Inductive Definition in Type Theory

Paul Francis Mendler
Ph.D. Thesis

87-870
September 1987

Department of Computer Science
Cornell University
Ithaca, New York 14853-7501

INDUCTIVE DEFINITION IN TYPE THEORY

A Thesis
Presented to the Faculty of the Graduate School
of Cornell University
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by
Paul Francis Mendler

January 1988

(©) Paul Francis Mendler 1987

ALL RIGHTS RESERVED

Inductive Definition in Type Theory

Paul Francis Mendler, Ph.D.

Cornell University 1988

Type theories can provide a foundational account of constructive mathe-
matics, and for the computer scientist, they can also serve the dual roles of
specification and programming languages. In the search for natural and ex-
pressive extensions to the NUPRL type theory, we are lead to consider forms
of inductive and co-inductive definition.

We realize these notions through the addition of two new type construc-
tors, denoted p and v. This represents a step towards a more expressive
theory, without adopting a completely impredicative notion of type. With
these constructors we can define all the common inductive data types, from
natural numbers to infinite trees. Through the propositions-as-types prin-
ciple, these type constructors yield inductively defined propositions. The
induction principle associated with the pu types lets us define well-founded
recursive functions, and dual principle for the v types lets us inductively
define their “infinite” elements. We present another induction principle for

the pu types which takes advantage of the information hiding properties of

the {_| _} type, and can be used to define an unbounded search operator,
or more generally, to compute not with elements of the x type, but under
the assumption of its inhabitation.

After presenting the proof rules for these new type constructors we give
a semantic account, from which intuitionistic consistency is a consequence.
First, we consider the the question of inductive types in the simpler setting
of the second-order lambda calculus, where we prove a strong normalization
property. We also consider typing terms in the presence of type constraints,
and present a condition on the constraints (of polynomial complexity in
the size of the constraints) for determining if the terms will be strongly
normalizable or there will be a diverging typed term. Second, we develop a
semantic account of the basic type theory, then relativize it to account for the
impredicativity inherent in the definition of the new type constructors. We
also show how this model can justify other impredicative type constructors,

such as an impredicative type abstraction operation.

Biographical Sketch

Paul Francis “Nax” Mendler was born in Pittsburgh, Pennsylvania on Novem-
ber 29, 1960. Never one to burden others with his childhood memories, he
entered Carnegie-Mellon University in the fall of 1978, and four years later
graduated with a B.S. with University Honors in Applied Mathematics and,
through some confusion, with the middle name “Fibonacci.” His attach-
ment to his Alma Mater is evident in the return of his first alumni mailing,
indicating, “addressee deceased.”

Nax entered the graduate program at Cornell University in the fall of
1982. On September 3, 1985 he donned an airconditioning repairman’s uni-
form and intoned, “andhasya dipo vidya,” and so entered the doctoral pro-
gram, but because of an unchecked box on his “Examination for Admission
to Doctoral Candidacy” form, was not awarded a Master of Science degree.
He was, however, presented with a complementary egg salad sandwich.

After enjoying a full five years of residence in Ithaca, Nax is preparing
to leave in September, 1987, to study at the University of Manchester, on a

NATO Postdoctoral Fellowship in Science.

111

To my parents, Oliver and Blanche.

v

Acknowledgements

At Cornell, I've been most fortunate to work in the PRL group, a diverse and
energetic collective, lead by Robert Constable. As my advisor, his inspira-
tions and guidance were major influences upon me, and I owe him countless
thanks for his help. I thank Prakash Panangaden for positive encouragement
and discussions on topics murine and categorical. [also thank Anil Nerode
for serving on my committee, and John Gilbert, who served for a period
before going on leave.

Much thanks are due the PRL “boys,” past and present: Stuart Allen
(particularly for discussions about semantics), Dave Basin (for excursions
in vegetaria), Joe Bates, Mark Bromley, Rance Cleaveland, Jim Cremer,
Tim Griffin (for his implementation of inductive types), Bob Harper (for
recent, electronic, discussions), Doug Howe, Todd Knoblock, Mike Manyin,
Jim Sasaki, Michael Schwartzbach (who may or may not be a PRL boy) and
Scott Smith. Working in this group has been an entirely positive experience.

For various rewarding discussions, I am indebted to Val Breazu-Tannen,

Furio Honsell, John Mitchell, Albert Meyer and Richard Shore.

I thank the National Science Foundation, IBM and Cornell University for
financial support.

Without the © and chi (not to be confused with x) of Marsha Lawrence,
I would not be alive today.

There is no wilder office environment than the one [now inhabit, thanks
to the personages of Laurie Hendren, Ms. Aleta Ricciardi and Miss Anne
Rogers. Special mention must be given to those friends up and down Upson’s
hallways: Vicki Feinberg, Mike Karasick, Haesun Park, Geri Pinkham and
Carolyn Turbyfill. Thanks to Rob McCurley and Stuart Allen for help using
IATEX. Finally, while I don’t have the space to thank them all individually, I
owe all my friends a great deal, especially: Beth Byers, Sally Egan, Martha
Hamblin, Paige Lawrence, Jacquie Lopez, Francesmary Modugno, Pat Ryan
and Suzanne Sprunger. Finally, my thanks all those, though not mentioned,

have helped me through it all.

vi

Table of Contents

1 Introduction 1
1.1 Type theory and the NUPRL project 1
1.2 Inductive definition L. 3
1.3 Organization of the thesis 5

2 Inductive Types 6
2.1 Introduction to type theory 7

2.1.1 Typehood and membership 8
2.1.2 Example: the II type constructor 10
2.1.3 Other type constructors 13
2.1.4 The principal of propositions-as-types 15
2.2 Examples of inductive types L. 21
2.3 Proof rules for simple types 23
2.4 Proof rules for parameterized types 26

3 Inductive Types and Type Constraints in Second-Order Lambda
Calculus 31
3.1 Inductive types oL 33

3.1.1 Type expressions, terms and reduction 34
3.1.2 Strong normalization L0 37
3.2 Equational type constraints 48
3.2.1 Type expressions and terms 50
3.2.2 A condition on the constraints 50
3.2.3 Strong normalization L0 56
4 Semantic Account of the Basic Theory 61
4.1 Groundrelations 64
4.1.1 Operations on ground relations 66
4.2 Typesystems oo 67
4.2.1 Constructing type systems 69

vii

4.2.2 Propertiesof ooo

4.3 Truth and soundness
4.3.1 Soundness of the II typerules
4.4 Concluding consistency

Semantic Account of Inductive Types

5.1 Ground relations and ground types
5.1.1 Operations on ground relations
5.2 Typesystems
5.2.1 Constructing type systems.
5.2.2 Propertiesof ooo
5.3 Truth and soundness
5.3.1 Soundness of the C typerules.
5.3.2 Soundness of the p typerules
5.3.3 Soundness of the v typerules
5.4 Concluding consistency
5.5 Strong positivityo
5.6 Parameterized inductive types oL L.
5.6.1 Ground relations and ground type families
5.6.2 Typesystems
5.6.3 Truth and soundness
5.7 The Atype e
Conclusions
6.1 Results.
6.2 Research directions

Definition of the Basic Type Theory

Al Terms o e e
A.2 Evaluationo
A3 Proofrules
A3.1 Void e
A3.2 Union @ e e
A.3.3 Product
A3.4 Sum
A3.5 Subtypeo
A3.6 Equality oL,
A.3.7 Universe e e e e e
A3.8 Miscellany
A.3.9 Direct computation.

B Definition of the Extension by Inductive Types 138

B.l Terms o o o i e e e e e e e e 138
B.2 Evaluation e 139
B.3 Proofrules 140
B.3.1 Containment 140

B.3.2 Simple 141

B.3.3 Simplev. 142

B.3.4 Parameterized p 143

B.3.5 Parameterized v 144

B.3.6 Rules encorporating positivity 145
Bibliography 146

1x

List of Figures

2.1 Proof rules with suppressed inhabiting terms

3.1 Definition of typed terms

3.2 Definition of typed terms with equational constraints

Chapter 1

Introduction

This thesis is about adding forms of inductive definition to the NUPRL
logic, a constructive type theory, and constructing a semantic account that
justifies the impredicativity inherent in this extension. In this chapter we
motivate the use of type theory in the NUPRL system and the need for
inductive types. We conclude with an outline of the remaining chapters.

1.1 Type theory and the NUPRL project

Type theories, since their initial presentation in Russell and Whitehead’s
Principia Mathematica [36], have been proposed as foundational theories
for mathematics. More recently, Constable [10] and Bishop proposed the
use of constructive theories as specification and programming languages,
and as a foundation for computer science. The desire to formalize Bishop’s
constructive development of real analysis [4], influenced Martin-Lof in his
initial work with type theories [33,32], later he became interested in their
role as a programming language. In turn, the details of Martin-Lo6f’s theo-
ries influenced Constable in the earlier PL/CV project [13,14] and the the
ongoing NUPRL project [12], which is concerned with the development of
a machine assisted environment for problem solving, using for its logical
language such a constructive type theory.

The NUPRL logic is readily seen as a variation on the type theories of
Martin-Lof, but the roots of these logics can be traced back to the founders
of mathematical logic, notably Frege, Brouwer and Russell [28,18]. Its
design was also influenced by the AUTOMATH project [7,8] and work of

b Xrd

Scott on constructive type theory '37]. Some features of the NUPRL logic
are:

o A rich type structure, which makes it expressive enough to be able to
formalize large amounts of constructive mathematics.

o Higher-order reasoning, through quantification over arbitrary types
and a cumulative hierarchy of type universes.

o Open-endedness — built with the anticipation for possible extensions
by new types and computations.

Key to the logic’s relevance is the “propositions-as-types” principle,
which provides a strong comprehension principle by embedding constructive
logic into the type theory [17,29]. The logic allows proofs to be interpreted
as programs [11], and thus certain styles of programming can be seen as
arising from doing type theory.

We will not go into an extended discussion of the NUPRL system’s prob-
lem solving environment, but we mention here that it supports linguistic
objects such as definitions, theorems, proofs, computational expressions and
libraries, and has a metalanguage (ML [23]) which allows one to write pro-
grams that can construct and transform proofs. The “proofs as programs”
paradigm is manifested in an eztraction facility, which can mechanically
extract the computational content of proofs, and this can then be exe-
cuted by the system’s evaluation facility. Other research being conducted
in machine-assisted formal theories include the Automath project [7,8], the
LCF project [23], the Calculus of Constructions [16], PX [27] and the Log-
ical Frameworks project [26].

1.2 Inductive definition

For anyone doing mathematics or programming, inductive definition needs
no motivation; its natural expressiveness, elegance and computational ef-
ficiency motivate us to include forms of it into the NUPRL logic. In this
thesis we address the problem of capturing forms of inductive definition in
type theory, in the context of the NUPRL type theory.

We introduce two new type constructors, denoted u and v, which allow
one to take the least and greatest solutions to suitable type equations, thus

defining general forms of inductive types and their duals, co-inductive, or
lazy, types. We motivate these constructors though examples of their use in
defining the natural numbers, lists, finite trees, well-founded trees, mutually
defined data types, inductively defined predicates, parameterized inductive
data types, streams and infinite trees. The induction principle associated
with the u types lets us define well-founded recursive functions, and dual
principle for the v types lets us inductively define their “infinite” elements.

While the type theoretic notion of function offered by the II type con-
structor, and its independent “—7 form, requires totality, one can develop a
notion of partial function through the use of the subtype constructor {_| _}.
Thus, for a type ¢ that can be viewed as a predicate function on 4, the el-
ements of type {z: 4| ¢(z)} — B may be considered to be partial functions
with respect to A — B. Given this framework, one wants convenient and ex-
pressive ways of defining ¢ and the “partial” function. Inductively defined
types and functions defined from their induction principles are candidates
for this situation. An example of this is the unbounded search operator dis-
cussed in 2.4, where we use a specific principle of inductive that takes into
consideration the information hiding properties of the subtype constructor.

To justify the p and v type constructors, we give a lattice-theoretic
semantics, for which the intuitionistic consistency of the proof theory is a
consequence. (Intuitionistic consistency is the statement that all types are
not inhabited, and under the propositions-as-types principle, it corresponds
to propositional consistency — False is not provable.) We will also show
how this model can justify other impredicative type constructors, such as

an impredicative type abstraction operation.

1.3 Organization of the thesis

The remainder of the thesis is organized as follows. Chapter 2 begins with
an introduction to type theory, and the basic theory we will be building
upon, and then introduces the inductive type constructors p and v, giving
examples of their use and proof rules for reasoning about them. We wish
to prove a consistency result for this extension, so in chapter 3, we consider
inductive types in the simpler setting of the second-order, polymorphic,
lambda calculus [21,35,19], where we prove the strong normalization prop-
erty for typed terms and also consider strong normalizability in the presence

of equational constraints between types, which allow for the typing of more
terms. These arguments represent the core of the latter consistency ar-
guments, without the additional concerns present in the latter arguments.
In Chapter 4 we construct a lattice theoretic semantics for the basic type
theory, based on the work of Allen [2] and Harper [25]. Chapter 5 extends
this semantics to account for the inductive types through a Girard-like
relativization [21]. Intuitionistic consistency of the proof theory with in-
ductive types is a consequence of this semantic account. Chapter 6 draws
conclusions from this work, and discusses further research.

Chapter 2

Inductive Types

In this chapter we begin with an outline of an intuitionistic theory of types,
based on the NUPRL logic [12]. In section 2 we extend this basic theory
with two new varieties of type constructors, denoted x and v, which allow
one to take the least and greatest solutions to suitable type equations, thus
defining general forms of inductive types and their duals, co-inductive, or
lazy, types. We motivate these constructors though examples of their use
in defining recursive data types and predicates. Finally, in sections 3 and 4,
we present the proof rules needed to define the u and v type constructors
and illustrate how well-founded recursive functions (in the u case) and
“infinite” objects (in the v case) may be defined with the principles of
induction associated with these types.

2.1 Introduction to type theory

The definition of a theory of types is done in three stages. First, the terms
of the language are defined. This is straightforward: for instance, if b is
a term and z a variable, then Az.b is a term where the = in front of the
dot and all free occurrences of z in b become bound; and if B and C are
terms then (IIz : B)C is a term where the z in front of the colon and all
free occurrences of z in C become bound. Second, an evaluation relation >
is defined on closed terms. Evaluation is a partial function on closed terms
— a term can evaluate to at most one term. The reduction algorithm
is often referred to as lazy or head reduction, and terms which evaluate to
themselves are called canonical. We define evaluation inductively, by listing

the canonical terms and listing clauses for the other terms. For example,
Az.b and (Ilz : B)C are taken to be a canonical terms, and we write the
rule of 3 reduction as:
c>Az.b blajz| > e
cla) > e
An important computational property of a type will be that all its elements
evaluate to some canonical form; from this we will be able to deduce that

functions in II types will be total, that elements in a ¥ type will evaluate to
pairs, and so on. In the third stage, we define types and their membership
relations by way of a sequent style proof theory. We now give an outline of
the notions of typehood and type membership, and discuss the rules of the
proof theory, then introduce the principle of propositions-as-types, which
will allow us to embed intuitionistic logic into type theory.

2.1.1 Typehood and membership

A type is a prescription for constructing equal members. In our theory, the
types are defined inductively: there are atomic types, such as void, a type
with no members, and the universe types U;, U,,...; and there are type
constructors, which let us build new types from old in a uniform fashion,
such as II, which takes a type B and a family of types C(z) indexed by
elements of B, and constructs their indexed product, denoted (Ilz : B)C.
Types are collected into the cumulative series of universe types Uy, Us, ...,
where they, too, have equality relations imposed upon them, based on their
structure (rather than extensionally, on their membership relations).

In a theory of types one of the basic judgements is “terms a and b are
equal elements of the type A4,” which we denote a = b & A. One could also
introduce the judgement “A and B are equal types,” but it suffices to use
the judgements A = B € Us. The judgement “a is an element of type A” is
expressed by a = a € A, and we often use the abbreviation a € A for this
reflexive case. Terms in a type are called its inhabitants, and in the context
of propositions-as-types, the question of type inhabitation is a fundamental
one, because it corresponds to truth.

In defining a logic to reason about types and their elements, it is natural
to extend judgements to express hypothetical assertions. We choose to do
this in a sequent style [20], where the basic unit of inference is a hypothetical
judgement called a sequent:

z1:Aq,... e A Fb=b € B
where:
1. 0<n
2. Ay,...,A,, b0 and B are terms.
3. ©1,...,z, are distinct variables
4. For 1 <1 < n, variables occurring free in A; are among z1,...,T;_1
5. the variables occurring free in b, ¥’ and B are among zy,...,Tn.

The A;’s are called hypotheses, and z;: A;,...,z,: A, is called a contezt.
Let T' range over contexts. We will formally define truth for sequents in
chapter 4, but roughly speaking, a sequent is true if, for two vectors of
terms that are equal in the context, the two instances of B are equal types,
and the instances of b and b’ are equal elements of that type.

A type, or type constructor, is typically presented in the proof theory
by rules which prescribe how to form equal types (hence, reflexively, how to
build types), how to construct (equal) members in the type, how members
of the type are analyzed and how to compute with elements. Thus, rules
defining a type fall into the categories of formation, introduction, elimina-
tion and computation.

We now illustrate the type theory and single out some important charac-
teristics of it through examples. Appendix A contains a complete definition
of the basic theory adopted in this thesis.

2.1.2 Example: the II type constructor

For type (Ilz: B)C, we can present simpler versions of the rules for the case
when the family of types C(z) is independent of its indexing by elements of
B: as in the corresponding set theoretic case, the result is a function space
from B to C, and for this case we abbreviate (Ilz : B)C' by B — C. The

type formation rule, in its reflexive form, is:

FFB—%CEU]'
T+ BeU;
Ff‘CEUj.

-1

We are introducing a convention for displaying sequent style rules called
the refinement or top-down style, in which the subgoal sequents that can
justify the goal sequent are written indented and below the goal. We can
read this rule as “In the context [, for A — B to be a type of universe level
7, it is sufficient that A and B are types of level j”. The non-reflexive form
of the rule is:

I+-B—C=B—Cecl,
T'+B=B el
THC=CeUj.

As in this case, it is usually a trivial matter to infer the general form of the
rule from its reflexive case, so we often state rules in their reflexive form.

Now that we know how to form types with the arrow constructor, we
want to describe their elements. Informally, equal elements of B — C' are
normalizable terms which map equal elements of A4 to equal elements of B.
One rule of introduction is:

' Az.c=Az.c' € B—-C
I'z:BFc=ceC
I'-BeU;.

The first subgoal asserts c[b/z] and ¢'[b’/z] will be equal elements of C for
equal elements b and &’ of B. The second subgoal is necessary to guarantee
B is a type: recall that for the goal sequent to be true, instances of B — C
must be equal types, and while the truth of first subgoal implies this for
C, we need the second subgoal in order to conclude this for B. Subgoals
such as the second are informally called well-formedness subgoals, and by
convention are listed last. Type theory has a rich enough language that the
well-formedness of expressions in it is, in general, undecidable, and thus our
sequent calculus is designed to simultaneously prove the well-formedness
and inhabitation of types. We have a second introduction rule for this
type, referred to as the eztensionality rule:

'rd=deB-C
I['z:BFd(z)=d(z) e C
'deD
'FdeD
I'-BeU,.

In contrast to the previous rule, here we do not require the terms being
equated in B — C to display an outermost “A,” (for instance, one can imag-
ine constants symbols in arrow types) but for technical reasons the second
and third subgoals are necessary to ensure that d and d' are normalizable.

The second introduction rule has already hinted at how elements of
B — C are used — by function application. The elimination rule is:

TFed)=C0)eC
're=cdeB—-C
'-b="% € B.

This rule embodies the fact that equal elements of B — C' map equal ele-
ments of B to equal elements of C', but it does not say how one actually
computes with a Az.c term. This is prescribed in the computation rule:

I'F Az.c(b) = c[b/z] € T
T cb/z] € T.

Thus, equality in a type is preserved under 8 reduction.

As an example of these rules, suppose' - B € U and ' = C € U;. Then
we have the following derivation, showing a typed version of n conversion,
where for readability we omit well-formedness subgoals.

INz:B—-CFz=MAyz(y)e B—=C by eztensionality
1. ...z:BFz(z) = (Ay.z(y))(z) € C by computation
1.1 oFz(z)=2(2) e C by elimination
1.1.1 ...Fze B-C by hypothesis
1.1.2 ...Fz€eB by hypothesis

2. ...Fze B-C by hypothesus

3. ...F dyz(y) ¢ B—-C by introduction
3.1 ...y:BFz(y) e C like 1.1

(The rule of hypothesis lets us assert that the variable bound to a hypothesis
does indeed inhabit that type:

Iz:A, T"Fze A)

Now we briefly consider the proof rules for the general form of the II
type. Formation reflects the fact that the second component is a family of

types:

I'-(Iz:B)C = (Ilz: B")C' = [;
Iz:B-C=C"elj.

Introduction, elimination and computation are as is the simpler arrow case,
if we replace B — C by (Ilz : B)C' — except that in the elimination rule,
we must indicate the dependence of C'-on B:

I'Fe(d) =c(b)eClb/z
'Fe=d e (lle:B)C
'Fb="¥ € B.

While it seems appropriate in the case of a function space to represent a
function by a lambda term, note that an indexed sum can also be repre-
sented by a lambda term that maps an index b to an element in C[b/z].

2.1.3 Other type constructors

We briefly consider the other type constructors in the logic. In each case
their proof rules can be grouped into the categories of formation, introduc-
tion, elimination and computation.

Analogous to II, there is a ¥ type constructor for forming indexed sums.
Its formation rule is the same as I[I’s and we form canonical members by
pairing an element b from B with an element ¢ from C[b/z], hence the
introduction rule:

L'E (b, c)= (¥,) e (Ez:B)C
'Fb=be€B
'Fe=¢ € Clb/z]
I'yz:BFCeU;.

The elimination form is called spread and it allows one to analyze pairs:

I'F spread(d; z,y.t) € T[d/z]
I'yz:B, y:C+teT|z, y)/z
I'-de (Xz:B)C.

In the term spread(d; ,y.t), the z and y in front of the dot and free
occurrences of them in ¢ become bound. The computation rule is:

10

[+ spread({a, b); z,y.t) = tla,b/z,yl €T
T'F tla,b/z,y| € T.

As in the II case, the ¥ type has a useful characterization when C is inde-
pendent of B, and that — as one can easily check against the rules — is as
the cartesian product of B and C. For this case we abbreviate (Xz: B)C
by B x C.

Another important type construction is the formation of the disjoint
union of two types: we denote this by B+ C. The formation rule is simply:

[FB+C=B+C€el;
I'-B=BcU;
r-Cc=0=CeU;.

Elements of the union type are tagged by inl or inr to indicate from which
component type they arise:

T+ inl(b) = inl(b') € B+ C
THb=VtcB
THCeU,;

[+ inr(c) =inr(d) e B+ C
F'e=cdelC
'-Bel;.

The elimination rule analyzes the disjoint union element:

[+ decide(d; z.b; y.c) € T[d/z]
[, z:BF be Tlinl(z)/z2]
T, y:Ct ce Tlinr(y)/z]
'de B+C.

Decide’s rules of computation distinguishs between tags:

[F decide(inl(d); z.b; y.c) = bld/z] € T

C'Fbld/c] €T
[+ decide(inr(d); z.b; y.c) = c[d/y] €T
['Fecld/yleT.
There are two further type constructors, I and {_| _}, which are best

motivated after we introduce the principle of propositions-as-types.

11

2.1.4 The principal of propositions-as-types

Succinctly put, the propositions-as-types principle [17,29] is the identifica-
tion of a proposition with the type of its justifications. An element of such
a type encodes the computational content of a proof of that proposition,
hence the aphorism: “TRVTH 1S INHABITATION.” This also justifies calling
the types listed in the context “hypotheses,” for to assume we are given a
term in A, when A represents a proposition, is to assume 4 is true. We
stop short of considering elements in a type as being actual proofs of a
proposition, because the property of being a proof of a proposition should
be decidable, and as already noted, membership is not.

Under this principle, we make a correspondence between propositional
connectives and type constructors, arriving at a translation, H, from propo-
sitions to types.

H(False) = wvoid
H(BVC) = H(B)+H(C)
H(BAC) = H(B)x H(C)
H(B = C) = H(B)—H(C)
H(3z € B.C) = (Zz:B)YH(C)
H(vz € B.C) = (Ilz:BYH(C)
H(a=be B) = I(a,b,B)

As in the usual intuitionistic reading of negation, we regard —A as an
abbreviation of A = False.

In the last clause of the above definition, we used a new type to reflect
the judgement a = b € B into a type. Its formation rule is:

'+ I(a,b,B) € U;
Fi—BEUJ'
'a€eB
I'-be B.

Novices often confuse this type or the judgement a € B for the € predicate
of set theory. Firstly, a € B is a judgement about types and their elements
and not a formula in type theory — it corresponds to the judgement “A
is true.” Secondly, it is more illuminating to think of type theory as a
many-sorted logic (sorted by types) and I(a,b, B) as the formula a =p b
— the equality predicate for sort B; for this formula to be well-formed it

12

is natural to require a and b to be terms of type B. Thus, one can not
encode the set-theoretic proposition a € b as I(a,a,b) because, if it is a
well-formed type, it necessarily will be inhabited.

The introduction rule for an [type states that it is inhabited by the
atom true when it represents a true judgment:

[+ true € I(a,b, B)
'Fa=b¢ B.

The elimination rule shows this is the only situation when the I type is

inhabited:

'Frae=0b€B
I'+te (a,b,B).

Our final type constructor is unusual in that it does not prescribe how
to form new objects. Rather, it allows us to hide or trivialize the com-
putational content of a type. In the reflexive case, the formation rule is
unremarkable:

I'-{z:B|C}eU;
I'-Be UJ‘
I'yz:B+ C e Uj,

but the general rule displays a unique property: subtypes are equated when
their second components are merely co-inhabited:

I'{z:B| C}={z:B'|C'} € U;
'FB=B¢cU;
I'z:BFCeUj
I'z:BFC'eU;
[z:B,y:CHt el
ILz:B,y:C'HteC.

(The choice of this courser equality is unrelated to the type’s other prop-
erties; we could have adopted the same notion of type equality given to
IT and ¥ types.) Equality in this type is the restriction of B’s equality to
elements b for which C[b/z] is inhabited:

F'Fb=¥¢c{z:B|C}
F-e=4eB
I'FceClb/z]
Iz:BFCeU,.

13

Note that ¢ is not a component of the element of {z : B| C} — this is
the point at which information is suppressed. The elimination rule lets us
assume C(z) is inhabited, but note that its inhabitant y can not appear in
the conclusion:

F'Ft=teT
I, y:Clb/z], w:I(b,b,B)Ft=¢ €T
'Fbe{z:B|C}
I'yz:BFC e Uj.

In a derivation, subtype elimination and introduction rules often work in
concert, in their suppression of information. The following example shows
that inhabitants of {z : 4| B} also inhabit {z: 4] B + C}: note how z is
used to inhabit the union type, but does not appear in the goal sequent.
(As usual, we suppress well-formedness subgoals.)

y:{z:A|B}Frye{z:4 B+ C} by elim
1. ...z:Bly/z], w:I(y,y,A) -y € {x: 4] B+ C} by intro
1.1 ...Fye A by I elim
1.11 oFwel(y,y, 4) by hyp
1.2 ... Finl(z) € Bly/z] + Cly/z] by intro
1.2.1 ... z € Bly/z] by hyp

2. ...Fye{z:4| B} by hyp

If we are to take the propositions-as-types principle to heart, then the
form of the rules appears to put the cart before the horse, because a sequent
doesn’t assert a type is inhabited and so a proposition is true, so much as it
asserts (in the reflexive case) that a particular element inhabits a type and
so there is a proof of a proposition with that as its computational content.
But this presentational route is only taken to simplify the formalization of
the theory: an examination of the proof rules will reveal that the inhabiting
term or terms can be mechanically generated in a bottom-up fashion. In
the NUPRL system, this procedure is referred to as eztraction: one proves
a proposition in top-down fashion and an inhabiting term is synthesized
bottom-up (although one can imagine more elaborate paradigms, so long
as the completed proofs are valid). These extracted terms are often large
(searching for a “looping combinator,” Howe [30] extracted a term of over
forty pages) so a usable computer implementation of the logic must cer-
tainly allow for their suppression in display.

14

When the rules are displayed in this style, the propositions-as-types
principle leaps off the screen. For instance, the introduction and elimination
rules for arrow are now presented as:

I'-B—-C r-c
' BFC and r-B—-C
'+ B,

which are the rules for = introduction and elimination. Similarly, the
introduction and elimination rules for the general II type, cartesian product,
the general ¥ type and the disjoint union type can be presented as in
figure 2.1. In further agreement with the translation H, we see these are
the introduction and elimination rules for ¥, A, 3 and V, respectively. How
are the other rules to be read in this light? The formation rules assert a
distinct judgement, “4 is a well-formed proposition,” and the computation
rules assert equivalences among proof expressions.

This completes our overview of the basic theory of types. One more
important property of type theories we note here is extensibility: their
design allows for possible extension by new atomic types, type constructors
or elements. In the next section we take advantage of this by extending the
basic theory with new type constructors.

2.2 Examples of inductive types

In this section we introduce two new type constructors, written p and v, to
allow us to solve certain type equations. Both of the p and v constructors
are given in a simple and a parameterized version. We motivate these
types through a series of examples. OQur syntax is (u:U;)B and (vz:Uj;)B,
for simple inductive types, where the px type is meant to denote the least
solution to z = B(z) in Uj, and the v type, the greatest solution. For
the parameterized inductive types, our syntax is (pz : C — U;)B@c and
(vz:C — U;)BQc, where the u type is defined as being a type z(c) where
is the least solution to ¢ = B(z) in C — Uj, and the v type is the greatest
solution of this.

With simple y types, one can represent basic inductively defined types,
such as the natural numbers, lists, binary trees and well-founded trees:

15

'+ (llz: B)C
[Cz:BFC

'-BxC
'-B
r-cC

'+ (¥z:B)C
' Clb/z
'beB

'-B+C
I'-B

'-B+C
r=cC

[=Clhb/z
[+ (0z:B)C
r~beB

r-rmT
I'B,C+HT
'-BxC

r=rm
I'z:B,CHT
'+ (Zz:B)C

THT
[,BFT
I,CFT
T-FB+C

Figure 2.1: Proof rules with suppressed inhabiting terms

16

N = (uN:U))1-N
List = (pL:U;)1+(Ax L)
Tree = (uT:U)A+(BxT xT)
Wtree = (uW:U)(Ez:4)B—W.

Each type provides an inductive principle for computing with its elements.
With the simple v types, one can represent “infinite” objects, such as
streams, types of finite and infinite trees, and types of just infinite trees:

Stream = (vS:U;)Ax S
Fltree = (WT:U1)A+(BxTxT)
Itree = (vT:U)BxT xT.

Dual to the p case, each v type provides an inductive principle for defining
elements of it.

The parameterized versions of the p and v types allow us to recur-
sively define predicates, under the propositions-as-types principle, as well
as to create more complex data types. For example, let f be an arbitrary
operation on N; ¢(n) is inhabited when f has a root greater or equal to n:

é(n) = (pD:N —Uy)Iz.I(f(z),0,N) + D(z + 1)Qn.

We will return to this type later in the chapter in defining an unbounded
search operation. One common example of data types defined with a pa-
rameterized p type is that of mutually defined data types. Suppose we wish
to inductively define T} and T, where:

A(T15T2)
B(T,T).

T
T,

It is easy to define a type Two with canonical elements L and T and the
elimination form case(a;b;c), where:
a>1l b>e a>T c>e

case(a; b;c) > e o case(a;b;c) > e

With this simple type, we can define 7; or T, by:
(uT : Two — Uy)Az.case(z; A(T(L), T(T)); B(T(L),T(T)))Qd,

17

with b being | or T, respectively. With the parameterized v type, we can do
similar things, only obtaining the greatest solutions. For example, suppose
we wish to define a type that asserts proposition p is common knowledge
— p is true and for the collection of individuals 7, it is common knowledge
that everyone knows p. Let P be the type of propositions, true € P — U,
and K € (I x P)— P. Then the common knowledge of p can be expressed
by the type:

(vC:P —Uy)Ag.true(q) x (IIi: I)C(K (3, q))@p.

We continue now by presenting the proof rules for these inductive types.

2.3 Proof rules for simple types

The formation rule for simple p type prescribes how such a type may be
constructed:

'k (pe:Uj;)B e U;
r, z:U; - B eUj;
I, z:Uj, y:Uj,e Cyk-te B C Bly/z|.

(pz : U;)B is defined as being the inductive solution to z = B(z) in Uj.
The first subgoal asserts that the body of the u type must be an operation
on universe level 5. Up until now, all type constructors were predicative
in nature: they defined new types in a universe level without needing to
quantify over the types of that level, but this quantification is implicit in
inductive types, and so we must come to terms with it in some way. Most
of the effort invested in chapter 5 will be in justifying this impredicativity.
Moreover, the second subgoal is asserting that the body is a monotonic
operation on U;. In chapters 4 and 5, we will model type universes by
complete lattices, and this subgoal ensures the body of the inductive type
represents a monotonic operation on such a complete lattice. Thus, we may
take least and greatest fixed points of this operation to be the meanings of
p and v types, respectively. The formation rule for the simple v types is
identical to the last rule:

I+ (ViL‘:Uj)B € UJ‘
I'yz:U;-Be U;
[, z:U;, y:Uj,z Cyt+te BC Bly/z].

18

The introduction rule for the simple p type prescribes how we may
construct equal elements in that type:

'b=0¥¢€(pz:U;)B
'tb=1"¥ € B|(uz:U;)B/z]
'+ (pz:U;)B e Uj.

This is the essence of an inductive type: to construct equal elements in
(uz:U;)B, one constructs equal elements in the “unrolling” of the type. As
an example, the following are elements of type List (where L € 1).

nil = inl(Ll)
la;] = inr((aq, nil))
[az,a1] = inr({as, [a1]))

The corresponding rule for the simple v type is its elimination rule, which
prescribes how elements of the type are used:

[+ out(b) = out(¥') € B[(ve:U;)B/x]
'-b="%¢€(ve:U;)B.

Thus, out is a projection function that maps an element of the v type into
its “unrolling.”

The elimination rule for simple u type prescribes the use of its elements:
how we may compute with them. [t embodies the induction principle for
these types.

[+ p_ind(b; z,y.d) € D[b/y]
U, z:U;, ¢ C (pz:U;)B, z:(Ily:z)D, y:B-de D
I'-be(pz:U;)B

Under the propositions-as-types principle, we can read this as a proof by
induction on the inductive definition of a type: to conclude D(b) is true,
show that by assuming D(y) for y in a fixed subset z of (uz : U;)B, we
can infer D(y) for y in B(z). As an example of the p_ind form defining a
recursive operation on a data type, take T to be the type of binary trees
with natural numbers at the leaves: T = (uT:U;)N + (T x T). Then the
following sums the values in the leaves of t € T

p_ind(t; sum,t.decide(t; L f.Lf; u.spread(u; 1, r.sum(l) + sum(r)))).

19

The corresponding rule for the simple v type is the introduction rule, which
asserts an inductive principle for defining elements of the type:

I'Fv_ind(d; z,y.b) € (vz:U;)B
I, z:U;, (ve:U;)BCz, z:D—z,y:DF-be B
'deD
'k (ve:Uj)B € U;.

Let S be the type of streams of natural numbers: § = (vz:U;)N xz. Then
the following is a stream of increasing numbers, starting at n:

v_ind(n; z,y.(y, z(y +1))),

and the following takes streams s and ¢, and interleaves their elements to
form a third stream, by outjecting s into the number n and the stream u,
then forming the stream where n is followed by the interleaving of ¢ and u.

v_ind((s, t);z,y.spread(y; s, t.spread(out(s);n,u.(n, z((t, u))))))

Lastly, we have the following rules for computing with ind forms, which
show the p_ind and v_ind forms to be fixed point combinators.

[+ u_ind(b; z,y.d) = dAy.p_ind(y; z,y.d),b/z,y| €T
['Fddy.p_ind(y; z,y.d),b/z,y] € T

[+ out(v_ind(b; z,y.d)) = d[Ady.v_ind(y; z,y.d),b/z,y| €T
[+ d[Ay.v_ind(y; z,y.d),b/z,y] €T

2.4 Proof rules for parameterized types

In this section, we will use the following abbreviations.

p@c = (pz:C—U;)BQc p = Aw.pQu
vQc = (ve:C—U;)BQc v = lwrQuw
ACe B = (Iw:C)A(w) C B(w)

The proof rules for the parameterized versions of the u and v types gener-
alize the simple rules in a straightforward manner — here we are defining
a family of types, indexed by a type C, instead of a single type. The
formation rule for the parameterized p type is:

20

'+ pQ@ce U;
r, :Z::C—>Uj|— B e C—.‘Uj
[,2:C—Uj y:C—U;, e CcyFte BC¢ Bly/z
'-cev;
'-ceC.

puQc is defined as being the type z(c) where z is the inductive solution to
z = B(z) in type C — U;. As before, in order for this equation to have
a solution it must be well-formed and monotonic, and that is ensured by
the given subgoals. The formation rule for the parameterized v type is
identical:

I'vQce Uj
r, :l::C—*U]‘"‘ B e C—‘U]'
I,2:C—U;, y:C—Uj,z Ccyrte B C¢ Bly/z]
Fl‘CEU]'
'FceC.

The introduction rule for the parameterized u type prescribes how to
construct equal elements in that type:

'+b=1% € p@c
I'Fb=1"¥ € Blp/z|(c)
I' - p@c e Uj.

As in the simple case, to construct equal elements in the inductive type,
one constructs equal elements in the “unrolling” of that type. The only
complication here is that Bu/z] is a family of types, so we evaluate it for
parameter value c. The corresponding rule for the parameterized v type is
its elimination rule:
I' F out(b) = out(d') € Blv/z|(c)
F'-b="% € vQc.

As before, out maps an element of the v type into its “unrolling.”
We give two versions of the elimination rule for parameterized p types.
The first is a generalization of the simple case’s elimination rule:

['F u_ind(c,b; z,w,y.d) € Tlc,b/w,y]
I, z2:C—Uj, ¢ Ceop, 2:(Mw:C)Iy:z(w))T, w:C, y: B(w)
FdeT
' b€ pQc.

21

The corresponding rule for the parameterized v type is the introduction
rule, which asserts an inductive principle for defining elements in that type:

' v_wnd(c; z,y.d) € v@Qc
Iz:C—-Uj, vCeux, 2:(lly:Cz(y), y:CHd< B
I'-vQc e Uj.

We have another version of an elimination rule, which differs from the previ-
ous rule in that elements of the u type are not involved in the computation:
the rule tells us not so much how to compute with elements of the inductive
type, but how to compute, knowing that the inductive type is inhabited.
Note that this rule makes crucial use of the information hiding capabilities
of the {_| _} type and that in the first subgoal, the element of type B(w)
can not appear in term d.

I'Fp_ind(c; z,w.d) € T|[c/w]
[, z:C—=Uj, ¢ Cop, z:(Hw:{w:C| z(w)})T, w:C, B(w)
FdeT
b€ p@c

With such a rule we can prove an unbounded search property, and extract
a “u” operator from the proof. For example, let ¢(n) be defined as earlier
in the chapter:

é(n) = (uD:N —U)Iz.I(f(z),0,N) + D(z + 1)@n.

Recall that ¢(n) is inhabited when f has a root greater than or equal to
n. We will show that knowing, for some n, ¢(n) to be inhabited, we can
compute a root of f, without actually needing n or the inhabitant of #(n) in
the computation. The problem statement is: (in program extraction style,
we suppress the display of the extraction term)

fHAf:N—>N|(Zn:N)¢(n)} F (En:N)I(f(n),0,N).

Let P = (¥n : N)I(f(n),0,N). We proceed by eliminating on the hy-
pothesis and applying the second induction rule. The induction subgoal
reads:

co.z:(Iln:{n:N|z(n)})P, n:N, I(f(n),0,N) + z(n + 1) - P.

22

We can prove this by cases on whether of not n is a root of f: if f(n) is 0,
the solution is immediate; otherwise we claim z(n + 1) € P, which follows
from hypotheses I(f(n),0,N) + z(n + 1) and —~I(f(n),0,N). For the last
subgoal of the induction rule we prove ¢(0) is inhabited using assumption
(Zn : N)¢(n) and the fact that (IIn : N)¢(n) — ¢(0) is inhabited, which
follows by induction on n. What is the term inhabiting type P? It is a
recursive procedure that, starting at n = 0, tests to see if n is a root of
f and returns n, if that is the case; otherwise it recurses with n +1 — in
short, an unbounded search.

Finally, we have the following rules for computing with nd forms, which
show the p_ind and v_ind forms to be fixed point combinators.

['F p_ind(b;c; z,w,y.d) =
dAw. Ay.p_ind(w;y; z,w,y.d),b,c/z,w,y| €T
['Fddw.dy.p_ind(w;y; z,w,y.d),b,c/z,w,yl €T

T+ p_ind(b; z,w.d) = dAw.p_ind(w; z,y.d),b,c/z,w,y} €T
['Fddw.Ay.p_ind(w;y; z,w,y.d),b,c/z,w,y| €T

[+ out(v_ind(b; z,y.d)) = d[Ay.v_ind(y; z,y.d),b/z,y] € T
[+ d[Ay.v_ind(y; z,y.d),b/z,y] € T

Summary

We have introduced type constructors into a constructive type theory that
let use solve monotonic type operations for their least and greatest solu-
tions, giving us inductive and co-inductive (lazy) types. This gives us types
which naturally represent recursive data types and recursively defined pred-
icates, without introducing diverging or partially defined elements. We will
eventually arrive at a semantics for this theory in chapter 5, but first we
examine the issue in the simpler setting of the second-order lambda cal-
culus, then build a semantics for the basic theory in chapter 4, which we
finally extend to inductive types.

23

Chapter 3

Inductive Types and Type
Constraints in Second-Order

Lambda Calculus

Before attempting to verify the consistency of the extension of the basic
type theory by inductive types, it is advisable to consider the same question
in the simpler setting of the second-order lambda calculus. This will allow
us to separate the core of the consistency argument from the additional
concerns of the type theory. Thus, in this chapter we consider the problem
of extending the second-order lambda calculus with recursive types in ways
so as to maintain its strong normalizability property, which is the property
corresponding to intuitionistic consistency in the type theory case. We
do this extension in two ways. In section 1, type constructors u and v are
added, which give the least and greatest solutions to positively defined type
expressions. While in section 2, we consider typing terms in the presence of
equational type constraints. In both cases, the method of proof employed
is based upon Girard’s candidat de réductibilité method.

The chapter is organized as follows. In section 1, we give an extension to
the second-order lambda calculus [21,35,19,6], which permits the definition
of least and greatest solutions to positively defined type expressions using
type constructors u and v, respectively. With p, one can define inductive
types such as the natural numbers, constructive ordinals, lists and trees, and
there are induction combinators available for each type; with v, “lazy” types
such as streams and potentially infinite trees can be defined. The focus here

24

is not on model theory, as in [15,3,5], but on normalization properties: the
central result is a proof of strong normalizability, using Girard’s candidat
de réductibilité method [22,21], which we extend to exploit the fact that
the collection of ground sets forms a complete lattice and that inductive
types can be viewed as least and greatest fixed points of monotonic (but
not necessarily continuous) operations on it.

Using the structures built in section 1, we proceed, in section 2, to
consider typing terms in the presence of equational type constraints [5],
which allow the typing of more terms. The problem can be stated as follows.

Given a collection of equational constraints ; = T; for 1 in a
fized indez set I, type constants 1; and closed type erpressions
T;, which we close under reflexivity, symmetry, transitivity and
substitution, and the additional typing rule:
a:A A=B
a:B '
when are the resulting typed terms strongly normalizable?

We give a decidable (in the case of a finite I) necessary and sufficient
condition for this. Thus, we see, for example, that:

To = T1—To
T = To—T

will yield only strongly normalizable typed terms, while:

To = T1—To
TN = T9—/T
Tg = Tog— Ty

will allow a diverging term to be typed.

3.1 Inductive types

In this section we will prove the strong normalizability of terms in a second
order lambda calculus extended with inductive types. First, the type ex-
pressions, terms and reduction are defined. The rest of the section consists
of the proof of strong normalization, which we now outline.

25

. Let T be the set of strongly normalizable untyped terms. A collection
of sets of untyped terms, =, is defined, so that £ € = = £ C T.

. In definition 3.1, operations on = corresponding to the type construc-
tors —, A, and v are defined.

. These operations are employed to extend an environment p, a function
from type variables to =, to [_]p, a function from type expressions to
=, by structural induction on type expressions.

. We define the untyped terms a that are instances of a typed term
a, with respect to a given environment, and note that the untyped
term corresponding to a is an instance of a. Truth for judgements is

defined.

. In lemma 3.5, by an induction on the derivation of judgements, all
judgements are shown to be true.

. In lemma 3.6, we note that a typed term is strongly normalizable,
if the corresponding untyped term is strong normalizable. Now our
conclusion, theorem 3.1, follows easily: by 5, if a : A, then = a : A4;
and by 4, this implies a € [A]p, where we take a to be the untyped
term corresponding to a. By 1 and 3 this implies that a € T. Thus,
all typed terms are strongly normalizable.

3.1.1 Type expressions, terms and reduction

Assume a denumerably infinite list of type variables Vi, V,, V3, ..., and let
X, Y and Z range over them. Inductively define the type expressions as
follows.

e X is a type expression.
o If A and B are type expressions, then so are A— B and AX.A

o If X occurs positively in type expression A, then uX.A and v X.A are
type expressions.

“X occurs positively in A,” Pos(A, X), iff each free occurrence of X in A4
is on the left-hand side of an even number of —’s; similarly Neg(4,X) iff

26

each free occurrence is on the left-hand side of an odd number of —’s. Let
A, B and C range over type expressions. Let FV(A) denote the set of
type variables occurring free in A. As one might expect, in the standard
encodings [34]:

AxB = AZ(A—B—2Z)—Z
A+B = AZ(A—Z)—(B—Z)—2
SY.A = AZ(AY.A—2)—7Z,

X occurs positively in them iff X occurs positively in 4 and B. The posi-
tivity requirement will ensure the monotonicity of certain complete lattice
operations, and hence the existence of least and greatest fixed points for
them, which will be the meanings given to the inductive types.

Define the untyped terms to be the set of untyped lambda terms with
possible occurrences of the constants R, in,) and out. Let a and b range
over untyped terms. Untyped terms of the following syntactic forms are
called critical and we let ¢ range over them.

Az.a, Ra, R, ina, in, Qab, Qa, Q, out

Typed terms are defined in figure 3.1. Let a and b range over typed terms,
also, letting the context determine which is meant. As usual, we identify
type expressions or terms which are alphabetic variants in their bound
variables.

The reductions for typed terms are as follows.

. (Az?.a)b — a[b/z4]

[um—y

.Adzdazt — a

2

3. (AX.a) B+— a[B/X]

4. AXaX —a

5. R*B a(in*b) — a u(Az*.z*)(R*B a)b
6. out”(Q’Bab) — av(Az¥.z")(NB a)b

Reduction 2 requires z to not occur free in a, and reduction 4 requires X
to not occur free in a. Untyped terms have the analogous reductions (3
and 4 being inapplicable). Define a > b to mean a reduces to b in one step,
a >* b to mean a reduces to b, and let T be the set of strongly normalizable
untyped terms. Reduction is Church-Rosser [39].

27

For each type p = pX.A, there are constants:

it Alp/X]—p
R*:AY(AX.(X—p)—»(X=Y)—A-=Y)—p—Y

and for each type v = v X.A, there are constants:

out” :v— Alv/X|
" AY(AX.(v—X) = (Y —-X) =Y —-4)=Y —v

where Y does not occur free in A and is distinct from X. Complete the
definition with the following.

zd: A
b: B b: B .
Azdb: A— B AXb:AX.B
c:A—B a:A4A b: AX.B
ca:B bA:B[A/X]

% X 1s not free in A for any z* free in b.

Figure 3.1: Definition of typed terms

3.1.2 Strong normalization

Define the following predicates for £ C T, and the collection of the so-called
ground sets, =:

G1(¢)
G»(§)

Va,b.(a € ENa>"b)=>bel
Vae T.(Vt.a>*t=tcé)=>aci
{£ S T1GuE) NGO}

Some basic notions about partial orderings will help in analyzing =.
The pair (S, C) is a partial ordering iff C is a binary relation over set S
that is reflexive, anti-symmetric and transitive. For a given partial ordering

(S, C):

aefe

e zcSisan upper boundof TC Siff yCz forallye T.

28

o z € Sisalowerboundof TC Siffct CyforalyeT.

e Upper bound z is the least upper bound of T C S iff ¢ T y for all
upper bounds y of 7.

e Lower bound z is the greatest lower bound of T C S iff y C z for all
lower bounds y of T'.

o S is a complete lattice iff the least upper and greatest lower bounds
of every subset T C S exist.

o A function f € §; — S,, where (S, ;) and (S;, T,) are partial or-
derings, is monotoniciffz C, y = f(z) C, f(y) and is anti-monotonic
ffzCiy= fly) Ty f(=).

¢ Given the set A, the function space A — S may be partially ordered,
the so-called point-wise ordering, by the relation C', where f C' g =
Va € A. f(a) C g(a).

e TCSisachaniffz,ycT=>zCyVyL ez

—

Lemma 3.1 = is a complete lattice under C.

Proof. It suffices to show every subset 7' C = has a greatest lower bound.
But this is trivial, since properties G; and G, are closed under intersection:
the greatest lower bound is NT'.

We note here the least element of =, denoted L,is {c € T | —3t. ¢ >* t}.
We can also note that the least upper bound of a chain is its union. The
only non-trivial fact to verify is that G, holds for £, the union of chain
T C Z. Suppose a € T; it can reduce to only a finite number of distinct
terms, by Konig’s Lemma. So, if all the critical terms a reduces to are in
£, they must all be in some ¢’ € T, hence a € £, by G3(¢'), and so a € £.
Conclude G;(¢§).

O

= ITIOIl = . . . —_— — . .
Let = =" = be the monotonic operations in = — Z=. Give these function

spaces the usual point-wise orderings.

Definition 3.1 The operations given below are well-defined.

29

— €EEXE—E, L& ={ce T |Va.ael = cacéy}
Ac(E-3)—Z, A()=nN{/(©)|Ec5)
peEZFE)ZE, u(f)=lfp M{ceT|Vac>" ina=ac f(é)}
ve(E®E)E, v(f) =gfpof M{ce€ T |outce f(£)}

Moreover, — is anti-monotonic in its first and monotonic in its second
argument, and A, p and v are all monotonic.

O

Well-formedness proof. To show G,(&,—¢&,), suppose ¢ € £&;—&; and ¢ >*
¢’. Then ¢’ € T and given a € &, it suffices to show ¢’a € &,. But ca >*c'a
so c'a € & by G1(&). To show G,(&,—¢;), suppose ¢ € T and if ¢ >* ¢,
then ¢t € {&—¢,. Given a € ¢, it suffices to show ca € &,. Note ca € T:
an infinite reduction of it must begin:

ca>*ca >b>--. (3.1)

where ¢ >* ¢/, @ >* d’ and ¢'a’ is a redex with contractum b, so ¢ is

critical. But then ¢’ € £{,—¢; by assumption and a’ € & by G;(¢,), hence
c'a’ € & by definition, so ¢'a’ € T; thus (3.1) is finite, and so ca € T. Now
suppose ca >* critical ¢. The reduction either looks like (3.1), so there is
a c'a’ € & where ¢'a’ >* t' and so t' € &, by G,(&;); or like ca >* 'a’ = ¢/,
where ¢ >* ¢/, and @ >* a’. But if ¢’ is critical, so is ¢/. Then by the same
argument we find ¢’ € ;. Conclude ca < £; by G4(&;) and thus Gy(&1—E7).

Given f € Z—Z, A(f) € = since Z is closed under intersection.

Given f € Z ™" I, to guarantee the existence of a least fixed point [41],
it suffices to show the function (call it g) we are trying to take the least
fixed point of is in Z =5 Z. Fix £ € Z. To show G;(g(£)), suppose c € 9(&)
andc>*c. If¢' >* inathenc >* inaandsoa € f(£). Conclude G,(g(¢)).
To show G3(g(¢)), supposec € T and if ¢ >* ¢t then t € g(¢). Soif ¢ >* ina
then ina € g({), but that implies a € f(¢). Conclude G(g(¢)), and so
g € E—E. The monotonicity of g follows easily from f’s monotonicity.

Given f € Z ™3 Z, again it suffices to show that the function we
are taking the greatest fixed point of (g) isin = ™ Z. Fix £ € E. To
show G1(g(¢)), suppose ¢ € g(¢) and ¢ >* ¢. Then outc >* outc, so
outc' € f(£) by G1(f(€)). Conclude G1(g(£)). To show Gy(g(€)), suppose
¢ € T and if ¢ >* ¢ then t € g(£). It suffices to show outc € f(¢). First,
outc € T: an infinite reduction of it must begin:

30

out c >* out (Qab) > a(Az.z)(Na)b > --- (3.2)

where ¢ >* Qab, so Qab € g(&£) by assumption, thus out (ab) € f(§)
and so (3.2) is finite. Second, suppose outc >* critical #'. The reduction
sequence must be like (3.2), so out (Qab) >* ¢/, thus t' € f(€) by G1(f(£)).
Therefore, by Ga2(f(€)), out c € f(£). Conclude G3(g(€)), andsog € Z—E.
The monotonicity of g again follows from f’s monotonicity.

The monotonicity and anti-monotonicity properties of all four opera-
tions follow easily from their definitions, if, for the last two, we note that
the greatest and least fixed point operations are themselves monotonic.

O

Define environments to be mappings p, from type variables to =. If

€ € Z, then let p[¢/X]| be the environment where:

¢ IXisY

pl¢/X|(Y) = { p(Y) otherwise.

Definition 3.2 For a given environment p, we define its eztension, [_]p,
to type expressions, by structural induction:

[X]lp = p(X)
[A—B]p = [Alp—[Blp
[AX.Alp = A(XE.[A]p[¢/X])
[0X.Alp = p(XE[A]pl¢/X])
[vX.Alp = v(AE[A]pl€/ X])

a
The following lemma verifies the well-formedness of this definition.

Lemma 3.2 For type ezpressions A, and environments p and p’,

IFY ¢ FV(A), then [Alp = [A[Y/X]]olp(X)/Y].

IfVX € FV(A). p(X) = p'(X), then [A]p = [A]p".

[A]p € E.

Pos(A, X) = AE.[A]pl€/X] ts a monotonic operation on E.
Neg(A,X) = AE.[A]p[€/X] is an anti-monotonic operation on E.

S te de N

31

Proof. Induct on A. 1-3: follow from induction and definition 3.1. We need
1 and 2 here to show [_]p respects a-equivalence among types, e.g. that
[AX.B]p=[AY.B[Y/X]]p, when Y does not occur free in B.

4: suppose Pos(A,X). The base case is trivial. If 4 is B — C, fix
£&,€6 € Z such that & C &. By induction, [B]pl&i/X] 2 [B]plé/X]
and [C]p[&1/X] C [C]p[€2/X], so by the monotonicity/anti-monotonicity
of —, [B = Clpléa/X] C [B - Clplés/X]. Conclude A€.[B — Clplé/X]
is monotonic. If 4 is AY.B, fix £,&,,& € Z such that & C &. By in-
duction (or identity, if X is Y'), [Blplé:/X][€/Y] C [Blplé2/X][£/Y], so
M [B]plé1/X[€/Y] T X [Blp&2/X][€/Y]. Thus, we have the contain-
ment [AY.B]p[&,/X] C [AY.B]p[é,/X] by the monotonicity of A. Con-
clude M. [AY.B]p[€/X] is monotonic. The same argument proves the re-
maining cases, and case J is exactly like 4.

O

A¢.[A]plé/X] may be monotonic without being continuous: consider
A1+ X +(N— X)]plé/X], where N = pY.1+Y and 1 = AZ.Z7 - Z.

We now define a notion of truth for judgements. Fix environment p; an
untyped term a is an instance of typed term a, with respect to p, if:

Bn)

n 1

a=afby,...,b. /27 .z

with n > 0, and b; € [B;]p, for 1 < ¢ < n. In particular, when n = 0, we
see the untyped term corresponding to a is an instance of a. Define truth,
for judgements, by:

Ea:A = Vp.Va.ac€ [A]p.

Here are two standard technical lemmas and a corollary we will need in
lemma 3.5.

Lemma 3.3 For £ € =, a[b/z] € £ and b € T imply (Az.a)b € €.

Proof. Az.a € T. There are two ways it might have an infinite reduction
sequence. Either: Az.a > Az.a’ > Az.a” > ---, but then: a[b/z] > da'[b/z] >
a"[b/z] > ---, which contradicts a[b/z] € T. The other way is: Az.a >*
Az.a'z > a' > a"---, where z is not free in a’. But then: a[b/z] >* a'b >
a"’b > ---, and again we contradict a[b/z] € T.

(Az.a)b € T. There are two ways it might have an infinite reduction
sequence. Either: (Az.a)b >* (Az.a')b' > o'[b'/z] > ---, where a >* o’ and

32

b >*b. But alb/z] >* d'[b//z| and so this reduction converges. The other
way is: (Az.a)b >* (Az.a'z)b’ > a'b’ > ---, where @ >* a’ and b >* b', and
z does not occur free in a’. But a[b/z] >* a'b >* a'b', thus this reduction
converges, too.

Now suppose (Az.a)b >* t. The reduction most be like one of the two
reductions sequences given in the previous step. In either case, we see
a[b/z] >* t, thus t € £ by G1(£), and so (Az.a)b € £ by G5(§).
|

Lemma 3.4 [A[B/X|]p = [A]pl[¢é/X], where £ = [B]p.

Proof. By a straightforward induction on A.
a

Corollary 3.1 For p = uX.A and v = vX.A,

lule = {c€ T |Va.c>*ina=ac[Alp/X]|]p}
[l = fce T |outce [Al/X]lo)

Now we show soundness.
Lemma3.5a:4 = =a:4

Proof. Proof by induction on the derivation of judgements. We consider
each clause in turn.

oint: Alp/X]—u
Fix u = pX.A, p and a € [A[p/X]]p. It suffices to show ina € [u]p. Since
a€ T,inac T. Ifina >* ina then a >* d/, and a’ € [A[u/X]]p by G4,
hence in a € [u]p, by corollary 3.1. Conclude = in* : Alu/X|—p.

e RF:AY.(AX(X —pu)—(X—-Y)=»A-Y)—-pu—Y

Recall how the proof that a monotonic function g on a complete lattice has
a least fixed point may proceed. By ordinal induction an ascending chain

is defined:

Ay = L
Gat1 = 9(0a)
ay = Waa|a <A} for limit A.

33

Any fixed point is an upper bound of this chain. By a cardinality argument

there must be a least ordinal « such that for some 8 > «, aq, = ag. But by

anti-symmetry, a, = aq41, and so a, must be the least fixed point of g.
Fix p = uX.A, p, £ € Z and let p; = p[¢/Y]. This chain for [u]p, is:

& = L
o1 = {c€T |Va.c>"ina=ac|[A]pi[é./X]}
& = Ugqer o, for limit A

Fixa € [AX.(X—-p)—(X—=Y)—A—Y]p;. It suffices to prove:
Vb € [u]p1- Rab € &,

which we will do by induction on the chain with limit [u]p;.

Base case: b € £&. Since b and a are in T, and since b cannot reduce to
a term of the form b, Rab e L,so Rab € £ by G,(¢).

Inductive case: b € £,,;. If b cannot reduce to a term of the form in ¥,
the argument is as above. Otherwise, let p; = p1[éa/X]. Note [u]p =
[n]pr = [u]p2 by lemma 3.2. Rab € T: an infinite reduction of it must
begin:

Rab>*Rad (inbd) > d'(Az.z)(Rd) > --- (3.3)

where @ >* @’ and b >* inb'. Since b € £p11, b € [A]p2. But (i) a is
in (X >p)— (X —=Y)— 4 —Y]p, by the definition of A, and so is
a', by Gy; (i) since &, C [p]p2, Az.z € [X — u]ps by lemma 3.3; (i)
Ra is in [X — Y]py, by induction, and so is Ra', by G1; and by these
facts, a'(Az.z)(R a')b' € &, so (3.3) is finite and Rab € T. Now suppose
Rab >* t. The reduction sequence must look like (3.3), so there is a
ad'(Az.z)(Ra')(inb') € € that reduces to ¢t. Thus, t € £ by G1(), and
therefore Rab € € by G3(£). Conclude = R* : AY.(AX.(X —-p)— (X —
Y)-A-Y)->u—Y.

We can note here that a recursion combinator over simultaneously de-
fined recursive types, where each defining type expression is positive in all
the type variables being bound, will be valid by this same argument.

o out” : v— Alv/X]|

Fix v = vX.A, p and ¢ € [v]p. It suffices to show out c € [A[v/X]]p, but
that is immediate from lemma 3.1. Conclude = out” : v — A[v/X].

34

o N : AY.(AX.(v—X)—= (Y =-X)=Y - A4)-»Y —v

Fixv=vXAp,€c=ac [([AX(v—X)—= (Y —-X)—=Y - 4)]p[¢/Y],
and b € €. It suffices to show:

Qab e [v]pl¢/Y],

which is proven by induction on the descending chain with limit [v]p[{/Y],
in a similar argument to the proof for R.

4 A
Fix p. Given instance 24 of x4, there are two cases. Ifz4 is z then z € [A]p
by G3(A); otherwise z4 is b for some b € [A]p by the definition of instance.
Either way, conclude = z*#
. b: B
AzAb: A—B
Suppose = b : B. Fix p. Given instance Az.b of /\:1:‘4 b, we must show it
is in [A — B]p. First, Az. be T: by assumption be [B]p, so be T and
thus Az.b € T. Second given a € [A]p, (Az.b)a € [B]p: bla/z] is itself an
instance of b so b[a/z] € [B]p, by assumption; a € T and so by lemma 3.3,
(Az. b)a € [B]p. Conclude = Az4.b: A — B.
:A—-B a: A
ca:B
Suppose = c: A — B and = a : 4. Fix p. Given instance ¢a = ¢a,
by assumption, ¢ € [A — B]p and a € [A]p. Thus, ¢a € [B]p, by the
definition of —. Conclude = ca : B.
. b:B
AXb:AX.B
Suppose |= b : B. Fix p, and instance b of AX.b. Note that b is also an
instance of b with respect to p, and by lemma 3.2, because of the restriction
that no free variable in b has a type involving X, b is in fact an instance of
with respect to p[¢/X]| for any £ € Z. Thus, by assumption, b € [B]p[¢/X],
so b € [AX.B]p by the definition of A. Conclude = AX.b: AX.B.
b: AX.B
¢ —
bA:B[A/X]

35

Suppose = b : AX.B. Fix p, and instance bof bA. Let £ = [A]p; by
assumption and the definition of A, b € [B]p[{/X], so by lemma 3.4,
be [B[A/X]]p. Conclude =bA : B[A/X].

a

Lemma 3.6 A typed term is strongly normalizable if the corresponding
untyped term 1s strongly normalizable.

Proof. Fix typed term a. The corresponding untyped term, written |a/,
is usually referred to as the stripped term. Given a reduction sequence of
typed terms, a; > a; > ---, for the corresponding sequence |a;|,|az|,...
either |a;| > |ai;1| or |a;| = |ai41], and the latter implies a; reduces to
a;+1 by reductions 3 or 4, the type expression 8 and 7 reductions. Since
these reductions reduce the number of A’s in a term by one, only a finite
number of them can occur in a row. Thus, the sequence of stripped terms
corresponding to an infinite reduction of a will contain an infinite reduction
of |a|. Contradiction.

a

Now, this section’s result follows easily.

Theorem 3.1 All typed terms are strongly normalizable.

Proof. Suppose a : A. By lemma 3.5, = a : A. Choose any environment p.
By the definition of truth, a € [A]p, for any instance a of a, in particular
for |a|. Since [A]p € E, we have [A]p C T, so |a| € T. Therefore, by
lemma 3.6, we conclude a is strongly normalizable.

a

3.2 Equational type constraints

The goal of this section is to give a condition P on the set of type constraints
which holds exactly when the resulting typed terms are strongly normaliz-
able. The section is organized as follows. First, types, terms and reduction
are defined. Second, we state condition P and show how its violation leads
to the typing of diverging terms. Third, we give an equivalent formulation
of P which identifies equivalence classes [t] on I and a total ordering < of
these classes. Given this section’s notion of type membership, we wish to

36

repeat the previous section’s proof, using < in defining a variation, [_]’, of
[_], but two complications appear: < may not be well-founded, so there is
no obvious well-founded order to type expressions; and in defining certain
[r:]’ simultaneously, we must find fixed points of sets of operations which
may not be monotonic, with respect to the C-ordering on =. Fortunately,
each complication can be overcome in turn and we may outline the proof
of strong normalization as follows.

1. Let the definitions of T, Z, environments p, — and A stand as in
section 1.

2. Fix a derivation of a* : A* and let I’ be the union of classes [i] for
which 7; appears in this derivation. Define level ordinals for type
expressions with respect to I'.

3. Environments p are extended to mappings [_]'p from type expressions
to = by level induction.

4. Define instances a as before and truth for the two forms of judgement

Vp.Va.a € [A]'p
Vp.[A]'p=[B]'p

1D
S

I
&
e

5. We can not expect soundness to hold, since we have made no effort
to ensure = 7; = T for ¢« ¢ I'. However, by lemma 3.10, the other
axioms and rules are sound, so we may conclude = a" : 4*.

6. Asin the first section, from 5 we can argue that a* is strongly normal-
izable. Since a* was arbitrary, P implies all typed terms are strongly
normalizable.

3.2.1 Type expressions and terms

We define type expressions as in the previous section, with the addition
of atomic types 7; for 4 in the fixed index set I. For notational simplicity,
assume the type variables V; are indexed by a superset of I. Given closed
type expressions T; for ¢ € I, define judgements by figure 3.2.

37

T,:ﬂiel A=A
A=B A=B B=C
B=4 A=C
A= i a:A A=B
c=c a:B
4 A

b:B b:B
\eAb: A B AXb:AXB
c:A—B a:A b: AX.B

ca:B bA: B[A/X]

T C'" is C with some occurrences of A replaced by B.
* X 1s not free in A for any = free in b.

Figure 3.2: Definition of typed terms with equational constraints

38

3.2.2 A condition on the constraints

The required condition P is that 7; occurs positively in all types C equal
to 7;, that is:

P: VC, T;- (C = Ti) = PO.S(C, 7‘1').

It is an easy exercise to given a polynomial algorithm for P when I is finite.
If P is violated, C can be used in typing a diverging term. We illustrate
now by assuming that 7 = C for some C built using only —, where T occurs
non-positively in C. Then C is Cy,,1, which is in the following form:

— 1 N2k41
Cokp1r = A2k+1 e A2k+1 - (CZk) — Bak 1
C, = Al—--- = A" —(Co)— B,
Co = Aj—---— A —T.
Some abbreviations are called for:
AZ;a = Az}.---Az™.a
— J— 1 n,
ta;, = ta;---a;".

Assume in the following that af and mf are variables of type Af, y; is a
variable of type C; and f] is a variable of type B; — B;. For the case k = 0
we define the terms ¢; of type C; as follows:

AZ1.Ayo. f1 (Yo do @1 o)
/\fo.cl.

C1
Co

e

Now we reduce c; d@; ¢o:
>* fl(cododico) >* fi(cidco).

We conclude this term is not normalizable. For the case £ > 0 we define
the terms ¢; of type C; as follows:

39

AZ1 Ayo. f2ET (yo do daksr Yor)

1 =
c3 = Afa-/\yz-fg(yz s 61)
Cokt1 = ATokr1-AY2k- f2 1 (Yak T2k Cok—1)
Co = ATo.Cokt1
Cy = A£2Ay1f21(yl l_il Co)
_ — 2k—1 -
C = Aw2k-Ay2k-—1'f2k (y2k—1 Ak-1 C2k—2)

Now we reduce cary1 Goks1 Cok:

>* f2% (Cak Gok Cok—1[C26/Y2k]) > -+ (Cak—1[Cok/Y2k] Go2k—1 C2k—2)

>* - (ca @y er[car/yak]) - - >* -+ (erfear/y2e] A1 co) - -
>* - (co o Aak+1 Cok) - - - >* - (Cok+1@2k41 C2k) - -
We conclude this term is not normalizable.
As an example, consider the second example given in the introduction
of this chapter:

To = T1—To
T = T9—T1
T9g = Tg—T2.

Here, 7o = (({[To]~ ™) — 71) — 7o, and the right-hand type expression
contains a non-positive occurrence of 7y, as highlighted. The diverging
term the previous prescription would construct is:

(e3)Ay™ " ™.w™ " (y c3), where
cs = AP Gy (R AT 0T (2 2)).

The following states an equivalent formulation of P, which will prove
more useful in the next subsection, when we will be looking for an ordering
to type expressions.

Lemma 3.7 Condition P is equivalent to the ezistence of an equivalence
relation on I, whose classes [i] are ordered by a relation < such that if
7; appears in T; then [i] = [j] or [i] < [j]. Furthermore, each class [i] is
divided in two parts, [i|T and [i]7, and j € [i|* = Pos(T;,7;) and j € [i|” =
Neg(Tth)'

40

The remainder of this subsection is devoted to a proof of this. For
notational convenience, we write A(z) to indicate 7; occurs in 4 and then

let A(B) stand for A[B/7;]. Define:

i< = JA®G).7 = A@)
1<y = ~3<
ix~j o= i<jAG <

Relation ~ is an equivalence relation, and we write [¢] for the equivalence
class containing ¢. If we temporarily define [i] <; [j] = ¢ <o 7, we see the
classes are only partially ordered by <, so extend relation <; to a total
ordering <3 and define 1 < j = [z] <3 [j]. Define:

A & B agree on 1 = Pos(A, ;) A Pos(B, ;) V Neg(A,7;) A Neg(B,m;)
Lemma 3.8
1. YC(3i). C(A) & C(B) agree on 1 = A and B agree on 1.
2. Ifi~j, 7= A(j) and 7; = B(j) then A(3) & B(j) agree on j.
Proof.
1. By induction on C(3).

2. Since 1 & j, choose C(3) such that ; = C(2). Thus, 7; = C(A(7)),
7; = C(B(j)) and by P, Pos(C(A(3)), ;) and Pos(C(B(7)), ;). There-
fore A(7) & B(j) agree on j by 1.

a
Definition 3.3 Ifi ~ j, and A(3) = 7, define:

Pos(A(z), ;)
Neg(A(2), 7i)-

t1~3
1<

e

O

By ¢ = 7, such an A(7) exists; by lemma 3.8, these definitions are indepen-
dent of the choice of A(:) and 7; = A(z) implies exactly one of Pos(A(z),7;)
or Neg(A(i),7:), so exactly one of i ~ j and 4 < j holds for ¢ = j.

41

Lemma 3.9

1. Pos(A(3), ;)N\ Pos(A(B), ;) or Neg(A(3),7;) N Neg(A(B), ;) implies
Pos(B, ;).

2. ~ 1s an equivalence relation.

3. Neg(A(3), ;)N\ Pos(A(B), ;) or Pos(A(j), ;)\ Neg(A(B), 1) implies
Neyg(B, ;).

4. < is symmetricand 1 < JAN) <k =1~k
Proof.
1. By induction on A(j).

2. The reflexivity of ~~ is immediate.

i, = A(j) and 7; = B(z). By P,
t, Pos(A(3),7;); thus Pos(B(i),7;) by

For symmetry, suppose 7 ~
Pos(A(B(2)), i), and by j ~
1, so we conclude ¢ >~ j.

For transitivity, suppose 1 >~ j, 7 ~ k, 7; = A(%), 7« = B(3) and ; =
C(k). By P, Pos(B(A(C(k))),), and by j ~ k, Pos(B(j),7;); thus
Pos(A(C(k)),) by 1. By i >~ j, Pos(A(2), ™), and Pos(A(C(k)),)
implies Pos(C(k),) by 1, so we conclude ¢ ~ k.

3. By induction on A(j).

4. The symmetry of < follows by the same argument used for the sym-
metry of ~, using 3 in place of 1.

Suppose 1 < j, 7 < k, 7; = A(2), 7% = B(j) and =, = C(k). By
P, Pos(B(A(C(k))),7x), and by j < k, Neg(B(3),7;); thus we may
conclude Neg(A(C(k)),) by 3. By i < j, Neg(A(2),7:), and taken
with Neg(A(C(k)),) that implies Pos(C(k),T,) by 1, and thus we

conclude 7 ~ k.

O

So, by lemma 3.9 we see [7] is divided into at most two parts and 7 >~ j
(1 < j) when 7 and j are in the same part (different parts) of [z], and most
importantly, ¢ ~ j = Pos(T;, ;) and ¢ < j = Neg(T;, ;). Finally, we can
define:

42

=

+
11l
—~
LS.
m
=

and thus, we have proven lemma 3.7.

3.2.3 Strong normalization

In this subsection we assume P and from that argue that all typed terms
are strongly normalizable. Let the definitions of =, environments, — and
A stand as in 3.1.2. We would like to again extend the environment p to
a mapping [_]'p from type expressions to =, but we can not do structural
induction on type expressions, because of atomic types ;. Order < should
be involved, but it is not necessarily well-founded: consider the case when
I is the set of natural numbers and T; is 7,11 — 7;41. The solution is to fix a
derivation of a* : A* and only be concerned with 7; that occur there. Once
we have concluded a* is strongly normalizable, we can generalize to prove
the final result.

So, fix a derivation of a*: A* and let I' be the union of classes [z] for ;
appearing in this derivation. For i € I, let its rank, #1, be 1 plus the finite
number of distinct classes [j] C I’ for which [j] < [7]. Now we can define a
level ordinal for each type expression:

L(X) = 0

Lm) = 0 figr
L(B—C) = sup(L(B),L(C))+1
L(AX.B) = L(B)+1

L(r;) = wx(#1) if el

We wish to extend an environment p by level induction to a mapping [_]'p,
but a second complication emerges: at level w x (#1) we will want to find a
fixed point of the operation f € Zl! — =l where:

f({&)iew) = ([TelVi/m5liel pl€5/ Vilien) re- (3.4)

This is may not be monotonic, if we order Z) by the usual product ordering:

(&5)iem C (€)jer = V5 € [1]. & C €,

but f is monotonic if we choose the ordering:

43

(&)iew E (&) jem = VI € BT & C AT €[] & 2 &

An example of such a situation is 7o = 74 — 79 and 71 = 70 — 7. This
ordering means that taking the least fixed point of f will yield the least
solutions of &; for j € [¢]* and the greatest solutions for j € [¢]7, but as it
will turn out, any fixed point will suffice.

Finally, we can define [_]'p by level induction:

[n]p = L, fore gl
[XTp = p(X)
[A—B]'p = [Al'p—[B]p
[AX.A]'p = A(XE[A]'p[¢/ X)),

and at level w * (#1), let ([1;]'p);e(i) be the least fixed point of f, as defined
in (3.4). Reinterpreting lemma 3.2, lemma 3.4 and corollary 3.1 in the
context of this section, we see they hold by the same arguments. We may
draw another corollary from lemma 3.4:

Corollary 3.2 Ifi c I', then Vp. [1;]'p = [T:]'p-

Define instance as in 3.1.2 and truth for the two forms of judgement by:

Fa:A Vp.Va.a € [A]'p
=A=B Vp. [A]'p = [B]'p.
As noted earlier, there is no reason to believe soundness will hold, because

we have made no effort to ensure = 7, = T; for ¢ ¢ I', but we can show
enough to conclude = a*: 4":

Lemma 3.10 Ezcept for 7, = T; when 1 ¢ I', all the azioms and rules of
figure 3.2 are sound.

Proof. We consider each clause in turn. The arguments for the rules and
axioms carried over from figure 3.1 are as in lemma 3.5. Fori € I', |=
7; = T; holds by corollary 3.2. The rules for the reflexivity, symmetry and
transitivity of A = B are trivial to verify. To show 4 = B = C = (',
where for a suitable C”, C' = C"[B/X], C = C"[A/X]| and X does not
occur free in C, let ¢ = [A]'p = [B]'p; then the argument follows easily
from lemma 3.4:

[Clp=[C"[4/XI['p=[C"Tpl¢/X]=[C"[B/X]]'p = [C"Tp.

44

Finally, the soundness of a : A A A = B = a : B is immediate from the
definition of truth.

O

Proposition 3.10 implies = a* : A%, and as in 3.1.2, this implies a" is strongly
normalizable. Since a* was arbitrary, we have proven the following.

Theorem 3.2 P implies all typed terms are strongly normalizable.

Summary

We have shown how to add general inductive type constructors to the
second-order lambda calculus, while preserving the strong normalizabil-
ity property of terms, and to decide when a collection of type constraints
admits the typing of only strongly normalizable terms. In both cases a
similar method of proof, based on the method of Girard, was employed.

We are now ready to give a semantics for the basic intuitionistic type
theory and for its extension by inductive types. These proofs will require an
involved structure just to identify the well-formed types, but the core of the
argument concerning the inductive types will be a recognizable variation
on what was presented in this chapter.

45

Chapter 4

Semantic Account of the Basic
Theory

In this chapter we develop a semantic account of the basic type theory in
order to show the basis on which we will build the more complex relativized
construction of the next chapter. An important conclusion we will draw
from this semantics will be the intuitionistic consistency of the theory.

This proof follows the general argument used by Tait [40] to show the
strong normalization property of the simply typed lambda calculus, which
was relativized by Girard [22,21] to show this property for the second-
order, polymorphic, lambda calculus. In both cases, one can phrase their
arguments in terms of the construction of a mapping from type expressions
to some fixed set, defined by induction on the structure of type expressions.
We have seen this method used twice in chapter 3, namely the mappings
[] and]

With dependent type constructors, such as II, £ and {_ | _}, type
universes U; and equality types I, one can no longer define this mapping in
such a straightforward manner, because type expressions and terms are now
simultaneously defined. A solution for such a theory is to identify a well-
founded order in which types may be thought of as being constructed, and
to allow the semantics to be non-compositional, by interleaving evaluation
with decomposition in its statement. We achieve this by viewing type
construction as a monotonic operation on a suitable complete partial order.
This is sufficient to give a semantics for a predicative type system, stratified
by type universes.

46

We now outline the developments of this chapter. For a detailed study
of such semantics, the reader is referred to [2].

1.

In our model, a type is represented by a partial equivalence relation
on closed, normalizing terms. In 4.1 we define =, a collection of the so-
called ground relations, to serve as the universe of possible relations.

. For each type constructor, it is a straightforward matter to define a

mapping which takes ground relations, or families of ground relations,
to = in such a way as to model the computational meaning of that
type constructor. For example, given £ € = and a function 9 mapping
equivalence classes of ¢ to =, we define X(£,9) € = by:

a=d € X(&y) e a> (b c)Na' > (b,) AbEY A c(p[ble)c.

In 4.2, the collection of type systems, 78, is defined. For the pur-
poses of this construction, a type system is a pair (v, [_]), where
ground relation 7 defines equality between terms representing types,
and [_] associates a ground relation representing membership with
each equivalence class of types. We can view 7S as a complete partial
order under an ordering meant to capture the notion of consistently
eztending a type system — enlarging 7 while maintaining the same
membership relations on the preserved types.

Using the semantic operations of 2, we define an w + 1 sequence of
monotonic operations on 78: Fy, Fy,...,F,, where F, maps a given
type system to one containing the atomic types void and U; for i < «a,
and the compound types A+ B, (Xz:A)B, (llz: A)B, {z: A| B}, and
I(a,b, A) whose immediate subtypes are taken from that given type
system.

To take the least fixed point of such a F, is to define a type system
(Tay [_]a) with the listed atomic types and inductively close it under
the listed type constructors. Thus, we can reguard (r;, [_]i), for

t < w, as a model of U; and (7,, [_].) as a model for the entire type
hierarchy.

With (7,, [_].) in hand, we define the predicates A Type, A = B,

a =b¢ Aand a € A, and in lemmas 4.3-4.6 compile a number of

47

properties of these four predicates, almost all of which can be read
off the definitions of = and F,. These are the properties of (7., [_].)
which will be used in the soundness proof.

7. In 4.3, truth for sequents is defined and we verify the soundness of
the proof rules.

8. Once the soundness of the proof rules has been established, in 4.4 we
conclude all derivable sequents are true. For - a = b € A this implies
that @ = b € A, and we may conclude all the properties given in
lemmas 4.3-4.6 about this predicate, including the non-inhabitation
of void, which is the statement of intuitionistic consistency.

Viewed under the propositions-as-types principle, intuitionistic consistency
is propositional consistency — False can not be derived.

4.1 Ground relations

Types will be modeled by partial equivalence relations over closed, normal-
izing terms. We begin with some basic definitions and notations for partial
equivalence relations.

e A binary relation £ over a set T is a partial equivalence relation (PER)
over T iff it is symmetric and transitive. T may be dropped if it is
clear from context.

o If £ is a PER over T, let T/{ be the set of nonempty equivalence
classes that £ defines. For a € T, define:

[ale = {b e T | ab}.
If £ is clear from the context, we may simply write [a]. Write Fi(§)

for the field of relation £. Note that PER £ is an equivalence relation
over Fi(§).

e If R is a relation over T', then PER £ respects R, iff

(a € Fi(§) Vb e Fi(€)) NaRb = afb.

48

e For a collection S of PERs over T', and a given PER ¢, define:

FAM(¢,S) = T/¢—S
FAM(S) = Uges FAM(E,S)
IFAM(S) = Yo FAM(E,S).

As usual, we will be identifying terms that are alphabetic variants in
their bound variables. Let 7 be the set of closed terms, > the evaluation
relation and V the set of closed, normalizing terms. Define a |= a € V,
and a ~b=3Jc.a > cAb>c. Let = be the collection of PERs over V that
respect >. Elements of = are called ground relations. We will discuss its
appropriateness after the definition of 7S. The metavariables we will use
are as follows.

e 1, j and k range over positive numbers.
e v, w, ¢,y and 2z range over variables.

® a, b, c,and d and A, B, C and D range over open terms.

(&, 9) ranges over IFAM (E).
e o and (7, [_]) also range over IFAM(E).

The choice of an upper or lower case roman letter for an open term is meant
to imply a term is playing the role of an element of a type, or a type, but
there can be no semantic distinction, as such. We introduce the following
notation for PERs.

Act = AtA
A=A ct = ALA
VAc¢ P = VA AEA= P
VA=A ct. P = VA A.AEA' = P

[Al = [A]]

4.1.1 Operations on ground relations

At this point in the construction, it is convenient to isolate the following
functions. Their names are suggestive: IT, for example, will define the
semantic operation that will be the meaning given to a II type.

49

Definition 4.1
1. Define II € IFAM(Z)— = by:

a=d ecIl(¢(,¢y)= acVAdEVA
Vb ="b €& a(b) = a'(b) € (b

(1]

2. Define ¥ € IFAM (
(b, c) = (b, ') € (&%) = b€ Ne=c' € P[b]

)— = by:

3. Define {_|_} € IFAM(Z)—E by
a=a € {¢]| v} =atd Adec.cepld]
4. Define + e ExE—Z by
a=d cé+¢ = a>inlbAa >inlb AbEY V
a >inrcAad >inrc A ct'd
5. Define I e TXxT xZ—Z= by
true = true € I(b,b,&) = b¢Y

a
For further convenience, we identify the following “independent” versions

of IT and ¥:

§—¢ II(¢, Ab).€")
Ex¢’ (&, Alb].").

1 For a more concise presentation, we leave some things implicit: since ¥ (¢,) is to be
in Z, we realize it must respect evaluation. In full, this function would be defined as

e

a=a' € ¥(¢y)=3bb,c/ .a> (b c)And > (¥,)...

50

4.2 Type systems

Define the collection of type systems by 78 = IFAM(Z). The notation for
a type system is (7, [_]), or simply . IFAM(Z) is a CPO under ordering:

(& ¥) T (€, ¢) =& & nvA e & ([A]) =¥'([4]),

with least element (0, () and the least upper bound of a chain being:

I_H(é.ou ¢a> 'a € I} = </LJ €as U ¢a>

acl a€cl

How does = capture the meaning of a type? Externally, we can view
a type as a binary relation on closed terms. The minimum salient charac-
teristics of this relation are embodied in elements of =: it must relate only
normalizing terms, be symmetric and transitive, and respect evaluation.
In such a construction as we are about to develop, the nearly arbitrary
collection of ground relations Z is ultimately motivated and justified in
retrospect: it is an appropriate collection to prove the desired properties.
Now, consider the meaning of an intensional type system. Externally, we
can view it as consisting of two parts, a type equality relation, and for each
class of equal types, a membership relation. As just discussed, all these
relations can be found in =, and what we have just described is an arbi-
trary element of 7S. (From this external viewpoint, that the type system
is “intensional” is only reflected in the fact that the type equality relation
is not necessarily extensional.) Finally, consider the ordering T on type
systems. It is meant to capture the notion of “extending” a type system:
if (r, [_]) C (7', [_]"), then types equated by 7 are equated by 7' and they
retain the same membership relation.

EqFam is a predicate asserting, for a given type system, that the argu-
ments are associated with equal families of types, as verified in lemma 4.1.

Definition 4.2 For (1, [_]) =0 € TS, and B,B',C,C' € T, define
EqFam(o,B,B',C,C'") = BrB'AVYb=1¥ € [B]. C(b)rC'(¥),
and set

Fam(o,B,C) = EqFam(o,B,B,C,C)

51

Lemma 4.1

1. EqFam and Fam are monotone in TS.

2. ([B], A[b].[C(b)]) and ([B'], A[b].[C'(b)]) are equal and an element
of IFAM(Z), of EqFam({t, [_]),B,B',C,C").

4.2.1 Constructing type systems

We are at the central construction of this chapter, the type systems o,.
One way of viewing the definition of o, is as a formalization of the notion
of closing a set of atomic types under type constructors +, ¥, I, {_ | _}
and I. These o, are thought of as being constructed iteratively, since o;
is the meaning given to U; in the definition of F,, for a > 1. It is this
predicative property of the construction, type equality in universe U; (i.e.,
7;) not being available in the definition of F;, that we must overcome in
order to define inductive types, as will be borne out in the next chapter.

Definition 4.3 Fiz 0 < a < w, and by induction assume o; = (15, [_];) €
TS for 0 < j < o are defined. Define F, € TS "> TS by:

Fal(r, L) = (', LI,

where for a given 0 = (7, [_]) € TS, we define A = A’ € 7' iff one of the
following holds; and if so, define [A]' by the corresponding e clause.

1. A>void N A' > void
o [void] =0
2.3 <. A>U; NA' > U;
o [U;]'=m;
3. (a) A>B+CANA >B+C"
(b) BrB'ACTC'
o [B+C] =[B]+][C]
4. (a) A>(Zz:B)C A A" > (Zz:B")C'
(b) EqFam(s,B,B',\z.C,)z.C")

52

e [(2z:B)C]' = X([B],A]b].[C[b/=]])
5. (a) A> (llz:B)C AN A" > (Iz:B")C'
(b) EqFam(o,B,B’', Az.C, z.C")
o [(Iz:B)C] = I([B], Alb].[C[b/=]])
6. (a) A>{z:B|C}NA >{z:B'|C'}
(b) BrB' A Fam(o, B, z.C) A\ Fam(o, B', Az.C")
(c) Yo e [B]. 3c € [C[b/z]] & I’ € [C'b/=]]

o [{z:B|C}])" = {[B] | Alb].[C[b/=]]}
7. (a) A>I(byc,ByNA" > I(V,c,B')
(b) BrB'Ab=V € [B]Ac=¢ €[B]
o [I(b,c,B)]' = I(b,c,[B])
Let 0o = (T, [_]a) = the least fized point of F,.

a
Well-formedness Proof. The verification that F, is a monotonic operation
on 7§ is routine, following from definitions 4.1 and 4.2 and lemma 4.1. As
an example, we present the slightly unusual case for {_| _}.

Fix o, = (1, []p) T 04 = (7, [_]y), and write o, = Fu(0,) and
o, = Falo,). Assume {z: B| C} = {z: B'| C'} € 7,. First, one should

check the well-definedness of [{z: B| C'}];, but that is not difficult to see: by
lemma 4.1, ([B],, A[b].[C[b/z]],) € IFAM(Z), and condition 7(c) implies

{[Blo| ABL.[C[b/=]]o} = {[B'],| Albl-[C"[b/=]]5}-

As for the monotonicity of F,, since o, C o,, B1,B' and by lemma 4.1,
Fam(a,, B, z.C) and Fam(oy, B',A\z.C"), thus {¢:B| C} = {z:B'| C'} €
!

7,. All that is left to verify is that 7, associates the same membership

relation with the type. But by o, C oy, it is easy to see that:

([Blo, ABL[C[b/2]]p) = ([Blq, AlB.[C[b/2]]a),

and so [{z:B| C}], = [{z:B| C}];.
O

53

4.2.2 Properties of o,

An important property of our construction is cumulativity: equal types in
universe level 7 will be equal types in level ¢ + 1, and their membership
relation will be the same. One nice feature of our construction is that
cumulativity follows easily from the fact that the F,’s form a chain in
T8 =" TS, as pointed out in the next lemma.

Lemma 4.2 For o < 8 < w, F, C Fp, and so 0, C 03.

Proof. The only difference between F, and Fj is the inclusion of atomic
types U, for a < v < B in clause 2, so it is easy to see that F, C Fp. Since
the operation of taking a least fixed point is itself monotonic, o, C 05.
a

Now we can define four familiar relations to express type equality and
membership.

Definition 4.4

A=B = Ar,B
A Type = A=A

a=beC = Cer,Na=be[C],
acC = a=acC

0

Note A=BecU, & A=Becr.

The following four lemmas list all the facts that will be used in showing
the soundness of the proof rules. All of these facts are trivial to establish
because the arduous work has been done in definition 4.3. Lemma 4.3
follows from definitions 4.3 and 4.4, except for the final two rules, the so-
called cumulativity rules, which follow from lemma 4.2. Lemmas 4.4, 4.5
and 4.6 can also be read off of definitions 4.3 and 4.4.

54

Lemma 4.3

acEASa=ac A

a=be A
A Type
a=bc A
b=ac A
a=bc A b=cc A
a=c€ A
acA A=B
a€ B
a=bec A
al
a=bcAd a~c
c=bec A
A=BecU;
A=RB

Lemma 4.4

1 void = void
3. B+C=B+C(C
4. (%z:B)C = (Xz:B")C’
5. (Iz:B)C = (lIz: B")C'

6. {z:B|C}={z:B'|C'}

7. I(be,B) = IV, ¢, B)

t ¢

35

A Type & A=A

B=B'ANC=C("

B =B AYb=1V ¢ B.

Clb/z] = C'[b'/z]

B =B AVYb=1V ¢ B.
Clb/z] = C'[b'/z]

B =B AVYb=1V ¢ B.

Clb/z] =Cb'/z] A

C'lb/z] = C'[b'/z] A

dee Clb/z] & I’ € C'[b/z]
B=B'Ab=VeBAc=c€B

Lemma 4.5

1 void = void € U;

2. U;=U;el; & j<a1

3. B+C=B"+C"elU; & B=BecUANC=C"ecU;
4. (Xz:B)C =(2z:B"\C'eU; & B=B cU AYb="b € B.

Clb/z) = C'[b /z] € U;

5. (lz:B)C = (le:B)C' € U; & B=B cl; \Vb=¥ c B.
Clb/z| = C'[b/z] € U;
6. {z:B|C}={z:B'|C'}elU; & B=B €U AYb=1b € B.

Clh/z] =C[b'/z] € U; A
C'lb/z] = C'[b/z] € U; A
Jc e Cb/z] & 3’ € C'[b/z]

7. I(bye,B)=I(W,d,B)eU; = B=BcUAb=b§cBA
c=cd€eB

Lemma 4.6

—

—(a = a’ € void)

2. a=d €B+C & B+C Type A
a>mlb)ANad > ml(d)Nb=b € BV
a>inr(c)Nd > mr(d)ANec=c €C

3. a=ad € (X¥z2:B)C & (Zz:B)C Type A
a> (b, c)nNd > (¥,)N
b=be BAc=c€Clb/z]

4. a=d € (Iz:B)C & (Lz:B)C Type Aa | ANd' |
AVb =b € B. a(b) = a'(b) € C[b/z]

5. a=d e€{z:B|C} & {z:B|C} Type A
a=4d € BAN3ce€ Cla/z]

6. a=d €l(bc,B) & a>trueNd >trueNb=cec B

56

4.3 Truth and soundness

Now that we have built o, and isolated the salient properties of it in the
previous four lemmas, we can define truth for sequents and show the proof
rules are sound.

First, we introduce some abbreviations. For k € {1,2}, write a; for
@k1y---58kn_1, and for a given open term c, write [c]; for clar/z1, ... Tn_1].
Write I' for the context z;:4,,...,2,_1:4,_1-

We now define what it means for two vectors of terms to be equal in a
context, and use that in defining truth for sequents. The reader familiar
with the NUPRL logic will notice that we have chosen a weaker, and sim-
pler, notion of context well-formedness than the one given in [12], but this
weakening is not exploited in the proofs of soundness.

Definition 4.5

1. a; = a3 € T' 1s defined by induction on I'. The empty case 1s true;
otherwise define a1,a1, = @z,02, € I',z,: A, by:

a; =a; €T A [4.]1 = [4.]2 N a0 = ag0 € [An]s.
2. TEb=10V € B s defined by:
Val =a, ¢ I. [B]l = [B]g A {b]ll = [b,h - [B]I

O

The next step is to verify the soundness of the proof rules, which is a
straightforward exercise, working from lemmas 4.3-4.6. As an example of
this verification, we present the soundness proofs for the II type proof rules.
But before we do that, we separate out the following, often used fact.

Lemma 4.7 a,,b = a,,b' € I',;z: B s implied by

1.a1:a2€F
Z.F}ZB:B'EUJ'
3. b=1¥ ¢ [B]

37

4.3.1 Soundness of the II type rules
Lemma 4.8 T |= (Ilz: B)C = (Ilz: B')C' € U; is implied by
I.T=B=PB¢eU;
2.7, z:B=C=C"cU,
Proof. Fix a; = a, € T'; it suffices to prove:
3. [(Iz:B)C], = [(Ilz: B")C'], € U;.
By 1,
4. [B], = [B'], € U;.
Fix b = o' € [B];; lemma 4.7 and 2 imply
5. [C]i[b/z] = [C'),[V /=] € Uj.

By lemma 4.5, 4 and 5 imply 3.
O

Lemma 4.9 T = Az.c = Az.c' € (Ilz: B)C 1s implied by
1.TEBEeU;
2.T,z:BEc=deC

Proof. Fix a, = a, € T'; it suffices to prove:
3. [(Iz:B)C), = [(IIz: B")C'],, and
4. dz.[c]; = Az.[c]; € [(IIz: B)C];.

By 1,
5. [B]; = [B]; € U;.

Fix b = ¥ € [B];; lemma 4.7 and 2 imply
6. [C]1[b/z] = [C]a[b'/z], and
7. [elalb/e] = []a[b/a] € [Cli[b/z].

58

By cumulativity and lemma 4.4, 5 and 6 imply 3, and by the lemma 4.6, 7
implies 4.
a

Lemma 4.10 T = d(b) = d'(¥') € C[b/z| is implied by
I.T=d=d € (z:B)C
2.TEb=bVEBRB

Proof. Fix a; = a, € T'; it suffices to prove
3. [Cl1[[b]1/2] = [Cla[[b]2/2], and
4. [d]1([bl) = [d']2([b']2) € [Cl1[[b]1/=].

By 2,

5. [b]; = [b']2 € [Bl1,

and by 1,

6. [(Iz:B)C]; = [(Iz: B)C|,, and
7. [d); = [d'], € [(Hz:B)Cl;.

By lemma 4.4, 5 and 6 imply 3, and by lemma 4.6, 5 and 7 imply 4.
O

Lemma 4.11 I' =d = d' € (Ilz: B)C s implied by
I.T=EBe¢ U;
2.1, z:B=d(z)=d(z) e C
3. T=deD
4. TEdeD
Proof. Fix a; = a, € T; it suffices to prove
5. [(Iz:B)C); = [(Oz: B)C|,, and
6. [d]: = [d']; € [(Iz:B)C];.

39

By 1,
7. [Bli =[BJ. € U;.

Fix b = ¥ € [B];; lemma 4.7 and 2 imply
8. [C)1[b/z] = [C]3[b'/z], and
9. [d1(b) = [d]o(¥') € [C]1[b/z].

By cumulativity, 7 and 8 imply 5. 3 and 4 imply [d], € V and [d']; € V,
and so 9 implies 6 holds.
a

4.4 Concluding consistency

By an induction on derivations, if I' - a = b € A4 is derivable, then I' |=
a = b € A, and in the case of an empty context that implies a = b € A.
What are some consequences of this? We can conclude all the facts listed
in lemmas 4.3-4.6, including —(a € void) for any term a, so we have shown
the intuitionistic consistency of the theory.

Summary

We have given a semantics for the basic type theory and used it to prove the
soundness of the proof rules. The intuitionistic consistency of that theory
was a corollary of soundness. We are now ready to extend the semantics of
this chapter to account for inductive types.

60

Chapter 5

Semantic Account of Inductive
Types

In this chapter we take the semantic account of the basic theory given in
chapter 4 and relativize it, by Girard’s method, to account for inductive
types. Asin the previous chapter, intuitionistic consistency is an immediate
consequence of this account.

The construction used in chapter 4 will not suffice here because it can
not justify the impredicativity introduced into the definition of types by
inductive types. Consider the introduction rule:

't (uz:U;)B € U;
1. T, 2:U;j - B eU,
2.1, 2:U;, y:U;, ct CyF-te BC Bly/z|.

Subgoal 1 is stating that, in order to admit the u type into universe Uj,
Az.B must map equal types in U; to equal types in U;. This is an im-
predicative definition of U; and can not be expressed by the construction
used in chapter 4. The solution is to relativize this construction in the
manner of Girard’s relatization of Tait’s computability method [40,22,21].
The framework we build here can also be used to justify a version of the A
type constructor, as we will demonstrate in 5.7.

The chapter is organized along the same lines as chapter 4, as we repeat
the developments of that chapter with the addition of types (uz:U;)B and
(vz:U;)B. We may outline the chapter as follows.

61

. Inductive types introduce impredicativity which is “broken” using a
technique similar to the one used in chapter 3. In section 1, the two
major differences in the way we apply Girard’s method in this chapter
are detailed. First, we need not a single collection of ground sets, but
a series of collections =;,Z,,.... Second, it desirable to abandon
the “environment style” approach of assigning meaning to open type
expressions, and to consider only closed type expressions.

. We extend the language through a series of collections of constants
C1,Cy,. .. called the ground types, in such a way that each relation in
=; is represented by a constant in C;. Given this, inductive types can
be described without the impredicative quantification over all types
of the universe level in question.

. Also in section 1, new semantic operations corresponding to the C, u
and v type constructors are defined.

. In section 2, type systems are defined as in chapter 4. Again, we
define monotonic operations on type systems, named G, here, whose
least fixed points model type universes.

. In a key lemma of this chapter, 5.8, we prove a stratified version
of the substitution lemma, which allows us to conclude some basic
properties about inductive types.

. In section 3, truth is defined for sequents and the proof rules for the
C, p and v types are proven sound. Thus is section 4 we can conclude
the intuitionistic consistency of the theory.

. In section 5 we show the soundness of introduction rules that use the
syntactic property of strong positivity instead of explicitly requiring
monotonicity.

. Up until this point, the construction has been for the simple induc-
tive types, yet it can readily be altered to justify the parameterized
inductive types. In section 6 we outline these alterations.

. Finally, in section 7, we show how the semantics of this chapter can
justify a version of the A type constructor of chapter 3.

62

5.1 Ground relations and ground types

For this section, we will need a specialized notion of partial equivalence
relations over terms, parameterized by a set of constants and with a distin-
guished constant Q. So, assume we have fixed the term constructors and
rules of reduction for the basic type theory plus simple inductive types.
Let Q be a new constant, intended to represent any arbitrary normalizable
term, and suppose we are given a set S of fresh constants, intended to rep-
resent atomic types. Terms and closed terms in this setting are as before,
with the possibility of occurrences of {2 or elements of S in them. It is also
obvious how one should extend evaluation: 2 and each constant in S has
itself as its value. We write > for the evaluation relation, assuming S is
determinable from the context.

Define PER(S) to be the set of partial equivalence relations £ over
normalizing terms (with possible occurrences of and elements of S) that
respect > and ignore Q, that is to say, a[Q2/z|€a[b/z] for any a[Q/z] € Fi({)
and b € V. The intuition behind ignoring 2 is that since) is representing
arbitrary, unspecified, normalizing terms, any instance of it can be replaced
by such a term and the result will be an equal term.

We continue with a series of definitions that culminate in the defini-
tion of the ultimate set of terms 7 and the series of collections of ground
relations.

o Let Co = 0, let Ty be the set of closed terms with possible occurrences
of Q and let V, be the normalizing terms in 7.

e For ¢ > 0, define the sets C;, 7; and V;, by induction on 2. Let
Cci = U;<:Cj, and let C;, the ground types of level 1, be a set of new
constant symbols, two for each element of PER(C.;). Let X;, ¥; and
Z; range over C;. Let T; be the set of closed terms constructed with
possible occurrences of €2 and the constants in C; U C;. Finally, let
V; be the normalizing terms in 7;.

o Let C=U;C;, T =U;T; and V =U; V;. Thus, T is the set of terms
constructed with possible occurrences of constants in C, and V are
the normalizing terms in 7.

e For i > 0, define |_|; € T — T; (a kind of stripping operation) by

63

letting |a|; be the term constructed from a by replacing every instance
of any ground type of level ¢ + 1, or higher, by Q.

e Let == PER(C). For ¢ > 0, define the ground relations of level 1, by:
;= {€ € 2| Vace Fi(§). aklal;_1}.

e For: > 0, define _|; € Z;, — PER(C.;) to be restriction to V;_; x V;_;.

The motivation behind these definitions is to take the idea of ground
sets used in chapter 3 and generalize it to the situation we have in a type
theory stratified by universes, where all terms are untyped, but types can
be terms themselves. To attempt to identify a collection of ground relations
on terms and then to add constants for each such relation seems doomed
to vicious circularity problems, unless we recognize that we can identify
a separate collection of ground relations for each universe level and have
these relations i¢gnore the constants of its own, and higher, levels.

We add two constants for each relation so that we can have intensionally
distinct but extensionally equal ground types. This is important only for
one base case in the proof of lemma 5.8.

The only other problem to overcome is that, at the moment of intro-
duction of C;, the ultimate set of terms is not defined — after all, we are
in the midst of defining it! So, we can only approximate =; by PER(C.;).
But this is is justifiable, as the next lemma demonstrates.

Lemma 5.1 The functions _|; € =, — PER(C.;) are bijections.

Proof. Fix 1 and abbreviate |a|;_; by |a|. First, we note:
V€ € E;. Va,b e T. atb < |a|(€]:)|b! (5.1)

Suppose a€b; then aé|a| and b£|b|, and so |a|£|b|. Since &[; is the restriction
of £ to Vi_1, |a|(é]:)|b|. For the other direction, suppose for a,b € T, that
la|(€;)]b]; then |a|é|b| and since ¢ ignores (2, a&b. The injectivity of _|;
follows easily from (5.1).

Now we show _|; is surjective. Fix ¢’ € PER(C.;); define £ € V xV by
alb = |a|¢'|b|. The symmetry and transitivity of £ are obvious, so it suffices
to show ¢ ignores 2 and that a € Fi(§) implies af|al.

€ ignores 2: suppose a € Fi({). It is convenient to write a as:

64

al[Q,...,Q,X}l,...,X;l/wl,...,rcm,yl,...,ym],

where each z; occurs exactly once in a,, each X]’-",e is a ground type of level
1, or higher, and no § or ground type of level ¢, or higher, occurs in a;.
Given this notation, |a| is:

a[Q, .. 0, .. Q)T Ty Y1y s Y-
Now to show £ ignores (2, it suffices to show afa,, where:

— 1 n
a9 = al[bl,...,bm,le,...,Xjn/:cl,... yLmyYiy--- ,ym],

and by,...,b, € V. Note |a,| is:
a1[|bl1,...,(bm|,ﬂ,...,Q/:z:l,...,a:m,yl,...,ym].

By the definition of ¢, |a| € Fi(£'), and since ¢’ ignores 2, |a|€'|ay|. Conclude
that aa,, and so £ ignores 2.

a € Fi(¢) = afla|: This is obvious, since afla| < |a[f'||a|| and |_| is
idempotent. Thus £ is in Z;, and so we conclude _|; is surjective.
O

C; was defined so that two constants in it were associated with each
element of PER(C;), so by lemma 5.1, we can transfer this association to
=i let val; € C; — E; be this association, and let rep; € Z; —C; be the right
inverse of val;.

Lemma 5.2 Fach Z; ts a complete lattice under C.

Proof. It is easy to see that =; is closed under arbitrary intersection. Notice
also that the least upper bound of a chain is its union.
a

5.1.1 Operations on ground relations

We have redefined the sets of terms 7 and V, and the collection of par-
tial equivalence relations =. However, the functions given in definition 4.1
are well-defined when reinterpreted in this context and they display the
following properties with respect to Z;.

Lemma 5.3 When ITI, ¥, or {_| _} is restricted to IFAM(E;) — or +

to Z; X Z; — then its range 1s within Z;. I’s range 1s within =;.

65

Proof. Straightforward. As an example, we present the case for IT. Fix
(€, ¥) € IFAM(E;) and a € II(£,%). Let |_| abbreviate |_[;_;; Since a € V
implies |a| € V, we must show a = |a| € II({,9). Fix b = b' € ¢, it suffices
to show a(b) = |a|(b') € ¥[b]. By the definition of IT, a(b) = a(b') € ¥[b];
since ¥[b] € Z;, a(b') = |a(b)| € ¥[b]; factoring the stripping operation,
la(b')| is the term |a|(|5']); and since 1[b] ignores Q, |a|(|b']) = |a|(d") € ¥[b].
Stringing the equalities together, we conclude a(b) = |a|(}") € ¥[b].

a

Definition 5.1
1. Define C € ExE—E; by:
true = true € £ CE' =€ C €.
2. For a given j > 0, define p; € (8; = E;)—E; by:
p;(¢) = the least fixed point of ¢.

3. For a given j > 0, define v; € (E; = E;) — Z; by: letting v;(¢) be
the greatest fized point € € =; of

a=ad €& out(a) = out(a) € (§).

5.2 Type systems

As in chapter 4, let the collection of type systems 7S be IFAM(ZE). Note
that the definitions of EqFam and Fam given in definition 4.2 are sensible
in this context, and that lemma 4.1 holds here, by the same argument.

5.2.1 Constructing type systems

We repeat the construction of F, given in definition 4.3, with the addition
of extra clauses, for the C, u and v types. In particular, we need separate
clauses (11 and 13) for the p and v types just to guarantee the cumulativity
of type universes.

66

Definition 5.2 Fiz 0 < a < w, and by induction assume o; = (15, [_];) €
TS for 0 < j < a are defined. Define G, € TS "3 TS by:

Gal(r, [LI)) = (7, IL]),

where for a given o = (1, [_]]) € TS, we define A = A" € 7' off one of the
following holds; and if so, define [A]' by the corresponding e clause.

1. A > void N A" > void
o [void]' =0
2. G <a. A>U; NA > U,
o [Uj]'=m
A7 <a A>X;NA > X
o [X;] = val;(X;)
4. (a) A>B+CNA >B+(C'
(b) BrB'ACTC'
e [B+C]' =[B]+]C]
5. (a) A>BCCANA>B CC'
(b) BrB'ACTC'
e [BC O] = [BICIC]
6. (a) A>(Zz:B)CANA > (Ez:B")C'
(b) EqFam(o,B,B',Ax.C, Az.C")
e [(S2:B)CY = B(IB], \BL.ICIb/z]])
7. (a) A>(llz:B)C N A" > (Iz: B")C'
(b) EqFam(o,B,B', Az.C,\z.C")
o [(TIz: B)CT' = I ([B], Ab].[C[b/=]])
8. (a) A>{z:B|C}NA > {z:B'|C"}
(b) BtB' A Fam(o, B,\z.C) A Fam(c, B', Az.C")
(c) Vb e [B].3c e [C[b/z]] & Ic' € [C'[b/x]]

[

67

o [{=:B|C}'={[B] | APB.[C[b/=]]}
9. (a) A>1I(bc,B)AA > IV, B
(b) BrB'Ab=1b € [B]Ac=c c[B]
o [I(b,c,B)]' = I(b,c,[B])
10. (a) a <wAA>(pz:U)BAA > (pz:Uys)B
(b) VX, € Co. B[X./z| = B'[Xo/2] € 7.
(c) &= XE. [Blrep,(§)/z]] € 2. ™' E,
o [(nz:Us)B]' = po(9)
11. (a) 3j <. A> (uz:U;)BAA > (uz:U;)B'
(b) (uz:U;)B = (pz:U;)B' € 7
o [(pz:U;)B]" = [(uz:U;)B];
12. (¢) a<wAA>(vz:U)BAA > (vz:Uy)B
() VXo € Co. B[X./z| = B'[Xa/z] € .
(c) ¢ = AE. [Blrep,(¢)/z]] € Ea =" =,
o [(va:U)B]' = va(9)
13. (a) 3j <a. A> (va:U;)BA A" > (va:U,;)B’
(b) (ve:U;)B = (vz:U;)B' € 7;
o [(ve:U;)B]' = [(ve:U;)B];
Let 0o = (Ta, [_]a) = the least fized point of ..
m
Well-formedness Proof. As in definition 4.3, it is a routine matter to verify
the well-formedness of G,, and the new clauses present no further difficul-

ties.
a

68

5.2.2 Properties of o,

In the previous definition we used the well-known fact that monotonic op-
erations on complete partial orders have least fixed points, which can be
found by iterating the operation to an ordinal of greater cardinality than
the CPO. These iterates are useful for proving properties of the least fixed
point, so we adopt the following notations for them.

Definition 5.3 Define the iterates of G, as follows.

o = (r, [L12) = Llrs=(0,0)
oyt = ("L LI = Galal)
o = (2, [N = Uyca0l, for limit A

Thus, 04 =4, o7.

O
Because of clauses 11 and 13, G; IZ G;,1, as was the case in lemma 4.2.
However, the vy-iterates form a chain, and cumulativity follows.

Lemma 5.4 For o < f < w, 0] C g}, and s0 0, = 0.

Proof. Fix a < # < w. The cases for v = 0 and limit v are trivial, so we
consider the successor case. Suppose o} T o;; The cases for the clauses
1 through 9 are as in the proof of the monotonicity of G,. For clause 10
of G,, suppose (pz : Uy)B = (pz : Uy)B' € 711, Let p = (puz : Uy)B,
p' = (pz : Uy)B' and &€ = [p]2*'. Since o2t C o4, p = p’' € 7o and
€ = [pu]a- By clause 11 of G, p =y’ € 'rgH and £ = [[p.]]gH. Clause 12
follows by the same argument, and clauses 11 and 13 are immediate. From
this fact we conclude o, C 0.
a

We define the four predicates A = B, A Type,a =b€ A and a € A as
in definition 4.4:

A=B = Ar,B
AType = A=A

a=beC = Cer,Na=be|[C],
acC = a=acC.

69

As before, A = B € U; & A = B € 1;. The facts about these predicates
listed in lemmas 4.3-4.6 carry over to this chapter. As for the new type
constructors, we can list the corresponding facts for C types now because
they follow easily from definition 5.2, but more work must be done to justify
the facts we will assert for the u and v types.

Lemma 5.5

1. BCC=BC(C' & B=BAC=C(C
2. BCC=B'CC'el; & B=BcU;nC=C"eU;
3. a=ad €BCC & BCC Type Aa > true A a' > true

o= eB. b=bcC
Definition 5.4 B (C =truec BC(C

a

The type and membership relations of o; fall into certain classes of ground
relations, as delineated by the next lemma. As a consequence, for A € U;,
there exists an extensionally equal constant in C;, and therefore our choice
of collections of ground relations is justified.

Lemma 5.6 For 0 <i<w, 7; € Z;4; AVA € 7. [A]: € Ei.

Proof. Let TS; = {(r, [L]) e TS |t € Zixi AVAeT. [A] € Zi}. TSiisa
sub-CPO of TS and by lemma 5.3 and definition 5.1, ¢ € TS; = Gi(o) €
TS;, so G;’s least fixed point, 7;, is in 7 S;.
O

We define the notion of extensional equality on types.

Definition 5.5 For A Type and B Type,
A =¢ B = [[Aﬂw = [[Bﬂw

a

An important property of the type systems o; is a stratified version of
the substitution property seen earlier in lemma 3.4. The proof for lemma 3.4
was entirely straightforward, but here it is complicated by dependent type
constructors and intensional type equality. We proceed by temporarily ex-
tending evaluation to open terms, letting variables evaluate to themselves.

70

Let >0 be this new relation. We use the following obvious fact about eval-
uation in the lemma 5.8, but note that it depends crucially on there being
no “universe elimination” rule in evaluation, that is, on a type never being
a principle argument in a redex.

Lemma 5.7 For D € T, If A >0 B, and B is not y, then A[D/y] >0
B[D/y; and if A >0 y and D >0 E, then A[D/y] >0 E.

Lemma 5.8 Vi. Vv. VY,, Z; € C;. where Y; and Z; are distinct, yet exten-
sionally equal, VA[Y;/y], A'[Y:/y], D1, Dy € T. such that D, = D, € U; and
Dl =£ Y;:;

AlY:/y] = A'lY:/yl € 7] and A[Z;/y] = A'[Z:/y] € 7 implies
A[D:/y]| = A'D,/yl € U; and A[D:/y] =¢ AlY:/y] =¢ AlZ:/yl.

Proof. Fix i and induct on v. Fix Y;,Z;,A,A’",D; and D,. For a given
open term E, let [Ely = E[Y:/y], [Elz = E[Z;/y], [El, = E[D:1/y] and
[E]; = E[D,/y]. We consider each clause in the definition of G; in turn.

1. Suppose A >o void and A’ >¢ woid, or A >p U; and A’ >¢ Uj, for
j < t. This case is trivial.

2. Suppose A >p X; and A’ >p X;, or A >p y and A’ >0 y. Both cases
are immediate, but note how cases like 4 >o X; and A’ > vy is ruled
out by Y; and Z; being nonequal types. In fact, the sole purpose for
having extensionally equal but intensionally distinct ground types is
this case!

3. Suppose A >p (Xz:B)C and 4’ >¢ (¥z:B')C’. By definition:

(a) [Bly = [B'ly € U; (let £ = [[Bly]:)
(b) Vo =¥ €& [Cly[b/z] = [C']y[t'/z] € U;
(c) [Blz = [B'|z € U; (let ¢ = [[B]z]:)
(d) Yb=1b' € ¢ [Clz(b/z] = [C']z[b'/z] € U..

By induction:
(e) [Bli=[B'.€U;

71

(f) [Bli =¢ [Bly =¢ [Blz

(8) Vo= b € & [CLlb/z] = [C'alH /2] € U,

(h) Vb e & [Cli[b/z] =¢ [Cly[b/z] =¢ [Clz[b/=].
From (e) and (g), we conclude [4]; = [4']; € U;, and from (f) and
(), [A]: =¢ [Aly =¢ [A]z-
The cases for the II type is similar and those for + and C types are
even simpler.

. Suppose A > {z:B| C} and A’ > {z:B’'| C'}. By definition:

(a) [Bly = [B'ly € Ui (let £ = [[B]r]:)
(b) Vo=1b' € & [Clylb/z] = [Cly[b'/z] € U;, and
[C'ly[b/e] = [C'ly[b//z] € U,
(c) Vbe . Fce [Clylb/z] & Fc € [C'ly[b/z]
(d) [Blz = [B']z € U; (let &' = [[Blz]:)
(e) Vb=b €. [Clzb/z] = [C|z[b/z] € U;, and
[C']z[b/2] = [C"]2[b /=] € Us
(f) Vbe €. 3ce [Clz[b/z] & Tc € [C']z[b/z].
By induction (and for (i) and (j), instantiating the inductive hypoth-
esis with D; = D, € U; and D, = D, € U;):
(8) [Bli=[B:€U;
(h) (Bl =¢ [Bly =¢ [Blz
(1) Vo=1b"€ & [Cli[b/z] = [C)1[b'/z] € U;, and
[C']2[b/2] = [C"]1[b' /2] € U
(j) Vbe & [Cli[b/z] =¢ [Cly[b/z] =¢ [C]z[b/z], and
[C'2[b/2] =¢ [C'ly[b/z] =¢ [C']z[b/=].
By (c) and (j)
(k) Vbe & ce [Cli[b/z] & dc € [C'],]b/z].
Thus, by (g), (i) and (k), [4]; = [4"], € Ui;. By (¢), (f) and (j),

for b € £, the inhabitation of [C];[b/z], [C]y[b/z] and [C]z[b/z] are
coincident, and therefore [4]; =¢ [Aly =¢ [4]z.

T2

5. Suppose A >¢ I(b,c,B) and A’ >, I(b',c', B'). By definition:

) [Bly = [B'ly € U; (let £ =[[B]v]:)

Bly = [t'ly € En[ely =[]y €€
[Blz = [B']z € U; (let & = [[Blz]:)
blz =z €& N[c|z=[]z€&"

By induction and the fact that £ € =Z; (a crucial use of ground relations
of level 7 ignoring Y; and Z;):

(a

(b)
(¢)
(d)

(e) [Bli=[Bl2eU:

(f) [Bl1 =¢ [Bly =¢ [Blz

() [bly = [bl1 = [b]z = [b']2 € ¢
(h) [y =[ca=[clz =2 €&

The results follow from these facts.
6. Suppose A >¢ (pz:U;)B and A’ > (pz:U;)B’. By definition:

(a) VX; €C;. [Bly[Xi/z| = [B'ly[Xi/z] € U;

(b) XE.[[Bly[rep;(€)/e]]: € i = &,

(c) VX, eC;. [}Z{XZ/:E] = []z[Xl/:E} e U,.
By induction:

(d) VX; € C;. [Bl1[Xi/z] = [B']2[Xi/z] € U;

(e) VX, € Ci. [Bi[Xi/z] =¢ [B]y[Xi/z] =¢ [B]z[Xi/z].
The monotonicity of A{.[[B]i[rep;(£)/z]]: follows from (b) and (e),

and the result follows from these facts. The case for clause 11 is
identical.

7. Suppose A >¢ (pz:U;)B and A’ >¢ (uz:U;)B’', for j < 1. Then by
definition:

(a) (uz:U;)[Bly = (pe:Uj)[B'ly € Uj.

73

Since 7; € Z;, it ignores Y;, so all of the types (uz : U;)[Bly, (pz:
U;)[B'ly, (nz:U;)[Blz, (pz:U;)[B'lz, (pz:U;)[B]: and (pz:U;)[B']
are equal in Uj, and thus, by cumulativity, equal in U;. The case for
clause 12 is identical.

O
As noted in step 5, this lemma depends on type stratification. For
example, if it had asserted:

AlY;/y) = A'[Y:/y] € 7\ and A[Z;/y] = A'[Z:;/y] € T, implies
A[Dy/y] = A'[D,/y] € Uirr and A[D:/y] =¢ A[Yi/y] =¢ AlZ:/y],

it would be false: let C be an inhabited type in U; (say, X1 — X1), let D,
and D, be {Y;| C} and let A and 4’ be I(Y;,y,U;). The contradiction is that
I(Y;,Y;,U;) is inhabited, while I(Y;, D1,U;) and I(Y;, Z;, U;) are not. This
shows the edge between intensionality and extensionality that the lemma
must balance upon.

Now we can list the facts for the p and v types.

Lemma 5.9 Abbreviate p = (pz :U;)B, p' = (pz:U;)B', v = (vz :U;)B
and V' = (ve:U;)B'.

1. p=p'€lU; & VA=A €U, B[A/z]=B'[A'/z] € U; A
VA, A' € U;. A< A' = B[A/z) < B[A"/z]
n Type Na = a' € Blp/z]

VA= A"e€U;. BlA/z]| = B'[A"/z] € U; A
VA,A' € U;. A4 A' = B[A/z] 4 B[A'/x]
4. a=d cv & v Type A out(a) = out(a’) € Blv/z]

2. a=deypu

g
3. v=reU; &

Given P CV x V, define P(A) =Vb=1b' € A.P(b,b'); then:
VAe U;. Ad p= P(A) = P(B[A/z])
P(w)

Given C — v Type, and terms ind = Iw.v_ind(w; 2z,w.b) and ind' =
dw.v_ind(w; z,w.b') we can conclude ind = ind' € C —v, from:

ind =imd' cC— A
dw.b[ind/z] = dw.b'[ind’/z] € C — B[A/z]

5.

6. VAcU;.v<d A=

74

Proof.
1. Suppose u = p’ € Uj;; then by the definition of G;:
(a) VX, € C;. B[X;/z] = B'|X;/z] € Uj, and
(b) & [Blrep;(¢)/=]]; € =, =5,

Fix A = A" € U;. Let X; = rep,([A];); by lemma 5.8, B[A/z]| =
B'[A'/z| € U;. Fix A, A’ € U such that 4 I A". Let X; = rep;([4];)
and X = rep;([A'];); then X; < X!, and so [B[X;/z]]; C [B[X]/z]];-
By lemma 5.8, [B[4/z]]; € [B[A'/z]];, and therefore B[A/z] <
B[A'/z].

For the converse, suppose:

(a) YA = A' € U;. B[A/z] = B'[A'/z] € U}, and
(b) YA, A' € U;. A< A’ = B[A/z] < B[A'/z).

Since X; = X; € Uj, (a) implies:
VX; € C;. B[X;/z] = B'[X;/z] € Uj.
Fix §,€' € Zjsuch that £ C ¢, and let X; = rep;(£) and X} = rep,(¢').
Then by (b), [B[X;/z]]; C [B[X]/z]];, and thus:
X¢. [Blrep,(&)/2l]; € & =" B,
and by the definition of G;, up = p' € Uj.

2. Suppose a = a' € u; by the definition of G, u = p’ € U; and p Type.
Let X; = rep;([u];); by lemma 5.8, conclude Blu/z] =¢ B[X;/z],
and by the definition of u;, p =¢ B[X;/z], thus a = @' € Blu/z].

3. — 4. By the same arguments for 1- 2.

5. Fix P C VxV and assume VA € U;. Adu = P(A) = P(B[A/z]). We
will prove, for b = b’ € p, that P(b,b') by induction on an ascending
chain in E; with limit [u];. Define:

75

¢ =0
&t = [BIX] /2]l
£ = Uyer &, for limit A,
where X7 = rep;(€”). The base and limit cases are trivial. Fix

b=1"b'¢ X]H. Since [u]; is an upper bound on the chain, X;H 4 p,
and by induction P(X]), so by the initial assumption, P(B[X] /z]).
Since X;-'H =¢ B[X] /z], conclude P(b,¥).

6. Fix C — v Type, ind and ind’; assume:

ind =ind' € C— A
Mw.b[ind/z] = Aw.b[ind'/z] € C — B[A/z]

VAeU,. vd A=

We will prove ind = ind’ € C — v by induction on a descending chain
in E; with limit [v];. Define:

£ = VyxVy
c=c €&t = out(c) = out(c) € B[Xf/:c]
& = Np<a €8, for limit A,
where Xf = rep;(€?). The base and limit cases are trivial. Fix
X] and e = € € C; since [v]; is a lower bound of the chain,

v 4 X7. By induction, ind = ind' € C — X], so by the ini-
tial assumption, b[ind,e/z,w] = V'[ind’,€'/z,w] € B[X]/z]. Since
out(ind(e)) =~ blind,e/z,w| and out(ind'(e')) ~ b'[ind',e'/z,w]|, we
may conclude ind = ind' € C — X;-’H.

5.3 Truth and soundness

We define the predicates a; = a; € 'and I' = b = b € B as in 4.3. All
the proofs of soundness of rules from that section carry over to the context
of this section. Thus, all that remains is to by verified is the soundness of
the proof rules for the C, u and v types.

5.3.1 Soundness of the C type rules
Lemma5.10 ' =B C C = B' C C' € Uj 1is implied by
[.T=B=RBecl;
2.TE=EC=Cel;
Proof. Fix a; = a, € T'; it suffices to prove:
3. [BCCl,=[B'CChel;
I and 2 imply
4. [B]; = [B']; € U;, and
5. [Ch=[C": €U

and by lemma 5.5, 4 and 5 imply 3.
|

Lemma 5.11 T |= true = true € B C C s tmplied by
I.T,z:B=z€C
2.TEBCCeU;

Proof. Fix a, = a, € T'; it suffices to prove:
3. [BCCly;=[BCC]yand
4. true = true € [B C C};.

3 is implied by cumulativity and 2. Fix b = § € [B],; I implies
5. b=10 € [C],

thus 4 holds by the lemma 5.5.
O

Lemma 5.12 I' = b = b € C is implied by

1.TEb=bEeB
2.T=teBCC

Proof. Fix a, = a, € T'; it suffices to prove:
3. [C]y =[C], and
4. [b]; = [¥'])2 € [C]1.
1 and 2 imply
5. [bl1 =[], € [Bls,
6. [BCCl; =[BCC];and
7. [t} € [BC C.
By lemma 5.5, 6 implies 3, and 7 and 5 imply 4.

a

5.3.2 Soundness of the y type rules
For the next three lemmas, let p = (pz:U;)B and p' = (pz:U;)B".
Lemma 5.13 ' = p = p' € U; s implied by

1.T,2:U; =B =BecU,
2. T, z2:U;, y:Uj, z Cy=tec BC Bly/z]

Proof. Fix a; = a, € I'; it suffices to prove:
3. [ph =[]z €U;,

which, by lemma 5.9 is implied by
4. VA= A' € U;. [B|:|A/z] = [B']2[A"/z] € Uj, and
5. VA, A' € U;. Ad A' = [B];[A/z] < [B]1[4'/z].

Now, I implies 4 and 2 implies 5.
a

Lemma 5.14 I' =b =10 € p is implied by
1. T =b=V¥ € Blu/z|

2. T =pel;
Proof. Fix a = a’ € T; it suffices to show

3. [ph = [p]2, and

4. [b1 = [b']2 € [ph-
! and 2 imply

5. [b]y = [t']> € [B[p/z]]1, and

6. [ph = [u]2 € Uj.
By cumulativity, 6 implies 3; by lemma 5.9, 5 and 6 imply 4.
a
Lemma 5.15 ' = p_ind(b; z,y.d) = p_ind(V'; z,y.d") € D[b/y] is im-
plied by

1.7, z:U;, c Cp, z:(lly:z)D, y:Bl=d=d € D

2T Eb=Veyp

Proof. Fix @ = a' € T. Let ind = Ay.u_ind(y; z,y.[d)1) and ind’
Ay.p_ind(y; z,y.[d']2). Let [be the context of subgoal /. By 2,

3. [pr = [u]s, and
4. [b]1 = [V']2 € [p]s-
The lemma follows from showing, for any ¢ = ¢ € [,
5. [Dh[e/y] = [D]a[c'/y] and
6. ind(c) = ind'(¢') € [Dli[e/y],

which we prove by using the induction principle of lemma 5.9.
Fix A € U; such that A < [u];, and assume 5 and 6 hold for ¢ = ¢’ € A.
(Note [B];[A/z] € U;, by lemma 5.9.) For ¢ = ¢’ € [B]1[A/z] we have

. . !
aq, A, true,ind,c = a,, A, true, ind’, ' € T,

so by 1,

79

7. [Dlile/y] = [Dla[¢'/y], and
8. [d)ilind,c/z,y] = [d]alind',¢/2,y] € [Dhle/y].

ind(c) ~ [d];[ind,c/z,y] and ind'(c') ~ [d'];[ind’,c'/2,y], so 8 implies 6.
This completes the argument.
a

5.3.3 Soundness of the v type rules
For the next three lemmas, let v = (vz:U;)B and V' = (vz:U;)B'.
Lemma 5.16 ' =v = ' € U; ts implied by

1. T,z:U; =B =B €U

2.1, 2:Uj, y:Uj, e Cy =t € BC Bly/z|

Proof. Like lemma 5.13.
a

Lemma 5.17 T = out(b) = out(d’) € Bv/z| is implied by
I.TEbb=VEev
2. T F veU;

Proof. Like lemma 5.14.

a

Lemma 5.18 I' = v_ind(c¢; z,w.b) = v_ind(c'; z,w.b') € v 1s implied by
1.T,2:U;,vCz, 2:C—z,w:Cl=b=0b€B
2.TEc=delC
3. T l: v E UJ'

I

Proof. Fix a = @' € I. Let ind = Aw.v_ind(w; z,w.[b];) and ind’
Aw.v_ind(w; z,w.[b']). Let I'' be the context of subgoal 1. By 2 and 3,

4. [d]; = [d]; € [C]1, and
5. [V = [v]: € U;.

80

Fix A € U; such that [v]; < 4 and ind = ind’ € [C]; — A. Fixe = €' € [Cly;

we have

a, A, true,ind,e = a,, A, true, ind’, ¢’ € T,
so by 1,

blind,e/z,w] = b'[ind', €'/ z,w] € [B];[4/z].

Since out(ind(e)) =~ blind,e/z,w| and out(ind'(e’')) ~ ¥'[ind’,e'/z,w], we
see ind = ind’' € [C]; — [B];[4/z]. So by lemma 5.9, ind = ind’ € [C]; —
[v]1. This completes the argument.

a

5.4 Concluding consistency

As in 4.4, we can conclude all derivable sequents are true, and in the case
of - b = b € B, this again implies b = & € B. As in 4.4, from this we can
conclude the intuitionistic consistency of the theory.

5.5 Strong positivity

One property that the introduction rule for inductive types must enforce
is monotonicity of the body of the type. Our given rules do this directly
with C types, but in this section we introduce alternative introduction rules,
using the syntactic condition of strong positivity, and show their soundness.
The situation here is more complicated than in chapter 3, because the type
expression may computationally “juggle” the variable of interest, only to
have it land on the left hand side of a II type (that is, in subterm B of
(IIz : B)C). The solution is to ensure that the strong positivity condition
is preserved under evaluation.

Definition 5.6 z is strongly positive with respect to B (SP(B,z)) iff «
does not occur free:

1. on the left hand side of a Il or C type in B.

2. in a term b where c(b) ts a subterm of B.

81

3. in a principle argument of any other eliminations form which s a
subterm of B.

a

The approach to showing soundness will be as in chapter 3: show certain
monotonicity properties of the operations in definitions 4.1 and 5.3, then
conclude strong positivity implies monotonicity by an induction on the
construction of o;. We begin by defining two partial orderings of JFAM (Z).

Definition 5.7 For (¢, v¥), (£, ¥') € IFAM(Z):

(& ¥) T (¢, ¥') § S & nVael P(lale) € ¥'([ale)
(& ¥) Ta (€, ¥) § =& AVa e P(lale) € Y'([ale)

!

He

a
So for functions in JFAM () — Z we will have the notion of 1-monotonic
and 2-monotonic.

Lemma 5.19 Operation + is monotonic in both arguments, C is mono-
tonic in its second argument, and I is monotonic; ¥ and { | } are 1-
monotonic, while IT is 2-monotonic; u and v are monotonic.

Proof.

Each case is easily verified; we present the ¥ and IT cases as examples.

Suppose <£’ ¢> Cy <§I7 '¢’,>; fix <b1 C> = <b,a C') € S(E’d’) By 1-
monotonicity, b¢'b and ¢ = ¢’ € ¢'([b]), thus (b, c) = (¥, ') € X (¢,¢').
Conclude ¥ is 1-monotonic.

Suppose (£, ¥) Ty (&', ¢'); fix Az.c = Az.c' € IT(€,4) and b =¥ € ¢'.
By 2-monotonicity, béb and c[b/z] = '[b'/z] € ¢'([b]). Conclude IT is
2-monotonic.

a

Lemma 5.20 VX,,Y; € C;. such that X; Y, V. VA X;/y], A" [X:/y]| € T.
such that SP(A,y) and SP(A',y):

(1) AlXi/y] = A'[Xi/y] € 7 A AlYi/y] = A'lYi/y] € 777 implies
(1) A[Xi/y] < AlYi/y].

82

Proof. Fix 1 and X,,Y; € C; such that X; 4 Y;, and induct on v. Each
clause in the definition of G; is straightforward, and we present the most

problematic case here, for the ¥ type.
Suppose A > (Xz: B)C and A’ > (Zz : B')C'. Assume (i); by the
1-monotonicity of ¥, (Xz:[B]x)[Clx 9 (Xz:[B)y)[Cly follows from:

1. [Blx < [Bly and
9. Wb e [Blx. [Clx[b/z] < [Cly[b/z).

By the definition of G; and (i),
3. [Blx = [B']x € U: A [Bly = [B'ly € U,

and 1 follows by induction. Fix b = ¥ € [B]x; by 1, b =¥ € [Bly, so by
the definition of G; and (%),

4. [Clx[b/z] = [C"]x[b'/z] € Ui A [Cly[b/] = [C'ly[b'/2] € Ui,

and by induction, 4 implies 2.
O

Corollary 5.1 If SP(A,z), SP(A',z) and VX; € C;. A[X,/z| = A'[Xi/z] €
U; then XE.[A[rep,(€)/z]]; € = =2 E,.

Now the soundness of following introduction rules follow from corol-
lary 5.1 without difficulty.

Tk (pz:U;)B = (pz:U;)B' € U; (if SP(B,z))
r, a::UjF—BZB'EUj

't (ve:U;)B = (ve:U;)B' € U; (if SP(B,z))
T, :I::UJ"_B:B'EU]'

5.6 Parameterized inductive types

In this section we take the constructions of sections 1-4 and adapt them
to model parameterized inductive types. The change is a uniform one, and
basically amounts to shifting the intended meanings of the constants in C
from types to families of types. The following is an outline of the changes
to be made. We will use the abbreviations:

83

p@t = (pz:C—U,)BGt p = Aw.pQuw

p'at = (pz:C'—=Uy,)B'Qt p = dw.p/Quw

vQt = (ve:C—U,)BGt v = lw.rQuw

V'@t = (vz:C'—U,)B'@t Vv = lw./Quw
Adc A" = VeeC. A(c) D A'(c)

5.6.1 Ground relations and ground type families

1.

Instead of the constants in C; representing ground relations, they
should now represent families of ground relations. So C; is defined to
be a set of new constants, two for each element of FAM(PER(C.;)).
These constants should now more properly be called ground type fam-
ilies.

Evaluation must treat X; € C; as a function constant, so we add the
following clause to the definition of >.

a 2 X,;
a(b) > X;(b)
The mappings val; and rep; can be moved up to families in the manner
of step 1, so we have val; € C; — FAM(E;) and rep; as its right

inverse. Let dom(X;) = £, where £ is the relation in Z; such that

valy(X;) € FAM(E,Z,).

By the point-wise ordering inherited from Z;, FAM (Z;) is a complete
lattice. Redefine operations p; and v; to be in:

H (T 25 0) =,

EEeE;
where ¥ = FAM (&,Z;), by letting:
1;(€)(#) = the least fixed point of ¢,
and letting v;(£)(¢) be the greatest fixed point ¢ € ¥ of:

Vb€ & a=d €Y[b] & out(a) = out(a’) € $(¢)[b].

84

5.6.2 Type systems
Alter definition 5.2 by replacing clause 3 by:
3. (a) I3 <a. A> X (c)NA > X;()
(b) ¢= ¢ € dom(X,)

o [Xi()' = val;(X;)([c])
Also, replace 11 and 13 with the obvious analogues, and 10 and 12 by:
10. (a) a<w.A> (pz:C—U,)BQcA A" > (pz:C'—U,)B'Qc
(b) CrC'Ne=c€[C] (let £ =[C] and ¥ = FAM(&,Z,))
(c) VX4 € Cudom(X,) =& = B[X,/z] = B'[X,/z] € £ >
(d) ¢ = M. A[d].[Blrep,(¥)/z](d)] € ¥ ="
o [(n2:C)BO] = pu,(£)(H)le
12. (a) a<w.A> (ve:C—Uy)BQcAA > (vz:C'—U,)B'Qc
(b) CrC'ANe=C€[C] (let £ =[C] and ¥ = FAM(¢,Z,))
(c) VXq4 € Co.dom(X,) = € = B[X./z] = B'[X,/z] € E—>T
(d) ¢ =2p.A[d].[Brep,(v)/z](d)] € ¥ =" ¥

o [(vz:C)B]'Qc=v;(£)(9)lc]

In the style of lemma 5.9, by a substitution lemma similar to 5.8, we
will be able to conclude the following facts about the parameterized y and
v types.

1. pQc = p'Qd &
(a) C=C"€e U,
(b) e=€eC
(c) VA=A"€e C—U;.B[A/z] = B'|A'/z] € C - U,
(d) VA,A' e C—-U; A<y A' = B[A/z] <¢ B'[A'/z]

2. a=d € pQc & pQc Type A a = a’ € Blp/z](c)

85

3. Given P CV xV xV xV, define P(A) =Ve=c € C.a =4d €
A(¢).P(c,c,a,a’); then:

VA€ C—U;. Ad¢p = P(A) = P(B[A/z])
P()

4. vQc = V'Q &

(a) C=C"eU;

(b) e=c el

(c) VA=A'"€e C—U;.B[A/z] = B'[A'/z] ¢ C = U;
)

(d) VA,A'€e C—U;. Ad¢ A' = B[A/z] d¢ B'[A'/z]
5. a =a' € v(c) & vQ@c Type A out(a) = out(a’) € Blv/z|(c)

6. Given (Ilw:C)v@uw Type, and terms ind = Aw.v_ind(w; z,w.b) and
ind’ = Mw.v_ind(w; z,w.b’) we can conclude ind = ind’ € (Ilw :

C)vQu, if for all 4 € C —Uj such that v J¢ A:

ind = ind’ € (Ilw:C)A(w)
w.b[ind/z] = Aw.b[ind'/z] € (Tw:C)B[A/z](w)

5.6.3 Truth and soundness

With the six facts just listed we can prove the soundness of the proof rules
for parameterized inductive type by arguments similar to the ones for their
simple versions. As an example, we prove the soundness of the y induction
rule.

Lemma 5.21
[= p_ind(c;b; z,w,y.d) = p_ind(c';b'; 2,w,y.d") € Dlc,b/w,y]

1.T,2:C—U;, ¢ Co p,y 2:(Hw:C)y:z(w))D, w:C, y: B(w)
E=d=d¢€D

2.TEc=deC

3. TEb=V € puQc

86

Proof. Fix a = a' € T. Let ind = Aw,y.u_ind(w;y; z,w,y.[d];) and

ind' = Aw,y.u_ind(wiy; z,w,y.[d]). By 2 and 3
4. [ClL =[C]y
5. [ch =l € [C]y
6. (4Qcly = [uQcl
7. [b]y = [b']2 € [nQc]y

The lemma follows from showing, for e — ¢’ € [C]; and f = f' € [p@el,,
8. [Dlile, f/w,y] = [Dla[€', f'/w,y] and
9. ind(e)(f) = ind'(¢')(f') € [Dhile, f/w,yl,

which we prove by the induction principle of the previous subsection.
Fix A € [C]; — U; such that 4 J; [p];, and assume 7 and 8 hold for e =
e € [C]; and f = f' € [A]i(e). Fore =¢' € [C], and f = f" € [B]:[A/z](e)

we have
ai, A, w.true,ind, e, f = ay, A, \w.true,ind’ €, f' € I,
where I is the context of 1. By I,
10. [Dlile, f/w,y] = [D][€', f'/w,y], and
11. [d]s[ind, e, f/z,w,y] = [d']z[ind", ', f'/z,w,y] € [D][e, f/w,y].

Thus, ind(e)(f) ~ [d],[ind, e, f/z,w,y], ind'(e')(f) = [d']2[ind', €, f'/z,w,y],
and so 11 implies 9. This completes the argument.

O

As in the simple case, consistency follows from soundness.

5.7 The A type

In this section we demonstrate how the methods of this chapter can be used
to prove the consistency of a stratified version of A, the type abstraction
type constructor of chapter 3. We begin by listing the expected proof rules
for such a type constructor. (For this section, let A = (Az:U;)B and
A'=(Az:U;)B'.)

87

THA=AEU,
T,z:U;F B=B €U,

FrEb=0bcA
[yz:U;Fb=0b'€B
Fl—AEUj

TFb=4c B[A/q]
'Cb=ecA
F}—AEU]'

Note that the second-order lambda calculus can be embedded in U;
using this type constructor. It would appear that the semantic account of
the previous sections should support such a type constructor, and indeed,
this is the case. In this final section we list the alterations needed to verify
the soundness of the A rules.

1. For j > 0, define the operations 4; € (£; - ZE)—Z, for 3 > 0, by:

Ai(¢) = (] #(&)-

£EE;
When restricted to Z; — Z;, A;’s range is =;.
2. Add to the definition of G, the two clauses:
(a) a<wAA>(Az:Uy)BANA" > (Az:Uy)B’
(b) VX4 € Co. B[Xo/z] = B'[Xo/z] €T
o [(Az:Ua)B]' = Aa(AL.[Blrep,(£)/]])
() <. A>ANA >N
(b) A=A"erT;
o [A] =[A];
3. In the style of lemma 5.9 we have the following properties.
(a) A=A'eU; VA=A €U, BlA/z] = B'[A"/z| € U;
(b) a=d' € A= A Type A\VA€ Uj.a=d' € B[A/z]

The soundness of the A type rules follow from this without difficulty.

88

Summary

We have relativized the semantics given in chapter 4 to account for simple
and parameterized inductive types. The main obstacle, the impredicativity
of their definition, was overcome by identifying an appropriate collection
of relations for each universe level and introducing constants for each such
relation. In a key lemma of this chapter, we showed how operations on a
universe level must preserve extensional equality, which lead to a justifi-
cation of the inductive types’ proof rules. We also demonstrated how this
semantics readily could be used to justify a stratified version of the A type
constructor of chapter 3.

89

Chapter 6

Conclusions

We have addressed the problem of extending a type theory by inductive
types, in the context of the NUPRL type theory. We review the results of
the previous chapters and discuss research directions.

6.1 Results

What we wished to capture directly in the type theory were forms of induc-
tive and co-inductive definition. We achieved this through the x and v type
constructors, respectively, which allow us to solve certain type equations
for their least and greatest solutions. The induction principle associated
with the u types let us define well-founded recursive functions, and the dual
principle for the v types let us inductively define their “infinite” elements.
A domain theoretic solution would not have been acceptable in this context,
because it would not be sensible in the framework of propositions-as-types.

In chapter 2, after an introduction to type theory, we presented proof
rules for these new type constructors. We demonstrated how they can be
used to define types such as the natural numbers, lists, finite trees, well-
founded trees, mutually defined data types, inductively defined predicates,
parameterized inductive data types, streams and infinite trees. Among the
features of the proof rules, we demonstrated how an inductive principle
for the u type, which takes advantage of the information hiding properties
of the {_ | _} type, can be used to constructively define an unbounded
search operator, or more generally, to compute under the assumption of
inhabitation.

90

In the following chapters we turned our attention to matters of seman-
tics and consistency. Before attempting to formally verify the consistency
of the type theory with inductive types, in chapter 3 we considered the same
question in the simpler setting of the second-order lambda calculus, which
allowed the separation of the core of the consistency argument from the
additional concerns of the type theory. The property corresponding to con-
sistency in this situation is strong normalizability. We examined recursive
definition in two ways in this chapter. In 3.1, type constructors u and v are
added and strong normalizability of typed terms was shown using Girard’s
candidat de réductibilité method. While in 3.2, we considered typing terms
in the presence of equational type constraints. We gave a condition for
determining if a set of such constraints admits the typing of only strongly
normalizing terms, or the typing of a diverging term.

Returning to the type theory introduced in chapter 2, in chapter 4
we built a type-free model for it. In such a type theory, with dependent
type constructors, type universes and intensional equality types, one is
defining type expressions and terms simultaneously, so the methods used
in the previous chapter must be modified. We identified a well-founded
order in which types may be thought of as being constructed, by viewing
type construction as a monotonic operation on a suitable complete partial
order, denoted 7S. The elements of TS represent systems of types and
their order relation corresponds to the consistent enlargement of a system
of types. Monotonic operations F; were defined on 7S to model the closure
of a type universe U; under the basic type constructors. The model of U; is
used in the definition of F;, for j > 1, because U; is an element of U;. Thus,
the models in the hierarchy of universes are built in an iterative fashion.

There is a subtle point in this construction. A type in Uj, or a term
in such a type, may have subterms of higher universe level — how is this
justified, given that we have just said these models are built iteratively?
Simply by having a non-compositional definition that exploits the compu-
tational nature of terms, interleaving evaluation with decomposition. For
example, an expression A is a admitted as a type in U if it evaluates (as
defined by the type-free relation >) to (Ilz : B)C, and B has been previ-
ously admitted to U, and for b = b’ € B, C[b/z] and C[b'/z]| are equal
types, previously admitted into U;. This provides an direct solution to the
seemingly impredicative definition of terms and types.

91

With such a model, it was a straightforward matter to define the judge-
ments of typehood, type equality, member equality in a type and mem-
bership in a type, and to isolate the basic properties of these judgements.
We extended the meanings of judgements to define truth for sequents and
showed the soundness of the proof rules. From soundness, we concluded
intuitionistic consistency, because in our model void is uninhabited, and
therefore under the propositions-as-types correspondence, we had proposi-
tional consistency — False is not provable.

In chapter 5 we based our relativization of chapter 4’s construction on
the approach of chapter 3, but before reviewing further, it is illuminating to
look at the proof of the strong normalizability of the second-order calculus
given in [19]. There, rather than using an environment to give meaning to
the free type variables, the definition of types was extended by introducing
a type constant for each ground set. Its proof had a circularity problem:
by introducing more types, more ground sets are created, as ground sets
are defined with respect to sets of typed terms. This error can be corrected
by using untyped terms in ground sets, as in chapter 3. While terms in
our type theory are untyped, there is a corresponding problem, because
types are first-class terms, e.g., Az.z — U; is a term. In this situation, to
attempt to identify a collection of ground relations on terms and then to
add constants for each such relation seems doomed to the same circularity
problems, unless we recognize that we can identify a separate collection of
ground relations for each universe level and have these relations ignore the
constants of its own, and higher, levels. Given these constants to represent
the classes of ground relations, it is easy to break the impredicativity in the
definitions of the u and v types. From this point on, we merely follow the
line of argument of chapter 4, and eventually conclude with the consistency
of the type theory, extended by inductive types.

In 5.5, we showed how a syntactic positivity condition can often replace
an explicit monotonicity subgoal in the formation rules for inductive types.
While the earlier proof rules in chapter 2 more immediately reflect the
semantics, in practice these other rules are more convenient. Up to this
point, all the work in chapter 5 had been carried out in terms of the simple
p and v types, but in section 5.6 we outlined its modification to the general,
parameterized case. Finally, in 5.7 we presented a stratified version of
the A operator and showed that our semantic account could justify the
impredicativity in its definition as well.

92

As for the computer implementation of the proof rules: an earlier ver-
sion of pu types were implemented in the NUPRL system, by Tim Griffin,
at Cornell. They have been used in the work reported in the thesis of
Knoblock [31], to represent data types of possibly incomplete proofs, and
in the thesis of Cleaveland 9], where they were used to model synchro-
nization trees. The current versions of the p and v types are expected
to be included in the next version of the system, which is currently being
designed.

6.2 Research directions

Constructive type theory is an exciting and open area of study. We end
with a brief discussion of other work now being done on relevant matters,
and other possible research directions.

One major research direction for the NUPRL project is explored in [31]:
the reflection of the NUPRL metatheory into a related type theory, thus
allowing one to bring the power of the system to bear on metatheoretic
issues. Inductively defined types play an important part in this setting,
and there is much work to be done in this area.

We did not consider admitting diverging terms as members of types,
but such an approach to constructive type theory is sensible and natural, if
one considers the computation itself to be an important matter for analysis.
This is currently being investigated by Constable, Smith and Basin [38].

Recent work by Harper and Mitchell is being done on classes of models
for type theory [24]. One item on their agenda is to extend their models to
type constructors like the ones described in this thesis. Such models would
be especially interesting if they could yield a compositional semantics.

Another direction in type theory is the classification of the expressive
powers of particular theories. Aczel has studied a type theory with one
universe level [1], but there is a problem that as one develops more complex,
non-standard type theories, logics which can capture their expressiveness
mirror the type theory’s definition so closely that they beg the question.

Comparisons between different type theories can also be illuminating.
One of the most interesting would be between a predicative theory, such
as the NUPRL logic, and an impredicative one, such as the Theory of Con-
structions. This thesis is a step in that direction because it shows how to

93

treat in a predicative manner some interesting impredicative concept.

94

Appendix A

Definition of the Basic Type
Theory

The core of the intuitionistic type theory used in this thesis is defined in
this appendix. In appendix B, we give its extension by inductive types.
In each appendix we begin by defining the terms of the theory and the
evaluation relation >; then we present the proof rules.

A.1 Terms

We begin with an inductive definition of terms, then specify how variables
become bound in them. As usual, we identify terms that are alphabetic
variants in their bound variables.

Assume we have a infinite list of variables vy, v,,... and let w,z,y and 2
range over them. Let a,b,c,d,e and 4, B,C, D and E range over terms. We
define the terms of the basic theory inductively, by the following clauses.

e Variables are terms.

void is a term, and U; is a term for + > 0.

B+ C, (Iz:B)C, (Xz:B)C, {z:B| C} and I(a,b, B) are terms.

true, Az.b, (a, b), inl(a), and inr(a) are terms.

a(b), spread(a;z,y.b), decide(a;z.b;y.c) and any(a) are terms.

95

We now define how occurrences of variables become bound in terms.

e In (lIz: B)C, (Yz: B)C and {z: B| C'}, the = in front of the colon

and all free occurrences of £ in C become bound.

o In)\z.b, the z in front of the dot and all free occurrences of z in b
become bound.

e In spread(a;z,y.b), the z and y in front of the dot and all free occur-
rences of ¢ and y in b become bound.

e In decide(a;z.b;y.c), the z in front of the dot and all free occurrences
of £ in b become bound; the y in front of the dot and all free occur-
rences of y in ¢ become bound.

A.2 Evaluation

Evaluation (>) is a partial function on closed terms — a term can evaluate
to at most one term. The reduction algorithm is often referred to as lazy or
head reduction. Terms which evaluate to themselves are called canonical.
Being canonical is a property of a closed term’s outermost form. We define
evaluation first by listing the canonical terms, then by giving a list of clauses
for computing with the other terms. We write a[b/z] for the substitution
of b for all free occurrences of z in a, implicitly renaming bound variables
to avoid capture, and we write alb,c/z,y| for simultaneous substitutions.
The following terms, when closed, are canonical.

void U; B+C (Illz:B)C (Zz:B)C
{z:B| C} inr(a) wnl(a) Az.b (a, b)

We complete the definition of > with the following clauses.

a> Az.b bic/z] > e a>(c, d) ble,d/z,y] > e
a(c) > e spread(a;z,y.b) > e

a > wnl(d) bld/z] > e a > nr(d) cld/z] > e

decide(a;z.b;y.c) > e decide(a;z.b;y.c) > e

When z does not occur free in B we sometimes abbreviate (Ilz : B)C by

B—C and (Xz:B)C by B x C.

96

A.3 Proof rules

The logic is given in terms of sequents, and the rules are presented in a
refinement, or top-down, style. Recall that a sequent is of the form:

i :A,... .,z A, Fb=10b € B,

where:

1.
2.
3.
4.

0 <n.
zi,...,T, are distinct variables.
For 1 <1 < n, variables occurring free in A; are among z;,...,z;_;.

the variables occurring free in b, ' and B are among 1, ..., T,.

The A;’s are called hypotheses, and z,: 4,,...,z,: A, is called a context.
Let I' range over contexts. When b and ¥’ are identical, ' - b = ' € B may
be written as I' - b € B.

A.3.1 Void

I' - void = void € U,

't any(b) = any(b’) € C
F'-b6=1% € void

97

A.3.2 Union
T+B+C=B+C el
T'+B=B el
FL_C:C'EUJ'

TFinl(b) = inl(¥) € B+ C
r-b=%¢e¢B
F}"CEU]'

't inr(c) = inr(d)e B+ C
'Fe=cdeC
I'-BeU,

[' - decide(d; z.b; y.c) = decide(d'; z.b'; y.c') € T'[d/z]
I', 2:B, I(d,inl(z),B+C)Fb="¥ c T[inl(z)/z]
I, y:C, I(d,inr(y),B + C)F c = ¢ € Tlinr(y)/z]
F'rd=deB+C

I' - decide(inl(d); z.b; y.c) =bld/z] € T
T+ bld/z] €T

[F decide(inr(d); z.b; y.c) =cld/y|e T
I'Feld/yleT

98

A.3.3 Product
'k (Iz:B)C = (Iz: B")C' € U;
TFB=BcU,
[,e:BFC=C'cl,

'k Az.c = Az.c’ € (lIz: B)C
' Be Uj
Iz:BFec=cd el

I'd=d e (llz:B)C
Iyz:BlFd(z) =d(z) e C
I'deD
'cdeD
'FBeU;

T+ d(b) = d'(¥) € C[b/z]
I'+d=d ¢ (Ilz: B)C
TFb=YWcB

'k Az.c(a) =cla/z] €T
I'Fecla/z]eT

99

A.3.4 Sum
'k (¥z2:B)C = (Xz:B")C' € U,
I'B=RBc¢c Uj
e:BFC=C'eUj

k(b c)=(V,) e (¥z:B)C
'b=0b€¢B
'Fe=c e Cb/z]
[z:BECeU;

[+ spread(d; z,y.t) = spread(d’; z,y.t') € T|[d/z]
T, z:B, y:C, I(d,(z, y),(Zz:B)C)Ft=t"€ T[(z, y)/z]
'-d=d € (Xz:B)C

I+ spread((a, b); z,y.t) =tla,b/z,y| €T
[k tla,b/z,yl €T

100

A.3.5 Subtype

'F{z:B|C}={z:B'|C'} € U;
'-B=BcU;

:BFC e U,

:BFC'eU;

:B, y:CHt el

:B, y:C'-teC

b

)

b

===

8 8 8 8

b

(In the previous rule, if C' and C’ are identical, then the last three
subgoals can be omitted.)

THb=¥c {z:B| C}
r-b=%46eB
I'ce Clb/z]
T,2:BFC el

Lk tb/z] =t'[b/z] € T[b/z]
[, z:B, y:C, I(z,b,B)Ft=t'€T
FFb=0b€{z:B|C}
I'z:BFEC e U,

101

A.3.6 Equality

'+ I(a,b,B) = I(a',b',B'") € U,
T+a=ad € B
THb=bcB

I'+ true = true € I(a,b, B)
'Fa=beB

TFa=bcB
T+te I(ab, B)

A.3.7 Universe
THU; =U; €U, (if 7 < 7)

T-B=BcU; (ifi<j)
T+B=Becl;

102

A.3.8 Miscellany

T'Ft=¢teT
'Ft'=teT

T'Ft=¢eT
'Ft=t"eT
'rt"=teT

I'Ft=¢eT
rFt'=teT
FFT:T'EUJ'

Iz:B, I"-z€B

't=t eT[b/z
TFt=t T/
'-b=0€¢B
[z:BFT eU,

TFitb/z] =t /z]eT
'b=%4cB
Iz:Brt=teT

[,z:A, I"Fb="¥c B (If z does not occur free in I',b,', B)
LI'Fb=b€B

103

A.3.9 Direct computation

We complete the proof rules with rules for direct computation[12]. Each of
the following rules has the restriction that for any closed instance-pairs C*

and D* of C and D,
Je.C*>es D* > e

(By closed instance-pairs, we mean that identical terms are substituted
for the same variables in C' and D.) This condition is undecidable, so
in practice one would strengthen it to a decidable condition for a useful
subset of it. Note that all the computation rules are instances of a direct
computation rule, so they are included purely for convenience.

I z:C, I"+-b=00€B
I'z:D, I"+-b=b € B

r-Cc=%v€eB
'D=VbVecB

T'rb=0beC
'Fb=beD

104

Appendix B

Definition of the Extension by
Inductive Types

We give extensions to the previous appendix’s definition of terms and evalu-
ation, and give the proof rules for the simple and the parameterized versions
of inductive types.

B.1 Terms

We add the following clauses to the definition of terms.

e BCC, (pz:U;)C, (ve:U;)C, (pz : B — U;)CQb and (vz : B —
U;)C@b are terms.

o out(b), u_ind(b;z,y.c), p_ind(a;b; z,w,y.c) and v_ind(b; z,y.c).
The variable bindings for these new terms are as follows.

o In (pz: B)C, (vz : B)C, (uz: B — U;)C@b and (vz : B — U;)C'Qb,
the z in front of the colon and all free occurrences of z in C become

bound.

e In p_ind(d;z,y.c) and v_ind(b; z,y.c), the z and y in front of the
dot and all free occurrences of z and y in ¢ become bound. In the
remaining term p_ind(a;b; z,w,y.c), the z, w and y in front of the
dot and all free occurrences of z, w and y in ¢ become bound.

105

B.2 Evaluation

The following terms, if closed, are canonical.

BCC (pz:B)C (vz:B)C
v_ind(b;z,y.c) (pz:B—U;)CQb (vz:B—U;)CQb

Finally, we may add the following clauses to the definition of >.

V
™

c[Ay.p_ind(y; z,y.¢),b/2,y] >
p_ind(b; z,y.c) > e

cMy.v_ind(y; z,y.c),b/z,y] > e
out(v_ind(b; z,y.c)) > e

cPw.Ay.p_ind(w;y; z,w,y.¢),a,b/z,w,y] > e

p_ind(a; b; z,w,y.c) > e

106

B.3 Proof rules

B.3.1 Containment

TFBCC=BCC el
I'+B=RB el
THC=C'eU;

I't true = true € B C C
I'z:BrzeC
'FBCCeU;

reb=06ecC
F'b=%4ecB
''teBCC

107

B.3.2 Simple u

For this subsection, let:

p = (pz:U;)B
g = (pz:U;)B".
I'Fp=p el

T,z:U;r B=BcU;
T, z:U;, y:Uj;, CybFte BC Bly/z

FFb=bcpu
I'Fb=1"V € Blp/z]
F}‘/.LEU]'

't p_ind(b; 2z,y.d) = p_ind(b'; z,y.d") € D[b/y]
T, z:Uj, ¢ Cp, z:(lly:z)D, y:B-d=d €D
FTFb=becpu

[t u_ind(b; z,y.d) = d[Ay.p_ind(y; z,y.d),b/z,y| €T
I'FdAy.p_ind(y; 2,y.d),b/2,y| €T

108

B.3.3 Simple v

For this subsection, let:

v = (ve:U;)B
v = (ve:Uj)B'.
F'Fv=vel;

I'z:U;F B=B'eU;
T, z:U;, y:U;, ct Cy-te BC Bly/z]

[+ out(b) = out(d') € Blv/z]
FrFb=4ecv

[Fv_ind(c; z,y.d) = v_ind(c'; z,y.d") € vQc
[,z:C—U;, vCcux 2:(lly:C)z(y), y:Cr-d=d €B
['Fv@Qc=vQd e U;

[+ out(v_ind(b; z,y.d)) = d[Ay.v_ind(y; z,y.d),b/z,y] € T
[+ d[Ay.v_ind(y; z,y.d),b/z,y] € T

109

B.3.4 Parameterized p

For this subsection, let:

p@t = (pz:C—U;)BQAt g = Aw.puQu
pat = (pz:C'—U;)B'Qt g o= dw.pQu
tCet! = (Mw:C)t(w) C t'(w).

I'F pQc=p@cd € U;
I'yz2:C—-Uj-B=B¢ecC—-U,
[,z2:C—-Uj, y:C—Uj, e Ccytte B Ce Bly/z]
r-C=0C"€eU;
FFe=deC

't p_ind(c,b; z,w,y.d) = p_ind(c,¥; z,w,y.d') € T[c,b/w,y]
I'z:C—Uj, ¢ Cop, z:(Iw:C)y :2(w))T, w:C, y: B(w)
Fd=deT
FFe=deC
'Fb="¥ € pQc

I'Fp_ind(c; z,w.d) = p_ind(c; z,w.d') € T[c/w]
Iz:C—Uj, ¢ Ceop, z:(lMw:{w:C| z(w)})T, w:C, B(w)
Fd=d €T
'te=cdeC
I'-be€ pQc

'k p_ind(b;c; z,w,y.d) =
ddw. Ay.p_ind(w;y; 2,w,y.d),b,c/z,w,y] € T
I'FdAdw. Ay p_ind(w;y; z,w,y.d),b,c/z,w,y] €T

I'Fp_ind(b; z,w.d) =

ddw.p_ind(w; z,y.d),b,c/z,w,yl € T
I'FdAdw.Ay.p_ind(w;y; z,w,y.d),b,c/z,w,y| € T

110

B.3.5 Parameterized v

For this subsection, let:

vQt = (vz:C—U;)BQt v = lwrQu
vV'at = (ve:C'—Uj)B'Gt Vo= dwa/Qu
tCet' = (Mw:C)t(w) C t'(w).

'k v@c=vQd eU;
I'Ne:C—-U;-B=BcC—-Uj;
I, z:C—U;, y:C—Uj,z Ccytte B e Bly/z]
F"CZC’GU]'
'Fe=cdeC

I'Fv_ind(c; z,y.d) = v_ind(c'; z,y.d") € vQc
T, z2:C—Uj,vCcuz, 2:(lly:C)z(y), y:CHd=d € B
'k vQc =vQcd € U;

T+ out(b) = out(b') € Blv/z|(c)
'Fb=10 €v@c

[F out(v_ind(b; z,y.d)) = d[Ay.v_ind(y; z,y.d),b/z,y| €T
['F dAy.v_ind(y; z,y.d),b/z,y] € T

111

B.3.6 Rules encorporating positivity

As discussed in section 5.5, we can use a syntactic condition of positivity
to guarantee the monotonicity of a recursive type’s body. We restate that
condition here, then present the new formation rules. In each case, it is the
earlier formation rule with the monotonicity subgoal omitted.

z 1s strongly positive with respect to B (SP(B,z)) iff ¢ does not occur
free:

1. on the left hand side of a Il or C type in B.
2. in a term b where c(b) is a subterm of B.

3. in a principle argument of any other eliminations form which is a
subterm of B.

The new formation rules are as follows.

'k (pz:U;)B = (pz:U;)B' € U; (if SP(B,z))
r, :l):Ujl_BZB'EUj

't (vz:U;)B = (ve:U;)B' € U; (if SP(B,z))
I',z:U;F-B=B"¢eU;

[+ (pz:C—U;)BQc = (pz:C'—U;)B'Qc € U; (if SP(B,z))
I'yz:C—Uj-B=B¢cC—-U,
T-C=C'el,
F'e=cdeC

Ik (vz:C—U;)BQc = (vz:C'—U;)B'Qc € U; (if SP(B,z))
z:C-U;FB=BcC—=U;
r-C=0C"eU;
'Fe=cdel

112

Bibliography

1

P. Aczel. The strength of Martin-Lof’s intuitionistic type theory with
one universe. In S. Miettinen and J. Vaananen, editors, Proceedings
of the Symposium on Mathematical Logic, pages 1-32, Department of
Philosophy, University of Helsinki, 1977.

S.F. Allen. A Non-Type- Theoretic Semantics for Type- Theoretic Lan-
guage. PhD thesis, Cornell University, 1987.

R. Amadio, K.B. Bruce, and G. Longo. The finitary projection model
for second order lambda calculus and solutions to higher order do-
main equations. In Symposium on Logic in Computer Science, IEEE
Computer Society, 1986.

E. Bishop. Foundations of Constructive Analysis. McGraw-Hill, New
York, 1967.

V. Breazu-Tannan and A. R. Meyer. Lambda calculus with con-
strained types. In R. Parikh, editor, LNCS #193: Logics of Programs,
pages 23-40, Springer-Verlag, 1985.

K.B. Bruce and A.R. Meyer. The semantics of second order poly-
morphic lambda-calculus. In Symposium on Semantics of Data Types,

LNCS 173, Springer-Verlag, 1984.

N.G. deBruijn. The mathematical language AUTOMATH, its usage
and some of its extensions. In Symposium on Automatic Demonstra-
tion, pages 29-61, Springer-Verlag, 1970.

N.G. deBruijn. A survey of the project AUTOMATH. In J.P. Seldin
and J.R. Hindley, editors, To H.B. Curry: FEssays in Combinatory

113

[15]

[16]

Logic, Lambda Calculus and Formalism, pages 589-606, Academic
Press, New York, 1980.

W.R. Cleaveland. Type- Theoretic Models of Concurrency. PhD thesis,
Cornell University, 1987.

R.L. Constable. Constructive mathematics and automatic program
writers. In Proceedings of IFIP Congress, pages 229-233, Ljublyana,
1971.

R.L. Constable. Programs as proofs. Information Processing Letters,

16(3):105-112, 1983.

R.L. Constable et al. Implementing Mathematics with the Nuprl Proof
Development System. Prentice Hall, 1986.

R.L. Constable and C.D. Johnson, S.D. Eichenlaub. Introduction to
the PL/CV2 programming logic. In Logics of Programs, LNCS 135,
Springer-Verlag, 1982.

R.L. Constable and D.R. Zlatin. The type theory of PL/CV3. ACM
Transactions on Programming Languages and Systems, T7(1):72-93,

1984.

M. Coppo and M. Zacchi. Type inference and logical relations. In
Symposium on Logic in Computer Science, IEEE Computer Society,

1986.

T. Coquand and G. Huet. Constructions: a higher-order proof sys-
tem for mechanizing mathematics. In Proceedings of EUROCAL ’85,
LNCS 203, pages 35-49, Springer- Verlag, 1985.

H.B. Curry, R. Feys, and W. Craig. Combinatory Logic. Volume 1,
North-Holland, Amsterdam, 1958.

M. Dummett. Elements of Intuitionism. Ozford Lecture Series, Clare-

don Press, Oxford, 1977.

S. Fortune, D. Leivant, and M. O’Donnell. The expressiveness of sim-
ple and second-order type structures. Journal of the Assoctation for
Computing Machinery, 30(1):151-185, January 1983.

114

[20] G. Gentzen. Investigations into logical deduction. In M.E. Szabo, ed-

[21]

[22]

23]

[24]
[25]

[26]

[27]

28]

[29]

[30]

itor, The Collected Papers of Gerhard Gentzen, North-Holland, Ams-
terdam, 1969.

J.-Y. Girard. Interprétation fonctionelle et elimination des coupures
dans Uarithmetique d’order superieur. PhD thesis, Paris, 1972.

J.-Y. Girard. Une extension de l'interprétation de Godel a ’analyse,
et son application a I’élimination des coupures dans |’analyse et la
théorie des types. In J. E. Fenstad, editor, Proceedings of the Second
Scandinavian Logic Symposium, pages 63-92, North-Holland, 1971.

M. Gordon, A. Milner, and C. Wadsworth. Edinburgh LCF: a mecha-
nized logic of computation. In Logics of Programs, LNCS 78, Springer-
Verlag, 1979.

R. Harper. 1987. Private communication.

R. Harper. A model construction for Martin-Lo6f’s type theory. 1987.
Unpublished manuscript.

R. Harper, F. Honsell, and G. Plotkin. A framework for defining log-
ics. In Proceedings of the Symposium on Logic in Computer Science,
pages 194-204, IEEE, 1987.

S. Hayashi and H. Nakano. PX, a Computational Logic. Technical Re-
port RIMS-573, Research Institute for Mathematical Sciences, Kyoto
University, 1987.

J.van Heijenoort. From Frege to Godel: A Sourcebook in Mathematical
Logic. Harvard University Press, Cambridge, MA, 1967.

W. Howard. The formulae-as-types notion of construction. In J.P.
Seldin and J.R. Hindley, editors, To H.B. Curry: Essays in Combina-
tory Logic, Lambda Calculus and Formalism, pages 479-490, Academic
Press, New York, 1980.

D.J. Howe. The computational behavior of Girard’s paradox. In Pro-
ceedings of the Symposium on Logic in Computer Science, pages 205—

914, IEEE, 1987.

115

31]

32]

39]

[40]

[41]

T.B. Knoblock. Metamathematical Eztensibility in Type Theory. PhD
thesis, Cornell University, 1987.

P. Martin-Lof. Constructive mathematics and computer programming.
In Sizth International Congress for Logic, Methodology, and Philoso-
phy of Science, pages 153-175, North-Holland, Amsterdam, 1982.

P. Martin-Lo6f. An intuitionistic theory of types: predicative part.
In E.H. Rose and J.C. Sheperdson, editors, Logic Colloguium 73,
pages 73-118, North-Holland, Amsterdam, 1973.

D. Prawitz. Natural Deduction. Almqvist and Wiksell, Stockholm,
1965.

J. Reynolds. Towards a theory of type structures. In Colloque sur la
Programmation, LNCS 19, pages 403-425, Springer-Verlag, 1974.

B. Russell and A.N. Whitehead. Principia Mathematica. Volume 1,
Cambridge University Press, Cambridge, MA, 1925.

D. Scott. Constructive validity. In Symposium on Automatic Demon-
stration, pages 237-275, Springer-Verlag, 1970.

S.F. Smith and R.L. Constable. Partial objects in constructive type
theory. In Proceedings of the Symposium on Logic in Computer Sci-
ence, pages 183-193, IEEE, 1987.

S. Stenlund. Combinators, \-terms and Proof Theory. D. Reidel,
Dordrecht, 1972.

W. W. Tait. Intensional interpretation of functionals of finite type I.
Journal of Symbolic Logic, 32:198-212, 1967.

A. Tarski. A lattice-theoretical fixpoint theorem and its applications.
Pacific Journal of Mathematics, 1(5):285-309, 1955.

116

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif
	pdftemp/0036.tif
	pdftemp/0037.tif
	pdftemp/0038.tif
	pdftemp/0039.tif
	pdftemp/0040.tif
	pdftemp/0041.tif
	pdftemp/0042.tif
	pdftemp/0043.tif
	pdftemp/0044.tif
	pdftemp/0045.tif
	pdftemp/0046.tif
	pdftemp/0047.tif
	pdftemp/0048.tif
	pdftemp/0049.tif
	pdftemp/0050.tif
	pdftemp/0051.tif
	pdftemp/0052.tif
	pdftemp/0053.tif
	pdftemp/0054.tif
	pdftemp/0055.tif
	pdftemp/0056.tif
	pdftemp/0057.tif
	pdftemp/0058.tif
	pdftemp/0059.tif
	pdftemp/0060.tif
	pdftemp/0061.tif
	pdftemp/0062.tif
	pdftemp/0063.tif
	pdftemp/0064.tif
	pdftemp/0065.tif
	pdftemp/0066.tif
	pdftemp/0067.tif
	pdftemp/0068.tif
	pdftemp/0069.tif
	pdftemp/0070.tif
	pdftemp/0071.tif
	pdftemp/0072.tif
	pdftemp/0073.tif
	pdftemp/0074.tif
	pdftemp/0075.tif
	pdftemp/0076.tif
	pdftemp/0077.tif
	pdftemp/0078.tif
	pdftemp/0079.tif
	pdftemp/0080.tif
	pdftemp/0081.tif
	pdftemp/0082.tif
	pdftemp/0083.tif
	pdftemp/0084.tif
	pdftemp/0085.tif
	pdftemp/0086.tif
	pdftemp/0087.tif
	pdftemp/0088.tif
	pdftemp/0089.tif
	pdftemp/0090.tif
	pdftemp/0091.tif
	pdftemp/0092.tif
	pdftemp/0093.tif
	pdftemp/0094.tif
	pdftemp/0095.tif
	pdftemp/0096.tif
	pdftemp/0097.tif
	pdftemp/0098.tif
	pdftemp/0099.tif
	pdftemp/0100.tif
	pdftemp/0101.tif
	pdftemp/0102.tif
	pdftemp/0103.tif
	pdftemp/0104.tif
	pdftemp/0105.tif
	pdftemp/0106.tif
	pdftemp/0107.tif
	pdftemp/0108.tif
	pdftemp/0109.tif
	pdftemp/0110.tif
	pdftemp/0111.tif
	pdftemp/0112.tif
	pdftemp/0113.tif
	pdftemp/0114.tif
	pdftemp/0115.tif
	pdftemp/0116.tif
	pdftemp/0117.tif
	pdftemp/0118.tif
	pdftemp/0119.tif
	pdftemp/0120.tif
	pdftemp/0121.tif
	pdftemp/0122.tif
	pdftemp/0123.tif
	pdftemp/0124.tif
	pdftemp/0125.tif
	pdftemp/0126.tif
	pdftemp/0127.tif
	pdftemp/0128.tif
	pdftemp/0129.tif
	pdftemp/0130.tif

