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This dissertation studies the deformation behawefdrigh temperature alloys with
an aim to understand creep damage and fractureamieshof these materials. First,
we study the creep fatigue deformation of a unifiestoplastic material subjected to
uniaxial cyclic loading using a dynamical systenpra@ch. We find oscillation of
back stress significantly increases the inelastairsaccumulation in a cyclic test. The
accumulated inelastic strain at long times are iBeago the initial condition (e.g.
whether one starts with tension or compression). d&fne a ratcheting ratio to
quantify the interaction of creep and cyclic plaisyi on the accumulated inelastic
strain per cycle.

The second part of the dissertation focuses onrgplthe asymptotic stress and
strain field near the tip of a plane strain Modstdtionary crack in a viscoplastic
material. For small scale creep where the regiomealasticity is small in comparison
with typical specimen dimensions, our asymptotid &nite element analysis show
that the near tip stress field has the same singulas elastic power law creeping
materials with a time dependent amplitude. This l#goge is found to vanish at long
times and the elasti€ field dominates. For the case of cyclic loading study the
effect of stress ratio on inelastic strain and fihdt the strain accumulated per cycle

decreases with stress ratio.



The third part of the dissertation carries outténelement simulations on the
planar deformation of random sized power law cregpgrains with sliding and
cavitating boundaries. Grain boundary sliding angirgboundary separation due to
cavity nucleation and growth are incorporated iat@ohesive zone model. Finite
element simulation of a relaxation test shows thate grain boundary separation
occurs in a microstructure with sliding resistamaig boundaries than in a
microstructure with more freely sliding grain boanés. The overall inelastic strain
rate of the microstructure in uniaxial tension tisstound to be greatly enhanced by
grain boundary sliding and grain boundary cavitatio

Finally, we extend the cohesive zone model in kel tpart of the dissertation to
account for interface embrittlement caused by ghagundary impurities. Finite
element simulation of an uniaxial creep test usanggyvo dimensional random grain
structure shows that grain boundary cavitation smerface embrittlement are two
competing mechanisms for grain boundary separaifibe. occurrence of one grain

boundary separation mode would slow down or evhkibinthe other.
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CHAPTER 1
INTRODUCTION

Creep rupture and fracture of high temperature nadgehas been a very active
research topic due to its great importance in #m@space and energy industry (see
Figure 1.1). For example, the fatigue life of jegme turbine blades depends on the
creep and cyclic loading behavior of Nickel-basedjle crystals (Pierce 2009). Alloy
617, commonly used in the power plant componenth sas intermediate heat
exchangers, may fail because of cavity nucleatiod aoalescence along grain
boundaries (Rao et al. 1996).

Time dependent deformation or creep becomes a @miirdeformation
mechanism at temperatures above 1/3 of the metéingperature of most structural
metals. Typical high temperature structural comptsieare subjected to both
monotonic and cyclic loadings at low stresses. d¢wimulation of creep strain cause
material damage and creep-fatigue interaction cdiggelerates this process. In order
to quantify the deformation and stress fields uctural components under cyclic
loading, it is necessary to use visco-plastic danste models that are described in
chapter 2 of this dissertation. For example, ciaepes of Alloy 617 do not show the
typical primary-secondary-tertiary creep regimesownly observed in metals and
they do not exhibit clear distinction between timdependent plasticity and time-
dependent creep (Chomette et al. 2010; Schubalt £084; Cook 1984; Schneider et
al. 1984, Kurata and Nakajima 1995; Natesan €2@03; Shah et al. 2003). A more
accurate way to describe the creep behavior of soaterials is to use a unified
viscoplastic model (UVM) where stress relaxationatcheting and cyclic
softening/hardening behavior can be captured lig stariables. Despite the success

of UVM to represent high temperature material bé&ravnost of these models have
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very complex mathematical structures. In chaptew, use a dynamical system
approach to study the qualitative behavior of ajgeunified viscoplastic model in a
creep fatigue test. This approach will allow futureestigators to gain insight into the
interaction of creep and cyclic plasticity.

Cracks can initiate from defects near stress cdrete@ns and propagate due to
fatigue and creep at low applied stresses. Unlikeciral components operating at
low temperatures, the deformation near the cracklépends on the stress history. The
asymptotic strength of the crack tip stress fiedd be quantified by a time dependent
loading parameter which can be used to correlaekogrowth rate with applied load
in complex structures. Most of the crack tip anasys the literature are based on an
elastic power law creeping (EPLC) solid (Hutchinst®68; Rice and Rosengren
1968). In Chapter 3 of this dissertation, we deteenthe asymptotic stress and strain
field near the tip of a plane strain Mode | staséigncrack using a unified viscoplastic
model due to Chaboche (1989). We address the lemg treep behavior of the
asymptotic fields in the regime of small scale pré&/e also study the time dependent
behavior of these crack tip fields under cyclicdimg conditions in a single edge
crack specimen.

A different mode of failure is creep rupture whenaterials fail by progressive
damage instead of slow propagation of a macroscopck. Many power plants
structural components are designed to last oveye@ds. It is extremely difficult to
conduct creep experiments for such long periodsimé. Current approach is to
extrapolate short-term, high stress creep ruptyper@mental data to long-term, low
stress conditions and predict the creep ruptueedtifa component. Such extrapolation
typically used empirically based time-temperatuaeameters even though the failure
mechanisms in short term and long term tests carebedifferent. For example, the

dominating failure mechanism for ferritic and aungie steels at low stresses and



elevated temperatures is intergranular cavitatioher@as at relatively lower
temperature with impurity segregation, the domimgtifailure mechanism is
transgranular brittle fracture (White et al. 1981cMahon Jr 1968). In the low stress
regime, cavities nucleate on grain boundariesahatunder normal tension, and these
cavities grow by grain boundary sliding (Evans 197iress-assisted diffusion of
atoms from cavity surface to the grain boundartdl(and Rimmer 1959; Chuang et
al. 1979b; Needleman and Rice 1980), and by creéprmation of the surrounding
grains (Hancock 1976; Budiansky et al. 1982). Oiimate goal is to develop a
numerical model based on these well-establishedoamechanics of local failure to
predict long time creep behavior. Previous worksehancorporated some of these
failure mechanisms into a finite element model gy of periodic arrays of
hexagonal grains. In chapter 4 of this dissertatias extend these works to a random
grain structure. The grain boundaries in our madel slide and separate due to cavity
nucleation and growth. The nucleation and growthasfities on a grain boundary can
be represented by a cohesive zone model with twe tlependent state variables. We
carried out simulations using the cohesive zoneahtu study the creep rupture of
random sized power law creeping grains with sliding cavitating boundaries.

Chapter 5 extends the cohesive zone model in Chdpte account for grain
boundary decohesion due to interface embrittlemdost high temperature materials
contain impurities such as second phase particddshibit creep. Over time, these
particles can segregate to the grain boundariedcavet the creep rupture resistance
of these materials. In this chapter, we proposéenpmenological model for grain
boundary embrittlement. We incorporate this emlpritent model into our finite
element code to study the interaction of embritdatmand deformation caused by
creep, cavities growth and grain boundary sliding.

Chapter 6 discusses the limitations of our appr@echpossible future work.
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CHAPTER 2

ANALYSIS OF CREEP FATIGUE BEHAVIOR OF A UNIFIED
VISCOPLASITC MODEL

2.1 Introduction

A primary candidate for the next generation nuclgdant is a gas cooled reactor
which uses helium as a heat transfer medium at eemtyres up to 95C and
pressures up to 7 MPa for a design life of 60 yéarserin et al. 2009; Lee et al. 2010;
Mo et al. 2011; Shah et al. 2003). A core compotetihe primary reactor circuit is
the intermediate heat exchanger (IHX) which trarssfeeat from the primary reactor
helium to a working fluid at a lower temperaturdaeTleading candidate material for
the IHX is Alloy 617, which is a solid-solution strgthened nickel based alloy with
excellent high temperature strength and oxidatesistance (Ren and Swimdeman
2009; Shah et al. 2003).

Nickel based alloys exhibit complex deformation deéhbr, for example, creep
curves of Alloy 617 do not show the typical prim&gcondary-tertiary creep regimes
commonly observed in metals and they do not exkib#r distinction between time-
independent plasticity and time-dependent creepif@tte et al. 2010; Schubert et al.
1984; Cook 1984; Schneider et al. 1984; Kurata ldallajima 1995; Natesan et al.
2003; Shah et al. 2003). However, current high enaipre design procedures under
creep or creep fatigue conditions mostly use tlastetpower-law-creep (EPLC)
model or a model in which the inelastic strainhis sum of a rate independent plastic
strain and rate dependent creep strain to represatdrial data (Wakai et al. 2002;
Drubay et al. 2003; Yoon et al. 1992; Adefris etl®&96a; Grover and Saxena 1999).

As mentioned above, power law or secondary creepoisrepresentative of the



deformation behavior of nickel based alloys; anddidition, does not model cyclic
loading well. A growing body of research has den@ated that much of the complex
deformation behavior of super alloys, such as strekaxation, ratcheting and cyclic
softening/hardening behavior, can be captured bie stariable models, commonly
called unified viscoplastic models (UVM) (BodnerdaRartom 1975; Miller 1976;
Walker 1981; Chaboche and Rousselier 1983; Krengd87) where there is no
separation between creep and plasticity.

A disadvantage of UVM is that they have very compigathematical structures.
In a typical model, a large number of material ¢ants and coupled nonlinear
differential equations are needed to describe Wodugon of the state variables. As a
result, existing work in this area tends to focuseither developing better models to
fit experimental data or numerically solving thesgiations using a particular set of
material constants appropriate for a specific emgjiimg application or test. Instead of
focusing on a specific application, we study anéhgasight into the qualitative
behavior of a viscoplastic model subjected to gpgnelass of cyclic loading in this
chapter. Specifically, we use a simplified versadm UVM developed by Chaboche
(1989) and model a load controlled creep fatigse where the applied stress history
0,,(t) is illustrated in Figure 2.1. As shown in the figuthe loading and unloading
rates are assumed to be sufficiently fast with eespgo other time scales in the
problem so they are considered as instantaneouss, The loading waveform is a
piece-wise constant periodic function of time. Iyale with periodt,, the applied
stresso oscillates between the maximuan),,, >0 and the minimum stress,, . g,
can be either positive (tension) or negative (casgion). Each cycle consists of two

hold times: peak stresgr(=o,,,,) hold timet, and valley stress =o,,,,) hold time

in

t,=t,—t,>0.

o}



Onin

Figure 2.1 Schematics of a load controlled cy@tgue test.



We address the following questions in this chapter:

(2) If the system (bar) is driven by a periodic inplibwn in Figure 2.1, does there
always exist a long time solution where the backsst approach steady state
values or will the back stress exhibit oscillattwghavior? Using a dynamical
system approach, we establish conditions for smistwith the different long
time back stress behaviors.

(2) Does the long time inelastic strain depend on thgal conditions? For
example, if the waveform in Figure 2.1 is shiftedthe left byt, so that the
specimen is subjected to compression @é.=0")=0,, <0) first instead
of tension, will this lead to different long timeelastic strain? If this is the
case, then the system is said to have long termamem

(3) How does the ratcheting strain depends on thengaclcle (stress amplitude,

frequency, hold period, etc.) and the material patars?
2.2 UVM Equations Analysisin Uniaxial Test

The following version of UVM was developed by Chabe (1989) and later used
by Zhao and Tong and their group (Zhao and Ton@2B8an and Tong 2007a, b) to
study the effect of cyclic loads on a cracked speai. The total strain ratg is the

sum of the elastic and inelastic strain rate. st strain rate; is given by
&° —ﬁ+—d O, (2.1)
e E % '

whereE is the Young’'s modulus andis the Poisson's ratio of the material, and a dot

denotes differentiation with respect to titmeThe inelastic strain ratg , is

g =34 2.2)
2"

10



where
@ =5~ X (2.3)

In (2.3), s;and x; are the deviatoric part of applied stregsand back stresg,
respectively,w, = Jchl.a)lj /2is the effective stress angl is the effective strain rate

given by
p=(f/z) (2.4)

where Z andn are material constants and the syn@b)oils defined by
z z20
Z)= 2.5
(2 {O z<0 (5)

In (2.4),f is the yield function defined by
f=a,-r-k (2.6)
wherer is an isotropic hardening variable akds the initial radius of the yield

surface, i.e., the elastic region is definedflay0. The hardening variablein (2.6)

evolves according to

r=c(r,-r)p (2.7)
Finally, the back stresg, evolves according to:
)'gj = dij +ﬂij (2.8)
. ), .
a; zcl(aizi_aiij (2.9)
. w, .
IBij :Cz(azj_ﬁiij (2.10)

wherec,c,,c;,a,,a,,I, are material constants

According to (2.8-2.10), the evolution of the baskessx; is driven by the

effective stresa), . Since this tensor is deviatoria)(=0), x; is also deviatoric, i.e.,

X11+X22+X33=O (211)

For uniaxial loadingg,, =0,0,,=0,,= 0. Denotex = x,,, (2.11) implies that

11



X
X11=X33=_§ (2.12)

g X 20 g X 3X
St Wy T — X, Wy = ——+— W = |0 —— 2.13
qu 3 2 22 3 33 3 2 2‘ ( )

Since the goal of this chapter is to understanditgqtigse behavior and suggest a
different and complementary approach to the stufiyiscoplastic models, we
simplify these equations by settiog=c, =0. Most of the qualitative behavior of
these equations will not be affected by this assiongsee discussion in section 2.5).
Using this assumption, and denoting £,,, the governing equations reduce to:

ID:<|a—3x/4—k> 2.14)

z

3. aw,_[lo-3x/3-k\’ ( _%j

&= 5 p @ _<—Z > sgn o 5 (2.15)
x:q[éaisgnia—%j—xj p (2.16)

Thesgn function in (2.15) and (2.16) is defined by

1 z>0
sgnz=<-1 z<0 (2.17)
0 z=0

It is important to note that the inelastic stragéercan be either positive or negative,
depending on the sign af —3x/2. However, theeffective inelastic strain ratgis

always non-negative.

2.2.1 Nor malization

We introduce the following normalized variables teduce the number of

parameters in (2.14)-(2.16):

12



S=o/a X =x/aK=k/ar=t/(Z/a) (2.18)

where a = 2a, / 3 is the saturation value of the back-stress initen&ee (2.16)). With

respect to these normalized variables, the govemguations for a cyclic loading test

become
d£/dr=sgn(S(T)—ngdp /dr (2.19)
dp/dr=<‘S(r)—gX‘—K> (2.20)
3 3 "
dX/drzc(sgn(S(r)—EX)—Xj<‘5(r)—ax‘—K> (2.21)

wherec=c,. The inelastic strain evolves according to (2.18§ effective inelastic

strainp is governed by (2.20) and the back stress eva@lgesrding to (2.21).

2.2.2 State Vector

Sincep=0, the effective inelastic strain is a non-decregidunction of time,
hence steady state solution for (2.14),(2.15),(2db®&s not exist. A simple way to by
pass this difficulty is to define

Ae =6, -6, k=12. (2.22)

where ¢, = £(kr,) and Ag, denotes theéncrement of inelastic strain between cycdke

and cyclek+ 1. Similarly, we denotX, = X(kz,) and define the state vectgy by

(%,
7 —( Agk] (2.23)

In this chapter, steady state solution means tietstate vectog, approaches a

X
limiting vectory_. =| “ | ask - o.
g Yo [Ag )

0
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2.2.3 Back Stress Evolution and Periodic Solutions

In this section we study the behavior of the langetsolution of (2.19), (2.20) and
(2.21) subjected to the waveform displayed in Feg2ul. There are two types of long
time behavior: (1) the normalized back stress @®es monotonically to its saturation
value ofl (case 1 and 2 below); (2) the back stress islatmiy and periodic (case 3
below).

Consider the case that the system (viscoplastjcsbants with tension (as shown in
Figure 2.1). Because of the yield function, thdasgc strain ratedp/dz will be zero
if the peak tensio§,, is too small and this is obviously not an intemsgtcase. To
ensure non-zero inelastic strain rate during p&ass hold, we enforce the condition
S, >3/2+K (see (2.19)). Using this condition and combiniRd 9) and (2.20), the
equations governing the evolution of back strest the inelastic strain during peak

stress hold become

dX/dr:c(l—X)(Smax—gx—an (2.24)
deldr:(smax—gx—an (2.25)

Since initiallyX (0) = 0, the normalized back stress has absolute valgethes 1,
that is, (1— X) >0 in(2.24). This implies that the back stress is atonically
increasing duringny peak stress hold.

The question is how the back stress evolves dwatigy stress hold. Its evolution
is governed by (2.21) witls(r) =S,,,. To gain insight, we first establish possible

behaviors of the back stress during valley stresés. hThere are three possibilities:

(1) ‘sm —gxa) -K<0 (2.26)

(2) - K > O’ Sgnsmin

—gx P (2.27)

3
S ——X(r
o = X (1)
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3 ‘sm ->X()

-K>0, sgng,, —g X x ( (2.28)
Case 1(2.28) The back stress and inelastic strain evolutsogoverned by:

dX/dr=0

2.29
de/dr=0 ( )

For this case, the back-stress does not evolvettzr@ is no strain accumulation
during valley stress hold. However, since the bgtoiss continues to increase during
peak stress hold, it will eventually reach the dyestate value ol. As a result, the

long term inelastic strain rate is

- -K)" eak stress hol
e =)(Sm3/2-K)" P ! (2.30)
0 valley stress hol
The increment of inelastic strain per cycle at ltnges Ae, , is
A€, = (S —3/2-K)"1, (2.31)
In summary, fo5,, >3/2+Kand|S,, —g <K, the steady state vector is
y ! 2.32
Ve = (S —3/2-K)"7, (232

An example of case | whels§,,, =2,S,,,=1.5K = 0.4n= ¥ = 20, =7,= 4s

shown Figure 2.2 (a),(b). Figure 2.2(a) plots thelaion of the back stress with time.
The trajectory of the state vector near equilibriwe, in the neighborhood of , is
shown in Figure 2.2(b).

Case 1l (2.27): For this case, back stress agldstic strain evolution is governed

by
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Figure 2.2 Example of case | with initial condits X (0) =&£(0)= 0. (a) Back

stress evolution (b) Trajectory of state vector
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dX/dr=c(1—X)(Smm —gx —Kj
) (2.33)
de/dr :Lsmm —gx —Kj

Equation (2.33) implies thatX /dr >0, hence the back-stress will continue to
increase during valley stress hold. Eventuallwiit approach its steady state value of

1. Therefore, the long time inelastic strain rate is

_3/2_K " k st hol
& = (Smax ) peak stress holi (2.34)
(S.n—3/2-K)"  valley stress hol
Using (2.34), the long time state vectyris
v : 2.35
2\ (Smesr2 K (s 32k (ror)) O

Note in Case IlI, the back stress and the inelagtiin are always increasing.
These analytical results are verified by numencalhtegrating the governing

equations for the case ¢§,,,=2,S,,=1.8K=0.1¢c= 30h= 5,=r,= 0.0. As

predicted by our analysis, Figure 2.4(a) shows ti@tback stress is increasing with
time, that is, no oscillatory solution. Figure h3&hows the trajectory of the state
vector near equilibrium, i.e., in the neighborhaddy,, .

Case lll (2.28): The back stress and inelasti&irstbehavior during valley stress

hold is governed by
3 n
dX /dr =—c(1+ x)(gx -S.. —Kj

) (2.36)
de/dr:@x S, —Kj
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stress evolution (b) Trajectory of state vector
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Equation (2.36) shows that the derivative of theklstress with time is negative,
therefore the back stress decreases during vatl®gss hold. Since back stress
increases during peak stress hold, the solutionbeswscillatory. If this is the case,
then the back-stress at long times will converga toon-constant periodic function
X, (r) with periodr,

X (T+71,)=X_(7) (2.37)

The periodic functionX_(7) will oscillate between X, and X, , where
0< X, < X, <1. In order for this situation to occug,, has to satisfy (2.28) during

all valley stress hold, which can be rewritten as

Shin <§X(r)- K (2.38)

The periodicity of X_(7) implies that the increment of the inelastic stragr

cycle is a constant, and is given by
Agmzf( —Kjdr+f[

0
=0.1K = 0.In= %= 10,=7,= 0.0

Suoc 2 X (D)

—K] dr  (2.39)

S =2 X (1)

An example of this caseS(,, =1.7,S,,,
is shown in Figure 2.3.

Equations (2.24) and (2.33) suggest that the atmmvergence to the long time
solution is governed by the material parameteThe convergence rate of the state
vector is shown in Figure 2.5 for several values.dfhe numerical results show that
long time periodic solution is reached after 3 egclSince the typical values ofare
quite large, long time solution are reached aftav or three cycles. Our numerical
simulations show that rate of convergence is notiquéarly sensitive to parameters
such asn,7,,7,,K,S,,,,,S

min ?~"max"
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It is important to note that does not only affect the converging rate, but &t&o
periodic solution of the systerAs shown in Figure 2.5, the equilibrium value o th
state vector changes with

Note that the system starts in case I, then itstal in case I. However, this is not
the case for case Il and case Il since it is fdesgor the solution to switch from one
to the other (e.g. see situation (3) in section4d.ih different cycles. Therefore, the
analysis above does not cover all possible scengeig. only sufficient condition is
established for the existence of periodic long tsokution). The difficulty lies in the
fact that the initial value of the back stress atle cycle depends on the previous
cycle. Furthermore, the solution of the differehéiguations cannot be written in close

form. In the following, we use a dynamic systemrapph to defeat these difficulties.

2.2.4 Phase Portrait Analysis

To complete the analysis, we study the back seeehition during valley stress

hold (S(r) = Smm) by examining the phase portrait of (2.21), i.e.,

dX/dr=c(sgn(Smm—gX)—Xj< Smm——zx‘—K> . (2.40)
The fixed points of (2.40), denoted By, satisfy
3 O O
sgn@S,;, _EX X = (2.41)
3o
<‘Smm—§X —K>:O (2.42)

Equations (2.41),(2.42) show that the fixed poidspend on thesign of
S, —3X" /2. Consider first whersgn@S,,, — X" /2= . For this case, (2.41),(2.42)

imply that the fixed points are

XP=1,X"> XEE%(Smm—K) (2.43)
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Note that there is amfinite number of fixed points since any point satisfies
X"= X7 is a fixed point of (2.42). For the case whega@S,, — X" /2=-, the
fixed points are

x§=-1,xﬂsx§:§(s

min +K ) (244)
Similarly, (2.44) predicts that there exists iaterval of fixed pointsX"< X,
Comparing (2.43) and (2.44), we found’ < X’ sinceK > 0.

Note thatsgn(S,;, — X" /2)= Zimplies dX /dr = 0 since <‘S

i ~3X 712 -K) is
non-negative and > 0. Therefore, the only way to reach the fixed poiKts X3 is
from dX /dr >0 (flow is in positive direction). Similarlysgn@S,,, — 3X" /2=~
implies thatdX /dr<0 so the fixed pointsX;, X, can only be reached from
dX /dr <0 (flow is in negative direction). Since the existenand arrangement of
fixed points are determined by the sign®f —3X"/ 2, the phase portrait of (2.40) is
different for differentS,, andK. To illustrate this dependence, phase portraitsafor
fixed K=0.4 and for different values ofS. are shown in Figure 2.6(a-e)(
c=1,n=5). Darks lines indicate intervals of fixed pointheve back stress do not
evolve. Arrows indicate flow direction, i.e., ho¥ changes with time. Note that
-1= X/ < X=1,X; <X} . Without loss in generality, we assume the ihiiack
stressX,,; in valley hold cycle lies i0< X, , <1.

In Figure 2.6(a), we choosg,,, sufficiently large so thaX; > X;'=1. This means
that the interval of fixed pointX" > X lie outside of [0,1]. Sinc& cannot exceed
its saturation value 1, these fixed points can nbeereached and hence is not shown
in Figure 2.6(a). Note thadX /dr >0 for all 0< X, <1, so X will increase until it

reachesX,’=1. If we gradually reducg ., thenX; will decrease untilX; < X’ =1 (

, =1whenS, =K +3/2); that is, the intervalX,'< X" < X;" becomes part of
[-1,1] (dark line in Figure 2.6(b)). I¥X,, lies in[ X}, X;], thendX /dr =0 since

any point inside X, X;'| is a fixed point, so the back stress remains ungéd i.e.,
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X=X,. If 0<X,,<Xj, thendX/dr>0 by (2.40) so the back stress will

ini
increase until it reacheX; (see Figure 2.6(b)), then remains there. BiXiV d7 >0
and dX /dr <0 will occur as we decreas8,;, below K +3/2as shown in Figure
2.6(c). For this casesgn(@S,, — 3X, /2)= land sgn@S,,, — 3X, /2)=- land the four
fixed points appear in the orderXf <0< X; < X} < X{. According to (2.43),(2.44),
every point in| X3, X} ] is a fixed point, so it,; O X;, X, '], the back stress do not
evolve andX =X, . If X, D(O,XE) where dX /d7 >0, the back stress will
increase until it reaches,. If X, D(Xf, szl] , thendX /dr <Oand the back
stress will decrease until it reach€s(see Figure 2.6(c)). AS,,, decreases further
so thatS,, <K which implies thatX;’<0, the interval of fixed points becomes
(0.x{], ~1<X;'<1, (see Figure 2.6(d)). For this casexif O[ X;,1], the back
stress will decrease until it reach€s then stays there. Figure 2.6(d) shows the case
wherel > X;'> 0. Note that the phase diagram has identical feadfurd < X,'<0.
Finally, if S is reduced further so that, < X;'<0 (see Figure 2.6(e)). Equation
(2.40) implies thatdX /dr <0 for all 0< X, <1. Since X,'< X5 <=1, the only
accessible fixed point iX; = -1, so the back stress will decrease until it reackgs
Having established the back stress behavior duwrallgy stress hold, we are in
position to address the existence of periodic smutRecall that the back stress
always increases during peak stress hold, so the existence of periodic or oscillatory
solution will require the back stress to decreasend valley stress hold. There are
three situations:
(2): For the situation shown in Figure 2.6(a,bjpeaiodic solution does not exist since
back stress also increases during valley strdss ho
(2): For the situation shown in Figure 2.6(e), theck stress will always decrease

during valley stress hold given an¥

ini 7

SO a periodic solution exists.

(3): For the situation shown in Figure 2.6(c,d)0i X, . < X,/, the back stress will
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either stay as a constant Xf'< X, < X}) or increase (i0< X, < X,) during
valley stress hold. However, after a finite humbgecycles,the back stress will
increase beyond X’ (since back stress increases during peak stress hold), then it
will start to decrease towards, during valley stress hold. This process will
continue indefinitely. Hence, periodic solution Mik reached at sufficiently long
times.

The analysis above shows that the phase portrdittlam existence of periodic
solution depend on the order of the fixed pokitsX;, XJand X;. Recall Figure
2.6(a-e) are generated by fixing=0.4 and varyingS,,,. The general case where
S.» and K >0 vary independently can also be analyzed basechersame idea.
These results are summarized in a two parameterwimégh divides the §_,.,K)
plane into six regions®-®) based on the order of the four fixed points (FégR.7).
Recall that by definition (2.43) and (2.44%; < X/, X3 < X}. The boundary lines
separating the different regions in Figure 2.7 are:

(1): S, :g+K , X7=X55 (2):8,, =K, XJ=0;

=3

(3) Smin 2_K’ xlD:xE’(4) Smin :_g_K’ X?;D:xi

At a given temperature is a constant as indicated by the vertical line kB
Figure 2.7. This line goes through five regidps @, @, ®,®. The corresponding
phase portraits for each region are shown in Figuréa-e) (for example, region 1
corresponds to Figure 2.7(a) etc.). To make cont#bt the phase portraits in Figure
2.7(a-e), the arrow on AB indicates the directidrdecreasingS If a differentK is
used, then the corresponding line CD will go thtouggions®, ®@,®), ®,® (see
Figure 2.7).The resulting phase portraits are similar excegtore@ is replaced by
region®. In region®, X;<0, and(O,l] is an interval of fixed points, that is, if

Xini D(O,l], the back stress does not change.
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Figure 2.7 Parameter map divided into six regions
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In summary, if §,;,,K) lies in a region above the boundary lifg, =3/2-K, (
in regions®, @ and®), periodic solutions do not exist. On the otherdyaxistence
of periodic solution is guaranteed i§(,,K) lies below the line, (in region®, ®
and®). Thus, a necessary and sufficient condition for periodic solution is

S. <3/2-K (2.45)

Equation (2.45) states that the back stress idatsecy for sufficiently small valley

stress or yield stress.
2.3 Long Term Memory

A very interesting and important feature of thesprg UVM is that the inelastic
strain evolution can be completely different if thes a phase shift of the loading
waveform (see Figure 2.8). In other words, it ewsttin the long term whether we
start loading the specimen in tension or in congoes That is, the dynamical system
has long term memory. To illustrate this featurensider the special case where
Sk =S, S, =—S with hold timesz, (peak hold) andr,=7_—r7, (valley hold)
respectively. As before, we assurBe>3/2+K so that p>0 during peak/valley
stress hold. Note for this case, the long time biehaf the back stress is a periodic
since S, =—-S=-3/2-K which satisfies (2.45). Consider the following tleading
histories in Figure 2.8:

(1) Tension-compression loading (Figure 2.8(a)k tbading cycle starts with
tension holding durind<7<r, and is followed by compression holding during
I,<T<T,.

(2) Compression-tension loading ( Figure 2.8(b®, the loading cycle starts with
compression holding durin@<7<r, and is followed by tension holding for
r,<r<r,. e, the loading waveform is obtained by shiftthg waveform in Figure

2.8(a) to the left byr,.
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Figure 2.8 Loading history (a) tension-compressoading. (b) Compression-tension

loading
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Denote X, (7),€..(7) as the back stress and accumulated inelastio sitai
for tension-compression loading. Likewise, Xt, (7),€.,(7) denote the back stress
and accumulated inelastic strainrafor compression-tension loading. Intuitively, one
would expect that phase shifts should have no teffiedhe long time inelastic strain
accumulation. In other words, after a sufficieriéisge number of cycles, . (r) and

&

c-t

() in the time interval A-B-B'-C in Figure 2.8(a,l)auld satisfy the condition
£ (1) =6 (r+1) (2.46)

However, the counter-example below showed otherwise
During tension holdS(7) = S,,, = S, the back stress and inelastic strain evolves

according to
dX/dr:c(l—X)(S—gx—Kj (2.47)
3 n
d,s/dr:(S—EX—Kj (2.48)

During compression hold3(7) =S, =-S, the back stress and inelastic strain

evolves according to
dX /dr =c(-1- x)(s%x —an (2.49)
de/dr:—(s+§x—K]n (2.50)
LetY=-X,0=-¢, (2.49), (2.50) can be rewritten as

dY/dr=c(1—Y)£S—gY—an (2.51)

dJ/dr=(S—gY—Kj (2.52)

Hence, i1(X(r),£(r)) is the solution for (2.47), (2.48) for the initiebnditions
(X(r=0)=X,,£(r =0)=¢,), then(-X (7),-£(7)) is the solution for (2.49), (2.50)

for initial condition (X(r =0)=-X,,e(r=0)= —50). Therefore, for the special case
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wherer, =7,=1./2, at the end of first hold period, the back strasd accumulated
inelastic strain for Figure 2.8(a), (b) satisky, (7,) ==X ,(7,),€.(7) =—€.4(7))
given the same initial conditioX (0) = £(0) = 0. Continuing this line of reasoning, it
is easy to see thaX, (7)=-X.(7),6.(7)=-¢.(r) for all times. This clearly
violates (2.46). This counter example shows that the long time inelastic strain for
compression-tension loading cannot be obtained temsion-compression case by a
simple phase shift, i.es,.. (7) # £, (7 +7,). In other words, how one starts the system
has long term consequences.

Our above argument works only whgr=7,. Consider the case #7,, the

results in Figure 2.9 are carried out usigg, =-S,,,K =0.1,n=57r,= 2,= 0.0,

min?
which shows that when the system reaches steatty 58X, () = X, (7 +7,) but
£.(7)#2 €. (r+1,). Hence, the accumulated inelastic strain depemdshe initial

condition and the system has long term memory.
2.4 Ratcheting in Cyclic Loading

Ratcheting, the inelastic strain accumulated cyaje cycle, is an important
guantity in the life estimation of high temperatumeaterials subjected to cyclic
loading. Ratcheting has been studied extensivebr dlre past decades for many
different materials including stainless steel (Yidah1990; Kang et al. 2002; Yaguchi
and Takahashi 2005a), solder alloys (Chen et @6R0polymers (Chen and Hui
2005) and composites (Zhang et al. 1990; Jansstheckif 1992) at both room and
elevated temperatures. Reviews of these works eafound in the papers by Ohno
(1990b, 1997) and Kang (2008). In many papers,uthiexial ratcheting straim, is
defined as (Kang et al. 2002; Kang et al. 2006k Ragal. 2007)

& = %(gmax + ‘gmin) (253)

r
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Figure 2.9 Back stress and inelastic strain hystor cyclic loading (a) back stress

versus time (b) inelastic strain versus time

32



where¢, . and ¢, are the maximum and minimum strains within one ilogaycle.

Another definition of ratchetting strain (Kang 2008

g =g —em™ (2.54)

r n+l n

max
n

where e™and &

n+l

are the maximum strain in theh andn+1th cycle. As pointed
out in the literature (Zhang et al. 1990; Ohno 189Rang 2008; Yoshida 1990;
Yaguchi and Takahashi 2005b, 2005a; Chaboche andiKas 1989a-a),

(1) Accurate modeling of ratchetting depends onkinematic hardening rule in
the constitutive model.

(2) The amount of ratcheting strain depends onreetyaof factors such as mean
stress, peak/valley stress hold time, loadingaatetemperature.

According to various investigators (Breitbach et1889; Breitbach et al. 1994),
there are two contributions to the inelastic ssaduring cyclic loading: a time-
dependent component induced by creep and a tinepérdlent progressive cyclic
strain component induced by back stress evolufftre difficulty is that these two
contributions are coupled in the UVM approach aedde no simple decomposition
of strains is possible. Here we propose a dimetessiratio, called ratchetting ratio,

which is defined by

Ac,
A&

sS

(2.55)

Ratchetting

where Ag, is the long term inelastic strain increment pecleydefined in section

2.2.3 in a cyclic test, and it is the samesaglefined in (2.54) A& is defined by

A& =(Sua—3/2-K)'7, (2.56)

Ss max

which is the inelastic strain accumulated in timean a creep test withonstant stress
S, - Intuitively, one may think that because the mstess in a tension-compression

cyclic test is always lower tha8, , , As>Ag, . However, this argument is flawed

33



since the normalized back stress can be significémwer than3/2+ K during peak
hold in a cyclic test.

A necessary condition foR_...,,<1 can be obtained based on our result in
section 2.2.4. Equation (2.26) guarantees that thek stress is monotonically
increasing ifS,,, >3/2-K.. If this is the case, then the long time inelasti@in
accumulated per cycle is given by (2.31). A congeer of (2.31) and (2.56) shows
that

|%atcheting: Agm /AS ss: r ! r c< 1 (257)

in the absence of back stress oscillation. In otherds, back stress oscillations is a
necessary condition foR ..., >1. According to (2.45), a necessary solution for
R acneting> 1 18 Syin <3/2—K . Unfortunately, we have not been able to find the
sufficient condition forR .. >1 In terms of a closed form expression involving
material constants and loading parameters. Our noaheresults show that the
ratcheting ratio depends on the material and l@pgerameters. Some examples are
given in Figure 2.10(a-d) which use the same sepashmeterS A =2.1,K = 0.1,
c=10,r, =1, = 2 with varyingn. As shown in the figures, in general sm8&l},, / S|

tends to have higheR, .., . however, the conditiomR,,,>1does not always

occur.
2.5 Summary and Discussion

There are obvious limitations in our analysis. TA&V model used in this work is
based on the nonlinear kinematic hardening (NLHKg proposed by Armstrong and
Frederick (1966). It is well known that this rulentls to overestimate the ratcheting
strain in uniaxial and multi-axial cyclic tests @oche and Nouailhas 1989b-a; Inoue

et al. 1989; Freed and Walker 1990). We assumeyarapid loading and unloading
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Rate so that the effect of loading rate is not evqd. However, our goal is not to
include the most comprehensive model of UVM, builltstrate a different approach
which may offer more insight into the behavior o¥M. We believe many of the
features highlighted in this chapter are applicatdemany of the UVM in the
literature. In addition, our approach can be ex¢eind study other UVM models.

In our analysis, we have neglected the evolutiontwb state variables.
Specifically, we neglected the evolution of onelod state variables that governs the
evolution of the back stresg(in Equation(2.10)and the one that governs hardening (
in Equation(2.7)).

These simplifications have little effect on theddime qualitative behavior of the
solution. For example, for sufficiently long times,- r_and it can be absorbed into
the yield stres&. In addition, we can always piak >c, so that the state variabfe
evolves much faster than

To summarize, we found,

1: As long asS,, >3/2+K andS,, <3/2-K , the back stress will be
oscillatory and there exists a periodic solutioth&wise, the back stress will increase
monotonically to its saturation value.

2: The long time inelastic strain depends on tigal condition, i.e., a phase shift
of the loading waveform can lead to completelyatiht inelastic strain accumulation.
This result presents an interesting idea that neyrportant in practice, that is, it is
possible to pre-treat the material to ensure l@shetting .

3: The ratchetting ratio during high temperatuyelic loading depends on the
overall effect of loading and material parametdrisTatio is smaller than 1 if the back
stress is not oscillatory, that is, ¥, >3/2-K. In other words, low yield stress and

large valley stress reduces ratcheting.

36



REFERENCES

Adefris N, Saxena A, McDowell D (1996) Creep fatgarack growth behavior in
1Cr-1Mo0-0.25V steels. Part I: Estimation of cragkgarameters. Fatigue Fract
Eng Mater Struct 19:387-398

Armstrong PJ, Frederick CO, Britain G (1966) A neattatical representation of the
multiaxial Bauschinger effect. Central Electricifgenerating Board and
Berkeley Nuclear Laboratories, Research & Develogriept.,

Bodner S, Partom Y (1975) Constitutive equations dtastic-viscoplastic strain-
hardening materials. J Appl Mech 42:385

Breitbach G, Over H, Schubert F (1989) Experiméntaérified creep ratcheting
analysis. Nucl Eng Des 116:231-238

Breitbach G, Schmidt-Plutka A, Schubert F, Nicke(1994) Investigations of creep
ratcheting on thick-walled tubes. Nucl Eng Des B337:345

Chaboche J, Nouailhas D (1989a) Constitutive Modgetif Ratchetting Effects-Part I:
Experimental Facts and Properties of the Clasdtatlels. J Eng Mater
Technol 111:384

Chaboche J, Nouailhas D (1989b) Constitutive Maodebf Ratchetting Effects-Part
II: Possibilities of Some Additional Kinematic ReleJ Eng Mater Technol
111:409

Chaboche JL (1989) Constitutive equations for cycplasticity and cyclic
viscoplasticity. Int J Plast 5:247-302

Chaboche JL, Rousselier G (1983) On the plastic wisdoplastic constitutive
equations-Part I: Rules developed with internaiade concept. J Pressure
Vessel Technol 105:153

Chen G, Chen X, Niu CD (2006) Uniaxial ratchetinghavior of 63Sn37Pb solder
with loading histories and stress rates. MaterEpgj, A 421:238-244

Chen X, Hui S (2005) Ratcheting behavior of PTFBHerrcyclic compression. Polym
Test 24:829-833

Chomette S, Gentzbittel JM, Viguier B (2010) Créagtaviour of as received, aged
and cold worked Inconel 617 at 850° C and 950° Bud Mater 399:266-274

Cook R (1984) Creep properties of Inconel-617 maaid helium at 800 to 1000° C.
Nucl Technol 66:283-288

37



Drubay B, Marie S, Chapuliot S, Lacire M, Michel Bgeschanels H (2003) A16:
guide for defect assessment at elevated temperdhird Press Vessels Pip
80:499-516

Freed AD, Walker KP (1990) Model development ircejslastic ratchetting. National
Aeronautics and Space Administration, Cleveland,(OBA). Lewis Research
Center,

Grover P, Saxena A (1999) Modelling the effect i@fep-fatigue interaction on crack
growth. Fatigue Fract Eng Mater Struct 22:111-122

Guerin Y, Was GS, Zinkle SJ (2009) Materials Chadles for Advanced Nuclear
Energy Systems. MRS Bull:10-14

Inoue T, Ohno N, Suzuki A, Igari T (1989) Evaluatiof inelastic constitutive models
under plasticity-creep interaction for 21/4Cr-1Meed at 600 C. Nucl Eng Des
114:259-309

Jansson S, Leckif F (1992) Mechanical behavior afoatinuous fiber-reinforced
aluminum matrix composite subjected to transvensg thermal loading. J
Mech Phys Solids 40:593-612

Kang G (2008) Ratchetting: Recent progresses inngienon observation,
constitutive modeling and application. Int J Fat@0:1448-1472

Kang G, Gao Q, Cai L, Sun Y (2002) Experimentaldgtuwon uniaxial and
nonproportionally multiaxial ratcheting of SS304istess steel at room and
high temperatures. Nucl Eng Des 216:13-26

Kang G, Kan Q, Zhang J, Sun Y (2006) Time-dependatichetting experiments of
SS304 stainless steel. Int J Plast 22:858-894

Krempl E (1987) Models of viscoplasticity some coemts on equilibrium (back)
stress and drag stress. Acta Mech 69:25-42

Kurata Y, Nakajima H (1995) Temperature dependeicereep properties of cold-
worked Hastelloy XR. J Nucl Sci Technol 32:539-546

Lee HY, Song KN, Kim YW (2010) Evaluation of CreEptigue Damage for Hot Gas
Duct Structure of the NHDD Plant. J Pressure VeEsehnol 132:031101

Miller A (1976) An inelastic constitutive model fanonotonic, cyclic, and creep

deformation: Part I-Equations development and ditalyprocedures. J Eng
Mater Technol 98:97

38



Mo K, Lovicu G, Tung HM, Chen X, Stubbins JF (20HHigh Temperature Aging
and Corrosion Study on Alloy 617 and Alloy 230. dgEGas Turbines Power
133:052908

Natesan K, Purohit A, Tam S (2003) Materials Bebawn HTGR Environments.
Office of Nuclear Regulatory Research, Washington.

Ohno N (1990) Recent topics in constitutive modgliof cyclic plasticity and
viscoplasticity. Appl Mech Rev 43:283-295

Ohno N (1997) Recent progress in constitutive madefor ratchetting. Mater Sci
Res Int 3:1-9

Park S, Kim K, Kim H (2007) Ratcheting behavioudanean stress considerations in
uniaxial low cycle fatigue of Inconel 718 at 649° Eatigue Fract Eng Mater
Struct 30:1076-1083

Ren W, Swimdeman R (2009) A Review Paper on Agiffgdes in Alloy 617 for Gen
IV Nuclear Reactor Applications. J Pressure Ve$gehnol 131:024002

Schneider K, Hartnagel W, lischner B, Schepp P 4)%eep behavior of materials
for high-temperature reactor application. Nucl Treal66:289-295

Schubert F, te Heesen E, Bruch U, Cook R, Dieltithis P, Jakobeit W, Penkalla H,
Ullrich G (1984) Creep rupture behavior of candidataterials for nuclear
process heat applications. Nucl Technol 66:227-240

Shah VN, Majumdar S, Natesan K, Technology UNRCOBNRBE (2003) Review
and assessment of codes and procedures for HTGRormmts. Division of
Engineering Technology, Office of Nuclear RegulgtBesearch, US Nuclear
Regulatory Commission,Argonne National Laboratory,

Wakai T, Poussard C, Drubay B (2002) A comparisetwben Japanese and French
Al6 defect assessment procedures for fatigue cgacWth. Nucl Eng Des
212:125-132

Walker KP (1981) Research and development programnbn-linear structural
modeling with advanced time-temperature dependemnstitutive
relationships.

Yaguchi M, Takahashi Y (2005a) Ratchetting of vestic material with cyclic
softening, part 1: experiments on modified 9Cr-18fkeel. Int J Plast 21:43-65

Yaguchi M, Takahashi Y (2005b) Ratchetting of viglestic material with cyclic
softening, part 2: application of constitutive misdént J Plast 21:835-860

39



Yoon KB, Saxena A, McDowell DL (1992) Influence afack-tip cyclic plasticity on
creep-fatigue crack growth. In: Ernst HA, SaxenaMgDowell DL (eds)
Fracture Mechanics: Twenty-Second Symposium, Pdlidaa, 1992.
American Society for Testing and Materials, pp 392-

Yoshida F (1990) Uniaxial and biaxial creep-ratoigebehavior of SUS304 stainless
steel at room temperature. Int J Press Vessel§PR07-223

Zhan ZL, Tong J (2007a) A study of cyclic plasycand viscoplasticity in a new
nickel-based superalloy using unified constitutagiations. Part I: Evaluation
and determination of material parameters. Mech M2@e54-72

Zhan ZL, Tong J (2007b) A study of cyclic plastycand viscoplasticity in a new
nickel-based superalloy using unified constitutieguations. Part Il
Simulation of cyclic stress relaxation. Mech Ma@6r73-80

Zhang H, Daehn GS, Wagoner R (1990) The Temper&ycing Deformation of
Particle Reinforced Metal Matrix Composites-A FniElement Study. Scr
Metall Mater 24:2151-2155

Zhao L, Tong J (2008) A viscoplastic study of créigkdeformation and crack growth

in a nickel-based superalloy at elevated temperatdrMech Phys Solids
56:3363-3378

40



CHAPTER 3

CRACK TIP FILEDS IN A VISCOPLASTIC SOLID-MONOTONI@AND CYCLIC
LOADING

3.1 Introduction

Recent interest in nuclear power has renewed sitare the study of high
temperature materials fracture, in particular, eickased alloys because of their
exceptional high temperature creep strength. Inpiheer plant industry, operating
temperature in the equipment components is ustdjly. For some highly stressed
components which are part of reactors, cracks fuoavoidable sharp corners during
fabrication or workmanship flaws may develop ataierlocations and propagate due
to fatigue and creep. So the reliability of thesemponents at high temperatures
becomes a significant concern. Creep fatigue aackagrowth could lead to failure of
the power plant equipment such as intermediate dyedtangers. Thus, to predict the
design and remaining life of power plant componesdsurately, modeling these
cracks with a constitutive model that describesctiaek creeping behavior is a natural
choice.

The standard fracture mechanics approach is tderel@ack tip processes to a
loading parameter that quantifies the strengthhef ¢rack tip stress fields. This
parameter allows engineers to correlate crack draoate in complex structures with
the applied load. Attempts at understanding the titependent crack tip stress fields
can be traced back to Riedel and Rice with themisal analysis on the stress field
near the tip of a stationary Mode | crack in arsetapower law creeping material
(Riedel and Rice 1980). Since their work, a considie amount of literature on crack

tip loading parameters for creep crack growth lpgeeared (Riedel 1981; Bassani and

41



McClintock 1981; Atluri 1982; Schapery 1986; Saxd886; Bassani et al. 1989; Hall
et al. 1998; Wang et al. 2000).

Most of the crack tip analyses are based on atiefaswver law creeping (EPLC)
solid. The primary reason for choosing the EPLC ehasl that the stress field near a
crack tip is characterized by the crack tip loadirgameters such &5 , C" or C; in
this model. However, even in monotonic loadingkaldased alloys typically exhibit
complex deformation behavior (Chomette et al. 2086hubert et al. 1984; Cook
1984; Schneider et al. 1984; Kurata and Nakajin2bL9Another shortcoming of the
EPLC model is that it does not describe materidlaer under cyclic deformation
well. Therefore, the use of crack tip parametershsas C* orC(t) to characterize
crack growth in these alloys can be questionabemgared to monotonic loading,
crack tip field under cyclic loading presents a en@hallenging problem and has
received much less attention. Riedel (1983) studradk tip fields in EPLC materials
under cyclic loading conditions. Yoon et al. (19@3)ried out both experimental and
numerical studies on creep-fatigue crack growth@G} behavior of 1.25Cr-0.5Mo
steel. Adefris et al. (1996a, b) studied the comthireffect of cyclic plasticity and
creep deformation on creep fatigue crack growth d€r-1Mo-1/4V steelGrover and
Saxena (1999) proposed a new creep-reversal paaneetquantify creep-fatigue
interaction. In these papers, a constitutive madekhich the inelastic strain is the
sum of a rate independent plastic strain and csgem was used.

A growing body of research demonstrates that mudhe complex deformation
behavior of high temperature metal alloys duringlicyloading, such as stress
relaxation, ratcheting and cyclic softening/hardgnibehavior, can be captured by so
called unified viscoplastic models (UVM) ((Chaboct@89), also see review papers
by Ohno (1990a), Chaboche (Chaboche 2008) andetbeences within). One of the

advantages of these UVM is that there is no separdietween creep and rate

42



independent plasticity. Despite the success of UWMrepresent high temperature
material behavior, very few researchers have siutfie deformation and stress field
near the crack tip using these models. Zhao and) T#008) studied the behavior of
the cyclic stress and deformation field in a craclspecimen numerically using a
UVM of Chaboche (1989). Their study was purely ntica, for example, they did

not investigate the existence of crack tip paramsefta viscoplastic materials. Stamm
and Walz (Stamm and Walz 1993; Walz and Stamm 1883jed out both numerical

and analytical investigation of crack tip fields iiscoplastic materials. Their
numerical work focused on the regime of high ampiresses.

The brief summary above suggests that it may beilugestudy the crack tip field
of a viscoplastic material and compare these fieldls those of an elastic power-law
creeping material. In this chapter, we carried an#lytical and numerical studies on
the Mode | crack tip stress fields of a viscoplastiaterial. This model was originally
conceived by Chaboche (1989) and later used by Zhddrong (2008) to study creep
fracture in Alloy RR1000. In the first part of ththapter, we derive the asymptotic
crack tip fields associated with this viscoplasticdel under monotonic loading. Then
the evolution of the crack tip stress field underal scale creep (SSC) conditions is
studied. Under this condition, inelastic strains eonfined to the crack tip. The effect
of cyclic loading on the near tip stress and stridhds is studied. Due to the
complexity of cyclic loading, we focus on a simglass of loading history and the

effect of stress ratio on the crack tip fields.

3.2 Material Model

The geometry used for monotonic and cyclic loadmghe single edge crack

tension specimen (SECT) shown schematically inféi@ul witha/b=0.1.
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The material model is a unified viscoplastic mopielposed by Chaboche(1989). The

total strain rateg; is the sum of the elastic strain raeand inelastic strain ra, where

a dot denotes differentiation with respect to tiiflee elastic strain rate is given by

. 1+v . Vv .
ee="""o 25,0

ij E % E i ) (3.2)

where g; is the stress tensdE is the Young's modulus and is the Poisson’s ratio.

The inelastic strain rate is given by

g=2pd, 32)
where

p=\2e. (3.9
is the effective inelastic strain rate and

@ =5 - % (3.4)

is the difference between the stress deviatorisdleq; and the deviator of the back

stress tensog, . Also,
w, =B, 12 (3.5)

The effective inelastic strain rapas given by
p=(f/z)" (3.6)
whereZ andN are material constants. The symbolin (3.6) is defined by

z z=>0

(z)= {o (3.7)

z<0
In (3.7), fis the yield function defined by
f=aw-r-k (3.8)
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where Ris an isotropic hardening variable akds the initial radius of the yield
surface. The elastic region is defined hy<0 . The evolutionary law for the

hardening variabl® is given by

R=c,(R,-R)p (3.9)

wherec,and R, are isotropic hardening parameteR, is the steady state value Bf,
andc, controls the saturation rate. The back stressotefsee(3.4)}; is decomposed

into two parts,

X =a +:Bij (3.10)

The state variables;, B; evolve according to

a. = 4 _a |t 3.11
i =G 3138 i | P ( : )
: Q).

:Bi' _CZLa?Ze ijJ P (3-12)

where c,c,,a,,a, are material constants. The first terms in (3.18,12) are
responsible for hardening whereas and the secanas tenodel dynamic recovery.
The steady state values of the back stresses &eemiiged bya, and a, while the

values ofc, andc, control the rate by which the steady values aezhred. Since

‘cqj lw|<1, (3.11) and (3.12) imply that the back stressesbaunded by, +a, at
any inelastic strain rate.

This constitutive model contains 11 materialapaeters. These are: Young's
modulusk , Poisson’s ratio, the kinematic hardening parametars,,c,,c,, the
isotropic hardening parametecsandR,, the creep paramete®and N, and the
initial yield stressk . These parameters vary with temperature and haen b

determined from experimental data. Values usetigwdaper are for Alloy RR1000 at
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650°C (seeTable 3.1below). These data are taken from the papers abzmd Tong
(2008) and (2007a).

3.3 Analytical Analysis of Monotonic Loading

3.3.1 Uniaxial L oading Behavior

Important insight into the structure of crack tieldis in the viscoplastic materials
described above can be gained by examining therrdatmn of a straight bar in a
creep test. For uniaxial loading, let, = o be the applied tension to the baran. A

straightforward calculation shows that the equinbédfective stress is
@, =|0 = X,,. (3.13)

The inelastic strain rate in the loading directi®n

&3, =§ pLez, (3.14)
where
— 2 (J_Xzz)
W, W, =_——=, (3.15)
2 3 |0 =Xy
p=((@-R-k)/Z)". (3.16)

Equation (3.14) can be rewritten as

&y, = PSGN(T — X,,) =<(|a—x22|—R—k) /Z>N sgr{o—x,,) (3.17)

Assuming thats), =R=x,,=0att =0, Equation (3.17) implies that the applied
tension has to be greater thafor non-zero inelastic rate. Fpr>0, integrating(3.9),

(3.11), (3.12) and using the initial conditioa = R= X, =0 results in

R=R, (1-e%"), (3.18)
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Xy =2%[1—e‘°1"]+%[1— e, (3.19)

X1 = Xg3 = —%[1—6“’] —a—é[l— e‘°2p] : (3.20)

Substituting(3.18), (3.19) in (3.16) and assumingx,, >0 lead to the following

expression for the inelastic strain rate:
&,=p=2" {a—g(al[l—e‘qp] +a2[1— e‘czp]) -R, (1— e““p) - kT . (3.22)

Equation (3.21) is a separable differential equatod can be integrated to find

the inelastic strain as a function of time. Naiacee " <1 in (3.21) the condition
2 .
o>2(@+a)+R, +k=0", (3.22)

ensures thap >0 for t >0. In particular, ifo >>0g", the g term inside the square
bracket in (3.21) dominates, and

p=zNog" (3.23)

Equation (3.23) shows that high stresses, the inelastic behavior of the material is
asymptotically identical to a power law creep matewith creep coefficienN. This
suggests that, near the crack tip, the viscoplastistitutive model can be replaced by
a power law creep model. Indeed, éor>0"”, (3.23) implies thap=(c/Z)"t;

substituting this into (3.18) and (3.19) gives
R=R. (1— e“ez‘“"”t) (3.24)

Xy, = %[ai(l— e‘qZ_N”N‘) + az(l— g )J (3.25)

Equation (3.24) and (3.25) show that the stateabtesR and x,, reach their

steady state valuesxponentially fast. The characteristic times needed to achieve
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steady state are(Z/o)“c,* for the isotropic hardening variableR and
max[(Z /o)'c¢*],i=12 for the back stressx,, respectively. Note that these
characteristic times are very sensitive to the sstréevel, i.e., higher stresses
dramatically reduce the time needed to reach stetadg.This result suggests that the
crack tip material is invariably governed by steady state behavior. From (3.23) the

characteristic time which determines how fast cistegin is accumulated is
t=(z/0o)" (3.26)

This characteristic time differs from the charaistés relaxation time of the internal
variables by a factor of max[']. Sincec >>1 at high temperatures, the state
variables evolve at a much faster rate than théastie strain. This behavior is

consistent with the dominance of steady state behaear the crack tip.

3.3.2 Asymptotic near tip Stressand Strain Fields

In this section we show that the asymptotic nearfiglds is still governed by
power law creep. Since our derivation of this refullows the same line of reasoning
as the previous work of Stamm and Walz (Stamm aadlz\10993; Walz and Stamm
1993), we focus on the key ideas and our specifadeh since most of the
mathematical details can be found in their worktHa following, (r,8) denotes the
polar coordinate of a material point. The crackoigupies the origin whene=0.

The key idea is that the state variables rdatte steady state values at the crack
tip. Indeed, (3.11) and (3.12) show that as oneagghes the crack tip, the back stress

tensor approaches the steady state

(3.27)

X =(a,+a,)(w /@)

r=0
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Since we expect that the stress and strain fighggoaches infinity at the crack tip,
these steady state values of the back stressesamieed instantaneously at the crack

tip. Note tha@j l w,| <1, so these steady state values are allwaysded. Denote

(/) =limay 1 w,=Q(6) (3.28)

r=

Equations (3.27) and (3.28) imply that the stateabdes are bounded everywhere
with their maximum values achieved at the craclatiphe instant of loading. As time
increases, the region where the state variableg\axhtheir steady state spreads out
from the crack tip.

Since the state variables are bounded at theidgtate values near the crack tip,

3
w=5-% =5 ,wea/gsjsj =o,, (3.29)

/o -R-k N:: a, N
p—<—z > (zj . (3.30)

Equations (3.29), (3.30) imply that the indlastrain rate near the crack tip is

we have

governed by

|
&j

= g Bo, s, B=z" (3.31)
To leading order, the total strain rate near tlaektip is that of an EPLC material,
i.e.,
£ :1+_V0",, _%dkkdij +§BJQN‘1§J. (3.32)

i~ Y
For a stationary crack, the inelastic strain ra@sinate the elastic strain rates as
long asN > 1. Therefore, (3.31), (3.32) imply that the neardipess and strain fields
must be governed by the HRR field with a creep egpdN and creep coefficier.
Specifically, the stress field near the crack tipstnhave the form (Riedel and Rice

1980):
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D(t 1/(N+1)
o, :(J] g,6,N) 10 (3.33)
Bl r

whereD(t) characterizes the amplitude of the singular fi¢td.addition, since; is

bounded at the crack tip, we have

Q(6) =lim &, / @, =§,(6,N)/ G,(6,N) (3.34)

where§; (8,N) =0, (8,N)- 3, (6,N)3, /3 and &,(6,N)=[355 /2.

Equations (3.27) and (3.34) show that the backssttensor at the crack tip is
completely determined by the material constants amgular variation of the HRR
field. The evolution of the state variables neag titack tip can be estimated by
substituting (3.34) into (3.9)-(3.12) and usin8, (3.30), the results are:

— : SI(H’N) _ _BC| [ON-GJ(H1N)]Nt P \\N/(N+L) oy
Xj_za{ﬁe(e,mﬂl eXF{ (B1,r)"™ J(oe)™a J] (3.35)

(Bl r)N/(N+1)
N

R=R, [1— exy{— Be;[0.(6.N)] j(D ¢y dt'H (3.36)

Note that, for any>0, the back stress tensor and the isotropic harderaniable

approach their steady state values exponentialyafsr — 0.
3.4 Finite Element Analysis (FEM) Simulation

3.4.1 Nor malization

In the following, we normalize all lengths includirdisplacements by the crack

length,a, stresses by, and time byr where

r=(z/a)" (3.37)
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All normalized variables are topped by a bar. A# terivatives with respect to the

normalized timer are denoted by prime. The normalized constitutieel@his:

o1tV o Lo, (3.39)
gjl:%-%, @, = (3 12 (3.39)
p=(m-R-k) (3.40)
R=c(R -RP (3.41)

i = c{% -, J o (3.42)

fiee[ 224 .43

A straightforward dimensional analysis shows thatgoverning equations and the

boundary conditions contain the following dimen$ss quantities:
c,.c,c,Nv,a,/ak=k/a,R, =R la,g,=0, la,E=E la, (3.44)

3.4.2 FE Model

Finite element analysis was carried out using timtef element software
ABAQUS(2008). The constitutive model is implementedBAQUS through a user-
defined material subroutine UMAT using the implibéickward Euler method under
the assumption of small deformations. The finiengnt models are shown in Figure
3.2. The mesh consists of 4-noded bilinear plarenstjuadrilateral element (CPE4).
To capture the crack tip stress fields accuratgb/used a sub modeling technique in

ABAQUS (2008) to obtain detailed numerical solutadrthe crack tip by applying the
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Figure 3.2 FE models for numerical simulatior). Kaite element model for half of
the specimen. The sub-model region=0.1) is highlighted. (b) Semicircular FE

sub-model with fine mesh
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solution obtained using a coarse mesh as the bogrdadition in the sub-model. A
convergence study with respect to mesh and stephaiz been carried out. To capture
the HRR field near the crack tip, the maximum sizéhe smallest element should be
on the order ofl0™. In all simulations, the smallest element size rikarcrack tip is
on the order ofl0® whereas the mesh size in the far field is on thieroof10™.
Backward Euler scheme ensures numerical stabMityormalized time step size of
10*is used in the simulatio convergence study shows that the solution remains
unchanged with further reduction of the normaliziede step size. The normalized
parameters used in the simulations are calculaded)uhe material parameterTable
3.1(Zhan and Tong 2007a, b; Zhao and Tong 2008).

To verify the UMAT and the sub-modeling technique, set allc and kto zero.
This reduces the viscoplastic model to a power daseping solid. We compare our
numerical results with analytical solutions in titerature. Details are given in the

Appendix 3.1.

3.4.3 Small Scale Creep (SSC)

For an EPLC material, creep deformation is alwaysfined to the crack tip at
sufficiently short times. This condition is knows small scale creep and was studied
first by Riedel and Rice (1980). In this regimeg ttrack is modeled as semi-infinite

with the far field boundary condition governed bg stress intensity facts, , i.e.,

o= K56 1o (3.45)

Vo Jom
For a constant load applied suddenly at tiree O, Riedel and Rice (1980) have

shown that near crack tip stress field is given by

L(N+1)
0, =(ﬂj 5,(6.N) (3.46)
Bl r
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Table 3.1 Data for viscoplastic material (Zhan @odg 2007a, b; Zhao and Tong 2008)

Paramete Values

19C GP¢
0.28¢

678.31MPaxs
10

144.2¢ MPg
361.5" MPe

266.8: MPe

161.52 MPe¢

o D e ® X z NS

391.6:

2578.6!

N

7.15

&
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whereC(t)is the time-dependent stress amplitude of the &nigys |, is a numerical
factor dependents dN andd; is the angular variation of the HRR field. Foogh
times, the stress and strain fields are self-simithereas for long times, the creep
strain will eventually dominate the elastic straind C(t) — C whereC’ is a path
independent integral defined by Landes and Beg8#&)L. The transition from short
to long time behavior takes place at a time denbyet},, which is given by

‘= aK?(@1-v?)

R (n+1)EC (3.47)

wherea =1. Finite element calculations (Ehlers and Ried81)3showed thak(t)
can be approximated by:

C(t) = (“tTRj c (3.48)

In contrast, for a viscoplastic solid, as longlas applied load is sufficiently low,
the region of non-zero inelastic strairalg/ays confined to the crack tip regidar all
times. This is because the inelastic strain rate vasisiteenf <0 (see (3.6) and (3.7)
). The fact that the region of active creemasfined by elastic material implies that
the inelastic strain ra&verywhere has to vanish at very long times, as shown below.

With this background in mind, we consider the SSGbfem in a viscoplastic
solid. We assume that the applied load is suffityesmall so that inelastic zone is
small compared with the region of dominance ofelasticK, field. To be specific,
consider a plane strain edge crack occupying(0,a),y =0 in an infinite strip of
viscoplastic material (see Figure 3.1). At titnre O , the crack is loaded by applying a
constant remote tension:

O,(X|y| - »,t>0)=0, (3.49)
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The boundary of the inelastic zone is determined te condition
f =« —R-k=0. The maximum size of this creep zor}€* can be estimated by
setting R=x, =0 and equatingew), with k where &, is obtained from elasti&,

field. This results in:

¢ 271k?

7.(0) (3.50)

SSC requires the conditiof’™ << a to be satisfied. For the single edged crack
specimen shown in Figure 3.K, 01.127,_+/77a (Tada et al. 2000). Substituting this

expression for stress intensity factor into (3.4f¢, condition for SCC is

2

%<<1.6 (3.51)

Our analysis in the previous section implies tihat ¢rack tip stresses must have

the form:

L(N+1)
0, =(ﬂj 5,(6.N) (3.52)
Bl r

where D(t)is a time dependent stress amplitude. The SSCeamohblas simulated in
ABAQUS using the finite element model shown in FegyB.2. To ensure SSC, the
normalized remote load is set to 0.2 to satisfy(B.5-igure 3.3 shows a log-log plot
of the normalized stresg,, directly ahead of the crack tipd(=0) versus the
normalized distancel at four different normalized times: 3.5e-3, 1.13200. The
two straight lines with slope of1/2 and-1/(N +1) denote the K field and HRR
field singularity respectively.

Figure 3.3 shows that at distances close to thekdija (10° < d < 10™),the elastic
K field dominates all times, since the results the slope of the stress velistance is
approximately -1/2. Indeed, the numerical solutgnees with (3.45)This result is

consistent with the SSC assumption. Very clos@ecctack tip, the elastic rate is no
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Figure 3.3 Normalized stress,,(r,6 = 0) versus normalized distance directly ahead

of the crack tip at different normalized times. Tiv® straight lines are indicating the

slope of -1/2 and -1/(N+1) for comparison.
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longer dominant, Figure 3.3 shows that stress tiearcrack tip at normalized times
t =3.5e-3 exhibits the HRR singularity, consistentw(8.46). As time increases to
1.13, the region of validity of the HRR field deases significantly and at longer
times (t =10, 200), we observe no region of dominance ofHIRR field. Stress
relaxation near the crack tip is evident.

As mentioned earlier, we expect the HRR fialtd the inelastic strain rate to
vanish with increasing time. To verify this hypaties the inelastic strain component
&y, versus normalized timé 0[10,20( directly ahead of crack tip at =1x10°is
plotted in Figure 3.4. It shows that the inelastiain rate is negative fd‘rD[lO,ZOq.
This result, together with (3.2) and (3.4), impligat s,, —x3,<0. Recall that the
existence of HRR field is based on the inequality> X/, hence, the fact that,
decreases with times(, —xJ,<0) implies that the HRR field cannot be dominant,
consistent with our result in Figure 3.3. Finalhgte that the scale of the inelastic
strain in Figure 3.4 is very fine, arg, almost approaches constant by normalized
time 200. This result is also consistent with oypdthesis that the inelastic strain rate
vanishes everywhere at very long times. Within ¢neall scale creep regime, the
region where creep occurs is always confined inaigenall region near the crack tip
where the surrounding material is elastic. Thisngety confinement result causes the
creep strain rate at a fixed material point to dase with time at some point. This
“back stress” is not due to microstructural changebe dislocation structure but due
to geometric constraint.

As a further check, we plot the normalized cragk dtress amplitudeD (t) =
D(t)/D, where D, =D(f,=35e- 3 in Figure 3.5. This figure shows that the
normalized stress amplitude decreases with timet fe; and approaches zero at
longer times. The above analysis focuses on smallael loading where the inelastic

strain is confined to the crack tip region. We &edi this is an important regime as
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Figure 3.4 ¢,,
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Figure 3.5 Normalized crack tip stress amplitidit) versus dimensionless tinte
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most high temperature components are subjecteélatively low loads to prevent
creep rupture. Nonetheless, another regime is whempplied stresg, exceedsos”
defined by (3.22). In this case the specimen cregpsywhere and SSC is valid only
for very short times. Eventually the elastg field will disappear as inelastic
deformation spreads throughout the specimen. Iticpéar, if the applied stress
o, >>0 , then theentire specimen creeps. In this case, the fracture mexhahould
be well approximated by the EPLC material as demnatexl by Stamm and Walz
(Stamm and Walz 1993; Walz and Stamm 1993).

3.5 Cyclic Loading

In this section we study the crack tip fields doetsimple class of cyclic loading
which consists of trapezoidal load cycles on th€EEpecimen in Figure 3.6. Since
our focus is on the effect of stress ratio on ttaelctip fields, we limit our simulations
to waveforms where loading and unloading are muashef than the hold period. A
schematic of the waveform is shown in Figure 3.&ctEcycle contains four parts:
loading with duration 0.1, hold af,, with normalized time 3, unloading with
duration 0.1 and hold af,, with normalized time 3 (see Figure 3.6(b)). Thago
normalized hold time allows for adequate stressxadion. The normalized maximum
stress amplitude isd,,, =0.2) so that the specimen is under SSC. Four different
loading with stress ratiosS=0,,,, /0, = 0, 0.2, 0.5 and 0.8 are considered.

For each of the four cycles (1,11,111,1V) labeled Figure 3.6(a), we highlight the
stress field at the three times (1,2,3) which apoad to the beginning ,the middle
and the end of a hold period. A log-log plot of #teess componerd,, evaluated
directly ahead of the crack tip versus the norrealidistanced at these times fd8 =
0.5 are shown in Figure 3.7(a-c). Note that redoltscycles (1,1L111,1V) at the same

time lie approximately on top of each other in thégures, indicating that the stress
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Figure 3.6 Cyclic loading waveform wit=0.5. (a) loading history. Four loading
cycles (LILIL1V) are labeled. (b) a particuldwading cycle. (1,2,3) represent three

different times in the hold period in each cycle.
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distributions are approximately cycle independénir numerical result shows that the
stress fields do not vary from cycle to cycle aftez second cycle, hence we do not
report results in the first cycle, and cycle | ledgein Figure 3.7(a) is actually the
second cycle. As shown in Figure 3.7(a), immedyagdter loading, the stress field
near the crack tip does not show any HRR charatiesi(the HRR field is indicated
by the blue line with slope -M¢1)). This result is not surprising since loading is
sufficiently fast so that the rate of creep defdrorais small compared with the
elastic strain rate. As time increases, Figureb3.ghows that the HRR field begins to
dominate near the crack tip. Note that, at theddrtie hold period Figure 3.7(c), the
region of dominance of the HRR field is smaller.

This result is consistent with our SSC analysishi@ previous section since the
inelastic strain rate will decrease at long tinteisnilar trends for the stress are found
for the other loading cases with different stress satio

Next we investigate the effect of stress rai@n the inelastic straisl, . These
results are presented at a fixed material pdirtlx10°directly ahead of the crack
tip. The time evolution of;, at this material point fo8 = 0, 0.2, 0.5 and 0.8 are
plotted in Figure 3.8. A common feature of thegiffes is that), increases in each
cycle. This feature has been extensively studiedha literature (Chaboche and
Nouailhas 1989a-b, 1989b-b; Ohno and Wang 1993; dwadll 1995; Yoshida 1990;
Yaguchi and Takahashi 2005a, 2005b; Kang et al2;2B@ng et al. 2006) for bars
loaded under cyclic creep. For the material pararsetised in our simulations, we
found that theincrement of inelastic strain per cyclég,,, converges rapidly to a
constant which is denoted hy,, («, S). The maximum inelastic strains accumulated
per cycle and the value dfe}, (oo, S) depend on the stress ratio. Thgher the stress
ratio S, the less the maximum strain accumulated at the same cydies effect is

consistent with earlier calculation(Zhao and To88&and experimental observations
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(Yaguchi and Takahashi 2005a; Gupta et al. 200bn@xial specimens loaded under
cyclic conditions.

To understand these results, we plot the stregstllirahead of the crack tip at
d =1x10° in Figure 3.9. It shows that immediately afterdivay, the stress,,
associated with the stress ratio O is higher thah afS= 0.8. The stress increases is
due to the rapid elastic loading resulting in ahhéfress peak near the crack for low
stress ratios. As pointed out by Riedel (1983)ismamalysis of creep fatigue crack tip
fields in an EPLC material, these stress peaksasseciated with an sudden increase
in stress intensity factor due to rapid changeading. This stress increase gives rise
to a higher inelastic strain rate during the hoddigd. As a result, the inelastic strain

increases with decreasing stress ratio.
3.6 Summary and Discussion

A numerical and analytical study on the asymptstiess and strain field of a
plane strain Mode | stationary crack in a viscoftamaterial is presented in this
chapter. The focus is on the regime of small scedep where the region of inelastic
strain is small in comparison with typical specintémensions. Analyses are carried
out for a constant applied load and a simple ctassyclic loading history. Our
asymptotic analysis shows that the near tip saadsstrain fields are still governed by
the HRR field. This result can be readily extendedviscoplastic materials with
different creep functions, as long as the statéabbes reach steady state at large
strains (Stamm and Walz 1993; Walz and Stamm 1998).argument for the near tip
stress and strain field can also be extendedgtowing Mode | crack with growth rate
a. Since near the crack tip the material behaviagiven by (3.31), the analysis of

Hui and Riedel(1981gpplies, so the near tip stress field for>3 is:
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N \V(N-D)
au:aN[ Erj 8,(6,N) (3.53)

where g; are dimensionless functions describing the angideations of the near tip
fields anda,, is a numerical constant (see (Hui and Riedel 1)981)

Our solution for the SSC problem differs signifidg from the well known
solution for an EPLC solid, where the creep strain a material increases
monotonically with time and the amplitude of theess field at the crack tip reaches a
constant value@). In our case, the creep strain at a materialtpwar the crack tip
first increases, then decreases to a constant daledo restraining stress exerted by
the surrounding elastic material. As a result,ahelitude of the HRR field vanishes
at long times. Therefore, if the applied load isapthe appropriate crack tip loading
parameter is the elasticfield. This result is consistent with many creegck growth
experiments of super-alloys which suggested thasthess intensity factor correlates
with the crack growth rate (Sadananda and Shahik88a; Fu 1980; Tong et al. 2001;
Floreen and Kane 1979).

The effect of cyclic loading on the crack tipess and strain fields are studied
using four particular waveforms with different stgeratios but the same loading
frequencies. Our waveform has rapid loading angadihg cycles. The hold times in
our simulations are sufficiently long to allow foreep relaxation. In the beginning of
a hold period, the elastK field is dominant, and the region of HRR fieldsimall. As
time increases, the HRR field starts to dominaia. IBnger times, the region of
dominance of the HRR decreases with time. For thtenal parameters used in this
chapter, we find the stress distribution rapidlgdmaes cycle independent. This rapid
convergence of a cycle independent stress stateomsrolled by the material
parameterss, and is particularly sensitive to the stress 1e(@I35)-(3.36)). The larger

the ¢ and the higher the stress, the faster the raterofergence. The ratcheting strain
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is found to decrease with stress ratio.

There is obvious limitation in our analysis. \dke not investigate the effect of
loading frequency on the crack tip fields. Alsoe told times in all our simulations
are identical. The dependence of crack tip field$old times and frequencies will be
presented in a future work. More importantly, theenemechanics of local damage
processes such as grain boundary cavitation arenohtded in our analysis. For
Nickel-based super alloys, environmental effecthsas oxidation embrittlement have
been cited as the main cause of intergranular orgdér static and long dwell loading

conditions(Saxena and Bassani 1984; Floreen and K8n9; Tong et al. 2001) .
Appendix 3.1 Verification of the FEM implementation

To verify the UMAT and the sub-modeling techniques carried out simulations
in a single edge cracked test (SECT) specimen. nsudeling can provide more
detailed and accurate local solutions by applying previously calculated global
solution as the boundary condition (Krishnan et2808). To validate our FEM, the
constitutive model was reduced to an EPLC modedditingc,,c,,c;andk in (3.40)-
(3.43) to zero. A normalized remote stress 0.2pglied to the SECT specimen).
Figure 3.10 shows the log-log plot of the stressnponento,, versus distance
directly ahead of the crack tip. The stress obthiftem the global model (coarser
mesh) is indicated by the dotted line. The strdgained using the sub-model (finer
mesh) is indicated by the dash line. Note thatethera large overlap region where
both models agree, which validates this sub-modd@chnique. The inverse square
root singularity associated with the eladficfield occurs in this overlap region. Log-
log plots of crack tipo,, field at different times are given in Figure 3.1s time
increases the stress near the crack tip is coatrdly the HRR singularity which

appears as a straight line with slogk/ (N +1).

70



10

------ global model
= === sub model
-—_~
~~~-~~-‘
3 S~ "y
10 "y _
R
22 ~ :
&
~,
5 ~
10 Cay, 1
1
10 | | |
10™ q 107 10°

Figure 3.10 Verification of the sub-modeling teicjue

71



10 ‘

— creep time le-4

==smss=creep time le-3
creep time le-1
creep time 13

““-5‘ “‘HH- ‘ “‘HH- ‘ “‘HH-Z ‘ “‘HH- ‘ HH0
10 10 10 10 10 10

Figure 3.11 Log-log plot of the stress versusattiseé ahead of crack tip at different

times

72



REFERENCES

ABAQUS (2008) version 6.8-3. Dassault Systemes|3lM Corp.

Adefris N, Saxena A, McDowell D (1996a) Creep fagigcrack growth behavior in
1Cr-1Mo-0.25V steels. Part I: Estimation of craigkgarameters. Fatigue Fract
Eng Mater Struct 19:387-398

Adefris N, Saxena A, McDowell D (1996b) Creep faggcrack growth behavior in
1Cr-1Mo0-0.25V steels. Part II: Crack growth behavamd models. Fatigue
Fract Eng Mater Struct 19:401-411

Atluri SN (1982) Path-independent integrals in tBnelasticity and inelasticity, with
body forces, inertia, and arbitrary crack-face d¢towls. Eng Fract Mech
16:341-364

Bassani J, McClintock F (1981) Creep relaxatiorsméss around a crack tip. Int J
Solids Struct 17:479-492

Bassani JL, Hawk DE, Saxana A (1989) Evaluationtlod G Parameter for
Characterizing the Creep Crack Growth Rate in th@nJient Regime. In:
Saxana A, Landes JD, Bassani JL (eds) Third Intemmal Symposium on
Nonlinear Fracture Mechanics, Knoxville, 1989. Aroan Society for Testing
and Materials, pp 7-26

Chaboche J (2008) A review of some plasticity anscoplasticity constitutive
theories. Int J Plast 24:1642-1693

Chaboche J, Nouailhas D (1989a) Constitutive Modetf Ratchetting Effects—Part
I: Experimental Facts and Properties of the Clasdidodels. J Eng Mater
Technol 111:384

Chaboche J, Nouailhas D (1989b) Constitutive Modebtf Ratchetting Effects—Part
II: Possibilities of Some Additional Kinematic ReleJ Eng Mater Technol
111:409

Chaboche JL (1989) Constitutive equations for cycplasticity and cyclic
viscoplasticity. Int J Plast 5:247-302

Chomette S, Gentzbittel JM, Viguier B (2010) Crdwghaviour of as received, aged
and cold worked INCONEL 617 at 850° C and 950° Bludl Mater 399:266-
274

Cook R (1984) Creep properties of Inconel-617 maaid helium at 800 to 1000° C.
Nucl Technol 66:283-288

73



Ehlers R, Riedel H (1981) A finite element analysis creep deformation in a
specimen containing a macroscopic crack. In: Frandd (ed) Fifth
International Conference on Fracture, London, 1#&Yfgamon Press, pp 691-
698

Floreen S, Kane R (1979) An investigation of theckr fatigue environment
interaction in a Ni base superalloy. Fatigue FEatg Mater Struct 2:401-412

Fu L (1980) Creep crack growth in technical allay®levated temperature--a review.
Eng Fract Mech 13:307-330

Grover P, Saxena A (1999) Modelling the effect ifep-fatigue interaction on crack
growth. Fatigue Fract Eng Mater Struct 22:111-122

Gupta C, Chakravartty J, Reddy G, Banerjee S (2Q0%axial cyclic deformation
behaviour of SA 333 Gr 6 piping steel at room terapee. Int J Press Vessels
Pip 82:459-469

Hall D, McDowell D, Saxena A (1998) Crack tip pamters for creep-brittle crack
growth. Fatigue Fract Eng Mater Struct 21:387-401

Hui C, Riedel H (1981) The asymptotic stress angirsfield near the tip of a growing
crack under creep conditions. Int J Fract 17:409-42

Kang G, Gao Q, Cai L, Sun Y (2002) Experimentaldgtwon uniaxial and
nonproportionally multiaxial ratcheting of SS304istess steel at room and
high temperatures. Nucl Eng Des 216:13-26

Kang G, Kan Q, Zhang J, Sun Y (2006) Time-dependatichetting experiments of
SS304 stainless steel. Int J Plast 22:858-894

Krishnan VR, Hui CY, Long R (2008) Finite strainack tip fields in soft
incompressible elastic solids. Langmuir 24:14243531

Kurata Y, Nakajima H (1995) Temperature dependeicereep properties of cold-
worked Hastelloy XR. J Nucl Sci Technol 32:539-546

Landes J, Begley J (1976) A fracture mechanics campr to creep crack growth.
Mechanics of crack growth:128-148

McDowell D (1995) Stress state dependence of cyalichetting behavior of two ralil
steels. Int J Plast 11:397-421

Ohno N (1990) Recent topics in constitutive modgliof cyclic plasticity and
viscoplasticity. Appl Mech Rev 43:283-295

74



Ohno N, Wang JD (1993) Kinematic hardening rulethveritical state of dynamic
recovery, part |: formulation and basic featuresriichetting behavior. Int J
Plast 9:375-390

Riedel H (1981) Creep deformation at crack tipslastic-viscoplastic solids. J Mech
Phys Solids 29:35-49

Riedel H (1983) Crack-tip stress fields and cradlowgh under creep-fatigue
conditions. In: Shih CF, Gudas JP (eds) Secondnat®nal Symposium on
Elastic-Plastic Fracture Mechanics, 1983. Ameri&artiety for Testing and
Materials, pp 1505-1520

Riedel H, Rice JR (1980) Tensile cracks in creegiolgds. In: Paris PC (ed) Fracture
mechanics: twelfth conference, Philadelphia, 198@nerican Society for
Testing and Materials, pp 112-130

Sadananda K, Shahinian P (1981) Review of theudraghechanics approach to creep
crack growth in structural alloys. Eng Fract Me&h3R7-342

Saxena A (1986) Creep crack growth under non-ststatg conditions. ASTM Spec
Tech Publ:185-201

Saxena A, Bassani JL (1984) Time-dependent fatigwek growth behavior at
elevated temperature. In: Wells JM, Landes JD (Edsgture: Interactions of
Microstructure Mechanisms and Mechanics, 1984. Wietallurgical Society
of AIME, pp 357-383

Schapery RA (1986) Time-dependent fracture: contimaspects of crack growth. In:
Bever M (ed) Encyclopedia of materials science @amgjineering, 1986.
Pergamon Press, pp 5043-5053

Schneider K, Hartnagel W, lischner B, Schepp P 4)%eep behavior of materials
for high-temperature reactor application. Nucl Treadl66:289-295

Schubert F, te Heesen E, Bruch U, Cook R, Dieltithis P, Jakobeit W, Penkalla H,
Ullrich G (1984) Creep rupture behavior of candidataterials for nuclear
process heat applications. Nucl Technol 66:227-240

Stamm H, Walz G (1993) Analytical investigation avack tip fields in viscoplastic
materials. Int J Fract 64:135-155

Tada H, Paris PC, Irwin GR (2000) The stress aisabfscracks handbook. Third edn.
ASME, New York

Tong J, Dalby S, Byrne J, Henderson M, Hardy M @Q0reep, fatigue and oxidation
in crack growth in advanced nickel base superallnts) Fatigue 23:897-902

75



Walz G, Stamm H (1993) Numerical investigation odak tip fields in viscoplastic
materials. Int J Fract 64:157-178

Wang W, Yuan F, Takao Y (2000) A unified loadingrgraeter for creep-crack
growth. Proceedings of the Royal Society of Lon&amies A: Mathematical,
Physical and Engineering Sciences 456:163-183

Yaguchi M, Takahashi Y (2005a) Ratchetting of vidastic material with cyclic
softening, part 1: experiments on modified 9Cr-18fkel. Int J Plast 21:43-65

Yaguchi M, Takahashi Y (2005b) Ratchetting of vigestic material with cyclic
softening, part 2: application of constitutive mizdént J Plast 21:835-860

Yoon KB, Saxena A, McDowell DL (1992) Influence afack-tip cyclic plasticity on
creep-fatigue crack growth. In: Ernst HA, SaxenaMcDowell DL (eds)
Fracture Mechanics: Twenty-Second Symposium, Pélidaa, 1992.
American Society for Testing and Materials, pp 392-

Yoshida F (1990) Uniaxial and biaxial creep-rataigebehavior of SUS304 stainless
steel at room temperature. Int J Press VesseldPR07-223

Zhan ZL, Tong J (2007a) A study of cyclic plasycand viscoplasticity in a new
nickel-based superalloy using unified constitutagiations. Part I: Evaluation
and determination of material parameters. Mech M2@e54-72

Zhan ZL, Tong J (2007b) A study of cyclic plastycand viscoplasticity in a new
nickel-based superalloy using unified constitutieguations. Part Il
Simulation of cyclic stress relaxation. Mech M&a26r73-80

Zhao L, Tong J (2008) A viscoplastic study of craipkdeformation and crack growth
in a nickel-based superalloy at elevated tempezatdrMech Phys Solids
56:3363-3378

76



CHAPTER 4

PLANAR DEFORMATION OF RANDOM SIZED POWER LAW CREERG
GRAINS WITH SLIDING AND CAVITATING GRAIN BOUNDARIES

PART I: CAVITY NUCLEATION AND GROWTH

4.1 Introduction

Designing for creep rupture is essential for eledaemperature components such
as gas turbines, steam boilers and heat exchangersexample, many structural
components in nuclear power plants have a designofi 60 years. However, it is
difficult to conduct creep experiments for suchoad period of time. The current
approach is to extrapolate short-term, high steesep rupture data to long-term, low
stress operating conditions using empirically baseé-temperature parameters such
as the Larson-Miller parameter (Larson and Millé62). This approach may lead to
non-conservative design limits because the faimeehanisms in short term and long
term tests can be different. A discussion of thdficdities associated with
extrapolation of creep rupture data can be founiisimby et al (1979).

A more consistent way of extrapolating creapture data is to supplement
short term test information with fracture mechanisraps (Wray 1969). Briefly, a
fracture mechanism map shows fields of dominanceparticular creep rupture
mechanisms in stress-temperature (or rupture t@amgérature) space. Maps for over
40 materials covering pure metals and commerciaysican be found in Gandhi and
Ashby (1979) and Fields et al (1980). For examplee dominating fracture
mechanism at low stresses and elevated temperdturisritic and austenistic steels
is intergranular cavitation. In this regime, gr&ioundary cavities nucleate on grain

boundaries that are under normal tension. Extensgearch has shown that grain
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boundary cavities can grow by grain boundary sfi(fivans 1971), stress-assisted
diffusion of atoms from the cavity surface to thaig boundaries (Hull and Rimmer
1959; Chuang et al. 1979b; Needleman and Rice 198@d) by creep deformation of
the surrounding grains (Hancock 1976; Budianskyl.et982). An excellent review of
these micromechanical damage mechanisms can be fauRiedel's book on high
temperature fracture (Riedel 1987).

Computational modeling based on micro-mechanicsreép damage processes
such as those mentioned above can be used toaddldlie limitations of extrapolation
and has been carried out by many investigators thepast thirty years. Numerical
and approximate analytical solutions of a singhatgeor an array of equally spaced
cavities along an isolated grain boundary surrodrule power-law creeping or rigid
grains have been developed by various investig&bagsantify the effect of cavitation
on creep deformation. These models form the basisfcontinuum description of
grain boundary separation where different oriemgpedin boundaries interact with each
other. These continuum grain boundary separatiotiefsdhave been used extensively
to study creep deformation of two dimensional ppolgtalline microstructures
consisting a periodic array of power-law creepiegdgonal grains (Riedel 1984; Van
der Giessen and Tvergaard 1991; Van der Giessemanrdaard 1994; Onck and Van
der Giessen 1997; Onck and Van der Giessen 1988)eTare also numerical studies
where grain deformation is modeled by rate-dependeystal plasticity based
constitutive models (Bower and Wininger 2004). Thjgroach is computationally
expensive so that only a limited number of graias lbe simulated. More importantly,
many of the intergranular cavitation models areebagn the assumption that grain
deformation can be modeled by elastic-power-lavegré&or these reasons, we model

the grains as an elastic power-law creeping materthis chapter.
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So far, practically all numerical studies focus aniform size grains with
hexagonal shapes. In this chapter we use a repatise volume element (RVE)
where grains are non-uniform in size and randonsiriduted. The RVE is generated
using Voronoi tessellation. It should be noted thatti-grain random structures have
been used to study crack initiation and propagatidong grain boundaries in
Aluminum alloys (lesulauro et al. 2002). Since htgmperature applications are not
the focus of their work, grain boundary cavitatad sliding are not incorporated into
their cohesive zone model. In our model, each gisitreated as a continuum and
deforms by elastic-power-law creep. Grain boundsliging and grain boundary
separation due to cavity nucleation and growth saneulated using the equations
summarized by Onck and Van der Giessen (1998).if8iady, these equations are
implemented into a cohesive zone model (CZM) whadlbws us to compute grain
boundary separation and slip as a function of legdhistory. Calculations are carried
out for uniaxial creep and relaxation tests usiagqalic boundary conditions. It has
been shown by various researchers (Terada et@0; X@anit et al. 2003; Larsson et al.
2011) that periodic boundary condition increases dbnvergence rate of numerical
results with increasing RVE size. Several advargaje¢he approach used in our work
are: (1) a more realistic microstructure is modelming RVE where grains are
randomly distributed, (2) random creep behavioguEfins (e.g. different grains can
have different creep exponents and coefficients) loa incorporated into the FEM
code , (3) complex grain boundary damage mechawisich is described by CZM is
integrated into a commercial finite element sofeve@kBAQUS) where parallelization
computation can be carried out if desired.

The outline of this chapter is as follows. lecton 4.2 we summarize the
equations governing grain deformation and a CZMclhincorporates damage due to

cavitation and grain boundary sliding. The norneian of all the governing
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equations is carried out in section 4.3. To gasight, we analyze the CZM in section
4.4 using a simple loading history and show thatghain boundary cavitation model
predicts interfacial failure. Details of our nuneaiiimplementation using ABAQUS is

given in section 4.5. Finite element results fdaxation test and uniaxial tension test
are presented in section 4.6 and 4.7 respectif#@hally, summary and discussion are

given in section 4.8.
4.2 Constitutive Model

We assume that grains deform by elastic-power-l@ggaccording to

éij = gIT +£’ijc, (41)
e 1tV . v
ij _?a-ij _Eakkdij’ (4-2)
e=3pon S, 4.3)
ij 2 e o

e

where a dot denotes time derivativg, is the total strain rateg? is the elastic strain
rate , £is the creep strain rate, is the stress tensdg is the Young’s modulus and
v is the Poisson’s raticg; is the stress deviatoric tensar, js the von-Mises stresB,
andn are the power law creep coefficient and exponespectively.

Grain boundary sliding is modeled based on a thpaoposed by Raj and Ashby
(1971). In this model, the relative grain boundashding rate u, is directly
proportional to shear stregsalong the grain boundary, i.e.,

0=~ (4.4)

o,
wherer, is the grain boundary viscosity.
Cavity nucleation and growth along a grain boundtaget leads to normal

separation of the two adjacent grains. This sejpar& denoted by and the rate of
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separationd is estimated using a continuum model where disgretiodically spaced
voids in an infinite power law creeping materiak aubjected to a far field multi-axial
stress state. Details can be found in Onck and d&anGiessen and the references
within (Onck and Van der Giessen 199Bjere we briefly summarize their results. For a
grain boundary facet with periodically spaced dasitas shown in Figure 4.8, is

approximated in a averaged sensedbyV / 7ib> whereV is the cavity volume given by

_ AT s .t 1 1
V== ah(¢),hw) (5 o 2C°3ﬂ)si_rw’ (4.5)

wherea is the cavity radius,tRis the spacing between two adjacent cavitBgsis
the dihedral angle of the cavity. The grain bougdaparation raté is

5oV _ b

=—_ -2 4.6
o’ 7’ b (4.0)

whereV is the cavity volume growth rate. The second témn{4.6) depends on
whether new cavities can nucleate. According to KDaod Van der Giessen,

nucleation occurs if a dimensionless param8&xceeds its threshold valSg , i.e.,

2
S= (ij £>s =N (4.7)
2, F.
Note thatS is a combination of the normal tractieny at a continuum point along a
grain boundary and the effective creep stegirat distances far from the cavity nuclei.
2,Is a stress normalization factdx, is the initial cavity density (number of cavity
per unit undeformed area), amit] is a material parameter with the unit of cavity
density. A higher value oF, indicates more active cavity nucleation.

If the nucleation condition (4.7) is satisfied, ththe second term in (4.6) is given

by
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b 2N
whereN is the cavity density and its raf§ is given by

2
N=F, (ij £ (4.9)
5

0

The cavity volume growth rate in (4.6) is computed using
V=V, +V, (4.10)
whereV, is the volume growth rate due to coupling of gragundary diffusion and

power law creep and it is given by(Needleman aroe RB80; Chen and Argon 1981):

v, =4W[%},q(f )=2In(/f )- (3-f )@ f ) (4.11)
with
3 ay a \ _ c\U3
i —maxli(gj '(a+1.5Lj } ,L_(Dae /se) (4.12)

whereD is the grain boundary diffusivityy, is the sintering stress which is usually
small and it is neglected in our analysisjs the diffusive length. For large, V, is
the cavity diffusive growth rate obtained in thgidi grain limit. For smallL , cavity
growth is controlled by power law creep of the surding material (Dyson 1976).

The second teri, in (4.10) is based on the results of a spherioa under
triaxial stressing (Budiansky et al. 1982), lateodified by Sham and Needleman
(1983) and it is given by

2na3£§h(w)[i%+(n_1)(n20'4319)} | Tl o1
: 2n| o, n o,
Vv, = (4.13)
2na3£§h(w){i+ (n—l)(n20.4319)}% | P
2n n g, g,
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where g, is mean stress. Bottr,and o, are local quantities on the scale of grain
sizes, but remote quantities on the scale of @vitin our simulationg,, £°, £°,
o, are quantities evaluated as the average of thensighboring grains located at

either side of a grain boundary facet.
4.3 Normalization

The following normalization is carried out to reduthe number of material and

geometrical parameters in our analysis.

5:§,F:%,N:Nﬁ,ﬁn :%,5:3,

b0 \; 5| LI ; (414)
6:_1\7:_15 :_|E:_1US:$

bO VO 50 a'O Rl

wheret,_is the characteristic time given By BX; ,2R is the typical width of a grain
boundary facet which is approximately @@ for our choice of RVEN, is the initial
cavity density given byl0/7R? , a,, 2b,,V,,are the initial cavity radius, spacing and
volume respectivelyd, is the initial separation of the grain boundarye do pre-
existing voids given by, / 7b?.

In the following, all normalized variables are teppby a bar. The derivative with
respect to normalized time is denoted by a prirstead of a dot.

The elastic-power-law creep equations for grairodeétion are

£ =t eC (4.15)
e 14V _, ¥V _
e =220, -2, (4.16)
ee=2ar L, (4.17)

The governing equation for grain boundary slidisg i
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where

The normalized grain boundary separation is fonoket

= (V' b
J=| -2
(bz beJ

The rate of change for cavity spacihg is

I

Z|

ol ol

1
2

Z|

where N' is the normalized rate of change of cavity deraitg is given by

—=2C
N' - o-nge
Shr
The cavity nucleation condition is
=2 .C
o-nge 2 Sthr

The normalized cavity volume growth rate is

\71 =\7lr+

N

T

n(H)-2@-Ha- 1)

_3Dt.Z,
agh(w)

s { () |

2
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(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)



1/3
E=(h(‘/’—3))'25~;‘”j L, =a,lb, (4.28)

i§£’cﬁ3 3|0, N (n—-1)(n+ 0.4319) ’ [ 51
- 2° | 2njo, n? g,
V, = (4.29)
§£§53{£+ (n—1)(n+; 0.43191 @’ J_m <1
2 2n n o, |0,
Finally, the radius of a cavity grows according to
V’
a=-— 4.30
33’ (4-30)
To summarize, there are seven dimensionless pagasniatour problem
NEW.S, =t g =2 p =R 5 - 3Dl (4.31)
I:n bO ZOtc aoh(l//)

This normalization allows us to study the effect ddfferent micromechanics
parameters on creep behavior. Specificallyis a ratio of the creep strain due to
power law creep over the strain caused by graimtyary sliding.A, — O corresponds
to free sliding at the grain boundary, wherélas- « means no grain boundary sliding
is allowed. A, is the ratio of cavity growth rate due to diffusiover that due to power
law creep. A smalll, indicates that cavity growth is controlled by povav creep
and a largel, indicates that cavity growth is controlled by dgfon. «, is the square
root of the initial area fraction occupied by voisd can be considered as an initial

damage parameter. Finallg,, (see(4.7)) controls the ease of cavity nucleation.
4.4 Grain Boundary Cavitation Model-Cohesive Zone Mode

The grain boundary cavitation model can be intégoreas a rate dependent
cohesive zone model. Note that in typical cohegioee models, the separation is

completely determined by the current state of iwactin this case, the separation
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depends on thhistory of traction. In addition, it involves other stress componergs
void growth is sensitive to hydrostatic tensione(der example(4.13)). In light of
these complications, we solve a simple problermain msight into the behavior of the
CZM used in this work. For example, it is reasorabl ask whether the stress will go
to zero as the interface separation becomes vegg.l&Specifically, we subject an
infinite grain boundary separated by two infinitastic-power-law creeping grains to
a constant separation rate that is,0 =wvt+9,. After normalization, the imposed
separation is

F=AT+1, A=, /6, (4.32)

To simplify the mathematics, we assume the stiads s uniaxial,

0,=0,=30,=0 (4.33)

where g is an unknown function of time. We will show tltae normal traction along
such a boundary goes to zero when it fails.
According to (4.20), the grain boundary separatiate is related to the cavity

radius and spacing by

o E X (4.34)
o a b
Integrating (4.34) , we get
- 37
o :? (4.35)

Equation (4.35) shows that the separai@biis a function only off andb which can
be viewed astate variables. The evolution equations of these two state véethre
derived as follows.

The cavity radius growth rat@ is found by substituting (4.25)-(4.29) into (4.30)
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— =~N
— A0 La.ao

a =
3a%q(f) 3

3 (-1)p+0.4319

_ (e § V- _1
q(f)=[2In@/f)-3-f)2-f), a, 2[2n =

(4.36)

T (4.37)

Integrating (4.21), the cavity spacihgs found to relate to the cavity density by

b = N

The cavity densityN can be determined by integrating (4.22),

Shr

whereH is the Heavside function defined by

= T\ L
N=1+ A7) j g (" )dt’
&

1 x=0

H(X)z{o x<0

andt, is the normalized nucleation time at which theleation condition
fy
o’ (tN ) j g'(t)dt' =S,
0

is satisfied. Combining (4.38) and (4.39),

-1/2

= T\ L
b= 1+ =) [ vz iy
&

hr

Differentiating (4.42) on both sides with respecttgives:

5= - A b)) pagnea gy
2Shr

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

Equations (4.36) and (4.43) determine the evolutibthe state variabled andb .

Define a damage parameterwhich is equal to the square root of the areaifsaaf

cavities by
w=alb=walb
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According to (4.36) and (4.43R increases with time whil® decreases with
time. This, together with (4.44) implies thatis a monotonic increasing function of
time with rangey, < w<1. Physically, the conditiomw=1means neighboring cavities
link up to form micro-cracks and the grain boundarfully damage atv=1.0ur goal
is to study the behavior af and show that it goes to zero @s- 1. To demonstrate

this, we start by rewriting (4.36) as
3q(f)a*a =10+ q(f ya’a" (4.45)

In the following we will show that the two termsntainingq(f) in (4.45) go to zero

as w - 1, which would lead to zero normal traction along ¢fnain boundary. Recall

R R el Lo < I

a+l1.5L

Sincel is always positivea/(a+1.5[)< 1at all times, whereas our argument
above shows thab increase monotonically to 1. This means that exadhtf — 1 at
w=1. Therefore, we can write

f=1l-¢ (4.47)
where € is a small positive number. Expandingf)=[2In(1/f)- (3~ f )1~ f )
aboute =0" leads to

q(f) :—2In(1—£)—(2+£)£:—2[—5—%52—%53— }— (Z+6% F é% (4.48)

Sincef increases to 1 monotonically, (4.48) indicates tj&t) is a monotonic
decreasing function of and it vanishes a@—f)sas f - 1. Therefore, as long as
a' is bounded, (4.45) implies &s— 1°

-0 (4.49)
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To check ifa’ is bounded aé - 1", we differentiate (4.35) with respect to time

and write it in terms of,
. v+2bWs
a =

% (4.50)

Since the denominator of (4.50) is strictly posti@ is bounded. Thus, we have
shown that the stress vanishes cas- 1. Note that at w=1, the interfacial

displacement reaches it maximum value

_ -1/2
x = ~ H(t -1, e —N+2 eI\
0=8,,=b,,= 1+uja 2 (t" )t (4.51)
hr N
wheret__ is the time wherd =9, ..
Next, we show that the normal traction is a monigtdiecreasing function of time.

To show this, we first find the governing equatfonthe evolution ofo . Substituting

(4.42) into (4.35), we find

= T\ T
AT+1=5=°| 1+ 170 [om2apr (4.52)
i

hr

Differentiate (4.52) with respect to time and réwit in terms ofa’, we find

7= 3 —a'g"tH(T -T)/S,,

4.53
At +3 (4:53)
Equating (4.53) and (4.50), after some algebragltain
= o —a—mo _ (AT +1) A0
(AT +Da,d"+a%G"?H [T -1,) /Sy, + =1, (4.54)

a‘q(f)
In the following, we study the evolution of theests during two stages of grain
boundary cavitation.

Stage 1: beforenucleation 0<t <t
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In this period, H(t -t,)=0=0b'=0,b=1. As a result, (4.52),(4.53),(4.54)

simplify to
a=At+1 (4.55)
7=k (4.56)
3T +3
AZ"+Ba=C, (4.57)
where
A =(At+1a,,B,= 4 (4.58)

q(f)’

In (4.58), A, increases with time. Als®&pincreases with time sinagf) decreases
with time according to (4.48). Sin&® is fixed, o will decrease monotonically from
its initial valueg,, =g (t =0)to 7 (T =T).

The initial stressz,, can be solved directly by neglectimg(t =0) = a,in(4.58).
This approximation is justified because a simplécudation based on material

parameters of ferritic and austenistic steels shbais

A

B,(t=0)= o ]30) >>At=0)=a, (4.59)
Hence,g,, can be approximated by
&
Ty = A—g q(fo) = 352 s o d(fo)h@) (4.60)

The nucleation timé,, is determined by (4.41). Sin@ decreases monotonically

from its initial value (4.60), bower bound for t is

n+2

T, > :(%ij (4.61)
va,q( fo)h(@)

From (4.61), one can see that if the separatiawret very small, the time for cavity

nucleation can be very long. On the other handhef separation rate is fast or the

91



grain boundary diffusivity is high, cavities cancieate in a very short time. Whén
reachest, , we have

1/3

a, = (At +1) (4.62)

b=1,N=1 (4.63)

The stress at nucleation, i.&(t =1;) can be solved from (4.57). Af,, the
normalized grain boundary openingds = A, +1.

Sage 2: post nucleation t >t

After 1, cavity nucleation occurs. According to (4.53) ttavity radius growth
rate is given by

2= -a‘ag™?1s,, (4.64)
34t +3

Comparing (4.64) with (4.56), we see that the ganatius growth rate iseduced
after nucleation. What happens physically is thader constant separate rate, stress
relaxation occurs faster after nucleation whictd&eto a slower cavity growth rate.

This, together with (4.55) implies that
<At +1 att >1 (4.65)
According to (4.43), the rate of change of cavjggang after nucleation is
5 __bT™(T)

b= o5 (4.66)

The normal traction after cavity nucleation carde&ermined using (4.54),
AT"+Ba+Dag"* =C, (4.67)

where A,,C, are defined earlier in (4.58), and
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(AT D)4, 3

_ _a 4.68
aq(f) " S, (429

We note the following when comparing (4.67) withb(@):

(1) (4.65) implies thaB, >B,=A,/q(f);

(2) There is an additional terid, >0 in (4.67);

(3) A,C, are the same.

This means thav (T <t,)>o(t >1,). In addition, the traction after nucleation
decreases monotonically sinég, B,, D, increases with time an@, is a constant.

To summarize, there are two possible scenarios:

Case 1. According to (4.61), for sufficiently lomormal separation velocity
(reflected inA,) or small grain boundary diffusivity (reflected #y), the nucleation
time is very long. For this case, only the growtipe-existing cavities contributes to
separation. The normal traction decays monotonitalizero at a finite time <t .
For this case, the time fap to reach 1 is typically very long. An example bistcase

is shown in Figure 4.2. The five dimensionless peat@rs used in Figure 4.2 are

{w=42x10° 155, = 7.465 10, = 167 1DA,= 2.087 *0,= 9.837% (4.69)

Case 2: For higher values wof, preexisting cavities still grow according to5@)
at0<t <ft,. After t =1, cavities grows more slowly according to (4.64) arew
cavities are nucleated. Alsaj follows different evolution paths before and after
nucleation, in particular the cun&(t) has a jump at =t,. However, the normal
traction always decreases monotonically and it sfees whenw reaches 1. An
example of this case is shown in Figure 4.3. The fdimensionless parameters used

in the analysis are

{w=42x10° 155, = 7.465 104, = 1.6¢7 101,= 2.087 *10,= x 1% (4.70)
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Figure 4.2 Grain boundary cavitation without natien. (a) Normal traction versus
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Figure 4.3 Grain boundary cavitation with nucleat{a) Normal traction versus time

(b) Damage parameter versus time
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In summary, we have carried out a detailed analytnd numerical calculation
for the special case of an infinite grain boundseparated at a constant rate and

showed that stress decays to zero at a criticalragpn.
4.5 Finite Element Model

A typical two-dimensional (2D) microstructure arek tfinite element model used
in this work are shown in Figure 4.4(a) and Figu#(b) respectively. All calculations
are performed under plane strain deformation. TBe ndicrostructure has 1000
random sized grains and is generated and meshed asnodified MATLAB script
from Cornell Fracture Group (CFG). Grain boundatgneents are generated by
connecting the two grain elements on either sida dbundary. The finite element
model consists of 19752 quadratic triangular gedéments and 5366 grain boundary
elements. Grains are modeled as elastic-power teeptng material using ABAQUS
user subroutine UMAT (ABAQUS 2008). Grain boundasgparation and grain
boundary sliding are modeled by cohesive zone eiggneased on equations (4.18)-
(4.29). We have written an ABAQUS user subroutinELUto implement these
cohesive zone elements.

In this paper,F, is chosen in such a way that nucleation occumh@dt of the
grain boundaries at the end of loading timeis chosen based on the analytical results
of Raj (1971) for steady state sliding of a gratuibdary with sinusoidal shape under

shear stress. Using Table 4.1, we found

{w=42x10° 155, = 616 ), = 1.67,= 25¥ X (4.71)

We carried out two type of simulations in this wor&laxation test and uniaxial
creep test (Figure 4.5(a),(b)). For the relaxatest, periodic displacement boundary

condition (PBC) was used since the effective priogpeof a RVE are more accurately
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) (b)

Figure 4.4 (a) 2D microstructures with 1000 randsized grains. (b) 2D finite

element model
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Table 4.1 Material parameters for power law cregegin boundary sliding, grain

boundary cavity nucleation and growth

Parameters Values
Reference stresk, 300 MPe
Creep Exponent 5

Elastic power law creep coefficieild

4.115¢< 10®° MP3 3§

Elastic ModulusiE

189 GP«

Poisson’s ratioV

0.285

Grain boundary diffusivity parametdd

7.238< 10 MP&0s0 mn

Grain boundary viscosity, 1x10* MPal§Imrit
Initial cavity radiusa, 3.35x10° mnr
Initial half cavity spacinda, 1.6x10° mn
Grain boundary facet widtBR 0.1 mm
Initial cavity densityN, 40/ mR? mnv
Nucleation activityF, 6x10°N, mni
Characteristic time, 10's
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Figure 4.5 Boundary condition (a) Relaxatiort {b$ Uniaxial tension test
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predicted compared to the case when essentialterahdoundary conditions are used

in homogenization analyses (Ostoja-Starzewski 2006 PBC has the form of

U - =g (XJ+ - XJ_) (4.72)
where +, — indicates two opposite sides of the RVE. In Figdi®(a), sidel and side
3, side 2 and side 4 are considered two opposiesst;, x; represents the nodal
coordinates at side + and - respectively, u” are the corresponding nodal
displacement vectorssi? is a constant strain tensor. To implement the opéri
boundary condition in Eq (4.72). In ABAQUS, a dummgde is used where its
degrees of freedom represent different componeﬁt&?o In that way, the nodal
displacements along the opposite sides of RVE aarcdupled to the degrees of
freedom of the dummy node using multiple consteagguations. The very left bottom
corner node of the RVE is constrained along boghhibrizontal and vertical directions
to avoid rigid body motion. In our simulation, reédion test is carried out by applying
£9,=0.001,¢&’, = -ved, =-2.85x 10°,

The boundary condition for the uniaxial creep testhown in Figure 4.5(b), side 2
of the RVE is constrained in the vertical directi@oth side 1 and side 3 of the RVE
are traction free, a normal surface tractq 0.1 is applied on side 4.

The loading form for the relaxation test and uradxension test is shown in
Figure 4.6. The characteristic time in our simwlatiist, =10"s= 2778 hour.We

apply a total loading timé_,, =10 which corresponds to a time of 27.78 hours.
4.6 Results and Analysis of Relaxation Test

We present simulation results for relaxation teghis section. Recall the coupling
between grain boundary sliding, grain boundaryudifin and power law creep are

controlled by the dimensionless parameteand A, respectively, therefore, we can
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study the effect of these mechanisms on the crekavior by varying4, and A, while
fixing the rest of the parameters, i.e = 4.2x10° ,1/S,, = 6 16. The parameters
A, and A, used in our simulations are summarized in Talfe . all three cases, the
values ofA, are chosen so that cavity growth is controlledmyaby diffusion rather
than by power law creep. Case 3 has the slowestyggrowth rate among the three
cases.

Stress ¢7,,) relaxation curves for all three cases are preseit Figure 4.7. We
also plot the stress relaxation curve where grdefsrm by elastic power law creep
only and grain boundary sliding and cavitation ao¢ allowed. As shown in Figure
4.7, these damage mechanisms reduce the average atrd caused much faster stress
relaxation. The average normal stress and hencgetioemation inside a typical grain
goes down as most of the imposed strain is accorateddy the opening and sliding
of the grains. Contour plots of vertical displacemields (u,) of the RVE at time
T =107 are shown in Figure 4.8 for these cases. The ahafiion is magnified by 200
times and the range of the contour plot is [2.46x 10° ,% 10°]. The following
features of the deformed RVE are observed:

(1) The grain boundary facets perpendicular toic@rtdisplacement direction
have more pronounced separations for all threescds$es is due to the higher normal
stress on the grain boundary facets perpendicualaettical displacement direction
compared to other inclined grain boundaries.

(2) Case 2 shows much more pronounced cavity graleting horizontal boundary
facets than case 1 and case 3. This result isceegdor case 3 since diffusion is
slower in this case. However, it seems countetinithat case 1 has less pronounced
cavity growth than case 2, which indicates for $aene grain boundary diffusivity,
grain boundary cavities grow faster in a RVE wilidieg resistant grain boundaries.

The explanations for this result are:
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Table 4.2 Varying dimensionless parameters foggrepture simulations

Case A A
Case 1 1.67 2.517x 106
Case 2 16.7 2517 10
Case 3 16.7 2.517x 10

103



0.7

0.6

0.5

0.4

Y

0.3

0.2

0.1

Figure 4.7 Normalized stregs,, versus time for relaxation test. The solid liadar

a pure elastic power law creeping material. Dasésliare for the three cases listed in

Table 4.2.

104

s case 3

power law creep

.
-~ .
e R T g L, TT T — e

-

0.002 0.004 0.006

normalized time

0.008

0.01



v, U2
+1.009¢-03
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(c) Case.

Figure 4.8 Vertical displacement,( contour plot for the three cases listed in Table

4.2.
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(1) The prescribed displacement boundary conditiothe vertical direction and
the randomness of the grain geometry tend to fgvain boundary separation on the
horizontal facets.

(2) The boundary conditios’, <0 tends to force inclined grain boundary facets to
slide. Assuming that approximately the same amanintsliding is needed to
accommodate the applied strain,higher shear stress will be induced along these
inclined grain boundaries in case 2. According tedel and others (Riedel 1987; Davies and
Dutton 1966; Davies and Williams 1969), the sheasess along the inclined boundaries can
enhance the cavity growth rate along the horizofateéts under transverse compression and
the cavity growth rate is found to be proportiot@l . This argument suggested that higher
T along inclined boundaries in case 2 leads to masngboundary separation along
horizontal facets. Finally, we note that similasults were obtained by Du et al (2010) in their
simulations with constant strain rate applied.

For a RVE with multiple grain boundaries, it candf®wn that the overall strain

of the RVE, &7 , is given by (see details in Appendix 4.1)

RVE
&

=g +c (4.73)

where g, the average strain within the continuous bulk grahi‘fb is the average
strain due to grain boundary separation and sljding

£ ELZI([Ui]n. +[u;]n)ds (4.74)

J 2A o & J J

where k is the number of grain boundaries with displacemdiscontinuity,
[ui] =u’ -u ,i=12is the displacement jump across the grain bounEBérynj‘,n;
are the unit normal vectors on each side of a draundary (see Figure 4.9) aAds
the area of the 2D representative volume elemeqtiaion (4.74) states that the

overall strain of RVE has two contributions: grdeformation and grain boundary
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Figure 4.9 Definition of positive orientation die boundary of a triangular grain
(counterclockwise), the orientation of the unitmaf vector to a boundary (only one

indicated in figure) is defined by the right hader
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sliding and separation. Thus, for a given macroscepain &°

i » (4.74) predicts that
the averages strain within the graijs can be significantly reduced by the sliding
and separation of grain boundaries. Our finite elenresults verified that the grain
deformation contribution to the overa, is very small, less thab0™ (about1% of
£7,) for all three cases. This indicates that the megmtribution to the strain comes
from grain boundary displacement discontinuity daecavity nucleation and grain

boundary sliding.
4.7 Results and Analysis of Uniaxial Creep Test

In this section, uniaxial creep test results ars@nted for the three cases in Table
4.2. A normalized applied tensile stregs=0.1 along the loading axis is used for all
cases (see Figure 4.5(b)). Finite element reshlisvghat case 1 has the maximum
vertical displacementy,), indicating that grain boundary sliding and catrdn play a
major role in the overall deformation of the RVEhis can be quantified by plotting
the inelastic straing}, ) versus time as shown in Figure 4.10. As a coispay we
also plot the inelastic strain of a pure elastiovgolaw creeping material in the
absence of grain boundary sliding and cavitatitrhas been known for a long time
that grain boundary sliding enhances creep defeomait low stresses. For example,
Ghahremani (1980) simulated the tensile responsea afegular array of two
dimensional hexagonal power-law creeping grain$ sitding grain boundaries and

showed that the overall strain rate, in uniaxiahng! strain deformation, is given by

£=B(fo)" (4.75)
wheref is a stress-enhancement factor. In genérala function of the applied stress
oand power law creep exponemt For sufficiently low stresses (i.ed, <lin our

notation) and freely sliding grains, Gharemani @2&howed thaf is approximately
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cases listed in Table 4.2.
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independent oty with values ranging from 1.16 to 1.19 fo=1 to 4 . A summary of
the reported values df based on different models can be found in Bee®8J)s
paper and the references within. Gharemani’s aisaly®l not account for cavity
growth. Cavity growth by diffusion was includedthre analysis of Anderson and Rice
(1985), who numerically studied the coupling of ibagrowth with free sliding grain
boundaries using a 3D periodic polycrystalline modbere the grains deform by
power law creep and all the grain boundary faceented approximately normal to
the applied tension load are uniformly cavitated.ndted out by Riedel (1987), cavity
growth enhances the creep rate by an additionsdrfat 3.34x3.1. It is difficult to
compare our results with Anderson and Rice’s sithey used a 3D model with
regular size grains and assumes that grain bouncarigation occurs at the grain
boundary facets with certain orientation. In ousesave use a 2D random grain model
and the presence and growth of cavities on a draimdary facet depends on the
nucleation condition. The overall enhancement factacase 1, 2 and 3 are found to
be 213,126,2. respectively. Note that this enhancement factgpedds on the
parametersy, S;,,4,,4, as well as the applied stress.

Figure 4.10 shows that the inelastic strain inasdmearly with time, however,
the slopes of the inelastic strain versus timedéferent, indicating that creep strain
rate is enhanced by damage due to cavitation adicgl Figure 4.10 does not show
tertiary creep behavior due to the relatively shione used in our calculation which
corresponds to an actual time of 28 hours. Teraegp like behavior is noticeable if
our calculations are carried out using high grasurgary diffusivity and low grain
boundary viscosity. Plots of inelastic strain wsreiormalized time for two cases are
shown in Figure 4.11. As shown in this figure, theep strain starts to increase very

rapidly soon after loading and tertiary creep liehavior takes over at=10".
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It is interesting to plot the separatidn versus tractiorg, of a typical grain boundary
in our simulations. These results for the grainrdstany element 24531 are shown in
Figure 4.12 for all three cases. The peak sta&§¥occurs when the cavity nucleation

is satisfied g2

£S =S, ). Finite element results show the effective creeain (£°) in
neighboring grain elements of grain boundary eldr2db31 is the highest in case 2,
lowest in case 3. This leads to the low&ét“in case 2. For the same simulation time,
the work done by the normal traction is highestcase 1 and lowest in case 3,
although the peak normal traction for case 1 aate3juite similar. Figure 4.12 shows
more grain boundary separation occurs in caserlithease 2. This is to be expected,
since sliding of the grain boundary relaxes thengetoy constraints at grain junctions,
allowing for the grain boundaries that are norneathte loading axis to separate in a
uniform manner. On the other hand, our results igufeé 4.13, which plot the

evolution of the damage paramete=a/b, show that cavity growth by diffusion

plays a significant role in determining the totalaunt of grain boundary separation.
4.8 Summary and Discussion

A numerical model based on finite element methodieseloped to study the
damage evolution of a two dimensional array of candyrains loaded in plane strain.
The grains deform by elastic power law creep amdgttain boundaries can slide and
separate. The separation for a grain boundary faastermined by cavity nucleation
and growth which is controlled by grain boundarffudion and power law creep.
Grain boundary sliding is decoupled from grain biany separation and both are
incorporated into a time dependent cohesive zorsemo

If an infinite grain boundary is separated at astant rate, we show analytically
that the normal traction will vanish when the damgmrameter approaches 1. To

study creep in more realistic structure, we impleteé this CZM in a commercial
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Figure 4.13 Damage parameter versus time for goawnndary element 24531
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finite element program ABAQUS using a user defirgdbroutine. We used this
method to simulate stress relaxation and creep &®V& subjected to uniaxial
deformation. These calculations depend on four dgimmless parameterSy,, o, Ag,
andA;. In all simulations, & anduy are fixed. The results of the relaxation teswsho
that most of the imposed strain is accommodatethéyseparation and sliding of the
grain boundaries. Thus, these creep damage menitsnause faster stress relaxation
than power law creep. We also found that in a edlar test, more grain boundary
separation occurs in a RVE with sliding resistamirgboundaries than in a RVE with
more freely sliding grain boundaries. For the cakeniaxial creep test, the overall
strain rate of a microstructure is enhanced bynghmundary cavitation and grain
boundary sliding significantly.

There are obvious limitations in our analysis. Example, identical material
properties are assigned to all grains and crysgpazhic orientation dependence of
creep deformation is not investigated. As pointatl lyy Westwood et al (2004), the
cavity model used in this work tends to overestemidie damage caused by cavity
diffusion. The grain boundary sliding model usedhis chapter is based on a result of
Raj (1971) where there are very limited experimietiéda. However, we are not aware
of other theories on grain boundary sliding that ba readily used for computation
modeling. The weakest link in our model is theestdn for void nucleation. There is

no consensus on this subject, so we used a maabtpurely phenomological.
Appendix 4.1 Derivation of Equation (4.73)

For a RVE with grains and grain boundaries, wergethe overall strain of the
RVE as
g 52—1A.|'(uinj +ujn)ds (4.76)
S
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where S is the external boundary of the RVE,is the area of the RVH) is the
displacementp; is the outward normal.

By definition, the average strain within graindhe RVE is,

. :%ijg dA (4.77)

whereD; represents the region occupied by il‘H@raln is the microscopic strain

H ”
field andN is the total number of grains in the RVE.is continuous within each

grain, apply divergence theorem on (4.77), we get

.[,siidA=%_[(uini +ujn)ds (4.78)
b; S

where § are oriented boundaries (by convention, we assalinelosed paths are
positively oriented so that the direction of thethpas counterclockwise. This
orientation defines the direction of the unit nokmector associated with the path,
which follows the right hand rule (see Figure 4.9).

Equations (4.77) and (4.78) imply that

1
ij —ﬁgi(un +U, n) (479)
In (4.79) , S consists of both the external and internal bourdam is the total

number of boundaries in the RVE. According to (J.7e sum of the external

boundaries is represented §ywe rewrite (4.79) as

|

1 1
j :ﬁi(uini +ujrg)d3+ﬁ;é[(uinj +ujq)ds (4.80)

where §, in the second integral in (4.80) denotes an ialeboundaryk. Define the
interface displacement discontinuity as

[u]=u"-u", i=12 (4.81)
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Using this notation, (4.80) can be rewritten as

£ =5 +i;i([ui]nj +[uj]n)ds (4.82)

wheren, =n;. The quantity inside the square bracket is evetian thek™ internal
boundary or interface. Let us denote second ter@.B2) ass® and it is the strain

caused by grain boundary discontinuities, i.e.,
_ 1
£ = _ZA\Z | ([ui] n, +[uj]ni)ds (4.83)

Equation (4.82) can be written as

RVE
&

i & +£ijgb .84)

Thus, the overall strain of the RVE'"®, consists of two parts: the average strain
within the grains and the strain caused by disooities on the internal boundaries

such as grain boundary sliding and separation.
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PLANAR DEFORMATION OF RANDOM SIZED POWER LAW CREERG
GRAINS WITH SLIDING AND CAVITATING GRAIN BOUNDARIES

PART II: INTERFACE EMBRITTLEMENT
5.1 Introduction

Most high temperature materials contain nhonmetaflipurities such as oxygen
and hydrogen which are insoluble to the host mateBuch impurities can segregate
to grain boundaries which would affect the cregpute properties of these materials
or further lead to intergranular brittle fractueberhart et al. 1985; McMahon and
Marchut 1978; Edwards et al. 1976; Woodford 198bodford and Bricknell 1981).
For example, Helium is precipitated into small bielskat grain boundaries of stainless
steel and cause severe loss of ductility (Riedd37)19Oxygen can cause grain
boundary embrittiement in Nickel and some nickeddzhsuper alloys at temperatures
above 1008C (Bricknell and Woodford 1982; Pandey et al. 1984)

Several micromechanical based theories have bemgroged to study the exact
cause for grain boundary embrittlement due to tfesence of impurities; however
currently no consensus has been reached. For exafpliano (1960) proposed that
impurities form bonds with the host material algrgin boundaries which are weaker
than the host-host bonds and grain boundary demohés more likely to occur at
these newly formed bonds. Messmer and Briant’sZ188Iculation on cluster of four
metal atoms surrounding one interstitial impuribpw that the impurity along grain
boundaries weakens the nearby host-host bondshamefdre fracture occurs at the
bulk materials close to the grain boundary. Goodstial. (1988) carried out quantum-

mechanical calculations of the fracture energy §i¥l] surface with and without
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impurities. Their results do not support the desadre models of impurity-promoted
grain boundary embrittlement since the presendgeodnd As impurities are found to
enhance the interlayer cohesion of Al[111]. Anotblkass of theories is based on the
thermodynamic and kinetics aspects of interfaceoldesion due to embrittling
impurities. Rice (1976) and Hirth and Rice (198Qidged the thermodynamic process
of impurity segregation into a grain boundary aaducing its cohesion in detail for
the limiting case of slow and fast interface sepamna Mishin et al. (2002) extended
the work to a more general case which is applicabblny separation rate. Most of the
thermodynamic-based interface embrittlement amalyselates grain boundary
cohesion with the impurity concentration. Howeube stress-driven diffusion of the
impurities along the grain boundary is not incogted.

The absence of a well-established mechanical mimdehterface embrittiement
makes it difficult to study the creep damage irhligmperature materials due to grain
boundary cavitation and impurity embrittlement. Eerthere is little literature on this
subject. Deng et al. (2005) established a combaredp and oxygen embrittlement
model in which the rate of damage growth consi$tsmo components, one due to
creep deformation and one due to accelerated cawvtjeation caused by oxygen
embrittlement which occurs when the first princigtdess of the applied stress state
exceeds a threshold. However, only one dimensianalysis is carried out in their
work to quantify the damage evolution in the créegt and no full-field solution for
creep response of 2D or 3D microstructure andritexaction between cavitation and
embrittlement is studied.

In this chapter, we propose a unified model wheeeg damage caused by grain
boundary separation due to grain boundary cavitadiod interface embrittlement is
incorporated in an additive way. The cohesive zonéel in Chapter 4 is extended to

account for grain boundary embrittlement. Spedifjcave assume a critical stress in
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which embrittlement can occur and a work of cohesitich is required to fail a unit
area of grain boundary facet without cavities. iledg the interaction of interface
embrittlement and grain boundary cavitation andrtleffect on the overall creep
behavior of the material.

The outline of this chapter is as follows. In sewti5.2 we briefly review the
cohesive zone model where cavity nucleation andvifirdeads to grain boundary
separation. A unified model allowing for boundagcdhesion due to embrittlement is
proposed in section 5.3. Details of finite elemantlysis based on the extended
cohesive zone model and numerical results are piesdén section 5.4 and section 5.5

respectively. Finally, summary and discussion a&rergin section 5.6.
5.2 Brief review

In a previous chapter, we studied the opening ofran boundary due to
nucleation and growth of creep cavities using tleelehsummarized by Onck and Van
der Giessen(1998). Briefly, they proposed that angboundary facet can nucleate

cavities if the condition

2
S= [g—j &£ >8, = (5.1)

0 n
is satisfied. Herelis the effective creep strailN, is the initial cavity density upon
nucleation,o, is the normal stress along the grain bounday,is a stress
normalization factor,F, is a material parameter which indicates the nuicieat
activity, it has the same unit &, . As long as there are voids on the boundary (e.g.
pre-existing cavities in Figure 4.1), the separatiodenoted by =V / 7ib” and the rate
of separationd rate of a material point on the boundary is appnated by smearing

out the cavities,
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= b 5.2

where D denotes the average spacing between two adjaaeities, a is the cavity
radius, 2y is the dihedral angle of the cavity| :gna3h(z//) denotes the volume of

a cavity with

h) = (—— —iwwyig (5.3)

l+cogy 2

Recall that the separatiah=V / 7’ can be written as a function of a and b only.

The second term in (5.2) vanishes if (5.1) is ris§ed, otherwise

b 2N
where
2
N=F (ij £¢ (5.5)
Z0

where £ is the effective creep strain rate defined bygbeer law creep (Equation
(4.3)). The cavity growth rat¥ in (5.2) consists of a contribution from vacancy
diffusion and from deformation due to power laweggBudiansky et al. 1982; Sham

and Needleman 1983; Dyson 1976; Needleman and1RR@; Tvergaard 1984), i.e.,

V =V, +V, (5.6)
where
- o,-(1-f)o, _
\A —4nD[T},q(f )=2In(L/f)- (3 )T f) (5.7)
a 2 a 2 .c\l3
f =max|:(5j ’(a+1.5Lj } ,L=(DJe lee) (5.8)
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2na3$§h(zp){i%+(”_1)(”J;O'4319)} AR
. 2n| o, n g,
V, = (5.9)
21 %N w)[ 3, (n—1)(n+; o.4319)} I, AP
2n n a, g,

where Dis the grain boundary diffusivityy is the sintering stress which is usually
small and it is neglected in our analysiss the creep exponent in the elastic power
law formulationL is the diffusive length which defines the interactof power law
creep and grain boundary diffusian,, o,, are the effective stress and mean stress
respectively. All variables such as effective stresean stress, creep strain and creep
strain rate are evaluated at distances far fromcéwities but still close to the grain

boundary.

Linear grain boundary sliding model where relatyain boundary sliding rate,
is directly proportional to the shear strgsdong the grain boundary is used (Raj and
Ashby 1975) i.e.,
0 =— (5.10)

wherer, is the grain boundary viscosity.
5.3 A Unified Model Allowing for Boundary Decohesion

The grain boundary cavitation model in (5.1)-(5¢@n be interpreted as a rate
dependent cohesive zone model. The separatiorgadia boundary depends on the
history of normal traction as well as the effectsfress and creep strain of the adjacent
power-law-creeping grains. In section 4.4, we stddi special case where an infinite
grain boundary between two infinite power law ciagpmaterial is subjected to a
constant separation rateand found that the traction along this boundargsgim zero
as the damage parameter(w=a/b) approaches 1. In addition, our analysis showed

that the normal traction along the grain boundaay become very large at fast
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loading rate or low cavity concentration. Thesehhigfresses can facilitate the
decohesion of an impurity embrittled grain boundacet.

The previous rate dependent cohesive zone moddbeaxtended to incorporate
grain boundary embrittlement. Specifically, we pye@ that the total grain boundary
separation consists of contributions from grainrmary cavitation and from interface
embrittlement, i.e.,

3 =d(ab)+d,(0 )H (0, -0") (5.11)

o(a,b)is the grain boundary separation due to cavity eat@dn and growth. The
additional termd,(o,) is the grain boundary separation due to grain taopn
embrittlement.J, (o,) is non-zero if the normal grain boundary stresseers a
threshold values’ . o is interpreted as the critical normal stress tootiere the
interface. Specifically, the interface will not @éere in a brittle fashion as long as
o, <0 ,thatis,
J,=0 og.<0 (5.12)
Onceo, reachewr , decohesion due to embrittlement occurs &nd 0, in this
regime, we assume
5,==0'In(o,10") (5.13)
or
o, =0e’ (5.14)
Equation (5.14) indicates the normal traction dscayponentially as a grain
boundary separates due to interface embrittlensss® Figure 5.1). Equations (5.13)
and (5.14) can be motivated by imagining a situmtidere there are no voids on the
grain boundary so thad, =9J,. For this case, the work to decohere a unit afé¢he

grain boundary is

G =[o'e*’ds, =05 (5.15)
0
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5,18

Figure 5.1 Traction-separation relation for glagundary embrittlement model
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Equation (5.15) implie® =G_/o" .

A simple way to understand the extended cohesive znodel is to subject an
infinite grain boundary separated by two infinitewger law creeping to a constant
separation rate, that i, = vt +9,. According to our previously analysis (see section
4.4),the initial normal traction is infinite whe}y becomes very small (e.g. very large
initial void spacing or no cavities) or when. . However, the additional terr, in
the extended model (Equation(5.11)) would elimirthis possibility since the grain
boundary cannot support a normal stress greatarahaOf course, new cavities can
still nucleate on such an interface (since nuakatondition is most likely to be
satisfied at large normal traction) which will givise to a non-zer@ . As a result,
grain boundary cavitation and interface embrittlatri®oth contribute to the total grain
boundary separatiod, .

A qualitative analysis of the extended model igiedrout below. Using the same

normalization as in section 4.3,

o=Zr=LN=tl F=a=2d,
0 c | | aO (516)
Vg8 piLo

where t_is the characteristic time given Wy B%;, B is the power law creep
coefficient 2R is the typical width of a grain boundary facel,is the initial cavity
density given by40/nR*, a,, 2,,V,are the initial cavity radius, spacing and
volume respectively,d, is the initial separation of the grain boundarye dto
preexisting voids given by, / 717 .

The relevant dimensionless parameters in the conségaration test are

:& A :3Dtczo A :ﬂ o :i 5* :é} 5.17
{sm,wo NG b 547
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In the following, all normalized quantities are déddd with a bar on top.
Following the same line of analysis as in sectioh the normalized grain boundary

separationd, is

H(t %)

hr

Af +1= 53[1+ ]5’”+2(r)dr} -5'In(z 1o )H@E-T) (5.18)

wheref is the time when nucleation occurs. The initiaéssiz,, = & (t =0) can be

determined by

_ A
Al +l)a d"+—2-T=A 5.19
(AT +D)a,a"+ 5 T=A (5.19)
a =5[3+ (n—l)(n-l; 0.43191 (5.20)

2| 2n n

There are two possibilities:

(1) If g, <, interface embrittlement will not be activated cginthe normal
traction o(t) decreases monotonically frorr,, to zero as damage parameter
w=alb increases frome to 1. In this scenario, only grain boundary cavity
nucleation and growth contributes to the grain lolaup separation. We have studied
this in previous analysis (section 4.4). It shooédnoted that this situation will occur
for very large decohesion stress.

(2) If g, >a , o(t) will drop to o instantaneously and interface embrittlement
occurs. In this scenari@(t) is expected to relax to zero much faster than amado
(1) given the exponential decay aft) as &, increases. As a consequence, interface
embrittlement would slow down the cavity growtheratince cavities grow under
normal tension. These predictions are verifiedha humerical example shown in

Figure 5.2. The six dimensionless parameters us#tkianalysis are

%:4.2x103,i: 7.46% 10),= 2.037 f0,= »5 1@,= 0.4487= (5.21)

hr
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Figure 5.2 Numerical results for constant sepamatest. (a) Normal traction versus

time (b) Cavity radius versus time
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As shown in Figure 5.2(a), the normal tractig(t) relaxation due to grain boundary
embrittlement is very prominent and it vanishea atuch earlier time compared to the
case where only grain boundary cavitation occutss Teads to a constant cavity

radius (zero cavity growth rate) at long times (Begire 5.2(b)).
5.4 Finite Element Model

In this section, a two dimensional microstructusasisting of random sized grains
loaded in plane strain is used to study the graiondary damage evolution (see
Figure 5.3(a)). Specifically, grains are modeleelastic-power law creeping material
using ABAQUS user subroutine UMAT (ABAQUS 2008).aBr boundary separation
and sliding are modeled using cohesive zone elen@mie previous ABAQUS user
subroutine UEL in section 4.5 is modified to alléav grain boundary decohesion due
to embrittlement where normal traction along gramundaries decrease exponentially
with separation.

All material parameters are assigned accordingatalel'5.1. Two new independent
material parameters are assigned for the extendleelstve zone model: the work of

cohesionG, and the decohesion stress,
G, =1J/nf g = 63.4 MP&) =G, ¢ = 0.016m (5.22)

The numbers chosen for our simulation are broadigsistent with previous
studies (Deng et al. 2005; Goodwin et al. 19&B)is chosen as a typical number for
specific energy per unit area of a grain boundacef in Nickel alloys (Chuang et al.
1979a; Hirth and Lothe 1978).is chosen based on a typical cavity nucleatiorsstre
observed experimentally for high temperature all¢gi@edel 1987). Once these

material parameters are assigned, the normalizeshgders are specified.
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Figure 5.3 (a) 2D microstructures with 1000 randsized grains. (b) Boundary

condition for uniaxial tension test
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Table 5.1 Material parameters for power law cregegin boundary sliding, grain

boundary cavity nucleation and growth, interfacdgtitlement

Parameters Values
Reference stresg, 300 MPe¢
Creep Exponenn 5

Elastic power law creep coefficield

4.115< 10° MP& s

Elastic ModuluskE

189 GP«

Poisson’s ratioV

0.285

Grain boundary diffusivity parametdd

7.238x 10"° MP& 030 mA

Grain boundary viscosity, 1x10* MPaOgImnt
Initial cavity radiusa, 3.35<10° mn
Initial half cavity spacinda, 1.6x10% mn
Grain boundary facet widtBR, 0.1 mm
Initial cavity densityN, 40/ IR} mm?
Nucleation activityF, 6x10°N, mn¥
Characteristic time, 10"s
Decohesion stregs’ 63.4 MP¢
Work of cohesion(S, 1 J/nt
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Use the same normalization in (5.16), the dimensgmparameters used in the

finite element simulation are:

R 1 _3Dtz, 7 :;_,5* zi} (5.23)
0

zO 0 ZOt(: e a:?)h(l//) ’

A, is a ratio of the creep strain due to power |lageprover the strain caused by grain

{n,E:E,U,ﬁhr,%:%,Alz 5
boundary sliding. For exampld, — 0 corresponds to free sliding at the grain
boundary, wheread, — « means no grain boundary sliding is allowddl.is the ratio
of cavity growth rate due to diffusion over thatedio power law creep. A small,
indicates that cavity growth is controlled by povsawr creep and a largg, indicates
that cavity growth is controlled by diffusiomy, is the square root of the initial area
fraction occupied by voids and can be considereghasitial damage parametes,
controls the ease of cavity nucleation. Finally, is the normalized decohesion stress
andG,=a d represents the amount of energy needed to complieiela unit area
of a grain boundary with no ductility.

We carry out uniaxial tension tests on the two disienal finite element model
shown in Figure 5.3(b). The boundary conditionsagpplied as follows: Side 2 of the
RVE is constrained in the vertical direction. Bailde 1 and side 3 of the RVE are

traction free, a normal surface traction = 0.1 is applied on side 4.
5.5 Results and Analysis

In this section, we present uniaxial plane stramep test results for power law
creeping grains of random sizes with sliding andtating boundaries where interface
embrittlement is incorporated into grain boundaeparation law. We study creep
rupture behavior of the microstructure and theradgon of interface embrittlement
and grain boundary cavitation. We compare simufatiesults with the previous

cohesive zone model (section 4.7) where grain baynseparation is determined by
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Table 5.2 Varying dimensionless parameters foggrepture simulations

Case A A,
Case 1 1.67 2.517x 10
Case 2 16.7 2517 10
Case 3 16.7 2.517x 10
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cavity nucleation and growth. Comparisons are edrdut by assigning the same set
of grain boundary sliding and cavitation parameterboth simulations. Specifically,
we vary A, and A, while fixing the rest of the parameters (see(p,23), = 4.2x 10° ,
1/S,, =6x10 7 = 0.219 = 0.0:The parametersd, and A, used in our simulations
are summarized in Table 5.2. Briefly, it is easogrgrain boundaries to slide in case 1
(small A) compared to the other two cases . Case 3 haddwest cavity growth rate
among the three cases (smajl).

The inelastic normal strairgf, ) of the RVE versus time is shown in Figure 5.4.
The symbols indicate the results where only graiandlary cavitation is allowed for
interface separation. The dash lines are the eeslitained using the extended
cohesive zone model. The straight line with the IEstinelastic strain rate is the
result of a pure elastic power law creeping malténighe absence of grain boundary
sliding, separation and embrittlement. As expectddmage mechanisms (grain
boundary sliding, grain boundary cavitation, inded embrittlement) greatly enhance
the inelastic strain rate. An interesting resulthist the symbols and the dash lines for
all three cases lie on top of each other, indicativat for the parameters used in these
simulations, the inelastic strain rate enhancerdaatto grain boundary cavitation and
embrittlement is almost the same as the enhanceshnerto grain boundary cavitation
alone. This implies that for this special case,atiditional damage caused by interface
embrittlement is almost equal to the reduction &amdge caused by grain boundary
cavitation. In appendix 5.1, we present resultsre/tibe inelastic strain rates of the
RVE are quite different for cases with and withgtdin boundary embrittlement.

To study how grain boundary cavitation and graiormtary sliding affect interface
embrittlement, we plot the ratio of grain boundaejements with interface
embrittlement over the total number of grain bougdaements versus time for the

three cases in Figure 5.5. As shown in the figumteyface embrittlement is activated
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at approximately 35% of the grain boundary eleméentsase 3, compare to 12% and
5% in case 1 and case 2 respectively. Recall tiegface embrittlement occurs when
the normal traction along a grain boundary excabdsmaximum stress the grain
boundary can supporto(). It is expected that grain boundary sliding wbehuse
stress concentration at triple junctions. This \gld to a higher percentage of grain
boundary elements with interface embrittlementareecl compared to case 2 due to a
smaller A, (more grain boundary sliding). Grain boundary G tends to relax the
normal traction along a grain boundary. Hence, nypagn boundaries are embrittled
in case 3 since a smallds (slower grain boundary cavity growth rate) is assito
this case compare to the other two.

Not all embrittled grain boundaries will fail. A ticeable feature in Figure 5.5 is
that interface embrittlement occurs at an earlgestaf the loading in case 1. This
indicates the effect of rate-dependent deformatiorembrittlement (even though the
model for embrittlement is rate independent). &ample, case 1 and case 2 have the
same grain boundary diffusion paramefierbut case 1 has a higher grain boundary
sliding rate. Based on the analysis in section 4rdjn boundary sliding facilitate
cavity growth rate in an uniaxial tension test. eenwe expect the faster cavity
growth rate in case 1 leads to faster stress rédaxahis will cause embrittlement to
stop at a shorter time despite there is more etidarigrain boundaries in case 1.
Consistent with this explanation, the differencéwsen case 3 and case 1 is more
substantial since stress relaxation occurs eveerfasie to faster cavity growth and
sliding in case 1.

To study the interplay between grain boundary e#ieih and embrittlement on a
grain boundary, we plot the tractio@ () versus separationd() curve (see Figure
5.6) in case 2 for a typical grain boundary elemei#4531. Similar results are

obtained for case 1 and case 3, hence they aesgnted here. The solid line is the
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extended cohesive zone model whereas the dasis lioethe cohesive zone model
without embrittlement. As expecteds, is reduced by interface embrittlement
compared to the case where only grain boundaryataon occurs. However, the grain
boundary separatiofy, =J +J, in the extended cohesive zone model only increases
slightly due to embrittlement. Specifically, graoundary separation contribution
from embrittlement is very sma#, / 5, = 0.02.Therefore, the normal traction remains
approximately constant on this interface. Thisaasistent with the prediction based
on (5.14).

Plots of the damage parametera/b versus grain boundary separatidnfor
element 24531 are presented in Figure 5.7 foihadlet cases. Notice that the damage
due to grain boundary cavitation is reduced byrfate embrittlement, which agrees
with the analysis based on Figure 5.4. Furthermdtreis consistent with the
experimental observation that impurities along mgrabundaries reduce the grain

boundary diffusion and decelerate diffusive cagitgwth (Schneibel et al. 1982).
5.6 Summary and Discussion

We have developed a 2D finite element model to ystihee effect of grain
boundary sliding, cavitation and decohesion ongEformation of a RVE consisting
of random size power-law creeping grains. Grainnlawy sliding and separation is
incorporated into a cohesive zone model. The pusvioohesive zone model in
Chapter 4 which determines grain boundary separésed on cavity nucleation and
growth has been extended to account for grain bemyradkecohesion. In this extension,
grain boundary decohesion is modeled by assumatgithen the normal traction on a
grain boundary exceeds the decohesion stress, dteates exponentially with
separation.

Our results show that grain boundary cavitation iatetface embrittlement are
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two competing mechanisms for creep failure, indarse that stress relaxation due to
cavitation can reduce local stresses leading sodation of decohesion. The proposed
unified model for grain boundary separation carviesved as a first step in a more

comprehensive study of creep rupture.
Appendix 5.1 Grain Boundary Embrittlement Dominated Creep Damage

In this section, we present uniaxial tension tesults where the inelastic strain
rates of the RVE are greatly enhanced by interiacdritttement. The following

dimensionless parameters are used to carry outaions shown in Figure 5.8
w =42x10°,1/S,,= 616 g = 028 = 0.03,= 1.6%,= 2.167°(5.24)

Note that compare to Table 5.2, the parameters imstds section are assigned in a
way such that the grain boundary separation is Iyagaused by interface

embrittlement. As shown in Figure 5.8, the inelastrain rate is much higher when
grain boundary embrittlement is incorporated irtte €ZM compared to the case
where only grain boundary cavitation is accountad This indicates the contribution

to creep damage along grain boundaries is maialy interface embrittlement.
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CONCLUSIONS AND FUTURE WORK

In Chapter 2, we use a dynamical system approac$tuy the creep fatigue
behavior of a viscoplastic material using a constie model proposed by Chaboche
(1989). We establish a condition for the existeat@ periodic solution in a cyclic
loading test. We study the dependence of the adateduinelastic strain per cycle on
the material and loading parameters such as staéissand yield stress. Our results
show that low yield stress and large valley stredsice ratcheting.

In Chapter 3, the asymptotic stress and straiwl fnear the tip of a plane strain
Mode | stationary crack in a viscoplastic mateff@haboche 1989) are investigated.
We find that within the small scale creep reginfee hear tip stress field of the
viscoplastic material has the same HRR (Hutchirl&@88; Rice and Rosengren 1968)
singularity as an elastic power law creep mateHalwever, the amplitude of the HRR
field vanishes at long times. We study the timeethelgnt behavior of these crack tip
fields under cyclic loading. The strain accumulabed cycle is found to decrease with
stress ratio.

In Chapter 4, we carry out finite element simulasoon a two dimensional
representative volume element where the grainsnaxdeled as an elastic-power law
creeping material, and grain boundary behavion@®rporated into a cohesive zone
modelwhere theycan slide and separate due to cavity nucleatiohgaowth. For the
grain boundary cavitation model, we show analytyceiat the normal traction along a
grain boundary vanishes when the damage paranygievaches 1 if it is separated at
a constant rate. Our relaxation results show thastnof the imposed strain is
accommodated by the separation and sliding of ther doundaries and such creep

damage mechanisms cause much faster stress retaxdfe also find that overall
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strain rate of a microstructure is enhanced bynghmundary cavitation and grain
boundary sliding significantly during uniaxial cpetest.

In Chapter 5, we incorporate impurity-induced ifdee embrittlement into grain
boundary separation by extending the cohesive mwuel in Chapter 4. We study the
interaction of embrittlement and deformation caubgdcreep, cavities growth and
grain boundary sliding. Our results shdlat stress concentration caused by grain
boundary sliding leads to more grain boundary etttément, stress relaxation due to
cavity growth and creep inhibit interface embritikent, interface embrittlement slows
down the cavity growth rate.

Much more work needs to be done in order to esfaldi reliable computational
model for creep rupture. To analyze engineeringctiires, it is necessary to extend
the 2D finite element model in this work to 3D misdé\s pointed out by Westwood
et al (2004), the cavity growth model used in Chagtand 5 tends to overestimate the
damage caused by cavity diffusion. Modification the current grain boundary
cavitation model is necessary for more accuratdigtion of creep rupture life. More
realistic creep models such as crystal visco-migtibased models should be
implemented for loading histories that are non-ntonic. Recall that the cavity
growth model in this work is based on elastic-pcla&r creeping grains. Some
aspects of the micromechanical models for caviigwgin need to be modified if
crystal visco-plasticity model are used to descrgvain deformation. Also, with
enough computational power, one can model discit#ies on grain boundaries and
study their growth and interaction.

Many creep damage mechanisms are not well understothe present. The only
grain boundary sliding model we are aware of tlaat loe readily used for computation
modeling is based on a result of Raj and Ashy (19vliere there is very limited

experimental data. The current theories of cavitycleation do not match
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experimental data well (see Chapter 5 in RiedeB7)8 book and the references
within). For example, there is a large gap betwibenobserved and calculated critical
nucleation stress. Therefore an empirical desorpdif cavity nucleation is adopted in
this dissertation. The role of impurity segregatiancavity nucleation needs to be
modeled. It has been known for a long time thatuntj@s along grain boundaries
could reduce the grain boundary diffusion (Schredieal. 1982) and increase the
cavity nucleation rate (Tipler and Hopkins 1976piitas and Gibbons 1979). These
mechanisms need to be quantified and incorporatex da creep damage model in

future works.
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