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Abstract 

We consider an heterogeneous and dynamic landscape composed of two 
different patch types (source and sink) and one type of organism. We incor­
porate extinction and degradation rates that vary according to patch type 
(sink-source). We address the problem of the importance of source and 
sink patches for metapopulation dynamics under the above conditions. We 
construct a deterministic mathematical model and compute a threshold pa­
rameter that measures invasion and persistence of occupied sink and source 
patches. The threshold parameter is a convex function of extinction rates 
and presents an optimum value for invasibility and persistence. Depending 
on the trade-off between propagule production and extinction rates of col­
onized patches of both types this optimum may or may not be ecologically 
feasible. Metapopulation models that consider homogeneous patch types do 
not present this property. We compare our results with Richard Levins' 
classical metapopulation model to assess the role of heterogeneity and patch 
degradation in the asymptotic dynamics of our system. 

Introduction 

• 

We consider an heterogeneous and dynamic landscape composed of two dif- • 
ferent patch types (source and sink) and one type of organism. We address 
the problem of the importance of sink patches for metapopulation dynamics. 

Spatial heterogeneity, manifested as spatial variability or patchy dis­
tribution in resource abundance, microclimate conditions, and in general, 
habitat quality for different species is a dominant feature of landscapes. 
Most populations living in patchy landscapes are not homogeneously dis­
tributed across space, but distributed as distinct subpopulations forming an 
interacting ensemble or metapopulation system (Levins 1970, Hanski 1991, 
Hastings and Harrison 1994). Colonization and extinction are the two fun­
damental processes that affect the dynamics of a metapopulation system 
(Hanski 1991). The interaction between these two processes results in each 
demographic unit, or subpopulation, not being independent from the other 
subpopulations. 

Metapopulation theory has become one of the most powerful frame­
works for analyzing colonization and extinction processes in natural popu­
lations (Hastings and Wolin 1989, Hanski 1991). The first metapopulation 
model was proposed by Levins (1969, 1970, but see also MacArthur and 
Wilson 1967). Levins' model assumes a set of equal habitat patches with lo­
cal populations going extinct and the empty patches being recolonized from 
the currently occupied ones. This type of patch-occupancy metapopulation • 
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model has been extended and modified to describe single-species (Hanski 
1985, 1991; Hastings and Wolin 1989; Gotelli 1991, Gyllenberg and Han­
ski 1992, Hanski and Gyllenberg 1993), competitive (Horn and MacArthur 
1972, Slatkin 1974; Hanski 1983, Nee and May 1992), and predator-prey 
metapopulation dynamics (Vandermeer 1973, Hastings 1977; Zeigler 1977, 
Sabelis et al. 1991). Some of these models have relaxed some of the assump­
tions of Levins' original model by incorporating a 11rescue-effect 11 , population 
structure, and differences in patch size. Here we explore the dynamical con­
sequences of relaxing the assumption that all patches are equally likely to 
become extinct and that all occupied patches are sources of colonists. In 
particular we analyze the effect of distinguishing source and sink patches. 
In addition, we explicitly consider the dynamics of the species (i.e. or how 
individuals occupy patches), and that of the patches (i.e. how patches of dif­
ferent type are created, occupied and go extinct). Our models couple patch 
and species dynamics. 

The paper is organized as follows: in the next section we provide a 
brief description of the simplest metapopulation model stressing the assump­
tions under which it holds; next we present a metapopulation model that 
incorporates source and sink patches and a single organism type, derive a 
basic threshold parameter for the invasion of an empty habitat, and explore 
through computer simulations the asymptotic behavior of the model. Finally 
in the last section we give our conclusions. 

Basic background and definitions 

The pioneer of metapopulation models is the one studied by Levins (1969). 
This model assumes that N the total number of available patches is a con­
stant. Let U and 0 denote the number of unoccupied and occupied patches 
respectively. Levins' model assumes that immediately upon colonization of 
an empty patch the organisms achieve their carrying capacity, thus reaching 
their demographic equilibrium within each patch. Assume that at this equi­
librium, each individual in the patch produces a total of f3 propagules per 
unit time. Therefore (30 represent the total number of propagules produced 
by all the individuals in the occupied patches. These propagules find unoccu­
pied patches at a rate proportional to their frequency U / N, thus unoccupied 
patches are 'lost' to colonization at a rate -f30U /N per unit time, and occu­
pied patches increase by the same number per unit time. If we assume that 
occupied patches go extinct at a rate e then eO is the number of occupied 
patches that go extinct per unit time. Furthermore, this model assumes that 
extinct occupied patches become unoccupied and immediately available for 
colonization at the same rate at which they go extinct, implying a closed 
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system without an independent patch dynamics. The equations that govern 
this system are (Figure 1a): 

!!_U = -{30 U +eO 
dt }{ ' 
d u 
dt 0 = {30 }{ - eO. 

Dividing both equations by N and defining 0 fJV = p, we note that 
U f JV = 1-p, and the equations reduce to the Levins meta population model: 

d 
dtp = {3p(1- p)- ep. 

Levins' model postulates that the total number of patches }{ is con­
stant, that all unoccupied patches are equal, that all colonizing organisms are 
equal too (therefore implying that all occupied patches are equal). These as­
sumptions allow us to dynamically follow the proportion of occupied patches 
instead of their actual number; also they allow us to characterize the whole 
dynamics with two parameters: {3 and e. It is also important to point out 

' . 
'· 
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that this model makes no distinction between the dynamics of patches and • 
that of the organisms that occupy them. 

Levins' model predicts that colonization of empty patches is successful 
whenever {3 / e > 1. This condition also determines the existence of a non­
trivial equilibrium point p* = 1 - ej (3 that is globally asymptotically stable. 

Several models and hypothesis have been proposed for empirical data 
that contradict the properties of this model (e.g., Hanski 1982, Hanski and 
Gyllenberg 1993, Lima et al. in press). In this work we 'explicitly concen­
trate in the role of habitat heterogeneity in the time evolution of patches. 
To begin, we consider two types of empty patches, based on the work of Pul­
liam (1988) and Holt (1985). The first type is a source patch, or one where 
the organism has, on average, a higher propagule production rate and where 
natural extinction is minimal (that is, source patches are net exporters of 
individuals). Likewise a sink patch is one where the organism has, on aver­
age, a low propagule production rate and the extinction rate is always higher 
than in source patches (these patches are net importers of individuals). 

We consider a single type of organism that can be characterized by a sin­
gle propagule production rate and two extinction rates (associated with each 
patch type). However, we assume that even though propagule production is 
equal for all individuals, dispersal ability is not equal and varies depending 
on the nature of the patch from where the individual is dispersing. In the 
next section we develop the model. • 
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A model with source and sink patches 

Habitat is heterogeneous. Patch suitability for species development may vary 
enormously and therefore, it is a main determinant for the success of organ­
isms to establish and reproduce. In this section we propose a mathematical 
model where a single type of individual colonizes and disperses in an habitat 
composed of two types of patches. Source and sink patches are denoted by PI 
and p2 respectively. In our model we follow the temporal dynamics of these 
empty patches since we assume that the total population is not constant but 
varies with time. The empty patches are colonized by an organism. Through 
this interaction, two additional patch types are generated, denoted by p 11 

and p2I (occupied source and sink patches respectively). 

As mentioned earlier, we do not consider the total number of patches 
p to be constant. We incorporate a dynamic nature to this variable by 
assuming that there is a generation process of empty patches that aggregates 
two main mechanisms: the actual creation of new patches of both types, 
and the recovery of previously occupied patches whose populations went 
extinct. Each kind of patch has an extinction rate. Thus, our model explicitly 
incorporates patch dynamics. 

Let p =PI + P2 + Pn + P21 the total patch population. We have (Figure 
lb): 

d PI 
-PI= qA- (e + k)pl- f3-(0"P21 + Pn), 
dt p 
d PI 
-d Pn = -(e + hi)Pn + (3-(0"p21 + Pn)- k1P11, 

t p 

d Pz 
-d P2 = (1- q)A + kp1- ep2- (3-(pn + O"pzl), 

t p 

(1) 

d P2 
dtP2I = -(e + h2)P21 + f3-p(O"P2l + Pn) + k1P11· 

A is the production rate of uncolonized patches with q representing the frac­
tion of them that generates source p1 patches. The rates e and k are the 
extinction and degradation rates. We refer to the extinction rate e as the 
background extinction rate since it is associated with the empty patches. A 
degraded source patch becomes a sink patch. Thus, the number of degraded 
uncolonized source patches per unit time is kp1. The constants h1 and h 2 are 
extinction rates induced by the presence of individuals in either patch. Thus 
the number of colonized source patches that become extinct per unit time is 
( e + h1)p11 . The corresponding rate for colonized sink patches is ( e + h2)p21 . 

We assume that patch degradation from source to sink types is indepen­
dent of its status as colonized or empty. Therefore, a colonized source patch 



......................................................................... 6 

degrades to a colonized sink patch at a rate k1 per unit time. 

This model assumes that the colonization of empty source (or sink) 
patches is a frequency-dependent process proportional to the relative fre­
quency of empty patches of both types, 1;1amely, pl/p and P2/P· The col­
onization or propagule production rates for the organism is higher in the 
source p1 than in the sink P2 patches, that is f3pn > af3p21 (the propagule 
production rate of organisms living on source patches is always greater than 
the propagule production rate of organisms on sink patches). The coeffi­
cient a measures the reduction in the colonization rate for individuals in sink 
patches (0 <a< 1). 

Thus, the total rate of generation of colonized source patches is 

and that of colonized sink patches is 

The invasion threshold 

f3p2 (ap21 + Pn). 
p 

Threshold parameters are valuable theoretical tools for the qualitative evalu­
ation of key metapopulation processes, and provide a useful and simple way 
to compare patch occupancy metapopulation models (Yelasco-Hernandez 
and Marquet ms). In particular the invasion threshold we are concerned 
with provide information on the likelihood of invasion and colonization of 
empty patches, and the long term occupancy of those patches after invasion. 

In many situations, including Levins' model and the one analyzed here, 
this threshold parameter gives information on both of these processes: the 
likelihood of successful invasion and the existence and stability properties of 
equilibrium points where occupied patches are always present. In this later 
case, they provide information on the persistence of occupied patches and 
the robustness and resilience of this state when subjected to perturbations. 

Levins' metapopulation model 

In the metapopulation model of Levins (1969), successful invasion of empty 
patches takes place only if the threshold parameter {3 / e is greater than one, 
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where {3 and e are the propagule production and extinction rates, respec­
tively. We interpret this threshold condition as saying that for a successful 
invasion of an empty habitat to occur, the number of propagules produced 
by one average occupied patch during its lifetime must be enough to allow 
for the colonization of more than one empty patch initially (i.e.; on average 
each newly colonized patch gives rise to more than one additional colonized 
patch). Note that a successful invasion means only that, in the beginning of 
the process, there is an increase in the number of newly occupied patches. In 
a longer time lapse this initial increase may lead to persistence of occupied 
patches, or may lead to their extinction. In general, threshold parameters do 
not give information on this long term dynamics. However, in Levins' model 
the threshold parameter does. 

Note that in Levins' model the parameter {3/e is associated with the 
eigenvalue of the corresponding linearized system at the equilibrium point 
when the proportion of empty patches is 1. Also, we have that the steady­
state with occupied patches is given by 

p: = 1- eff3. 

Thus for values of {3/e < 1, only the steady-state P! = 0 exists and is stable. 
When {3/e > 1, there is a bifurcation of the previous equilibrium point. 
The steady-state P! = 0 is now unstable and a new equilibrium p~ > 0 is 
asymptotically stable. In Figure (2) we present a graphical illustration of 
this bifurcation phenomena. 

Threshold parameters for model (1) 

In the case of model (1) we find a threshold invasion criterion analogous to 
the one found for Levins' model. From now on the threshold parameter for 
model (1) is denoted by the symbol T. Tis found by linearizing the system 
around the equilibrium (pi,p2, 0, 0), where only empty patches are present, 
with 

* qA 
Pl = e+k' 

* _ A ( e(1 - q) + k) 
p2 - e(e+k) 

Thus, we obtain (see Appendix for technical details): 

(2). 

T = f3eq ( 1 _ u e + h1) + {3u . ( ) 
(e+h1+h2)(e+k) e+h2 e+h2 3 

T is the equivalent to Levins' threshold parameter. In our case, the 
existence of two types of patches that differ in both propagule production 
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and extinction properties, makes Tan average of two numbers. We discuss 
this characteristic in the next section. Now we want to show that T, and thus 
model(1) are proper generalization of Levins' model under the assumptions 
stated in section 3. Note that if there is no patch degradation (k = 0), if 
only one type of patch is produced (q = 1), if u = 1 (propagule production 
rates are equal in both patches) and if the extinction rates of sink and source 
patches ( e + h1 = e + h2), then T becomes the threshold parameter of Levins' 
model. 

On T and persistence 

The quantity 1/(e + k) can be interpreted as the average lifetime of a type 
1 patch (source) before degrading to the other type (sink). Analogously, the 
quantities 1/(e+h1 +k2) and 1/(e+hz) are the average lifetime of type 1 and 
2 occupied patches before extinction, respectively. Therefore, f3 / ( e + k) ( e + 
h1 + ki) and f3u/(e + h2 ) represent the propagule production rate of a p11 

and p21 pair during its lifespan before extinction (when invading an empty 
habitat) respectively. T is computed by averaging these two parameters that 
describe each type of patch. Thus, T is the average number of successful 
colonization attempts of empty patches produced by an average occupied 
patch during its average lifetime when invading an empty habitat. The 
threshold condition is analogous to that of Levins: if T > 1 initially empty 
patches are invaded successfully. 

In Levins' model the nontrivial equilibrium exists only if invasion is 
successful (T > 1). In our model, the same property holds. Thus Tis able 
to describe not only invasion success, but also the existence of an equilibrium 
point where all patch types are present (it represents an steady-state where 
the metapopulation shows a mixture of both types of empty patches, and 
both types of occupied patches). A bifurcation diagram analogous to the 
one in Figure (2) is shown in Figure (3a) and Figure (3b). In this case we 
have chosen to plot the equilibrium densities of Pn and p21 as functions of 
f3 and e. It is shown that when Tis larger than 1, the equilibrium exists. 
Otherwise the equilibrium state where all patches empty is the only one that 
exists. In this case it is also asymptotically stable. 

In Figure (4) we show the level curveT= 1 using f3 and e as parameters, 
that is T = T(/3, e), all other parameter values are fixed. The values of f3 
and e that give f3 j e = 1 in the Levins' model are on the line 3 = e. Note that 
the level curve ofT = 1 is always to the left of the line {3 = e. This means 
that for a given value of e, the magnitude of f3 required to put the threshold 
parameter above 1 in our model must be always higher than the one required 
by Levins' model. Therefore, an increase in habitat heterogeneity increases 
the propagule production rate to achieve T > 1 (successful colonization). 
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Discussion 

Equations (1) represent a generalization of Levins' metapopulation model 
when a) the total number of patches available for colonization is not constant 
but has an intrinsic dynamics, and b) the patches are not homogeneous. 
Spatial heterogeneity is a very important ecological factor affecting the per­
sistence, diversity, and composition of ecological communities (citation). 

We have concentrated our analysis in the study of the role of source 
and sink patches in the invasibility and persistence of a metapopulation. We 
have found that the threshold parameter (3) has a straightforward interpre­
tation. This parameter determines, not only the possibility of the successful 
invasion of a set of patches, but also governs the long term persistence of 
the metapopulation. Its properties are very similar to those of the Levins' 
model. The threshold parameter T can be rewritten in the following way: 

e ( e + h1) T = T1--k 1-u h +T2, 
e+ e+ 2 

where T1 = f3qf(e + h1 + h2) and T2 = f3uf(e + h2). 

Several comments can be made here. We start by noticing that it is an 
average of the colonization potential of the two patch types represented by 
T1 and T2 respectively (equivalent to the ratio f3/e of Levins' model). The 
reason of this structure comes from the homogeneity imposed on the system 
by the single type of organism that colonizes the patches. Therefore, in 
model (1) invasibility and persistence ability depend only on the patch type 
and not on the organism type. 

Note also that the average Tis weighted by the expr~ssion 

w = _e_(1 - ue+h1). 
e+k e+h2 

Therefore, if u, the depression in the propagule production rate imposed 
on the organism by sink patches, is small, T2 ~ 0 and w ~ 1, implying 
that colonization and persistence dynamics are govern mainly by the source 
patches through T1. 

Suppose now that u ~ 1. The weight w depends now only on the 
relative difference between extinction rates. If the overall extinction rate 
of source and sink patches is roughly equal, w ~ 0 and the dynamics of 
the metapopulation is governed by T2 (the sink patches) but the habitat is 
essentially homogeneous (source and sink patches are practically the same). 

Tis foremost an invasion criterion. It indicates whether or not, from a 
single invasion event, the number of newly colonized patches will increase. 
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For our model, however, we can claim more for 'T. The existence of a steady­
state with a positive number of colonized patches is guaranteed whenever 
the invasion is successful, that is, whenever 'T > 1. 

In Figure (3) we show the densities of colonized patches of type p11 and 
p 21 as function of the colonization and extinction rate. For (3 and e small, 'T 
is close to one and the equilibrium value of the two colonized patches is low. 
This would imply that if Tis close to 1, stochastic events are more likely to 
bring the metapopulation below threshold and thus to extinction. For fixed 
e, an increase in (3 increases the value of 'T with a smooth but sudden in some 
cases, rise on the value of the equilibrium density. Our diagrams show that 
sink patch densities are more sensitive to changes on 'T than source patches 
are. 

In Figure ( 4) we present a naive but illustrative comparison of our model 
with Levins'. In Levins' case, the threshold parameter is equal to 1 only 
when the propagule production rate is exactly equal to the patch extinction 
rate. We explored the relationship between propagule production rate and 
our two types of extinction rates (e and hl), for T = 1. Keeping all other 
parameters fixed, Figure ( 4) shows that our model predicts that to invade 
and heterogeneous environment (two patch types) and for a given extinction 
rate e, the magnitude of the propagule production rate must be higher than 
the one required if all patches were equal. Therefore, although it might be 
easier to persist in a heterogeneous habitat, it is certainly more difficult to 
colonize it. 

Concluding remarks 

The consequences of habitat heterogeneity for metapopulation dynamics can 
be profound (Pulliam 1988, Pulliam and Danielson, 1991; Holt, 1993). 

In our model in particular the distinction between source and sink habi­
tat patches affects metapopulation invasion and persistence. In Figure 5 we 
make this point more clearly, by showing how 'T, seen as a function of e, 
the background extinction rate, changes from monotonically decreasing to 
a peaked right skewed function with a maximum at intermediate values of 
e. This shift is accomplished by modulating the value of u and h1. Vary­
ing u from a value close to one (when sink and source patches are equal in 
terms of propagule production) to a value close to 0 (when sinks produce no 
propagules) T changes from monotonically decreasing to concave. Similarly, 
changing h1 from values close to zero up to higher values also induces con­
cavity, for fixed values of u. In summary, whenever Tz < 1, 'Twill be concave 
as a function of the background extinction rate. Thus, the presence of sink 
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patches defines a window of extinction under which patch invasion and per­
sistence is possible. The appearance of an optimal value of extinction comes 
from the introduction of k, the patch degradation rate from source to sink. 
Essentially, what degradation and habitat heterogeneity introduce is an im­
plicit dependence between propagule production, a property of the organism 
type, and extinction, a patch property (independent of its occupancy status). 
The degradation rate shortens the period of time during which propagule 
production is possible. Recall that in Levins' model the threshold parameter 
is a monotonically decreasing function of e, meaning that the greater the 
extinction rate, the less likely invasion and persistence are. 
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Appendix 

In this Appendix we derive the threshold parameter T from equations 
(1). 

Define 
B(t) = f3(up21 + Pn) 

p 

and then solve the system 

0 = qA- (e+k)pl- Bpb 

0 = -(e + hl)Pu + Bp1- k1pu, 

0 = (1 - q)A + kp1 - ep2 - Bp2, 

0 = -(e + h2)P21 + Bp2 + k1P11· 

for Pl, pz, Pn and P21 in terms of B. 

We then use the definition of B to obtain a one-dimensional non-linear 
map F(B) whose fixed points give the equilibrium densities of (1). It is easy 
to check that B = 0 is a fixed point of F(B) that corresponds to the equilib­
rium point of (1) where only empty patches are present ((pi, pi, 0, 0)). Thus, 
ldF/dBI evaluated at zero determines if the map F is locally a contraction 
in a neighborhood of B = 0. It is easy to check that 

The properties ofT and its consequences for model (1) ar-e discussed in the 
text. 
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Figure Captions 

FIGURE 1 Kinetic diagrams of the Levins' metapopulation model and 
equation (1): a) In Levins' model there are only two patch states. The total 
number of patches is constant; b) The model represented by equation (1) 
assumes that patches can be in four possible states: empty source, empty 
sink and the corresponding colonized ones for each type. 

Diagramas cineticos de los modelos metapoblacionales de Levins y la 
ecuaci6n (1): a) En el modelo de Levins existen solamente dos estados posi­
bles de los parches. El nU.mero total de parches es constante; b) El mod­
elo representado por la ecuaci6n (1) permite cuatro estados posibles de los 
parches: fuente vado, sumidero vado, y los correspondientes a parches colo­
nizados de ambos tipos. 

FIGURE 2 Bifurcation diagram for the Levins' metapopulation model. The 
graph illustrates the number and value of the possible steady states of the 
system. For values of {3 / e < 1 only the steady-state p* = 0 exists and is 
stable. For values of the parmeter beyond 1, a second steady-state appears 
that is asymptotically stable. The other equilibrium (p* = 0) still exists but 
is unstable. Note that as {3/e increases from 1, the value of the positive 
steady-state also increases. 

Diagrama de bifurcaci6n para el modelo metapoblacional de Levins. El 
grafico ilustra el nfunero y la magnitud de los estados estacionarios posibles 
en el sistema. Para valores de {3/e < 1, p* = 0 es el unico estado estacionario 
que existe. El estado es estable. Para valores del parametro mayores que 1, 
un segundo estado estacionario estable aparece. El otro equilibria (p* = 0) 
existe todav{a pero es inestable. Notese que conforme (J / e se incrementa 
desde 1, el valor del estado estacionario positivo tambien se incrementa. 

FIGURE 3 Diagrams for the equilibrium points of equation (1). The di­
agrams illustrate the value of the colonized patch densities at equilibrium 
when T is greater than 1. a) Equilibrium density of p11 as a function of f3 
and h 1. b) Equilibrium density of P2l as a function of /3 and h1 . 

Diagramas para los puntos de equilibria de las ecuaciones (1). Los diagramas 
ilustran los valores de las densidades en parches colonizados en equilibria 
cuando T es mayor que 1. a) Densidad en equilibria de p11 como funci6n de 
{3 y h 1 . b) Densidad en equilibria de P21 como funci6n de ,8 y h1 . 

FIGURE 4 Contour plot ofT forT= 1. Contour plot as a function of 
f3 and e. The line {3 = e represents Levins' threshold parameter. The line 
above is the contour plot predicted by T. 
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Curva de nivel de T para T = 1. Curva de nivel como funci6n de f3 y e. La 
llnea f3 = e representa el parametro umbral de Levins. La llnea superior es 
la curva de nivel predicha porT. 

FIGURE 5 Changes in the threshold parameter T as a function of e. Dif­
ferent curves correspond to different values of the parameter u ranging form 
a ~ 1 (upper curve) to a ~ 0 (bottom curve). 

Cambios en el valor del parametro T en func6n de e. Las distintas curvas 
corresponden a differentes valores del parametro a cubriendo desde a ~ 1 
(curva superior) hasta a~ 0 (curva inferior). 
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