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CREEP DAMAGE  AND  FRACTURE MECHANICS OF HIGH TEMPERATURE 

MATERIALS 

 

Jing Ning, Ph. D. 

Cornell University 2013 

 

This dissertation studies the deformation behavior of high temperature alloys with 

an aim to understand creep damage and fracture mechanics of these materials. First, 

we study the creep fatigue deformation of a unified viscoplastic material subjected to 

uniaxial cyclic loading using a dynamical system approach. We find oscillation of 

back stress significantly increases the inelastic strain accumulation in a cyclic test. The 

accumulated inelastic strain at long times are sensitive to the initial condition (e.g. 

whether one starts with tension or compression). We define a ratcheting ratio to 

quantify the interaction of creep and cyclic plasticity on the accumulated inelastic 

strain per cycle.  

The second part of the dissertation focuses on solving the asymptotic stress and 

strain field near the tip of a plane strain Mode I stationary crack in a viscoplastic 

material. For small scale creep where the region of inelasticity is small in comparison 

with typical specimen dimensions, our asymptotic and finite element analysis show 

that the near tip stress field has the same singularity as elastic power law creeping 

materials with a time dependent amplitude. This amplitude is found to vanish at long 

times and the elastic K field dominates. For the case of cyclic loading, we study the 

effect of stress ratio on inelastic strain and find that the strain accumulated per cycle 

decreases with stress ratio.   
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The third part of the dissertation carries out finite element simulations on the 

planar deformation of random sized power law creeping grains with sliding and 

cavitating boundaries. Grain boundary sliding and grain boundary separation due to 

cavity nucleation and growth are incorporated into a cohesive zone model. Finite 

element simulation of a relaxation test shows that more grain boundary separation 

occurs in a microstructure with sliding resistant grain boundaries than in a 

microstructure with more freely sliding grain boundaries. The overall inelastic strain 

rate of the microstructure in uniaxial tension test is found to be greatly enhanced by 

grain boundary sliding and grain boundary cavitation.  

Finally, we extend the cohesive zone model in the third part of the dissertation to 

account for interface embrittlement caused by grain boundary impurities. Finite 

element simulation of an uniaxial creep test using a two dimensional random grain 

structure shows that grain boundary cavitation and interface embrittlement are two 

competing mechanisms for grain boundary separation. The occurrence of one grain 

boundary separation mode would slow down or even inhibit the other. 
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CHAPTER 1  

INTRODUCTION 

Creep rupture and fracture of high temperature materials has been a very active 

research topic due to its great importance in the aerospace and energy industry (see 

Figure 1.1). For example, the fatigue life of jet engine turbine blades depends on the 

creep and cyclic loading behavior of Nickel-based single crystals (Pierce 2009). Alloy 

617, commonly used in the power plant components such as intermediate heat 

exchangers, may fail because of cavity nucleation and coalescence along grain 

boundaries (Rao et al. 1996).  

Time dependent deformation or creep becomes a dominant deformation 

mechanism at temperatures above 1/3 of the melting temperature of most structural 

metals. Typical high temperature structural components are subjected to both 

monotonic and cyclic loadings at low stresses.  The accumulation of creep strain cause 

material damage and creep-fatigue interaction often accelerates this process. In order 

to quantify the deformation and stress fields in structural components under cyclic 

loading, it is necessary to use visco-plastic constitutive models that are described in 

chapter 2 of this dissertation.  For example, creep curves of Alloy 617 do not show the 

typical primary-secondary-tertiary creep regimes commonly observed in metals and 

they do not exhibit clear distinction between time-independent plasticity and time-

dependent creep (Chomette et al. 2010; Schubert et al. 1984; Cook 1984; Schneider et 

al. 1984; Kurata and Nakajima 1995; Natesan et al. 2003; Shah et al. 2003).  A more 

accurate way to describe the creep behavior of such materials is to use a unified 

viscoplastic model (UVM) where stress relaxation, ratcheting and cyclic 

softening/hardening behavior can be captured by state variables.  Despite the success 

of UVM to represent high temperature material behavior, most of these models have  
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                       (a) aircraft jet engines (PilotFriend_Aero_Engines) 
 

 
 

(b)  industrial gas turbines (Wikipedia_Gas_turbine) 

 
 

(c) nuclear reactors (Wikipedia_Nuclear_reactor) 
 

Figure 1.1   High temperature material applications.  
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very complex mathematical structures. In chapter 2, we use a dynamical system 

approach to study the qualitative behavior of a specific unified viscoplastic model in a 

creep fatigue test. This approach will allow future investigators to gain insight into the 

interaction of creep and cyclic plasticity.  

Cracks can initiate from defects near stress concentrators and propagate due to 

fatigue and creep at low applied stresses. Unlike structural components operating at 

low temperatures, the deformation near the crack tip depends on the stress history. The 

asymptotic strength of the crack tip stress field can be quantified by a time dependent 

loading parameter which can be used to correlate crack growth rate with applied load 

in complex structures. Most of the crack tip analyses in the literature are based on an 

elastic power law creeping (EPLC) solid (Hutchinson 1968; Rice and Rosengren 

1968). In Chapter 3 of this dissertation, we determine the asymptotic stress and strain 

field near the tip of a plane strain Mode I stationary crack using a unified viscoplastic 

model due to Chaboche (1989). We address the long term creep behavior of the 

asymptotic fields in the regime of small scale creep. We also study the time dependent 

behavior of these crack tip fields under cyclic loading conditions in a single edge 

crack specimen.    

A different mode of failure is creep rupture where materials fail by progressive 

damage instead of slow propagation of a macroscopic crack. Many power plants 

structural components are designed to last over 60 years.  It is extremely difficult to 

conduct creep experiments for such long periods of time. Current approach is to 

extrapolate short-term, high stress creep rupture experimental data to long-term, low 

stress conditions and predict the creep rupture life of a component. Such extrapolation 

typically used empirically based time-temperature parameters even though the failure 

mechanisms in short term and long term tests can be very different.  For example, the 

dominating failure mechanism for ferritic and austenitic steels at low stresses and 
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elevated temperatures is intergranular cavitation whereas at relatively lower 

temperature with impurity segregation, the dominating failure mechanism is 

transgranular brittle fracture (White et al. 1981; McMahon Jr 1968). In the low stress 

regime, cavities nucleate on grain boundaries that are under normal tension, and these 

cavities grow by grain boundary sliding (Evans 1971), stress-assisted diffusion of 

atoms from cavity surface to the grain boundaries (Hull and Rimmer 1959; Chuang et 

al. 1979b; Needleman and Rice 1980), and by creep deformation of the surrounding 

grains (Hancock 1976; Budiansky et al. 1982). Our ultimate goal is to develop a 

numerical model based on these well-established micro-mechanics of local failure to 

predict long time creep behavior. Previous works have incorporated some of these 

failure mechanisms into a finite element model consisting of periodic arrays of 

hexagonal grains. In chapter 4 of this dissertation, we extend these works to a random 

grain structure. The grain boundaries in our model can slide and separate due to cavity 

nucleation and growth. The nucleation and growth of cavities on a grain boundary can 

be represented by a cohesive zone model with two time dependent state variables. We 

carried out simulations using the cohesive zone model to study the creep rupture of 

random sized power law creeping grains with sliding and cavitating boundaries. 

Chapter 5 extends the cohesive zone model in Chapter 4 to account for grain 

boundary decohesion due to interface embrittlement. Most high temperature materials 

contain impurities such as second phase particles to inhibit creep. Over time, these 

particles can segregate to the grain boundaries and lower the creep rupture resistance 

of these materials. In this chapter, we propose a phenomenological model for grain 

boundary embrittlement. We incorporate this embrittlement model into our finite 

element code to study the interaction of embrittlement and deformation caused by 

creep, cavities growth and grain boundary sliding.    

Chapter 6 discusses the limitations of our approach and possible future work.   
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CHAPTER 2  

ANALYSIS OF CREEP FATIGUE BEHAVIOR OF A UNIFIED 

VISCOPLASITC MODEL 

2.1  Introduction 

A primary candidate for the next generation nuclear plant is a gas cooled reactor 

which uses helium as a heat transfer medium at temperatures up to 950oC and 

pressures up to 7 MPa for a design life of 60 years (Guerin et al. 2009; Lee et al. 2010; 

Mo et al. 2011; Shah et al. 2003). A core component in the primary reactor circuit is 

the intermediate heat exchanger (IHX) which transfers heat from the primary reactor 

helium to a working fluid at a lower temperature. The leading candidate material for 

the IHX is Alloy 617, which is a solid-solution strengthened nickel based alloy with 

excellent high temperature strength and oxidation resistance (Ren and Swimdeman 

2009; Shah et al. 2003).  

Nickel based alloys exhibit complex deformation behavior, for example, creep 

curves of Alloy 617 do not show the typical primary-secondary-tertiary creep regimes 

commonly observed in metals and they do not exhibit clear distinction between time-

independent plasticity and time-dependent creep (Chomette et al. 2010; Schubert et al. 

1984; Cook 1984; Schneider et al. 1984; Kurata and Nakajima 1995; Natesan et al. 

2003; Shah et al. 2003). However, current high temperature design procedures under 

creep or creep fatigue conditions mostly use the elastic-power-law-creep (EPLC) 

model or a model in which the inelastic strain is the sum of a rate independent plastic 

strain and rate dependent creep strain to represent material data (Wakai et al. 2002; 

Drubay et al. 2003; Yoon et al. 1992; Adefris et al. 1996a; Grover and Saxena 1999). 

As mentioned above, power law or secondary creep is not representative of the 
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deformation behavior of nickel based alloys; and in addition, does not model cyclic 

loading well. A growing body of research has demonstrated that much of the complex 

deformation behavior of super alloys, such as stress relaxation, ratcheting and cyclic 

softening/hardening behavior, can be captured by state variable models, commonly 

called unified viscoplastic models (UVM) (Bodner and Partom 1975; Miller 1976; 

Walker 1981; Chaboche and Rousselier 1983; Krempl 1987) where there is no 

separation between creep and plasticity. 

A disadvantage of UVM is that they have very complex mathematical structures. 

In a typical model, a large number of material constants and coupled nonlinear 

differential equations are needed to describe the evolution of the state variables. As a 

result, existing work in this area tends to focus on either developing better models to 

fit experimental data or numerically solving these equations using a particular set of 

material constants appropriate for a specific engineering application or test. Instead of 

focusing on a specific application, we study and gain insight into the qualitative 

behavior of a viscoplastic model subjected to a simple class of cyclic loading in this 

chapter. Specifically, we use a simplified version of a UVM developed by Chaboche 

(1989) and model a load controlled creep fatigue test where the applied stress history 

22( )tσ  is illustrated in Figure 2.1. As shown in the figure, the loading and unloading 

rates are assumed to be sufficiently fast with respect to other time scales in the 

problem so they are considered as instantaneous. Thus, the loading waveform is a 

piece-wise constant periodic function of time. In a cycle with period ct , the applied 

stress σ  oscillates between the maximum max 0σ >  and the minimum stressminσ . minσ

can be either positive (tension) or negative (compression). Each cycle consists of two 

hold times: peak stress ( maxσ σ= ) hold time 1t  and valley stress ( minσ σ= ) hold time 

2 c 1 0t t t= − > .  
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Figure 2.1   Schematics of a load controlled cyclic fatigue test. 
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We address the following questions in this chapter: 

(1) If the system (bar) is driven by a periodic input shown in Figure 2.1, does there 

always exist a long time solution where the back stress approach steady state 

values or will the back stress exhibit oscillatory behavior? Using a dynamical 

system approach, we establish conditions for solutions with the different long 

time back stress behaviors. 

(2) Does the long time inelastic strain depend on the initial conditions? For 

example, if the waveform in Figure 2.1 is shifted to the left by 1t  so that the 

specimen is subjected to compression (i.e., min( 0 ) 0tσ σ+= = <  ) first instead 

of tension, will this lead to different long time inelastic strain? If this is the 

case, then the system is said to have long term memory.    

(3) How does the ratcheting strain depends on the loading cycle (stress amplitude, 

frequency, hold period, etc.) and the material parameters? 

2.2  UVM Equations Analysis in Uniaxial Test 

The following version of UVM was developed by Chaboche (1989) and later used 

by Zhao and Tong and their group (Zhao and Tong 2008; Zhan and Tong 2007a, b) to 

study the effect of cyclic loads on a cracked specimen. The total strain rate ijεɺ  is the 

sum of the elastic and inelastic strain rate. The elastic strain rate e
ijεɺ  is given by  

 

 e 1ij
ij kk ijE E

σ υε σ δ−= +
ɺ

ɺ ɺ   (2.1) 

 

where E is the Young’s modulus and υ is the Poisson's ratio of the material, and a dot 

denotes differentiation with respect to time t.  The inelastic strain rate Iijεɺ , is  
 

 I

e

3

2
ij

ij p
ω

ε
ω

=ɺ ɺ   (2.2)                  
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 where  

 ij ij ijs xω ′≡ −   (2.3) 
 
In (2.3), ijs and ijx′ are the deviatoric part of applied stress ijσ and back stress ijx

respectively, e 3 / 2ij ijω ω ω= is the effective stress and pɺ  is the effective strain rate 

given by  

 /
n

p f Z=ɺ   (2.4) 

where Z and n are material constants and the symbolis defined by 

                          

 
0

        
0 0

z z
z

z

≥
=  <

  (2.5)   

In (2.4), f  is the yield function defined by  

 ef r kω= − −   (2.6) 

where r is an isotropic hardening variable and k is the initial radius of the yield 

surface, i.e., the elastic region is defined by0f ≤ . The hardening variable r in (2.6)

evolves according to  

 3( )r c r r p∞= −ɺ ɺ   (2.7) 

Finally, the back stress ijx evolves according to: 

 ij ij ijx α β= + ɺɺɺ   (2.8) 
  

 1 1
e

ij
ij ijc a p

ω
α α

ω
 

= − 
 

ɺ ɺ   (2.9) 

 2 2
e

ij
ij ijc a p

ω
β β

ω
 

= − 
 

ɺ ɺ   (2.10)              

where 1 2 3 1 2, , , , ,c c c a a r∞ are material constants.  

According to (2.8-2.10), the evolution of the back stress ijx  is driven by the 

effective stress ijω . Since this tensor is deviatoric ( 0iiω = ), ijx  is also deviatoric, i.e.,  

 11 22 33 0x x x+ + =   (2.11) 

For uniaxial loading, 22 11 33, 0σ σ σ σ= = = . Denote 22x x= , (2.11) implies that 
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                                                   11 33 2

x
x x= = −   (2.12) 

                                                                                   

 11 22 33 e

2 3
, , ,

3 2 3 3 2 2

x x x
x

σ σ σω ω ω ω σ= − + = − = − + = −   (2.13) 

                                                
Since the goal of this chapter is to understand qualitative behavior and suggest a 

different and complementary approach to the study of viscoplastic models, we 
simplify these equations by setting2 3 0c c= = . Most of the qualitative behavior of 

these equations will not be affected by this assumption (see discussion in section 2.5). 
Using this assumption, and denoting I

22ε ε=ɺ ɺ , the governing equations reduce to: 

 

 
3 / 2

n
x k

p
Z

σ − −
=ɺ   (2.14) 

 

 22

e

3 / 23 3
sgn

2 2

n
x k x

p
Z

σωε σ
ω

− −  = = − 
 

ɺ ɺ   (2.15) 

 

 1 1

2 3
sgn

3 2

x
x c a x pσ  = − −  

  
ɺ ɺ   (2.16) 

 

The sgn function in (2.15) and (2.16) is defined by 

 

 

1 0

sgn            1 0

0 0

z

z z

z

>
= − <
 =

  (2.17) 

 

It is important to note that the inelastic strain rate can be either positive or negative, 

depending on the sign of 3 / 2xσ − . However, the effective inelastic strain rate pɺ is 

always non-negative.   

2.2.1 Normalization 

We introduce the following normalized variables to reduce the number of 

parameters in (2.14)-(2.16): 
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 ( )/ , / , / , / /
n

S a X x a K k a t Z aσ τ= = = =   (2.18) 
 

where 12 / 3a a=  is the saturation value of the back-stress in tension (see (2.16)). With 

respect to these normalized variables, the governing equations for a cyclic loading test 

become 

 
3

/ sgn ( ) /
2

d d S X dp dε τ τ τ = − 
 

  (2.19) 

 

 
3

/ ( )
2

n

dp d S X Kτ τ= − −   (2.20) 

 

 
3 3

/ sgn( ( ) ) ( )
2 2

n

dX d c S X X S X Kτ τ τ = − − − − 
 

  (2.21) 

where 1c c= . The inelastic strain evolves according to (2.19), the effective inelastic 

strain p is governed by (2.20) and the back stress evolves according to (2.21). 

2.2.2 State Vector 

Since 0p ≥ɺ , the effective inelastic strain is a non-decreasing function of time, 

hence steady state solution for (2.14),(2.15),(2.16) does not exist. A simple way to by 

pass this difficulty is to define  

 1        1,2...k k k kε ε ε −∆ ≡ − =   (2.22) 
 

where ( )k ckε ε τ=  and kε∆  denotes the increment of inelastic strain between cycle k 

and cycle k+1.  Similarly, we denote ( )k cX X kτ=  and define the state vector ky
�

 by 
 

 k
k

k

X
y

ε
 

=  ∆ 

�
  (2.23) 

 
In this chapter, steady state solution means that the state vector ky

�
 approaches a 

limiting vector 
X

y
ε

∞
∞

∞

 
=  ∆ 

�
 as k → ∞ .   
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2.2.3 Back Stress Evolution and Periodic Solutions 

In this section we study the behavior of the long time solution of (2.19), (2.20) and 

(2.21) subjected to the waveform displayed in Figure 2.1. There are two types of long 

time behavior: (1) the normalized back stress increases monotonically to its saturation 

value of 1 (case 1 and 2 below); (2) the back stress is oscillatory and periodic (case 3 

below).   

Consider the case that the system (viscoplastic bar) starts with tension (as shown in 

Figure 2.1). Because of the yield function, the inelastic strain rate /dp dτ will be zero 

if the peak tensionmaxS is too small and this is obviously not an interesting case. To 

ensure non-zero inelastic strain rate during peak stress hold, we enforce the condition 

max 3 / 2S K> +  (see (2.19)). Using this condition and combining (2.19) and (2.20), the 

equations governing the evolution of back stress and the inelastic strain during peak 

stress hold become 

 ( ) max

3
/ 1

2

n

dX d c X S X Kτ  = − − − 
 

  (2.24) 

 max

3
/

2

n

d d S X Kε τ  = − − 
 

  (2.25) 

Since initially (0) 0X = , the normalized back stress has absolute value less than 1, 

that is, ( )1 0X− >  in(2.24). This implies that the back stress is monotonically 

increasing during any peak stress hold. 

The question is how the back stress evolves during valley stress hold. Its evolution 

is governed by (2.21) with min( )S Sτ = . To gain insight, we first establish possible 

behaviors of the back stress during valley stress hold.  There are three possibilities:   
 

(1)                                         min

3
( ) 0

2
S X Kτ− − ≤   (2.26) 

  

(2) min min

3 3
( ) 0,  sgn( ) 0

2 2
S X K S Xτ− − > − >   (2.27) 
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(3) min min

3 3
( ) 0,  sgn( ) 0

2 2
S X K S Xτ− − > − <   (2.28) 

Case I(2.26):  The back stress and inelastic strain evolution is governed by: 
 

 
/ 0

/ 0

dX d

d d

τ
ε τ

=
=

  (2.29) 

 

For this case, the back-stress does not evolve and there is no strain accumulation 

during valley stress hold. However, since the back stress continues to increase during 

peak stress hold, it will eventually reach the steady state value of 1. As a result, the 

long term inelastic strain rate is 
 

 ( )max
peak stress hold3 / 2

      
valley stress hold0

n
S Kε∞

 − −= 


ɺ   (2.30) 

The increment of inelastic strain per cycle at long times, ε∞∆ , is  
 

 ( )max 13 / 2
n

S Kε τ∞∆ = − −   (2.31) 
 

In summary, for max 3 / 2S K> + and min

3

2
S K− < , the steady state vector is  

 

 
( )max 1

1

3 / 2
ny

S K τ∞

 
=   − − 

�
  (2.32) 

 

An example of case I where max min 1 2( 2, 1.5, 0.4, 3, 20, 4)S S K n c τ τ= = = = = = = is 

shown Figure 2.2 (a),(b). Figure 2.2(a) plots the evolution of the back stress with time. 

The trajectory of the state vector near equilibrium, i.e., in the neighborhood of y∞
�

, is 

shown in Figure 2.2(b).   

Case II (2.27):   For this case, back stress and inelastic strain evolution is governed 

by 
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Figure 2.2   Example of case I with initial conditions (0) (0) 0.X ε= =  (a) Back 

stress evolution (b) Trajectory of state vector 
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( ) min

min

3
/ 1

2

3
/

2

n

n

dX d c X S X K

d d S X K

τ

ε τ

 = − − − 
 

 = − − 
 

  (2.33) 

  

Equation (2.33) implies that / 0dX dτ > , hence the back-stress will continue to 

increase during valley stress hold.  Eventually, it will approach its steady state value of 

1. Therefore, the long time inelastic strain rate is 
 

 
( )
( )

max

min

3 / 2 peak stress hold
      

valley stress hold3 / 2

n

n

S K

S K
ε∞

 − −= 
− −

ɺ   (2.34) 

 

Using (2.34), the long time state vector ky
�

 is 

 

 
( ) ( ) ( )max 1 min c 1

1

3 / 2 3 / 2
n ny

S K S Kτ τ τ∞

 
=   − − + − − − 

�
  (2.35) 

 

Note in Case II, the back stress and the inelastic strain are always increasing.  

These analytical results are verified by numerically integrating the governing 

equations for the case of max min 1 2( 2, 1.8, 0.1, 300, 5, 0.01)S S K c n τ τ= = = = = = = . As 

predicted by our analysis, Figure 2.4(a) shows that the back stress is increasing with 

time, that is, no oscillatory solution. Figure 2.4(b) shows the trajectory of the state 

vector near equilibrium, i.e., in the neighborhood of y∞
�

. 

Case III (2.28):  The back stress and inelastic strain behavior during valley stress 

hold is governed by  
 

 
( ) min

min

3
/ 1

2

3
/

2

n

n

dX d c X X S K

d d X S K

τ

ε τ

 = − + − − 
 

 = − − 
 

  (2.36) 
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(b) 

Figure 2.3   Example of case II with initial conditions (0) (0) 0X ε= = .(a) Back 

stress evolution (b) Trajectory of state vector 
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Equation (2.36) shows that the derivative of the back stress with time is negative, 

therefore the back stress decreases during valley stress hold. Since back stress 

increases during peak stress hold, the solution can be oscillatory. If this is the case, 

then the back-stress at long times will converge to a non-constant periodic function

( )X τ∞  with period cτ  

 c( ) ( )X Xτ τ τ∞ ∞+ =   (2.37) 
 

The periodic function ( )X τ∞  will oscillate between 0X and 1X , where 

0 10 1X X≤ ≤ ≤ .  In order for this situation to occur, minS has to satisfy (2.28) during 

all valley stress hold, which can be rewritten as 
 

 min

3
( )

2
S X Kτ< −   (2.38) 

The periodicity of ( )X τ∞  implies that the increment of the inelastic strain per 

cycle is a constant, and is given by  
 

 
c1

1

max min

0

3 3
( ) ( )

2 2

n n

S X K d S X K d
ττ

τ

ε τ τ τ τ∞ ∞ ∞
   ∆ = − − + − −   
   
∫ ∫   (2.39) 

 

An example of this case (max min 1 21.7, 0.1, 0.1, 5, 10, 0.01S S K n c τ τ= = = = = = = ) 

is shown in Figure 2.3. 

Equations (2.24) and (2.33) suggest that the rate of convergence to the long time 

solution is governed by the material parameter c. The convergence rate of the state 

vector is shown in Figure 2.5 for several values of c. The numerical results show that 

long time periodic solution is reached after 3 cycles. Since the typical values of c  are 

quite large, long time solution are reached after two or three cycles. Our numerical 

simulations show that rate of convergence is not particularly sensitive to parameters 

such as 1 c min max, , , , ,n K S Sτ τ . 
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(a) 

 

(b) 

Figure 2.4   Example of case III with initial conditions (0) (0) 0.X ε= = (a) Back stress 

evolution (b) Trajectory of state vector 
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Figure 2.5   Effect of c on state vector convergence rate 
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It is important to note that c does not only affect the converging rate, but also the 

periodic solution of the system. As shown in Figure 2.5, the equilibrium value of the 

state vector changes withc .    

Note that the system starts in case I, then it will stay in case I. However, this is not 

the case for case II and case III since it is possible for the solution to switch from one 

to the other (e.g. see situation (3) in section 2.2.4) in different cycles. Therefore, the 

analysis above does not cover all possible scenarios (e.g. only sufficient condition is 

established for the existence of periodic long time solution). The difficulty lies in the 

fact that the initial value of the back stress in each cycle depends on the previous 

cycle. Furthermore, the solution of the differential equations cannot be written in close 

form. In the following, we use a dynamic system approach to defeat these difficulties. 

2.2.4 Phase Portrait Analysis 

To complete the analysis, we study the back stress evolution during valley stress 

hold ( )( )minS Sτ =  by examining the phase portrait of (2.21), i.e.,  
 

 min min

3 3
/ sgn( ) .

2 2

n

dX d c S X X S X Kτ  = − − − − 
 

  (2.40) 

The fixed points of (2.40), denoted byX ∗ , satisfy 
 

 min

3
sgn( ) 0

2
S X X∗ ∗− − =   (2.41) 

 min

3
0

2
S X K∗− − =   (2.42) 

Equations (2.41),(2.42) show that the fixed points depend on the sign of 

min 3 / 2S X ∗− . Consider first where minsgn( 3 / 2) 1S X ∗− = . For this case, (2.41),(2.42) 

imply that the fixed points are 
 

 1 2 min

2
1 , ( )

3
X X X S K∗ ∗ ∗= ≥ ≡ −   (2.43) 
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Note that there is an infinite number of fixed points since any point satisfies 

2X X∗ ∗≥   is a fixed point of (2.42).  For the case where minsgn( 3 / 2) 1S X ∗− = −  , the 

fixed points are 

 3 4 min

2
1 , ( )

3
X X X S K∗ ∗ ∗= − ≤ = +   (2.44) 

Similarly, (2.44) predicts that there exists an interval of fixed points 4X X∗ ∗≤ . 

Comparing (2.43) and (2.44), we found 2 4X X∗ ∗<  since K > 0.   

Note that minsgn( 3 / 2) 1S X ∗− =  implies / 0dX dτ ≥ since min 3 / 2S X K∗− −  is 

non-negative and 0c > . Therefore, the only way to reach the fixed points 1 2,X X∗ ∗  is 

from / 0dX dτ >  (flow is in positive direction). Similarly, minsgn( 3 / 2) 1S X ∗− = −  

implies that / 0dX dτ ≤  so the fixed points 3 4,X X∗ ∗  can only be reached from 

/ 0dX dτ <  (flow is in negative direction). Since the existence and arrangement of 

fixed points are determined by the sign of min 3 / 2S X ∗− , the phase portrait of (2.40) is 

different for different minS  and K.  To illustrate this dependence, phase portraits for a 

fixed 0.4K =  and for different values of minS  are shown in Figure 2.6(a-e)(

1, 5c n= = ). Darks lines indicate intervals of fixed points where back stress do not 

evolve. Arrows indicate flow direction, i.e., how X changes with time. Note that 

3 1 2 41 1,X X X X∗ ∗ ∗ ∗− = < = <  . Without loss in generality, we assume the initial back 

stress iniX  in valley hold cycle lies in 0 1iniX≤ ≤ . 

In Figure 2.6(a), we choose minS  sufficiently large so that 2 1 1X X∗ ∗> = . This means 

that the interval of fixed points 2X X∗ ∗≥  lie outside of [0,1].  Since X cannot exceed 

its saturation value 1, these fixed points can never be reached and hence is not shown 

in Figure 2.6(a). Note that / 0dX dτ >  for all ini0 1X< < , so X  will increase until it 

reaches 1 1X ∗ = . If we gradually reduceminS , then 2X ∗  will decrease until 2 1 1X X∗ ∗< =  (

2 min 3 / 21 when KX S∗ = += ); that is, the interval 2 1X X X∗ ∗ ∗≤ ≤  becomes part of 

[ 1,1]−  (dark line in Figure 2.6(b)). If iniX  lies in 2 1,X X∗ ∗   , then / 0dX dτ =  since 

any point inside 2 1,X X∗ ∗    is a fixed point, so the back stress remains unchanged, i.e.,



 

24 

iniX X= .  If  20 iniX X ∗≤ <  , then / 0dX dτ >  by (2.40) so the back stress will 

increase until it reaches 2X ∗  (see Figure 2.6(b)), then remains there. Both / 0dX dτ >

and / 0dX dτ <  will occur as we decrease minS below 3 / 2K + as shown in Figure 

2.6(c). For this case, *
min 2sgn( 3 / 2) 1S X− = and  *

min 4sgn( 3 / 2) 1S X− = −  and the four 

fixed points appear in the order of3 2 4 10X X X X∗ ∗ ∗ ∗< < < < . According to (2.43),(2.44), 

every point in 2 4,X X∗ ∗    is a fixed point, so if ini 2 4,X X X∗ ∗ ∈   , the back stress do not 

evolve and iniX X= . If  ( )ini 20,X X ∗∈  where / 0dX dτ > , the back stress will 

increase until it reaches2X ∗ .  If (ini 4 1, 1X X X∗ ∗ ∈ =   , then / 0dX dτ < and the back 

stress will decrease until it reaches4X ∗  (see Figure 2.6(c)). As minS  decreases further 

so that minS K< which implies that 2 0X ∗ < , the interval of fixed points becomes

( 40,X ∗  , 41 1X ∗− < < , (see Figure 2.6(d)). For this case, ifini 4 ,1X X ∗ ∈   , the back 

stress will decrease until it reaches4X ∗ , then stays there.  Figure 2.6(d) shows the case 

where 41 0X ∗> > . Note that the phase diagram has identical feature if 41 0X ∗− < < . 

Finally, if minS is reduced further so that 4 3 0X X∗ ∗< <  (see Figure 2.6(e)). Equation 

(2.40) implies that / 0dX dτ <  for all ini0 1X< < . Since 4 3 1X X∗ ∗< < −  , the only 

accessible fixed point is 3 1X ∗ = − , so the back stress will decrease until it reaches 3X ∗ . 

Having established the back stress behavior during valley stress hold, we are in 

position to address the existence of periodic solution. Recall that the back stress 

always increases during peak stress hold, so the existence of periodic or oscillatory 

solution will require the back stress to decrease during valley stress hold. There are 

three situations:  

(1): For the situation shown in Figure 2.6(a,b), a periodic solution does not exist since 

back  stress also increases during valley stress hold.     

(2): For the situation shown in Figure 2.6(e), the back stress will always decrease 

during valley stress hold given any iniX  , so  a periodic solution exists. 

(3): For the situation shown in Figure 2.6(c,d), if ini 40 X X ∗< ≤ , the back stress will 
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Figure 2.6   Phase portrait of  back stress evolution during valley stress hold 
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min( ) 2.0, 0.4a S K= =  min( ) 1.2, 0.4b S K= =  

min( ) 0.8, 0.4c S K= =  min( ) 0.1, 0.4d S K= =  

min( ) 2, 0.4e S K= − =  
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       either stay as a constant (if 2 ini 4X X X∗ ∗≤ ≤ ) or increase (if ini 20 X X ∗≤ < ) during 

valley stress hold. However, after a finite number of cycles, the back stress will 

increase beyond 4X ∗  (since back stress increases during peak stress hold), then it 

will start to decrease towards 4X ∗  during valley stress hold. This process will 

continue indefinitely. Hence, periodic solution will be reached at sufficiently long 

times. 

The analysis above shows that the phase portrait and the existence of periodic 

solution depend on the order of the fixed points1X ∗ , 2X ∗ , 3X ∗ and 4X ∗ .  Recall Figure 

2.6(a-e) are generated by fixing 0.4K =  and varying minS . The general case where 

minS  and 0K >  vary independently can also be analyzed based on the same idea. 

These results are summarized in a two parameter map which divides the (min ,S K ) 

plane into six regions (①①①①-⑥⑥⑥⑥) based on the order of the four fixed points (Figure 2.7). 

Recall that by definition (2.43) and (2.44), 3 1 2 4,X X X X∗ ∗ ∗ ∗< < . The boundary lines 

separating the different regions in Figure 2.7 are: 

(1): min

3

2
S K= + , 1 2X X∗ ∗= ;  (2): minS K= , 2 0X ∗ = ; 

 (3): min

3

2
S K= − , 1 4X X∗ ∗= ;(4): min

3

2
S K= − − , 3 4X X∗ ∗= ; 

At a given temperature, K is a constant as indicated by the vertical line AB in 

Figure 2.7. This line goes through five regions ①①①①, ②②②②, ④④④④, ⑤⑤⑤⑤,⑥⑥⑥⑥.  The corresponding 

phase portraits for each region are shown in Figure 2.7(a-e) (for example, region 1 

corresponds to Figure 2.7(a) etc.). To make contact with the phase portraits in Figure 

2.7(a-e), the arrow on AB indicates the direction of decreasing S. If a different K is 

used, then the corresponding line CD will go through regions ①①①①, ②②②②,③③③③, ⑤⑤⑤⑤,⑥⑥⑥⑥ (see 

Figure 2.7). The resulting phase portraits are similar except region ④④④④ is replaced by 

region ③③③③.  In region ③③③③, 2 0X ∗ < , and (0,1 is an interval of fixed points, that is, if 

(ini 0,1X ∈  , the back stress does not change. 
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Figure 2.7   Parameter map divided into six regions 
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In summary, if ( min ,S K ) lies in a region above the boundary line min 3 / 2S K= − , ( 

in regions ①①①①, ②②②② and ③③③③), periodic solutions do not exist. On the other hand, existence 

of periodic solution is guaranteed if (min ,S K ) lies below the line, (in regions ④④④④, ⑤⑤⑤⑤ 

and ⑥⑥⑥⑥). Thus, a necessary and sufficient condition for periodic solution is  

 min 3 / 2S K< −   (2.45) 

Equation (2.45) states that the back stress is oscillatory for sufficiently small valley 

stress or yield stress.  

2.3 Long Term Memory 

A very interesting and important feature of the present UVM is that the inelastic 

strain evolution can be completely different if there is a phase shift of the loading 

waveform (see Figure 2.8).  In other words, it matters in the long term whether we 

start loading the specimen in tension or in compression. That is, the dynamical system 

has long term memory. To illustrate this feature, consider the special case where 

max min,S S S S= = −  with hold times 1τ  (peak hold) and 2 c 1τ τ τ= −  (valley hold) 

respectively. As before, we assume 3 / 2S K> + so that 0p >ɺ  during peak/valley 

stress hold. Note for this case, the long time behavior of the back stress is a periodic 

since min 3 / 2S S K= − = − −  which satisfies (2.45). Consider the following two loading 

histories in Figure 2.8:  

(1) Tension-compression loading (Figure 2.8(a)): the loading cycle starts with 

tension holding during 10 τ τ≤ <  and is followed by compression holding during 

1 cτ τ τ≤ < .  

(2) Compression-tension loading ( Figure 2.8(b)), i.e, the loading cycle starts with 

compression holding during 20 τ τ≤ <  and is followed by tension holding for 

2 cτ τ τ≤ < . i.e, the loading waveform is obtained by shifting the waveform in Figure 

2.8(a) to the left by 1τ . 



 

29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                 (a)                                                             (b)  

Figure 2.8  Loading history (a) tension-compression loading. (b) Compression-tension 

loading  
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Denote ( ) ( )t-c t-c,X τ ε τ  as the back stress and accumulated inelastic strain at τ  

for tension-compression loading. Likewise, let ( ) ( )c-t c-t,X τ ε τ  denote the back stress 

and accumulated inelastic strain at τ  for compression-tension loading. Intuitively, one 

would expect that phase shifts should have no effect on the long time inelastic strain 

accumulation.  In other words, after a sufficiently large number of cycles, ( )t-cε τ  and  

( )c-tε τ  in the time interval A-B-B'-C in Figure 2.8(a,b) should satisfy the condition  
                                           

                                           ( ) ( )t-c c-t 1ε τ ε τ τ= +   (2.46) 

 
However, the counter-example below showed otherwise. 

During tension hold, ( ) max S S Sτ = = , the back stress and inelastic strain evolves 

according to 

 ( ) 3
/ 1      

2

n

dX d c X S X Kτ  = − − − 
 

  (2.47) 

 
3

/    
2

n

d d S X Kε τ  = − − 
 

  (2.48) 

During compression hold, ( ) min S S Sτ = = − , the back stress and inelastic strain 

evolves according to 

 ( ) 3
/ 1     

2

n

dX d c X S X Kτ  = − − + − 
 

  (2.49) 

 
3

/  
2

n

d d S X Kε τ  = − + − 
 

  (2.50) 

Let ,Y X δ ε= − = − ,  (2.49), (2.50) can be rewritten as 
 

 ( ) 3
/ 1

2

n

dY d c Y S Y Kτ  = − − − 
 

  (2.51) 

 
3

/
2

n

d d S Y Kδ τ  = − − 
 

  (2.52) 

Hence, if ( ) ( )( ),X τ ε τ  is the solution for (2.47), (2.48) for the initial conditions 

( )0 0( 0) , ( 0)X Xτ ε τ ε= = = = , then ( ) ( )( ),X τ ε τ− −  is the solution for (2.49), (2.50) 

for initial condition ( )0 0( 0) , ( 0)X Xτ ε τ ε= = − = = − . Therefore, for the special case 
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where 1 2 c / 2τ τ τ= = , at the end of first hold period, the back stress and accumulated 

inelastic strain for Figure 2.8(a), (b) satisfy ( ) ( ) ( ) ( )t-c 1 c-t 2 t-c 1 c-t 2,X Xτ τ ε τ ε τ= − = −

given the same initial condition ( ) ( )0 0 0X ε= = . Continuing this line of reasoning, it 

is easy to see that ( ) ( ) ( ) ( )t-c c-t t-c c-t,X Xτ τ ε τ ε τ= − = −  for all times. This clearly 

violates (2.46). This counter example shows that that the long time inelastic strain for 

compression-tension loading cannot be obtained from tension-compression case by a 

simple phase shift, i.e., ( ) ( )t-c c-t 1ε τ ε τ τ≠ + . In other words, how one starts the system 

has long term consequences. 

Our above argument works only when1 2τ τ= . Consider the case 1 2τ τ≠ , the 

results in Figure 2.9 are carried out using max min 2 1, 0.1, 5, 2 0.02S S K n τ τ= − = = = = , 

which shows that when the system reaches steady state, i.e., ( ) ( )t-c c-t 1X Xτ τ τ= +  but 

( ) ( )t-c c-t 1ε τ ε τ τ≠ + . Hence, the accumulated inelastic strain depends on the initial 

condition and the system has long term memory.    

2.4 Ratcheting in Cyclic Loading 

Ratcheting, the inelastic strain accumulated cycle by cycle, is an important 

quantity in the life estimation of high temperature materials subjected to cyclic 

loading. Ratcheting has been studied extensively over the past decades for many 

different materials including stainless steel (Yoshida 1990; Kang et al. 2002; Yaguchi 

and Takahashi 2005a), solder alloys (Chen et al. 2006), polymers (Chen and Hui 

2005) and composites (Zhang et al. 1990; Jansson and Leckif 1992) at both room and 

elevated temperatures. Reviews of these works can be found in the papers by Ohno 

(1990b, 1997) and Kang (2008). In many papers, the uniaxial ratcheting strain rε is 

defined as (Kang et al. 2002; Kang et al. 2006; Park et al. 2007) 
 

                                            
( )r max min

1

2
ε ε ε= +   (2.53) 
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(a)                                                 

 

(b) 

Figure 2.9   Back stress and inelastic strain history for cyclic loading (a) back stress 

versus time  (b) inelastic strain versus time 
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where maxε and minε are the maximum and minimum strains within one loading cycle. 

Another definition of ratchetting strain (Kang 2008) is  
 
 max max

r 1n nε ε ε+= −   (2.54) 

where max
1nε + and max

nε are the maximum strain in the nth and n+1th cycle. As pointed 

out in the literature (Zhang et al. 1990; Ohno 1990b; Kang 2008; Yoshida 1990; 

Yaguchi and Takahashi 2005b, 2005a; Chaboche and Nouailhas 1989a-a), 

(1) Accurate modeling of ratchetting depends on the kinematic hardening rule in 

the constitutive model.  

(2) The amount of ratcheting strain depends on a variety of factors such as mean 

stress, peak/valley stress hold time, loading rate and temperature. 

According to various investigators (Breitbach et al. 1989; Breitbach et al. 1994), 

there are two contributions to the inelastic strains during cyclic loading: a time-

dependent component induced by creep and a time-independent progressive cyclic 

strain component induced by back stress evolution. The difficulty is that these two 

contributions are coupled in the UVM approach and hence no simple decomposition 

of strains is possible. Here we propose a dimensionless ratio, called ratchetting ratio, 

which is defined by 

 ratchetting
ss

R
ε
ε

∞∆=
∆

  (2.55) 

where ε∞∆  is the long term inelastic strain increment per cycle defined in section 

2.2.3 in a cyclic test, and it is the same as rε  defined in (2.54); ssε∆ is defined by  
 

 ( )ss max c3 / 2
n

S Kε τ∆ ≡ − −   (2.56) 

 

which is the inelastic strain accumulated in time cτ  in a creep test with constant stress 

maxS . Intuitively, one may think that because the mean stress in a tension-compression 

cyclic test is always lower than maxS , ssε ε∞∆ > ∆  . However, this argument is flawed 
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since the normalized back stress can be significantly lower than 3 / 2 K+ during peak 

hold in a cyclic test.   

A necessary condition for ratchetting 1R <  can be obtained based on our result in 

section 2.2.4. Equation (2.26) guarantees that the back stress is monotonically 

increasing if min 3/ 2S K> − . If this is the case, then the long time inelastic strain 

accumulated per cycle is given by (2.31).  A comparison of (2.31) and (2.56) shows 

that 
 
 ratcheting ss 1 c/ / 1R ε ε τ τ∞= ∆ ∆ = <   (2.57) 

 

in the absence of back stress oscillation. In other words, back stress oscillations is a 

necessary condition for ratchetting 1R > . According to (2.45), a necessary solution for 

ratchetting 1R >  is min 3 / 2S K< − . Unfortunately, we have not been able to find the 

sufficient condition for ratchetting 1R >  in terms of a closed form expression involving 

material constants and loading parameters. Our numerical results show that the 

ratcheting ratio depends on the material and loading parameters. Some examples are 

given in Figure 2.10(a-d) which use the same set of parameter max 2.1, 0.1,S K= =  

1 210, 2c τ τ= = =  with varying n. As shown in the figures, in general small min max/S S  

tends to have higher ratchetingR  , however, the condition ratcheting 1R > does not always 

occur.   

2.5 Summary and Discussion 

There are obvious limitations in our analysis. The UVM model used in this work is 

based on the nonlinear kinematic hardening (NLK) rule proposed by Armstrong and 

Frederick (1966). It is well known that this rule tends to overestimate the ratcheting 

strain in uniaxial and multi-axial cyclic tests (Chaboche and Nouailhas 1989b-a; Inoue 

et al. 1989; Freed and Walker 1990). We assume a very rapid loading and unloading  
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                               (a) 12n =                                                           (b) 8n =  

                               (c) 4n =                                                           (d) 2n =  

Figure 2.10  Ratcheting ratio versus min max/S S for differentn . 
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Rate so that the effect of loading rate is not explored. However, our goal is not to 

include the most comprehensive model of UVM, but to illustrate a different approach 

which may offer more insight into the behavior of UVM. We believe many of the 

features highlighted in this chapter are applicable to many of the UVM in the 

literature. In addition, our approach can be extended to study other UVM models.   

In our analysis, we have neglected the evolution of two state variables. 

Specifically, we neglected the evolution of one of the state variables that governs the 

evolution of the back stress (β  in Equation(2.10)) and the one that governs hardening (r 

in Equation(2.7)).  

These simplifications have little effect on the long time qualitative behavior of the 

solution. For example, for sufficiently long times, r r∞→ and it can be absorbed into 

the yield stress K.  In addition, we can always pick 2 1c c>  so that the state variable β 

evolves much faster than α.   

To summarize, we found,  

1:  As long as max 3 / 2S K> +  and min 3 / 2S K< − , the back stress will be 

oscillatory and there exists a periodic solution. Otherwise, the back stress will increase 

monotonically to its saturation value.  

2:  The long time inelastic strain depends on the initial condition, i.e., a phase shift 

of the loading waveform can lead to completely different inelastic strain accumulation. 

This result presents an interesting idea that may be important in practice, that is, it is 

possible to pre-treat the material to ensure less ratchetting . 

3:  The ratchetting ratio during high temperature cyclic loading depends on the 

overall effect of loading and material parameter. This ratio is smaller than 1 if the back 

stress is not oscillatory, that is, if min 3 / 2 .S K> −  In other words, low yield stress and 

large valley stress reduces ratcheting.  
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CHAPTER 3  

CRACK TIP FILEDS IN A VISCOPLASTIC SOLID-MONOTONIC AND CYCLIC 

LOADING 

3.1 Introduction 

Recent interest in nuclear power has renewed interest in the study of high 

temperature materials fracture, in particular, nickel based alloys because of their 

exceptional high temperature creep strength. In the power plant industry, operating 

temperature in the equipment components is usually high. For some highly stressed 

components which are part of reactors, cracks from unavoidable sharp corners during 

fabrication or workmanship flaws may develop at certain locations and propagate due 

to fatigue and creep. So the reliability of these components at high temperatures 

becomes a significant concern. Creep fatigue and crack growth could lead to failure of 

the power plant equipment such as intermediate heat exchangers. Thus, to predict the 

design and remaining life of power plant components accurately, modeling these 

cracks with a constitutive model that describes the crack creeping behavior is a natural 

choice. 

The standard fracture mechanics approach is to relate crack tip processes to a 

loading parameter that quantifies the strength of the crack tip stress fields. This 

parameter allows engineers to correlate crack growth rate in complex structures with 

the applied load. Attempts at understanding the time dependent crack tip stress fields 

can be traced back to Riedel and Rice with their seminal analysis on the stress field 

near the tip of a stationary Mode I crack in an elastic-power law creeping material 

(Riedel and Rice 1980). Since their work, a considerable amount of literature on crack 

tip loading parameters for creep crack growth has appeared (Riedel 1981; Bassani and 
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McClintock 1981; Atluri 1982; Schapery 1986; Saxena 1986; Bassani et al. 1989; Hall 

et al. 1998; Wang et al. 2000). 

Most of the crack tip analyses are based on an elastic power law creeping (EPLC) 

solid. The primary reason for choosing the EPLC model is that the stress field near a 

crack tip is characterized by the crack tip loading parameters such as KI , C
* or Ct in 

this model. However, even in monotonic loading, nickel based alloys typically exhibit 

complex deformation behavior (Chomette et al. 2010; Schubert et al. 1984; Cook 

1984; Schneider et al. 1984; Kurata and Nakajima 1995). Another shortcoming of the 

EPLC model is that it does not describe material behavior under cyclic deformation 

well. Therefore, the use of crack tip parameters such as C* or C(t) to characterize 

crack growth in these alloys can be questionable. Compared to monotonic loading, 

crack tip field under cyclic loading presents a more challenging problem and has 

received much less attention. Riedel (1983) studied crack tip fields in EPLC materials 

under cyclic loading conditions. Yoon et al. (1992) carried out both experimental and 

numerical studies on creep-fatigue crack growth (CFCG) behavior of 1.25Cr-0.5Mo 

steel. Adefris et al. (1996a, b) studied the combined effect of cyclic plasticity and 

creep deformation on creep fatigue crack growth of a 1Cr-1Mo-1/4V steel. Grover and 

Saxena (1999) proposed a new creep-reversal parameter to quantify creep-fatigue 

interaction. In these papers, a constitutive model in which the inelastic strain is the 

sum of a rate independent plastic strain and creep strain was used.  

A growing body of research demonstrates that much of the complex deformation 

behavior of high temperature metal alloys during cyclic loading, such as stress 

relaxation, ratcheting and cyclic softening/hardening behavior, can be captured by so 

called unified viscoplastic models (UVM) ((Chaboche 1989), also see review papers 

by Ohno (1990a), Chaboche (Chaboche 2008) and the references within). One of the 

advantages of these UVM is that there is no separation between creep and rate 
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independent plasticity. Despite the success of UVM to represent high temperature 

material behavior, very few researchers have studied the deformation and stress field 

near the crack tip using these models. Zhao and Tong (2008) studied the behavior of 

the cyclic stress and deformation field in a cracked specimen numerically using a 

UVM of Chaboche (1989). Their study was purely numerical, for example, they did 

not investigate the existence of crack tip parameters for viscoplastic materials. Stamm 

and Walz (Stamm and Walz 1993; Walz and Stamm 1993) carried out both numerical 

and analytical investigation of crack tip fields in viscoplastic materials. Their 

numerical work focused on the regime of high applied stresses.  

The brief summary above suggests that it may be useful to study the crack tip field 

of a viscoplastic material and compare these fields with those of an elastic power-law 

creeping material. In this chapter, we carried out analytical and numerical studies on 

the Mode I crack tip stress fields of a viscoplastic material. This model was originally 

conceived by Chaboche (1989) and later used by Zhao and Tong (2008) to study creep 

fracture in Alloy RR1000. In the first part of this chapter, we derive the asymptotic 

crack tip fields associated with this viscoplastic model under monotonic loading. Then 

the evolution of the crack tip stress field under small scale creep (SSC) conditions is 

studied. Under this condition, inelastic strains are confined to the crack tip. The effect 

of cyclic loading on the near tip stress and strain fields is studied. Due to the 

complexity of cyclic loading, we focus on a simple class of loading history and the 

effect of stress ratio on the crack tip fields. 

3.2 Material Model 

The geometry used for monotonic and cyclic loading is the single edge crack 

tension specimen (SECT) shown schematically in Figure 3.1 with / 0.1a b = . 
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Figure 3.1   Single edge crack tension specimen 
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The material model is a unified viscoplastic model proposed by Chaboche(1989). The 

total strain rate ijεɺ  is the sum of the elastic strain rate e
ijεɺ  and inelastic strain rateIijεɺ , where 

a dot denotes differentiation with respect to time. The elastic strain rate is given by 

 

 e 1
,ij ij kk ijE E

ν νε σ σ δ+= −ɺ ɺ ɺ   (3.1) 

where ijσ is the stress tensor, E is the Young’s modulus and v  is the Poisson’s ratio.  

The inelastic strain rate is given by 
 

 I

e

3
,

2
ij

ij p
ω

ε
ω

=ɺ ɺ   (3.2) 

where  

 I I2
,

3 ij ijp ε ε= ɺ ɺɺ   (3.3) 

is the effective inelastic strain rate and 

 d
ij ij ijs xω = −   (3.4) 

is the difference between the stress deviatoric tensor ijs and the deviator of the back 

stress tensorijx .  Also,  

 3 / 2e ij ijω ω ω≡   (3.5) 
 

The effective inelastic strain ratepɺ is given by    
 

 /
N

p f Z=ɺ   (3.6) 
 

whereZ and N are material constants.  The symbol in (3.6) is defined by 

 

 
0

        
0 0

z z
z

z

≥
=  <

  (3.7)   

In (3.7),  f is the yield function defined by  

 ef r kω= − −   (3.8) 



 

46 

where R is an isotropic hardening variable and k is the initial radius of the yield 

surface. The elastic region is defined by 0f ≤ . The evolutionary law for the 

hardening variable R is given by  

 3( )R c R R p∞= −ɺ ɺ   (3.9) 
 

where 3c and R∞ are isotropic hardening parameters, R∞  is the steady state value of R , 

and 3c  controls the saturation rate.  The back stress tensor (see(3.4))ijx  is decomposed 

into two parts, 

 ij ij ijx α β= +   (3.10) 
 

The state variables ,ij ijα β  evolve according to  

 

 1 1
e

,ij
ij ijc a p

ω
α α

ω
 

= − 
 

ɺ ɺ   (3.11) 

 

 2 2
e

ij
ij ijc a p

ω
β β

ω
 

= − 
 

ɺ ɺ   (3.12) 

 

where 1 2 1 2, , ,c c a a are material constants. The first terms in (3.11), (3.12) are 

responsible for hardening whereas and the second terms model dynamic recovery.  

The steady state values of the back stresses are determined by 1a and 2a  while the 

values of 1c  and 2c  control the rate by which the steady values are reached. Since 

e/ 1ijω ω ≤ , (3.11) and (3.12) imply that the back stresses are bounded by 1 2a a+  at 

any inelastic strain rate.   

   This constitutive model contains 11 material parameters. These are: Young’s 

modulusE , Poisson’s ratioν , the kinematic hardening parameters1 2 1 2, , ,a a c c , the 

isotropic hardening parameters 3c andR∞ , the creep parameters Z and N , and the 

initial yield stress k . These parameters vary with temperature and have been 

determined from experimental data. Values used in this paper are for Alloy RR1000 at 
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650oC (see Table 3.1 below). These data are taken from the papers of Zhao and Tong 

(2008) and (2007a).  

3.3 Analytical Analysis of Monotonic Loading 

3.3.1 Uniaxial Loading Behavior 

Important insight into the structure of crack tip fields in the viscoplastic materials 

described above can be gained by examining the deformation of a straight bar in a 

creep test. For uniaxial loading, let 22σ σ=  be the applied tension to the bar at0t = . A 

straightforward calculation shows that the equivalent effective stress is  
 

 e 22 .xω σ= −   (3.13) 
 

The inelastic strain rate in the loading direction is 
 

 22
22

e

3
,

2
I p

ωε
ω

=ɺ ɺ   (3.14) 

where 

 22
22 e

22

( )2
/ ,

3

x

x

σω ω
σ

−=
−

  (3.15) 

 

 e( ) / .
N

p R k Zω= − −ɺ   (3.16) 

Equation (3.14) can be rewritten as 
 

 ( ) ( ) ( )I
22 22 22 22sgn / sgn .

N
p x x R k Z xε σ σ σ= − = − − − −ɺ ɺ   (3.17) 

 

Assuming that I
22 22 0R xε = = = at 0t = ,  Equation (3.17) implies that the applied 

tension has to be greater than k for non-zero inelastic rate. For 0p >ɺ , integrating(3.9), 

(3.11), (3.12) and using the initial conditions I
22 0ijR xε = = =  results in 

 

 3(1 ),c pR R e−
∞= −   (3.18) 
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 1 21 2
22

2 2
1 1 ,

3 3
c p c pa a

x e e− −   = − + −      (3.19) 

 

 1 21 2
11 33 1 1 .

3 3
c p c pa a

x x e e− −   = = − − − −      (3.20) 

Substituting(3.18), (3.19) in (3.16) and assuming 22 0xσ − >  lead to the following 

expression for the inelastic strain rate: 
 

 ( ) ( )31 2
22 1 2

2
1 1 1 .

3

N
c pc p c pI Np Z a e a e R e kε σ −− −−

∞
    = = − − + − − − −     

ɺ ɺ   (3.21) 

 

Equation (3.21) is a separable differential equation and can be integrated to find 

the inelastic strain as a function of time.  Note, since 1ic pe− ≤  in (3.21) the condition 
 

 1 2

2
( ) ,

3
a a R kσ σ ∗

∞> + + + ≡   (3.22) 

  
ensures that 0p >ɺ  for 0t > . In particular, if σ σ ∗>> , the σ  term inside the square 
bracket in (3.21) dominates, and 

 N Np Z σ−≈ɺ   (3.23) 
 

Equation (3.23) shows that at high stresses, the inelastic behavior of the material is 

asymptotically identical to a power law creep material with creep coefficient N.  This 

suggests that, near the crack tip, the viscoplastic constitutive model can be replaced by 

a power law creep model. Indeed, forσ σ ∗>> , (3.23) implies that ( )/
N

p Z tσ≈ ; 

substituting this into (3.18) and (3.19) gives 
 

 ( )31
N Nc Z tR R e σ−−

∞≈ −   (3.24) 
 

 ( ) ( )1 2
22 1 2

2
1 1

3

N N N Nc Z t c Z tx a e a eσ σ− −− − ≈ − + −
 

  (3.25) 

Equation (3.24) and (3.25) show that the state variables R and 22x  reach their 

steady state values exponentially fast. The characteristic times needed to achieve 
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steady state are 1
3( / )NZ cσ −  for the isotropic hardening variable R  and 

1max[( / ) ], 1,2N
iZ c iσ − =  for the back stress 22x  respectively. Note that these 

characteristic times are very sensitive to the stress level, i.e., higher stresses 

dramatically reduce the time needed to reach steady state. This result suggests that the 

crack tip material is invariably governed by steady state behavior. From (3.23) the 

characteristic time which determines how fast creep strain is accumulated is 
 

 ( )1 /
N

t Z σ≈   (3.26) 
 

This characteristic time differs from the characteristic relaxation time of the internal 

variables by a factor of max[ 1
ic− ]. Since 1ic >>  at high temperatures, the state 

variables evolve at a much faster rate than the inelastic strain. This behavior is 

consistent with the dominance of steady state behavior near the crack tip.     

3.3.2 Asymptotic near tip Stress and Strain Fields 

In this section we show that the asymptotic near tip fields is still governed by 

power law creep. Since our derivation of this result follows the same line of reasoning 

as the previous work of Stamm and Walz (Stamm and Walz 1993; Walz and Stamm 

1993), we focus on the key ideas and our specific model since most of the 

mathematical details can be found in their work. In the following, ( , )r θ  denotes the 

polar coordinate of a material point. The crack tip occupies the origin where 0r = . 

The key idea is that the state variables reach finite steady state values at the crack 

tip. Indeed, (3.11) and (3.12) show that as one approaches the crack tip, the back stress 

tensor approaches the steady state  
 

 ( )( )1 2
0

/ij ij e
r

x a a ω ω∞

=
≡ +   (3.27) 
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Since we expect that the stress and strain fields approaches infinity at the crack tip, 

these steady state values of the back stresses are reached instantaneously at the crack 

tip. Note that / 1ij eω ω ≤ , so these steady state values are always bounded.  Denote  
 

 ( )e e00
/ lim / ( )ij ij

rr
ω ω ω ω θ

→=
≡ ≡ Ω   (3.28) 

 

Equations (3.27) and (3.28) imply that the state variables are bounded everywhere 

with their maximum values achieved at the crack tip at the instant of loading. As time 

increases, the region where the state variables achieved their steady state spreads out 

from the crack tip.  

Since the state variables are bounded at their steady state values near the crack tip, 

we have 

 e e

3
  , ,

2
d

ij ij ij ij ij ijs x s s sω ω σ= − ≈ ≈ =   (3.29) 

 

 e e .
N N

R k
p

Z Z

ω σ− −  = ≈  
 

ɺ   (3.30) 

    Equations (3.29), (3.30) imply that the inelastic strain rate near the crack tip is 

governed by 

 I 13
       

2
N N

ij e ijB s B Zε σ − −≈ ≡ɺ   (3.31) 

To leading order, the total strain rate near the crack tip is that of an EPLC material, 

i.e., 

 11 3

2
N

ij ij kk ij e ijB s
E E

ν νε σ σ δ σ −+= − +ɺ ɺ ɺ   (3.32) 

For a stationary crack, the inelastic strain rates dominate the elastic strain rates as 

long as N > 1. Therefore, (3.31), (3.32) imply that the near tip stress and strain fields 

must be governed by the HRR field with a creep exponent N and creep coefficientB . 

Specifically, the stress field near the crack tip must have the form (Riedel and Rice 

1980): 
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1/( 1)

( )
( , )   0

N

ij ij
N

D t
N r

BI r
σ σ θ

+
 

= → 
 

ɶ   (3.33) 

where ( )D t characterizes the amplitude of the singular field. In addition, since ijx is 

bounded at the crack tip, we have  
   
 

0
( ) lim / ( , ) / ( , )ij e ij e

r
s N Nθ ω ω θ σ θ

→
Ω = ≈ ɶ ɶ   (3.34) 

 

where ( , ) ( , ) ( , ) / 3ij ij kk ijs N N Nθ σ θ σ θ δ≡ −ɶ ɶ ɶ  and  ( , ) 3 / 2e ij ijN s sσ θ =ɶ ɶ ɶ . 

Equations (3.27) and (3.34) show that the back stress tensor at the crack tip is 

completely determined by the material constants and angular variation of the HRR 

field. The evolution of the state variables near the crack tip can be estimated by 

substituting (3.34) into (3.9)-(3.12) and using (3.29), (3.30), the results are: 
 

 
[ ]

( )
( )

2
/( 1)

/( 1)
1 0

( , ) ( , )
1 exp ( )

( , )

N t
N Nij i e

ij i N N
i e N

s N Bc N
x a D t dt

N BI r

θ σ θ
σ θ

+
+

=

    ′ ′  = − −        
∑ ∫

ɶ ɶ

ɶ
  (3.35) 

 

 
[ ]

( )
( ) / ( 1)3

/( 1)
0

( , )
1 exp ( )

N t
N Ne

N N

N

Bc N
R R D t dt

BI r

σ θ +
∞ +

  
′ ′  = − −

    
∫

ɶ
  (3.36) 

 

Note that, for any 0t > , the back stress tensor and the isotropic hardening variable 

approach their steady state values exponentially fast as 0r → . 

3.4 Finite Element Analysis (FEM) Simulation 

3.4.1 Normalization 

In the following, we normalize all lengths including displacements by the crack 

length, a, stresses by 1a  and time by τ where  
 

 ( )1/
N

Z aτ =   (3.37) 
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All normalized variables are topped by a bar. All the derivatives with respect to the 

normalized time τ are denoted by prime. The normalized constitutive model is:  
 

 
1e

ij ij kk ijE E

ν νε σ σ δ+′ ′ ′= −   (3.38) 

 

 I
e

e

3
,  3 / 2

2
ij

ij ij ijp
ω

ε ω ω ω
ω

′ ′= ≡   (3.39) 

 

 e

N
p R kω′ = − −   (3.40) 

 

 3( )R c R R p∞′ ′= −   (3.41) 
 

 1
e

ij
ij ijc p

ω
α α

ω
 ′ ′= − 
 

  (3.42) 

 

 2
2

1 e

ij
ij ij

a
c p

a

ω
β β

ω
 ′ ′= − 
 

  (3.43) 

A straightforward dimensional analysis shows that the governing equations and the 

boundary conditions contain the following dimensionless quantities: 
 

 2 1 3 2 1 1 1 1 1, , , , , / , / , / , / , / c c c N a a k k a R R a a E E aν σ σ∞ ∞ ∞ ∞= = = =   (3.44) 

3.4.2 FE Model 

Finite element analysis was carried out using the finite element software 

ABAQUS(2008). The constitutive model is implemented in ABAQUS through a user-

defined material subroutine UMAT using the implicit backward Euler method under 

the assumption of small deformations. The finite element models are shown in Figure 

3.2. The mesh consists of 4-noded bilinear plane strain quadrilateral element (CPE4). 

To capture the crack tip stress fields accurately, we used a sub modeling technique in 

ABAQUS (2008) to obtain detailed numerical solution at the crack tip by applying the  



 

53 

 

 

 

 

 

 

 

 

 

 

 

 

 
(a)                                                                      (b) 

 

Figure 3.2   FE models for numerical simulation. (a) Finite element model for half of 

the specimen. The sub-model region (0.1r = ) is highlighted. (b) Semicircular FE 

sub-model with fine mesh 

1.0=r  

1a =

10b =
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solution obtained using a coarse mesh as the boundary condition in the sub-model. A 

convergence study with respect to mesh and step size has been carried out. To capture 

the HRR field near the crack tip, the maximum size of the smallest element should be 

on the order of 510− . In all simulations, the smallest element size near the crack tip is 

on the order of 610−  whereas the mesh size in the far field is on the order of 110− . 

Backward Euler scheme ensures numerical stability. A normalized time step size of 

410− is used in the simulation. A convergence study shows that the solution remains 

unchanged with further reduction of the normalized time step size. The normalized 

parameters used in the simulations are calculated using the material parameter in Table 

3.1(Zhan and Tong 2007a, b; Zhao and Tong 2008). 

To verify the UMAT and the sub-modeling technique, we set all ic and k to zero. 

This reduces the viscoplastic model to a power law creeping solid. We compare our 

numerical results with analytical solutions in the literature. Details are given in the 

Appendix 3.1.  

3.4.3 Small Scale Creep (SSC) 

For an EPLC material, creep deformation is always confined to the crack tip at 

sufficiently short times. This condition is known as small scale creep and was studied 

first by Riedel and Rice (1980). In this regime, the crack is modeled as semi-infinite 

with the far field boundary condition governed by the stress intensity factorIK , i.e., 
 

 ( )   
2

eI
ij ij

K
r

r
σ σ θ

π
= → ∞ɶ   (3.45) 

For a constant load applied suddenly at time t = 0, Riedel and Rice (1980) have 

shown that near crack tip stress field is given by   
 

 
1/( 1)
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N

ij ij
N

C t
N

BI r
σ σ θ

+
 

=  
 

ɶ   (3.46) 
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Table 3.1  Data for viscoplastic material (Zhan and Tong 2007a, b; Zhao and Tong 2008)  

Parameters Values 

E  190 GPa 

ν  0.285 

Z  678.317 -NMPa×s  

N  10 

k  144.26 MPa 

1a  361.57 MPa 

2a  266.84 MPa 

R∞  161.52 MPa 

1c  391.61 

2c  2578.69 

3c  7.13 
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where ( )C t is the time-dependent stress amplitude of the singularity, NI  is a numerical 

factor dependents on N  and ijσɶ  is the angular variation of the HRR field.  For short 

times, the stress and strain fields are self-similar whereas for long times, the creep 

strain will eventually dominate the elastic strain and *( )C t C→ where *C  is a path 

independent integral defined by Landes and Begley(1976) . The transition from short 

to long time behavior takes place at a time denoted by Rt , which is given by 
  

 
2 2

R *

(1 )

( 1)
IK

t
n EC

α ν−=
+

  (3.47) 

 

where 1α ≈ . Finite element calculations (Ehlers and Riedel 1981) showed that ( )C t  

can be approximated by: 

 *R( ) 1
t

C t C
t

 ≈ + 
 

  (3.48) 

 

In contrast, for a viscoplastic solid, as long as the applied load is sufficiently low, 

the region of non-zero inelastic strain is always confined to the crack tip region for all 

times. This is because the inelastic strain rate vanishes when 0f ≤  (see (3.6) and (3.7)

). The fact that the region of active creep is confined by elastic material implies that 

the inelastic strain rate everywhere has to vanish at very long times, as shown below. 

With this background in mind, we consider the SSC problem in a viscoplastic 

solid. We assume that the applied load is sufficiently small so that inelastic zone is 

small compared with the region of dominance of the elastic IK  field. To be specific, 

consider a plane strain edge crack occupying (0, ), 0x a y∈ =  in an infinite strip of 

viscoplastic material (see Figure 3.1). At time 0t =  , the crack is loaded by applying a 

constant remote tension: 

 22( , , 0)x y tσ σ ∞→ ∞ > =   (3.49) 
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The boundary of the inelastic zone is determined by the condition 

0ef R kω= − − = . The maximum size of this creep zone Max
cr  can be estimated by 

setting 0ijR x= =  and equating eω  with k where eω  is obtained from elastic IK  

field. This results in: 

 
2

Max
c e2

( )
2

IK
r

k
σ θ

π
= ɶ   (3.50) 

 

SSC requires the condition Max
cr a<<  to be satisfied. For the single edged crack 

specimen shown in Figure 3.1, 1.12IK aσ π∞≅ (Tada et al. 2000). Substituting this 

expression for stress intensity factor into (3.47), the condition for SCC is 
 

 
2

2
1.6

k

σ ∞ <<   (3.51) 

Our analysis in the previous section implies that the crack tip stresses must have 

the form:  

 
1/( 1)

( )
( , )

N

ij ij
N

D t
N

BI r
σ σ θ

+
 

=  
 

ɶ   (3.52) 

where ( )D t is a time dependent stress amplitude. The SSC problem was simulated in 

ABAQUS using the finite element model shown in Figure 3.2. To ensure SSC, the 

normalized remote load is set to 0.2 to satisfy(3.51).  Figure 3.3 shows a log-log plot 

of the normalized stress 22σ  directly ahead of the crack tip ( 0θ = ) versus the 

normalized distance d at four different normalized times: 3.5e-3, 1.13,10,200. The 

two straight lines with slope of 1/ 2−  and ( )1/ 1N− +  denote the K field and HRR 

field singularity respectively.  

Figure 3.3 shows that at distances close to the crack tip ( 3 110 10d− −< < ),the elastic 

K field dominates at all times, since the results the slope of the stress versus distance is 

approximately -1/2. Indeed, the numerical solution agrees with (3.45). This result is 

consistent with the SSC assumption. Very close to the crack tip, the elastic rate is no 
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Figure 3.3  Normalized stress 22( , 0)rσ θ =  versus normalized distance directly ahead 

of the crack tip at different normalized times. The two straight lines are indicating the 

slope of -1/2 and -1/(N+1) for comparison. 
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longer dominant, Figure 3.3 shows that stress near the crack tip at normalized times 

t = 3.5e-3 exhibits the HRR singularity, consistent with (3.46). As time increases to 

1.13, the region of validity of the HRR field decreases significantly and at longer 

times (t = 10, 200), we observe no region of dominance of the HRR field. Stress 

relaxation near the crack tip is evident.   

     As mentioned earlier, we expect the HRR field and the inelastic strain rate to 

vanish with increasing time. To verify this hypothesis, the inelastic strain component 

22
Iε versus normalized time [ ]10,200t ∈  directly ahead of crack tip at 51 10d −= × is 

plotted in Figure 3.4. It shows that the inelastic strain rate is negative for [ ]10,200t ∈ . 

This result, together with (3.2) and (3.4), implies that 22 22 0ds x− < . Recall that the 

existence of HRR field is based on the inequality d
ij ijs x>> , hence, the fact that I22ε  

decreases with time (22 22 0ds x− < ) implies that the HRR field cannot be dominant, 

consistent with our result in Figure 3.3. Finally, note that the scale of the inelastic 

strain in Figure 3.4 is very fine, and I
22ε  almost approaches constant by normalized 

time 200. This result is also consistent with our hypothesis that the inelastic strain rate 

vanishes everywhere at very long times. Within the small scale creep regime, the 

region where creep occurs is always confined inside a small region near the crack tip 

where the surrounding material is elastic. This geometry confinement result causes the 

creep strain rate at a fixed material point to decrease with time at some point. This 

“back stress” is not due to microstructural changes in the dislocation structure but due 

to geometric constraint. 

As a further check, we plot the normalized crack tip stress amplitude, ( )D t =  

( ) 1/D t D where ( )1 1 3.5e 3D D t= = −  in Figure 3.5. This figure shows that the 

normalized stress amplitude decreases with time for 1t t>  and approaches zero at 

longer times. The above analysis focuses on small applied loading where the inelastic 

strain is confined to the crack tip region. We believe this is an important regime as  
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Figure 3.4   I
22ε  versus t  at 51 10 , 0d θ−= × =  
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Figure 3.5   Normalized crack tip stress amplitude ( )D t versus dimensionless time t  
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most high temperature components are subjected to relatively low loads to prevent 

creep rupture. Nonetheless, another regime is when the applied stress σ∞  exceeds σ ∗  

defined by (3.22). In this case the specimen creeps everywhere and SSC is valid only 

for very short times. Eventually the elastic KI field will disappear as inelastic 

deformation spreads throughout the specimen. In particular, if the applied stress

*σ σ∞ >> , then the entire specimen creeps. In this case, the fracture mechanics should 

be well approximated by the EPLC material as demonstrated by Stamm and Walz 

(Stamm and Walz 1993; Walz and Stamm 1993). 

3.5 Cyclic Loading 

In this section we study the crack tip fields due to a simple class of cyclic loading 

which consists of trapezoidal load cycles on the SECT specimen in Figure 3.6. Since 

our focus is on the effect of stress ratio on the crack tip fields, we limit our simulations 

to waveforms where loading and unloading are much faster than the hold period. A 

schematic of the waveform is shown in Figure 3.6. Each cycle contains four parts: 

loading with duration 0.1, hold at maxσ  with normalized time 3, unloading with 

duration 0.1 and hold at minσ  with normalized time 3 (see Figure 3.6(b)). The long 

normalized hold time allows for adequate stress relaxation. The normalized maximum 

stress amplitude is (max 0.2σ = ) so that the specimen is under SSC. Four different 

loading with stress ratios  min max/S σ σ= =  0, 0.2, 0.5 and 0.8 are considered.   

For each of the four cycles (I,II,III,IV) labeled in Figure 3.6(a), we highlight the 

stress field at the three times (1,2,3) which correspond to the beginning ,the middle 

and the end of a hold period. A log-log plot of the stress component 22σ  evaluated 

directly ahead of the crack tip versus the normalized distance d  at these times for S = 

0.5 are shown in Figure 3.7(a-c). Note that results for cycles (I,II,III,IV) at the same 

time lie approximately on top of each other in these figures, indicating that the stress  
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(a)                                                                  (b) 

Figure 3.6   Cyclic loading waveform with 0.5.S =  (a) loading history. Four loading 

cycles (I,II,III,IV) are labeled. (b) a particular loading cycle. (1,2,3) represent three 

different times in the hold period in each cycle.            
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(a)                                                                 (b)  

 
I  

Figure 3.7   Normalized stress profiles for different times in a hold period. (a) at the 

beginning of hold, (b)  at the middle of hold,  (c) at the end of hold. 
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distributions are approximately cycle independent. Our numerical result shows that the 

stress fields do not vary from cycle to cycle after the second cycle, hence we do not 

report results in the first cycle, and cycle I labeled in Figure 3.7(a) is actually the 

second cycle. As shown in Figure 3.7(a), immediately after loading, the stress field 

near the crack tip does not show any HRR characteristics (the HRR field is indicated 

by the blue line with slope -1/(N+1)). This result is not surprising since loading is 

sufficiently fast so that the rate of creep deformation is small compared with the 

elastic strain rate. As time increases, Figure 3.7(b) shows that the HRR field begins to 

dominate near the crack tip.  Note that, at the end of the hold period Figure 3.7(c), the 

region of dominance of the HRR field is smaller. 

This result is consistent with our SSC analysis in the previous section since the 

inelastic strain rate will decrease at long times. Similar trends for the stress are found 

for the other loading cases with different stress ratios.  

Next we investigate the effect of stress ratio S on the inelastic strainI
22ε .These 

results are presented at a fixed material point 51 10d −= × directly ahead of the crack 

tip. The time evolution of I
22ε  at this material point for S = 0, 0.2, 0.5 and 0.8 are 

plotted in Figure 3.8. A common feature of these figures is that I
22ε  increases in each 

cycle. This feature has been extensively studied in the literature (Chaboche and 

Nouailhas 1989a-b, 1989b-b; Ohno and Wang 1993; McDowell 1995; Yoshida 1990; 

Yaguchi and Takahashi 2005a, 2005b; Kang et al. 2002; Kang et al. 2006) for bars 

loaded under cyclic creep. For the material parameters used in our simulations, we 

found that the increment of inelastic strain per cycle, I
22ε∆ , converges rapidly to a 

constant which is denoted by ( )I
22 ,Sε∆ ∞ . The maximum inelastic strains accumulated 

per cycle and the value of ( )I
22 ,Sε∆ ∞  depend on the stress ratio. The higher the stress 

ratio S, the less the maximum strain accumulated at the same cycle. This effect is 

consistent with earlier calculation(Zhao and Tong 2008)and experimental observations  
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Figure 3.8   Crack tip strainI
22ε  at 51 10 , 0d θ−= × =  for four stress ratios 
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(Yaguchi and Takahashi 2005a; Gupta et al. 2005) of uniaxial specimens loaded under 

cyclic conditions. 

To understand these results, we plot the stress directly ahead of the crack tip at 

51 10d −= ×  in Figure 3.9. It shows that immediately after loading, the stress 22σ  

associated with the stress ratio 0 is higher than that of S = 0.8. The stress increases is 

due to the rapid elastic loading resulting in a high stress peak near the crack for low 

stress ratios. As pointed out by Riedel (1983) in his analysis of creep fatigue crack tip 

fields in an EPLC material, these stress peaks are associated with an sudden increase 

in stress intensity factor due to rapid change in loading. This stress increase gives rise 

to a higher inelastic strain rate during the hold period. As a result, the inelastic strain 

increases with decreasing stress ratio. 

3.6 Summary and Discussion 

A numerical and analytical study on the asymptotic stress and strain field of a 

plane strain Mode I stationary crack in a viscoplastic material is presented in this 

chapter. The focus is on the regime of small scale creep where the region of inelastic 

strain is small in comparison with typical specimen dimensions. Analyses are carried 

out for a constant applied load and a simple class of cyclic loading history. Our 

asymptotic analysis shows that the near tip stress and strain fields are still governed by 

the HRR field. This result can be readily extended to viscoplastic materials with 

different creep functions, as long as the state variables reach steady state at large 

strains (Stamm and Walz 1993; Walz and Stamm 1993). The argument for the near tip 

stress and strain field can also be extended to a growing Mode I crack with growth rate

aɺ . Since near the crack tip the material behavior is given by (3.31), the analysis of 

Hui and Riedel(1981) applies, so the near tip stress field for 3N >  is: 
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Figure 3.9   Crack tip stress22σ  at 51 10 , 0d θ−= × =  for stress ratio 0 and 0.8 
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  (3.53) 

where ˆ ijσ  are dimensionless functions describing the angular variations of the near tip 

fields and Nα  is a numerical constant (see (Hui and Riedel 1981)).     

Our solution for  the SSC problem differs significantly from the well known 

solution for an EPLC solid, where the creep strain at a material increases 

monotonically with time and the amplitude of the stress field at the crack tip reaches a 

constant value ( *C ). In our case, the creep strain at a material point near the crack tip 

first increases, then decreases to a constant value due to restraining stress exerted by 

the surrounding elastic material. As a result, the amplitude of the HRR field vanishes 

at long times. Therefore, if the applied load is small, the appropriate crack tip loading 

parameter is the elastic K field. This result is consistent with many creep crack growth 

experiments of super-alloys which suggested that the stress intensity factor correlates 

with the crack growth rate (Sadananda and Shahinian 1981; Fu 1980; Tong et al. 2001; 

Floreen and Kane 1979). 

    The effect of cyclic loading on the crack tip stress and strain fields are studied 

using four particular waveforms with different stress ratios but the same loading 

frequencies. Our waveform has rapid loading and unloading cycles. The hold times in 

our simulations are sufficiently long to allow for creep relaxation. In the beginning of 

a hold period, the elastic K field is dominant, and the region of HRR field is small. As 

time increases, the HRR field starts to dominate. For longer times, the region of 

dominance of the HRR decreases with time. For the material parameters used in this 

chapter, we find the stress distribution rapidly becomes cycle independent. This rapid 

convergence of a cycle independent stress state is controlled by the material 

parameters ic and is particularly sensitive to the stress level ((3.35)-(3.36)). The larger 

the ic and the higher the stress, the faster the rate of convergence. The ratcheting strain 
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is found to decrease with stress ratio.        

    There is obvious limitation in our analysis. We did not investigate the effect of 

loading frequency on the crack tip fields. Also, the hold times in all our simulations 

are identical. The dependence of crack tip fields on hold times and frequencies will be 

presented in a future work. More importantly, the micromechanics of local damage 

processes such as grain boundary cavitation are not included in our analysis. For 

Nickel-based super alloys, environmental effects such as oxidation embrittlement have 

been cited as the main cause of intergranular cracking for static and long dwell loading 

conditions(Saxena and Bassani 1984; Floreen and Kane 1979; Tong et al. 2001) . 

Appendix 3.1 Verification of the FEM implementation 

To verify the UMAT and the sub-modeling technique, we carried out simulations 

in a single edge cracked test (SECT) specimen. Sub-modeling can provide more 

detailed and accurate local solutions by applying the previously calculated global 

solution as the boundary condition (Krishnan et al. 2008). To validate our FEM, the 

constitutive model was reduced to an EPLC model by setting 1 2 3, ,c c c and k  in (3.40)-

(3.43) to zero. A normalized remote stress 0.2 is applied to the SECT specimen). 

Figure 3.10 shows the log-log plot of the stress component 22σ  versus distance 

directly ahead of the crack tip. The stress obtained from the global model (coarser 

mesh) is indicated by the dotted line. The stress obtained using the sub-model (finer 

mesh) is indicated by the dash line. Note that there is a large overlap region where 

both models agree, which validates this sub-modeling technique. The inverse square 

root singularity associated with the elastic KI field occurs in this overlap region. Log-

log plots of crack tip 22σ  field at different times are given in Figure 3.11. As time 

increases the stress near the crack tip is controlled by the HRR singularity which 

appears as a straight line with slope 1/ ( 1)N− + .  
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Figure 3.10  Verification of the sub-modeling technique 

10
-4

10
-2

10
0

10
1

10
2

10
3

10
4

distance ahead of the crack tip

 s
tre

ss

global model PLC

sub model PLC

1 

 

d

22σ -0.5 



 

72 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 3.11  Log-log plot of the stress versus distance ahead of crack tip at different 

times 
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CHAPTER 4  

PLANAR DEFORMATION OF RANDOM SIZED POWER LAW CREEPING 

GRAINS WITH SLIDING AND CAVITATING GRAIN BOUNDARIES  

PART I: CAVITY NUCLEATION AND GROWTH 

4.1 Introduction  

Designing for creep rupture is essential for elevated temperature components such 

as gas turbines, steam boilers and heat exchangers. For example, many structural 

components in nuclear power plants have a design life of 60 years. However, it is 

difficult to conduct creep experiments for such a long period of time. The current 

approach is to extrapolate short-term, high stress creep rupture data to long-term, low 

stress operating conditions using empirically based time-temperature parameters such 

as the Larson-Miller parameter (Larson and Miller 1952). This approach may lead to 

non-conservative design limits because the failure mechanisms in short term and long 

term tests can be different. A discussion of the difficulties associated with 

extrapolation of creep rupture data can be found in Ashby et al (1979).  

     A more consistent way of extrapolating creep rupture data is to supplement 

short term test information with fracture mechanism maps (Wray 1969). Briefly, a 

fracture mechanism map shows fields of dominance of particular creep rupture 

mechanisms in stress-temperature (or rupture time-temperature) space. Maps for over 

40 materials covering pure metals and commercial alloys can be found in Gandhi and 

Ashby (1979) and Fields et al (1980). For example, the dominating fracture 

mechanism at low stresses and elevated temperatures for ferritic and austenistic steels 

is intergranular cavitation. In this regime, grain boundary cavities nucleate on grain 

boundaries that are under normal tension. Extensive research has shown that grain 
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boundary cavities can grow by grain boundary sliding(Evans 1971), stress-assisted 

diffusion of atoms from the cavity surface to the grain boundaries (Hull and Rimmer 

1959; Chuang et al. 1979b; Needleman and Rice 1980), and by creep deformation of 

the surrounding grains (Hancock 1976; Budiansky et al. 1982). An excellent review of 

these micromechanical damage mechanisms can be found in Riedel’s book on high 

temperature fracture (Riedel 1987).  

Computational modeling based on micro-mechanics of creep damage processes 

such as those mentioned above can be used to alleviate the limitations of extrapolation 

and has been carried out by many investigators over the past thirty years. Numerical 

and approximate analytical solutions of a single cavity or an array of equally spaced 

cavities along an isolated grain boundary surrounded by power-law creeping or rigid 

grains have been developed by various investigators to quantify the effect of cavitation 

on creep deformation. These models form the basis for a continuum description of 

grain boundary separation where different oriented grain boundaries interact with each 

other. These continuum grain boundary separation models have been used extensively 

to study creep deformation of two dimensional polycrystalline microstructures 

consisting a periodic array of power-law creeping hexagonal grains (Riedel 1984; Van 

der Giessen and Tvergaard 1991; Van der Giessen and Tvergaard 1994; Onck and Van 

der Giessen 1997; Onck and Van der Giessen 1998). There are also numerical studies 

where grain deformation is modeled by rate-dependent crystal plasticity based 

constitutive models (Bower and Wininger 2004). This approach is computationally 

expensive so that only a limited number of grains can be simulated. More importantly, 

many of the intergranular cavitation models are based on the assumption that grain 

deformation can be modeled by elastic-power-law creep. For these reasons, we model 

the grains as an elastic power-law creeping material in this chapter. 
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So far, practically all numerical studies focus on uniform size grains with 

hexagonal shapes.  In this chapter we use a representative volume element (RVE) 

where grains are non-uniform in size and randomly distributed. The RVE is generated 

using Voronoi tessellation. It should be noted that multi-grain random structures have 

been used to study crack initiation and propagation along grain boundaries in 

Aluminum alloys (Iesulauro et al. 2002). Since high temperature applications are not 

the focus of their work, grain boundary cavitation and sliding are not incorporated into 

their cohesive zone model. In our model, each grain is treated as a continuum and 

deforms by elastic-power-law creep. Grain boundary sliding and grain boundary 

separation due to cavity nucleation and growth are simulated using the equations 

summarized by Onck and Van der Giessen (1998). Specifically, these equations are 

implemented into a cohesive zone model (CZM) which allows us to compute grain 

boundary separation and slip as a function of loading history. Calculations are carried 

out for uniaxial creep and relaxation tests using periodic boundary conditions. It has 

been shown by various researchers (Terada et al. 2000; Kanit et al. 2003; Larsson et al. 

2011) that periodic boundary condition increases the convergence rate of numerical 

results with increasing RVE size. Several advantages of the approach used in our work 

are: (1) a more realistic microstructure is modeled using RVE where grains are 

randomly distributed, (2) random creep behavior of grains (e.g. different grains can 

have different creep exponents and coefficients) can be incorporated into the FEM 

code , (3) complex grain boundary damage mechanism which is described by CZM is 

integrated into a commercial finite element software (ABAQUS) where parallelization 

computation can be carried out if desired. 

    The outline of this chapter is as follows. In section 4.2 we summarize the 

equations governing grain deformation and a CZM which incorporates damage due to 

cavitation and grain boundary sliding. The normalization of all the governing 
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equations is carried out in section 4.3. To gain insight, we analyze the CZM in section 

4.4 using a simple loading history and show that the grain boundary cavitation model 

predicts interfacial failure. Details of our numerical implementation using ABAQUS is 

given in section 4.5. Finite element results for relaxation test and uniaxial tension test 

are presented in section 4.6 and 4.7 respectively. Finally, summary and discussion are 

given in section 4.8.   

4.2 Constitutive Model 

We assume that grains deform by elastic-power-law creep according to  
 
                                                     e C,ij ij ijε ε ε= +ɺ ɺ ɺ   (4.1) 
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where a dot denotes time derivative, ijεɺ  is the total strain rate, eijεɺ  is the elastic strain 

rate , C
ijεɺ is the creep strain rate. ijσ is the stress tensor, E is the Young’s modulus and 

v  is the Poisson’s ratio, ijs  is the stress deviatoric tensor ,eσ is the von-Mises stress, B 

and n are the power law creep coefficient and exponent respectively. 

Grain boundary sliding is modeled based on a theory proposed by Raj and Ashby 

(1971). In this model, the relative grain boundary sliding rate suɺ is directly 

proportional to shear stress τ  along the grain boundary, i.e.,  

 s
b

u
τ
η

=ɺ   (4.4) 

where bη  is the grain boundary viscosity. 

Cavity nucleation and growth along a grain boundary facet leads to normal 

separation of the two adjacent grains. This separation is denoted by δ  and the rate of  
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Figure 4.1   Periodically spaced cavities along a grain boundary 
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separation δɺ  is estimated using a continuum model where discrete periodically spaced 

voids in an infinite power law creeping material  are subjected to a far field multi-axial 

stress state. Details can be found in Onck and Van der Giessen and the references 

within (Onck and Van der Giessen 1998). Here we briefly summarize their results. For a 

grain boundary facet with periodically spaced cavities as shown in Figure 4.1, δ  is 

approximated in a averaged sense by 2/V bδ π=   where V  is the cavity volume given by 

 

                   
( )34 1 1 1

, ( ) ( cos ) ,
3 1 cos 2 sin

V a h h
π ψ ψ ψ

ψ ψ
= = −

+
  (4.5) 

where
 
a is the cavity  radius, 2b is the spacing between two adjacent cavities, 2ψ is 

the dihedral angle of the cavity. The grain boundary separation rate δɺ   is 
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where Vɺ  is the cavity volume growth rate. The second term in (4.6) depends on 

whether new cavities can nucleate. According to Onck and Van der Giessen, 

nucleation occurs if a dimensionless parameter S exceeds its threshold valuethrS , i.e., 
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Note that S is a combination of the normal traction nσ  at a continuum point along a 

grain boundary and the effective creep strainC
eε  at distances far from the cavity nuclei. 

0Σ is a stress normalization factor, IN  is the initial cavity density (number of cavity 

per unit undeformed area), and nF  is a material parameter with the unit of cavity 

density. A higher value of nF  indicates more active cavity nucleation.   

If the nucleation condition (4.7) is satisfied, then the second term in (4.6) is given 

by 



 

83 

 
1

2

b N

b N
= −
ɺ ɺ

  (4.8)  

 

where N is the cavity density and its rate Nɺ  is given by  
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The cavity volume growth rate Vɺ  in (4.6) is computed using 

 1 2V V V= +ɺ ɺ ɺ   (4.10) 

where 1Vɺ  is the volume growth rate due to coupling of grain boundary diffusion and 

power law creep and it is given by(Needleman and Rice 1980; Chen and Argon 1981): 
 

 n s
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4 , ( ) 2 ln(1/ ) (3 )(1 )  
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f
V D q f f f f

q f
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ɺ   (4.12) 

 

where D is the grain boundary diffusivity, sσ  is the sintering stress which is usually 

small and it is neglected in our analysis, L  is the diffusive length. For large L , 1Vɺ  is 

the cavity diffusive growth rate obtained in the rigid grain limit. For small L , cavity 

growth is controlled by power law creep of the surrounding material (Dyson 1976). 

     The second term 2Vɺ  in (4.10) is based on the results of a spherical void under 

triaxial stressing (Budiansky et al. 1982), later modified by Sham and Needleman 

(1983) and it is given by 
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where mσ  is mean stress. Both eσ and mσ  are local quantities on the scale of grain 

sizes, but remote quantities on the scale of cavities. In our simulation, eσ , C
eε , C

eεɺ , 

mσ are quantities evaluated as the average of the two neighboring grains located at 

either side of a grain boundary facet. 

4.3 Normalization 

The following normalization is carried out to reduce the number of material and 

geometrical parameters in our analysis. 
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t N N a

ub V L
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b V a R

σσ

δδ
δ

= = = = =
Σ

= = = = =
  (4.14) 

 

where ct is the characteristic time given by 01/ nBΣ  , I2R is the typical width of a grain 

boundary facet which is approximately 50µm  for our choice of RVE, IN is the initial 

cavity density given by 2
I40 / Rπ  , 0 0 0,2 ,a b V ,are the initial cavity radius, spacing and 

volume respectively. 0δ  is the initial separation of the grain boundary due to pre-

existing voids given by 2
0 0/V bπ . 

In the following, all normalized variables are topped by a bar. The derivative with 

respect to normalized time is denoted by a prime instead of a dot. 

The elastic-power-law creep equations for grain deformation are 
 
 e C

ij ij ijε ε ε′ ′ ′= +   (4.15) 

 

 e 1
,ij ij kk ijE E

ν νε σ σ δ+′ ′ ′= −   (4.16) 
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ε σ
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The governing equation for grain boundary sliding is 
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 1 s,uτ λ ′=   (4.18) 

where 
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1

c 0

R

t

ηλ =
Σ

  (4.19) 

The normalized grain boundary separation is found to be  
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2V V b

b b b
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 

  (4.20) 

The rate of change for cavity spacing b′   is 
 

 
1

2

b N

b N

′ ′
= −   (4.21) 

 
where N ′  is the normalized rate of change of cavity density and is given by 
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The cavity nucleation condition is 
 
 2 C

n e thrSσ ε ≥   (4.23) 

The normalized cavity volume growth rate is 

 1 2V V V′ ′ ′= +   (4.24) 
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Finally, the radius of a cavity grows according to 
 

 
23

V
a

a

′′ =   (4.30) 

To summarize, there are seven dimensionless parameters in our problem  
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This normalization allows us to study the effect of different micromechanics 

parameters on creep behavior. Specifically,1λ  is a ratio of the creep strain due to 

power law creep over the strain caused by grain boundary sliding. 1 0λ →  corresponds 

to free sliding at the grain boundary, whereas 1λ → ∞ means no grain boundary sliding 

is allowed. 2λ  is the ratio of cavity growth rate due to diffusion over that due to power 

law creep.  A small 2λ  indicates that cavity growth is controlled by power law creep 

and a large 2λ  indicates that cavity growth is controlled by diffusion. 0ω  is the square 

root of the initial area fraction occupied by voids and can be considered as an initial 

damage parameter.  Finally, thrS (see(4.7)) controls the ease of cavity nucleation.    

4.4 Grain Boundary Cavitation Model-Cohesive Zone Model 

The grain boundary cavitation model can be interpreted as a rate dependent 

cohesive zone model. Note that in typical cohesive zone models, the separation is 

completely determined by the current state of traction. In this case, the separation 
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depends on the history of traction. In addition, it involves other stress components as 

void growth is sensitive to hydrostatic tension (see for example(4.13)). In light of 

these complications, we solve a simple problem to gain insight into the behavior of the 

CZM used in this work. For example, it is reasonable to ask whether the stress will go 

to zero as the interface separation becomes very large. Specifically, we subject an 

infinite grain boundary separated by two infinite elastic-power-law creeping grains to 

a constant separation ratev , that is, 0vtδ δ= + . After normalization, the imposed 

separation is 

 3 3 c 01,   / .t vtδ λ λ δ= + =   (4.32) 
 

To simplify the mathematics, we assume the stress state is uniaxial,  

 e n m3σ σ σ σ= = =   (4.33) 
 

where σ  is an unknown function of time. We will show that the normal traction along 

such a boundary goes to zero when it fails.  

According to (4.20), the grain boundary separation rate is related to the cavity 

radius and spacing by 
 

 
3 2a b

a b

δ
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= − 
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  (4.34) 

Integrating (4.34) , we get 

 
3

2

a

b
δ =   (4.35) 

 

Equation (4.35) shows that the separation δ  is a function only of a  and b  which can 

be viewed as state variables. The evolution equations of these two state variables are 

derived as follows.  

The cavity radius growth rate a′  is found by substituting (4.25)-(4.29) into (4.30), 
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Integrating (4.21), the cavity spacing b is found to relate to the cavity density by 
 

 1/2b N −=   (4.38) 

The cavity density N can be determined by integrating (4.22), 
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where H is the Heavside function defined by 
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and Nt  is the normalized nucleation time at which the nucleation condition  
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is satisfied. Combining (4.38) and (4.39), 
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Differentiating (4.42) on both sides with respect to t gives: 
 

 3 2N

thr
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nH t t

b b t
S

σ +−′ = −   (4.43) 

Equations (4.36) and (4.43) determine the evolution of the state variables a  and b . 

Define a damage parameter ω  which is equal to the square root of the area fraction of 

cavities by  

 0/ /a b a bω ω= =   (4.44) 
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According to (4.36) and (4.43), a  increases with time while b decreases with 

time. This, together with (4.44) implies that ω  is a monotonic increasing function of 

time with range 0 1ω ω< ≤ . Physically, the condition 1ω = means neighboring cavities 

link up to form micro-cracks and the grain boundary is fully damage at 1ω = .Our goal 

is to study the behavior of σ  and show that it goes to zero as 1.ω →  To demonstrate 

this, we start by rewriting  (4.36) as 
 

 2 3
2 n3 ( ) 3 ( ) nq f a a q f aλ σ α σ′ = +   (4.45) 

 

In the following we will show that the two terms containing q(f) in (4.45) go to zero 

as 1ω → , which would lead to zero normal traction along the grain boundary.  Recall 
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Since L  is always positive, ( )/ 1.5 1a a L+ <  at all times, whereas our argument 

above shows thatω  increase monotonically to 1. This means that eventually 1f −→ at 

1ω = . Therefore, we can write 

 1f ε= −   (4.47) 

where ε  is a small positive number. Expanding [ ]( ) 2 ln(1/ ) (3 )(1 )q f f f f≡ − − −

about 0ε +=  leads to 
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Since f increases to 1 monotonically, (4.48) indicates that ( )q f  is a monotonic 

decreasing function of f and it vanishes as ( )3
1 f− as 1f −→ . Therefore, as long as 

a′  is bounded, (4.45) implies as 1f −→  

 0σ →   (4.49) 
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To check if a′  is bounded as 1f −→ , we differentiate (4.35) with respect to time 

and write it in terms of a′ ,  
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v b
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ω

′+′ =   (4.50) 

 

Since the denominator of (4.50) is strictly positive, a′  is bounded. Thus, we have 

shown that the stress vanishes as 1.ω → Note that at 1,ω =  the interfacial 

displacement reaches it maximum value 
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where maxt  is the time when maxδ δ= . 

Next, we show that the normal traction is a monotonic decreasing function of time. 

To show this, we first find the governing equation for the evolution of σ . Substituting 

(4.42) into (4.35), we find 
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Differentiate (4.52) with respect to time and rewrite it in terms of a′ , we find 
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Equating (4.53) and (4.50), after some algebra, we obtain 
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In the following, we study the evolution of the stress during two stages of grain 

boundary cavitation. 

Stage 1:  before nucleation N0 t t< <  
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In this period, N( ) 0 0, 1H t t b b′− = ⇒ = = . As a result, (4.52),(4.53),(4.54)

simplify to 

 3
3 1a tλ= +   (4.55) 
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  (4.56) 

 0 0 0
nA B Cσ σ+ =   (4.57) 

where 

 ( ) 2
0 3 n 0 0 31 , ,

( )
A t B C

q f

λλ α λ= + = =   (4.58) 

In (4.58), 0A  increases with time. Also, B0 increases with time since q(f) decreases 

with time according to (4.48).  Since C0 is fixed, σ will decrease monotonically from 

its initial value ( )ini 0tσ σ= = to ( )Nt tσ = . 

The initial stress iniσ can be solved directly by neglecting 0 n( 0)A t α= = in(4.58). 

This approximation is justified because a simple calculation based on material 

parameters of ferritic and austenistic steels shows that 
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Hence, iniσ can be approximated by  
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  (4.60) 

The nucleation time Nt  is determined by (4.41). Since σ  decreases monotonically 

from its initial value (4.60), a lower bound for Nt is  
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  (4.61) 

From (4.61), one can see that if the separation rate v is very small, the time for cavity 

nucleation can be very long. On the other hand, if the separation rate is fast or the 
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grain boundary diffusivity is high, cavities can nucleate in a very short time.  When t

reaches Nt , we have 

 ( )1/3

3 N 1Na tλ= +   (4.62) 
 

 1, 1b N= =   (4.63) 
 

The stress at nucleation, i.e.,( )Nt tσ = can be solved from (4.57). At Nt , the 

normalized grain boundary opening is 3 N 1N tδ λ= + .. 

Stage 2:  post nucleation Nt t>  

After Nt , cavity nucleation occurs. According to (4.53), the cavity radius growth 

rate is given by 

 
4 2

3 thr

3

/

3 3

na a S
a

t

λ σ
λ

+−′ =
+

  (4.64) 

Comparing (4.64) with (4.56), we see that the cavity radius growth rate is reduced 

after nucleation. What happens physically is that under constant separate rate, stress 

relaxation occurs faster after nucleation which leads to a slower cavity growth rate. 

This, together with (4.55) implies that  
 

 3
3 N1   at a t t tλ< + >   (4.65) 

 

According to (4.43), the rate of change of cavity spacing after nucleation is 
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The normal traction after cavity nucleation can be determined using (4.54), 
 

 2
0 1 1 0

n nA B D Cσ σ σ ++ + =   (4.67) 
 

where 0 0,A C  are defined earlier in (4.58), and 
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We note the following when comparing (4.67) with (4.57): 

(1)  (4.65) implies that 1 0 2 / ( )B B q fλ> = ;   

(2)  There is an additional term 1 0D >  in (4.67); 

(3) 0 0,A C  are the same.  

This means that ( ) ( )N N .t t t tσ σ≤ > > In addition, the traction after nucleation 

decreases monotonically since 0 1 1, ,A B D  increases with time and 0C  is a constant.  

To summarize, there are two possible scenarios: 

Case 1:  According to (4.61), for sufficiently low normal separation velocity 

(reflected in 3λ ) or small grain boundary diffusivity (reflected in 2λ ), the nucleation 

time is very long. For this case, only the growth of pre-existing cavities contributes to 

separation. The normal traction decays monotonically to zero at a finite time Nt t<  . 

For this case, the time for ω  to reach 1 is typically very long. An example of this case 

is shown in Figure 4.2. The five dimensionless parameters used in Figure 4.2 are  
 

{ }3 3 2 3 3
0 thr 1 2 34.2 10 ,1/ 7.465 10 , 1.67 10 , 2.037 10 , 9.037 10Sω λ λ λ− −= × = × = × = × = ×  (4.69) 

 

Case 2: For higher values of v  , preexisting cavities still grow according to (4.56)  

at N0 .t t< <  After Nt t= , cavities grows more slowly according to (4.64) and new 

cavities are nucleated. Also, σ  follows different evolution paths before and after 

nucleation, in particular the curve ( )tσ  has a jump at N .t t=  However, the normal 

traction always decreases monotonically and it vanishes when ω  reaches 1. An 

example of this case is shown in Figure 4.3. The five dimensionless parameters used 

in the analysis are  
 

{ }3 3 2 3 5
0 thr 1 2 34.2 10 ,1/ 7.465 10 , 1.67 10 , 2.037 10 , 1 10Sω λ λ λ− −= × = × = × = × = ×  (4.70) 
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                          (a)                                                                      (b)  

Figure 4.2  Grain boundary cavitation without nucleation. (a) Normal traction versus 

time (b) Damage parameter versus time                          
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                           (a)                                                                   (b)  

Figure 4.3  Grain boundary cavitation with nucleation (a) Normal traction versus time 

(b) Damage parameter versus time 
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In summary, we have carried out a detailed analytical and numerical calculation 

for the special case of an infinite grain boundary separated at a constant rate and 

showed that stress decays to zero at a critical separation.  

4.5 Finite Element Model 

A typical two-dimensional (2D) microstructure and the finite element model used 

in this work are shown in Figure 4.4(a) and Figure 4.4(b) respectively. All calculations 

are performed under plane strain deformation. The 2D microstructure has 1000 

random sized grains and is generated and meshed using a modified MATLAB script 

from Cornell Fracture Group (CFG). Grain boundary elements are generated by 

connecting the two grain elements on either side of a boundary. The finite element 

model consists of 19752 quadratic triangular grain elements and 5366 grain boundary 

elements. Grains are modeled as elastic-power law creeping material using ABAQUS 

user subroutine UMAT (ABAQUS 2008). Grain boundary separation and grain 

boundary sliding are modeled by cohesive zone elements based on equations (4.18)-

(4.29). We have written an ABAQUS user subroutine UEL to implement these 

cohesive zone elements. 

In this paper, nF  is chosen in such a way that nucleation occurs at most of the 

grain boundaries at the end of loading time. η  is chosen based on the analytical results 

of Raj (1971) for steady state sliding of a grain boundary with sinusoidal shape under 

shear stress. Using Table 4.1, we found 
 

               { }3 2 5
0 thr 1 24.2 10 ,1/ 6 10 , 1.67, 2.517 10Sω λ λ−= × = × = = ×   (4.71) 

 

We carried out two type of simulations in this work: relaxation test and uniaxial 

creep test (Figure 4.5(a),(b)). For the relaxation test, periodic displacement boundary 

condition (PBC) was used since the effective properties of a RVE are more accurately 



 

97 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                          (a)                                                      (b)       

Figure 4.4  (a) 2D microstructures with 1000 random sized grains. (b) 2D finite 

element model. 
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Table 4.1  Material parameters for power law creep, grain boundary sliding, grain 
boundary cavity nucleation and growth 

 

 

 

 

Parameters Values 

Reference stress 0Σ  300 MPa 

Creep Exponent  n 5 

Elastic power law creep coefficient B                
20 -5 -14.115 10  MPa s−×   

Elastic Modulus E  189 GPa 

Poisson’s ratio  ν  0.285 

Grain boundary diffusivity parameter D              
19 -1 -1 37.238 10 MPa s mm−× ⋅ ⋅  

Grain boundary viscosity bη  11 11 10 MPa s mm−× ⋅ ⋅  

Initial cavity radius 0a  53.35 10 mm−×  

Initial half cavity spacing 0b  21.6 10 mm−×  

Grain boundary facet width I2R  0.1 mm 

Initial cavity density IN  2 -2
I40 /  mmRπ  

Nucleation activity nF  2 -2
I6 10  mmN×  

Characteristic time cτ  710 s 
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                            (a)                                                               (b)  

Figure 4.5   Boundary condition (a)  Relaxation test (b) Uniaxial tension test      

Side 1 Side 3 

Side 4 

Side 2 

Side 1 

Side 2 

Side 3 

Side 4 d aσ
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predicted compared to the case when essential or natural boundary conditions are used 

in homogenization analyses (Ostoja-Starzewski 2006). The PBC has the form of  
 

 ( )0
i i ij j ju u x xε+ − + −− = −   (4.72) 

where ,  + −  indicates two opposite sides of the RVE. In Figure 4.5(a), side1 and side 

3, side 2 and side 4 are considered two opposite sides. ,  j jx x+ −  represents the nodal 

coordinates at side + and - respectively, ,  i iu u+ −  are the corresponding nodal 

displacement vectors. 0ijε  is a constant strain tensor. To implement the periodic 

boundary condition in Eq (4.72). In ABAQUS, a dummy node is used where its 

degrees of freedom represent different components of 0
ijε . In that way, the nodal 

displacements along the opposite sides of RVE can be coupled to the degrees of 

freedom of the dummy node using multiple constraints equations. The very left bottom 

corner node of the RVE is constrained along both the horizontal and vertical directions 

to avoid rigid body motion. In our simulation, relaxation test is carried out by applying 

0
22 0.001ε = 0 0 4

11 22, 2.85 10ε νε −= − = − × .  

The boundary condition for the uniaxial creep test is shown in Figure 4.5(b), side 2 

of the RVE is constrained in the vertical direction. Both side 1 and side 3 of the RVE 

are traction free, a normal surface tractiona 0.1σ =  is applied on side 4. 

The loading form for the relaxation test and uniaxial tension test is shown in 

Figure 4.6. The characteristic time in our simulation is 7
c 10 2778 hourst s= = .We 

apply a total loading time 2
total 10t −=  which corresponds to a time of 27.78 hours.  

4.6 Results and Analysis of Relaxation Test 

We present simulation results for relaxation test in this section. Recall the coupling 

between grain boundary sliding, grain boundary diffusion and power law creep are 

controlled by the dimensionless parameter 1λ  and 2λ  respectively, therefore, we can  
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Figure 4.6   Loading history of the relaxation/creep test 
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study the effect of these mechanisms on the creep behavior by varying 1λ  and 2λ while 

fixing the rest of the parameters, i.e., 3 2
0 thr 4.2 10 ,1/ 6 10Sω −= × = × . The parameters 

1λ  and 2λ  used in our simulations are summarized in Table 4.2. In all three cases, the 

values of 2λ  are chosen so that cavity growth is controlled mainly by diffusion rather 

than by power law creep. Case 3 has the slowest cavity growth rate among the three 

cases.  

Stress ( 22σ ) relaxation curves for all three cases are presented in Figure 4.7. We 

also plot the stress relaxation curve where grains deform by elastic power law creep 

only and grain boundary sliding and cavitation are not allowed. As shown in Figure 

4.7, these damage mechanisms reduce the average stress and caused much faster stress 

relaxation. The average normal stress and hence the deformation inside a typical grain 

goes down as most of the imposed strain is accommodated by the opening and sliding 

of the grains. Contour plots of vertical displacement fields ( 2u ) of the RVE at time 

210t −=  are shown in Figure 4.8 for these cases. The deformation is magnified by 200 

times and the range of the 2u  contour plot is [ 6 32.46 10 ,1 10− −− × × ]. The following 

features of the deformed RVE are observed: 

(1) The grain boundary facets perpendicular to vertical displacement direction 

have more pronounced separations for all three cases. This is due to the higher normal 

stress on the grain boundary facets perpendicular to vertical displacement direction 

compared to other inclined grain boundaries. 

(2) Case 2 shows much more pronounced cavity growth along horizontal boundary 

facets than case 1 and case 3.  This result is expected for case 3 since diffusion is 

slower in this case. However, it seems counterintuitive that case 1 has less pronounced 

cavity growth than case 2, which indicates for the same grain boundary diffusivity, 

grain boundary cavities grow faster in a RVE with sliding resistant grain boundaries. 

The explanations for this result are:  
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Table 4.2  Varying dimensionless parameters for creep rupture simulations 

Case 1λ  2λ  

Case 1 1.67 52.517 10×  

Case 2 16.7 52.517 10×  

Case 3 16.7 42.517 10×  
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Figure 4.7  Normalized stress 22σ   versus time for relaxation test. The solid line is for 

a pure elastic power law creeping material. Dash lines are for the three cases listed in 

Table 4.2. 
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Figure 4.8   Vertical displacement (2u ) contour plot for the three cases listed in Table 

4.2. 

(c) Case 3 

(a) Case 1 (b) Case 2 
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(1) The prescribed displacement boundary condition in the vertical direction and 

the randomness of the grain geometry tend to favor grain boundary separation on the 

horizontal facets. 

(2) The boundary condition 011 0ε <  tends to force inclined grain boundary facets to 

slide. Assuming that approximately the same amount of sliding is needed to 

accommodate the applied strain, a higher shear stress τ will be induced along these 

inclined grain boundaries in case 2. According to Riedel and others (Riedel 1987; Davies and 

Dutton 1966; Davies and Williams 1969), the shear stress along the inclined boundaries can 

enhance the cavity growth rate along the horizontal facets under transverse compression and 

the cavity growth rate is found to be proportional to .τ This argument suggested that higher 

τ along inclined boundaries in case 2 leads to more grain boundary separation along 

horizontal facets. Finally, we note that similar results were obtained by Du et al (2010) in their 

simulations with constant strain rate applied.     

For a RVE with multiple grain boundaries, it can be shown that the overall strain 

of the RVE, RVE
ijε  , is given by (see details in Appendix 4.1)  

 RVE gb
ij ij ijε ε ε= +   (4.73) 

 

where ijε the average strain within the continuous bulk grains, gb
ijε  is the average 

strain due to grain boundary separation and sliding,  
 

 [ ]( )gb 1

2 k

ij i j j i
k S

u n u n ds
A

ε  ≡ +  ∑ ∫   (4.74) 

where k  is the number of grain boundaries with displacement discontinuity, 

[ ] , 1, 2i i iu u u i+ −= − =  is the displacement jump across the grain boundary kS , ,j jn n− +  

are the unit normal vectors on each side of a grain boundary (see Figure 4.9) and A is 

the area of the 2D representative volume element. Equation (4.74) states that the 

overall strain of RVE has two contributions: grain deformation and grain boundary  
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Figure 4.9  Definition of positive orientation of the boundary of a triangular grain 

(counterclockwise), the orientation of the unit normal vector to a boundary (only one 

indicated in figure) is defined by the right hand rule 
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sliding and separation. Thus, for a given macroscopic strain 0
ijε  , (4.74) predicts that 

the averages strain within the grains ijε  can be significantly reduced by the sliding 

and separation of grain boundaries. Our finite element results verified that the grain 

deformation contribution to the overall 22ε  is very small, less than 510−  (about 1% of

0
22ε ) for all three cases. This indicates that the major contribution to the strain comes 

from grain boundary displacement discontinuity due to cavity nucleation and grain 

boundary sliding. 

4.7 Results and Analysis of Uniaxial Creep Test 

In this section, uniaxial creep test results are presented for the three cases in Table 

4.2. A normalized applied tensile stress a 0.1σ =  along the loading axis is used for all 

cases (see Figure 4.5(b)). Finite element results show that case 1 has the maximum 

vertical displacement (2u ), indicating that grain boundary sliding and cavitation play a 

major role in the overall deformation of the RVE.  This can be quantified by plotting 

the inelastic strain (I
22ε  ) versus time as shown in Figure 4.10. As a comparison, we 

also plot the inelastic strain of a pure elastic power law creeping material in the 

absence of grain boundary sliding and cavitation.  It has been known for a long time 

that grain boundary sliding enhances creep deformation at low stresses.  For example, 

Ghahremani (1980) simulated the tensile response of a regular array of two 

dimensional hexagonal power-law creeping grains with sliding grain boundaries and 

showed that the overall strain rate, in uniaxial plane strain deformation, is given by 
 

                                                    ( )n
B fε σ=ɺ   (4.75) 

where f is a stress-enhancement factor.  In general, f is a function of the applied stress 

σ and power law creep exponent n. For sufficiently low stresses (i.e., 1 1λ < in our 

notation) and freely sliding grains, Gharemani (1980) showed that  f  is approximately  
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Figure 4.10  Inelastic strain I22ε  versus time for uniaxial tension test. The solid line is 

for a pure elastic power law creeping material. Dash lines are the results for the three 

cases listed in Table 4.2. 
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independent of σ with values ranging from 1.16 to 1.19 for n =1 to 4 . A summary of 

the reported values of f  based on different models can be found in Beere (1982)’s 

paper and the references within. Gharemani’s analysis did not account for cavity 

growth. Cavity growth by diffusion was included in the analysis of Anderson and Rice 

(1985), who numerically studied the coupling of cavity growth with free sliding grain 

boundaries using a 3D periodic polycrystalline model where the grains deform by 

power law creep and all the grain boundary facets oriented approximately normal to 

the applied tension load are uniformly cavitated. As noted out by Riedel (1987), cavity 

growth enhances the creep rate by an additional factor of n3.34×3.1 . It is difficult to 

compare our results with Anderson and Rice’s since they used a 3D model with 

regular size grains and assumes that grain boundary cavitation occurs at the grain 

boundary facets with certain orientation. In our case, we use a 2D random grain model 

and the presence and growth of cavities on a grain boundary facet depends on the 

nucleation condition. The overall enhancement factor in case 1, 2 and 3 are found to 

be 213,126,21 respectively. Note that this enhancement factor depends on the 

parameters 0 thr 1 2, , ,Sω λ λ  as well as the applied stress.   

Figure 4.10 shows that the inelastic strain increases linearly with time, however, 

the slopes of the inelastic strain versus time are different, indicating that creep strain 

rate is enhanced by damage due to cavitation and sliding. Figure 4.10 does not show 

tertiary creep behavior due to the relatively short time used in our calculation which 

corresponds to an actual time of 28 hours. Tertiary creep like behavior is noticeable if 

our calculations are carried out using high grain boundary diffusivity and low grain 

boundary viscosity.  Plots of inelastic strain versus normalized time for two cases are 

shown in Figure 4.11. As shown in this figure, the creep strain starts to increase very 

rapidly soon after loading and tertiary creep like behavior takes over at 410t −= . 
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Figure 4.11  Inelastic strain I22ε  versus time for two cases with high grain boundary 

diffusivity and low viscosity. 
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It is interesting to plot the separation δ  versus traction nσ  of a typical grain boundary 

in our simulations. These results for the grain boundary element 24531 are shown in 

Figure 4.12 for all three cases. The peak stress peak
nσ occurs when the cavity nucleation 

is satisfied ( 2 C
n e thrSσ ε ≥ ). Finite element results show the effective creep strain ( C

eε ) in 

neighboring grain elements of grain boundary element 24531 is the highest in case 2, 

lowest in case 3. This leads to the lowest peak
nσ in case 2. For the same simulation time, 

the work done by the normal traction is highest in case 1 and lowest in case 3, 

although the peak normal traction for case 1 and 3 are quite similar. Figure 4.12 shows 

more grain boundary separation occurs in case 1 than in case 2. This is to be expected, 

since sliding of the grain boundary relaxes the geometry constraints at grain junctions, 

allowing for the grain boundaries that are normal to the loading axis to separate in a 

uniform manner. On the other hand, our results in Figure 4.13, which plot the 

evolution of the damage parameter /a bω = , show that cavity growth by diffusion 

plays a significant role in determining the total amount of grain boundary separation.  

4.8 Summary and Discussion 

A numerical model based on finite element method is developed to study the 

damage evolution of a two dimensional array of random grains loaded in plane strain.  

The grains deform by elastic power law creep and the grain boundaries can slide and 

separate. The separation for a grain boundary facet is determined by cavity nucleation 

and growth which is controlled by grain boundary diffusion and power law creep. 

Grain boundary sliding is decoupled from grain boundary separation and both are 

incorporated into a time dependent cohesive zone model.  

If an infinite grain boundary is separated at a constant rate, we show analytically 

that the normal traction will vanish when the damage parameter approaches 1. To 

study creep in more realistic structure, we implemented this CZM in a commercial  
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Figure 4.12  Normal traction versus separation curve for grain boundary element 

24531. Results are obtained based on uniaxial tension test for the three cases listed in 

Table 4.2. 
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Figure 4.13  Damage parameter versus time for grain boundary element 24531.  

Results are obtained based on uniaxial tension test for the three cases listed in Table 

4.2. 
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finite element program ABAQUS using a user defined subroutine. We used this 

method to simulate stress relaxation and creep of a RVE subjected to uniaxial 

deformation. These calculations depend on four dimensionless parameters, Sthr, ω0, λ1, 

and λ2.  In all simulations, Sthr and ω0 are fixed.  The results of the relaxation test show 

that most of the imposed strain is accommodated by the separation and sliding of the 

grain boundaries. Thus, these creep damage mechanisms cause faster stress relaxation 

than power law creep. We also found that in a relaxation test, more grain boundary 

separation occurs in a RVE with sliding resistant grain boundaries than in a RVE with 

more freely sliding grain boundaries. For the case of uniaxial creep test, the overall 

strain rate of a microstructure is enhanced by grain boundary cavitation and grain 

boundary sliding significantly. 

There are obvious limitations in our analysis. For example, identical material 

properties are assigned to all grains and crystallographic orientation dependence of 

creep deformation is not investigated. As pointed out by Westwood et al (2004), the 

cavity model used in this work tends to overestimate the damage caused by cavity 

diffusion. The grain boundary sliding model used in this chapter is based on a result of 

Raj (1971) where there are very limited experimental data. However, we are not aware 

of other theories on grain boundary sliding that can be readily used for computation 

modeling. The weakest link in our model is the criterion for void nucleation. There is 

no consensus on this subject, so we used a model that is purely phenomological.  

Appendix 4.1 Derivation of Equation (4.73)  

For a RVE with grains and grain boundaries, we define the overall strain of the 

RVE as 

 ( )RVE 1

2ij i j j i

S

u n u n ds
A

ε ≡ +∫  (4.76) 
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where S is the external boundary of the RVE, A is the area of the RVE, iu  is the 

displacement, jn  is the outward normal.  

By definition, the average strain within grains in the RVE is,   
    

 
1

1

i

N

ij ij
i D

dA
A

ε ε
=

= ∑ ∫   (4.77) 

where Di represents the region occupied by the ith grain, ijε  is the microscopic strain 

field and N is the total number of grains in the RVE. ijε  is continuous within each 

grain, apply divergence theorem on (4.77), we get 
 

    ( )1

2
i i

ij i j j i

D S

dA u n u n dsε = +∫ ∫                                    (4.78) 

 

where iS  are oriented boundaries (by convention, we assume all closed paths are 

positively oriented so that the direction of the path is counterclockwise. This 

orientation defines the direction of the unit normal vector associated with the path, 

which follows the right hand rule (see Figure 4.9). 

Equations (4.77) and (4.78) imply that 
 

 ( )
1

1

2
i

m

ij i j j i
i S

u n u n ds
A

ε
=

= +∑∫   (4.79) 

In (4.79) , iS  consists of both the external and internal boundaries. m is the total 

number of boundaries in the RVE. According to (4.76), the sum of the external 

boundaries is represented by S, we rewrite (4.79) as 
 

 ( ) ( )1 1

2 2 I
k

ij i j j i i j j i
kS S

u n u n ds u n u n ds
A A

ε = + + +∑∫ ∫   (4.80) 

where I
kS  in the second integral in (4.80) denotes an internal boundary k. Define the 

interface displacement discontinuity as 

 [ ] ,    1,2i i iu u u i+ −= − =   (4.81) 
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Using this notation, (4.80) can be rewritten as 
 

 [ ]( )RVE 1

2 k
I

ij ij i j j i
k S

u n u n ds
A

ε ε  = + +  ∑ ∫   (4.82) 

where j jn n+≡ .  The quantity inside the square bracket is evaluated on the thk  internal 

boundary or interface. Let us denote second term in (4.82) as gb
ijε  

and it is the strain 

caused by grain boundary discontinuities, i.e.,   
 

 [ ]( )1

2 k
I

gb
ij i j j i

k S

u n u n ds
A

ε  ≡ − +  ∑ ∫   (4.83) 

   
Equation (4.82) can be written as  
        

                                                            RVE gb
ij ij ijε ε ε= +                                                  (4.84) 

                                                                                                              

Thus, the overall strain of the RVE RVE
ijε , consists of two parts: the average strain 

within the grains and the strain caused by discontinuities on the internal boundaries 

such as grain boundary sliding and separation. 
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PLANAR DEFORMATION OF RANDOM SIZED POWER LAW CREEPING 

GRAINS WITH SLIDING AND CAVITATING GRAIN BOUNDARIES  

PART II: INTERFACE EMBRITTLEMENT 

5.1 Introduction 

 Most high temperature materials contain nonmetallic impurities such as oxygen 

and hydrogen which are insoluble to the host material. Such impurities can segregate 

to grain boundaries which would affect the creep rupture properties of these materials  

or further lead to intergranular brittle fracture (Eberhart et al. 1985; McMahon and 

Marchut 1978; Edwards et al. 1976; Woodford 1981; Woodford and Bricknell 1981). 

For example, Helium is precipitated into small bubbles at grain boundaries of stainless 

steel and cause severe loss of ductility (Riedel 1987). Oxygen can cause grain 

boundary embrittlement in Nickel and some nickel-based super alloys at temperatures 

above 10000C (Bricknell and Woodford 1982; Pandey et al. 1984). 

Several micromechanical based theories have been proposed to study the exact 

cause for grain boundary embrittlement due to the presence of impurities; however 

currently no consensus has been reached. For example, Troiano (1960) proposed that 

impurities form bonds with the host material along grain boundaries which are weaker 

than the host-host bonds and grain boundary decohesion is more likely to occur at 

these newly formed bonds. Messmer and Briant’s (1982) calculation on cluster of four 

metal atoms surrounding one interstitial impurity show that the impurity along grain 

boundaries weakens the nearby host-host bonds and therefore fracture occurs at the 

bulk materials close to the grain boundary. Goodwin et al. (1988) carried out quantum-

mechanical calculations of the fracture energy of Al[111] surface with and without 
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impurities. Their results do not support the decohesion models of impurity-promoted 

grain boundary embrittlement since the presence of Ge and As impurities are found to 

enhance the interlayer cohesion of Al[111]. Another class of theories is based on the 

thermodynamic and kinetics aspects of interface decohesion due to embrittling 

impurities. Rice (1976) and Hirth and Rice (1980) studied the thermodynamic process 

of impurity segregation into a grain boundary and reducing its cohesion in detail for 

the limiting case of slow and fast interface separation. Mishin et al. (2002) extended 

the work to a more general case which is applicable to any separation rate. Most of the 

thermodynamic-based interface embrittlement analysis relates grain boundary 

cohesion with the impurity concentration. However, the stress-driven diffusion of the 

impurities along the grain boundary is not incorporated.  

The absence of a well-established mechanical model for interface embrittlement 

makes it difficult to study the creep damage in high temperature materials due to grain 

boundary cavitation and impurity embrittlement. Hence there is little literature on this 

subject. Deng et al. (2005) established a combined creep and oxygen embrittlement 

model in which the rate of damage growth consists of two components, one due to 

creep deformation and one due to accelerated cavity nucleation caused by oxygen 

embrittlement which occurs when the first principal stress of the applied stress state 

exceeds a threshold. However, only one dimensional analysis is carried out in their 

work to quantify the damage evolution in the creep test and no full-field solution for 

creep response of 2D or 3D microstructure and the interaction between cavitation and 

embrittlement is studied. 

In this chapter, we propose a unified model where creep damage caused by grain 

boundary separation due to grain boundary cavitation and interface embrittlement is 

incorporated in an additive way. The cohesive zone model in Chapter 4 is extended to 

account for grain boundary embrittlement. Specifically, we assume a critical stress in 
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which embrittlement can occur and a work of cohesion which is required to fail a unit 

area of grain boundary facet without cavities. We study the interaction of interface 

embrittlement and grain boundary cavitation and their effect on the overall creep 

behavior of the material.  

The outline of this chapter is as follows. In section 5.2 we briefly review the 

cohesive zone model where cavity nucleation and growth leads to grain boundary 

separation. A unified model allowing for boundary decohesion due to embrittlement is 

proposed in section 5.3. Details of finite element analysis based on the extended 

cohesive zone model and numerical results are presented in section 5.4 and section 5.5 

respectively. Finally, summary and discussion are given in section 5.6.   

5.2 Brief review 

In a previous chapter, we studied the opening of a grain boundary due to 

nucleation and growth of creep cavities using the model summarized by Onck and Van 

der Giessen(1998). Briefly, they proposed that a grain boundary facet can nucleate 

cavities if the condition 

 
2

C I
e thr

0 n

n N
S S

F

σ ε
 

= > ≡ Σ 
  (5.1) 

is satisfied.  HereC
eε is the effective creep strain, IN  is the initial cavity density upon 

nucleation, nσ  is the normal stress along the grain boundary, 0Σ is a stress 

normalization factor, nF is a material parameter which indicates the nucleation 

activity, it has the same unit as IN . As long as there are voids on the boundary (e.g. 

pre-existing cavities in Figure 4.1), the separation is denoted by 2/V bδ π=  and the rate 

of separation δɺ  rate of a material point on the boundary is approximated by smearing 

out the cavities, 
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2V V b

b b b
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π π
= −

ɺɺ
ɺ   (5.2) 

 
where 2b denotes the average spacing between two adjacent cavities, a is the cavity 

radius, 2ψ  is the dihedral angle of the cavity,  ( )34

3
V a hπ ψ=  denotes the volume of 

a cavity with 
 

 
1 1 1

( ) ( cos )
1 cos 2 sin

h ψ ψ
ψ ψ

= −
+

  (5.3) 

 
Recall that the separation 2/V bδ π= can be written as  a function of a and b only.   

The second term in (5.2) vanishes if (5.1) is not satisfied, otherwise 
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where 
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ɺ ɺ   (5.5) 

where C
eεɺ  is the effective creep strain rate defined by the power law creep (Equation 

(4.3)). The cavity growth rate Vɺ  in (5.2) consists of a contribution from vacancy 

diffusion and from deformation due to power law creep (Budiansky et al. 1982; Sham 

and Needleman 1983; Dyson 1976; Needleman and Rice 1980; Tvergaard 1984), i.e., 
 

 1 2V V V= +ɺ ɺ ɺ   (5.6) 

where 
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where D is the grain boundary diffusivity, sσ  is the sintering stress which is usually 

small and it is neglected in our analysis, n is the creep exponent in the elastic power 

law formulation,L  is the diffusive length which defines the interaction of power law 

creep and grain boundary diffusion,eσ , mσ  are the effective stress and mean stress 

respectively. All variables such as effective stress, mean stress, creep strain and creep 

strain rate are evaluated at distances far from the cavities but still close to the grain 

boundary.  

Linear grain boundary sliding model where relative grain boundary sliding rate suɺ

is directly proportional to the shear stress τ along the grain boundary is used (Raj and 

Ashby 1975) i.e., 

 s
b

u
τ
η

=ɺ   (5.10) 

where bη  is the grain boundary viscosity. 

5.3 A Unified Model Allowing for Boundary Decohesion 

The grain boundary cavitation model in (5.1)-(5.9) can be interpreted as a rate 

dependent cohesive zone model.  The separation of a grain boundary depends on the 

history of normal traction as well as the effective stress and creep strain of the adjacent 

power-law-creeping grains. In section 4.4, we studied a special case where an infinite 

grain boundary between two infinite power law creeping material is subjected to a 

constant separation ratev  and found that the traction along this boundary goes to zero 

as the damage parameter ω  ( /a bω = ) approaches 1. In addition, our analysis showed 

that the normal traction along the grain boundary can become very large at fast 
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loading rate or low cavity concentration. These high stresses can facilitate the 

decohesion of an impurity embrittled grain boundary facet.   

The previous rate dependent cohesive zone model can be extended to incorporate 

grain boundary embrittlement. Specifically, we propose that the total grain boundary 

separation consists of contributions from grain boundary cavitation and from interface 

embrittlement, i.e., 

 *
n b n n( , ) ( ) ( )a b Hδ δ δ σ σ σ= + −   (5.11) 

 

( , )a bδ is the grain boundary separation due to cavity nucleation and growth. The 

additional term b n( )δ σ  is the grain boundary separation due to grain boundary 

embrittlement. b n( )δ σ is non-zero if the normal grain boundary stress exceeds a 

threshold value *σ . *σ  is interpreted as the critical normal stress to decohere the 

interface. Specifically, the interface will not decohere in a brittle fashion as long as 

*
nσ σ< , that is, 

 *
b n0         δ σ σ= <   (5.12) 

Once nσ  reaches *σ , decohesion due to embrittlement occurs and b 0δ > , in this 

regime, we assume 

 ( )* *
b nln /δ δ σ σ= −   (5.13) 

or 

 
*

b /*
n e δ δσ σ −=   (5.14) 

Equation (5.14) indicates the normal traction decays exponentially as a grain 

boundary separates due to interface embrittlement (see Figure 5.1).  Equations (5.13) 

and (5.14) can be motivated by imagining a situation where there are no voids on the 

grain boundary so that n bδ δ= .  For this case, the work to decohere a unit area of the 

grain boundary is  

 
*

n /* * *
c n

0

G e dδ δσ δ σ δ
∞

−= =∫   (5.15) 
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Figure 5.1   Traction-separation relation for grain boundary embrittlement model 
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Equation (5.15) implies * *
c /Gδ σ=  . 

A simple way to understand the extended cohesive zone model is to subject an 

infinite grain boundary separated by two infinite power law creeping to a constant 

separation rate, that is , n 0vtδ δ= + . According to our previously analysis (see section 

4.4), the initial normal traction is infinite when0δ  becomes very small (e.g. very large 

initial void spacing or no cavities) or when .v → ∞  However, the additional term bδ  in 

the extended model (Equation(5.11)) would eliminate this possibility since the grain 

boundary cannot support a normal stress greater than *σ . Of course, new cavities can 

still nucleate on such an interface (since nucleation condition is most likely to be 

satisfied at large normal traction) which will give rise to a non-zero δ . As a result, 

grain boundary cavitation and interface embrittlement both contribute to the total grain 

boundary separation nδ . 

A qualitative analysis of the extended model is carried out below. Using the same 

normalization as in section 4.3,  
 

                    

n
n

0 c I I 0

s

0 0 0 0 I

, , , , ,

, , , , s

Ft N a
t N F a

t N N a

ub V L
b V L u

b V a R

σσ

δδ
δ

= = = = =
Σ

= = = = =
                                    (5.16) 

 

where ct is the characteristic time given by 01/ nBΣ , B is the power law creep 

coefficient , I2R is the typical width of a grain boundary facet, IN is the initial cavity 

density given by 2
I40 / Rπ , 0 0 0,  2 ,  a b V are the initial cavity radius, spacing and 

volume respectively, 0δ  is the initial separation of the grain boundary due to 

preexisting voids given by 2
0 0/V bπ . 

The relevant dimensionless parameters in the constant separation test are 
 

 
* *

* *0 c 0 c
thr 0 2 33

0 0 0 0 0

3
, , , , ,

( )

a Dt vt
S

b a h

σ δω λ λ σ δ
ψ δ δ

 Σ= = = = = Σ 
  (5.17) 



 

129 

In the following, all normalized quantities are labeled with a bar on top.  

Following the same line of analysis as in section 4.4, the normalized grain boundary 

separation nδ  is 
 

 ( )
N

3 2 * * *N
3

thr

( )
1 1 ( ) ln / ( )

t
n

t

H t t
t a d H

S
λ σ τ τ δ σ σ σ σ+

 −+ = + − − 
  

∫   (5.18) 

where Nt is the time when nucleation occurs. The initial stress ( )ini 0tσ σ= =  can be 

determined by  

 ( ) 2
3 n 31

( )
nt

q f

λλ α σ σ λ+ + =   (5.19) 

 

 n 2

1 3 ( 1)( 0.4319)

2 2

n
n n

n n
α − + = +  

  (5.20) 

There are two possibilities: 

(1) If *
iniσ σ< , interface embrittlement will not be activated since the normal 

traction ( )tσ  decreases monotonically from iniσ  to zero as damage parameter 

/a bω =  increases from 0ω to 1. In this scenario, only grain boundary cavity 

nucleation and growth contributes to the grain boundary separation. We have studied 

this in previous analysis (section 4.4). It should be noted that this situation will occur 

for very large decohesion stress. 

(2)  If *
iniσ σ> , ( )tσ  will drop to *σ instantaneously and interface embrittlement 

occurs. In this scenario, ( )tσ  is expected to relax to zero much faster than in scenario 

(1) given the exponential decay of ( )tσ as bδ  increases. As a consequence, interface 

embrittlement would slow down the cavity growth rate since cavities grow under 

normal tension. These predictions are verified in the numerical example shown in 

Figure 5.2. The six dimensionless parameters used in the analysis are  
 

3 3 6 4 * *
0 2 3

thr

1
4.2 10 , 7.465 10 , 2.037 10 , 5 10 , 0.4487, 400

S
ω λ λ σ δ−= × = × = × = × = =  (5.21) 
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(a) 

 

                                      (b)   

Figure 5.2  Numerical results for constant separation test. (a) Normal traction versus 

time (b)  Cavity radius versus time 
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As shown in Figure 5.2(a), the normal traction ( )tσ  relaxation due to grain boundary 

embrittlement is very prominent and it vanishes at a much earlier time compared to the 

case where only grain boundary cavitation occurs. This leads to a constant cavity 

radius (zero cavity growth rate) at long times (see Figure 5.2(b)). 

5.4 Finite Element Model 

In this section, a two dimensional microstructure consisting of random sized grains 

loaded in plane strain is used to study the grain boundary damage evolution (see 

Figure 5.3(a)). Specifically, grains are modeled as elastic-power law creeping material 

using ABAQUS user subroutine UMAT (ABAQUS 2008). Grain boundary separation 

and sliding are modeled using cohesive zone elements. The previous ABAQUS user 

subroutine UEL in section 4.5 is modified to allow for grain boundary decohesion due 

to embrittlement where normal traction along grain boundaries decrease exponentially 

with separation. 

All material parameters are assigned according to Table 5.1. Two new independent 

material parameters are assigned for the extended cohesive zone model: the work of 

cohesion Gc  and the decohesion stressσ ∗  , 
 

 2 * * *
c c1 J/m , 63.4 MPa, / 0.016 µmG Gσ δ σ= = = =   (5.22) 

 

The numbers chosen for our simulation are broadly consistent with previous 

studies (Deng et al. 2005; Goodwin et al. 1988). cG is chosen as a typical number for 

specific energy per unit area of a grain boundary facet in Nickel alloys (Chuang et al. 

1979a; Hirth and Lothe 1978).*σ is chosen based on a typical cavity nucleation stress 

observed experimentally for high temperature alloys (Riedel 1987). Once these 

material parameters are assigned, the normalized parameters are specified.  
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(a)                                                                       (b) 

Figure 5.3 (a) 2D microstructures with 1000 random sized grains. (b) Boundary 

condition for uniaxial tension test  
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Table 5.1  Material parameters for power law creep, grain boundary sliding, grain 
boundary cavity nucleation and growth, interface embrittlement 

 

 

 

Parameters Values 

Reference stress 0Σ  300 MPa 

Creep Exponent  n 5 

Elastic power law creep coefficient B                
20 -5 -14.115 10  MPa s−×   

Elastic Modulus E  189 GPa 

Poisson’s ratio  ν  0.285 

Grain boundary diffusivity parameter D              
19 -1 -1 37.238 10 MPa s mm−× ⋅ ⋅  

Grain boundary viscosity bη  11 11 10 MPa s mm−× ⋅ ⋅  

Initial cavity radius 0a  53.35 10 mm−×  

Initial half cavity spacing 0b  21.6 10 mm−×  

Grain boundary facet width I2R  0.1 mm 

Initial cavity density IN  2 -240 /  mmIRπ  

Nucleation activity nF  2 -26 10  mmIN×  

Characteristic time cτ  710 s 

Decohesion stressσ ∗  63.4 MPa 

Work of cohesion, Gc 21 J/m  
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Use the same normalization in (5.16), the dimensionless parameters used in the 

finite element simulation are: 
 

 
* *

* *0 b I c 0
thr 0 1 2 3

0 0 0 c 0 0 0

3
, , , , , , , ,

( )

a R DtE
n E S

b t a h

η σ δυ ω λ λ σ δ
ψ δ

 Σ= = = = = = Σ Σ Σ 
  (5.23) 

1λ  is a ratio of the creep strain due to power law creep over the strain caused by grain 

boundary sliding. For example,1 0λ →  corresponds to free sliding at the grain 

boundary, whereas 1λ → ∞ means no grain boundary sliding is allowed. 2λ  is the ratio 

of cavity growth rate due to diffusion over that due to power law creep.  A small 2λ  

indicates that cavity growth is controlled by power law creep and a large 2λ  indicates 

that cavity growth is controlled by diffusion. 0ω  is the square root of the initial area 

fraction occupied by voids and can be considered as an initial damage parameter. thrS

controls the ease of cavity nucleation. Finally, *σ  is the normalized decohesion stress 

and * *
cG σ δ=  represents the amount of energy needed to completely fail a unit area 

of a grain boundary with no ductility. 

We carry out uniaxial tension tests on the two dimensional finite element model 

shown in Figure 5.3(b). The boundary conditions are applied as follows: Side 2 of the 

RVE is constrained in the vertical direction. Both side 1 and side 3 of the RVE are 

traction free, a normal surface traction a 0.1σ =  is applied on side 4.  

5.5 Results and Analysis 

In this section, we present uniaxial plane strain creep test results for power law 

creeping grains of random sizes with sliding and cavitating boundaries where interface 

embrittlement is incorporated into grain boundary separation law. We study creep 

rupture behavior of the microstructure and the interaction of interface embrittlement 

and grain boundary cavitation. We compare simulation results with the previous 

cohesive zone model (section 4.7) where grain boundary separation is determined by  
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Table 5.2  Varying dimensionless parameters for creep rupture simulations  

Case 1λ  2λ  

Case 1 1.67 52.517 10×  

Case 2 16.7 52.517 10×  

Case 3 16.7 42.517 10×  
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cavity nucleation and growth. Comparisons are carried out by assigning the same set 

of grain boundary sliding and cavitation parameters in both simulations. Specifically, 

we vary 1λ  and 2λ   while fixing the rest of the parameters (see(5.23)), 3
0 4.2 10 ,ω −= ×  

2 * *
thr1/ 6 10 , 0.21, 0.03.S σ δ= × = = The parameters 1λ  and 2λ  used in our simulations 

are summarized in Table 5.2. Briefly, it is easier for grain boundaries to slide in case 1 

(small 1λ ) compared to the other two cases . Case 3 has the slowest cavity growth rate 

among the three cases (small 2λ ).  

The inelastic normal strain (I22ε  ) of the RVE versus time is shown in Figure 5.4. 

The symbols indicate the results where only grain boundary cavitation is allowed for 

interface separation. The dash lines are the results obtained using the extended 

cohesive zone model. The straight line with the smallest inelastic strain rate is the 

result of a pure elastic power law creeping material in the absence of grain boundary 

sliding, separation and embrittlement. As expected, damage mechanisms (grain 

boundary sliding, grain boundary cavitation, interface embrittlement) greatly enhance 

the inelastic strain rate. An interesting result is that the symbols and the dash lines for 

all three cases lie on top of each other, indicating that for the parameters used in these 

simulations, the inelastic strain rate enhancement due to grain boundary cavitation and 

embrittlement is almost the same as the enhancement due to grain boundary cavitation 

alone. This implies that for this special case, the additional damage caused by interface 

embrittlement is almost equal to the reduction in damage caused by grain boundary 

cavitation. In appendix 5.1, we present results where the inelastic strain rates of the 

RVE are quite different for cases with and without grain boundary embrittlement.   

To study how grain boundary cavitation and grain boundary sliding affect interface 

embrittlement, we plot the ratio of grain boundary elements with interface 

embrittlement over the total number of grain boundary elements versus time for the 

three cases in Figure 5.5. As shown in the figure, interface embrittlement is activated 
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Figure 5.4   Inelastic strain I22ε  versus time for uniaxial tension test. The symbols are 

for CZM with grain boundary cavitation. The dash lines are for the extended CZM. 

The straight line (practically horizontal) is for a pure elastic power law creeping 

material. 
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at approximately 35% of the grain boundary elements in case 3, compare to 12% and 

5% in case 1 and case 2 respectively. Recall the interface embrittlement occurs when 

the normal traction along a grain boundary exceeds the maximum stress the grain 

boundary can support (*σ ).  It is expected that grain boundary sliding would cause 

stress concentration at triple junctions. This will lead to a higher percentage of grain 

boundary elements with interface embrittlement in case 1 compared to case 2 due to a 

smaller 1λ (more grain boundary sliding). Grain boundary cavitation tends to relax the 

normal traction along a grain boundary. Hence, more grain boundaries are embrittled 

in case 3 since a smaller 2λ (slower grain boundary cavity growth rate) is assigned to 

this case compare to the other two. 

Not all embrittled grain boundaries will fail. A noticeable feature in Figure 5.5 is 

that interface embrittlement occurs at an early stage of the loading in case 1. This 

indicates the effect of rate-dependent deformation on embrittlement (even though the 

model for embrittlement is rate independent).  For example, case 1 and case 2 have the 

same grain boundary diffusion parameter 2λ  but case 1 has a higher grain boundary 

sliding rate. Based on the analysis in section 4.7, grain boundary sliding facilitate 

cavity growth rate in an uniaxial tension test. Hence, we expect the faster cavity 

growth rate in case 1 leads to faster stress relaxation, this will cause embrittlement to 

stop at a shorter time despite there is more embrittled grain boundaries in case 1.  

Consistent with this explanation, the difference between case 3 and case 1 is more 

substantial since stress relaxation occurs even faster due to faster cavity growth and 

sliding in case 1. 

To study the interplay between grain boundary cavitation and embrittlement on a 

grain boundary, we plot the traction (nσ  ) versus separation (nδ ) curve (see Figure 

5.6) in case 2 for a typical grain boundary element, #24531. Similar results are 

obtained for case 1 and case 3, hence they are not presented here. The solid line is the  
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Figure 5.5  Ratio of GB elements with interface embrittlement over the total number 

of GB elements versus time for the three different cases listed in Table 5.2 . 
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Figure 5.6   Normal traction versus separation for grain boundary element 24531 for 

case 2 with 5
1 216.7, 2.157 10λ λ= = ×  .  
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extended cohesive zone model whereas the dash line is for the cohesive zone model 

without embrittlement. As expected, nσ  is reduced by interface embrittlement 

compared to the case where only grain boundary cavitation occurs. However, the grain 

boundary separation n bδ δ δ= +  in the extended cohesive zone model only increases 

slightly due to embrittlement. Specifically, grain boundary separation contribution 

from embrittlement is very small,b n/ 0.02.δ δ ≈ Therefore, the normal traction remains 

approximately constant on this interface. This is consistent with the prediction based 

on (5.14). 

Plots of the damage parameter /a bω =  versus grain boundary separation nδ  for 

element 24531 are presented in Figure 5.7 for all three cases. Notice that the damage 

due to grain boundary cavitation is reduced by interface embrittlement, which agrees 

with the analysis based on Figure 5.4. Furthermore, it is consistent with the 

experimental observation that impurities along grain boundaries reduce the grain 

boundary diffusion and decelerate diffusive cavity growth (Schneibel et al. 1982). 

5.6 Summary and Discussion 

We have developed a 2D finite element model to study the effect of grain 

boundary sliding, cavitation and decohesion on creep deformation of a RVE consisting 

of random size power-law creeping grains. Grain boundary sliding and separation is 

incorporated into a cohesive zone model. The previous cohesive zone model in 

Chapter 4 which determines grain boundary separation based on cavity nucleation and 

growth has been extended to account for grain boundary decohesion. In this extension, 

grain boundary decohesion is modeled by assuming that when the normal traction on a 

grain boundary exceeds the decohesion stress, it decreases exponentially with 

separation.  

Our results show that grain boundary cavitation and interface embrittlement are  
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Figure 5.7   Grain boundary cavitation damage parameter versus time for grain 

boundary element 24531. The symbols are for CZM with grain boundary cavitation. 

The lines are for  the extended CZM.  
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two competing mechanisms for creep failure, in the sense that stress relaxation due to 

cavitation can reduce local stresses leading to retardation of decohesion. The proposed 

unified model for grain boundary separation can be viewed as a first step in a more 

comprehensive study of creep rupture. 

Appendix 5.1 Grain Boundary Embrittlement Dominated Creep Damage  

In this section, we present uniaxial tension test results where the inelastic strain 

rates of the RVE are greatly enhanced by interface embrittlement. The following 

dimensionless parameters are used to carry out simulations shown in Figure 5.8  
 

 3 2 * * 3
0 thr 1 24.2 10 ,1/ 6 10 , 0.21, 0.03, 1.67, 2.157 10Sω σ δ λ λ−= × = × = = = = ×  (5.24) 

 

Note that compare to Table 5.2, the parameters used in this section are assigned in a 

way such that the grain boundary separation is mainly caused by interface 

embrittlement. As shown in Figure 5.8, the inelastic strain rate is much higher when 

grain boundary embrittlement is incorporated into the CZM compared to the case 

where only grain boundary cavitation is accounted for. This indicates the contribution 

to creep damage along grain boundaries is mainly from interface embrittlement. 
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Figure 5.8  Inelastic strain I22ε  versus time for uniaxial tension test using parameters 

assigned in (5.24) 
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CONCLUSIONS AND FUTURE WORK 

In Chapter 2, we use a dynamical system approach to study the creep fatigue 

behavior of a viscoplastic material using a constitutive model proposed by Chaboche 

(1989). We establish a condition for the existence of a periodic solution in a cyclic 

loading test. We study the dependence of the accumulated inelastic strain per cycle on 

the material and loading parameters such as stress ratio and yield stress. Our results 

show that low yield stress and large valley stress reduce ratcheting.  

In Chapter 3, the asymptotic stress and strain field near the tip of a plane strain 

Mode I stationary crack in a viscoplastic material (Chaboche 1989) are investigated. 

We find that within the small scale creep regime, the near tip stress field of the 

viscoplastic material has the same HRR (Hutchinson 1968; Rice and Rosengren 1968) 

singularity as an elastic power law creep material. However, the amplitude of the HRR 

field vanishes at long times. We study the time dependent behavior of these crack tip 

fields under cyclic loading. The strain accumulated per cycle is found to decrease with 

stress ratio.   

In Chapter 4, we carry out finite element simulations on a two dimensional 

representative volume element where the grains are modeled as an elastic-power law 

creeping material, and grain boundary behavior is incorporated into a cohesive zone 

model where they can slide and separate due to cavity nucleation and growth. For the 

grain boundary cavitation model, we show analytically that the normal traction along a 

grain boundary vanishes when the damage parameter approaches 1 if it is separated at 

a constant rate. Our relaxation results show that most of the imposed strain is 

accommodated by the separation and sliding of the grain boundaries and such creep 

damage mechanisms cause much faster stress relaxation. We also find that overall 
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strain rate of a microstructure is enhanced by grain boundary cavitation and grain 

boundary sliding significantly during uniaxial creep test. 

In Chapter 5, we incorporate impurity-induced interface embrittlement into grain 

boundary separation by extending the cohesive zone model in Chapter 4. We study the 

interaction of embrittlement and deformation caused by creep, cavities growth and 

grain boundary sliding. Our results show that stress concentration caused by grain 

boundary sliding leads to more grain boundary embrittlement, stress relaxation due to 

cavity growth and creep inhibit interface embrittlement, interface embrittlement slows 

down the cavity growth rate. 

Much more work needs to be done in order to establish a reliable computational 

model for creep rupture. To analyze engineering structures, it is necessary to extend 

the 2D finite element model in this work to 3D models. As pointed out by Westwood 

et al (2004), the cavity growth model used in Chapter 4 and 5 tends to overestimate the 

damage caused by cavity diffusion. Modification on the current grain boundary 

cavitation model is necessary for more accurate prediction of creep rupture life.  More 

realistic creep models such as crystal visco-plasticity based models should be 

implemented for loading histories that are non-monotonic. Recall that the cavity 

growth model in this work is based on elastic-power-law creeping grains. Some 

aspects of the micromechanical models for cavity growth need to be modified if 

crystal visco-plasticity model are used to describe grain deformation. Also, with 

enough computational power, one can model discrete cavities on grain boundaries and 

study their growth and interaction.  

Many creep damage mechanisms are not well understood at the present. The only 

grain boundary sliding model we are aware of that can be readily used for computation 

modeling is based on a result of Raj and Ashy (1971) where there is very limited 

experimental data. The current theories of cavity nucleation do not match 
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experimental data well (see Chapter 5 in Riedel (1987)’s book and the references 

within). For example, there is a large gap between the observed and calculated critical 

nucleation stress. Therefore an empirical description of cavity nucleation is adopted in 

this dissertation. The role of impurity segregation in cavity nucleation needs to be 

modeled. It has been known for a long time that impurities along grain boundaries 

could reduce the grain boundary diffusion (Schneibel et al. 1982) and increase the 

cavity nucleation rate (Tipler and Hopkins 1976; Thomas and Gibbons 1979). These 

mechanisms need to be quantified and incorporated into a creep damage model in 

future works.   
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