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Abstract. It is well known that finite square matrices over a Kleene algebra again
form a Kleene algebra. This is also true for infinite matrices under suitable restric-
tions. One can use this fact to solve certain infinite systems of inequalities over
a Kleene algebra. Automatic systems are a special class of infinite systems that
can be viewed as infinite-state automata. Automatic systems can be collapsed us-
ing Myhill–Nerode relations in much the same way that finite automata can. The
Brzozowski derivative on an algebra of polynomials over a Kleene algebra gives
rise to a triangular automatic system that can be solved using these methods. This
provides an alternative method for proving the completeness of Kleene algebra.

1 Introduction

Kleene algebra (KA) is the algebra of regular expressions. It dates to a 1956 paper of
Kleene [7] and was further developed in the 1971 monograph of Conway [4]. Kleene
algebra has appeared in one form or another in relational algebra [16, 20], semantics and
logics of programs [8, 17], automata and formal language theory [14, 15], and the design
and analysis of algorithms [1, 6, 9]. Many authors have contributed over the years to the
development of the algebraic theory; see [11] and references therein. There are many
competing definitions and axiomatizations, and in fact there is no universal agreement
on the definition of Kleene algebra.

In [10], a Kleene algebra was defined to be an idempotent semiring such that �����
is the least solution to �����	��
�� and �� � the least solution to ��������
�� . This is a
finitary universal Horn axiomatization (universally quantified equations and equational
implications). These axioms were shown in [10] to be sound and complete for the equa-
tional theory of the regular sets, improving a 1966 result of Salomaa [19]. Salomaa’s
axiomatization is sound and complete for the regular sets, but his axiom for * involves a
nonalgebraic side condition that renders it unsound over other interpretations of impor-
tance, such as relational models. In contrast, the axiomatization of [10] is sound over a
wide variety of models that arise in computer science, including relational models. No
finitary axiomatization consisting solely of equations exists [18].

Matrices over a Kleene algebra, under the proper definition of the matrix operators,
again form a Kleene algebra. This fundamental construction has many applications: the
solution of systems of linear inequalities, construction of regular expressions equivalent



to a given finite automaton, an algebraic treatment of finite automata in terms of their
transition matrices, shortest path algorithms in directed graphs. In [10] it is used to en-
code algebraically various combinatorial constructions in the theory of finite automata,
including determinization via the subset construction and state minimization via the
formation of a quotient modulo a Myhill–Nerode relation (see [5, 12]). A key theorem
of Kleene algebra used in both these constructions is������������� � ������� ��� (1)

Intuitively, � represents a transformation between two state spaces, and � and � are tran-
sition relations of automata on those respective state spaces. The theorem represents a
kind of bisimulation relationship. The completeness proof depends on the uniqueness of
minimal deterministic automata: given two regular expressions representing the same
regular set, it is shown how the construction of the unique minimal deterministic au-
tomaton can be carried out purely algebraically and the equivalence deduced from the
axioms of Kleene algebra.

In this paper we give a new proof of completeness that does not depend on the
uniqueness of minimal automata. Our approach is via a generalization of Myhill–Nerode
relations. We introduce automatic systems, a special class of infinite systems that can be
viewed as infinite-state automata. Automatic systems can be collapsed using Myhill–
Nerode relations in much the same way that finite automata can. Again, the chief prop-
erty describing the relationship between the collapsed and uncollapsed systems is (1).
The Brzozowski derivative [3] on an algebra of polynomials over a Kleene algebra gives
rise to a triangular automatic system that can be solved using these methods. Com-
pleteness is proved essentially by showing that two equivalent systems have a common
Myhill–Nerode unwinding.

2 Kleene Algebra

Kleene algebra was introduced by S. C. Kleene (see [4]). We define a Kleene algebra
to be an idempotent semiring such that � � � is the least solution to ��������
�� and �� �
the least solution to � ���!��
"� . This axiomatization is from [10], to which we refer
the reader for further definitions and basic results.

The free Kleene algebra #�$ on a finite set of generators % is normally constructed
as the set of regular expressions over % modulo the Kleene algebra axioms. This is the
same as &(')%+* , the algebra of Kleene polynomials over indeterminates % , where & is the
two-element Kleene algebra. As shown in [10], # $ is isomorphic to ,�-�. $ , the Kleene
algebra of regular sets of strings over % .

The evaluation morphism /10(&(')%+* � & , where /32 �546�87 for �:9 % , corresponds
to the empty word property (EWP) discussed by Salomaa [2, 19]. This map satisfies the
property that /32<; 4��>= if =?
 ; , 7 otherwise.

3 Generalized Triangular Matrices

Let @ be a set and 
 a preorder (reflexive and transitive) on @ . The preordered set @ is
finitary if all principal upward-closed sets @BADCFEHG�JI ; 9 @"KML 
 ;ON are finite.



A (generalized) triangular matrix on a finitary preordered set @ over a Kleene al-
gebra P is a map Q�0R@TS � P such that QMA3U V �W7 whenever L"X8; . The family of
generalized triangular matrices on @ over P is denoted Y�Z\[F2<@+]^P 4 .

There are several ways this definition generalizes the usual notion of triangular ma-
trix. Ordinarily, the index set is finite and totally ordered, usually I	= ] �_�F� ]a`bN with its
natural order, and triangular is defined with respect to this order. In the present devel-
opment, the index set @ can be infinite and the order can be any finitary preorder. There
can be pairwise incomparable elements, as well as “loops” with distinct elements L�]^;
such that L 
 ; and ; 
 L .

Nevertheless, the restrictions we have imposed are sufficient to allow the definition
of the usual matrix operations on Y�Z\[c2d@e]^P 4 . For Q�]gf 9 Y�ZM[h2<@e]iP 4 , let2<Q � f 4 A5U VjC_EHG� Q A3U V � f A3U V k5A3U VlC_EHG�nm = ] if L � ;7 ] otherwise2<QMf 4 A5U VDC_EHG�poFq QMA3U q f q U V r�A3U VlC_EHG�s7 �
Because @ is finitary, the sum in the definition of matrix product is finite. It is not
difficult to verify that the structure Y�ZM[h2<@+]^P 4 forms an idempotent semiring under
these definitions.

Now we wish to define the operator � on Y�Z\[c2d@e]^P 4 so as to make it a Kleene
algebra. That @ is finitary is elemental here. We define QtA3U V to be 2<Qvu(@wA 4 �A3U V , whereQ�ux@TA is the restriction of Q to domain @wSA . Since @wA is finite, Q�ux@wA is a finite square
submatrix of Q , so 2<Q�uy@wA 4 � exists. Actually, we could have restricted Q to any finite
upward-closed subset zn{|@ containing L and gotten the same result.

Formally, let k�} denote the restriction of k to domain @�~vz , where z�{�@ is
upward-closed. The restriction of Q to domain z S can be represented matricially byk��} Q k�} . If z is finite, then k5�} Q k�} is a finite square matrix, therefore the � operator
can be applied to obtain the matrix 2 k5�} Q k�} 4 � . We defineQ � CFEHG���^�3�} k } 2 k �} Q k } 4 � k �} ] (2)

where the supremum is taken over all finite upward-closed subsets z�{�@ . It can be
shown by elementary arguments that the value of the right-hand side of (2) at L�]^; is a
constant independent of z if L 9 z and 0 if L8�9 z . Since there is at least one finite
upward-closed subset of @ containing L (namely @ A ), the supremum exists.

4 Infinite Systems of Linear Inequalities

We can exploit the Kleene algebra structure of Y�ZM[h2<@e]iP 4 to solve triangular systems
of linear inequalities indexed by the infinite set @ . Such a system is represented by a
triangular matrix Q 9 Y�Z\[c2<@+]^P 4 and vector �w0t@ � P aso V Q A5U V5�DV � � A 
 ��A ]�L 9 @+]



where � is a vector of indeterminates. This is equivalent to the infinite matrix-vector
inequality Q � � � 
 � .

A solution of the system 2<@+]^Q�]^� 4 over P is a map ��0t@ � P such thato V Q A3U V � V � � A 
 � A ]�L 9 @e]
or in other words Qh� � � 
 � . As in the finite case, the unique least solution to this
system is Q � � .
5 Automatic Systems

We now focus on index sets @ of a special form. Let % be a finite set of functions acting
on @ . The value of the function ��9 % on L 9 @ is denoted L � . Each finite-length string��9 % � induces a function � 0t@ � @ defined inductively byLR/ CFEHG� L L 2 ���54 C_EHG� 2<L ��4a� �
Define L 
 ; if ; � L � for some ��9 % � . This is a preorder on @ , and it is finitary iff
for all L 9 @ , the set @ A ��I L � K ��9 % � N is finite. Since % is assumed to be finite,
it follows from König’s lemma that @ is finitary iff every 
 -chain Lb� 
 Lb� 
>�F�_� has
only finitely many distinct elements; equivalently, for every L , every sufficiently long
string ��9 % � has two distinct prefixes � and � such that LR� � Ly� .

Now let Q 9 Y�ZM[c2<@e]iP 4 be a triangular matrix and �10�@ � P a vector over @
representing a triangular system of linear inequalities as described in the last section.
Assume further that if ;��� L � for any ��9 % , then QtA5U V ��7 . The system of inequalities
represented by Q and � is thuso�c� $ QMA5U A � � A � � �_A 
 � A(]�L 9 @ �
A linear system of this form is called automatic. This name is meant to suggest a gen-
eralization of finite-state automata over ,�-�. $ to infinite-state systems over arbitrary
Kleene algebras. One can regard @ as a set of states and elements of % as input sym-
bols. An ordinary finite-state automaton is essentially a finite automatic system over the
Kleene algebra ,�-�. $ .

6 Myhill–Nerode Relations

Myhill–Nerode relations are fundamental in the theory of finite-state automata. Among
other applications, they allow an automaton to be collapsed to a unique equivalent min-
imal automaton. Myhill–Nerode relations can also be defined on finitary automatic sys-
tems.

Given a finitary automatic system � � 2<@e]iQ�]^� 4 , an equivalence relation � on @
is called Myhill–Nerode if the following conditions are satisfied: for all L�]a; 9 @ and��9 % ,



(i) if L:��; , then L � ��; � ;
(ii) if L:��; , then � A��H�RA � QhA3U A�� � � V��H��V � QFV3U V�� ;

(iii) if L:��; , then � A � � V .

For any Myhill–Nerode relation � on � � 2<@+]^Q�]^� 4 , we can construct a quotient
system ���(� as follows:' L(*�C_EHG�JI ; 9 @>KM;:��L�N 2dQM�R� 4g� AM ¡U � A\  � C_EHG� � A��H�RA � QhA3U A��' L(* � C_EHG� ' L � * 2d�F�(� 4g� A\  C_EHG� �_A@B�(� C_EHG�JI ' LR*bK\L 9 @?N �R�(� C_EHG� 2<@B�(�l]xQ\�(�l]5�F�(� 4 �
The matrix QM�R� and vector �c�(� are well defined by the restrictions in the definition of
Myhill–Nerode relation. The original system � can be thought of as an “unfolding” of
the collapsed system �R�R� .

The set % acts on @B��� by ' L(* � CFEHG� ' L � * . This is well defined by clause (i) in
the definition of Myhill–Nerode relation. The preorder 
 on @w��� is defined as in
Section 5. This relation is easily checked to be reflexive, transitive, and finitary on@w�(� . Moreover, the matrix Q\�(� is triangular. Thus ���(� is an automatic system.

We now describe the relationship between the solutions of the systems � and �R�(� .
First, any solution of the collapsed system ���(� can be lifted to a solution of the original
system � . If �v0�@w��� � P is a solution of �R�R� , define ¢ �£0	@ � P by ¢� A�C_EHG� � � A\  . It
is easily verified that ¢ � is a solution of � :o�c� $ Q A5U A � ¢ � A � � � A � o�c� $ Q A3U A � � � A �   � � A�¤o�c� $ 2dQ\�(� 4g� A\ ¥U � A �   � � A �   � 2d�F�(� 4� A\ 
 � � A\  � ¢�!A �
It is more difficult to argue that ¢� is the least solution to � . The unfolded system � is
less constrained than ���R� , and it is conceivable that a smaller solution could be found
in which different but � -equivalent L�]^; are assigned different values, whereas in the
collapsed system �R�6� , L and ; are unified and must have the same value. We show
that this cannot happen.

Example 1. Consider the ¦D~�¦ system��§¨� � 
 �� � � � 
�§ �
This is represented by the matrix-vector equation© 7e��j7Rª � © � §�ª � © �� ª 
 © � §�ª �



We can collapse this system by a Myhill–Nerode relation to the single inequality � � �� 
 � . The least solution of the ¦D~1¦ system is given by© � § ª � © 7e��l7 ª � � © �� ª� © 2 ���54 � 2 ���54 � �2 ���54 � � 2 ���54 � ª � © �� ª� © 2 ���54 � � � 2 ���54 � � �2 ���54 � � � � 2 ���54 � � ª� © � � �� � � ª ]
which is the same as that obtained by lifting the least solution � � � of the collapsed
system � � � � 
 � .

We show that in general, the least solution of � is obtained by lifting the least
solution of �R�(� . Define «�0t@>~�@B�(� � P by« A3U � Vt  C_EHG�nm = ] if Lv��;7 ] otherwise.

The matrix « is called the characteristic matrix of � . To lift a solution from ���(� to � ,
we multiply it on the left by « ; thus in the above example, ¢� � «�� .

Now for any L�]¬ , 2dQF« 4 A3U � q   � o A � Q A5U A � « A � U � q  �®oA � � q Q A3U A �� 2<Q\�(� 4� AM ¡U � q  � o � V\  « A3U � V\  2dQM�R� 4g� V\ ¡U � q  � 2¯« 2<Q\�(� 4^4 A3U � q   ]
therefore Qc« � «�2dQM��� 4 . By (1) (see [13]), Q � « � «�2<Q\��� 4 � . Since � � « 2<�F��� 4 , we
have Q � � � Q � «�2d�F�(� 4�� «�2dQM�R� 4 � 2<�c�(� 4 ]
which shows that the least solution Q � � of � is obtained by lifting the least solution2<Q\�(� 4 � 2d�F�(� 4 of �R�(� .

7 Brzozowski Derivatives

For �v9 % � , the Brzozowski derivative was originally defined by Brzozowski [3, 4] as
a map ¦ $ � � ¦ $ � such that°j± 2d@ 4 CFEHG�JI � 9 % � K � � 9 @?N�²



that is, the set of strings obtained by removing � from the front of a string in @ . It
follows from elementary arguments that

°³± 2<@ 4 is a regular set if @ is.
Here we wish to consider

°³±
as an operator on #�$ . Without knowing that #�$µ´�,�-�. $ , we could have defined

°³±
on #�$ inductively as follows. For ��9 % ,° � 2 7	4³� ° � 2 =h4�� ° � 2 �_4 C_EHG�s7 ] � ����° � 2 �54 CFEHG�¶=° � 2dL � ; 4 CFEHG� ° � 2<L 4R� ° � 2¯; 4° � 2<L�; 4 CFEHG� ° � 2<L 4 ; � /32<L 4 ° � 2<; 4 (3)° � 2<L � 4 CFEHG� ° � 2<L 4 L � ]

where /�0·# $ � & is the evaluation morphism /32 �54��¶7 , �¸9 % . We then define
inductively °l¹ 2dL 4 C_EHG� L °D± � 2<L 4 CFEHG� ° � 2 °j± 2dL 4^4 �
This definition agrees with Brzozowski’s on ,�-�. $ [3]. However, we must argue ax-
iomatically that it is well defined on elements of # $ ; that is, if L � ; is a theorem of
Kleene algebra, then

° � 2<L 4+� ° � 2¯; 4 . This can be done by induction on the lengths
of proofs. We argue the case of the Horn axiom L(¬ � ; 
 ¬ � L � ; 
 ¬ explicitly.
Suppose we have derived L � ; 
 ¬ by this rule, having previously proved LR¬ � ; 
 ¬ .
By the induction hypothesis, we have

° � 2<LR¬ � ; 4·
 ° � 2º¬ 4 and we wish to prove that
° � 2dL � ; 4·
 ° � 2¯¬ 4 . ° � 2<L � ; 4�� ° � 2<L � 4 ; � /32dL � 4 ° � 2¯; 4� ° � 2<L 4 L � ; � ° � 2¯; 4
 ° � 2<L 4 ¬ � ° � 2<; 4
 ° � 2<L 4 ¬ � /32dL 4 ° � 2º¬ 4R� ° � 2<; 4� ° � 2<LR¬ � ; 4
 ° � 2º¬ 4 �

The following lemmas list some basic properties of Brzozowski derivatives. All of
these properties are well known and are easily derived by elementary inductive argu-
ments using the laws of Kleene algebra.

Lemma 1. Let »>0	# $ � ,�-�. $ be the canonical interpretation »j2 �54��¼Ic� N .
(i) For ��9 % , � ° � 2¯; 4·
 ; ;

(ii) If =B
 ; , then for ½p¾¿` � K � K , °³± 2¯;�À 4�� °j± 2¯;�Á 4 ;RÀTÂ�Á ;
(iii) For ` � K � K , °³± 2<L � 4�� °j± 2a2 =�� L 4 Á 4 L � ;
(iv)

°j± 2<L�; 4�� °D± 2<L 4 ; � � ±cÃ(ÄÆÅ /52 °jÄ 2<L 4a4 °jÅ 2¯; 4 ;
(v) /32 °j± 2<L�; 4a4�� � ±FÃRÄÆÅ /32 °jÄ 2<L 4 °jÅ 2¯; 4a4 ;

(vi)

°j± 2<L � 4�� °j± 2 =c4(� °j± 2dL 4 L � � � ±cÃ(ÄÆÅÅ\ÇÃ(± /52 °jÄ 2<L 4a4 °jÅ 2<L � 4 ;



(vii) ��9 »j2<L 4 iff /32 °j± 2<L 4a4��>= .
Proof. All follow by elementary inductive arguments from the definition of

° ±
and the

laws of Kleene algebra. We prove (vii) explicitly. Proceeding by induction on L , the
base cases L �>7 ] = , or �:9 % are immediate. For expressions of the form L � ; , the
result follows from the linearity of » , / , and

°�±
. For the other compound expressions,��9 »D2dLR; 4�ÈjÉËÊ ��]^� ��� ���ÍÌ�� 9 »j2<L 4 Ì�� 9 »j2¯; 4ÈjÉËÊ ��]^� ��� ���ÍÌ�/32 ° Ä 2dL 4^4��¼= Ì�/32 ° Å 2¯; 4^4��µ=ÈjÉ o±cÃ(ÄÆÅ /32 °DÄ 2dL 4 °jÅ 2<; 4a4��¼=ÈjÉ /32 ° ± 2dLR; 4^4��>= by (v);��9 »j2<L � 4�ÈjÉÎ��9 »j2a2 =�� L 4 Á 4 ] where ` � K � KÈjÉ /32 °j± 2^2 = � L 4 Á 4a4��µ=ÈjÉ /32 ° ± 2^2 = � L 4 Á 4a4 /32<L � 4��>=ÈjÉ /32 ° ± 2^2 = � L 4 Á 4 L � 4��¼=ÈjÉ /32 ° ± 2dL � 4a4��>= by (iii).

8 Brzozowski Systems

A class of automatic systems can be defined in terms of Brzozowski derivatives. We
take the set @ in Section 5 to be # $ and define the action of ��9 % on # $ as

° � . That
is, for all L 9 #�$ , L � C_EHG� ° � 2<L 4 . We must argue that the induced preorder is finitary.
The proof of Brzozowski (see [4]) depends on the interpretation ,�-�. $ , but we must
argue axiomatically.

Lemma 2. For any L , the set I L � K ��9 % � N �¼I ° ± 2dL 4 K ��9 % � N is finite.

Proof. The proof proceeds by induction on L . For L of the form 7 , = , or ��9 % , the
result is easy. For L � ; , the result follows from the linearity of

°�±
and the induction

hypothesis. For L�; , the result follows from Lemma 1(iv) and the induction hypothesis.
Finally, for L � , the result follows from Lemma 1(vi) and the induction hypothesis.

Now consider the system � � 2d# $ ]^Q�]i� 4 , whereQMA5U A � C_EHG� oA	� Ã A � � �FADC_EHG� /52dL 4 �
We call this system the Brzozowski system on % . The least solution of this system
over #�$ is Ï � Q � � . The key property that we need is that Ï , considered as a mapÏw0	#�$ � #�$ , is a homomorphism. We show in fact that Ï is Ð , the identity on # $ .

Lemma 3. The identity map Ð�0tLvÑ� L is the least solution to the Brzozowski system.



Proof. First we show that Ï 
 Ð . It suffices to show that Ð is a solution to � . We must
argue that for all L 9 #�$ , o�c� $ �

° � 2<L 4�� /52dL 4�
 L �
But this is immediate from Lemma 1(i) and the property /32<; 4·
 ; noted in Section 2.

Now we show that Ð is the least solution to � . The major portion of the work is
involved in showing that if L 
 ; , then Ï A 
 Ï V . We use the Myhill–Nerode the-
ory developed in Section 6 to find a common unwinding of the Brzozowski system � ,
allowing us to compare Ï A and Ï V .

First, lift the system � to the product # $ ~v# $ under each of the two projection
maps to obtain two systems Ò � 2Ó#�$�~�#�$�]iQ�]^� 4 and Ô � 2d#�$�~�#�$·]^Q�]iÕ 4 , whereQtÖ q U ×^ØHU Ö q U ×aØ � C_EHG� oq � Ã q �×^� Ã × � � � q U × CFEHG� /32º¬ 4 Õ q U × C_EHG� /32dÙ 4 �
The relations defined by the two projections,2º¬b]^Ù 4 �?�w2¯¬�Úd]^ÙMÚ 4 C_EHGÈjÉ ¬ � ¬�Ú 2¯¬y]iÙ 4 � S 2º¬ÛÚ<]iÙMÚ 4 CFEHGÈjÉ Ù � ÙMÚ<]
are Myhill–Nerode.

Now restrict these systems to the finite induced subsystems on2d#�$�~1#�$ 4 Ö A3U V	Ø �¸I 2<L � ]a; ��4 K ��9 % � N
to obtain Ò Ú � 2^2d#�$�~�#�$ 4 Ö A5U V�Ø ]^Q Ú ]i� Ú 4 and Ô Ú � 2a2d#�$�~�#�$ 4 Ö A3U V	Ø ]^Q Ú ]^Õ Ú 4 , where Q Ú ,� Ú , and Õ Ú are Q , � , and Õ , respectively, restricted to 2d#�$�~�#�$ 4 Ö A3U V	Ø . The least solution
of Ò Ú is Q Ú � � Ú and the least solution of Ô Ú is Q Ú � Õ Ú . Moreover, by linearity, /32 ° ± 2dL 4^4·
/52 ° ± 2¯; 4a4 for all ��9 % � , therefore � Ú 
 Õ Ú andÏ A � 2dQ Ú � � Ú 4 A3U V 
 2dQ Ú � Õ Ú 4 A5U V � Ï V �

We have shown that L 
 ; implies ÏcA 
 ÏV . It follows thatÏFA � ÏV 
 ÏFAtÜ�V � (4)

Now we show that L 
 ÏcA for all L by induction on L . We actually show by
induction that LRÏ V 
 Ï A\V for all L and ; by induction on L .

For atomic expressions, we haveÏÆ� V � ÏÆ� ��7+�¨7 Ï V ²Ïc� V � Ï V �>= Ï V ²ÏF�¯V �Ýo�c� $ � Ï_ÞOßcÖ �<V	Ø � /52 � ; 4� o�c� $ � Ï_ÞOßcÖ �ÓØ¡V��� Ï_ÞOà^Ö �ÓØ¡V��� ÏVÛ] �Í9 % �



For compound expressions,2<L � ¬ 4 ÏV � LRÏV � ¬!ÏV
 ÏFA\V � Ï q V by the induction hypothesis
 ÏMÖ A	Ü q Ø¡V by (4);L(¬�ÏV 
 LRÏ q V by the induction hypothesis on ¬
 ÏFA q V by the induction hypothesis on L .

Finally, to show L � Ï V 
 Ï A�áV , by an axiom of Kleene algebra it is enough to showÏV � L(ÏFA á V 
 ÏFA á V . We haveÏ V � LRÏ A á V 
 Ï V � Ï A	A á V by the induction hypothesis
 Ï V	ÜRA�A á V by (4)� ÏFA á V �
Thus Ï A 
 L since Ð is a solution and Ï is the least solution, and L 
 Ï A by taking; �>= in the argument above, therefore Ï A � L .

9 Completeness

The completeness result of [10], which states that the free Kleene algebra # $ and the
Kleene algebra of regular sets ,�-�. $ are isomorphic, follows from the considerations
of the previous sections. Let »>0	# $ � ,�-�. $ be the canonical interpretation in which»D2 �54��"Ic� N . If »j2<L 4·� »j2<; 4 , then for all �£9 % � , �£9 »D2dL 4 iff �:9 »j2<; 4 , therefore
by Lemma 1(vii), /32 °³± 2<L 4a4�� /32 °j± 2<; 4a4 . This says that the common unwinding of the
Brzozowski system � on #�$³~T#�$ restricted to 2d#�$�~T#�$ 4 Ö A3U V	Ø gives identical systems,
therefore their solutions are equal. In particular, ÏhA � ÏV . By Lemma 3, L � ; .

10 The Commutative Case

A similar completeness result holds for commutative Kleene algebra, in which we pos-
tulate the commutativity axiom L�; � ;RL . The free commutative Kleene algebra on `
generators is the Kleene algebra â6ã5ä Á of regular subsets of åOÁ . Elements of åbÁ are
often called Parikh vectors. We interpret regular expressions over % �|Ih� � ] �_�_� ] � Á N
as follows: æ 2 ��çd4 CFEHG�JI 2 7 ] �_�_� ] 7è éÆê ëç Â � ] = ] 7 ] �_�F� ] 7è éê ëÁ�Â ç 4 Næ 2dL � ; 4 CFEHG� æ 2dL 4Rì æ 2¯; 4æ 2<L�; 4 CFEHG�JIFíj��î K í�9 æ 2<L 4 ] î�9 æ 2<; 4 Næ 2<L � 4 CFEHG�ðï À

æ 2<L 4 Àæ 2 7	4 CFEHG�ðñæ 2 =c4 CFEHG�JI 2 7 ] �_�_� ] 7	4 N �



A set of Parikh vectors is regular if it is

æ 2<L 4 for some L . The family of all regular sets
of Parikh vectors forms a commutative Kleene algebra under the above operations. We
denote this algebra by â6ã5ä Á .

The completeness result follows from a characterization due to Redko (see [4])
of the equational theory of âTã5ä Á as the consequences of a certain infinite but easily-
described set of equations, namely the equational axioms for commutative idempotent
semirings plus the equations2 �D� � 4i�D� 2 �Û� � 4^���Û� ���	�D�����2 � � 4 � ����� 2<� ��4 � � � � � � 2 � � 4 � 2 � � � � � 4� � �>=����x� � � � � 2 � À 4 � 2 =�����4 ÀTÂ � ]�½ð¾ = �
All these are theorems of commutative Kleene algebra.

The proof of Redko, as given in [4], is quite involved and depends heavily on com-
mutativity. We began this investigation in a attempt to give a uniform completeness
proof for both the noncommutative and commutative case. Our hope was to give a
simpler algebraic proof along the lines of [10] for commutative Kleene algebra, al-
though the technique of [10] does not apply directly, since minimal automata are not
unique. For example, the three-state deterministic automata corresponding to the ex-
pressions 2 �5�Æ4 � and 2 ��54 � are both minimal and represent the same set of Parikh vectorsI 2¯½£]a½ 4 K�½ò¾ 7 N . The usual construction of the canonical deterministic automaton
directly from the set itself (see [12, Lemma 16.2]) yields infinitely many states.

Nevertheless, one can define the free commutative Kleene algebra ó $ on generators% and attempt to show that

æ
, factored through ó $ , gives an isomorphism ó $ � âTã5ä Á .

The Brzozowski derivatives

° � 0!ó $ � ó $ are defined differently on products in the
commutative case: ° � 2<L�; 4 CFEHG� ° � 2<L 4 ; � L ° � 2¯; 4 �
The action of

° � on other expressions is as defined in Section 7. As in that section,
we can argue that

° � respects the axioms of Kleene algebra. Here we must also show
that it respects the commutativity axiom; in other words,

° � 2<L�; 4�� ° � 2¯;RL 4 . Also,
for any � ]a� 9 % � , °D±cÄ 2<L 4�� °DÄ_± 2<L 4 . Unfortunately, the principal upward closed setsI ° ± 2<L 4 K ��9 % � N are not necessarily finite, and it is not clear how to define a Kleene
algebra structure of infinite matrices as in Section 3. Nevertheless, the set I ° ± 2dL 4 K��9 % � N does exhibit a regular 2¯`�ô =h4 -dimensional linear geometric structure which
is respected by the action of the Brzozowski derivatives. It remains a topic for future
investigation to see how this structure can be exploited.
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