-potential shift of 0.44 V relative to

that for bulk deposition [83]. Scanning the potential in the opposite direction

yields an almost symmetric reverse current peak, indicating that the process is

reversible and in quasi-equilibrium. The exact location of the peak, however,

is sensitive to the concentrations of the solutions and the identity of the anions

[104, 51, 100]. In fact, the UPD potential correlates linearly with the oxidation

potential of the anionic species [172], indicating co-adsorption of and partial

charge transfer to the anions.

The UPD of Cu/Pt(111) in the presence of chloride anions is particularly

interesting and the subject of considerable debate in the literature. Voltam-

metry for this system exhibits two well-separated under-potential peaks (Fig-

ure 9.1(d)). Certain LEED and in situ X-ray scattering studies of this system

[103] find evidence of a 2×2 bilayer of copper and chloride ions co-adsorbed on

the surface (Figure 9.1(b)) at potentials between the two peaks, suggesting that
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Figure 9.1: Experimental surface structures for UPD of Cu/Pt(111) with Cl- for
(a) full copper monolayer, (b) partial copper monolayer (proposed by [103]) and
(c) no copper coverage, as well as (d) voltammogram from [17] measured at
concentrations of 10-3 mol/liter of Cu2+ and 10-4 mol/liter of Cl-.

one peak corresponds to a formation of a partial layer, and the second peak, to

the formation of the full monolayer. In contrast, other studies [144, 17, 5] do not

find this signature and propose that the additional peak arises from adsorption

and desorption of chloride ions alone.

Phenomenological models of under-potential deposition correlate work

function differences of the metals to the UPD shifts [84], predict these shifts with

reasonable accuracy after including experimentally input surface coverages and

adsorption energies [150, 149], and even predict the shape of the voltammetric

peaks using statistical models for the phase transitions on the surface [18, 71].

However, such models do not incorporate the microscopic detail necessary to

resolve debates such as the identity of the two peaks in the UPD of Cu/Pt(111)

in the presence of chloride anions.
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9.2 First-principles calculations

First principles calculations can provide detailed microscopic information about

the structure of the electrode surface and processes occurring on it, but complex-

ity and computational cost force several simplifying assumptions and limit the

realism of studies for these systems. Traditional density-functional studies of

underpotential deposition include only the substrate metal and the adsorbed

monolayer [88], which results in a significant underestimation of the UPD shift,

or even an incorrect prediction of over-potential monolayer deposition in some

systems [139]. Here, we study the UPD of Cu/Pt(111) with chloride anions in

full microscopic detail, including the effect of chloride adsorption on the sur-

face.

9.2.1 Computational details

We focus our detailed electronic structure description on the platinum surface,

copper layers and adsorbed chloride ions, while describing the aqueous solu-

tion with dissolved ions using the nonlocal solvation model of Chapter 8. For

the electronic system, we employ Kohn-Sham electronic density-functional the-

ory with the revTPSS meta-GGA exchange-correlation functional [129], since

it is systematically more accurate than generalized-gradient approximations for

surfaces [151]. We perform all calculations in JDFTx [154] with norm-conserving

pseudopotentials1 and a plane-wave cutoff of 30 Eh.

1The platinum and copper pseudopotentials predict lattice constants for the face-centered
cubic metals within 0.5 % of all-electron FP-LAPW (full potential linear augmented plane-wave)
calculations from [142]. The chlorine and hydrogen pseudopotentials predict bond lengths of
H2, Cl2 and HCl molecules within 1 %, and formation energy of HCl within 1 mEh, compared
to all-electron calculations in the aug-cc-pVTZ basis set from [115].
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We treat the electrolyte as an aqueous solution with 1 mol/liter each of

cations and anions; these ions in solution merely provide a convenient means

to provide an absolute reference for the electrode potential [90] and their details

do not affect the processes on the surface.2 The high concentration of these ions

results in a Debye screening length of 3 Å at room temperature (298 K), which

rapidly screens interactions between periodic images of the surface in the nor-

mal direction. Specifically, our unit cells are 47 Å long in the surface normal

direction, and the smallest image distance of 25 Å in any of the configurations

below benefits from a 1 in 104 isolation due to the electrolyte.

We use a Fermi smearing of 4 mEh for Brillouin zone integration, which leads

to better than 0.4 mEh or 0.01 eV convergence with a 6 × 6 × 6 Monkhorst-Pack

~k-point mesh for bulk face-centered cubic platinum. A five layer slab configu-

ration with a 6 × 6 Monkhorst-Pack ~k-point mesh in the plane results in similar

convergence for the (111) surface energies. The calculations use the equilibrium

DFT lattice constant of 3.94 Å, which is within 0.5% of the experimental value of

3.92 Å. The difference in electron entropies amongst all the configurations we

consider below is less than 1 mEh, indicating that the elevated electron temper-

ature for Fermi smearing leads to negligible errors.

9.2.2 Free energy and reference potentials

Having described the computational setup for the pristine Pt(111) electrode in

solution, we now proceed to study the formation of copper monolayers and ad-

sorption of ions on its surface. The platinum surface is in electrical contact with
2Ions at the polarizable continuum level of description do not specifically adsorb on the sur-

face (Chapter 6), and we account for chemically active ions at the electronic density-functional
level.
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a voltage source connected to a reference electrode in the experimental system,

which translates to an electron reservoir in the calculation. The electrolyte at the

interface is in contact with the bulk electrolyte, which is a reservoir for cupric

and chloride ions. The appropriate ensemble that describes the unit cell of the

calculation is, therefore, grand canonical in electrons as well as the ionic species

in solution,

Φ = A −
∑
α

µαNα − µ

n −∑
α

Nαnα

 . (9.1)

Here, A is the Helmholtz energy of the solvated electronic density-functional

calculation with n valence electrons per cell, µ is the chemical potential for elec-

trons, Nα is the number of ions of species α per cell, and µα are the corresponding

chemical potentials. A fraction of the valence electrons enter the system along

with the ions, specifically nα for each ion of species α, and the electron chemical

potential tracks the remainder that enter from the electrode.

All calculations employ inversion-symmetric unit cells, with identical ad-

sorbent configurations on both surfaces of the five layer platinum slab. The

configurations vary in their transverse periodicity, including 1× 1,
√

3×
√

3 and

2×2 super-structures relative to the bare platinum (111) surface. The free energy

(9.1) is extensive in the two lateral directions, and we normalize it per platinum

surface atom in order to compare energies from calculations with these different

unit cells.

In our calculations below, α includes Cu2+, Cl- and H+ ions referenced to the

bulk electrolyte at the experimental concentrations, as well as Pt referenced to

the bulk solid. The Pt chemical potential µPt, which we set to the energy per

atom of bulk platinum, does not affect the results in any way, since all calcula-

tions have the same five layer platinum electrode. However, including Pt in the
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set of α’s, subtracts a large constant energy contribution (µPtNPt) and a constant

slope with electrode potential (nPtNPt), which leads to significantly clearer plots

of free energy versus electrode potential.

The reference condition for each ionic species is the bulk electrolyte, but di-

rectly calculating the free energy of ions in solution to the necessary accuracy

is beyond the capability of current solvation theories. Instead, we connect the

ions in solution to a manageable reference state via standard experimental elec-

trode potentials. The electrode potential, VCu(s)/Cu2+ , for copper reduction, Cu2+

+ 2e− 
 Cu(s), determines the cupric ion chemical potential to be

µCu2+ = ACu(s) − 2µe−(VCu(s)/Cu2+) + T ln [Cu2+]. (9.2)

Here, ACu(s) is the Helmholtz energy per atom from an electronic density-

functional calculation of face-centered cubic metallic copper, and the function

µe−(Vel) converts experimental electrode potentials measured relative to a refer-

ence electrode, to electron chemical potentials within our theory, as we describe

at the end of this section. The final term accounts for the difference in entropy

of cupric ions between the standard concentration of 1 mol/liter and the ac-

tual concentration in the bulk electrolyte; [Cu2+] is therefore the concentration

of cupric ions in mol/liter.

Analogously, the electrode potential, VCl2(g)/Cl- , for chlorine reduction, Cl2(g)

+ 2e− 
 2Cl-, determines the chloride ion chemical potential

µCl- =
1
2

(
ECl2 + ZPECl2 − TS Cl2

)
+ µe−(VCl2(g)/Cl-) + T ln [Cl-]. (9.3)

The relation is similar to that for copper, but the evaluation of the gas phase

free energy includes the ground-state electronic density-functional energy for

a single chlorine molecule, ECl2 , as well as zero-point vibrational energy and
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Table 9.1: Experimental electrode potentials relative to the standard hydrogen
electrode, and thermodynamic data that determine chemical potentials for ionic
species.

Ion Electrode Velectrode [V] Ref. state ZPE [mEh] S
(from [62]) (from [115]) (from [62])

Cu2+ Cu(s)/Cu2+ +0.342 Cu(s) - -
Cl- Cl2(g)/Cl- +1.358 Cl2(g) 1.23 26.83
H+ H+/H2(g) +0.000 H2(g) 9.84 15.72

entropy contributions that are not negligible (unlike analogous contributions

from phonons in solid copper). Similarly, the electrode potential, VH+/H2(g), for

the reaction, 2H+ + 2e− 
 H2(g), determines the H+ chemical potential

µH+ =
1
2

(
EH2 + ZPEH2 − TS H2

)
− µe−(VH+/H2(g)) + T ln [H+]. (9.4)

Table 9.1 summarizes the experimental data involved in the determination of

the ionic chemical potentials.

Finally, we calibrate the experimental electrode potentials to theoretical elec-

tron chemical potentials using the potentials of zero charge of single crystalline

metal electrodes, following [90]. Figure 9.2 correlates the measured electrode

potentials of neutral surfaces [165] to the electron chemical potentials, µ, govern-

ing the Fermi occupation of Kohn-Sham orbitals in electronic density-functional

calculations of those surfaces. The optimum correlation for revTPSS calcula-

tions with the nonlocal SaLSA solvation theory is µe−(Vel) = −(Vel + 4.50 V), with

a root-mean squared deviation of 0.09 V. The intercept, which accounts for the

unknown absolute potential of the standard hydrogen electrode and absorbs

systematic offsets in theoretical predictions, is reasonably close in comparison

to the previous value of 4.44 V for PBE exchange-correlation and PCM solvation

[90].
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Figure 9.2: Calibration of experimental electrode potentials, measured relative
to the standard hydrogen electrode (SHE), against theoretical electron chemical
potentials, µ, by correlating measured potentials of zero charge [165] with µ in
density-functional calculations of neutral single-crystalline metal surfaces.
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Figure 9.3: Free energy curves (per Cu surface atom) for copper electrodes in
a solution containing 10−3 mol/liter Cu2+ ions, with the stable configuration
switching from fewest layers to most layers close to the bulk reduction potential.
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Now, we can calculate the grand free energy, Φ given by (9.1), for any elec-

trode surface comprising platinum, copper, chlorine and hydrogen, as a func-

tion of experimental electrode potential referenced to the standard hydrogen

electrode. The configuration with the lowest free energy at a given electrode

potential is the most stable, and points where the two lowest free energy curves

cross mark transitions, which would correspond to a peak in the voltammo-

gram. For example, Figure 9.3 plots the free energy of copper electrodes in a

solution containing 10−3 mol/liter Cu2+ ions, with varying number of copper

layers. Fewer layers are stable at higher potentials, and more layers at lower

potentials, with the cross-over occurring close to the bulk reduction potential;

the small discrepancy ∼ 0.02 V in the cross-over potential is a measure of the

error in the surface energy per atom of finite slabs from the macroscopic limit.

9.2.3 Results

We begin by considering only the deposition of copper on platinum, while ig-

noring the co-adsorption of other species such as the anions and H+. Figure 9.4

shows the free energies of the platinum surface with no, partial (2 × 2), one

and two monolayers of copper, in a solution with 10−3 mol/liter of Cu2+ and

10−4 mol/liter of Cl-, overlaid on the experimental voltammogram [17] at those

concentrations. At high potentials, the platinum surface is the most stable. With

reducing potential, it transitions directly to the full monolayer of copper at a po-

tential much lower than either voltammogram peak. Finally, the second mono-

layer becomes stable close to the bulk reduction potential of copper. Without

including co-adsorbed anions, the underpotential shift is significantly smaller

than the experimental value, exactly as in previous first-principles calculations
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Figure 9.4: Free energies (per Pt surface atom) versus electrode potentials for
Pt(111) surface configurations comprising Cu alone, overlaid with the exper-
imental voltammogram from [17]. The vertical lines mark transitions in the
stable configuration, and the top panels show the stable configurations in each
regime. The partial monolayer (2 × 2 Cu) is not stable at any potential, and
the full monolayer deposition occurs at much lower potentials than any of the
voltammogram peaks.

[139]. The partial monolayer is never the stable configuration, which we could

attribute at this stage to the the underestimation of monolayer stability in the

absence of co-adsorbents.

Next, we include chloride and hydrogen in addition to copper on the surface.

In particular, we calculate the free energy (9.1) for various
√

3 ×
√

3 and 2 × 2

configurations of chloride alone, as well as chloride with hydrogen, on each

of the previously considered Cu configurations. The chloride prefers the fcc

hollow sites on any of the full metal layers, and the threefold hollow sites on the
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Figure 9.5: Free energies (per Pt surface atom) versus electrode potentials for
Pt(111) surface configurations comprising Cu, Cl and H. Lines of each group
have the same Cu coverage, and in order of least stable to most stable corre-
spond to 2 × 2 (H,Cl),

√
3 ×
√

3 (H,Cl), clean surface, 2 × 2 Cl, and
√

3 ×
√

3 Cl,
with the following exceptions. The partial Cu monolayer group contains only
the 2 × 2 and no Cl configurations from the above list. The most stable configu-
ration of the no Cu group transitions from clean surface to

√
3 ×
√

3 Cl, just left
of the b↔c transition. Partial monolayers with 2× 2 Cu are not stable at any po-
tential, but the potential for full monolayer deposition is in excellent agreement
with the left voltammogram peak.

2 × 2 copper layers (as in Figure 9.1(b)). In each case, the hydrogen prefers the

atop site above the chloride. Figure 9.5 shows the optimum free energies from

each group of equal copper, chloride and hydrogen coverage as a function of

electrode potential.

The free energy curves within each group of equal copper coverage are

mostly parallel with a few exceptions. The systems with hydrogen are always
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Figure 9.6: Same as Figure 9.5, but with µCl- reduced by 3 mEh. The transition
from clean Pt surface to

√
3 ×
√

3 adsorbed Cl moves to slightly higher poten-
tials and agrees with the right voltammogram peak. Full monolayer deposition
remains in excellent agreement with the left voltammogram peak.

the least stable, indicating that co-adsorption of hydrogen is not important in

the UPD process. The chloride coverage in increasing order of stability is none,

2 × 2 and then
√

3 ×
√

3. Therefore the clean surfaces of Figure 9.4 are com-

pletely masked by the more stable chloride covered surfaces. The picture does

not change qualitatively: the partial monolayers are still never the most sta-

ble configuration, and are unstable by about the same energy ∼ 10 mEh per

Pt surface atom. However, the transition to the full monolayer now occurs in

quantitative agreement with the left voltammogram peak.

The platinum surfaces without copper transition from no chloride coverage

to
√

3 ×
√

3 at a potential and free energy very close to the b↔c transition in
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Figure 9.5. This transition would result in a second peak in the voltammogram,

if it occurred at a slightly higher potential. Figure 9.6 shows that indeed a shift

in the chemical potential of the chloride ions of just 3 mEh moves this transition

to quantitative agreement with the second experimental peak. It is reasonable to

expect errors of this magnitude to arise from density functional approximations

for the reference molecule, or from the neglect of vibrational energies in the

solid.

The free energy per surface atom of the partial monolayer, on the other hand,

is at least 10 mEh higher than the most stable configuration at all electrode po-

tentials, and this difference is not sensitive to errors in the reference chemical

potentials. Further, the copper-chlorine plane distance of (1.2± 0.3) Å in the ex-

perimentally proposed 2×2 partial monolayer structure of [103], disagrees with

the theoretical prediction of 0.6 Å. Our calculations, therefore, strongly suggest

the adsorption of chloride, rather than the formation of a partial monolayer, as

the reason for the second voltammetric peak in the presence of chloride ions.

Some differences remain between the scenario in Figure 9.6 and experimen-

tal proposals [5]. The latter identify the left voltammetric peak with full copper

monolayer formation and the right peak with chloride desorption off the cop-

per, but do not propose structures for adsorbed anions. Our present calculations

predict desorption of chloride from the copper monolayer only at potentials

≈ −0.6 V, far below the bulk copper reduction potential ≈ 0.25 V. A likely alter-

native explanation, more consistent with the experimental proposal, would be

a switch from adsorbed chloride to sulfate or bisulfate; exploring this scenario

would require more calculations with larger supercells.
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9.3 Summary

This chapter presents a first principles study of the underpotential deposition

of copper on the (111) surface of platinum in the presence of chloride ions, with

full microscopic detail. The nonlocal solvation theory of Chapter 8 captures

the effect of the solvent, and with ionic screening, fixes absolute potentials that

enables calibration of the experimental electrode potentials. A grand canonical

model of the surface allows direct comparison of surface configurations with

varying coverages of copper, chlorine and hydrogen.

Our computational results favor chloride adsorption [144, 17, 5] as the likely

explanation for the additional voltammetric peak, rather than the formation of

a partial monolayer [103]. Further calculations that include sulfate and bisul-

fate adsorption are necessary to confirm the exact chloride adsorption scenario

proposed based on experimental measurements.

223



CHAPTER 10

OUTLOOK

Joint density-functional theory provides a rigorous framework to study the

electronic structure of a system in solution. It formally combines electronic

density-functional theory for the solute with classical density-functional the-

ory for the solvent. The former is an exact theory for the electronic ground

state energy in terms of the electron density at fixed nuclear positions (Born-

Oppenheimer surface), whereas the latter is an exact theory for the equilibrium

free energy of a liquid in terms of its nuclear densities.

The exact free energy functional for the solvated system, ΦJDFT[n, {Nα}], in

terms of the solute electron density, n(~r), and the solvent nuclear densities,

{Nα(~r)}, is unknown and needs to be approximated. The exact partitioning (1.17)

of this functional into electronic, liquid and coupling functionals enables the

development of approximations for each piece independently, and the selection

of different levels of approximation for each piece depending on the system of

interest and the computational resources available.

Approximations to the electronic density functional, FHK[n], abound in the

literature, particularly within the Kohn-Sham formalism with an approximate

exchange and correlation functional. Of these, hybrid density functionals,

which include a fraction of the exact non-local exchange energy, are particu-

larly accurate and widely employed for first principles predictions of chemical

reactions of molecules. In periodic systems, with state-of-the-art methods for

computing the exchange energy, they require a greater number of ~k-points than

semi-local functionals to resolve the singularity in the Coulomb kernel at zero

wave-vector. The convergence with ~k-points for these methods is particularly
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slow for the highly anisotropic and asymmetric unit cells (supercells) encoun-

tered in the study of chemical reactions at solid-liquid interfaces.

Chapter 2 analytically proves truncation of the Coulomb kernel on the

Wigner-Seitz cell of the ~k-point sampled superlattice as the ideal regulariza-

tion method for computing the exchange energy. For a wide variety of systems

with varying electronic structure, symmetry and dimensionality, this method

exhibits ~k-point convergence comparable to that of traditional semi-local func-

tionals, and far superior to that of previous methods for computing the exact ex-

change energy. Although hybrid functional calculations employing this method

no longer require extra ~k-points beyond semi-local calculations, the compu-

tational cost of the exact exchange energy in the plane-wave basis is still far

greater (often 100 − 1000×) in comparison to semi-local approximations. The

widespread application of hybrid density functionals to the study of processes

at solid surfaces, such as heterogeneous catalysis, is still limited by computa-

tional resources. The development of more efficient algorithms for comput-

ing the exchange energy, in addition to the regularization methods developed

here, would therefore be beneficial. Linear-scaling algorithms using maximally-

localized Wannier functions [176] enable such calculations for large insulating

systems, but analogous general methods that can handle metallic systems re-

main to be developed. The Wannier-like functions of Section 2.1 which include

Fourier transforms of the occupations, in combination with the localization op-

timization methods of [107], might provide a route to such a general method.

Approximations to the the free energy functionals of liquids, within the

framework of classical density-functional theory, also abound in the literature

[57], but most of these approximations target model liquids with simplified
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Hamiltonians, primarily composed of pairwise-additive potentials, and primar-

ily for mono-atomic or simple fluids of spherical particles without orientation or

internal degrees of freedom. First principles studies of solvated systems using

joint density-functional theory, however, require free energy functional approxi-

mations for real liquids that target the full Hamiltonian and account for all these

degrees of freedom.

Chapter 4 presents a practical framework for classical density-functional cal-

culations of molecular liquids including orientational degrees of freedom, by

extending the approach of [96] for exactly computing the free energy of a non-

interacting system of rigid (but orientable) molecules with the same density as

the interacting system. Chapter 5 extends this approach further by perturba-

tively accounting for vibrations and electronic polarizability of the molecules in

the liquid, and establishes a procedure for determining the geometry of the sol-

vent molecule, its charge distribution, and its susceptibility from electronic den-

sity functional calculations. The task that remains, then, is to evaluate the con-

tributions to the free energy arising from interactions between the molecules,

for any given set of nuclear densities.

Chapter 3 presents one such excess free energy functional for water by con-

structing a model Hamiltonian from an intuitive picture of empty spaces in the

tetrahedral network of hydrogen bonds and calibrating the parameters of that

Hamiltonian to the experimental equation of state of water. Chapter 4 then

shows that a much simpler ansatz consisting of repulsive contributions treated

using fundamental measure theory (an excess functional for the hard sphere

fluid), short-ranged attractive contributions treated using a weighted-density

functional constrained to the experimental equation of state, and the long-
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ranged Coulomb interactions between the charge densities of the molecules

treated with a mean-field term (scaled to account for dipole correlations [97]),

works remarkably well for the inhomogeneous water configurations typically

encountered in the solvation of molecules within joint density-functional theory.

Chapter 5 refines this approach further by accounting for rotational correlations

and compensating for self-interaction errors using a polarization-density corre-

lation functional, and demonstrates its generality by constructing free energy

functionals for chloroform and carbon tetrachloride.

Within this theory, the Coulomb interactions between all the electrons and

the nuclei in the fluid are treated at the mean field level. The kinetic energy of

the electrons contributes to the internal energy of the molecules and is respon-

sible for the short-ranged repulsion between molecules. The nuclear kinetic

energy is captured in part by the free energy of the non-interacting system of

rigid but orientable molecules with vibrations treated perturbatively, and the re-

mainder contributes to the effective intermolecular potential. The task of the ex-

cess functional is to treat all the effects arising from intermolecular interactions.

Within our ansatz, fundamental measure theory captures the effect of the short-

ranged repulsion and the weighted-density functional captures the remaining

interactions beyond the mean-field Coulomb term. The range of this weighted-

density term is dominated by the dispersion interaction, which is the longest-

ranged component of electron correlations, as well as the thermally-averaged

beyond-mean-field interaction between orientable molecules with permanent

dipole moments, both of which decay as r−6. We find that selecting a weight

function with an r−6 tail, such as the Lennard-Jones potential, leads to accu-

rate predictions for the free energy for forming microscopic vacuum-liquid in-

terfaces typically encountered in solvation of molecules, and these results are
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insensitive to the precise form of the weight function at short distances.

The free energy functionals developed here are accurate for typical appli-

cations of joint density-functional theory, despite not capturing details (such

as the secondary structure) of the measured partial pair-correlation functions.

Other functionals which do capture these details by construction must there-

fore be more accurate at least for some inhomogeneous liquid configurations

that are weak perturbations about the bulk fluid. A recent free energy func-

tional for water employs direct correlation functions from integral equation the-

ory to constrain perturbations about a hard sphere reference fluid [180], and

another uses three-body terms from simplified molecular dynamics models for

water to capture orientational correlations [76]. The pair correlations of these

functionals are in much better agreement with experiment, but they still treat

the entire molecule as a single site and hence lack the microscopic detail neces-

sary for coupling to electronic density-functional calculations of solutes, within

the framework of joint density-functional theory. Combining the description

of intermolecular correlations from these functionals with the framework pre-

sented here could potentially lead to even more accurate functionals suitable for

joint density-functional theory. The application of joint density-functional the-

ory to electrode-electrolyte interfaces in technologically important systems such

as batteries and fuel cells also requires the development of accurate functionals

for mixtures of fluids, ionic liquids and electrolytes that include the necessary

microscopic detail.

The final term in the formal partitioning (1.17) of the total free energy is

the interaction between the electronic system and the liquid. We show [91]

that the mean-field Coulomb interaction between the two systems, along with
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a local-density approximation for the kinetic energy, exchange and correlations,

augmented by dispersion corrections to account for long-range electron corre-

lations, is sufficient to predict the solvation energies of molecules in water with

an accuracy approaching kBT at room temperature. This theory includes a sin-

gle fit parameter in the semi-empirical model for the dispersion interactions,

which is currently the weak link in all our solvation theories; a better model for

dispersion should improve the reliability of these theories and could perhaps

eliminate this sole fit parameter.

A second track followed in this dissertation is the construction of simplified

solvation models within the framework of joint density-functional theory. The

starting point is the empirical polarizable continuum model (PCM), which ap-

proximates the effect of the liquid simply by placing the electronic system in a

cavity of molecular dimensions within a continuum dielectric, and then empiri-

cally correcting for other energy contributions such as the free energy of forming

the cavity and dispersion interactions between the fluid and the electronic sys-

tem. Chapter 6 minimally extends this model by replacing a continuum linear

dielectric with one that accounts for the nonlinearity because of saturation of

the rotational response (when all molecular dipole moments align with the ex-

ternal field). The empirical corrections for the remaining free energy take the

form of an effective surface tension that is fit to solvation energies. Introducing

this nonlinearity in the response, eliminates the linear model’s overestimation

of the electrostatic contribution to the solvation energy of highly polar ionic sur-

faces, and results in a PCM-like model suitable for the study of electrochemical

systems.

Chapter 7 examines the PCM cavity assumption and concludes that account-
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ing for the nonlocality of the fluid response is critical for reducing the empiri-

cism of the model, since the cavity size parameters in these models compensate

for the lack of finite molecule-size effects. We show how an ab initio calcula-

tion of the nonlocal response can be used to predict the ideal cavity size for a

continuum dielectric, and this leads to a single universal solvent-independent

cavity size parameter (critical electron density, nc, in the isodensity polarizable

continuum models). We also replace the empirical effective surface tension with

a physical model for the cavity formation energy along with pair-potential dis-

persion corrections, which then capture the correct dependence of these energy

contributions with the geometry of the system, ranging from small molecules to

the surfaces of solids.

Chapter 8 directly incorporates the nonlocal response of the solvent into a

simplified solvation model which retains the computational efficiency of PCM’s,

but matches the microscopic detail of joint density-functional theory. In fact, we

show that this model can be derived as the linear response limit of joint density-

functional theory, once we assume that the configuration of the fluid in the ab-

sence of electrostatic interactions between the fluid and the electronic system

resembles a PCM cavity (uniform orientation density except within a cavity of

molecular dimensions). The terms in this theory parallel those of joint density-

functional theory, with mean-field Coulomb interactions between the electronic

system and the fluid in both theories, the cavity formation free energy in place of

the liquid free energy functional, and identical dispersion corrections for long-

ranged electron correlations in both theories. The accuracy of this theory for

molecular solvation energies also approaches kBT at room temperature, and the

increased computational efficiency and the ease of generalization to mixtures

such as electrolytes, makes it the ideal candidate for large-scale first-principles

230



calculations of electrochemical systems. The weak link, as before, is the model

for dispersion interactions which introduces the only fit parameter in the the-

ory. Additionally, the angular momentum expansion employed in the deriva-

tion of this theory so far works only for the linear response limit; generalizing

this derivation to obtain a nonlocal and nonlinear simplified solvation model

would be of considerable interest.

Finally, Chapter 9 studies a complex electrochemical system using the nonlo-

cal solvation model of Chapter 8. For many pairs of metals, a single monolayer

of one metal deposits on the surface of the other (from an electrolyte contain-

ing metal ions) at an electrode potential less favorable than for bulk deposition,

a phenomenon called underpotential deposition. A particularly well-studied

example is the deposition of copper on the (111) surface of platinum from a so-

lution also containing chloride ions, which exhibits transitions at two distinct

potentials less favorable than bulk deposition instead of just one. Experimen-

tal investigations of this system using X-ray and electron diffraction led to two

conflicting proposals for the additional transition: the formation of a partial

monolayer of copper, or the desorption of chloride ions from the surface. Our

solvation model enabled first-principles calculations of a platinum (111) sur-

face in solution with several configurations of copper and adsorbed chloride

ions, without explicitly dealing with the solvent molecules. Our calculations

indicate that the partial monolayer is unlikely to be the most stable configu-

ration at any electrode potential, and that chloride desorption is probably the

correct identification of the second transition in this system. A more complete

picture of this phenomenon requires the study of co-adsorption of other anions

in the solution, as well as examining trends in results for different crystal ori-

entations of the surface and different pairs of metals. However, even these pre-
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liminary first-principles calculations using a joint density-functional solvation

model provides microscopic information about the structure at the interface,

complementary to experimental data, and resolves a long-standing experimen-

tal debate about the nature of the transitions with changing electrode potential

in this system.
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APPENDIX A

EFFICIENT QUADRATURES FOR ORIENTATION INTEGRALS

Efficient discretization of the orientation integrals is critical to the perfor-

mance of any of the representations of Section 4.1.2 and determines the very

practicality of the pω (self) representation. Here, we list efficient quadratures for

discretizing integrals over ω,
∫

dω
8π2 f (ω)→

∑
i Wi f (ωi).

The simplest approach is to label orientations by ZYZ-Euler angles ω =

(α, β, γ) and use the outer product of a Gauss-Legendre quadrature for β ∈ [0, π]

and Gauss-Fourier quadratures for the periodic α, γ ∈ [0, 2π). More efficient

quadratures may be constructed as an outer product using the S2 × S1 structure

of SO(3), or by working directly on SO(3) without an outer product structure

[52].

In [52], quadratures on SO(3) are optimized to minimize the RMS error in

the integrals of all D j
m1m2(ω) up to some jmax. We focus on quadratures that are

exact up to some jmax,

∑
i

WiD j
m1m2

(ωi) =
∑

i

Wid j
m1m2

(βi)ei(m1αi+m2γi) = δ j0 (A.1)

for all |m1|, |m2| ≤ j ≤ jmax, and can be optimized further using the symmetry of

the molecule at hand. For simplicity, we only consider Zn symmetry about a sin-

gle axis, chosen to be the z-axis of the molecule frame without loss of generality.

The quadratures considered then fall into 3 classes:

1. Symmetry groups of Platonic solids [52]

2. Outer products of a spherical j-design [60] on S2(α, β) with a uniform

quadrature on S1(γ)
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3. Outer product quadrature on all 3 Euler angles α, β and γ.

Each of these these classes consists of uniformly spaced nodes of equal weights

in γ for each (α, β). Grouping the nodes as (αk, βk, γk + 2nπ/nγ) for n ∈ 0, . . . , nγ − 1

with total weight Wk for each group, (A.1) can be reduced to∑
k

Wkd j
m1m2

(βk)ei(m1αk+m2γk) = δ j0 (A.2)

for all |m1|, |m2| ≤ j ≤ jmax such that m2 is a multiple of nγ. Therefore if nγ >

jmax (which is the case for all but the Icosahedron rotation group), (A.2) further

simplifies to
√

4π
∑

k

WkY j
m(βk, αk) = δ j0 (A.3)

for all |m| ≤ j ≤ jmax using the relations of D j
m0 to the spherical harmonics.

A spherical jmax-design is a set of points on the unit sphere that satisfies (A.3)

with uniform weights Wk, and hence it yields an SO(3) quadrature exact to jmax

when combined with a uniform quadrature with jmax +1 nodes on S1(γ). We use

the spherical designs with the smallest number of nodes for each 7 ≤ jmax ≤ 21

tabulated in [60] to form the quadratures of class (b). The quadratures of lower

order reduce to class (a), specifically the rotation groups of the Tetrahedron at

jmax = 2, Octahedron at jmax = 3 and Icosahedron at jmax = 5.

The Gauss-Legendre quadrature with nβ nodes on cos β ∈ [−1, 1] is exact

for the integration of all polynomials up to order 2nβ − 1. The outer product

of this with a uniform quadrature with 2nβ nodes on α ∈ [0, 2π) satisfies (A.3)

for jmax = 2nβ − 1, and hence also (A.1) to that order when combined with 2nβ

uniform samples on γ.

Finally the reduction by Zn symmetry about the z-axis in the molecule frame

amounts to replacing S1(γ) with S1/Zn. This is achieved by a uniform sampling
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of dnγ/ne points on γ ∈ [0, 2π/n), which retains the exactness to jmax for functions

with this symmetry with a reduction of up to n in the number of nodes required.

The accuracy of these quadratures for classical density functional theory of

rigid molecules is explored in Section 4.3.2. The quadratures considered there

are listed in Table A.1 along with their jmax, the number of nodes for sampling

SO(3)/Zn in general and SO(3)/Z2 in particular, which is the case relevant for

water. Note that the Euler quadrature with nβ = 3 needs almost twice as many

nodes as the Icosahedron group for the same jmax = 5, but the relative ineffi-

ciency of the Euler quadratures decreases with jmax and becomes less than 1%

between the nβ = 11 Euler quadrature and the 21-design at jmax = 21.
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Table A.1: List of explored quadratures, their degree of exactness jmax, and the
number of nodes in sampling SO(3)/Zn. The Euler angles corresponding to the
platonic solid rotation groups are listed in [52]. The j-designs are constructed
as an outer product of the spherical j-designs with fewest points for each j
from [60] used for (α, β) with d( j + 1)/ne uniform samples on γ ∈ [0, 2π/n). Each
Euler(nβ) quadrature is an outer product of a nβ-point Gauss-Legendre quadra-
ture on cos β ∈ [−1, 1], a uniform 2nβ-point quadrature on α ∈ [0, 2π), and a
uniform d2nβ/ne-point quadrature on γ ∈ [0, 2π/n).

jmax
Number of quadrature nodes for

SO(3)/Zn SO(3)/Z2

Tetrahedron 2 4 × d3/ne 8
Octahedron 3 6 × d4/ne 12
Icosahedron 5 12 × d5/ne 36

7-design 7 24 × d8/ne 96
8-design 8 36 × d9/ne 180
9-design 9 48 × d10/ne 240

10-design 10 60 × d11/ne 360
11-design 11 70 × d12/ne 420
12-design 12 84 × d13/ne 588
13-design 13 94 × d14/ne 658
14-design 14 108 × d15/ne 864
15-design 15 120 × d16/ne 960
16-design 16 144 × d17/ne 1296
17-design 17 156 × d18/ne 1404
18-design 18 180 × d19/ne 1800
19-design 19 204 × d20/ne 2040
20-design 20 216 × d21/ne 2376
21-design 21 240 × d22/ne 2640
Euler(nβ) 2nβ − 1 2n2

β × d2nβ/ne 2n3
β
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APPENDIX B

ONE-DIMENSIONAL DISCRETIZATION FOR SPECIAL GEOMETRIES

The discretization of three-dimensional space according to Section 4.3.1,

along with the orientation quadratures of Appendix A provide a practical route

to computations with the rigid-molecular classical density functional frame-

work of Section 4.1 in arbitrary geometries and basis sets. However, the de-

velopment and testing of new excess functionals for liquids primarily require

calculations in high-symmetry external potentials. Here, we detail the formu-

lation of highly-efficient discretizations of planar, cylindrical and spherical ge-

ometries on a one-dimensional grid, which allow for the rapid prototyping of

excess functionals employed in Section 4.3.3 and [153].

The discretization of space is performed in the framework of Section 4.3.1,

but with special basis sets exploiting the symmetry. The three geometries we

consider here are

1. Planar, where all spatial dependence is along z,

2. Cylindrical, with dependence only on the distance from the z-axis ρ, and

3. Spherical, with dependence only on distance from origin r.

Each of these geometries require only a one-dimensional discretization. For the

planar geometry, we impose mirror-symmetry boundary conditions at the ends

of the grid, and pick a basis of cosines and a corresponding quadrature grid

suited for the Discrete Cosine Transform [3]. For the spherical and cylindri-

cal geometries, we impose Neumann boundary conditions at some maximum

radius, and choose a finite basis of spherical and cylindrical Bessel functions
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Table B.1: Definition of the basis functions for the high-symmetry geometries -
planar, cylindrical and spherical - with one-dimensional discretizations of sam-
ple count S , and matrix elements of the operators of Section 4.3.1 for each of
these basis sets. The basis functions are labeled by i = 0, 1, · · · , S − 1 for each
basis set, and Xi, xi, Yi and yi, are the ith roots of J0(x), j0(x), J′0(x) and j′0(x) re-
spectively, with Y0 = y0 ≡ 0. The quadrature grid has the same number of points
S as the basis size, and are labeled by j = 0, 1, · · · , S − 1.

Planar Cylindrical Spherical
Coordinate
system (x, y, z) (ρ, φ, z) (r, θ, φ)

Symmetry f (~r)→ f (z) f (~r)→ f (ρ) f (~r)→ f (r)
Boundary
conditions

f ′(0) = f ′(L) = 0 f ′(ρmax) = 0 f ′(rmax) = 0

Basis bi(~r)
w̃i cos(Giz),
Gi = iπ/L,
w̃i = 2

(1+δi0)L

w̃iJ0(Giρ),
Gi = Yi/ρmax,

w̃i =
J−2

0 (Yi)
πρ2

max

w̃i j0(Gir),
Gi = yi/rmax,

w̃i =
j−2
0 (yi)

(2− 2
3 δi0)πr3

max

Quadrature
grid {~r j}

z j = ( j + 1
2 ) L

S ρ j = X j+1
ρmax
YS

r j = x j+1
rmax
yS

I ji w̃i cos
(
( j + 1

2 )π i
S

)
w̃iJ0

(
X j+1

Yi
YS

)
w̃i j0

(
x j+1

yi
yS

)
Ji j

w j cos
(
( j + 1

2 )π i
S

)
,

w j = L
S

w jJ0

(
X j+1

Yi
YS

)
,

w j =
4πρ2

max
Y2

S J2
1 (X j+1)

w j j0

(
x j+1

yi
yS

)
,

w j =
4π2r3

max
y3

S j21(x j+1)

Oi′i w̃iδi′i

Li′i −G2
i w̃iδi′i

(J†OJ) j′ j w jδ j′ j

(g(r)∗)i′i δi′i

∫
4πr2drg(r) j0(Gir)

respectively, along with a quadrature grid suited for the Discrete Bessel Trans-

form [89] .1 The definition of the basis functions, quadrature grid and the matrix

elements for the operators of Section 4.3.1 are summarized in Table B.1.

All three basis sets are based on the eigenfunctions of the three-dimensional

Laplace equation in various geometries, and are therefore intricately linked to

the three-dimensional plane-wave basis: the basis functions are indexed by Gi,

1The Discrete Bessel Transform of [89] is based on Dirichlet boundary conditions; the exten-
sion of that approach to Neumann boundary conditions is straightforward, and the results are
summarized in Table B.1.
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the magnitude of the corresponding plane-wave momentum. Consequently, the

Laplacian and convolutions by spherical functions are diagonal in these basis

sets as well, as indicated in Table B.1. The transform operators I and J reduce

to the ‘DCT type III’ and ‘DCT Type II’ fast Fourier transforms [44] respectively

in the planar geometry (or ‘IDCT’ and ‘DCT’ in the notation of [3]); the cylindri-

cal and spherical transforms lack an analogous O(S ln S ) method and are imple-

mented as matrix-vector multiplies with a precomputed Bessel function matrix.

The basis-independent discretization of the scalar-EOS excess functional

(4.35), and site-density excess functionals in general, carries over to the planar,

cylindrical and spherical geometries without modification. The discretization

of the rigid-molecular ideal gas free energy and the generation of site-densities

from independent variables carries over unmodified for the planar geometry,

but is slightly complicated for the cylindrical and spherical geometries by the

fact that the translation operator breaks the symmetry of the basis set and does

not have a one-dimensional representation.

We can however compute the site-densities using (4.34) and the orientation-

density in the site-potential representation using (4.31) for these basis sets as

well, with minor modifications to the translation operators in those equations.

First, we pick a covariant reference orientation for the molecule, (relative to the

local coordinate frame (ρ̂, φ̂, ẑ) or (r̂, θ̂, φ̂)), so that pω(~r) is invariant under the

cylindrical or spherical symmetry for each ω and permits a one-dimensional

representation.2 Consequently, the translations involved in (4.34) and (4.31)

would be relative to the local coordinate frame as well, and hence position-

2If we used an invariant reference orientation as in the three-dimensional case, pω(~r) would
be covariant under the symmetry, so that the spatial dependence of pω(~r) for each ω would not
be cylindrically or spherically symmetric, and would therefore lack a one-dimensional repre-
sentation.
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dependent; we therefore need to generalize the translation operators T~a to

‘warp’ operators T~a(~r) defined by T~a(~r) f (~r) = f (~r + ~a(~r)). It can be shown that

the expressions of Section 4.3.1 remain valid without modification upon this

generalization.

The translation operator for the planar basis is a simple one-dimensional

restriction of its three-dimensional counterpart, and it generalizes to

T~a(ρ) f (ρ) = f
(√

(ρ + ~a · ρ̂)2 + (~a · φ̂)2

)
(B.1)

for the cylindrical basis with f (ρ) ≡ f (2ρmax − ρ) for ρ > ρmax, and

T~a(r) f (r) = f
(√

r2 + a2 + 2r~a · r̂
)

(B.2)

for the spherical basis with f (r) ≡ f (2rmax − r) for r > rmax.3 We could compute

the matrix elements of these operators in the Bessel basis and apply the trans-

lation as a dense-matrix multiply in basis space, but those suffer from Nyquist

frequency ringing problems similar to their three-dimensional counterparts. In-

stead, we compute these operators in real space using approximate sampling

operators S~a(~r) based on constant or linear-spline interpolation which preserve

non-negativity of scalar fields.

The results for the scalar-EOS water functional in Section 4.3.3 and the

bonded-voids water functional in [153] were computed using the discretiza-

tion scheme of Section 4.3.1, in the planar and spherical bases, with the warp

operator S computed using linear-spline interpolation as discussed above. The

planar and spherical bases have an additional rotational symmetry about the

local ẑ and r̂ axes respectively at any point in space which renders the integral

over Euler angle α trivial, so that a quadrature on S2(γ, β) with no α sampling
3 The covariant reference frame ensures that ~a · ρ̂ and ~a · φ̂ depend only on ρ (and not φ and

z), and that ~a · r̂ depends only on r.
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suffices; the one-dimensional calculations employ this additional optimization

by using the Euler(nβ) quadratures of Appendix A, but with nα = 1 irrespective

of nβ.
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APPENDIX C

TRUNCATED COULOMB POTENTIALS

Computations for periodic systems frequently employ the plane-wave ba-

sis [124], which presents the advantage of systematic and exponential basis-set

convergence controlled by a single parameter, namely the kinetic energy cut-

off, or equivalently, the Nyquist frequency. This advantage can be extended to

non-periodic systems and systems with lower-dimensional periodicity such as

slabs and wires by using truncated Coulomb potentials [136, 73]. Additionally,

in Chapter 2, truncated Coulomb potentials proved particularly useful in the

computation of the exchange energy even for periodic systems.

As shown above, truncation of the potential on the Wigner-Seitz cell leads

to the most accurate method for the exchange energy, and it is also the most ef-

ficient method for lower-dimensional geometries since, as discussed by Ismail-

Beigi [73], it localizes the G = 0 singularity of the Coulomb kernel to a sin-

gle point. However, the singular Fourier integrals required to construct plane-

wave Wigner-Seitz truncated Coulomb kernels cannot be solved analytically in

general, and are prohibitively expensive to compute numerically. Here, we de-

velop a general and efficient O(N ln N) construction for these kernels based on

the minimum-image convention (MIC) method [106]. Finally, as a practical mat-

ter, we note that determining the Coulomb kernel is a one-time computation

because the corresponding storage requirements are modest.

To establish our normalization conventions for the plane-wave basis, we ex-

pand periodic charge densities as ρ(~r) =
∑

~G ei ~G·~rρ̃ ~G where ~G are reciprocal lattice

vectors of the crystal which has a unit cell of volume Ω. The interaction energy
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under a translationally invariant potential

U12 =

∫
Ω

d~r1

∫
d~r2ρ

∗
1(~r1)K(~r1 − ~r2)ρ2(~r2)

= Ω
∑
~G

ρ̃∗
1 ~G
ρ̃2 ~GK̃ ~G (C.1)

is then diagonal in reciprocal space, with K̃ ~G =
∫

d~re−i ~G·~rK(r). Here, we denote

integrals over unit cells by
∫

Ω
d~r and integrals over all space by

∫
d~r. For the

long-ranged Coulomb interaction K(r) = 1/r, the plane-wave kernel K̃ ~G = 4π/G2

is singular at ~G = 0, and the interaction energy is finite only for neutral unit

cells. In practice, the interaction energies of charged subsystems are computed

by excluding the ~G = 0 term, which amounts to adding a uniform neutralizing

background charge to each subsystem.

Treating non-periodic systems in the plane-wave basis requires the elimi-

nation of interactions between different unit cells in a translationally-invariant

manner in order to preserve the efficiency and accuracy of the Fourier spectral

method. If the Coulomb potential is truncated so that it is zero outside the first

Wigner-Seitz cell and the charge densities are confined to half the domain of

truncation, then the interaction within each unit cell remains unmodified and

the interaction between unit cells is exactly zero. The simplest choice for ac-

complishing this truncates the Coulomb potential outside a sphere of radius

R smaller than the in-radius of the Wigner-Seitz cell, leading to the analytical

plane-wave kernel,

K̃sph
~G

=

∫
|~r|<R

d~re−i ~G·~r 1
r

=


2πR2, ~G = 0

4π
G2 (1 − cos GR), ~G , 0.

(C.2)
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C.1 Minimum-image convention (MIC) method

From the above arguments, the natural choice for the truncated potential is

clearly

K̃WS
~G

=

∫
WS

d~re−i ~G·~r 1
r
, (C.3)

where
∫

WS represents integration over the first Wigner-Seitz cell. However, the

singularity at the origin and the polyhedral domain of integration preclude

general analytical solutions and straightforward numerical quadratures. Mar-

tyna and Tuckerman introduced an approximate construction for Coulomb po-

tentials truncated on parallelepiped domains based on range-separation tech-

niques. Here, we generalize this so-called minimum-image convention (MIC)

method [106] to Wigner-Seitz cells of arbitrary lattice systems.

Employing a range-separation parameter α, analogously to the Ewald ap-

proach [38] for the Coulomb energy of a periodic assembly of charges, we ap-

proximate this kernel by

K̃WS
~G

=

∫
WS

d~re−i ~G·~r

(
erfc αr

r
+

erf αr
r

)
≈

4π
G2

(
1 − exp

−G2

4α2

)
+

Ω

N~r

∑
~r∈WS

e−i ~G·~r erfαr
r

, (C.4)

where the discrete sum over ~r is a quadrature on the Wigner-Seitz cell with

N~r nodes as described below. The short-ranged first term is localized to the

Wigner-Seitz cell by choice of α, so that it is unaffected by the truncation and

can be evaluated analytically. The error in this term can be reduced to machine

precision ε by choosing α =
√
− ln ε/Rin, where Rin is the in-radius of the Wigner-

Seitz cell. The ~G = 0 component is well-defined because of the finite real-space

range, and is understood to be equal to its G → 0 limit given by π/α2.
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The second term of (C.4) has a long-ranged smooth integrand and is approx-

imated by a Gauss-Fourier quadrature, evaluated as a fast Fourier transform

(FFT) in practice. This quadrature consists of nodes on a uniform parallelepiped

mesh with uniform weights, which we remap using the periodicity of the lat-

tice to the first Wigner-Seitz cell. In the interior of the integration domain, the

integrand is bandwidth-limited as exp(−G2/4α2), and the error in the Fourier

quadrature can be reduced to ε by choosing an FFT resolution such that the

Nyquist frequency exceeds 2α
√
− ln ε = −2 ln ε/Rin. The cusps in the periodic

repetition of the integrand at the boundaries of the Wigner-Seitz cell cause an

additional error in the kernel, but this error does not contribute in the Coulomb

energy of charge distributions that are confined to the half-sized Wigner-Seitz

cell and are resolvable on the chosen Fourier grid [106].

C.2 Partially-truncated Coulomb kernels

Next, we generalize the above construction to systems with lower-dimensional

periodicity, where the Coulomb kernel is truncated along some lattice direc-

tions and remains long-ranged along the others. In these geometries, the kernel

is still singular around ~G = 0, albeit with a slower divergence: ln G for one peri-

odic direction or 1/G for two periodic directions in contrast to 1/G2 for the fully

periodic case. A general shape for the truncation domain in the non-periodic

directions leads to a kernel which is singular for an entire line or plane of recip-

rocal lattice vectors passing through ~G = 0. Ismail-Beigi [73] pointed out that

Wigner-Seitz truncation localizes the singularity to the single point ~G = 0 in all

these cases.
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We can understand the special property of the Wigner-Seitz truncation by

writing the Coulomb kernel truncated on an arbitrary domain D as

K̃D
~G

=

∫
d~re−i ~G·~r 1

r
θD(~r) =

∫
d~k

4π
k2 θ̃D( ~G − ~k), (C.5)

where θD(~r) is a function that is 1 for ~r ∈ D and 0 otherwise, and θ̃D is its

Fourier transform. Since θD(~r) is constant along periodic directions, θ̃ is zero

for wave-vectors with any component along those directions. In general, the

singularity from 4π/k2 ‘infects’ all wave-vectors with no component along the

periodic directions. Hence, the singularity is spread to a plane of points for one-

dimensional or wire-like systems, and a line of points for two-dimensional or

slab-like systems. However, the Fourier transform of a θ-function with a shape

that tiles with the periodicity of the lattice, such as the Wigner-Seitz cell, is zero

at all non-zero reciprocal lattice vectors. This confines the singularity to G = 0

for these special cases.

Now consider, without loss of generality, the slab geometry with its one trun-

cated direction along z, and let L be the unit cell length along that direction. The

Fourier transform of 1/r over the two periodic directions evaluates to 2πe−Gρ |z|/Gρ

where Gρ is the component of the wave-vector along the untruncated directions.

At Gρ = 0, removing the singular part 2π/Gρ results in a residue −2π|z|, the poten-

tial arising from an infinite plane of charge with the arbitrary offset in potential

fixed to be zero at the plane. Note that, although this choice of zero of poten-

tial does not change the total energy for a neutral charge distribution, care must

be exercised to ensure that it be consistent for all interactions between charged

subsystems of an overall neutral system. Finally, the remaining integral over

the Wigner-Seitz cell in the truncated direction, i.e. z ∈ [−L/2, L/2), can also be

performed analytically [73, 136], so that the Coulomb kernel for truncation in
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slab geometries becomes

K̃slab
~G

=


4π
G2

(
1 − cos GzL

2 exp −GρL
2

)
, G , 0

−πL2/2, G = 0.
(C.6)

Similarly, for the wire geometry with the single periodic direction along z,

the partial Fourier transform of 1/r over the periodic direction is 2K0(Gzρ), where

ρ =
√

r2 − z2 is the usual cylindrical coordinate, and K0 is the modified Bessel

function of the second kind. At Gz = 0, removing the logarithmically divergent

part results in a residue −2 ln ρ so that the regularized partial Fourier transform

of the Coulomb potential at Gz = k is

Ck(ρ) ≡


2K0(kρ), k , 0

−2 ln ρ, k = 0.
(C.7)

The remaining Fourier transform over the two truncated directions is analyt-

ically computable for a cylindrical truncation domain [136], but that choice

spreads the divergence beyond G = 0 as mentioned previously. On the other

hand, the Fourier transform of (C.7) with a Wigner-Seitz truncation domain

is not known in closed form for any two-dimensional lattice system [73]. Ac-

cordingly, we generalize the MIC approach [106] and approximate the partially-

truncated wire-geometry Coulomb kernel by

K̃wire
~G
≈

4π
G2

(
1 − exp

−G2

4α2

)
+

Ω⊥

N~r⊥

∑
~r⊥∈WS⊥

e−i ~G·~r⊥C̄α
|Gz |

(r⊥) (C.8)

where r⊥ are nodes for the two dimensional Gauss-Fourier quadrature mapped

down to the Wigner Seitz cell, WS⊥, of the truncated directions with area Ω⊥.

Here, we introduce a smooth, long-ranged special function C̄α
k (ρ), which

plays the same role for Ck(ρ) that erf(αr)/r plays for 1/r in the fully-truncated
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case of (C.4). Operationally, this function is defined by the two-dimensional

convolution

C̄α
k (ρ) ≡ e

−k2

4α2

(
α

π
e−α

2ρ2
∗Ck(ρ)

)
= e

−k2

4α2

∫ ∞

0
2α2ρ′dρ′e−α

2(ρ2+ρ′2)I0(2α2ρρ′)Ck(ρ′). (C.9)

For k = 0, (C.9) reduces to the analytical expression C̄α
0 (ρ) = −2 ln ρ − Γ0(α2ρ2),

but for k , 0, C̄α
k (ρ) needs to be parametrized numerically.1 The choice of α

and FFT resolution in (C.9) follow the discussion for the fully-truncated MIC

construction, except that Rin is the radius of the two dimensional Wigner-Seitz

cell WS⊥, and independent two-dimensional fast Fourier transforms produce

the results for each plane of constant Gz.

C.3 Ewald sums for reduced-dimensional systems

The plane-wave Coulomb kernels above, truncated over the Wigner-Seitz cell

in one, two or three lattice directions, enable the calculation of Coulomb inter-

action energies in slab, wire and isolated geometries respectively. However, a

purely reciprocal-space method is only practical if at least one of the two charge

densities, ρ1(~r) or ρ2(~r) in (C.1), is bandwidth limited. The interaction energy of

point nuclei with each other does not satisfy this criterion and requires the use

of an Ewald sum [38]. Generalizing the standard Ewald method to an arbitrary

combination of truncated and periodic lattice directions, gives the interaction

1Efficient subroutines for evaluating C̄α
k (ρ) and constructing truncated kernels are available

as a part of the open source density-functional software, JDFTx [154].
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energy for a set of point charges Zi at locations ~ri in the first unit cell, as

Eewald =
∑
~R,i, j

i, j if ~R=0

ZiZ j

2
erfc η|~ri + ~R − ~r j|

|~ri + ~R − ~r j|
+

∑
~G,i, j

ZiZ j

2Ωper
e−i ~G·(~ri−~r j)gη

~G
(~ri − ~r j) −

η
√
π

∑
i

Z2
i .

(C.10)

Here, the first term evaluates the contribution from the short-ranged part

erfc(ηr)/r of the Coulomb potential, the second term captures the contribution

from the remaining long-ranged part erf(ηr)/r, and the third term exactly can-

cels the self interactions introduced by the second term. The standard range-

separation parameter η is adjusted to simultaneously optimize the convergence

of the sum over lattice vectors ~R as well as that over reciprocal lattice vectors

~G, but the total energy is of course formally independent of the value of this

parameter. (When some lattice directions are truncated, ~R and ~G correspond to

the lattice vectors and reciprocal lattice vectors of the lower dimensional Bra-

vais lattice of periodic directions alone.) Finally, in the second term, Ωper is the

volume, area or length of the unit cell along the periodic directions alone and

gη
~G
(~r) is related to the (partial) Fourier transform over those directions of the

long-ranged part of the Coulomb potential.

When all three directions are periodic, gη
~G
(~r) = exp −G2

4η2 , the double sum over

point charges factorizes into the square of the structure factor, and (C.10) re-

duces to the standard Ewald sum [38]. Next, for the slab geometry truncated,

without loss of generality, along the z direction, we find

gη
~G
(~r) =


π
G

(
f ηG(z) + f ηG(−z)

)
, G , 0

−2π
(
z erf(ηz) + e−η

2z2

η
√
π

)
, G = 0,

(C.11)

where f ηG(z) ≡ eGzerfc (G/2η + ηz), and this reduces (C.10) to the ‘Ewald 2D’ for-

mula [67, 147].
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The Ewald sum for the wire geometry with one periodic and two truncated

directions does not seem to have been addressed previously, perhaps because

gη
~G

is not analytically expressible in that case. In fact, we can show that gη
~G
(~r) =

C̄η
G(
√

r2 − z2), precisely the function defined in (C.9), which was introduced for

our generalization of the MIC method to this geometry. Finally, when all three

lattice directions are truncated, the Coulomb kernel has no G = 0 singularity,

and an Ewald sum is not required. In this case, the Coulomb energy of a set of

point charges is computed directly in real space as a sum over all pairs in one

unit cell.
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APPENDIX D

DERIVATION OF THE SPHERICALLY-AVERAGED LIQUID

SUSCEPTIBILITY

In Section 8.2, evaluating free energy functional (8.4) to quadratic order, that

is within a linear response approximation, results in the quadratic form (8.7)

with a spherically-averaged susceptibility given by (8.8). Here, we present the

derivation of that result.

The free energy functional (8.4) excluding the zeroth order terms (Φ0) is

∆Φ = T
∫

d~r
∫

dω
8π2 pω(~r)

[
ln

pω(~r)
Nbulks(~r)

− 1
]

+
∑
α

∫
d~r

Nα(~r)Pα(~r)2

2Cpolχα
+

C−1
rot − 1

Nbulk p2
mol/3T

∫
d~r

(∫
dω
8π2 pω(~r)ω ◦ ~pmol

)2

+

∫
d~r

∫
d~r′

ρel(~r) +
ρlq(~r) − ρ0

lq(~r)

2

 1
|~r − ~r′|

(ρlq(~r′) − ρ0
lq(~r′)). (D.1)

See the paragraphs following (8.4) for a detailed description of each term above.

The zeroth order configuration corresponds to orientation density, pω(~r) =

Nbulks(~r) and polarization amplitudes, ~Pα(~r) = 0. The free energy is already

explicitly quadratic in Pα(~r); we substitute

pω(~r) = Nbulks(~r)

1 +
∑
lmm′

xl
mm′(~r)Dl

mm′(ω)

 (D.2)

and expand Φ to quadratic order in xl
mm′(~r), the coefficients for the irreducible

representations of the rotation group, Dl
mm′(ω) [174], in the orientation density.

In the first term of (D.1), the integrand pω(~r)
[
ln pω(~r)

Nbulk s(~r) − 1
]
, with pω(~r) =

Nbulks(~r)(1 + x) where x =
∑

lmm′ xl
mm′(~r)Dl

mm′(ω), expands to Nbulks(~r)x2/2 + O(x3).

Performing the orientation integrals using the orthogonality relations of the
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Wigner D-matrices, the first term of (D.1) simplifies to∫
d~rNbulks(~r)

∑
lmm′

T
2(2l + 1)

(
xl

mm′(~r)
)2

+ O(x3), (D.3)

where O(x3) denotes cubic and higher order terms in xl
mm′(~r). The inner integral

in third term of (D.1),
∫

dω
8π2 pω(~r)ω ◦ ~pmol, is zero for all l , 1, and simplifying

the contribution at l = 1 yields the same form as the first term above, but with

an additional factor of (C−1
rot − 1). Therefore, the first and third terms of (D.1)

combine to ∫
d~rNbulks(~r)

∑
lmm′

T
2(2l + 1)Cl

rot

(
xl

mm′(~r)
)2

+ O(x3), (D.4)

where Cl
rot = Crot for l = 1 and unity for l , 1.

Substituting the simplified form of the first and third terms, and noting that

the site densities Nα(~r) = N0
α(~r) + O(x) (by the definition of N0

α(~r) as the densities

at uniform orientation density),

∆Φ =

∫
d~rNbulks(~r)

∑
lmm′

T
2(2l + 1)Cl

rot

(
xl

mm′(~r)
)2

+
∑
α

∫
d~r

N0
α(~r)

2Cpolχα

(
Pα(~r)

)2

+

∫
d~r

∫
d~r′

(
ρel(~r) +

∆ρlq(~r)
2

)
1

|~r − ~r′|
∆ρlq(~r′) + O(x3) + O(xP2

α). (D.5)

The change in charge density of the liquid, ∆ρlq(~r) ≡ ρlq(~r) − ρ0
lq(~r) includes con-

tributions due to changes in the orientation density (with expansion coefficients

xl
mm′(~r)) as well as due to polarization (with amplitudes Pα(~r)), and is given by

∆ρlq(~r) =

∫
d~r′Nbulks(~r′)

∑
lmm′

xl
mm′(~r

′)
∫

dω
8π2 Dl

mm′(ω)ρmol(ω ◦ (~r − ~r′))

− ∇ ·
∑
α

wα(r) ∗ N0
α(~r)~Pα(~r). (D.6)

Here, the rotational contribution is in terms of the charge density ρmol(~r) of

the liquid molecule in the reference orientation at the origin. Consequently,

ρmol(ω ◦ (~r −~r′)) is the charge density at position ~r of a molecule with orientation

ω centered at ~r′.
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Now, we assume periodic boundary conditions on a supercell of volume Ω

and expand each physical quantity in the plane-wave basis, f (~r) =
∑

~G f̃ ( ~G)ei ~G·~r,

where ~G are reciprocal lattice vectors corresponding to that supercell. Using the

convolution theorem, we can rewrite (D.5) and (D.6) in terms of the plane-wave

coefficients as

∆Φ = Ω
∑
~G, ~G′

Nbulk s̃( ~G − ~G′)
∑
lmm′

T
2(2l + 1)Cl

rot

x̃l∗
mm′( ~G)x̃l

mm′( ~G
′)

+ Ω
∑
~G, ~G′

∑
α

Ñ0
α( ~G − ~G′)
2Cpolχα

~̃P∗α( ~G)~̃Pα( ~G′)

+ Ω
∑
~G

ρ̃el( ~G) +
∆ρ̃lq( ~G)

2

 K̃(G)∆ρ̃∗lq( ~G), (D.7)

where K̃(G) = 4π/G2, and

∆ρ̃lq( ~G) =
∑
lmm′

∑
~G′

Nbulk s̃( ~G − ~G′)x̃l
mm′( ~G

′)
∫

dω
8π2 Dl

mm′(ω)ρ̃mol(ω ◦ ~G)

− i ~G ·
∑
α

w̃α(G)
∑
~G′

Ñ0
α( ~G − ~G′)~̃Pα( ~G). (D.8)

Next, we expand the charge density of the molecule in the basis of spherical

harmonics multiplied by radial functions

ρ̃mol( ~G) =
∑
lm

ρ̃lm
mol(G)Ylm(Ĝ). (D.9)

The charge density of the rotated molecule ρ̃mol(ω ◦ ~G) then expands to

ρ̃mol(ω ◦ ~G) =
∑
LM

ρ̃LM
mol(G)YLM(ω ◦ Ĝ)

=
∑

LMM′
ρ̃LM

mol(G)DL
MM′(ω)YLM′(Ĝ) (D.10)

using the transformation of spherical harmonics under rotations [174]. Substi-
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tuting into (D.8) and simplifying using the orthogonality of Dl
mm′(ω),

∆ρ̃lq( ~G) =
∑
lmm′

∑
~G′

Nbulk s̃( ~G − ~G′)x̃l
mm′( ~G

′)
1

2l + 1
ρ̃lm

mol(G)Ylm′(Ĝ)

− i ~G ·
∑
α

w̃α(G)
∑
~G′

Ñ0
α( ~G − ~G′)~̃Pα( ~G). (D.11)

Finally, the Euler-Lagrange equations for minimizing (D.7) with respect to

x̃l
mm′( ~G) and ~̃Pα( ~G) yield

x̃l
mm′( ~G) =

−Cl
rot

T
ρ̃lm∗

mol(G)Y∗lm′(Ĝ) K̃(G)
(
ρ̃el( ~G) + ∆ρ̃lq( ~G)

)︸                         ︷︷                         ︸
≡φ̃tot( ~G)

and ~̃Pα( ~G′) = −i ~GCpolχαw̃∗α(G) K̃(G)
(
ρ̃el( ~G) + ∆ρ̃lq( ~G)

)︸                         ︷︷                         ︸
≡φ̃tot( ~G)

, (D.12)

where φtot is the net electrostatic potential in the system. Eliminating x̃l
mm′( ~G) as

well as ~̃Pα( ~G) in favor of φ̃tot( ~G) as the independent variable, (D.7) and (D.11)

simplify to

∆Φ = −
Ω

2

∑
~G, ~G′

χ̂( ~G, ~G′)φ̃∗tot( ~G)φ̃tot( ~G′)

+ Ω
∑
~G

ρ̃el( ~G) +
∆ρ̃lq( ~G)

2

 K̃(G)∆ρ̃∗lq( ~G)

and ∆ρ̃lq( ~G) =
∑
~G′

χ̂( ~G, ~G′)φ̃tot( ~G′) (D.13)

with the nonlocal spherically-averaged liquid susceptibility,

χ̂( ~G, ~G′) ≡ −Nbulk s̃( ~G − ~G′)
∑
lmm′

Cl
rot

T
Ylm′(Ĝ)Y∗lm′(Ĝ

′)
2l + 1

ρ̃lm
mol(G)ρ̃lm∗

mol(G
′)

−
∑
α

Ñ0
α( ~G − ~G′)Cpolχα ~G · ~G′w̃α(G)w̃∗α(G′). (D.14)

Using the addition theorem for spherical harmonics in the first term, this sus-
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ceptibility reduces to (8.8), given by

χ̂( ~G, ~G′) ≡ −Nbulk s̃( ~G − ~G′)
∑
lm

Cl
rot

T
Pl(Ĝ · Ĝ′)

4π
ρ̃lm

mol(G)ρ̃lm∗
mol(G

′)

−
∑
α

Ñ0
α( ~G − ~G′)Cpolχα ~G · ~G′w̃α(G)w̃∗α(G′). (D.15)

The Euler-Lagrange equation for minimizing the free energy with respect to

φtot is χ̂φtot = χ̂K̂(χ̂φtot + ρel), using an operator notation for simplicity (instead of

explicit matrices and vectors with ~G, ~G′ indices). We can formally rearrange this

to (K̂−1 − χ̂)φtot = ρel, which resembles a Poisson equation (since K̂−1 = −∇2/4π),

but includes a nonlocal material response. In this operator notation, the free

energy at the equilibrium is

∆Φ = Ω

[
−

1
2
φ†totχ̂φtot + ∆ρ†lqK̂

(
ρel +

1
2

∆ρlq

)]
= Ω

[
−

1
2
φ†totχ̂φtot +

1
2

(
ρel + ∆ρlq

)†
K̂

(
ρel + ∆ρlq

)
−

1
2
ρ†elK̂ρel

]
= Ω

[
−

1
2
φ†totχ̂φtot +

1
2
φ†tot

(
ρel + ∆ρlq

)
−

1
2
ρ†elK̂ρel

]

= Ω

1
2
φ†tot

− χ̂φtot︸︷︷︸
∆ρlq

+ρel + ∆ρlq

 − 1
2
ρ†elK̂ρel


=

Ω

2
ρ†el

[
(K̂−1 − χ̂)−1 − K̂

]
ρel (D.16)

using φtot = K̂(ρel + ∆ρlq) and by substituting the Euler-Lagrange equation. The

final expression above, upon transformation to real space, yields (8.7).
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APPENDIX E

CONVERSIONS BETWEEN CONVENTIONAL AND ATOMIC UNITS

Table E.1: Value in atomic units of conventional units used for experimental
measurements. Multiply by the number in the third column to convert quanti-
ties to atomic units, and divide by it to convert from atomic units.

Quantity Measurement unit Value in atomic units
Energy eV 3.6749325 × 10−2 Eh

kJ/mol 3.8087989 × 10−4 Eh

kcal/mol 1.5936015 × 10−3 Eh

cm-1 (photon wave number) 4.5563353 × 10−6 Eh

Temperature K 3.1668154 × 10−6 Eh

Entropy J/(mol K) 0.12027221
Length Å 1.8897262 a0

Concentration mol/liter 8.9238929 × 10−5 a−3
0

Pressure Pa 3.3989313 × 10−14 Eh/a3
0

bar 3.3989313 × 10−9 Eh/a3
0

Surface energy mN/m = dyn/cm 6.4230494 × 10−7 Eh/a2
0

eV/nm2 1.0290850 × 10−4 Eh/a2
0

Dipole moment Debye 0.3934303 ea0

Electric charge C 6.2415096 × 1018 e
Electric potential V 3.6749325 × 10−2 Eh/e

Capacitance F 1.6984011 × 1020 e2/Eh

Capacitance/area F/m2 0.47560074 e2/(Eha2
0)

Molar mass g/mol 1822.8885 me
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[99] H. Löwen. Journal of Physics: Condensed Matter, 14:11897, 2002. p.23

[100] C. A. Lucas, N. Markovic, and P. N. Ross. Phys. Rev. B, 56:3651, 1997. p.
210

[101] R. J. Magyar, A. E. Mattsson, and P. A. Schultz. Metallic Systems: A Quan-
tum Chemist’s Perspective, chapter Some Practical Considerations for Den-
sity Functional Theory Studies of Chemistry at Metal Surfaces. CRC Press,
2011. p.160

[102] M. Mantina, A. C. Chamberlin, R. Valero, C. J. Cramer, and D. G. Truhlar.
J. Phys. Chem. A, 113:5806, 2009. p.178, 197, 198

[103] N. Markovic, H. A. Gasteiger, C. A. Lucas, I. M. Tidswell, and P. N. Ross.
Surf. Sci., 335:91, 1995. p.210, 211, 222, 223

[104] N. Markovic and P. N. Ross. Langmuir, 9:580, 1993. p.210

[105] Bryan Marten, Kyungsun Kim, Christian Cortis, Richard A. Friesner,
Robert B. Murphy, Murco N. Ringnalda, Doree Sitkoff, and Barry Honig.
J. Phys. Chem., 100:11775–11788, 1996. p.23, 163, 190

[106] G. J. Martyna and M. E. Tuckerman. J. Chem. Phys, 110:2810, 1999. p.37,
242, 244, 245, 247

[107] N. Marzari and D. Vanderbilt. Phys. Rev. B, 56:12847, 1997. p.35, 225

[108] N. D. Mermin. Phys. Rev., 137:A1441, 1965. p.7

[109] H. J. Monkhorst and J. D. Pack. Phys. Rev. B, 13:5188, 1976. p.32

[110] J. J. Mortensen, K. Kaasbjerg, S. L. Frederiksen, J. K. Nørskov, J. P. Sethna,
and K. W. Jacobsen. Phys. Rev. Lett., 95:216401, 2005. p.65

[111] K. Moulopoulos and N. W. Ashcroft. Phys. Rev. A, 43:1685, 1991. p.16

[112] J. E. Moussa, P. A. Schultz, and J. R. Chelikowsky. J. Chem. Phys.,
136:204117, 2012. p.29

263



[113] M.W.Schmidt et al. GAMESS. J. Comput. Chem., 14:1347, 1993. p.170

[114] H. D. Abru na, J. M. Feliu, J. D. Brock, L. J. Buller, E. Herrero, J. Li,
R. Gomez, and A. Finnefrock. Electrochimica Acta, 43:2899, 1998. p.210

[115] NIST. Computational Chemistry Comparison and Benchmark Database. http:
//cccbdb.nist.gov. p.161, 212, 216

[116] Onsager. J. Am. Chem. Soc., 58:1486, 1936. p.129

[117] OPIUM. Pseudopotential generation project. http://opium.sf.net. p.
160, 198

[118] M. Otani and O. Sugino. Phys. Rev. B, 73:115407, 2006. p.155

[119] M. T. Paffett, C. T. Campbell, T. N. Taylor, and S. Srinivasan. Surf. Sci.,
154:284, 1985. p.210

[120] J. Paier, R. Hirschl, M. Marsman, and G. Kresse. J. Chem. Phys., 122:234102,
2005. p.40, 44

[121] J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber, and J. G.
Angyan. J. Chem. Phys., 124:154709, 2006. p.44

[122] T. Pajkossy and D. M. Kolb. Electrochimica Acta, 46:30633071, 2001. p.165,
166

[123] R G Parr and W Yang. Density-Functional Theory of Atoms and Molecules.
Oxford University Press, 1989. p.8, 10

[124] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos.
Rev. Mod. Phys., 64:1045, 1992. p.242

[125] B. Peng and Y.-X. Yu. J. Phys. Chem. B, 112:15407, 2008. p.19, 87, 89, 90, 99,
122

[126] J. K. Percus. Journal of Statistical Physics, 15:505, 1976. p.19, 85

[127] Perdew and Zunger. Phys. Rev. B, 23:5048, 1981. p.10, 199

[128] J. P. Perdew, K. Burke, and M. Ernzerhof. Phys. Rev. Lett., 77:3865, 1996. p.
10, 23, 24, 44, 46, 57, 160, 199

264

http://cccbdb.nist.gov
http://cccbdb.nist.gov
http://opium.sf.net


[129] J. P. Perdew, A. Ruzsinszky, G. I. Csonka, L. A. Constantin, and J. Sun.
Phys. Rev. Lett., 103:026403, 2009. p.10, 161, 212

[130] S. A. Petrosyan, J.-F. Briere, D. Roundy, and T .A. Arias. Phys. Rev. B,
75:205105, 2007. p.21, 143, 145, 146, 162, 179

[131] R. A. Pierotti. Chem. Rev., 76:717, 1976. p.121, 123, 124, 178, 181, 185

[132] E. Polak and G. Ribiere. Rev. Fr. Inform. Rech. Oper., 16:35, 1969. p.103,
158, 159

[133] Z. Raza, D. Alfe, C. G. Salzmann, J. Klimeš, A. Michaelidesade, and
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