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In this dissertation I investigate the materials physics of thin film growth processes

for magnetic tunnel junctions (MTJs) and Josephson junctions (JJs). The studies

I present focus primarily on the chemical, electronic, and structural properties of

the tunnel barriers and their interfaces with the adjacent electrodes. I developed

a growth process for making MgO (MgBO)-based MTJs, studied this film stack

in detail, and also examined the materials properties of MgB2 oxidation processes

and AlN tunnel barrier formation for JJ development.

I conducted x-ray photoelectron spectroscopy (XPS) studies on CoFeB / MgO

bilayers to explore the MgO growth process. MgO that is rf sputtered directly on

CoFeB or on a thin Mg protective layer forms MgBO with promising physical and

chemical properties. Post-growth annealing reduces Fe and Co oxides formed in

the deposition process through a reaction of B from the electrode with O in the

transition metal oxides. Annealing also causes an atomic rearrangement of the Mg,

B, and O species in these barriers. In sputtered MTJs with thin barriers, reaction

between B from the electrode and sputter deposited MgO is an inherent part of

the formation of MgO-based MTJs.

I studied the correlated results of scanning tunneling electron microscopy

(STEM) utilizing electron energy-loss spectroscopy (EELS), scanning tunneling

spectroscopy (STS), current-in-plane tunneling (CIPT), and magnetometry stud-

ies. These investigations show that MgBO barriers have fewer low energy defect

states than MgO barriers and comparison of MTJs with MgBO barriers with MTJs



with Mg/MgO bilayer barriers shows that MgBO barriers yield higher TMR values

and lower RA values than MgO barriers of comparable thickness. MgBO MTJs

are also compatible with permalloy-B (PyB) free electrodes that show desirable

magnetic characteristics. The electrode B content is important for the formation

of low defect MgBO barriers and for the use of superior Py-based electrode ma-

terials for spin torque magnetic random access memory (MRAM) and magnetic

sensor applications.

I also studied MgBO barriers in an exploration of the oxidation of MgB2 thin

films. The oxidation of the MgB2 film surface forms MgBO that is chemically

similar to the MgBO materials formed in MTJ structures. Exposure to N2 or O2

promotes formation of MgO on the MgB2 film surface which becomes completely

composed of MgO if the oxidation process is carried out at elevated temperatures

for an extended time. Lower temperatures form oxides similar to the native sur-

face oxide, and promote formation of elemental B, and B sub-oxide near the film

surface. These B species are likely to effect JJs made with these barrier forma-

tion processes. These chemical studies provide insights into optimal MgBO barrier

formation techniques for future MgB2-based JJ devices.

Finally, I started developing growth processes for AlN tunnel barriers formed

both by N beam exposure of Al films and by reactive rf sputtering of AlN in either

Ar or N2 for use in Nb / AlN / Nb JJs. Both AlN growth processes introduce

O into the AlN film, which could possibly be controlled with the use of a getter

material during barrier deposition. These XPS studies show that when a pure N2

atmosphere is used for reactive rf sputtering of AlN, the film growth nitridizes the

underlying Nb film, similar to the way MgO oxidizes CoFeB. These studies provide

some insights as to optimal AlN barrier formation for JJ structures that can now

be further developed.
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CHAPTER 1

INTRODUCTION

The current Information Age and the Internet exist in large part due to the

exponential growth rate in ultrahigh-density data-storage capacity over the past

three decades. If ways are found to continue such growth rates, great benefits to

society will occur through the evolution of even more powerful information tech-

nology. For the past few years, successful miniaturization and implementation of

the magnetic tunnel junction (MTJ) has been crucial to maintaining growth in

information storage technology. These thin-film structures emerged as the central

device for next-generation magnetic random access memory (MRAM) and mag-

netic sensor applications, and are already in use in hard disk drive read heads.

However, unless creative ways evolve to further optimize MTJs, highly attractive

prospects for applications such as MRAM will go unrealized.

The remarkable improvements in both tunneling magnetoresistance (TMR) and

junction resistance area (RA) product in MgO-based MTJs have pushed the ca-

pabilities of the MgO MTJ as a read head sensor in the hard disk drive sector

as shown in Fig. 1.1. In addition, the MgO MTJ is at the forefront of emerging

device applications including spin transfer MRAM and microwave oscillators (see

Fig. 1.2). [1, 2] The MgO-based MTJ is a system wherein the correct choice of

materials makes all the difference with regards to device performance. The re-

search presented in this dissertation aims to unravel some of the important effects

in both fabricating and optimizing MgO MTJs with an eye towards additional

modifications that promote future device structures.

In chapter 2 I give a brief discussion of the historical development of MTJs

accompanied by a simple theoretical explanation for the essential physics that

1



Figure 1.1: Plot of TMR versus RA for MgO MTJs made by the Canon
Anelva corporation and how these values relate to read head
sensors and hard drive density (data from ref [1,2]).

2



Figure 1.2: Progression of magnetoresistance (data from ref [1,2]).

3



governs MTJs with amorphous (AlOx) and crystalline (MgO) barrier materials.

Here there is a discussion of some of the most important discoveries related to

magnetoresistance research. I track the development of the MTJ leading up to

the discovery and enhancement of MgO-based MTJs. I discuss the research of the

last 5-7 years on MgO MTJs in some detail with a focus placed on the interplay

of materials and device performance. In the second part of chapter 2 I discuss the

growth procedures that I developed for making MgBO-MTJs.

In chapter 3 I discuss the results of x-ray photoelectron spectroscopy (XPS)

studies on CoFeB / MgO bilayer samples. I investigate the growth of several types

of MgO on CoFeB alloy electrodes and study the formation of B, Fe, and Co oxides

as a function of MgO deposition technique and post-growth annealing. Plasma ox-

idation and thermal oxidation of a sufficiently thick Mg layer do not substantially

oxidize the electrode and form relatively stoichiometric MgO. However, if the Mg

layer is not thick enough, then B within the electrode diffuses out of the electrode

and reacts with surface oxygen to form a MgBO surface layer. Electron beam

evaporation of MgO also forms stoichiometric MgO on CoFeB without the forma-

tion of significant electrode oxides. Substantial electrode oxidation occurs during

the growth of rf sputtered MgO layers. Thicker MgO layers and layers grown at

higher sputtering pressures form greater amounts of B, Fe, and Co oxides. The

rf sputtering process acts to plasma oxidize the electrode, and although annealing

reduces the Fe and Co oxides, B oxide remains in the MgO barrier. There is an

atomic rearrangement of the Mg, B, and O species during annealing which sug-

gests a change in the chemical environment of the MgBO surface oxide. Insertion

of an Mg layer between the CoFeB electrode and the MgO barrier is successful in

reducing the electrode oxidation, but Mg/MgO bilayer barriers still allow B oxide

incorporation into the MgO barrier during annealing if the Mg layer is thinner than
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1.4 nm. The increased control over the barrier composition achieved by inclusion

of an Mg layer or through use of gettering materials during the MgO deposition is

due to the capture of oxygen liberated from the MgO target in the early stages of

sputtering. However, reaction between B from the electrode and sputter deposited

MgO appears to be an inherent part of the formation of rf sputtered MgO-based

MTJs. These XPS studies explore the chemistry of the tunnel barriers that can

form in different MgO growth processes. When correlated with the results of the

next chapter, it becomes clear that the formation of MgBO barrier materials have

significant benefits in making robust MTJ structures.

In chapter 4, I discuss the correlated results of several studies which show that

the slight oxidation of B-alloyed bottom electrode materials during rf sputtering

of an MgO target has several advantageous effects on the properties of the subse-

quently formed tunnel barrier material. Scanning transmission electron microscopy

(STEM) / electron energy-loss spectroscopy (EELS) studies provide clear evidence

that B oxide is present in the MgBO tunnel barrier in both the as-grown and an-

nealed states. Scanning tunneling spectroscopy (STS) measurements show that

as-grown MgBO barriers have fewer low energy defect states than MgO barriers

and that there is no substantial increase in these defect states after annealing.

Comparison of MTJs with MgBO barriers with MTJs with Mg/MgO bilayer bar-

riers of comparable thickness shows that MgBO barriers yield higher TMR values

and lower RA values. This chapter also addresses work on the use of B-alloyed

permalloy (Py, Ni81Fe19) top electrodes. Transmission electron microscopy (TEM)

measurements correlated with current-in-plane Tunneling (CIPT) measurements

show that Py80B20 alloys are highly effective in forming MgBO MTJs with high

TMR (∼ 150 %) and low RA (∼ 15 Ω(µm)2) values after annealing. These MTJs

also show desirable magnetic behavior, low saturation magnetization (MS) and
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coercivity (HC), and the dipolar coupling of the free layers decreases significantly

after annealing. The work in this chapter shows that B is not only important for

the formation of ultra-thin, low-resistance tunnel barriers, but is also the crucial

component for enabling the use of superior ferromagnetic electrode materials (PyB

alloys) for spin torque MRAM and magnetic sensor applications.

The XPS studies of the oxidation of MgB2 thin films discussed in Chapter 5

show that the highly reactive nature of Mg dominates the oxidation of the film

surface, but that surface oxide is composed of both Mg and B components. Expo-

sure to N2 or O2 oxidizes the film, promoting the formation of MgO on the MgB2

film surface and the surface becomes completely composed of MgO if the oxidation

process is carried out at elevated temperature (400oC) for extended time. However,

if the oxidation occurs at lower temperature(200oC), then the surface oxide formed

is a mixed MgBO, similar to the native oxide. The oxidation process depletes the

film surface of Mg, forming MgOx, and promotes development of elemental B, and

B sub-oxide near the film surface. The degree of formation of the elemental B,

and B sub-oxide species is dependent upon the method of delivery of O to the

film surface as well as the sample temperature during oxidation. The presence of

semi-metallic elemental B and semi-conducting B sub-oxide could indicate other

current paths exist in such oxide tunnel barriers that are likely to be a source of

electronic noise as well as potentially detrimental to the superconducting electronic

device behavior. Etching experiments show that oxygen delivered using different

mechanisms (exposure to atmosphere, N2 or O2 exposure at elevated temperatures,

ion milling, and water exposure) alters the MgB2 film surface in similar ways to

different extents. O incorporation into the MgB2 film and formation of elemental

B and B suboxide during the film oxidation could influence tunneling transport

and degrade device performance, but the studies presented in this chapter provide
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insights into optimal barrier formation techniques for JJ device development.

Chapter 6 discusses XPS studies of AlN tunnel barriers formed both by N beam

exposure of Al films and by reactive rf sputtering of AlN in either Ar or N2 process

gas. Both film growth processes introduce O into the AlN film. When a pure

N2 atmosphere is used for reactive rf sputtering of AlN, the film growth nitridizes

the underlying Nb film, similar to the way MgO oxidizes CoFeB. These studies

provide some insights as to optimal AlN barrier formation for Josephson Junction

structures.

I outline several experiments that are presented as extensions of the research

discussed in this dissertation in Chapter 7 and I also provide a summary of the

most significant results of my work.
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CHAPTER 2

BACKGROUND

The experiments described in this dissertation focus primarily on the growth

and characterization of electrode and tunnel barrier materials for two specific elec-

tronic devices that are similar in structure but have significantly different uses.

The essential part of both magnetic tunnel junctions (MTJs) and Josephson junc-

tions (JJs) is composed of thin film electrode / tunnel barrier / electrode trilayers.

In both systems the materials properties of the tunnel barrier and the electrode /

barrier interfaces can substantially effect device performance. The first sections of

this chapter describe the historical development and basic physics of MTJs and the

final sections outline the growth process for MgBO-based MTJs that I developed.

2.1 Magnetoresistance and Magnetic Tunnel Junctions

The fundamental principle of magnetic memory, storage, and sensing is magnetore-

sistance (MR). Early magnetic field sensors used anisotropic MR (AMR), where

the electrical resistance of a ferromagnetic material changes if the direction of an

applied magnetic field is moved from parallel to perpendicular to the direction of

current flow. The resistance change of AMR, on the order of 1%, is due to an

increase in electron scattering in the parallel field-current configuration in com-

parison to the perpendicular field-current configuration. This MR effect is useful

for measuring the amount of current flowing in a wire and is also used in mag-

netic compasses. Although the AMR effect is small, it points to a fundamental

relationship between electron scattering and magnetic field.

In 1975 Julliere observed a difference in the resistance of Fe / Ge / Co mul-
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Figure 2.1: TMR and magnetization data as a function of applied field in a
Ni / NiO / Co MTJ (from ref[2]).
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tilayers as a function of the relative orientation of the ferromagnetic electrode

magnetizations (parallel (P) or antiparallel (AP)) in an applied magnetic field on

the order of 14% at 4.2 K. [1] He attributed this effect to spin-dependent electron

tunneling through the Ge layer. A few years later, Maekawa and Gäfvert observed

a similar effect in thin film stacks of Ni / NiO / Ni, Ni / NiO / Fe, and Ni / NiO /

Co (see Fig. 2.1). [2] These initial experimental observations of tunneling magne-

toresistance (TMR) were described by the Julliere model, where TMR is defined

in terms of the spin polarization (P) of the individual ferromagnetic electrodes.

TMR =
∆R

R
=

RAP −RP

RP

=
2P1P2

1− P1P2

(2.1)

P =
n↑(EF )− n↓(EF )

n↑(EF ) + n↓(EF )
(2.2)

In this equation for P, n↑(EF ) and n↓(EF ) are the majority (spin up) and minority

(spin down) densities of states for the electrode material at the Fermi level (EF ).

It is important to note that for this definition of TMR the maximum value is

infinite, provided both electrode P values are equal to 1. However, in practice

most materials have P < 1. TMR does not become larger than 100 % until the

electrode P values approach 0.6, which suggests that other mechanisms effect MTJs

that exhibit TMR values above ∼ 100%.

Simple cartoons of the density of electron states for a normal metal and for

a ferromagnet are shown in Fig. 2.2. A typical ferromagnet has an asymmetric

density of states such that there is a greater density of one spin state (majority)

than the other (minority). [3, 4] TMR can either be positive or negative and some

materials even exhibit a density of states such that there is only one kind of spin
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Figure 2.2: Schematic of densities of states for a normal metal and for a
ferromagnet.

state available at EF , which means they have P = 1. [3, 4] These half-metals are

of great interest for enhancement of TMR, however extraordinary control of the

crystal structure of these materials in an MTJ structure is required to achieve half

metallic behavior.

A schematic of an idealized MTJ is shown in Fig. 2.3 with depictions of the

ideal behavior of TMR (or ∆R) and magnetization as a function of applied field

which help to understand the data displayed in Fig. 2.1. The MTJ consists of

a thin (∼1-2 nm) insulating layer sandwiched between two ferromagnetic layers.

The insulating layer, or tunnel barrier, is so thin that electrons can quantum

mechanically tunnel from one electrode to the other. In order for a MTJ to exhibit

features such as these, the two electrode materials must have different values of

coercivity (HC) which is the magnetic field strength required to flip the electrode

12



M
FM2

FM1

INS

M

Magnetization

Happlied

TMR

Happlied

Hc2

Hc1
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magnetization. In a typical MTJ, different HC values are achieved by either using

two different materials or by using the same material but forming electrode layers

of different thicknesses. The arrows on the idealized ”data” in Fig. 2.3 show

the direction of field sweep, and the black arrow pairs show the relative electrode

magnetization configuration for the various field values. So, in this picture when

the electrode magnetizations are parallel to one another the resistance state of

the MTJ is low. However, when the applied magnetic field strength is between

the values of the electrode coercivities (Hc2 < Happlied < Hc1) then the MTJ is in

state such that the electrode magnetizations are antiparallel to one another and

the junction resistance is at its maximum value. [5–7]

A deeper understanding of the electrode transport taking place in this system

is illustrated in Fig. 2.4. These idealized cartoons show the electrode densities of

states for the parallel and antiparallel orientations. In the parallel state, the oc-

cupied and available electrode states for both majority and minority electrons are

nominally identical. Provided the tunnel barrier is thin enough to allow electron

tunneling, both up and down electron spins tunnel from the occupied (biased) elec-

trode to the unoccupied (unbiased) electrode, the probability for electron tunneling

is maximized, and the MTJ is at its lowest resistance value. However, the situation

is quite different when the MTJ is in the antiparallel state. In this condition, the

occupied and available electrode states are not the same. There are a large num-

ber of occupied majority spin states, but significantly fewer available majority spin

states. Similarly, there are few occupied minority spin states and a large number of

available minority spin states. These conditions do allow for tunneling, but do to

the large differences in occupied and available spin states, tunneling is minimized

and the MTJ is at its highest resistance value. This picture of tunneling in an MTJ

is reasonable for disordered barrier materials like aluminum oxide (AlOx). How-

14



EF
M
r

EF
M
r

FM1 FM2Barrier

Parallel State

EF
M
r

EF
M
r

FM1 FM2Barrier

Antiparallel State

Figure 2.4: Schematic of tunnel for the parallel and antiparallel states for an
MTJ device.

15



ever, when crystalline MTJs with the correct combination of barrier and electrode

materials are formed, different mechanisms govern electron tunneling. [5–7]

Related experiments in tunneling between a superconductor and a ferromagnet

through an insulator performed by Tedrow and Meservey provided a means to di-

rectly measure the spin polarization of ferromagnetic materials at low temperature

(∼ 0.4 K). The base electrode of these structures is an Al layer (TC ∼ 1.2 K) that

was thermally oxidized to form a thin AlOx tunnel barrier. On top of this was

deposited a thin film of a Ferromagnetic material (Fe, Ni, Co, or Gd in the early

experiments). The essential principle of the measurements is illustrated in both

the data and the schematic shown in Fig. 2.5. Under the application of a large

magnetic field the quasiparticle energies in the superconducting Al layer are split

by ± µH, where µ is the magnitude of the electron magnetic moment and H is the

applied magnetic field. [8] The schematic of the experiment shows the Al density

of states for H = 0 (solid lines) and for H 6= 0. When H is applied, spin-split peaks

appear in the Al density of states at ± ∆ ± µH, where 2∆ is the superconducting

energy gap in Al. In the experiment, as the bias voltage (V) is swept, peaks appear

in the normalized conductance ( (dI/dVs)/(dI/dVn) ), where the subscripts s and

n respectively refer to the superconducting (T≤TC) and normal (T>TC) state).

Using the schematic as a guide to the physics, the peaks occur at V = ±1
e
(∆ ±

µH). [8] Carefully taking the ratios of the conductivities for the various spin-split

peaks yields the spin polarization of the material. [8, 9]

With the development of high precision deposition tools the ability to more

carefully control thin film interfaces led to discoveries regrading magnetic coupling

between thin film layers. Using light scattering of Fe / Cr / Fe and Fe / Au /

Fe trilayers, Grünberg and co-workers demonstrated that the Fe layers are antifer-
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Figure 2.5: Normalized conductivity data and schematic of densities of states
for an Al / AlOx / Ni tunnel junction (from ref[9]).

17



Fe / Cr / Fe 300 K

4.2 K

Figure 2.6: GMR data from a Fe / Cr / Fe spin valve at 300 K (from ref[12])
and from various Fe /Cr superlattices at 4.2 K (from ref[13]).
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romagnetically coupled to one another when a Cr spacer layer is used. [10] This

research ultimately led to the demonstration of giant MR (GMR) on the order

of 10% in Fe / Cr / Fe by Binasch and co-workers (Grünberg group) [11] and

on the order of 30-50% in Fe / Cr superlattices by Baibich and co-workers (Fert

group) [12] (see Fig. 2.6). The discovery of GMR sparked a revolution in the MR

research world which defined the modern hard disk drive industry.

Valet and Fert provided a model for the physics principles that govern GMR,

which is summarized visually in Fig. 2.7 and commonly referred to as the 2-resistor

model of GMR. [13] A simple picture for GMR is that ferromagnetic materials filter

electrons that pass through them with regards to spin. An electron that scatters

through a ferromagnet will emerge on the other side in an angular momentum

state that is parallel to the magnetization of the ferromagnet. This means that if

an electron moves through a ferromagnet / normal metal / ferromagnet trilayer

where the ferromagnet magnetizations are parallel to one another, then there will

be few scattering events for the conducting electrons with spin states that are par-

allel to the electrode magnetizations. Electrons in spin states that are antiparallel

will scatter significantly more, but there still exists one low resistance conductance

channel and so the parallel magnetization state is a low resistance state. If the

ferromagnet magnetizations are antiparallel to one another then both spin up and

spin down conducting electrons will scatters as they pass through the spin valve.

So both conductance channels are equally resistive and high relative to the low

resistance state. These measurements and the explanation of the underlying prin-

ciples of spin-dependent scattering that govern GMR, won Grünberg and Fert the

2007 Nobel Prize in Physics.

The demonstration of GMR revitalized the MR community and generated a
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Figure 2.7: Two-resistor (Valet-Fert) model of GMR (from ref[14]).

great deal of interest in the previous work on tunnel junctions described above.

After Moodera and co-workers [14] and Miyazaki and co-workers [15] showed in

1995 that TMR can be achieved in AlOx-based MTJs at room temperature (see

Fig. 2.8), research on MTJs rose steadily. As the need for greater sensitivity arose

in the disk drive industry as recording media sizes shrank, the superior performance

of MTJs made them the sensor of choice for next-generation hard drive read heads.

The AlOx-based MTJs of Moodera and Miyazaki exhibited TMR on the order of

10-20% and the highest reported values for TMR in an AlOx-based MTJ come

from NVE. Wang and co-workers achieved ∼ 70% TMR through impressive device
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engineering, specifically by incorporating glassy magnetic electrodes that allow for

smoother electrode-barrier interfaces. [16]

Although the work of the NVE team represented significant progress in AlOx-

based MTJs, that same year Parkin and co-workers [17] and Yuasa and co-workers

[18] published groundbreaking results from MgO-based MTJs showing remarkable

TMR around 200% after annealing (see Fig. 2.9). Such high TMR had been previ-

ously predicted by Butler and co-workers [19] and by Mathon and co-workers [20]

who independently explained the enhancement in TMR as being due to coher-

ent tunneling in the Fe / MgO / Fe system and vastly different decay rates for

majority and minority spin electrode Bloch states of different symmetries as they

couple through the MgO barrier. Figure 2.10 shows calculations from ref[20] for

the transmission probability of majority and minority spin electrons with regard

to crystal momentum. The calculations show that, unlike the Julliere model, ma-

jority and minority spin electrons tunnel differently through a crystalline MgO

barrier. The Julliere model assumes that all majority and minority spin Bloch

states have the same spin polarization and therefore tunnel with the same effi-

ciency leading to completely incoherent tunneling. However, in the calculations

for the Fe / MgO / Fe system it is clear that majority and minority Bloch states

do not tunnel the same way. The majority Bloch states are almost entirely for-

ward focused (zone centered) while the minority Bloch states are off-center. The

enhancement of transmission at these off-center sites is due to resonant tunneling

through interfacial surface states, and these locations are referred to as hot-spots.

More detail regarding the tunneling in Fe / MgO / Fe MTJs can be found in the

calculations of densities of states for the parallel and antiparallel MTJ states shown

in Fig. 2.11. It is clear from these calculations that Bloch states with different
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CoFe / Al2O3 / Co Fe / Al2O3 / Fe

Figure 2.8: TMR measurements in AlOx-based MTJs at room temperature
(from ref[15] and ref[16]).
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IrMn / CoFe / 20Å MgO / CoFeB IrMn / Fe / MgO / Fe

Figure 2.9: TEM images and TMR measurements of MgO-based MTJs (from
ref[18] and ref[19]).
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orbital symmetry couple into the MgO tunneling states with different efficiency.

The s-like ∆1 majority Bloch state decays very slowly through the MgO, but the

p-like ∆5 and d-like ∆2′ Bloch states decay much more rapidly. Therefore, as the

MgO barrier gets thicker, the majority electrons that are most likely to tunnel

to the counter electrode have s-like ∆1 symmetry. In the case of minority spin

states, p-like ∆5 Bloch states decay more slowly than d-like ∆2 and ∆2′ Bloch

states. So, the minority electrons that are likely to tunnel through a thick MgO

barrier have p-like ∆5 symmetry. Although these p-like ∆5 minority Bloch states

tunnel the most efficiently of the minority states, they decay far more rapidly in

the MgO barrier than the majority s-like ∆1 states. The result is a very large spin-

filtering effect from the MgO barrier that creates a substantially smaller minority

spin tunnel current in comparison to the majority spin tunnel current. The large

difference in these tunnel currents is the primary reason for the extraordinarily

high TMR in Fe / MgO / Fe MTJs.

The initial measurements of large TMR in MgO-MTJs [17, 18] demonstrate

that the behavior of TMR as a function of barrier thickness depends somewhat

upon the barrier growth method and that annealing the structures is crucial to

achieving large TMR values. The data of Parkin and co-workers shows very clearly

that TMR increases with annealing temperature (up to a point – annealing begins

to degrade performance at ∼ 425oC in these junctions). Yuasa and co-workers

published earlier that same year showing high TMR of about 88% (Ptunneling ∼
0.55) in Fe / MgO / Fe MTJs. [21] Careful inspection of the methods section of

their Nature Materials publication which demonstrates ∼ 188% TMR (Ptunneling

∼ 0.70) explains the difference in the structures. The higher TMR structure was

annealed half-way through growth. After the MgO barrier was deposited, the sam-

ple temperature was increased. This drives surface oxygen (chemisorbed oxygen)
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Figure 2.10: Theoretical depiction of coherent tunneling in an ideal Fe / MgO
/ Fe MTJ (from ref [20]).
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into the barrier or evaporates it off of the barrier surface leaving a far less reactive

MgO surface for the top Fe electrode to be grown on. In the case of the work

of Parkin and co-workers annealing likely reduces interfacial electrode oxides and

also improves the crystalline coherency of the electrode - MgO interfaces and the

MgO barrier itself.

Parkin mentions that the IBM samples show no strong dependence of TMR on

barrier thickness while Yuasa shows a clear increase in TMR with barrier thick-

ness as predicted by Butler and co-workers and Mathon and co-workers. This

discrepancy leads one to question whether barrier deposition and electrode ma-

terials influence the TMR dependence upon thickness. The IBM samples were

probably grown using techniques developed by Mauri [22] using a three step pro-

cess of depositing a Mg layer, then a MgO layer, and then oxidizing the entire

stack. However, the IBM team may have used one of several MgO deposition

techniques, most likely either an ion-beam deposition of MgO or a reactive sput-

tering deposition of Mg in Ar/O. In contrast, the highly crystalline, epitaxial Fe /

MgO / Fe MTJs grown with molecular beam epitaxy (Fe electrodes) and electron

beam evaporation (MgO) of Yuasa and co-workers exhibit a clear thickness depen-

dence of TMR, which suggests that in terms of making high TMR MTJs with thin

barriers, approaches other than e-beam evaporation will work best.

Shortly after these initial demonstrations, the team at Canon Anelva demon-

strated high TMR of 230% (Ptunneling ∼ 0.73) in CoFeB / MgO / CoFeB MTJs

that were entirely sputtered and annealed post-growth. [23] This began the ongo-

ing race to high TMR in MgO MTJs that rapidly ascended from 355% (Ptunneling

∼ 0.80) [24] to 500% (Ptunneling ∼ 0.85) [25] to the current high TMR mark of

600% (Ptunneling ∼ 0.87) [26]. All of these high TMR values were first reported by
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the team of Ohno at Tohoku University in Japan, but Parkin’s team has been able

to reach the 300-350% (Ptunneling ∼ 0.77 - 0.80) range. [5] The work of the Tohoku

team rests on two significant discoveries besides whatever magical techniques they

may use to grow such nice MgO barriers. First, they have used Co-Fe-B alloys of

different compositions, showing that Co20Fe60B20 gives the best results. Second,

they have removed the antiferromagnetic pinning layer to allow extremely high

temperature annealing of upwards of ∼ 500oC which promotes coherent junction

crystallinity (See Fig. 2.12).

While the Ohno group was raising the bar regarding TMR, the team at Anelva

was working to push down the junction resistance while maintaining as high a TMR

as possible. The typical figure of merit used to compare junctions is the junction

specific resistance or resistance area (RA) product, simply the junction area times

the junction resistance. The Anelva team made remarkable headway, first achieving

∼ 2.4 Ω(µm)2 and 138% TMR with a Mg / MgO barrier deposition process [27]

and then ∼ 0.4 Ω(µm)2 and 50% TMR by using a Ta getter before direct MgO

deposition (see Fig. 2.13). [28] However, the article of Tsunekawa and co-workers

[27] is a bit confusing. The authors present TMR and RA data as a function of

barrier thickness for Mg/MgO and MgO barriers which appears to be reversed.

This observation is based on the comment made in the article that transmission

electron microscopy (TEM) images of these MTJs show that 0.4 nm Mg / 1.5 nm

MgO barriers are slightly thicker than 1.5 nm MgO barriers, which would likely

cause the RA product to be higher for this thicker junction. However, the RA as

a function of barrier thickness data does not suggest that this is so. Instead, the

data is labeled such that the thinnest junctions in the study are Mg/MgO barriers,

and these MTJs are presented as having lower RA values for comparable barrier

thickness. It is very likely that the data is mislabeled, but if this is the case, then
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Figure 2.12: Studies of various CoFeB alloy electrodes and their effect on
TMR in MgO MTJs (from ref[24] and [25]).
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the primary conclusion of this paper, that ultra-thin Mg/MgO barriers generate

MTJs with lower RA products, is incorrect. Regardless, the next installment from

the Anelva team, the work of Nagamine and co-workers [28], shows that use of a

Ta getter in conjunction with direct rf sputtering of an MgO barrier forms superior

junctions. While the issue of the performance of Mg/MgO barriers is confusing,

the conclusion that Mg/MgO barriers are more crystalline than MgO barriers (as

shown by x-ray diffraction and TEM), is correct. In addition, if the data is in fact

reversed with regards to Mg/MgO versus MgO barrier performance, then the data

from this paper is in complete agreement with the studies presented in chapter 4

of this dissertation.

Other interesting developments that relate to MgO-based MTJ formation are

being researched by several groups throughout the world. Isogami and co-workers

(Takahashi Group, Tohoku University) have used rapid infrared heating of the

bottom electrode - MgO barrier structure before top electrode deposition which

currently achieves ∼ 1.6 Ω(µm)2 and 210% TMR and shows great promise for

future MTJs. [29] Also, the use of highly spin polarized Heusler alloy electrodes

have shown great promise in MgO-based MTJs. [30–32] However, the enhancements

afforded by these materials are observed at low temperature but not at room

temperature and the materials are quite difficult to make in the proper crystal

orientation.

Some other exciting theoretical studies in conjunction with experimental in-

vestigations have advanced the field. Zhang and co-workers and Mathon and co-

workers demonstrated that interfacial FeO in a Fe / MgO / Fe MTJ significantly

reduces TMR due to the removal of the symmetry of the available Bloch states

at the electrode - barrier interfaces. [33, 34] Meyerheim and co-workers measured
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Figure 2.13: Studies of RA product reduction for different MgO barrier de-
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the formation of FeO using x-ray diffraction [35] and then followed these struc-

tural studies with theoretical modeling that including FeO on both sides of the

MgO should restore the symmetry and enhance TMR. [36] Butler and co-workers

extended their theory to include body centered cubic (bcc) Co / MgO / bcc Co

MTJs and showed that the TMR in this system should be even higher than that of

bcc Fe / MgO / bcc Fe. [37] The natural crystal structure of Co is hcp, but in an

experimental tour de force, Yuasa and co-workers strained 4Å layers of Co into the

bcc structure by growing Fe / Co / MgO / Co / Fe MTJs and confirmed the theo-

retical results. [38] Yuasa and co-workers also showed that in the CoFeB / MgO /

CoFeB MTJ structure the MgO barrier imprints its crystal structure onto the elec-

trodes during annealing which explains the high degree of crystallinity observed in

these MTJs. [39]

The materials work that has advanced the ability to achieve high TMR in low

RA MTJs has made these structures excellent candidates for magnetic random

access memory (MRAM), sensors, and logic applications. While there are certainly

many new aspects of this system to be explored and possibly optimized, the future

looks very bright for the use of MgO-based MTJs in a wide array of electronic

device applications.

2.1.1 Hard Disk Drive Read Heads and Magnetic Random

Access Memory

As result of the demonstrated ability of spin-polarized currents to efficiently reverse

the orientation of a thin film nanomagnet [40, 41], MRAM is now emerging as an

universal computer memory solution and is poised to replace both dynamic and
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static RAM (see Fig. 2.14 and 2.15). [42] Due to the nearly infinite write-cycling

capability and long retention time of roughly 10 years possible with magnetic

materials as well as the scalability of thin film devices, spin-torque MRAM may

even displace FLASH memory in many demanding non-volatile memory applica-

tions. The key challenge, which was discussed earlier in this chapter, is to fully

understand and to further improve the efficiency of MTJs in the ultra-thin (∼ 1

nm) barrier, low RA product regime that is optimal for MRAM devices written

by spin-polarized currents, and also to adapt the MgO barrier technology to be

compatible with more magnetically attractive (soft) electrode materials, such as

permalloy (Ni81Fe19, Py), to better enable switching and sensor applications.

The expansion of the computer hard disk drive industry fueled worldwide de-

mand for greater information storage capacity and generated thin-film technologies

that are robust and inexpensive. Substantial miniaturization of devices and broad-

ened understanding of nano-scale thin-film materials have allowed the industry to

expand significantly over the last ten years. The hard disk drive industry gained

new benchmarks in 2007 when Hitachi Global Storage Technologies announced

a 4 Terabyte desktop hard drive and NEC and Toshiba announced operational

magnetic memory chips that champion the MRAM effort, but clearly identify de-

vice density and signal strength as two key challenges. In MRAM, the memory

state is stored in a magnetic bit (an MTJ) that can have one of two magnetic

configurations. Magnetic memory is advantageous because information is stored

in thermodynamically stable magnetic fields unlike charge-based technologies that

require significant power to refresh the memory state. Although susceptible to fail-

ure during re-writing cycles, charge-based FLASH memory is inexpensive and this

has kept MRAM from emerging as a dominant non-volatile memory technology.

The research currently conducted addresses advancement in the density, signal
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strength, and speed of MRAM, which are the necessary ingredients to surpass

SRAM, DRAM, and FLASH technologies.

Promising MRAM architectures involve MTJs that can be written using spin

transfer torque switching (STTS) provide possible reduction of bit size and im-

provements in switching. [43] STTS is a phenomenon in nanoscale magnetic struc-

tures where, unlike in GMR devices, no applied magnetic field is necessary to switch

the magnetization of the free layer with respect to the reference layer. Instead,

large current densities (∼ 106 A/cm2) of spin-polarized electrons can impart a

torque on the free layer and thus switch the orientation of its magnetization. When

tunneling spin-polarized electrons are incident upon a nano-ferromagnet with anti-

parallel magnetization, the component of the electron spin that is parallel with the

magnetization is transmitted and the anti-parallel component of electron spin is

reflected. Since angular momentum must be conserved in the process, the trans-

verse component of the electron spin generates a torque on the nanomagnet. For

a sufficiently high current, the critical current (IC), the generated torque is large

enough to switch the magnetization of the nanomagnet, allowing writing of a mem-

ory state. This dramatically reduces the footprint of an MRAM cell by removing

wires that generate the magnetic fields necessary for toggle-based switching. [43]

However, to achieve large densities, fast switching speeds, and low power con-

sumption, and compete with existing SRAM, DRAM, and FLASH memories, new

breakthroughs in barrier technology and device implementation are necessary.

The major applications for MTJs are magnetic sensors, hard disk drive read

heads, and MRAM. If the noise floor of an MgO-based MTJ can be reduced,

then cheap thin film sensors with applications such as magnetocardiagrams can be

achieved that will be of significant benefit to society. Given that the RC time con-
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Figure 2.15: Comparison of MRAM cell size for toggle and STT MRAM
(from ref[44]).
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stant is significantly large in an MTJ (larger than ∼ 1 ns) it is unlikely that MTJs

will continue to be used in hard disk drive read heads. MRAM is the most exciting

application for MTJs, especially when STTS is incorporated into the MRAM cell.

With this particular application in mind, several materials advances can poten-

tially reduce IC while possibly maintaining thermal stability. The equation for IC

for a nanomagnet with in-plane magnetization shows that a highly spin polarized

material with low damping and small saturation magnetization could be used to

reduce IC .

IC =
1

η

(
2e

~

)
α

|cosφ|(VmHKMS)

(
1 +

2πMS

HK

+
H

HK

)
(2.3)

In this equation for IC , η is the spin polarization factor,e is the electron charge, α

is the phenomenological (Gilbert) damping coefficient, φ is the angle between the

spin direction and one of the two coordinate axes perpendicular to the direction of

current flow, Vm is the nanomagnet volume, HK is the uniaxial-anisotropy field,

and H is the applied magnetic field (see ref [44] for the details of the calculation).

The trade-off is the thermal stability of the free layer in the MTJ. The thermal

transition lifetime τL of the nanomagnet also includes MS in the expression for the

thermal energy barrier Eo.

τL = τAe
Eo
kbT (2.4)

Eo =
1

2
VmMSHK (2.5)

New MRAM architectures are currently under development, but these issues

37



are key to the advancement of MRAM as a universal memory solution. The use of

highly spin polarized, low MS materials may be beneficial for reducing IC , provided

that the thermal stability of the MTJ can be maintained.

2.2 Thin Film Growth

The samples that incorporate MgO or AlN tunnel barrier layers made for the ex-

periments discussed in the following chapters were grown either in the preparation

chambers in D7 (Prep 1 and Prep 2), or in the the seven gun AJA sputtering

system. The growth and preparation chambers in D7 were already outfitted with

thermal and electron beam evaporation capabilities thanks to many previous stu-

dents. The most recent additions made to the chamber just before I joined the

group were managed by Andrew Perrella and Phil Mather who assisted Aycan

Yurtsever and Ozhan Ozatay in fabricating the electron beam evaporator for Prep

2. Phil Mather and Andrew Perrella designed and assembled Prep 2 and installed

the New BEEM system. Phil Mather installed two 2” sputtering guns, along with

a throttle valve and a capacitance manometer so that Prep 2 has sputtering ca-

pability. He also installed an atomic Nitrogen source, or Nitrogen cracker, which

was used in the growth of some of the AlN films discussed in Chapter 6. With

help from Praveen Gowtham, I moved two additional 2” sputtering guns from the

old ”trashcan” system to the Prep 2 system so that now Prep 2 has 4 sputtering

guns and 3 electron beam evaporators. Mark Tseng, Yun Li, and I also moved the

atomic Nitrogen source to Prep 1 so that it can be used to nitridize film surfaces

grown in Prep 1 without transferring the samples through the load lock and risking

oxidiation. Previously Phil Mather fabricated and installed a heater into Prep 1 so

that samples can be annealed in-situ and transferred to either BEEM system, or
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to the XPS system without additional oxidation. The preparation chambers in D7

now have the capability to sputter multilayer film stacks for study in either BEEM

system or the XPS with the vacuum transfer operation. Over the years I have

used the prep chambers in D7 to make a variety of sample structures. My first

project was working with Andrew Perrella to study the scattering BEEM signal

from Au/Si Schottky diodes. I also worked with Eileen Tan and Phil Mather in

my early days making various structures incorporating AlOx layers, primarily for

study in the XPS system. Andrew Perrella, Phil Mather, Eileen Tan, and I worked

together to realize Andrew Perrella’s original concept for a vacuum transfer from

the BEEM system load lock to the XPS system. Ultimately I did these transfers

alone for the majority of my XPS studies.

The AJA sputtering system was originally set up by Frank Albert, Jordan

Katine, and Nathan Emley, and during my time in the Buhrman Group it was

managed by Nathan Emley, Greg Fuchs, Ilya Kravoratov, and Pat Braganca. The

first project I completed during my first summer in the group was to assist Nathan

Emley in putting a seventh gun in the AJA system. The system originally had 6

sputtering guns, but the successful growth of the film stack for the initial three-

terminal spin-transfer device concept required seven guns. Nathan Emley had the

original concept for the addition of the seventh gun and asked me to figure out

how to put it in the chamber. I used AutoCAD to make detailed drawings of

the chamber as it existed at that time and then designed the shutter mechanism

around the six other guns. Rodney Bowman from the LASSP machine shop made

the parts for me and drilled holes in a 6” flange to accommodate the sputtering

gun that Nathan Emley purchased from Kurt Lesker, Inc. Jeff Koski welded the

gun into the flange once the gun height was set and then we installed the gun

giving the AJA system the capability to sputter 7 different materials. I also made
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Figure 2.16: AutoCAD renderings of the seventh gun installation for the AJA
system.
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a chimney for the seventh gun so that the plasma formed over the gun could be

better controlled to reduce cross-contamination.

Several years later and after exploring the CoFeB / MgO system in detail with

XPS and STS, the next obvious step in the MTJ research was to make working

MgO MTJs for transport measurements. I figured this would allow me to better

correlate the materials work that Judy Cha and I had done and that it would also

expand the types of systems that could be made in-house by the Buhrman and

Ralph Groups. To achieve these goals, I have exerted significant effort to develop

a process which yields very good MTJ stacks specifically designed for spin transfer

junction experiments for the future. In the paragraphs that follow, I describe in full

detail and fully disclose all of the important steps that I found necessary to create

such structures. There are several ways to form MgO barriers and there will most

certainly be improvements and modifications that push the MTJ research effort

in new directions. What follows is not presented as a panacea, nor is it presented

as any great revolution, merely the result of hard work and my hope is that is

provides the group with more flexibility in growing future structures.

2.2.1 Growth Process for MgBO MTJ Thin Film Stacks

Seed Layer and Bottom Electrode Deposition

Two major challenges one faces in forming high quality thin film MTJs are the film

smoothness and the abruptness of the film interfaces, particularly the interfaces

between the electrodes and the tunnel barrier. The first layers that merit investi-

gation in the growth of a thin film device are the bottom seed layers, or smoothing

layers, grown on thermally oxidized Si wafers. These seed layers serve several pur-
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poses. First, the seed layers act to promote deposition of smooth electrode layers.

Second, these layers are used to engineer the sheet resistance (RS) of the bottom

layers. This is particularly important for current-in-plane tunneling (CIPT) [45, 46]

samples where the bottom electrode RS must be carefully controlled. To search for

the optimal seed layer structure, I investigated film structures using AFM measure-

ments of film surface roughness, XRD measurements of film crystallinity, and van

der Pauw measurements of RS. The majority of the XRD studies were performed

by Pinshane Huang, while I carried out the AFM and RS measurements.

I used the AJA sputtering system specifically for making the Mg-B-O-based

MTJ structures (discussed in detail in Chapter 4) for CIPT measurements. While

the procedures described here were developed for CIPT samples, they are also

applicable to the growth of layers for patterning nanopillars or other electronic

devices. In CIPT measurements of thin film stacks, the RS values of the top (RT )

and bottom (RB) electrodes are related to the tunnel barrier RA product and the

minimum probe spacing in the CIPT measurement (λ) through the formula below,

calculated by Worledge and Trouilloud. [45]

λ =

√
RA

RT + RB

(2.6)

To promote current flow through the film stack, RT should be at least 0.1 times

RB, however, a reasonable rule of thumb is to grow a film stack such that RT is

twice RB. [45] Moderately thick rf-sputtered MgO tunnel barriers, on the order of

∼ 1.5 nm thick, typically have an RA product on the order of (∼ 102-103 Ω(µm)2).

Using a standard CIPT probe configuration which has a minimum probe spacing

of λ ∼ 1.5 λm, RB should be ∼ 15 Ω/¤ and RT should be ∼ 30 Ω/¤ to optimize

the CIPT measurement. Thinner MgO tunnel barriers on the order of ∼ 1.1 nm
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Figure 2.17: Schematic of CIPT measurement (from ref[46] and [47]).
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thick, typically have an RA product on the order of (∼ 10 Ω(µm)2). For barriers

of this thickness using a standard CIPT probe RB should be ∼ 1.5 Ω/¤ and RT

should be ∼ 3.0 Ω/¤, which can be quite difficult to achieve.

The ultimate goal of the experiments described in this section is to form MTJs

with properties suitable for STT-MRAM architectures. A typical 1-Transistor 1-

MTJ MRAM circuit requires impedance matching of the MTJ to the transistor

which usually has a resistance of ∼ 0.5 - 1 kΩ. Inducing spin transfer torque

requires extremely small devices with lateral dimensions on the order of ∼ 100 nm

on a side. For the purposes of estimating the range of tunnel barrier RA products

necessary for an STT-MRAM MTJ, assume an elliptical device area with a major

axis (a) of length ∼ 150 - 300 nm and a minor axis (b) of length ∼ 50 - 100 nm. So,

the device area range is roughly ∼ 0.06 - 0.02 µm2. Multiplying the MTJ device

area by the transistor resistance range gives an estimate of the range of required

RA products for impedance matching the MTJ for STT-MRAM, namely RA ∼ 3

- 24 Ω(µm)2. Sputtered MgO tunnel barriers that exhibit such low RA products

are usually on the order of ∼ 1.0-1.2 nm thick, making them rather difficult to

grow. With such a thin tunnel barrier, the interfacial roughness of the electrodes

can lead to pinholes or shorts in the barrier which will diminish the TMR and

thus the sensitivity of the MTJ. To measure such an MTJ structure with CIPT

using the standard 1.5 µm probes, the structure must be engineered such that RB

is ∼ 0.15 Ω/¤ and RT is ∼ 0.3 Ω/¤, all the while maintaining a smooth bottom

electrode surface.

To facilitate the formation of low RS bottom electrodes, the use of Ta / CuN

multi-layers has proven quite successful on thermally oxidized Si wafers. [5, 21]

To promote film smoothness, the Ta layers are best grown using conventional dc
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Figure 2.18: TEM images of typical MgO MTJ CIPT structure grown in the
AJA system (data courtesy of J. Cha).
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sputtering at a high power of 350 W in 2 mTorr of ultra high purity (UHP) Ar at a

gas flow rate of 8 standard cubic centimeters per minute (sccm). This tends to form

Ta films that are amorphous and reasonably smooth as shown by the TEM image

in Fig. 2.18. The CuN films are best grown using reactive dc sputtering. This

process has been optimized for CIPT stacks by reactively sputtering in a mixture

of UHP Ar and UHP N2 at a relatively low power of 100 W. This is accomplished

by first lighting the Cu sputtering gun at 2 mTorr and 100 W in 8 sccm of Ar

and then increasing the Ar flow rate to 32 sccm. Once the plasma has stabilized,

which usually takes only a second or two, the N2 is introduced into the chamber at

a flow rate of 1 sccm. CuN films grown by this method have resistivity properties

similar to Cu films. This process is adapted from and identical to the process used

to form TaN layers with reactive DC sputtering which uses the same gas mixture

and sputtering power. As in the case of the CuN films, smooth TaN films can be

grown by first lighting the Ta sputtering gun at 2 mTorr and 100 W in 8 sccm of

Ar, then increasing the Ar flow rate to 32 sccm, and finally introducing N2 into the

chamber at a flow rate of 1 sccm. While further optimization may certainly prove

beneficial, these growth parameters form CuN and TaN films that have roughly

3% N content and are rather smooth.

In attempts to grow smooth, low sheet resistance, anti-ferromagnetically pinned

bottom electrodes, I have studied several multi-layer stacks. These stacks have

been examined with AFM to investigate the surface smoothness, and with a four-

point line probe apparatus fabricated by Ozhan Ozatay which uses the van der

Pauw method to determine the sheet resistance of the film multi-layer. The four

pins of the van der Pauw probe are equally spaced and a variable current (I) is

passed between the outer two pins while the voltage (V) between the inner two

pins is measured. Using Ohm’s law, the resistance (R) of the film multi-layer
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is determined by dividing the voltage by the input current R = V/I. The sheet

resistance is calculated according to the van der Pauw method by multiplying this

measured resistance by a geometric factor.

RS =
π

ln 2
R =

π

ln 2

V

I
(2.7)

One bottom electrode multi-layer stack configuration that has been studied is

5 Ta / 20 CuN / 3 Ta / 20 CuN / 3 Ta / 20 CuN / 3 Ta / 20 CuN / 3 Ta / 15

Ir20Mn80 / 4 Co60Fe20B20 (numbers are film thicknesses in nm). This stack has

an RS of ∼ 1 Ω/¤ and has a mean surface roughness of ∼ 0.2 nm and an RMS

surface roughness of ∼ 0.3 nm. Another stack that works equally well, perhaps

even better, is 5 Ta / 20 CuN / 5 Ta / 20 CuN / 5 Ta / 20 CuN / 5 Ta / 20 CuN

/ 5 Ta / 15 Ir20Mn80 / 4 Fe60Co20B20 (numbers are film thicknesses in nm). This

stack has an RS of ∼ 0.9 Ω/¤ and has a mean surface roughness of ∼ 0.3 nm and

an RMS surface roughness of ∼ 0.35 nm.

Other layers can be used to form smooth bottom electrodes. Multi-layers of Ta

and Ru, specifically 5 Ta / 20 Ru / 3 Ta / 20 Ru / 3 Ta / 20 Ru / 3 Ta / 25 IrMn /

4 CFB has proven to be quite smooth with a mean roughness of ∼ .17 nm and an

RMS roughness of ∼ 0.22 nm. Another alternative is to use layers of Ta and TaN.

Here, a layer of TaN, which is very smooth, is grown on a seed layer of Ta upon the

thermally oxidized Si surface. While both of these layer structures promote the

growth of smooth bottom electrode layers, they are each too resistive for CIPT and

have thus not been pursued further than as demonstrations of smoothing layers.

However, these layers could be quite useful as seed layers for device wafers that do

not require low bottom electrode sheet resistances. Although this may be the case,

capacitance issues may dominate in such structures if the bottom electrode sheet
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resistance is too high. Therefore, it is highly likely that the Ta / CuN multi-layer

structure will prove the most useful for future device structure growth.

Another approach to forming low RS bottom electrodes is to use a thermally

oxidized Si wafer that has been coated with a thick layer of Cu and then its surface

made flat and smooth with chemical mechanical polishing (CMP). This idea was

suggested by Daniel Worledge since the team at IBM Yorktown Heights found it

to be a successful way to get low RS values. The samples I have studied were made

by Niloy Mukherjee at Intel and are thanks to a discussion between Bob Buhrman

and Brian Doyle of Intel. Niloy grew ∼ 100 nm thick Cu films on twelve inch

diameter thermally oxidized Si wafers and then he CMP processed the wafers such

that they had a surface roughness of less than 0.2 nm as measured by him with

AFM. Using these substrates, I have found that almost any combination of film

layers results in a film stack which has an extremely small RS value of ∼ 0.05 Ω/¤,

which is sufficiently low for any low RA barrier CIPT measurement. However, the

surface copper oxide is difficult to remove and thus poor film adhesion issues arise

making film surfaces rough and nonuniform. In addition, the Cu may diffuse during

annealing, therefore for the purposes of these experiments I have used the Ta/CuN

multilayer stack for the bottom electrode seed layer.

The MgO (MgBO) Tunnel Barrier

The most crucial step in the growth of MgO based MTJs is obviously the depo-

sition of the MgO barrier itself. Different research groups have developed diverse

approaches to this deposition. In my opinion, the most successful technique is that

of Daniele Mauri, who developed a three-step process where first a layer of Mg is

deposited by dc sputtering, then a layer of MgO is deposited with ion beam depo-
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sition or reactive dc sputtering of Mg in an Ar/O2 atmosphere, then the Mg/MgO

bilayer is oxidized. The details of this process, at least to the degree that IBM

(now the intellectual property of Hitachi Global Storage) was willing to disclose

them, can be found in the patent of the film deposition process. [22] This MgO de-

position process is what was used by Parkin and co-workers in ref [17]. Renu Dave

at Everspin also worked out a successful deposition process involving Mg/MgO

bilayer deposition. [47] With this process, Mg/MgO bilayers can be oxidized by a

number of techniques, or films can be grown directly on the bottom electrode with

rf sputtering. Researchers in Japan, most notably the team of Shinji Yuasa, have

used electron beam deposition of MgO in conjunction with molecular beam epi-

taxy (MBE) deposition to form their MTJs. The research team at Canon Anelva

in Japan has also worked out very successful deposition techniques, ultimately ad-

vocating the direct deposition of MgO by rf sputtering on the bottom electrode.

However, before depositing the MgO, the Anelva team first deposits Ta as a get-

ter. Their publications do not make clear exactly how they do this, but based on

conversations that I’ve had with Anelva team members, my opinion is that they

light the Ta gun, but leave its shutter closed. Then Ta is deposited on the shutter

interior and the gettering action of the Ta acts like a sublimation pump and ab-

sorbs some of the oxygen which is evolved during the MgO deposition. Multiple

groups throughout the world have adopted this approach and confirm its utility.

The net result is that the deposition technique for the MgO barrier depends on

the desired application of the MTJ.

The first topic is the MgO target itself. Cost is an important consideration

for an academic group, so I chose to use sintered MgO targets. In sputtering it is

important to keep the target reasonably cool during deposition. Water cooling lines

run through the AJA guns and a copper mesh sheet is placed between the target
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and the copper cathode block for each gun. In an effort to keep the MgO target

cool, I have used a 0.125” thick MgO target with a 0.125” thick copper backing

plate. The two materials are bonded together with indium paste and help keep the

target cool. The total target thickness is 0.25” which fills up the entire AJA gun

gap. Such targets can be easily purchased from Williams Advanced Materials. At

the present time, the targets cost around $450 and require about 4 weeks of lead

time for delivery. To prevent contamination from the stainless steel parts of the

gun, I made a new clamping ring, identical to the stainless steel factory AJA part,

out of Al. All of the MgO films discussed in this dissertation, except the e-beam

films, were made with such a clamping ring in place. I made two copies, one for

the AJA and another for the sputtering gun in the prep 2 system in D7, both are

stamped ”AL” so that they will not be confused for stainless.

The target to sample distance in the AJA system is about 7 inches, and the

MgO deposition (at least the way I’ve done it for the CIPT samples) is performed at

high sputtering powers to make MgBO. The majority of the films discussed herein

were grown at an rf sputtering power of 300 W (Power density ∼ 14.9 W/cm2)

at 2 mTorr pressure of UHP Ar. Once the bottom electrode layer deposition

is complete, turn off the bottom electrode sputtering gun, and raise the chamber

pressure to ∼ 10 mTorr. Once this pressure is reached, light the MgO gun, typically

gun #2 in the AJA system, at an rf power of 20 W. This will begin the electrode

oxidation process, but if you move fast, the oxidation will be minimized. As I

will discuss later, the electrode oxidation and subsequent boron oxide diffusion

into the MgO barrier after annealing is actually beneficial to forming good MTJs.

It turns out that the CoFeB / MgO / CoFeB MTJ structure is quite forgiving.

Once the gun is lit in an rf plasma, reduce the chamber pressure to 5 mTorr, then

to 4 mTorr, then 3, then 2 mTorr. Next, raise the rf power to 300 W with a 3
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second ramp up time. At the moment that the gun power reaches ∼ 300 W and

after you have confirmed that the reflected power is 0 W, open the sputtering gun

shutter and begin the film deposition. Using this procedure, the deposition rate

for MgO is roughly ∼ 0.01 ± 0.001 nm per second. I have experimented with using

both Mg and Ta getters during the MTJ deposition. Both appear to be helpful in

controlling the plasma oxidation of the early stages of the MgO sputtering process.

In using the gettering procedure I have typically used dc sputtering of either Mg

or Ta at a power of ∼ 50 W. As described above, the shutter for the getter gun is

not opened during the MTJ deposition, so the gun merely acts to help control the

electrode oxidation. The MgO gun should be turned off as soon as possible after

the necessary time is reached to deposit the desired barrier thickness. The typical

approach I have used is to light the getter gun just before lighting the bottom

electrode gun. Then, I deposit the bottom electrode and leave the getter gun on

while lighting, adjusting, and depositing the MgO barrier. I also leave the getter

gun on while depositing the top electrode. In my film stack I always use Ta as the

capping layer above the top electrode, so when using the Ta gettering procedure

it is necessary only to ramp the Ta gun from 50 to 350 W before depositing the

capping layer. Although this procedure works great, the next step is to experiment

with things like lighting the gun at 2 mTorr and using low rf power for MgO growth

to see how these conditions effect the barrier formation.

Alloy Electrode Layers

The electrode layers are best deposited at low power. This is a little surprising

since typically higher power means faster deposition rates which leads to smoother

films. However, I’ve found that lower powers for these glassy magnets actually

form smoother films than higher powers. Lower powers also have the benefit of
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causing less stress to the targets because they do not get nearly as hot at low

power. This means the targets are less likely to crack and force a vent. The alloy

targets are pretty tricky to make, but Sophisticated Alloys in PA is a fantastic

vendor. They have made most of the targets I’ve used and typically can deliver

the desired composition within a few weeks from the time the order is placed.

Capping Layers

The final step to making a CIPT sample stack is to cap the MTJ layers with 8

nm Ta and then 7 nm Ru. With the Ta gettering process, the Ta gun is already

on when depositing the top electrode, so all one needs to do is to turn off the top

electrode gun and then raise the Ta gun power to 350 W and deposit the Ta cap.

For CIPT a Ru top layer is necessary since RuOx is conducting and therefore the

contact resistance between the CIPT probes and the sample top electrode will be

minimized.

2.3 Summary

This chapter introduced some of the important work in MTJ technology and also

described the sputtering process for the MgBO MTJs that I developed in the

AJA sputtering system. The film growth process is reliable, but has many steps.

However, I have repeated results several times and can confirm that if one follows

these steps with care, MTJs with similar TMR and RA values can be formed.

52



REFERENCES

[1] M. Julliere, Tunneling Between Ferromagnetic-Films, Phys. Lett. A 54, 225
(1975).
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CHAPTER 3

X-RAY PHOTOELECTRON SPECTROSCOPY STUDIES OF

CoFeB / MgO BILAYERS

3.1 Introduction

The growth of ultra-thin MgO tunnel barrier layers presents interesting challenges

with regards to controlling electrode oxidation and forming ideal electrode-barrier

interfaces. Several deposition techniques have been successfully employed to grow

MgO tunnel barriers in MTJs which achieve high TMR. [1–7] However, it is partic-

ularly important in sputtered MTJs that the structures are annealed after growth

in order to crystallize the electrodes and thus activate the junctions. [1–7] In this

chapter, I present X-ray Photoelectron Spectroscopy (XPS) studies which illumi-

nate the electrode oxidation process and the subsequent chemical changes in the

tunnel barriers and near the electrode-barrier interface that occur due to anneal-

ing. [8] The most widely used electrode materials in published works on MgO-based

MTJs are ferromagnetic CoFeB alloys. These alloys are amorphous as-grown but

crystallize during annealing. [9] However, in order for the electrodes to crystallize,

the glass-forming B must leave the electrode. This raises the question as to the

whereabouts of the B after annealing. The XPS data presented here show that in

CoFeB thin films, the B within the electrode is reactive with O. If the electrode

B is in close proximity to O, such as O chemisorbed on the electrode surface, or if

the electrode B is oxidized during the barrier layer growth, then the B can diffuse

out of the electrode towards the surface of the thin film structure.

The XPS data that I present in this chapter show that the deposition of MgO

on a CoFeB alloy electrode forms B, Fe, and Co oxides to varying degrees depend-
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ing upon the MgO deposition technique. This study suggests that both plasma

oxidation and thermal oxidation of a sufficiently thick Mg layer grown on a CoFeB

electrode do not appear to substantially oxidize the electrode and that subsequent

annealing of these bilayers forms chemically good MgO barriers. However, if the

Mg layer is not thick enough, then B within the electrode diffuses out of the elec-

trode and reacts with surface O to form B oxide and the surface material formed

is a mixed Mg-B oxide. This study also shows that MgO barriers formed with

electron beam (eb) evaporation only slightly oxidize CoFeB electrodes while more

substantial electrode oxidation occurs during the growth of radio frequency (rf)

sputtered MgO layers. The data presented in this chapter clearly show that rf

sputtering of thicker MgO layers and layers grown at higher sputtering pressures

form greater amounts of B, Fe, and Co oxides. This suggests that the rf sputtering

process acts to plasma oxidize the electrode with a thicker MgO layer or higher

chamber pressure during sputtering equating to a larger effective O dose. The

most interesting finding of this work is that vacuum annealing reduces the Fe and

Co oxides formed in the rf sputtering process, but that the B oxide remains in the

MgO barrier creating a mixed MgBO tunnel barrier.

The XPS data presented here taken from rf sputtered samples clearly show

that after annealing a chemical shift occurs in the spectra from the Mg, B, and O

species, indicating the local chemistry of the MgBO tunnel barrier has changed.

The data in this chapter also confirm that insertion of an Mg layer between the

CoFeB electrode and the MgO barrier is a successful way to reduce the initial elec-

trode oxidation. Previous research by scientists at the Canon Anelva corporation

suggests that Mg/MgO bilayer barriers have better TMR and RA attributes than

rf sputtered MgO barriers. [5] However, the results in this chapter show that such

Mg/MgO bilayer barriers still allow B oxide incorporation in the MgO barrier dur-
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ing annealing if the Mg layer is thinner than 1.4 nm, although the post-annealed

B oxide incorporation occurs in these structures to a lesser degree than in the case

of fully rf sputtered MgO barriers. Researchers at Freescale Semiconductor (now

Everspin) previously demonstrated optimized performance for their MTJs with

barrier layers made with a ”natural oxidation” process of 1.4-1.6 nm thick Mg

layers. [6] These two studies [5, 6] suggest that good MgO barriers can be formed

by controlling electrode oxidation. The results of the XPS study described in this

chapter in conjunction with the studies presented in chapter 4 provide clear evi-

dence that the formation of a MgBO barrier material has beneficial properties in

working MTJs. The primary focus of the XPS data presented in this chapter is to

provide deeper insight regarding the chemical changes that take place in a variety

of CoFeB / MgO bilayer systems and to begin to unravel some of the materials

physics inherent in MgO-based MTJs using B-alloyed ferromagnetic electrodes.

3.2 Sample Preparation

I grew the thin films in this study on thermally oxidized Si(100) substrates in a

vacuum system with a base pressure of ∼ 2 x 10−9 Torr. The majority of these

studies incorporate a 20 nm base electrode, deposited from a Co60Fe20B20 (CFB),

or Fe60Co20B20, (FCB) alloy target, which I made using dc magnetron sputtering in

1 mTorr of ultra-high purity (UHP) Ar. The thermal oxidation experiments use a

thinner 6 nm base electrode. Section 4 of this chapter discusses the direct oxidation

of the CFB and FCB electrode materials. For these samples, I first sputtered the

electrode layer and then transferred the sample into the system load lock chamber

where I exposed it to UHP O2 for various times. Section 5 of the chapter discuss

the results of plasma and thermal oxidation of a thin Mg layer grown on CFB.
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For the plasma oxidation studies, I sputtered the bilayer sample and then exposed

to an O2 plasma. I formed this by first introducing a 67%Ar 23%O2 gas mixture

into the growth chamber at a pressure of 1 mTorr. [6] Then I struck an rf plasma

on an MgO target at a power of 100 W with the gun shutter closed and rotated

the sample to face the sputtering gun which exposed the sample surface to the O2

plasma for a short period of time. I conducted the thermal oxidation experiments

in the same manner as described above for the electrode oxidation experiments.

The last sections of this chapter discuss experiments where I deposited eb

evaporated (section 6) or rf sputtered (section 7) MgO layers on either CFB or

FCB electrodes. I grew the eb evaporated layers using a stoichiometric MgO

source and carried out the deposition at a chamber pressure of less than ∼ 1 x

10−8 Torr. I made the rf sputtered layers from a sintered MgO target using a

sputtering power of 100 W (power density ∼ 4.9 W/cm2) in an Ar pressure of

either 1 or 10 mTorr. In addition to these studies, I investigated the formation of

an Mg/MgO bilayer barrier in section 8. For these samples I first deposited a thin

Mg layer (0.5 or 1.0 nm) on a CFB electrode and then rf sputtered an MgO layer

on the Mg layer. Figure 3.1 provides a list of all the experiments discussed in this

chapter. I made identical pairs of each sample structure and annealed one of each

pair in vacuum (PAnneal ∼ 1 x 10−9 Torr) at 300, 350, or 375 oC for one hour or

for one and a half hours. Once prepared, I vacuum-transferred the samples were

with a portable turbopump station (PPumpingStation ∼ 5 x 10−9 Torr) to a Surface

Science Laboratories SSX-100 x-ray photoelectron spectrometer for investigation.
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Co60Fe20B20

MgO

Fe60Co20B20

MgO

Plasma Oxidation of Mg
Thermal Oxidation of Mg 

e-beam Evaporation of MgO
RF Sputtering of MgO

Mg/MgO[rf] Bi-layer

e-beam Evaporation of MgO

RF Sputtering of MgO

Fe60Co20B20 Thermal Oxidation

Co60Fe20B20 Thermal Oxidation

Figure 3.1: Description of the thin film structures investigated using XPS
that are discussed in this chapter.
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3.3 Spectra Peak Fitting

As with any XPS study, it is paramount that a consistent peak fitting rubric is used

to analyze each of the data sets in a particular experimental investigation. If such

care is not taken, misinterpretation of the data can occur, leading to incorrect

conclusions regarding the changes in the chemical environment of the samples

studied. For this study, I calibrated the XPS detector to the Au 4f7/2 line at 84

eV and each of the acquired data sets to the strong intensity metallic Co2p3/2

and Fe2p3/2 photoemission lines at 778.3 and 707.0 eV respectively. [10] Along

with a low resolution survey scan over the energy range of 0-1000 eV, I acquired

five high resolution regions from each of the samples in this experiment. The B

1s (∼ 180-210 eV) spectral region, the Co 3p, Fe 3p, and Mg 2p (∼ 35-70 eV)

spectral region, the O 1s (∼ 525-545 eV) spectral region, the Fe 2p (∼ 700-735 eV)

spectral region, and the Co 2p (∼ 770-810 eV) spectral region, together provide

an in-depth picture of the chemical environment of the samples. Comparison of

identical samples before and after annealing, and comparison of samples prepared

by different methods unveils data trends that provide clues to the chemical nature

of the barrier and electrode materials and to the oxidation processes occurring in

these structures.

Figure 3.2 shows the peak fitting scheme I used for each of the samples in this

study. Using this type of consistent fitting approach, one can easily identify peaks

attributable to metal oxides and distinguish changes in the relative intensity of

metal and metal oxide peaks. The B 1s spectrum exhibits two peaks, which are

typical of most CoFeB / MgO structures. The peak at ∼ 188 eV is representative

of B in the CoFeB alloy while the peak at ∼ 192 eV is due to the oxidized B species

(see Fig. 3.3 for reference B oxide spectra). [10–12] The Mg 2p, Fe 3p, and Co 3p
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Figure 3.2: XPS peak fitting scheme for the B 1s, (Mg 2p, Co 3p, and Fe
3p), O 1s, Fe 2p, and Co 2p spectral regions for data taken from
a 20 nm Co60Fe20B20/2 nm eb evaporated MgO sample.
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spectral region for this sample has three peaks, which is typical of an electrode that

is not heavily oxidized. The peak at ∼ 50.0 eV is attributable to the Mg atoms

in the MgO layer (see Fig. 3.4 for reference Mg oxide spectra) [10, 13–15] and the

peaks at ∼ 52.7 eV and ∼ 59.4 eV are respectively attributable to the metallic Fe

and Co within the alloy electrode. [10] This spectral region also allows investigation

of the presence of Fe (∼ 55-56 eV) and Co (∼ 61 eV) oxides formed in the sample

structure [10], which can be confirmed with greater resolution through study of

the Fe 2p and Co 2p spectral regions.

The Co 2p and Fe 2p regions are typical of CFB-based sample structures. The

Co 2p region shows two peaks attributable to metallic species, one at ∼ 778.3

eV and one at ∼ 793.0 eV which are due to the Co 2p3/2 and Co 2p1/2 orbitals

respectively. CoFeB thin film samples that are more heavily oxidized (see Fig. 3.7

and Fig. 3.8) exhibit more peaks and give a clear indication of the presence of

Co oxides (see Fig. 3.5 for Co oxide reference spectra). [10, 16] The Fe 2p region

shows three peaks. The peaks at ∼ 707.0 eV and ∼ 720.0 eV are due to the

metallic Fe 2p3/2 and Fe 2p1/2 orbitals. [10] As with the Co 2p spectral region,

CoFeB samples that are more heavily oxidized (see Fig. 3.7 and Fig. 3.8) exhibit a

more complicated peak structure making Fe oxide identification a reliable process

(see Fig. 3.6 for reference Fe oxide spectra). [10, 17] The broad peak at ∼ 713

eV is the Co L3M45M45 Auger transition. [10] This peak has nothing to do with

oxidation and clouds investigation of the Fe 2p3/2 region. A similar Auger peak,

the Fe L3M45M45 transition (see Fig. 3.8) [10], is also apparent in samples utilizing

FCB alloy electrodes, but it appears in the Co 2p3/2 region. This observation

shows that study of these alloy materials will always rely upon close examination

of the higher Binding Energy (BE) region of the Co 2p and Fe 2p spectral regions,

and that the higher concentration transition metal atomic species in the alloy will
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Figure 3.3: B 1s and O 1s spectra from B2O3 thin films grown on Ta (from
ref. [11].
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Figure 3.4: Mg 2p and O 1s spectra from thermally oxidized Mg thin films
grown on Mo (from ref. [14]).
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contribute an Auger peak to the 2p spectrum of the lower concentration transition

metal atomic species of the alloy. Despite the complications due to the presence of

these Auger peaks, electrode oxidation is clearly distinguishable in the Co 2p1/2,

Fe 2p1/2, Co 3p, Fe 3p, and B 1s spectral regions.

The O 1s spectral region is the most difficult to interpret. The sample shown

in Fig. 3.2 is representative of a well-formed MgO layer. The peak at ∼ 530

eV is indicative of O atoms within the MgO layer and the peak at ∼ 533 eV, in

this case, is likely due to surface O or hydroxide species that are chemisorbed to

the MgO surface. [13, 15, 18] As will be shown in later sections of this chapter,

the O 1s region becomes much more complicated when a mixed Mg-B-O surface

is formed. B oxide typically yields an O 1s peak in the ∼ 532-533 eV range

(see Fig. 3.3) which overlaps with the surface O species. In contrast, Mg, Fe,

and Co oxides all yield O 1s peaks in the lower BE range of ∼ 529-531 eV (see

Figs. 3.4-3.6). [14–17] Despite the complexities of the spectra from these sample

structures, trends in chemical shifts and changes in relative peak intensities provide

a reasonably consistent approach, along with close examination of the metallic

spectral regions, for correct identification of oxide species.

3.4 Oxidation of CoFeB Thin Films

The growth of an oxide on a metal surface allows for the possibility of oxidation of

the underlying metal film layer. Due to the complex nature of the photoemission

spectra, study of the direct oxidation of the CoFeB alloy electrode surface helps to

clarify the oxidation processes that are present in CoFeB / MgO bilayer samples.

In this section I present the results from oxidation and annealing studies of CFB
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Figure 3.5: Co 2p and O 1s spectra from Co3O4 thin films grown on CoO
(from ref. [16]).
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Figure 3.6: Fe 2p and O 1s spectra from various Fe oxide films grown on
MgO or Al2O3 (from ref. [17]).
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and FCB thin films. Fig. 3.7 shows the B 1s, Fe and Co 3p, O 1s, Fe 2p, and Co

2p spectral regions taken from CFB samples that were exposed to light (∼10−4

Torr-second) or significant (∼15 Torr-second) oxidation doses. A light oxidation

dose forms only a slight amount of Fe and B oxide, but the Co remains un-oxidized.

This is a result of the greater electron affinities (EA) of Fe (EA,Fe ∼ 0.15 eV) and

B (EA,B ∼ 0.28 eV) relative to Co (EA,Co ∼ 0.66 eV) [19], which suggest that

Fe is the most likely species to oxidize, then B, and then Co. Therefore, moving

samples around in vacuum is sufficient exposure for Fe and B oxide formation,

but not for Co oxide formation. However, a higher O2 dose (∼15 Torr-second)

oxidizes all three electrode species such that a mixed surface oxide forms. I base

this determination on observation of the additional oxide peaks that appear in the

Fe 2p, Co 2p, Fe 3p, and Co 3p spectral regions. The transition metal oxides are

most easily identified in the 2p regions due to the larger relative peak intensities

and increased complexity of the spectral peak structure. The equal concentration

of Fe and B appears to promote the oxidation of both species over Co, although

the higher 15 Torr-second dose significantly oxidizes the Co electrode content.

In addition to the CFB oxidation study, I also studied oxidation and post-

oxidation annealing of FCB. Fig 3.8 shows the data from these FCB samples,

which are similar to the data from CFB samples with a few significant differences.

The Fe 3p and Co 3p region shows that the relative intensity of the Fe 3p and Co

3p peaks is the inverse of the relative intensity of the peaks from a CFB sample.

This is because of the difference in atomic concentration between the alloys. Also,

the Fe LMM Auger transition peak is prominent in the Co 2p spectral region as

previously discussed. The data suggest that a light oxidation forms only a slight

amount of Fe oxide. I draw this conclusion both from the absence of a significant

B oxide peak in the B 1s spectrum and also from the O 1s spectrum, which is
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Figure 3.7: XPS data from lightly (∼ 10−4 Torr-second O2 dose) and signif-
icantly (∼ 15 Torr-second O2 dose) oxidized 20 nm Co60Fe20B20

films.
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centered around ∼ 530.5 eV and is thus indicative of Fe or Co oxide. [16, 17] After

annealing there are striking changes in the B 1s and O 1s spectra. A substantial

B oxide peak evolves and the O 1s peak has shifted to a higher BE of nearly ∼
533 eV. There is no presence of either Fe or Co oxide peaks in the various Co and

Fe spectral regions. These features together are indicative of a mixture of B oxide

and surface O species. [11, 12] These findings suggest that the B in the electrode

diffuses out of the electrode during annealing and reacts with the surface O and

Fe oxide, reducing the Fe oxide and forming B oxide. A heavier oxidation dose

dramatically increases the intensity of the Fe and Co oxide peaks, although the B

oxide peak shows surprisingly low intensity. This behavior can be attributed to the

greater reactivity of Fe with O in comparison to B and Co. Also, careful inspection

of the admittedly noisy B 1s spectrum shows no clear metallic B signature. So,

it is likely the heavier oxidation dose oxidizes all three electrode species, as in the

CFB case. Annealing this sample has a similar effect to what is shown in the

lighter oxidation dose sample. Annealing reduces the Fe and Co oxides while the

B oxide peak increases dramatically in relative intensity, demonstrating again both

the diffusive and reactive nature of B from within the alloy electrode.

These studies of CFB and FCB alloy thin films suggest that all three electrode

species can be oxidized if the oxidation dose is large enough. The studies also show

that annealing an oxidized alloy thin film changes the nature of the surface oxide

by increasing the B oxide content and reducing the Fe and Co oxides. This is most

likely due to the partial crystallization of the alloy material during the annealing

process. The alloy cannot fully crystallize if any glass-forming B remains within

the electrode. Therefore, during the anneal some B diffuses out of the electrode

and reacts with the surface O or reduces the transition metal oxides at the film

surface. In sections 7 and 8 of this chapter, and in chapter 4, I show show that
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the diffusive and reactive nature of B has significant consequences in MTJs with

rf sputtered MgO barriers in conjunction with B-based alloy electrodes.

3.5 Plasma and Thermal Oxidation of CoFeB / Mg Bilay-

ers

In an effort to understand the impact of the diffusion and reaction of B both

during growth and during annealing, I investigated thermal and plasma oxidation

of an Mg layer. In Fig. 3.9 the relevant spectral regions from 1.4 nm thick Mg

films grown on CFB and plasma oxidized for either 10 or 30 seconds are displayed

for structures before and after annealing. Previous research shows that a 1.4 nm

thick Mg film which is plasma oxidized forms a good barrier material. [6] The

data presented in this section show that a 1.4 nm thick Mg film exposed to plasma

oxidation is fully oxidized while the underlying CFB electrode remains un-oxidized.

After annealing, the electrode still remains un-oxidized and there is no increased B

oxide peak intensity. Annealing these films to 375oC does slightly modify the MgO

barrier material. After annealing, both the Mg 2p and O 1s MgO peaks exhibit

a chemical shift to lower BE and the surface O peak decreases in intensity. This

behavior is indicative of surface O being driven into the MgO material and the

subsequent formation of a more chemically stable MgO layer. [13–15, 18] These

data suggest that a sufficiently thick (1.4 nm) Mg layer is an effective way to

protect the underlying electrode from oxidation.

A more extensive study of the thermal oxidation of an Mg layer grown on CFB

confirms that the minimum Mg film thickness required to prevent the oxidation of

the CFB electrode is 1.4 nm. Fig. 3.10 shows data from two sets of experiments.
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Figure 3.9: XPS data from plasma oxidized 1.4 nm thick Mg thin films de-
posited on 20 nm thick CFB base electrodes before and after
annealing.
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In these experiments, I first deposited varying thicknesses of Mg on CFB and then

exposed them to different O2 doses. I also annealed the samples to 300oC for 90

minutes after O2 exposure to study the diffusion and oxidation of B during the

anneal. The data reveal that while 1.0 nm of Mg is sufficient to fully protect

the CFB electrode during the initial oxidation, annealing diffuses B out of the

electrode for all three oxidation doses that were studied. More importantly, the

data shows that the B in the electrode is most likely to oxidize only after annealing

in this process. Both 1.0 nm and 1.2 nm (not shown) thermally oxidized Mg layers

show an increase in B oxide signal intensity after annealing. This suggests that the

annealing process is the key reason for the additional B oxide content in the surface

oxide and that diffusion of B during the anneal is the most likely explanation for

the B oxide signal intensity increase. The Mg 2p and O 1s MgO peaks show

increased signal intensity and a chemical shift to lower BE after annealing while

the surface O peak shows a decrease in signal intensity after annealing. As in

the plasma oxidized case, this suggests that the surface O is driven into the MgO

layer, presumably filling O vacancies in the MgO, forming a more stoichiometric

material. An additionally interesting feature of the data is the decrease of the Mg

2p MgO peak intensity after annealing in the un-oxidized case. This is probably

due to the diffusion of electrode B during annealing towards the film surface where

it is subsequently oxidized. The surface oxide becomes a mixture of Mg and B

oxides, with the B oxide above the MgO in the film stack.

A thicker 1.4 nm Mg layer, as in the plasma oxidized case, is sufficient to

both protect the CFB electrode from oxidation and also to prevent the significant

increase in B content in the surface oxide after annealing. In this case, no B

oxide signal intensity is apparent in samples measured before or after annealing.

As in the plasma oxidized experiments, the Mg 2p and O 1s MgO peaks shift to
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lower BE after annealing and the surface O 1s peak decreases in intensity after

annealing. These features again suggest the formation of a more chemically stable

MgO layer. As in the 1.0 nm thick Mg sample, the un-oxidized 1.4 nm Mg layer

is different from the two oxidized samples. The Mg 2p spectral region for the un-

oxidized version of this sample shows two Mg peaks, which are attributable to the

oxidized and un-oxidized Mg species. [10, 13–15] After annealing, only one peak is

present which shows that annealing has oxidized all of the MgO by reacting the un-

oxidized Mg with surface O. As in the plasma oxidation experiments, these thermal

oxidation experiments demonstrate that an Mg layer 1.4 nm thick is necessary to

fully protect the CFB electrode from oxidation and to prevent incorporation of B

into the surface oxide during annealing.

3.6 Electron Beam Evaporated MgO Layers on CoFeB

electrodes

Electron beam evaporation of an MgO tunnel barrier is an effective way to form

high quality MTJs both in terms of coherent crystallinity and in terms of high

junction TMR. [3, 20] Typically this deposition technique is used in conjunction

with Molecular Beam Epitaxy (MBE) electrode film growth, but for the purposes

of exploring electrode oxidation, and also to serve as a comparison for MgO barriers

grown with other deposition methods, this section discusses experiments where I

eb evaporated MgO barriers on both CFB and FCB electrodes. Fig. 3.11 displays

the spectra from 1.0 and 2.0 nm thick eb evaporated MgO layers grown on CFB

layers. Inspection of the Co 2p, Fe 2p, and Mg 2p spectral regions shows that there

is no indication of Co or Fe oxide in these samples. The B 1s region does show a
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Figure 3.10: XPS data from thermally oxidized 1.0 and 1.4 nm thick Mg thin
films deposited on 6 nm thick CFB base electrodes before and
after annealing.
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small intensity B oxide peak which I attribute to the slight oxidation of B at the

electrode surface due to O ions liberated during evaporation. In-situ measurements

with a Residual Gas Analyzer taken by Phil Mather [21] show that O is evolved

during the evaporation process. The O 1s spectra display two distinct peaks, one at

∼ 530 eV attributable to O in the MgO layer, the other at ∼ 533 eV, attributable

to chemisorbed O and possibly hydroxide species on the MgO surface. [13, 15]

Both the O 1s and the Mg 2p peaks due to the MgO layer shift slightly to higher

BE as the film thickness increases from 1 to 2 nm, which is attributable to the

image charge effect. [22] Compositional analysis using the lower BE O 1s and

Mg peaks finds these eb evaporated MgO layers are approximately stoichiometric.

Other than a slight increase in the B oxide peak intensity, there appears to be no

significant change in the chemistry of these samples after annealing.

I repeated this series of experiments on FCB electrodes and the results are

quite similar to the study discussed in the previous paragraph. Fig. 3.12 shows

the spectra from 1.0 and 2.0 nm thick eb evaporated MgO layers grown on FCB

electrodes. The Fe 2p and Co 2p spectral regions do not show any indication of

oxide formation before or after annealing, but the B 1s region has the signature of a

broad B oxide peak which does increase slightly in signal intensity after annealing,

as in the CFB-based study. The O 1s region shows the highest B oxide intensities

for the 1.0 nm thick MgO layer, particularly after annealing, which again suggests

that the B diffuses out of the electrode during annealing. The decreased relative

intensity of the B oxide peak for the thicker MgO film is likely due to increased

scattering from the thicker MgO material on top of the electrode. These observa-

tions advocate the possibility that the B oxide formed in these samples is at or near

the FCB / MgO interface. Unlike the samples grown on CFB, there is no image

charge shifting of the Mg 2p and O 1s MgO peaks as a function of film thickness.
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Figure 3.11: XPS data from 1.0 and 2.0 nm thick electron beam evaporated
Mg layers grown on CFB electrodes before and after annealing
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This, along with the comparatively larger B oxide content, is most probably due

to a more efficient reaction between electrode B and O evolved in the evaporation

process for the FCB electrode alloy. This structure forms more B oxide at the FCB

/ MgO interface which appears to compensate the image charge effect by pinning

the FCB EF within the MgO bandgap such that the MgO conduction band is

closer to the FCB EF . This suggests that the formation of interfacial B oxide can

effect electrode EF pinning which ultimately determines the tunnel barrier energy

barrier height.

3.7 Radio Frequency Sputtered MgO Layers on CoFeB

electrodes

The most successful deposition technique for forming high TMR low resistance

area (RA) product MTJs is rf sputtering of an MgO target. [1, 2, 4, 5, 7] This

method is technologically viable since it is compatible with existing circuit pro-

cessing protocols and can generate uniform, large area thin film stacks. Previous

studies show that one major reason why this deposition method is so successful is

that rf sputtering of MgO barrier layers in conjunction with B-alloyed ferromag-

netic electrodes forms MTJ structures that crystallize from the barrier material

into the electrode. Specifically, the MgO tunnel barrier imprints its crystal struc-

ture onto the initially amorphous electrodes as the electrodes crystallize during the

annealing process. [9] However, in order to crystallize, the B must leave the elec-

trode, which begs the question addressed in detail in chapter 4: where does the B

go during the annealing process? The studies discussed in this section clearly show

that rf sputtering of MgO significantly oxidizes the B-alloyed electrodes and the
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Figure 3.12: XPS data from 1.0 and 2.0 nm thick electron beam evaporated
MgO layers grown on FCB electrodes before and after annealing.
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chemical nature of the tunnel barrier material is substantially modified during the

annealing process. This observation has major consequences for optimization of

future MgO-based MTJ circuits and raises the question as to whether a significant

B oxide component mixed into the MgO tunnel barrier is detrimental or beneficial

to the MTJ performance.

In Fig. 3.13 I show data from two rf sputtered CFB / MgO bilayers before

and after annealing. The B oxide peak at ∼ 192 eV is quite large compared

to eb evaporated MgO samples and the relative intensity of the B oxide peak

is greater for a 2 nm thick MgO layer where Fe and Co oxides are also clearly

present. This establishes that B oxide is formed throughout the rf process by O2−

ions released during the sputtering of the MgO target. The observation that the

initial formation of B oxide is favored in electrode oxidation is consistent with the

previously discussed XPS measurements of CoFeB electrodes exposed to different

O2 doses. The O 1s spectrum from the 1 nm thick MgO sample also has a broad

dominant peak at ∼ 531 eV and a much smaller peak at ∼ 530 eV, with the latter

attributable to MgO and Fe oxide. Based on the previous peak identifications

and the clear presence of significant B oxide content, the higher BE O 1s peak is

attributable to B oxide, surface O, and possibly some mixed Mg-B oxide. The O

1s spectrum for the 2 nm thick MgO layer can also be fit with two broad peaks,

but both peaks are shifted to higher BE relative to the 1 nm thick MgO layer data.

The lower BE O 1s peak has gained intensity and is likely the convolution of MgO

with Fe and Co oxide signals.

The effects of annealing are considerably different for rf sputtered MgO barriers

in comparison to the MgO barriers formed by other methods that I discussed

previously. The rf sputtering process forms substantial B oxide and annealing
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Figure 3.13: XPS data from 1.0 and 2.0 nm thick rf sputtered MgO layers (1
mTorr) grown on CFB electrodes before and after annealing.
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further increases the intensity of the B oxide signal in these films. The B:Mg cation

ratio in the oxide changes from ∼ 0.6 before annealing to ∼ 0.8 after annealing for

a 1 nm MgO layer and from ∼ 0.3 before annealing to ∼ 0.5 after annealing for

a 2 nm MgO layer. This provides further indication that a substantial amount of

B diffuses into the MgO barrier during annealing. Previous XPS depth profiling

studies (shown in Fig. 3.16) yielded a similar conclusion for annealed CoFeB/MgO-

based structures. [23] The rf sputtered MgO data from the study in this chapter

also shows that annealing significantly reduces the Co and Fe oxide peaks and

shifts these transition metal oxide peaks to lower BE. These modifications indicate

a reduction in the oxidation state of the Co and Fe cations and suggest that B from

the electrode is responsible for the reduction of the Co and Fe oxides. The most

important feature of the data from these rf sputtered MgO barrier layers is that

annealing shifts the oxidic Mg and B peaks to higher BE by roughly 1 eV for the 1

nm thick MgO layer. A shift of almost 1 eV is also apparent in the O 1s spectrum

and the broad peak structure has become more uniform after annealing. This same

peak shifting behavior is present in the 2 nm thick MgO layer samples, but to a

lesser degree. This collective shifting of the Mg, B, and O peaks in samples with

significant B oxide content suggests that after annealing the oxide is an intermixed

MgBO material. In this case the upward shifts of the Mg, B, and O peaks can be

explained by the Mg2+ cations being in a lower average state of O coordination

than in pure MgO and the oxidic B in a more ordered or a higher oxidation (B3+ as

opposed to B2+) state after annealing. The presence of B oxide mixed within the

rf sputtered MgO barrier has also been observed in full MTJ stacks using electron

energy-loss spectroscopy. [24]

I repeated this experiment for a higher rf sputtering pressure of 10 mTorr. The

results of this study (Fig. 3.14) are similar to the 1 mTorr study but show some
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significant qualitative differences. The relative intensities of the B, Fe, and Co oxide

peaks are larger for the two sample thicknesses than for the 1 mTorr case. Given

that deposition rate calibrations are estimated from very thick samples (greater

than 50 nm thick) it is reasonable to conjecture that the higher pressure deposition

actually forms a thicker oxide in the ultra-thin limit. This is due both to a more

efficient MgO deposition process and also to enhanced plasma oxidation. Also,

the O 1s spectra appear to have greater MgO content as evidenced by the central

location of the peak structure occurring at low BE relative to the 1 mTorr case.

Despite these differences, the shifts in BE of the Mg, B, and O peaks are still quite

pronounced after annealing for both the 1 and 2 nm thick samples.

I also studied rf sputtering of MgO at 1 mTorr on a FCB electrode, as shown in

Fig. 3.15. The data from these films are very similar to the data from the 1 mTorr

CFB study with the major differences in the Mg 2p, Fe 3p, and Co 3p region being

due to the differences in alloy composition. There does appear to be more B oxide

formed in these samples than in the CFB case, as in the FCB eb evaporated MgO

study, which could be due to a difference in vacuum deposition conditions between

the studies. The relative intensity of the Fe and Co oxide peaks, both before and

after annealing, is very similar to both the 1 and 10 mTorr CFB study and the

peak shifting of the Mg, B, and O species is apparent in these films. These findings

suggest that while there may be some small variation in the initial amount of B,

Fe, and Co oxides that form during the MgO rf sputtering deposition, B from the

electrode will always act to reduce the Fe and Co oxides and will mix with the

MgO layer to form a Mg-B-O barrier material.
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Figure 3.14: XPS data from 1.0 and 2.0 nm thick rf sputtered MgO layers (10
mTorr) grown on CFB electrodes before and after annealing.
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Figure 3.15: XPS data from 1.0 and 2.0 nm thick rf sputtered MgO layers (1
mTorr) grown on FCB electrodes before and after annealing.
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Figure 3.16: XPS depth profiling data from CoFeB/MgO/Ta and
CoFeB/MgO/CoFeB/Ta structures before and after annealing
(from ref [23]).
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3.8 Sputtered Mg / MgO Bilayers on CoFeB electrodes

Deposition of a Mg seed layer between the electrode and the tunnel barrier is a

successful way to increase the crystallinity of the MgO material both before and

after annealing. [5] The studies that I discuss in this section probe the chemi-

cal changes that take place in such Mg/MgO bilayers in comparison to fully rf

sputtered MgO barrier layers. Fig. 3.17 and Fig. 3.18 show XPS spectra from

CFB/Mg/MgO trilayer samples. There is clear indication of B oxide formation

in the data from the thin 0.5 nm Mg seed layer samples shown in Fig. 3.17, but

there does not appear to be any Fe or Co oxide formation in these samples. After

annealing, both the 0.5 nm Mg / 0.5 nm MgO and 0.5 nm Mg / 1.0 nm MgO

structures exhibit the peak shifting behavior previously discussed for rf sputtered

MgO barrier layers. These findings confirm that a very thin (0.5 nm) Mg layer,

while sufficient to increase the crystallinity of the MgO barrier, is not sufficiently

thick to prevent B oxide incorporation into the MgO layer. However, this process

may also depend upon the amount of O present in the deposition chamber and the

chamber pressure during the MgO deposition.

In contrast, the data shown in Fig. 3.18 indicate that a 1.0 nm thick Mg layer

is thick enough to prevent the initial formation of B oxide during deposition of a

thin (0.5 nm) MgO layer. From these studies I conclude that the underlying Mg

layer, if sufficiently thick, serves effectively as a sink or getter for the O2− ions that

evolve during the rf sputter process. The Mg layer prevents electrode oxidation

until it is fully oxidized, either by deposition of a thicker MgO layer or by reaction

of the Mg with surface O during annealing. These findings give strong indications

that after the Mg layer is fully oxidized, formation of B oxide at the CoFeB/MgO

interface begins.
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Figure 3.17: XPS data from sputtered Mg / MgO bilayers grown on CFB
electrodes before and after annealing.
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The O 1s spectra from these Mg/MgO bilayer barrier samples provide useful

insights for understanding the rf sputtered MgO O 1s spectra. The O 1s spectrum

from the 1 nm Mg/ 0.5 nm MgO sample is similar to spectra from eb evaporated

MgO samples, and compositional analysis indicates that the 1 nm Mg/ 0.5 nm

MgO process results in the formation of an MgO layer that is approximately stoi-

chiometric. In comparison, while the 0.5 nm Mg/1nm MgO sample also shows an

O 1s peak at ∼ 530 eV, the higher BE O 1s peak is larger and centered at ∼ 532

eV while the B 1s spectrum indicates a substantial oxidic B component. Based on

this, I attribute the large, broad O 1s peak centered at ∼ 532 eV to a mixture of

surface O and B oxide.

In contrast, the spectra for the 1 nm Mg/ 0.5 nm MgO sample show that when

there is little B oxide initially present, annealing measurably increases the oxidic B

signal, but does not have the effect of making B a substantial component (greater

than 5%) of the oxide. After annealing the B:Mg cation ratio in the oxide becomes

∼ 0.1 for the 1 nm Mg/ 0.5 nm MgO sample and changes from ∼ 0.25 to ∼ 0.6

for the 0.5 nm Mg/ 1 nm MgO sample. Thus, if the initial B oxide content is

low, after annealing there is no detectable shift of the Mg 2p peak and the oxide

has the character of MgO that is slightly doped with B oxide. Alternatively, if

the initial oxidic B content is higher, a major shift of the Mg, B, and O peaks to

higher BE occurs upon annealing suggesting the formation of an atomically mixed

MgBO barrier material with a substantial (∼ 10%) B component.

3.8.1 Use of a Ta getter During rf Sputtering

The research team at Canon Anelva in Japan recently showed that using a Ta getter

during the deposition of the MgO barrrier by rf sputtering forms MTJs that are
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Figure 3.18: XPS data from sputtered Mg / MgO bilayers grown on CFB
electrodes before and after annealing.
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capable of achieving ultra-low RA products (∼ 0.5 Ω(µm)2) with reasonably high

TMR values of ∼ 50% after annealing. [25] This process will be described in more

detail in the next chapter. However, within the context of XPS studies, it is worth

mentioning here that while this process certainly decreases the electrode oxidation

during the initial stages of MgO barrier layer growth, it does not completely prevent

electrode oxidation in such samples. In fact, data from an XPS study (Fig. 3.19)

of structures formed using the process outlined in ref [25] appears to be quite

consistent with the findings discussed in this chapter. [26] Specifically, the O 1s

spectra are very likely representative of the presence of B oxide in the tunnel

barrier. Without the Ta getter the high BE O 1s peak intensity is much larger,

but in both cases there is a high BE O 1s component which is likely due to B

oxide. In the next chapter I will discuss in more detail the beneficial effects the B

oxide has on the chemical, electronic, structural, and electron transport properties

of sputtered MTJs.

3.9 Summary

Using XPS I observe the formation of B oxide, and in some cases Fe and Co oxide,

at the interface of rf sputtered CoFeB/MgO bilayers. I attribute this result to

the evolution of a substantial quantity of O2− ions during the initial stages of the

deposition of rf sputtered MgO layers. I find that vacuum annealing promotes

reduction of the Fe and Co oxides and forms a mixed Mg-B oxide tunnel barrier

layer as evidenced by the substantial chemical shift of the Mg, B, and O peaks.

Both eb deposition of MgO and insertion of a thin Mg layer between the CoFeB

electrode and the MgO layer substantially reduce or eliminate the amount of B, Fe,

and Co oxides initially formed. However, I find that some B is still incorporated
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Figure 3.19: Comparison of XPS data from sputtered MgO barrier layers
grown with or without the use of a Ta getter (adapted from
ref[26]). The Ta getter process reduces but does not eliminate
the formation of MgBO, as shown by the intensities of the peak
at ∼ 532 eV.
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into the MgO tunnel barrier after annealing unless an Mg layer 1.4 nm thick or

thicker is deposited on the CoFeB electrode before the MgO is formed.

Using compositional analysis of as-grown CoFeB/MgO samples, which for the

sake of simplicity assumes a uniform distribution of B oxide, I yield an estimate of

less than 2% B oxide content in eb evaporated MgO layers but significantly more

B oxide content (greater than 5%) in rf sputtered MgO layers. The B:Mg ratio

decreases with increased film thickness which indicates that the B oxide is formed

more readily during the initial stages of the MgO deposition process. However, the

B oxide signal intensity increases with increased MgO thickness for rf sputtered

samples indicating that some electrode oxidation takes place throughout the rf

sputtering deposition process. In Mg/MgO bilayers there is no clear signal of B

oxide in the 1 nm Mg/ 0.5 nm MgO sample while the B:Mg cation ratio in the 0.5

nm Mg/ 1 nm MgO sample is ∼ 0.25, similar to the ratio for the 2 nm rf sputtered

MgO layer sample structure.

The lack of substantial Fe and Co oxide formation in the un-oxidized CFB

and FCB samples demonstrates that significant electrode oxidation does not take

place during the dc sputtering process or upon limited exposure to typical vacuum

system pressures. Instead, it is the exposure of the electrode to O, either through

direct oxidation (O2) or during the deposition of MgO (O2−), that causes the

electrode species to oxidize. Therefore, the increased crystallinity observed in

MTJs with MgO barriers that is achieved by inclusion of an Mg layer or through

use of gettering materials during the MgO deposition, is due to the capture of O2−

liberated from the MgO target in the early stages of sputtering. From the XPS

studies discussed in this chapter I conclude that a reaction between the O evolved

in the MgO formation process and B from the electrode, especially in rf sputtered
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MgO barriers, appears to be an inherent part of the growth and processing of

MgO-based MTJs. The investigation now turns to the benefits of MgBO tunnel

barriers which I address in the next chapter.
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CHAPTER 4

CHEMICAL, ELECTRONIC, STRUCTURAL, AND MAGNETIC

INVESTIGATION OF MgBO BASED MTJS

4.1 Motivation

Nanoscale MTJs are the key device element in next generation MRAM and in the

read heads of contemporary ultra-dense data storage architectures. The deposition

procedures optimized for these applications may also be applied to future, large

area, low noise thin film sensors. Although read head sensors currently exist which

exploit the MTJ as a sensor element, if low noise MTJs are formed with the

same deposition techniques, then cheap thin film sensors could potentially replace

several much more expensive technologies, particularly in the bio-medical field.

In the present day, MRAM shows a great deal of promise for the development of

universal memory. The ability to control both spin-polarized tunneling through an

atomic-scale tunnel barrier and magnetic field toggle switching of the ferromagnetic

electrodes in the MTJ have already led to the production of commercial MRAM.

[1] MRAM combines the nonvolatile nature of FLASH with the high speeds of

dynamic RAM, and could potentially replace both as a universal memory solution.

Although toggle-based MRAM has demonstrated remarkable performance to date,

the use of spin torque (ST) to switch the resistance state of the MTJ provides the

possibility of substantially reducing the area and power consumption necessary

for an MRAM bit. This can dramatically increase the memory density, however

there are several challenges that must be addressed to achieve this goal. One

important challenge is the reduction of the tunneling current density necessary to

rapidly switch the relative orientation of the MTJ electrodes. Another substantial
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challenge is the reduction of the time required to make such a switch. Improvement

of the tunnel barrier material may provide a solution to the first challenge. If the

tunnel barrier acts as an efficient spin-filter and has enhanced physical, chemical,

and thermal stability, then less current density may be required to switch between

MTJ resistance states. Both the first and second challenges are addressed through

careful engineering of the free electrode with a material that has a low saturation

magnetization (MS). [2] The critical current for switching (IC) is proportional to

(MS)2, while the thermal stability of the free layer is proportional to (MS). [3]

However, it is crucial to achieve a balance where devices exhibit room temperature

thermal stability but achieve low critical current values. I discuss these topics

in greater detail in Chapter 2 along with a discussion of the relevant research

performed to date. With these issues in mind, exploration of barrier and free

electrode engineering are of significant importance for the potential enhancement

of ST switching in MTJs for future ST-MRAM bits.

4.2 Introduction

The development of MTJs with MgO barriers that exhibit large TMR [4–6] through

the engineering of optimal electrode materials [7–9] and barrier deposition tech-

niques [10–14] shows promising results applicable to MRAM and to magnetic sens-

ing in advanced data storage, biomedical, and security applications. Ideal crys-

tal structures and interfaces are central to the theoretical model for high TMR

in epitaxial Fe/MgO/Fe MTJs. [15–18] These models predict enhanced spin po-

larization and TMR of properly oriented crystalline electrodes through a spin-

filtering tunneling effect. Spin-filtering improves TMR through dissimilar decay

rates for electrode majority and minority spin states within the MgO barrier.
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The influence of crystal structure on spin-filtering is clearly supported by exper-

imental results from sputtered CoFeB/MgO/CoFeB MTJs, where the low TMR

of as-deposited structures with amorphous electrodes increases substantially upon

annealing. [4, 5, 7, 8, 10–14] During annealing, the (001) normal MgO barrier in-

fluences the crystallization of the adjacent electrodes [19], forming body centered

cubic (bcc) electrodes which have the requisite spin-split electrode wave-function

symmetries to generate high TMR. This crystallization need not be extensive, as a

recent theoretical study finds that one crystalline Fe monolayer is sufficient to yield

high TMR. [20] Therefore, diffusion of Fe to the barrier interfaces, or segregation

of Fe at the barrier interfaces during each the growth or annealing stages of MTJ

formation could have a significant impact on device TMR.

There are key materials issues regarding the formation of ultra-thin, low re-

sistance area (RA) product tunnel barriers which still need to be addressed to

better meet the requirements of high-impact technological applications such as

ST-MRAM and ultra-high-density data storage [21] including developing a junc-

tion technology that is tolerant to invariable atomic defects in a wafer-scale process.

Epitaxial Fe/MgO/Fe junctions with tunnel barriers formed by electron beam de-

position (EBD), have ideal crystal orientation, albeit with misfit dislocations in

the MgO. [6, 9] Such MTJs exhibit large TMR that decreases with decreasing

barrier thickness, in agreement with theoretical predictions. Larger TMR can be

obtained with B-alloyed Co-Fe electrodes and MgO barrier layers produced by ra-

dio frequency (rf) sputtering deposition. [10] This plasma process forms O ions

that invariably oxidize the base alloy electrode surface during the initial stages of

the barrier deposition [22–25], even if a getter is employed [14]. Though plasma

oxidation predominantly forms B oxide, some Fe and Co oxide also form at the

bottom MgO interface unless a sufficiently thick Mg buffer layer is deposited before
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the MgO to fully scavenge the free oxygen ions that would otherwise reach the fer-

romagnetic electrode. [24, 26] Such Mg/MgO bilayer barriers do not yield the best

results in the ultra-thin regime. [11, 12, 14] The subsequent deposition of the top

electrode layer forms additional interfacial oxides through its reaction with surface

oxygen on the MgO barrier. [24, 26] The as-grown sputtered barrier is a composite

of MgO and B oxide. Annealed sputtered junctions typically show a very high

TMR that does not significantly decrease with thickness until the ultra-thin limit,

where the TMR drops off rapidly due to the detrimental effects of pinholes and

barrier defect states. Annealing modifies the chemical and electronic structure of

the tunnel barrier, resulting in the formation of a MgBO barrier material which

produces large TMR, low RA MTJs.

4.3 Experimental Techniques

To understand the beneficial effect of B oxide incorporation in low RA, high TMR

MgBO MTJs and to thus advance and expand its exploitation in critical tech-

nological applications, my collaborators and I investigated the correlated charac-

terization of MgBO MTJs with current-in-plane tunneling (CIPT) [27], analytical

scanning transmission electron microscopy (STEM) utilizing electron energy-loss

spectroscopy (EELS), scanning tunneling spectroscopy (STS), and magnetome-

try measurements. In the sections that follow, I present the results of CIPT,

STEM/EELS, and magnetometry studies of different MTJ structures, each with

anti-ferromagnetically pinned base electrodes and tunnel barriers grown using

rf sputtering of an MgO target. I compare the use of Co60Fe20B20 (CFB) or

Fe60Co20B20 (FCB) alloys for both electrodes with structures utilizing electrodes

composed of permalloy, Ni81Fe19 (Py), alloyed with boron. For these junctions I
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used Ni77Fe18B5 (Py95B5) and Ni65Fe15B20 (Py80B20) alloys as the free electrodes. I

also present the results of STS studies of the electronic structure of MgBO barrier

layers, EBD MgO barriers, and sputtered Mg/MgO bilayer barriers. Compari-

son of the TMR and RA of Mg/MgO and MgBO barrier junctions of comparable

thickness suggests that the mixing of B oxide into the MgO barrier is positively

correlated with achieving higher TMR and lower RA values. I attribute this re-

sult to the improved electronic structure, and possibly to enhanced spin-filtering

properties, of ultra-thin MgBO in comparison with MgO.

I grew the thin film stacks for the CIPT, EELS, and magnetometry studies in

the AJA vacuum system which has a nominal base pressure of 3 x 10−9 Torr and

contains seven magnetron sputtering sources. To achieve a low bottom electrode

sheet resistance, necessary for CIPT study of low RA barriers, I used a Ta/CuN

multi-layer below the MTJ film stack. This low resistance under-layer stack, 5

nm Ta / [20 nm CuN / 3 nm Ta]x4, served to also form a smooth surface to help

seed growth of the MTJ layers. I discuss the development of these seed layers and

their surface morphology characteristics in more detail in Chapter 2. On the seed

layer I grew a 15 nm IrMn anti-ferromagnetic pinning layer, then the MTJ, then

a capping layer 8 nm Ta / 7 nm Ru to facilitate the CIPT measurement. The

MTJ structure was 4 nm base electrode / MgBO / 2 nm top electrode. I grew

the MgBO layer with radio frequency sputtering at high power (300 W, 2” target;

Power density ∼ 14.8 W/cm2) in Ar while a getter material (Mg or Ta) was also

being deposited within the deposition chamber. The CuN layer was grown using

reactive dc sputtering of Cu in an Ar / N (32:1) mixture. Otherwise, the film

layers were grown with conventional dc sputtering in Ar on 3” diameter thermally

oxidized Si wafers. The thickness of the MgBO layers studied varied from 1.1 to

2.1 nm, with the lower thickness limit set by the ability to obtain reliable CIPT
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data for the sample.

I cut the centers of the wafers into small ∼ 1 cm2 chips, yielding several sam-

ples with a particular barrier thickness and electrode alloy combination. I then

annealed the chips in modest vacuum of ∼ 3 x 10−6 Torr to 250, 300, or 350oC,

for up to 2 hours in the CCMR vacuum annealing furnace. Each chip was then

studied with CIPT using a CAPRES tool by Audie Castillo, P. J. Chen, or me.

The CIPT measurement yields TMR, RA, and the sheet resistance values for both

the top and the bottom electrodes. I used the sheet resistance values as a check of

the accuracy of the CIPT fit to assure its validity. Both the top and bottom elec-

trode sheet resistance fit values were similar to those I measured with the van der

Pauw technique using electrode test layers measured in a dipper made by Ozhan

Ozatay. Magnetometry measurements were made with a Shb instruments MESA

series B-H looper by Audie Castillo, P. J. Chen, or me. Judy Cha prepared chips

from these same wafers for STEM/EELS, TEM, and CBED study using mechan-

ical polishing and ion milling to create thin wedge-shaped samples of structures

identical to those studied with CIPT. Judy Cha took all of the STEM/EELS,

TEM, and CBED data discussed in this chapter. For spectral imaging, she used a

100 kV NION Ultra-STEM with a ∼ 0.1 nm, 100 pA aberration-corrected probe

and 10 milli-second per pixel acquisition time to acquire a 64 x 64 pixel spectral

map, where each pixel contains a spectrum that includes B, O, Mn, Fe, and Co

edges. [28] For the remainder of the STEM/EELS studies, she used a 200 kV FEI

Tecnai F20-ST STEM fitted with a monochromator and a Gatan imaging filter

865-ER. She focused the electron beam to form a 0.2 nm diameter probe with a

convergence semi-angle of ∼ 9.6 mrad and to reduce the electron dose per unit area

for minimum radiation damage, she took EELS spectra in a line parallel to the

electrode-barrier interface. She set the spectrometer dispersion to 0.3 eV/channel
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or 0.5 eV/channel to capture the wide energy range needed to record all edges si-

multaneously, resulting in an energy resolution of 1 eV. For CBED measurements,

she changed the convergence angle to 2 mrad to produce smaller diffracting disks

which overlap less with neighboring disks for clearer diffraction patterns. At a

convergence angle of 2 mrad the resolution of the probe degrades to roughly 1 nm.

The samples I studied with scanning tunneling microscopy were grown in the

prep 2 sputtering growth chamber which has a base pressure of ∼ 2 x 10−9 Torr.

I used GaAs (100) chips that were first etched in ammonium hydroxide and then

flash annealed in-situ [29] before CFB base electrodes were grown on them using

dc sputtering. I grew the barrier layers directly on the CFB base electrodes using

electron beam evaporation (as discussed in Chapter 3), lower rf sputtering power

(100 W, 2” target; Power density ∼ 4.9 W/cm2) to grow MgBO barriers (this is the

same procedure used for the samples discussed in Chapter 3), or dc sputtering of

Mg seed layers before rf sputtering MgO. Mg/MgO bilayer barrriers, rf sputtered

MgBO layers, and EBD MgO layers grown on the CFB electrodes were studied. I

studied these samples before and after vacuum annealing in prep 2 in the connected

STM chamber (Old BEEM) in ultra-high vacuum (∼ 5 x 10−10) Torr. I took

current-voltage spectra at multiple spots on the sample surface approximated the

density of states by taking dI/dV of the average from these spectra.

4.4 Electron Energy-Loss Spectroscopy Data from a Single

Interface Sample

Clear evidence that a MgBO barrier material forms in an rf sputtered MgO layer

grown on a B-alloyed ferromagnetic electrode is shown in Fig. 4.1, which displays
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EELS spectroscopic images taken by Judy Cha from an annealed IrMn / CFB

/ MgO(10 nm) / Ta structure. The B spectral map and the RGB map both

show that the first few nanometers of the barrier layer contain substantial B oxide

content. Examples of the raw EELS spectra used to compose the 2D spectral

map are shown in Fig. 4.2. The inset shows the 64 by 64 pixel spectrum image

where each pixel contains an EEL spectrum. Two spectra from the spectrum

image shown in Fig. 4.1 are plotted as examples. The spectrum taken near the

CoFeB / barrier interface in Fig. 4.2 shows a clear B oxide signature, indicative of

MgBO. In contrast, the O K-edge of the spectrum acquired deep in the MgO layer

shows three clear peaks which is attributable to more bulk-like MgO. The shaded

areas indicate the energy windows over which the EELS edges are integrated to

obtain the relative concentration of each element, normalized to the maximum O

intensity. The relative concentration of a particular element, for example B, to O

is obtained by scaling the integrated intensity of B by σ(O)/σ(B), where σ(X) is

the cross-section of X using the Hartree-Slater model. [30] The images in Fig. 4.1

are the concentration maps of Co, B, Mn, and Fe relative to O obtained using this

procedure. These EELS data show that only at a thickness greater than ∼ 2 nm

does the stoichiometry and coordination of the oxide approach that of bulk MgO

(Fig. 4.2). The Fe, Co, and Mn spectral maps in Fig. 4.1 demonstrate that the

transitional MgBO layer also contains Fe, Co and Mn ions to varying degrees that

surprisingly do not destroy TMR behavior of MgBO MTJs, as I will show in the

following sections of this chapter.

109



0

0.1

0.2

0.3

0.4

0.5

0.6

0.45

a

b c

������������ ������������������
	 
�

�

� � �
��	����	 
��

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

d e

f g

�������������������� ��������������������
��������
����

���
�� ���

Figure 4.1: Spectroscopic images from an annealed IrMn / CFB / MgO(10
nm) / Ta structure (Figure courtesy of J. Cha).
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Ta / MgO / MgBO / CFB

MgO MgBO

Figure 4.2: Individual EELS data from the MgBO and MgO regions of the
annealed IrMn / CFB / MgO(10 nm) / Ta structure (Figure
courtesy of J. Cha).

4.5 Electron Energy-Loss Spectroscopy Data from MgBO

MTJs

EELS data from completed MTJs confirm that for thin tunnel barriers formed by

rf sputtering, electrode oxides are present at the two barrier interfaces, and the

signature of B oxide is present within the barrier in both the as-deposited case

and after annealing (Fig. 4.3). Upon annealing, some of the un-oxidized B in

the electrode adjacent to the interface reduces the transition metal oxides at the
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interface as a thermodynamic consequence of the structure. The relative heats

of formation per oxygen atom for the primary oxides of interest are: ∆Hf
o
B2O3/O

∼ -425 kJ/mol < ∆Hf
o
Fe2O3/O ∼ -275 kJ/mol < ∆Hf

o
FeO/O ∼ -272 kJ/mol <

∆Hf
o
Co3O4/O ∼ -223 kJ/mol at 300K. [31] This does not dramatically change the

B oxide component in the barrier and does not fully reduce all of the interfacial

transition metal oxides. Also, during the annealing process the un-oxidized B

within the electrode diffuses into the adjacent non-ferromagnetic film layers as

the initially amorphous material crystallizes, as shown in Fig.4.4. Meanwhile,

remaining un-reduced Fe, Co, and Mn cations can mix into the MgBO layer,

presumably driven by strain and defects in the deposited MgBO layer.

Fig. 4.3 exhibits EELS data from the central region of the ∼ 1.1 nm MgBO

barrier in a CFB/MgBO/Py95B5 and a FCB/MgBO/Py80B20 junction, before and

after annealing at 350 oC. The data are plotted together with data taken from a

single crystal MgO sample for comparison. The Mg and O K-edge data indicate

that the Mg and O coordination are not the same as in bulk MgO [26, 32], and

there is little change in the spectra upon annealing, although the Mg spectrum

does sharpen slightly for the FCB-Py80B20 sample. The Mg and O K edges from

the CFB-Py95B5 sample are not as well formed. This is attributable to increased

interfacial electrode oxide formation during growth and insufficient B content in

the top electrode to reduce these oxides during the anneal. [24] For both sample

structures the B K edge spectra show a sharp π* peak near ∼ 195 eV, indicative of

B trigonally coordinated with O [33], which indicates the presence of BO3 radicals

that have mixed into the MgO during the growth process. After annealing, the

intensity of the π* peak is roughly the same (within the accuracy of the measure-

ment) as in the as-deposited case for both sample structures. Comparison of the

intensities of the B K-edge data with the O K-edge data taken from the central
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Figure 4.3: EELS data from as-grown and annealed CFB / 1.1nm MgBO /
Py95B5 and FCB / 1.1nm MgBO / Py80B20 MTJ samples (data
courtesy of J. Cha).
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Figure 4.4: Multiple EELS data taken sequentially from one electrode to
the other for as-grown and annealed versions of a CFB / 1.6nm
MgBO / CFB MTJ (data courtesy of J. Cha).

region of the MgBO barrier gives an estimated relative concentration of B to O

in the oxide of ∼ 0.08 ± 0.02 before and after annealing. The estimated relative

concentration of Mg to O in the oxide is ∼ 0.67 ± 0.1. This yields an estimated

barrier stoichiometry of Mg0.38B0.05O0.57. [30] It is known that a mixture of MgO

and B2O3 can react to form several Mg-B-O compounds which have trigonal co-

ordination of oxygen to B [34], consistent with the EELS spectra. Finally, an

interesting feature of the O spectrum is the presence of a pre-peak of low energy

states below the expected O K-edge peak, as indicated by the arrows in Fig. 4.3.

We attribute these pre-edge states before and after annealing to oxide disorder and
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to BO3, FeOx, CoOx and MnOx incorporation in the tunnel barrier.

The clear presence of B within the oxide tunnel barrier has interesting con-

sequences with regards to annealing. Fig. 4.4 shows STEM annular dark field

(ADF) images as well as B and O ELLS K-edges from an as-grown and an an-

nealed version of a CFB / 1.6 nm MgBO / CFB junction that shows 229% TMR

with an RA product of 534 Ω(µm)2. Blue dots on the STEM-ADF images indicate

the probe spots from which EEL spectra were acquired. The numbers 1-25 or 1-35

are the sequential EEL point spectra taken from the two samples. EELS data

from the as-grown sample show that B oxide forms during growth, and that the

O within this region of the barrier is significantly disordered as indicated by the

O-K edge which has only one broad peak. For the annealed sample, the O K-edge

data indicates the O in the barrier becomes better coordinated, as indicated by

the presence of three peaks in the O K-edge, and the B oxide remains within the

barrier. The boron in the alloy that is not oxidized in the film growth diffuses out

of the electrodes into the adjacent non-ferromagnetic material as indicated by the

B-depleted regions in the electrodes. It should be noted that the O K-edge line

spectra shown in Fig 4.3 do not show a significant change in the O-O coordination

upon annealing, unlike the samples measured here. We attribute this difference

to the poly-crystallinity of the MgBO layer. Thus, in spot-mode, where the elec-

tron probe is focused to below one nm in diameter, scatter is present in the O

K-edge. To avoid the issue of such scatter due to both the small probe diameter

and the poly-crystalline nature of the MgBO barrier, the EEL spectra are mostly

acquired in line mode where the probe rasters in a perpendicular fashion through

the film layers as a line that is ∼ 4-5 nm long parallel to the film layers during

data acquisition, yielding a spatially averaged measurement.
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Figure 4.5: 3DAP studies of MgO MTJ structures showing B diffusion and
segregation (from ref [25]).
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Recently 3 dimensional atom probe (3DAP) studies of samples grown by the

Hitachi Global Storage group suggest that B from the CoFeB alloy electrodes seg-

regates at the MgO tunnel barrier interfaces. [25] 3DAP data from this study are

shown in Fig. 4.5. The 3DAP data were taken from regions within the tunnel

barrier that show high concentrations of Mg (∼ 40%) and O (∼ 24%) within the

barrier and low concentrations of Mg (∼ 18%) and O (∼ 10%) within the barrier.

Although the high concentration region data show some apparent segregation of

B at the electrode - barrier interface, the low concentration data show B content

approaching 10 % in the tunnel barrier, in agreement with our EELS studies. In

addition, 3DAP has an experimental issue with regards to uniformity since the

sample is made into a needle that is effectively evaporated. The evaporated mate-

rial is measured with a mass spectrometer while the evaporation rate is measured.

Assuming a uniform evaporation rate, the sample is reconstructed layer-by-layer

to yield atomic resolution. However, with an insulating oxide, this is problematic

since the material most likely does not evaporate uniformly. This may be what is

apparent in the spatial maps presented by Pinitsoontorn an co-workers [25], which

show a highly non-uniform distribution of Mg and O in the tunnel barrier of the

MTJ structures they studied.

4.6 Scanning Tunneling Spectroscopy Data

The beneficial effect of the mixing of BO3 into the MgO tunnel barrier has been

observed with comparative in-situ ultra-high-vacuum STS measurements of the

electronic structure of thin MgO layers grown on CFB electrodes by three different

techniques. In Fig. 4. I present STS results obtained from a 2 nm EBD MgO

layer, a 0.5 nm Mg/ 1.0 nm MgO bilayer, and a 2 nm MgBO layer, taken before
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and after in-situ annealing. Each trace represents averaged STS data taken at

multiple spots on the sample. In the EBD MgO case, wherein oxidation of the

base electrode does not occur, the STS data indicates a band gap of ∼ 3 eV with

no band offset, but significant band-tailing to nearly the Fermi level (0 V), and

there is only a small change, primarily in the band offset, upon annealing. Similar

results were previously reported by Phil Mather using STS measurements of EBD

MgO and dc-reactively sputtered Mg/MgO bilayers deposited on (001) Fe (Fig.

4.7). [29] As in the cited work, the small band gap and low energy band-tail states

of EBD MgO on CFB can be attributed to lattice distortion and atomic defects

in the crystalline MgO arising from strain at the oxide-electrode interface. This

is supported by STS measurements of 3 nm EBD MgO layers that are sufficiently

thick to relax the interfacial strain and show the full ∼ 7.8 eV bulk MgO band gap

(Fig. 4.7). [29]

When Mg/MgO bilayers are formed on CFB electrodes there is significantly less

electrode oxidation than for rf sputtered MgO layers. [24] As-formed, the bilayer

sample exhibits a relatively large bandgap, ∼ 4 eV, as measured by STS, with

markedly fewer band-tail states than EBD MgO. This can be attributed to the

formation of nearly stoichiometric MgO through oxidation of the Mg layer during

deposition. After annealing, the bandgap decreases only slightly, but the STS

measurement indicates the development of band tail states that extend to close

to the Fermi level. This suggests that there is insufficient BO3 available to fully

relax the strain between the now crystalline electrode and the barrier layer, which

exhibits electronic band structure similar to that of an EBD MgO layer.

The STS data of the as-grown MgBO barrier material shows a relatively wide

band gap (∼ 4 eV), with a significant band offset. The higher band gap and

118



-3 -2 -1 0 1 2 3

 

D
O

S
 (

A
rb

. 
U

n
it
s
)

Negative Tip Bias (V)

 MgO[eb]

 375 C, 1 hour

-3 -2 -1 0 1 2 3

D
O

S
 (

A
rb

. 
U

n
it
s
)

Negative Tip Bias (V)

 0.5nm Mg/ 1nm MgO[rf]

 375 C, 1 hour

-3 -2 -1 0 1 2 3

D
O

S
 (

A
rb

. 
U

n
it
s
)

Negative Tip Bias (V)

 MgO[rf]

 375 C, 1 hour

2 nm MgO[ebd]

375 C, 1 hour

0.5 nm Mg / 

1 nm MgO[rf]

375 C, 1 hour

d
I/

d
V

 ~
 D

O
S

 (
A

rb
. 
U

n
it
s
)

EG

EG

2 nm MgBO

375 C, 1 hour

-3 -2 -1 0 1 2 3

Negative Tip Bias (V)

EG

Figure 4.6: STS data taken from ebd grown MgO, sputtered bilayer
Mg/MgO, and rf sputtered MgBO materials on CFB electrodes.
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Figure 4.7: STS data taken from ebd grown MgO and sputtered bilayer
Mg/MgO barriers on Fe electrodes (from ref[34]).
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reduced band tailing in comparison to EBD MgO can be attributed to the strain

reducing effect of the B oxide and the different electronic structure of MgBO versus

MgO. The band offset is due to the change in barrier electronic band structure

and electrode Fermi level pinning that arises from the formation of the MgBO

adjacent to the electrode due to the high level of B oxide incorporation in the

rf sputtering process. After annealing and the subsequent atomic rearrangement

of the Mg, B, and O barrier species [24], the band gap shrinks substantially to

∼ 2.5 eV, smaller than EBD MgO or Mg/MgO barriers, reflective of the change

in the barrier physical and electronic structure. This result is consistent with

calculations from Derek Stewart at CNF who’s work currently suggests the barrier

material is likely to be kotoite (Mg3B2O6). [34, 35] The low but well defined band

gap and the absence of a significant density of band tail states indicates that in

the MgBO case there is a nearly optimal concentration of BO3 in the barrier layer

after annealing. While STS measurements of vacuum exposed MgBO layers do

not necessarily precisely reveal the electronic structure of the tunnel barrier in a

completed junction, the results certainly point to the reason why MgBO barriers

are better than MgO barriers in the ultra-thin regime.

4.7 Comparison of MgBO and Mg/MgO MTJs

The CIPT data shown in the upper panel of Fig. 4.8 confirms that the formation

of B oxide during the MTJ growth process positively influences the barrier spin-

filtering properties. Although the as-grown TMR for these junctions is relatively

low, as expected from the literature, there is a clear trend of increasing TMR with

decreasing barrier thickness, in direct opposition to what is predicted by theoretical

models of MgO MTJs. [15–17] This result can be attributed to advantageous spin-
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filtering of the disordered, composite MgBO, which becomes more dominant as

the overall barrier thickness decreases. However, it may also be that the thinner

barriers have less detrimental interfacial oxide which degrades TMR.

Theoretical studies previously concluded that defect states at the electrode-

tunnel barrier interface of ultra-thin MgO barriers decrease TMR through res-

onant tunneling of minority spin electrons through these interface states. This

effect should increase with decreasing barrier thickness [36–38], assuming a con-

stant density of such interfacial states. The formation of MgBO barriers may be

suppressing the formation of such minority electron channels, as well as enhancing

the magnetic coherency of the electrode surface [39], through suppression of the ox-

idation of the ferromagnetic elements when sufficient B is included in the electrode

composition. However, the unpredicted barrier thickness dependence of TMR in

as-grown MgBO-MTJs suggests that the role of the B oxide may be greater than

simply suppressing defect formation and lowering the barrier height. In particu-

lar, induced ferromagnetism in the barrier oxide [40, 41], could be enhancing the

spin-filtering of the ferromagnet-tunnel barrier interfaces.

The CIPT data in Fig. 4.8 show that MgBO barrier layers (formed by rf

sputtering at a power density of ∼ 14.9 W/cm2 while using a Mg getter) have

quite different spin-filtering properties and variation of TMR with barrier thick-

ness than Mg/MgO bilayer barriers. These data indicate that barriers formed by

the Mg/MgO bilayer sputtering process, which reduces or eliminates the B oxide

content in the barrier [24], yield substantially lower TMR and higher RA values

than MgBO barriers of equivalent thickness. This result is consistent with earlier

studies that sputtered MgO (chemically probably closer to MgBO) barriers work

better than Mg/MgO (chemically probably closer to MgO) barriers (upper panel
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Figure 4.9: Transport data from ref [11] (upper panel) and ref [12] (lower
panel) comparing various barrier deposition methods.
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Fig. 4.9). [11] The Anelva team later found that use of Ta as a getter before

barrier deposition provided the best results in terms of low RA and high TMR

(lower panel Fig. 4.9). [12] However, this barrier material is also likely to be at

least partially composed of MgBO as discussed in the previous chapter. [14] Other

film studies show that lower TMR results after annealing from the use of a thicker

Mg seed layer (see Fig. 4.10). These studies also show the presence of B oxide

at the electrode-barrier interface or in the barrier itself. [23] The measurement of

comparative TMR and RA for equivalent thickness MgBO and Mg/MgO barriers

suggests that obtaining significant B oxide content in the tunnel barrier by rf sput-

tering of the MgO layer onto a B alloyed electrode is beneficial to spin-dependent

tunneling through ultra-thin barriers.

STEM images, taken by Judy Cha, of two of the samples from which the data

in Fig. 4.8 was taken are shown in Fig. 4.11 and Fig. 4.12. The images in Fig. 4.11

show that the MgBO growth process does not form crystalline barriers in either the

as-grown or the annealed state. In fact, while annealing does appear to improve the

electrode crystallinity of this CFB / 1.6nm MgBO / CFB structure, both top and

bottom electrodes are polycrystalline or nanocrystalline at best showing regions

of crystallized electrode material and regions of amorphous electrode material. In

addition, there are some regions that show coherent crystallization from the bottom

electrode through the barrier and into the top electrode. However, these regions

are few and the image data suggest the tunneling transport in such a structure is

not uniformly planar.

The image data in Fig. 4.12 of a CFB / 1 nm Mg / 1 nm MgO / CFB structure

shows a substantial improvement in barrier crystallinity in the as-grown state in

comparison with the MgBO barrier material shown in Fig. 4.11. Here the as-grown
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tMg ~ 0.5 nm

Figure 4.10: Transport data showing TMR response to annealing for different
thickness Mg seed layers and X-ray absorbtion data from ref
[23].
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1.6nm MgBO As-grown: RA ~ 340 Ωµm2,TMR ~ 22%

Annealed 350oC, 90 min: RA ~ 534 Ωµm2,TMR ~ 229%
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Ta IrMnTaRu

BottomTop BottomTop

ADF ADF
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Figure 4.11: STEM images of a CFB/1.6nm MgBO/CFB MTJ structure be-
fore and after annealing (data courtesy of J. Cha).
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barrier looks highly crystalline in some regions which confirms previous reports in

the literature that use of such a Mg seed layer enhances MgO barrier crystal struc-

ture. [11] However, after annealing the degree of electrode crystallization is about

the same or perhaps even less than in the case of the MgBO barrier sample. While

the Mg/MgO barrier is more crystalline in the as-grown state, after annealing it

does not appear more crystalline. Also, the top electrode - barrier interface ap-

pears more likely to crystallize coherently which raises the question as to whether

some interfacial oxide formation during growth is in fact beneficial to the MTJ

crystallization during annealing.

4.8 CIPT Studies

In addition to the initial CIPT studies discussed above, I investigated combinations

of electrode alloys to see which materials combinations worked best with the MgBO

barrier material. A comparison of the CIPT results from CFB/MgBO/CFB,

FCB/MgBO/FCB, CFB/MgBO/Py95B5, and FCB/MgBO/Py80B20 MTJs is

shown in Fig. 4.13. The as-grown data from this figure is shown in the upper

panel in Fig. 4.8. After annealing, the TMR of the junctions increases dramati-

cally as expected. The symmetric CFB and FCB junctions show the highest TMR

in the 160-190% range after a 350oC anneal, and there is slight variation of TMR

with thickness over the 1.1 to 1.7 nm range. Both of these structures achieve a

TMR of ∼ 160 % with an RA product of ∼ 20 Ω(µm)2 for ∼ 1.1 nm thick MgBO

barriers.

The results for the CFB / MgBO / Py95B5 and FCB / MgBO / Py80B20 struc-

tures shown in Fig. 4.13 suggest that the B content in the free electrode alloys
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Annealed 350oC, 90 min: RA ~ 25,951 Ωµm2,TMR ~ 115%

2 nm 5 nm

2 nm 2 nm
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Ta IrMnTaRu

BottomTopBottomTop

BottomTop BottomTop
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0.5nm Mg/1.0nmMgO As-grown: RA ~ 5049 Ωµm2,TMR ~ 17%

Figure 4.12: STEM images of a CFB/1nm Mg/1nm MgO/CFB MTJ struc-
ture before and after annealing (data courtesy of J. Cha).
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plays a significant role in the junction performance. The TMR of the Py95B5 free

electrode junctions more than doubles to ∼ 40% with moderate annealing (250 and

300oC), but drops back to ∼ 10% after annealing at 350oC. The junctions with a

Py80B20 free electrode show a steadily increasing TMR with annealing temperature

reaching a maximum value of ∼ 155% after annealing to 350oC. Both electrode

combinations achieve relatively low RA values of ∼ 15 Ω(µm)2 in junctions incor-

porating a ∼ 1.1 nm thick MgBO barrier layer after annealing to 350oC. While the

lower B content PyB alloy electrode does not achieve very high TMR it may still

be a useful material for switching and sensing structures. The higher B content

PyB alloy electrode achieves device performance that nearly matches that of the

CFB and FCB electrodes suggesting that this may be an ideal electrode material

for MgBO MTJs.

A summary of the majority of the CIPT data taken to date is displayed in

Fig. 4.14. To date the thinnest MgBO barriers formed are about 1.1 nm thick and

can achieve relatively low RA with high TMR. While MgBO barriers using a Mg

getter instead of a Ta getter clearly show higher TMR, it is not yet known whether

or not the behavior will persist into the ultra-thin barrier regime. In addition,

while the base electrode layers for each structure have been optimized in terms

of smoothness (see Chapter 2), for CIPT measurements a low bottom electrode

sheet resistance is required. It may be possible to form smoother electrode layers

on different seed layer structures, like a Ta / Ru multi-layer, in MTJ structures

that will be lithographically patterned. Also, the film grain structure may play a

significant role in forming thinner MgBO barriers and may thus have a significant

impact on device performance. These topics are certainly the focus of one thrust

of the work that continues on these systems. The B-based alloys also show some

interesting behavior in terms of orange peel coupling which is discussed below.
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With this enhancement and the possibility of forming even thinner barrier layers,

lower RA product MTJs may be possible in structures with comparable or higher

TMR values. However, the MTJs formed to date have RA values that are sufficient

for STT switching and dynamics studies and the noise characteristics of these

junctions are of great interest for possible sensor structures.

4.8.1 Discussion of RA vs. t Plots

The WKB approximation is sometimes used to estimate the electronic barrier

height (energy difference between the junction Fermi level and the barrier conduc-

tion band minimum) of the tunnel barrier in MgO MTJs. [6] While this procedure

provides an estimate of the energy barrier, it does not provide evidence of direct

tunneling. In fact, several transport mechanisms will yield a exponential increase

of barrier resistance with increasing barrier thickness and only detailed studies

of the junction behavior as a function of bias voltage and temperature can give

some clues about the nature of the electron transport in the MTJ, although such

measurements do not give a unique interpretation. [42] However, comparison with

previous work and with STS measurements warrants a quick diversion into the

WKB approximation. Starting with the tunneling probability where k is the wave

vector of a tunneling electron, ~ is Planck’s constant over 2π, m∗ is the effective

electron mass, E is the tunnel barrier energy gap, and the 1-D integral is taken

over the barrier thickness.

T ∼ Exp

(
−2

∫
|k(x)|dx

)
(4.1)
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k(x) =

√
2m∗E
~

(4.2)

This gives an estimate of the tunneling probability.

T ∼ Exp

(
−2

∫ √
2m∗E
~

dx

)
= Exp

(
−
√

8m∗E
~

t

)
(4.3)

This estimates the junction resistance (as tunneling probability goes down, junction

resistance goes up, so the exponential is positive here).

R ∼ Exp

(√
8m∗E
~

t

)
(4.4)

Then estimate the junction RA product as a function of barrier thickness where

the energy barrier height (φ) is estimated to be half of the energy gap (E).

RA(t) ∼ Exp

(√
16m∗φ
~

t

)
(4.5)

If the data is plotted as log10RA versus t (as in Fig. 4.15), then the slope of the

data will yield some information about the barrier height in this approximation.
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Log10(RA(t)) =
ln(RA(t))

ln(10)
=

1

ln(10)

√
16m∗φ
~

t (4.6)

So the slope of a linear fit of such a plot has units of 1

Å
.

slope =
1

ln(10)

√
16m∗φ
~

(4.7)

This can be used to estimate the barrier height in eV, assuming a free electron

mass.

φ =
(~ ln(10)slope)2

16m∗ = 0.48(ln(10)slope)2 = 2.52(slope)2 (4.8)

An alternative approach is to simply fit the data to a simple exponential as in

equation 4.5 with two fitting parameters, the amplitude (A) and the decay rate

(α).

RA(t) = AExp (αt) (4.9)

This fitting scheme also yields an estimate for the barrier height.

φ =
(~α)2

16m∗ = 0.48(α)2 (4.10)

Using these two fitting schemes I can fit the data in Fig. 4.14 and estimate

the barrier height of the MgBO material in the various MTJ structures. For the

symmetric CFB structures, the barrier height is ∼ 0.4 eV in the as-grown condition

and ∼ 0.5 eV after annealing to 350oC. For the symmetric FCB structures, the
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barrier height is ∼ 0.5 eV in the as-grown condition and ∼ 0.4 eV after annealing

to 350oC. The CFB/MgBO/Py95B5 structure has a barrier height of ∼ 0.4 eV

before and ∼ 0.5 eV after annealing. Finally, the FCB/MgBO/Py80B20 structure

has a constant barrier height of ∼ 0.5 eV before and after annealing. While these

estimates are certainly not the most accurate way to determine the barrier height,

these values are all in rough agreement with what is observed with STS (φ ∼ 0.5

eV). Future transport studies will surely help clarify this issue with time.

4.9 TEM images of Ni-Fe-B Free Electrode Layers

The materials and transport studies discussed in the pervious sections of this

chapter show that higher B content in the PyB alloy electrodes is beneficial towards

achieving high TMR in low RA MgBO MTJs. To investigate the influence of the

increased B content on the crystal structure, Judy Cha has taken TEM images of

the CFB / 1.1 nm MgBO / Py95B5 and FCB / 1.1 nm MgBO / Py80B20 structures

before and after annealing. The TMR and RA values of these junctions is shown

in Fig. 4.13. The CFB / 1.1 nm MgBO / Py95B5 MTJ has a TMR of ∼ 13%

before annealing which decreases to ∼ 6% after annealing to 350oC, meanwhile

the RA product changes from ∼ 9 Ω(µm)2 before annealing to ∼ 40 Ω(µm)2 after

annealing. However, the FCB / 1.1 nm MgBO / Py80B20 MTJ has a TMR of ∼
19% before annealing which increases to ∼ 153% after annealing to 350oC and the

RA product changes only slightly from ∼ 13 Ω(µm)2 before annealing to ∼ 16

Ω(µm)2 after annealing.

The cross-sectional TEM imaging and nanometer spot size convergent beam

electron diffraction (CBED) study shown in Fig. 4.17 clarify the structural reasons
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for the successful use of Py80B20 as the free electrode in MgBO junctions and for

the less successful results achieved with Py95B5. The images of the two types of

junctions show that the MgBO barriers are polycrystalline in both cases, but the

electrodes exhibit quite different crystal structure. The Py95B5 electrode has some

texturing in the as-grown case, but after annealing to 350oC becomes less textured

as is clearly indicated by the CBED image. In contrast, the as-deposited Py80B20

electrode is amorphous, as expected for such a high concentration of the glass-

forming B component [43], but after annealing to 350oC, the TEM and CBED

measurements reveal that it has a highly textured (001) cubic crystal structure,

which is optimal according to the theoretical coherent spin-dependent tunneling

model. [15, 16]

The unsuccessful results for junctions using the Py95B5 free electrode arise from

its low B content. This results in a polycrystalline electrode in the as-deposited

case, due to the insufficient amount of the glass forming component, which remains

polycrystalline after annealing. The low B content allows more oxidation of the

ferromagnetic components of the PyB surface during growth due to reaction with

surface oxygen on the MgO barrier. This also decreases BO3 formation, so these

junctions do not gain the beneficial tunnel barrier strain reduction upon annealing.

In contrast, the use of a more B-rich, and initially amorphous Py80B20 top electrode

is successful in forming a (001) textured cubic Py film upon annealing. This

material provides sufficient B to both protect the Py components from oxidation

and to mix in a significant amount of BO3 into the top portion of the MgBO barrier

during film growth promoting formation of low RA, high TMR MTJs.
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Figure 4.17: TEM images and CBED patterns (insets) of as-grown (AG) and
annealed (A) MgBO MTJs using different PyB free electrode
layers. (Figure courtesy of J. Cha).
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4.10 MS and HC measurements

The previous sections of this chapter investigated the electronic, chemical, and

structural properties of MgBO MTJs. Studies of the magnetic performance of the

free layers also provide extremely useful information for device characterization

and for optimization of future structures. The measurements of MS as a function

of anneal temperature yield some very interesting results. However, in order to

fully appreciate the data a calibration of the measured values is required. The B-H

looper used measures magnetic flux (Φ) which for the samples in this study has

units of nWb. Bill Egelhoff measured a 10 nm thick Py film with a surface area

of ∼ 1 cm2, similar to the samples in this study, with both the looper and with a

vibrating sample magnetometer (VSM) which measures magnetic flux density (B)

which has units of G. The figure of merit I use here is the saturation magnetization,

4πMS, which has units of G. To get this, I use the fundamental relation B = 4πM

+ H. For these thin film samples, 4πMS is on the order of 104 G while the applied

field (H) is only swept from about -100 Oe to about 100 Oe. Therefore, H ¿ M

and B ≈ 4πM. To get from ΦS to MS I calibrate with the properties of the Py

calibration sample. So for the measured samples, I use the following equation to

convert the looper measurement of ΦS into MS.

4πMS,sample = ΦS,sample(nWb)

(
BS,Py(G)

ΦS,Py(nWb)

)(
VPy(cm

3)

Vsample(cm3)

)
(4.11)

In the preceding equation, VPy is the volume of the calibration Py film, and Vsample

is the volume of the sample being measured. I measured the surface area of each

sample, but the free electrode film thickness is an estimate based on TEM mea-

surements from Judy Cha. Using elementary error propagation [44] it is easy to get
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an estimate of the uncertainty of the measurement for MS, which is shown in equa-

tions below. The largest contribution to the uncertainty in B is from the looper

measurement itself, so the relative uncertainty is (σB
B

) ∼ 3-5 %. The uncertainty

in the film volume contributes much more to the uncertainty in the measurement

of MS. For the film volume, the relative uncertainty is (σV
V

) ∼ 16 %, which is due

primarily to uncertainty in the free layer thickness.

M =
B

V
(4.12)

σM2 =

(
∂M

∂B
σB

)2

+

(
∂M

∂V
σV

)2

(4.13)

(
σM

M

)2

=

(
σB

B

)2

+

(
σV

V

)2

(4.14)

σM = M

√(
σB

B

)2

+

(
σV

V

)2

(4.15)

The 4πMS data from all the free electrode alloys is shown in Fig. 4.18. As

expected from the literature [43], the saturation magnetization of CFB and FCB

increases as B diffuses out of the electrodes during annealing. The measurements

show that for moderate annealing (250oC), both PyB free electrodes have a 4πMS

comparable to that of Py (4πMS ∼ 9600 G), the dashed line in Fig. 4.18. How-

ever, the magnetization of the Py80B20 layer is, to within measurement accuracy,

the same as that of Py and it does not change significantly with annealing. In this

material, the increased B content prevents the formation transition metal oxides

which are likely to be magnetically dead or antiferromagnetic. The magnetization
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data suggest that after annealing, the B has diffused out of the electrode leaving a

polycrystalline electrode with a magnetization similar to that of Py. In contrast,

the magnetization of the Py95B5 electrode goes down as the annealing tempera-

ture increases, until after a 350oC anneal there is no magnetic response from the

electrode. This is probably due to electrode oxidation, driven by the anneal, which

forms an ever thicker magnetically dead layer.

The measurements of free layer HC shown in Fig. 4.19 also provide interesting

insights regarding the use of the various alloy free layers. The CFB free electrode

samples show a moderate HC of ∼ 9 Oe for as-grown samples, which increases

slightly after moderate annealing, but on average remains roughly constant for the

entire annealing range. However, the HC of FCB samples significantly decreases

from ∼ 12 to ∼ 8 Oe after moderate annealing and then increases slightly at higher

temperatures. The HC behavior of the PyB electrodes is similar and appears to be

somewhat dependent upon coupling to the base electrode. The Py95B5 electrode

displays a roughly constant HC of ∼ 3 Oe for a moderate anneal, which increases

slightly and then disappears after high temperature annealing. The HC of the

Py80B20 electrode, similar to the FCB electrode, decreases from ∼ 9 Oe to ∼ 6

Oe after moderate annealing and then increases slightly after high temperature

treatment. For both PyB alloys, the lowest HC values are observed for thin (∼
1.1 nm) MgBO barriers, suggesting the electrode coupling is beneficial in terms of

magnetic softness in this barrier thickness range.
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Figure 4.19: Measurements of free layer HC values for MTJs with various
electrode combinations as a function of annealing temperature.
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4.11 Free Layer Coupling

Coupling between the free and fixed electrode layers shifts the center of the free

layer magnetization loop from the origin by the amount of the coupling field

strength. Neel or orange peel coupling, which occurs due to film roughness at

the electrode - tunnel barrier interfaces in MTJs, can greatly influence the mag-

netic behavior of the free layer. This property tends to ferromagnetically couple

the free layer to the fixed layer. This behavior is controlled by several physical

properties of the MTJ, as shown in the cartoon in Fig. 4.20 (ref [45], where tS is

the free layer thickness, tH is the fixed layer thickness, d is the tunnel barrier thick-

ness, and both h and λ describe the interfacial roughness. These properties are

related by the equation for the dipolar coupling field (equation 4.14), or exchange

field (Hd), between the free and fixed layers, due to Kools and co-workers. [45, 46]

Hd =
π2h2MH√

2λtS
e

(
−2
√

2πd
λ

) (
1− e

(
−2
√

2πtS
λ

))(
1− e

(
−2
√

2πtH
λ

))
(4.16)

MH is the magnetization of the fixed layer and this equation is highly useful with

regards to understanding the coupling that occurs for different barrier thicknesses

and the changes that occur after annealing since each of the quantities in the

equation is measurable.

Figure 4.20: Schematic of orange peel coupling in an MTJ (from ref[44]).
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The magnetization loops in Fig. 4.21 show how the coupling changes for MgBO

MTJs with Py80B20 free layers and FCB fixed layers. As the barrier gets thinner,

the coupling is stronger, but for barriers thicker than 1.1 nm the coupling can be

almost completely eliminated after annealing to 350oC. Such behavior was observed

by Dave and co-workers, who measured an exchange field on the order of 2-5 Oe

after annealing to 350oC in MgO MTJs with NiFe free layers that exhibited ∼
90% TMR with an RA product of ∼ 1-5 kΩ(µm)2. [13] The MgBO MTJs with

Py80B20 free layers and barriers thicker than 1.1 nm in my study achieve nearly

the same coupling behavior (∼ 1-3 Oe after annealing to 350oC) with significant

improvements in TMR and RA. Although the coupling field is dramatically reduced

by annealing, some of the coupling strength (∼ 10 Oe) in the MTJ with the thinnest

(1.1 nm) MgBO barrier is still present even after annealing to 350oC.

Figure 4.22 compares the coupling in various MTJ structures as a function of

MgBO barrier thickness (1.1-1.7 nm) and annealing temperature. The trend of

the data is similar for all the systems, but samples with FCB base electrodes show

a greater decrease in coupling as they are annealed. While interfacial roughness

certainly plays a role in the coupling, electrode oxidation and subsequent oxide

reduction during annealing could contribute to the reduced coupling after anneal-

ing. However, the templating effect of the MgBO barrier upon the B-rich alloys

during annealing may significantly decrease the effective interfacial roughness. We

can use equation 4.14 to provide an estimate of the scale of the effect which will

help determine what the dominant mechanism is for the reduced coupling. From

the previous section, the saturation magnetization of the FCB material is roughly

∼ 1.42 x 104 G, and the fixed layer and free layer thicknesses are 4.0 and 2.5 nm

respectively. For a barrier thickness of 1.1 nm using the measured values of Hd,

λ, the wavelength of the interfacial roughness, needs to be on the order of 8 nm
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Figure 4.22: Free layer coupling field measurements of MTJs as a function
of MgBO barrier thickness (1.1-1.7 nm) and annealing temper-
ature.
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to yield changes in h, the amplitude of the interfacial roughness, that are reason-

able. For λ ∼ 8 nm, the changes in h for each annealing step are 2-6 Å, which is

a significant fraction of the barrier thickness. This suggests that oxide reduction

may be playing a more significant role in changing the electrode coupling in these

MgBO MTJs.

Upon 350 oC annealing, the coupling decreases in all samples, with the most

pronounced decrease apparent in FCB/MgBO/Py80B20 MTJs. After annealing,

these MTJs with barrier thicknesses 1.1 nm, exhibit a coupling field of ∼ 2.5 Oe

which is indicative of very magnetically smooth junctions. However, the coupling

is higher (∼ 10 Oe) for MTJs with 1.1 nm barriers, which is likely due to the onset

of significant ferromagnetic interlayer exchange coupling. [47]

4.12 Summary and Conclusions

In summary, rf sputtering of MgO in conjunction with B alloyed ferromagnetic

electrodes results in the formation of MgBO tunnel barriers that create barriers

that have good spin-filtering capabilities in the ultra-thin barrier limit. Upon

annealing, trigonal BO3 is still evident within the MgBO layer and the resultant

tunnel barrier has an electronic band gap that is smaller than that of an MgO

layer of the same thickness, but with fewer low energy defect states that can

provide minority spin tunneling channels. The result is quite high TMR in annealed

MgBO MTJs, which is nearly thickness independent in the ultra-thin regime until

pinholes begin to shunt the tunnel barrier. By employing Py80B20 free layers, I

have been able to produce MTJs that also show little dependence of TMR upon

RA. The Py80B20 electrodes are amorphous as deposited, but allow the MgBO
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barrier to template a cubic crystal structure during annealing. These high B

content PyB alloys also show good magnetic behavior, with MS values similar to

that of Py, small HC values, and significant reduction of magnetic coupling with

annealing. These results demonstrate that magnetically soft Py electrodes can be

successfully incorporated in high performance MTJs for both MRAM and field

sensing applications.
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CHAPTER 5

X-RAY PHOTOELECTRON SPECTROSCOPY STUDIES OF THE

OXIDATION OF MgB2 THIN FILMS

5.1 Introduction

The relatively large coherence length (∼ 5nm) in comparison to cuprate supercon-

ductors, quasi three-dimensional character, and high superconducting transition

temperature (TC ∼ 39 K) of MgB2 make it an attractive material for supercon-

ducting electronics, potentially allowing circuit operation at ∼ 20 K. [1–11] Recent

advances in producing high quality, low resistivity thin films with well-connected

MgB2 grains are quite encouraging, as is the ability to produce good quality bar-

rier layers on such films for tunnel junction studies. [12–24] These achievements

motivate the effort to further optimize and tailor the growth of robust tunnel bar-

riers that can be formed on thin MgB2 films suitable for the fabrication of high

performance MgB2-based Josephson junctions (JJs). However, there is variation

in the quality of JJs with tunnel barriers produced using different methods which

suggests that the MgB2 surface is sensitive to the atmosphere and temperature

at which the tunnel barrier is formed. Both MgB2-tunnel barrier interfaces are of

great importance to maintain the high TC of the electrodes and not reduce the

critical current density (JC) of the JJ. To date, MgB2-based JJs have not exhib-

ited the high JC performance and low junction specific resistance required for most

technologically important applications. This points to better understanding of the

chemistry and electronic structure of the surface oxides of high quality MgB2 films

as a possible pathway for the optimization of high quality tunnel barriers to further

the development of MgB2-based superconductor electronics.
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In this chapter, I present results from an XPS study of high quality MgB2

thin films and the surface oxides that form on these films under various processing

conditions. The XPS spectra reveal that the composition of the MgB2 surface

oxide and sub-surface (∼ 5 nm) components can vary substantially depending

upon the details of in-situ, post-growth oxidation processes. Such techniques have

been recently utilized to form successful insulator layers in Pb / Mg-B-O / MgB2

tunnel junction studies. [21–24] The native MgB2 oxide is a mixed Mg-B oxide,

but in-situ exposure to O2 or N2 can form a more MgO-like surface oxide. The

oxidation process, as shown in the cartoon in Fig. 5.1, depletes the film surface of

Mg, forming MgOx, and promotes development of elemental B, and B sub-oxide

near the film surface. The degree of formation of the elemental B, and B sub-

oxide species appears to be dependent upon the method of delivery of O to the

film surface as well as the sample temperature during oxidation. The presence of

semi-metallic elemental B and semi-conducting B sub-oxide could indicate other

possible current paths can exist in such oxide tunnel barriers that are likely to be a

source of electronic noise as well as potentially detrimental to the superconducting

electronic device behavior.

Results of ion milling and water etching experiments further illuminate details

of the MgB2 XPS spectra and help inform the investigation of the surface chemistry

and thin film oxidation process. During ion milling, even in ultra-high vacuum,

the surface of the MgB2 thin film is modified, forming an MgO-like surface layer

and components of elemental B, B oxide, and B sub-oxide. During water exposure,

the MgB2 surface is both oxidized and etched leaving the surface of the remaining

film rich in elemental B and B sub-oxide. This study contributes more insight into

improving the understanding of various changes in chemistry that can occur in

high quality MgB2 film surfaces under different processing conditions and provides
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potentially useful guidance towards the formation of optimal tunnel barrier layers

for MgB2-based thin film electronics.
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Figure 5.1: Proposed process of oxidation of the MgB2 thin film surface.
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5.2 Experimental Details

I calibrated the spectrometer used to acquire the data that are presented in this

chapter to the Au 4f7/2 line at 83.96 eV and I carefully studied initial samples to

measure the location of the Mg 2p and B 1s peaks attributable to MgB2 to a reso-

lution of approximately 0.5 eV. I assigned peak locations after careful spectrometer

calibration to Au and Cu, and through comparison of the primary C 1s signal with

the background adventitious carbon signature in this XPS system, which is found

at ∼ 235.9 eV on several sample surfaces (MgO, AlOx, Fe, etc.). The initial inves-

tigation of un-treated MgB2 films provides the correct locations of the XPS peaks

attributable to the Mg and B atoms in the MgB2 film. In later samples where the

surface oxide is sufficiently thick to block the signal of the underlying film, the

strongest C 1s signal provides an additional calibration to the Au calibration, al-

though such calibration must be applied with great care since adventitious surface

C is not metallic and is thus susceptible to chemical shifts. The adventitious C

1s signal at ∼ 235.9 eV appears on all the samples studied in this chapter and is

primarily due to a surface layer (∼ 1-2 nm) of organic C from atmospheric expo-

sure before study in the XPS system. However, measurable changes in the MgB2

film and its surface oxide are reliably and repeatedly observed beneath this organic

layer. All samples were exposed to atmosphere between removal from the depo-

sition system and insertion into the XPS system. While in transit, the samples

were vacuum-packed in containers with desiccant, and between measurements the

samples were stored in a vacuum desiccator. The samples used in water etching

experiments were measured then removed from the XPS system, exposed to water

and then atmosphere before re-introduced into the XPS system. In order to com-

pare the relative surface and sub-surface film compositions, all samples presented

in this chapter were measured at different take-off angles of ∼ 20o or ∼ 90o to
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probe the surface and sub-surface chemistry respectively.

I examined two types of MgB2 thin films, grown by other researchers, in this

study. Yi Cui of Penn. State used the hybrid physical-chemical vapor deposition

(HPCVD) technique [13] to grow MgB2 on 6H-SiC substrates and Brian Moeckly

used his reactive evaporation (RE) technique [18] to grow MgB2 on R-Al2O3 sub-

strates. Standard HPCVD thin film samples were cooled to near room temperature

(RT) in a background pressure of ∼ 1 x 10−6 Torr after growth in H2 carrier gas

before removal from the vacuum chamber. In one alternative case, the film was

held at the 700 oC growth temperature for roughly 15 minutes after the B2H6

source gas was turned off, and the film surface was exposed to Mg vapor before

the sample was cooled to RT and then removed from the growth chamber. Another

alternative was to cool the film after growth to ∼ 200 or 400 oC for a period of time

up to half an hour in an ultra-high-purity (UHP) N2 atmosphere before lowering

the sample temperature to RT and then removing it from the growth chamber.

Standard RE samples were typically deposited in a background pressure of ∼ 1 x

10−7 Torr and then cooled in a background pressure of ∼ 5 x 10−8 Torr to near

RT before removal from the growth chamber. RE samples of different thicknesses

were exposed to UHP O2 for several minutes at ∼ 240 or 400 oC before exposure

to atmosphere. The high quality of the air-exposed HPCVD and RE films, along

with the thin native oxide and surface carbon layers that form on these films, make

systematic study of the film surfaces possible. For both growth processes, sample

temperature plays a substantial role in the surface oxidation rate.
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Figure 5.2: Normalized angle-dependent XPS data from a control HPCVD
MgB2 thin film sample.
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5.3 Spectral Peak Identification in Control Samples

Similar Mg 2p, B 1s, and O 1s XPS regions are evident throughout this study

for both HPCVD and RE film growth processes. Spectra from standard HPCVD

and RE MgB2 films are shown in Fig. 5.2 and Fig. 5.3 respectively. In addition,

spectra from RE films grown on a variety of substrate materials is shown in Fig.

5.4. The upper panels of Fig. 5.2 and Fig. 5.3 show angle dependent measure-

ments, acquired at the different take-off angles described above, which provide a

comparison of surface and sub-surface spectra to aid identification of surface oxide

species. The lower panels show the detailed peak fits of the same data used to

analyze the sample chemistry. Two metallic peaks, one each in the Mg 2p (at ∼
49.5 eV) and B 1s (at ∼ 186.7 eV) spectral regions, are clearly distinguishable

by their small line widths and the spectra in these regions are normalized to the

intensity of these metallic peaks.

Although there is some disagreement in the literature regarding the proper as-

signment of the various peaks in the MgB2 spectrum, [25, 26] the high quality of

the thin film samples and careful spectrometer calibration yield data that clearly

show these are the metallic peaks due to the Mg and B species within the MgB2

film. This is in agreement with the original assignment of Vasquez and co-workers

(see Fig. 5.5) [25] who attribute the shift to lower BE of the MgB2 B 1s peak

location from its position in elemental B samples to the charge transfer that oc-

curs from Mg to B in the MgB2 crystal structure (see Fig. 5.6). There is not a

corresponding shift to higher BE for the Mg signal from MgB2 in comparison to

that from metallic Mg. This is because of a strong initial state effect due to the

large value of the Madelung energy relative to the Mg ionization energy. [27] The

writing of Garg and co-workers [26] suggests that the MgB2 peaks exist at loca-
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Figure 5.4: XPS data from RE deposited MgB2 thin films grown on a variety
of substrates.
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tions different than those measured by Vasquez and co-workers. However, careful

inspection of the data presented in this publication (see Fig. 5.7) clearly show

that the data is actually in agreement with the data of Vasquez. The confusion

lies in a misinterpretation of the data after Ar ion milling. The authors suggest

that ion milling cleaned the sample surface, but in fact, ion milling oxidized the

MgB2 surface. The data in Fig. 5.7, shows the evolution of the MgB2 film and

oxide peaks, revealing that the lowest BE Mg 2p (labeled ”unreacted Mg”) and B

1s (labeled ”unreacted B”) peaks increase in relative intensity after in-situ scrap-

ing, suggesting these are the MgB2 peaks, consistent with the interpretation of

Vasquez. It is only after ion milling that these film peaks disappear, creating the

confusion, and prompting the authors to incorrectly label the peaks at ∼ 51.5 eV

and ∼ 188 eV as being due to MgB2. These peaks are in fact attributable to the

Mg surface oxide (∼ 51.5 eV) and to the elemental B and B suboxide (∼ 188 eV)

that form during the ion milling process, which will be discussed in more detail

later in this chapter. In conjunction with these two earlier reports, the data from

the control samples of the study discussed in this chapter (Fig 5.2 and Fig. 5.3)

additionally suggest that the lowest Mg 2p and B 1s peaks at ∼ 49.5 eV and ∼
186.7 eV are due to the MgB2 film.

The native surface oxide that forms on both HPCVD and RE grown MgB2

thin films that are first exposed to atmosphere at relatively low temperatures (<

200 oC) is not that thin (∼ 3-4 nm) and is composed of both Mg and B oxides,

as shown in Fig. 5.2 and Fig. 5.3. The highest BE peak in the Mg 2p (B 1s)

spectral region, centered at ∼ 51.5 eV (∼ 193 eV), is an Mg2+ (B3+) signal that

arises from an atomically mixed Mg-B surface oxide, which is also reflected in the

broad O 1s peak centered at ∼ 533 eV. Due to atmospheric exposure, these surface

oxide peaks are likely reflective of a mixture of several surface oxides. The likely
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Figure 5.5: XPS data from a PLD-deposited MgB2 thin film sample, from
ref[25].

Mg oxide species are MgO (Mg2+ ∼ 50-51 eV, O2− ∼ 530-531 eV), MgO2 (Mg2+

∼ 51-52 eV, O1− ∼ 532-533 eV), Mg(OH)2 (Mg2+ ∼ 51-52 eV, (OH)1− ∼ 532-533

eV), and MgCO3 (Mg2+ ∼ 52-53 eV, O1− ∼ 532-533 eV). [28–31] The likely B

oxide species are B2O3 (B3+ ∼ 192-193 eV, O2− ∼ 532-533 eV), and B(OH)3 (B3+

∼ 192-193 eV, (OH)1− ∼ 532-533 eV). [32–34] Data from more heavily oxidized

samples, which will be discussed in more detail in the next sections, show that

the formation of an MgO-like surface oxide generates a strong signal in the O 1s

spectral region that is easily identified even with the additional O 1s signal from

the native surface oxide.

The two remaining peaks in the B 1s spectral region are due to the formation of

elemental B and B sub-oxide. Both Moddeman and co-workers [32] (see Fig. 5.8)

and Ong and co-workers [34] studied B sub-oxide (B6O) material and both suggest
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Figure 5.6: The MgB2 crystal structure.

the lower BE peak (here at ∼ 188 eV) is due to elemental B in cluster form while

the higher BE peak (here at ∼ 189 eV) is due to B, in a low oxidation state (B

sub-oxide) bonded with O. The greater intensity of this peak in the surface scans

shown in Fig. 5.2 and Fig. 5.3 suggests the sub-oxide is on top of the MgB2 film,

or at least at the MgB2 / surface oxide interface. The behavior of these elemental

B and B sub-oxide peaks in relation to the Mg2+ and B3+ oxide peaks is discussed

in the next section in spectra from MgB2 samples were intentionally oxidized to

form tunnel barrier materials. The presence of these peaks indicate the oxidation

techniques used form both semi-metallic (elemental B) and semi-conducting (B

sub-oxide) species that are either at the MgB2 / surface oxide interface or mixed

into the surface oxide. These B-based materials are likely detrimental to tunneling
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transport in JJ structures as they represent other possible conduction channels

within the barrier. In this sense, the formation of these B species during thin

film oxidation could be responsible for the low JC and TC values measured in

such samples. However, point contact spectroscopy measurements on similar RE

films [35], and HPCVD junction spectroscopy measurements of MgB2 / native

oxide / Pb junctions [22, 23] show that the mixed oxide surface of these air exposed

films creates good quality tunnel barriers for measurements of the MgB2 energy

gaps (Fig. 5.9).

Using standard XPS techniques [36], the film surface and subsurface stoichiom-

etry for each sample is estimated as shown in equation 5.1. The relative stoichiom-

etry of the film sub-surface is estimated using the lowest BE Mg 2p peak (∼ 49.5

eV), and the lowest BE B 1s peak (∼ 186.7 eV) using a consistent peak fitting

scheme. CMg,sample and CB,sample are respectively the concentrations of Mg and B

in the film. IMg2p,sample and IB1s,sample are the relative intensities (area under the

peak) of the Mg 2p and B 1s photoelectrons from the film, and ASFMg2p (0.3335)

and ASFB1s (0.486) are the atomic sensitivity factors for Mg 2p and B 1s photo-

electrons as measured with this spectrometer. [37] This estimate for stoichiometry

is best considered relative and not exact atomic concentration, as the uncertainty

in the stoichiometry is roughly 10-15 %. Using this scheme, the estimated relative

stoichiometry of both the HPCVD and RE control samples is MgB1.3. A similar

scheme with Mg, B, C, and O is used to determine the relative stoichiometry of

the surface oxide on each sample.

CMg,sample

CB,sample

=

(
IMg2p,sample

IB1s,sample

)(
ASFB1s

ASFMg2p

)
(5.1)

While this equation yields a relative stoichiometry of each film, in order to
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Figure 5.9: Conductance data from point contact and heterostructure mea-
surements incorporating MgB2 thin films with native surface ox-
ide barriers, from ref [35] and ref [22].

171



accurately assign a stoichiometry to each sample film these values should be cal-

ibrated to a standard. The procedure for this is outlined in equations 5.2 - 5.4.

Here CMg,MgB2 and CB,MgB2 are respectively the concentrations of Mg and B in

the MgB2 standard and IMg2p,MgB2 and IB1s,MgB2 are the relative intensities of the

Mg 2p and B 1s photoelectrons from the MgB2 film. Then, we can use the ASF

values for the standard (ASFMg2p,MgB2 and ASFB1s,MgB2) as a calibration factor

and ultimately estimate a stoichiometry that is calibrated to the standard film as

shown in equation 5.4.

CMg,MgB2

CB,MgB2

=
1

2
=

(
IMg2p,MgB2

IB1s,MgB2

)(
ASFB1s,MgB2

ASFMg2p,MgB2

)
(5.2)

(
ASFB1s,MgB2

ASFMg2p,MgB2

)
=

1

2

(
IMg2p,MgB2

IB1s,MgB2

)
(5.3)

CMg,sample

CB,sample

=
1

2

(
IB1s,MgB2

IMg2p,MgB2

)(
IMg2p,sample

IB1s,sample

)
(5.4)

Using XPS thickness estimation techniques, a relative thickness of the surface

oxide layer for each exposure experiment is acquired, as shown in equations 5.5 and

5.6. The approach is that of Hill and co-workers, [38] where for a take-off angle

of 90o, thickness estimates for the surface oxide are easily calculated using the

peak intensity ratios for metallic and oxidic components of a single atomic species.

Since clearly there are Mg and B oxides present in these samples, the model used

for estimating oxide thicknesses in these experiments involves two simple bilayer

structures, MgB2 / MgO and MgB2 / B2O3. Although it is expected that the

actual surface oxide is a mixture of Mg, B, and C oxides, this model provides a

relative estimate for the total surface oxide thickness by adding the individual Mg
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and B oxide estimates.

tMgO = λMg2p,MgO

(
`n

{
1 +

IMg2p,MgO

IMg2p,MgB2

})
(5.5)

tB2O3 = λB1s,B2O3

(
`n

{
1 +

IB1s,B2O3

IB1s,MgB2

})
(5.6)

toxide = tMgO + tB2O3 (5.7)

The inelastic mean free path for Mg 2p photoelectrons when scattering through

MgO is λMg2p,MgO (∼ 2.9 nm), and the inelastic mean free path for B 1s photoelec-

trons when scattering through B2O3 is λB1s,B2O3 (∼ 3.3 nm). I estimated both of

these values using the work of Tanuma and co-workers. [39] Similar to the notation

above, IMg2p,MgO is the relative intensity of Mg 2p photoelectrons from the MgO

surface oxide and IB1s,B2O3 is the relative intensity of B1s photoelectrons from the

B2O3 surface oxide. Using this simple model, the control RE and HPCVD MgB2

films have surface oxide layers of ∼ 3.1 and ∼ 4.3 nm of respective relative thick-

ness. I show all the estimates for film and surface oxide stoichiometry along with

surface oxide thickness for HPCVD and RE films in Tables 5.1 and 5.2 at the end

of this chapter.

As discussed previously, there are at least three B species in different oxidation

states, one Mg oxide species, and probable surface hydrocarbons. Given all of this

surface oxidation and likely contamination due to atmospheric exposure, the lower

bound for the uncertainty of this thickness estimate is ∼ 10-15%. The XPS data

show that the surface is clearly a mixture of oxides, however, using this technique
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relative thickness estimates are acquired for surface oxides formed using different

oxidation techniques. This is discussed in detail in the next section. While this

model does not capture the mixed oxide nature of the surface oxide, the thickness

approximation does yield helpful information, particularly when correlated with

transport measurements of similar structures, regarding which processes are best

suited for junction formation.

5.4 Annealed and Oxidized HPCVD MgB2 Films

Both HPCVD and RE growth processes form high TC thin films which are com-

patible with all-MgB2 JJ formation provided a thin, insulating tunnel barrier layer

can be formed on the MgB2 surface. This insulating layer must also be robust

enough to withstand the growth temperature of the top electrode deposition with-

out weakening its physical and electronic structure. In an effort to identify an

ideal barrier layer formation procedure with oxidation of HPCVD growth MgB2,

we studied two techniques, attempting to form a thin layer of MgO on the MgB2

film surface. Using HPCVD processes, one post-growth oxidation approach is to

hold the film at 700oC for 15 minutes after turning off the B2H6 source gas, which

exposes the surface to both Mg vapor and the H2 carrier gas. While the high

volatility of elemental Mg suggests that such a treatment might have no effect, the

XPS spectra shown in Fig. 5.10 indicate that this process successfully forms an

MgO-like surface material. The reaction between the Mg vapor, the carrier gas,

and the ambient atmosphere within the vacuum system does form MgO as well

as suppress the formation of B sub-oxide and elemental B. While the treatment

may effect the surface, the film has an estimated relative stoichiometry of MgB1.4,

nearly the same value as the control HPCVD sample.
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The surface oxide formed in this process is relatively thick (∼ 3.4 nm relative

thickness), but the process does not appear very efficient or reproducible based on

previous transport measurements. [22] This may be due to clustering of Mg on the

MgB2 surface, or to accumulation of the MgO material at grain boundaries. [22]

However, this process does form a more pure MgO component in the surface layer,

which is seen most clearly in the O 1s spectrum (Fig. 5.10) where a secondary peak

is now found centered at ∼ 531 eV, fairly close to the expected 530-530.5 eV peak

position for MgO, and far below the main O 1s peak at 533 eV that arises from the

Mg-B surface oxide. The Mg 2p and B 1s scans show the typical signatures of the

native Mg-B oxide, but there is less signal intensity from the elemental B and B

sub-oxide region in comparison to the oxide of the control film. The Mg2+ peak is

also found at slightly lower BE than for the control sample native oxide, which is

attributable to lower B oxide concentration in the surface oxide due to the Mg vapor

exposure. These observations point to clear suppression of B introduction into the

tunnel barrier layer during growth. This arguably confirms that the principal effect

of post-growth, high-temperature annealing of an HPCVD film in Mg vapor is to

add a small amount of Mg to the surface, which is subsequently oxidized by the

ambient atmosphere in the HPCVD system. However, due to the poor wetting of

Mg on the MgB2 surface, this process likely forms a discontinuous MgO layer. [22]

Although these barriers are not ideal, they do point to an interesting aspect of the

surface oxidation. Specifically, that adding surplus Mg to the surface suppresses

B incorporation in the surface oxide.

The other post-deposition treatment of HPCVD films that we investigated is

the exposure of the film to UHP N2 at a sample temperature of either 200 C or

400oC for a period of time before final cooling to RT and exposure to atmosphere.

Due to residual O in the growth chamber and the absence of H2 during this process,
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Figure 5.10: XPS data from an HPCVD MgB2 thin film treated with post-
growth annealing in Mg vapor.
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the result is a high temperature oxidation of the MgB2 surface. The data shown

in Fig. 5.11 are from a sample that was exposed to such oxidation at 400oC for

90 seconds. The enhanced Mg2+ and B3+ oxide peak intensities reveal that the

surface has a thicker mixed Mg-B oxide coating (∼ 4.2 nm relative thickness) than

does a standard HPCVD sample. The low BE peak in the O 1s spectrum at ∼
531 eV, indicates the additional presence of a separate MgO-like oxide component,

as in the Mg-vapor annealed film. In addition to the increased oxide thickness,

there are two other notable aspects to the XPS data. First, the two different

angle-dependent O 1s spectra suggest that there is a slightly larger portion of the

MgO-like component deeper in the oxide than at its surface. Second, the B 1s

peak centered at ∼ 188 eV, that is attributable to B sub-oxide, is much larger,

particularly in the more surface sensitive spectrum. These results indicate that a

90 second, 400oC exposure to UHP nitrogen increases the thickness of the mixed

surface oxide, and in addition forms an oxide component that is close to pure MgO

through Mg diffusion out of the surface of the MgB2 material, leaving layers or

clusters of elemental B and B sub-oxide behind at the MgB2-surface oxide interface.

Given the layered nature of MgB2, the most likely process for this out-diffusion of

Mg ions is along the a-b plane to grain boundaries where the Mg can react with

O ions to form the MgO component. This is consistent with the MgO component

being slightly deeper in the film than the mixed Mg-B surface oxide. Although the

surface oxide is dramatically changed in this process, the estimated relative film

stoichiometry is MgB1.4, the same value as for the Mg annealed HPCVD sample.

This understanding of the high temperature MgB2 oxidation process is further

confirmed by holding an HPCVD film at temperature in a UHP N2 ambient at-

mosphere for a considerably longer time of thirty minutes. The XPS spectra for

two such films, shown in Fig. 5.12, reveal Mg 2p and O 1s peaks characteristic
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Figure 5.11: XPS data from an HPCVD MgB2 thin film exposed to UHP N2

after growth for 90 seconds at a sample temperature of 400oC.
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of thermally oxidized MgO, including a surface layer with a O 1s peak at ∼ 533

eV that is due to either MgO2 or Mg(OH)2. This MgO thermal oxide layer is

sufficiently thick, > 5 nm, after 400oC exposure, that there is no detectable signal

from the underlying film, thus a stoichiometry estimate is not possible. Alter-

natively, if a HPCVD film is held at 200oC for 30 minutes in a nominal UHP N2

atmosphere, the XPS spectra of the resultant thermal oxide is quite similar to that

of a standard HPCVD film. In this case, the surface oxide formed is ∼ 3.1 nm of

relative thickness and the estimated film stoichiometry is MgB1.3, both of which

are similar to the control sample. This demonstrates that the out-diffusion rate of

Mg at 200oC and below is insufficient to form a significant MgO layer on top of

the thin native mixed Mg-B oxide layer that forms initially upon exposure of the

MgB2 surface to O2. The higher process temperature of 400oC is sufficient to form

thick oxide barriers that appear MgO-like and although XPS cannot see beneath

the thick oxide layer formed in this case, the MgB2 / MgO interface may contain

some elemental B and B sub-oxide which are possibly detrimental to supercurrent

transport.

5.5 Oxidized RE MgB2 Films of Different Thicknesses

In RE growth, an atomic layer of B is evaporated onto a hot substrate which

is then rotated into a pocket heater where the B reacts with Mg vapor and the

substrate is then rotated back out into the B deposition chamber to repeat the

process. Due to the strong gettering ability and the low vapor pressure of Mg, the

effect of the background reactive gases within the Mg oven is negligible. However,

the background gases in the B deposition chamber, Pbase ∼ 10−7 Torr, can react

with the MgB2 surface when the substrate is located there. The longer deposition
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time necessary for growing a 500 nm film versus the time required to grow a 150

nm film clearly impacts the surface oxide formation. The data from control RE

films of 150 nm and 500 nm thicknesses, shown in Fig. 5.13 and 5.14, suggest that

the film thickness does impact the surface oxidation. In these control films, the

spectra from the thinner 150 nm film shows the clear signature of an MgO-like

species in the O 1s spectral region, while the thicker 500 nm film does not. The

Mg2+ and B3+ peaks are significantly less intense for the thinner sample than for

the thicker 500 nm sample. This behavior is present in all of the samples studied

in this section. The thinner version of each oxygen exposure experiment shows

a clear MgO-like peak, but less intense peaks for the Mg and B oxides, than its

thicker counterpart. The data from the control samples (Fig. 5.13 and Fig. 5.14)

suggests that the thicker 500 nm film oxidizes more upon atmospheric exposure.

This accounts for the increased Mg and B oxide peak intensities, and also explains

the lack of an MgO-like peak in the O 1s spectrum for the 500 nm thick sample.

Comparison of the surface and sub-surface spectra for both control RE film

thicknesses (Fig. 5.13 and Fig. 5.14) indicates that the elemental B and B sub-

oxide inclusions extend as deep into the material as is probed by the photo-emitted

electrons. While other, bulk sensitive, analytical methods are needed to confirm

this, this data suggests that it is small regions of elemental B and B sub-oxide

caused by repeated exposure of the surface of the growing film to background O

that accounts for the higher than ideal low-temperature residual resistivity of RE

MgB2 films that has generally been observed, as well as the comparatively high

magnetic pinning strength of such films. [18]

The estimated relative stoichiometry for the 150 nm control film is MgB0.9

while the estimated relative stoichiometry for the 500 nm film is MgB1.1, which
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Figure 5.13: XPS data from a 150 nm thick RE MgB2 thin film.
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does suggest that more B is reacted into a thicker RE film. The surface oxide

formed is ∼ 3.1 nm of relative thickness for the 150 nm film and ∼ 3.6 nm of

relative thickness for the 500 nm film. The samples also show an increased O

content measured in the surface oxide which supports the claim that some O is

reacted into the growing film, likely during the B deposition process. Therefore, in

a thicker film, the surface Mg-B oxide peak at ∼ 533 eV has significantly greater

intensity relative to the MgO peak at ∼ 530.5 eV and thus the native oxide peak

washes out the signal from the MgO peak.

The RE film growth process has the capability to grow smooth films of uniform

thickness on a variety of substrate materials over large areas. The combination

of this growth technique with the ability to form robust tunnel barriers that can

withstand the deposition temperature required to grow a top MgB2 electrode makes

the growth and subsequent fabrication of all-MgB2 JJs on large area substrates a

very real possibility. To study the effect of oxidation upon RE grown films, and to

study the plausibility of this technique for tunnel barrier formation, RE films were

exposed to UHP O at sample temperatures of 240 or 400oC. The spectra from 150

nm and 500 nm RE films that were post-growth oxidized at 240oC are shown in

Fig. 3.15 and Fig. 3.16 respectively. As in the control sample case, spectra from

the thin 150 nm film show two distinct O 1s peaks, one clearly attributable to

MgO, and the other due to the native surface oxide. The Mg2+ peak is shifted to

lower BE which suggests greater Mg content in the surface oxide, and remarkably

the B 1s spectra show no significant B oxide. However, there is a slight amount

of elemental B and B sub-oxide present. The data from this sample suggests

that a thin MgO-like material is successfully formed on the 150 nm MgB2 film in

this process. The relative stoichiometry of this sample is MgB0.8 and the relative

surface oxide thickness is ∼ 2.9 nm. These findings support the claim that Mg
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Figure 5.14: XPS data from a 500 nm thick RE MgB2 thin film.
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is pulled out of the surface and oxidized when the film is exposed to O2. Here,

although the pocket heater is not pressurized with Mg during the oxidation, the

sample rotation and its passage through the pocket heater during oxidation clearly

supply some Mg to the sample surface during the oxidation process. As previously

noted, Mg-rich MgB2 surfaces form better barriers in MgB2 / native oxide / Pb

junctions. [24]

In comparison, the 500 nm film spectra show a shift to higher BE of the Mg2+

peak, increased B oxide, elemental B, and B sub-oxide peak intensities, and a

singular O 1s peak (Fig. 5.16). These data are again indicative, as in the control

sample case, of the formation of a surface oxide that has the character of the MgB2

native oxide. The thicker film appears less likely to form an MgO-like surface oxide,

but the overall thickness of the surface oxide formed on this film is greater than

the surface oxide formed on the 150 nm thick film. The greater likelihood of the

formation of a surface oxide that is more similar to native MgB2 oxide than to MgO

on thicker films suggests that such films are more stable in terms of the Mg to B

bonding. The relative stoichiometry of this sample is MgB1.4, which supports the

claim that a greater amount of B is reacted into a thicker RE film. The relative

surface oxide thickness is ∼ 4.1 nm. Although the surface oxide that forms is

composed of both Mg and B oxides, such barrier materials were successfully used

in several junction measurements, as discussed previously. This may point to

such mixed oxide materials as easier to form and potentially more reliable in JJ

structures.

It is well know that the oxygen solubility in MgB2 increases with temperature.

[40] This is demonstrated in the results of RE film oxidation experiments carried

out at a sample temperature of 400oC, which are shown in Fig. 5.17 and Fig.
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Figure 5.15: XPS data from a 150 nm thick RE MgB2 thin film exposed to
O2 at a sample temperature of 240oC.
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Figure 5.16: XPS data from a 500 nm thick RE MgB2 thin film exposed to
O2 at a sample temperature of 240oC.
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5.18. As in the two previously discussed experiments, the thinner 150 nm film O

1s spectra show the clear presence of an MgO-like species. In addition, and as in

the other experiments, the 150 nm 400oC sample (Fig. 5.17) shows little B oxide

formation and an Mg oxide peak which is shifted to lower BE. Close inspection of

the O 1s spectra show that the subsurface spectrum has a higher MgO-like peak

intensity. This provides some clarity regarding the MgO formation. It appears that

the MgO species forms deeper in the film and that the native surface oxide then

forms on top. The relative stoichiometry of the film is MgB0.8 and the surface

oxide is estimated at > 6.3 nm in relative thickness. It is probable that these

measurements are not indicative of a simple, layered oxide system, but that there

are non-uniformities in the MgB2 / MgO / native oxide structure that forms.

The companion 500 nm thick, 400oC sample (Fig. 5.18) shows no signatures of

the underlying MgB2film, so no stoichiometry estimate is possible, as in the case of

the HPCVD sample oxidized at 400oC. No estimate of surface oxide thickness can

be given either, except to comment that since the film photoemission peaks cannot

be observed, the surface oxide must be greater than 6-7 nm thick. The Mg 2p

spectra are indicative of an MgO-like species and the O 1s spectra suggest MgO2,

Mg(OH)2, MgCO3, the native MgB2 oxide, or some combination of all of these

species. The clearly noisy B 1s spectra is due to the low intensity of this spectral

region relative to the Mg 2p and O 1s spectral regions. These observations indicate

that the 400oC oxidation process forms a thick, MgO-like barrier material that

could work well in JJ structures if the thickness of the oxide formed is successfully

controlled. To grow an all-MgB2 JJ structure fully in-situ relies upon the ability to

heat up the bottom electrode / barrier oxide bilayer without promoting detrimental

inter-diffusion or destroying the insulating nature of the barrier oxide. Thus, before

the RE MgB2400oC oxidation process is cleared as the best candidate for forming
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Figure 5.17: XPS data from a 150 nm thick RE MgB2 thin film exposed to
O2 at a sample temperature of 400oC.
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all-MgB2 JJs, the robustness of the barrier material formed should be studied in

detail.

An interesting footnote on this XPS experiment is shown in Fig. 3.19. These

AFM scans of the surfaces of the 400oC oxidized MgB2 films show that the oxidized

surface of the thicker MgB2 film is nominally smoother than the oxidized surface of

the thinner MgB2 film. Also, the grain structure of the thinner film sample shows

a greater density of surface protrusions, which may be indicative of Mg diffusion or

MgO nucleation. This could suggest that while the thinner film shows more MgO-

like surface oxide character, this surface oxide is not of uniform thickness and thus

would create pinholes if used in a JJ structure. In addition, the smoothness of the

thicker film surface oxide may be beneficial for top electrode growth, especially

since the RE process has shown the remarkable ability to form films with nearly

identical physical properties on a wide variety of substrate materials. With these

observations and comments in mind, RE growth should prove a very viable means

to form all-MgB2 JJ structures for future superconducting electronic devices.

5.6 Effects of Ion Milling on the MgB2 Thin Film Surface

In preparing samples for UHV XPS studies, it is routine to bombard the surface

with an ion beam to remove adventitious surface carbon and native oxides. Pre-

vious experiments [26, 41–43] used ion milling in an attempt to clean the surface

MgB2 material. The B 1s spectral region from each of these experiments is shown

in Fig. 5.20 where the primary B 1s peak occurs at ∼ 188 eV and caused each

of these research groups to list this as the BE location for B atoms in MgB2.

While adventitious surface carbon is certainly removed in such a process, the very
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Figure 5.18: XPS data from a 500 nm thick RE MgB2 thin film exposed to
O2 at a sample temperature of 400oC.
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Figure 5.19: AFM scans from the surfaces of 150 nm and 500 nm thick
RE MgB2 thin films exposed to O2 at a sample temperature
of 400oC.
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high reactivity of Mg, particularly when exposed to energetic O ions, and the low

ion-milling rate of B, can change the chemical composition of a MgB2 surface in

unanticipated ways. This is the case even if UHP Ar process gas is used in the ion

milling since only a very small residual oxygen component in the process gas and

in the background ambient will result in oxygen ion formation that can alter the

surface of an MgB2 film faster than the ion milling removes the altered material.

The data shown in Fig. 5.21 illustrates the effect of Ar ion milling of the surface

of a RE grown MgB2 film deposited on R-Al2O3. In comparison to the initial data

(also shown in Fig. 5.3), data taken from the sample after storage in a desiccator

for roughly one year shows that the surface oxide has changed very little in such

low vacuum conditions. The year-old sample was then subjected to ion milling in

UHP Ar for 70 minutes at an energy of ∼ 3 keV in a chamber pressure of ∼ 1 x

10−8 Torr. This process had a major impact on the film surface chemistry. The Mg

2p spectrum shows that a thick layer of oxidized Mg formed on the sample surface,

as indicated by the strong Mg2+ peak at ∼ 51 eV. There is only a small signal

from the underlying MgB2 film found in the Mg 2p and B 1s spectra at ∼ 49.5 eV

and ∼ 186.7 eV respectively. There is also a clear shift in the primary B 1s peak

location to ∼ 188 eV, which is the signature of elemental B and B sub-oxide, and is

what appears in Fig 5.20 [26, 41–43]. The O 1s peak has also shifted to lower BE,

which is an additional signature of a Mg-rich surface oxide. Longer exposure to ion

milling leaves the surface largely unchanged from this result, with the exception

that the intensity of the adventitous C signature (not shown) is greatly decreased.

This experiment clarifies that the peaks attributable to the Mg and B atoms in

the MgB2 film are found at BEs of ∼ 49.5 and ∼ 186.7 eV, respectively. This

result also shows the sensitivity of the MgB2 surface to oxidation, even in UHV,

and shows that typical device patterning techniques could significantly alter the
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(a) (b)

(c) (d)

Figure 5.20: B 1s spectra from four experimental investigations, (a) ref [26],
(b) ref [41], and (c) ref [42], (d) ref [43], all of which modify the
MgB2 surface with Ar ion milling.
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MgB2 electrode material if care is not taken during the device fabrication.

5.7 Effects of Etching the MgB2 Thin Film Surface with

Water

In the course of standard photolithography processes, samples are sometimes ex-

posed to water. To study the effect of water exposure upon the oxidation of MgB2,

samples were submerged in distilled water for up to 2 hours and then studied with

XPS. The XPS data suggest that the typical reaction is to both oxidize and etch

the Mg-based oxides while forming elemental B and B sub-oxide. Upon re-exposure

to atmosphere, some surface oxidation takes place forming small amounts of MgO,

B2O3, and their hydroxide counterparts. Fig. 5.22 shows the effect of water etch-

ing on HPCVD and RE films of different thicknesses. In this section of the chapter

I plot the XPS data (Fig. 5.22 and 5.33) such that the spectral regions all have

the same scale and the signal intensities from each measurement are relative and

not normalized. The data shows that both films have the same reaction. The B

sub-oxide peaks show strong intensity increases while the MgO peak initially de-

creases and then increases in intensity. The data shows that although the thinner

HPCVD film is completely etched away before the thicker RE film, the behavior

of both films is essentially the same. The experiment suggests that surface Mg

readily reacts with the oxygen in the water, but the B oxidizes much more slowly,

if at all. The result of exposing a native MgB2 oxide surface to water is to form a B

rich surface material. After two hours of etching in water, the elemental B and B

sub-oxide peaks dominate the B 1s spectrum and the MgB2 film peaks in both the

B 1s and Mg 2p spectra decrease, consistent with increased formation of elemental
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Figure 5.21: XPS data from an RE film, after a year of storage in a dessic-
cator, and after Ar ion milling.
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B and B sub-oxide and removal of Mg from the MgB2 through reaction with OH−

and dissolution into the water. While the signal strengths of the various spectral

peaks attributable to the mixed Mg-B oxide drop dramatically as the B sub-oxide

content increases, the O 1s peak shows only a small upward shift in BE indicating

that the surface oxide remains a mixture of Mg, B and O, albeit with an signifi-

cant increase in the relative B concentration. This result is in agreement with data

from a transport study of water etched HPCVD films which shows a substantial

increase in film resistivity after water etching. [44] The C content in the surface

oxide increases in relative intensity after initial water exposure and then decreases

in relative intensity after prolonged water etching. The XPS measurement of in-

creased B surface content in conjunction with the increased film resistivity suggests

that the film surface is predominantly composed of highly resistive B after water

etching.

The results of XPS studies of water etching experiments on oxidized HPCVD

films is shown in Fig. 5.23. Here the effect of the water etching is largely the same

as in the case of the control samples. Study of a sample that was oxidized at 200oC,

which has a thin surface oxide layer, shows that the surface MgO component is

initially etched away while Mg from the film is oxidized and subsequently etched.

After one hour of etching, the film surface shows a significant amount of both MgO

and B near the film surface. After two hours of etching, the film surface is largely

unchanged which suggests that an MgO surface oxide is relatively effective in

protecting the underlying MgB2 film from water exposure. This claim is confirmed

with the study of an HPCVD film that was oxidized at 400oC which initially has

a thick MgO surface oxide. Even after two hours of water etching, the film surface

still has the signature of MgO with only a small B signal present in the XPS

scans. This suggests that a thick MgO layer will etch more slowly and effectively
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Figure 5.22: XPS data from control RE and HPCVD films etched in water.
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protect the underlying MgB2 film from oxidation and etching due to exposure to

water. Hence, the formation of a MgB2 / MgO bilayer could be a good passivation

strategy for film protection in standard photolithography procedures.

5.8 Discussion and Conclusions

The formation of stable, high-quality JJ tunnel barriers on MgB2 thin film surfaces

is the major remaining requirement for the realization of MgB2-based superconduc-

tor electronics. To be useful for most technologically important applications, such

a tunnel barrier will have to ultimately be electrically thin, exhibiting a high JC on

the order of 104 A/cm2, with a low junction specific resistance on the order of 30

Ω(µm)2. For typical tunnel barrier heights this will require a barrier thickness in

the 1 to 1.5 nm range. Depositing such a thin layer uniformly on a polycrystalline

surface, even a highly textured one, is a major if not insurmountable challenge.

Hence, forming a thin tunnel barrier by a surface reaction, either through ther-

mal oxidation or plasma nitridation, is the approach that has seen the greatest

success in conventional superconducting electronics. Lightly oxidizing the surface

of a MgB2 film in a manner that forms a thin mixed Mg-B oxide is arguably an

approach that could prove effective. To date, the best, low specific resistance tun-

nel contacts reported on MgB2 films were made on HPCVD or RE films that were

lightly oxidized to form a moderately thin ∼ 3-4 nm mixed MgB surface oxide.

The possible, thicker oxidation of grain boundary regions by the high temperature

oxidation process suggested by this work could also be a beneficial aspect of this

approach as it could close off potential shorts. Of course it is essential that any

surface oxide survive the deposition of a top electrode. The work presented in this

chapter suggests that high temperature oxidation of an MgB2 film forms a chem-
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Figure 5.23: XPS data from oxidized HPCVD films etched in water.
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ically stable MgO-like barrier material upon which a top MgB2 electrode could

likely be successfully grown. The remaining step to achieve this goal is to optimize

the barrier formation process in terms of thickness and to confirm that the bottom

electrode-barrier bilayer can withstand the temperature necessary to deposit the

top electrode without substantial inter-diffusion or barrier degradation.

In summary, the highly reactive nature of Mg dominates the oxidation of MgB2

thin film surfaces. The XPS data from MgB2 films and surface oxides presented

in this chapter show that Mg and B are both present in the native surface oxide.

Exposure to UHP N2 or O2 promotes formation of MgO on the MgB2 film sur-

face. The surface becomes completely composed of MgO if the oxidation process

is carried out at elevated temperature (400oC) for extended time. However, if the

oxidation occurs at lower temperature(200oC), then the surface oxide formed is a

mixed MgBO material. The layer-by-layer nature of the RE growth process gen-

erates an MgB2 film with greater oxide content throughout, which dominates the

composition of thicker films relative to thinner films. Etching experiments show

that oxygen delivered using different mechanisms (exposure to atmosphere, N2 or

O2 exposure at elevated temperatures, ion milling, and water exposure) alters the

MgB2 film surface in similar ways to different extents. O incorporation into the

MgB2 film and formation of elemental B and B suboxide during the film oxida-

tion could influence tunneling transport and degrade device performance. Further

correlation of the properties of these material phases and electronic transport stud-

ies may yield additional insights into optimal barrier formation techniques for JJ

device development.

201



T
ab

le
5.

1:
E

st
im

at
ed

H
P

C
V

D
M

gB
2

fi
lm

st
oi

ch
io

m
et

ri
es

S
am

p
le

T
ak

e
off

an
gl

e(
o
)

F
il
m

O
x
id

e
F
il
m

(c
al

ib
ra

te
d
)

t M
g
O
(n

m
)

t B
2
O

3
(n

m
)

t o
x
id

e
(n

m
)

co
n
tr

ol
90

M
gB

1
.3

M
gB

1
.2
C

1
.3
O

2
.4

M
gB

2
2.

2
0.

9
3.

1

20
M

gB
1
.2

M
gB

1
.0
C

1
.7
O

2
.8

M
g

an
n
ea

l
90

M
gB

1
.4

M
gB

0
.9
C

1
.5
O

2
.3

M
gB

2
.1

2.
5

0.
9

3.
4

20
M

gB
1
.4

M
gB

0
.8
C

1
.4
O

2
.4

40
0o

C
,
N

2
,
90

se
c

90
M

gB
1
.4

M
gB

1
.0
C

0
.7
O

2
.1

M
gB

2
3.

3
0.

9
4.

2

20
M

gB
1
.5

M
gB

0
.7
C

1
.0
O

2
.4

20
0o

C
,
N

2
,
30

m
in

90
M

gB
1
.3

M
gB

1
.0
C

1
.0
O

1
.8

M
gB

2
2.

4
0.

7
3.

1

20
M

gB
1
.2

M
gB

1
.0
C

1
.7
O

2
.4

40
0o

C
,
N

2
,
30

m
in

90
M

gC
0
.3
O

1
.1

20
M

gC
0
.4
O

1
.2

202



T
ab

le
5.

2:
E

st
im

at
ed

R
E

M
gB

2
fi
lm

st
oi

ch
io

m
et

ri
es

S
am

p
le

T
ak

e
off

an
gl

e(
o
)

F
il
m

O
x
id

e
F
il
m

(c
al

ib
ra

te
d
)

t M
g
O
(n

m
)

t B
2
O

3
(n

m
)

t o
x
id

e
(n

m
)

co
n
tr

ol
90

M
gB

1
.3

M
gB

1
.2
C

0
.8
O

2
.5

M
gB

2
3.

0
1.

3
4.

3

20
M

gB
1
.1

M
gB

1
.4
C

1
.6
O

3
.4

15
0

n
m

co
n
tr

ol
90

M
gB

0
.9

M
gB

0
.5
C

0
.4
O

2
.6

M
gB

1
.4

2.
4

0.
7

3.
1

20
M

gB
0
.7

M
gB

0
.3
C

1
.5
O

4
.1

50
0

n
m

co
n
tr

ol
90

M
gB

1
.1

M
gB

0
.9
C

1
.0
O

3
.4

M
gB

1
.7

2.
5

1.
1

3.
6

20
M

gB
1
.4

M
gB

0
.7
C

0
.9
O

3
.0

15
0

n
m

24
0o

C
,
O

2
90

M
gB

0
.8

M
gB

0
.6
C

1
.5
O

2
.2

M
gB

1
.2

2.
4

0.
5

2.
9

20
M

gB
0
.9

M
gB

0
.2
C

2
.0
O

2
.8

50
0

n
m

24
0o

C
,
O

2
90

M
gB

1
.4

M
gB

0
.7
C

1
.8
O

2
.7

M
gB

2
.2

3.
1

1.
0

4.
1

20
M

gB
1
.1

M
gB

0
.4
C

2
.1
O

2
.6

15
0

n
m

40
0o

C
,
O

2
90

M
gB

0
.8

M
gB

0
.1
C

0
.7
O

1
.5

M
gB

1
.3

6.
3

6.
3

20
M

gB
1
.7

M
gB

0
.2
C

1
.0
O

1
.7

50
0

n
m

40
0o

C
,
O

2
90

M
gB

0
.1
C

1
.3
O

4

20
M

gB
0
.1
C

2
.1
O

4
.1

203



REFERENCES

[1] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu,
Superconductivity at 39 K in magnesium diboride, Nature 410, 63 (2001).

[2] J. Kortus, I. I. Mazin, K. D. Belashchenko, V. P. Antropov, L. L. Boyer, Su-
perconductivity of metallic boron in MgB2, Phys. Rev. Lett. 86, 4656 (2001).

[3] S. L. Bud’ko, G. Lapertot, C. Petrovic, C. E. Cunningham, N. Anderson,
and P. C. Canfield, Boron isotope effect in superconducting MgB2, Phys. Rev.
Lett. 86, 1877 (2001).

[4] A. Y. Liu, I. I. Mazin, and J. Kortus, Beyond Eliashberg superconductivity in
MgB2: Anharmonicity, two-phonon scattering, and multiple gaps, Phys. Rev.
Lett. 87, 087005 (2001).

[5] J. M. An, and W. E. Pickett, Superconductivity of MgB2: Covalent bonds
driven metallic, Phys. Rev. Lett. 86, 4366 (2001).

[6] D. C. Larbalestier, L. D. Cooley, M. O. Rikel, A. A. Polyanskii, J. Jiang, S.
Patnaik, X. Y. Cai, D. M. Feldmann, A. Gurevich, A. A. Squitieri, M. T.
Naus, C. B. Eom, E. E. Hellstrom, R. J. Cava, K. A. Regan, N. Rogado,
M. A. Hayward, T. He, J. S. Slusky, P. Khalifah, K. Inumaru, M. Haas,
Strongly linked current flow in polycrystalline forms of the superconductor
MgB2, Nature 410, 186 (2001).

[7] H. J. Choi, D. Roundy, H. Sun, M. L. Cohen, and S. G. Louie, The origin of
the anomalous superconducting properties of MgB2, Nature 418, 758 (2002).

[8] P. C. Canfield, D. K. Finnemore, S. L. Bud’ko, J. E. Ostenson, G. Lapertot,
C. E. Cunningham, and C. Petrovic, Superconductivity in dense MgB2 wires,
Phys. Rev. Lett. 86, 2423 (2001).

[9] D. K. Finnemore, J. E. Ostenson, S. L. Bud’ko, G. Lapertot, P. C. Canfield,
Thermodynamic and transport properties of superconducting (Mg10B2), Phys.
Rev. Lett. 86, 2420 (2001).

[10] W. N. Kang, H. J. Kim, E. M. Choi, C. U. Jung, and S. L. Lee, MgB2

superconducting thin films with a transition temperature of 39 kelvin, Science
292, 1521 (2001).

204



[11] D. Larbalestier, A. Gurevich, D. M. Feldmann, and A. Polyanskii, High-TC

superconducting materials for electric power applications, Nature 414, 368
(2001).

[12] J. M. Rowell, The widely variable resistivity of MgB2 samples, Supercond. Sci.
Technol. 16, R17 (2003).

[13] X. H. Zeng, A. V. Pogrebnyakov, A. Kotcharov, J. E. Jones, X. X. Xi, E. M.
Lysczek, J. M. Redwing, S. Y. Xu, J. Lettieri, D. G. Schlom, W. Tian, X.
Q. Pan, and Z. K. Liu, In situ epitaxial MgB2 thin films for superconducting
electronics, Nature Materials 1, 35 (2002).

[14] D. Mijatovic, A. Brinkman, I. Oomen, G. Rijnders, H. Hilgenkamp, H. Ro-
galla, and D. H. A. Blank, Magnesium-diboride ramp-type Josephson junc-
tions, Appl. Phys. Lett. 80, 2141 (2002).

[15] M. Naito, and K. Ueda, MgB2 thin films for superconducting electronics,
Supercond. Sci. Technol. 17, R1 (2004).

[16] H. Shimakage, K. Tsujimoto, Z. Wang, and M. Tonouchi, All-MgB2 tunnel
junctions with aluminum nitride barriers, Appl. Phys. Lett. 86, 072512 (2005).

[17] A. Saito, A. Kawakami, H. Shimakage, H. Terai, and Z. Wang, Josephson
tunneling properties in MgB2/AlN/NbN tunnel junctions, J. Appl. Phys. 92,
7369 (2002).

[18] B. H. Moeckly, and W. S. Ruby, Growth of high-quality large-area MgB2 thin
films by reactive evaporation, Supercond. Sci. Technol. 19, L21–L24 (2006).

[19] M. van Zalk, A. Brinkman, A. A. Golubov, H. Hilgenkamp, T. H. Kim, J. S.
Moodera, and H. Rogalla, Fabrication of multiband MgB2 tunnel junctions
for transport measurements, Supercond. Sci. Technol. 19, S226 (2006).

[20] T. H. Kim, and J. S. Moodera, Magnesium diboride superconductor thin film
tunnel junctions for superconductive electronics, J. Appl. Phys. 100, 113904
(2006).

[21] S. A. Cybart, K. Chen, Y. Cui, Q. Li, X. X. Xi, and R. C. Dynes, Planar MgB2

Josephson junctions and series arrays via nanolithography and ion damage,
Appl. Phys. Lett. 88, 012509 (2006).

205



[22] Y. Cui, K. Chen, Q. Li, X. X. Xi, and J. M. Rowell, Degradation-free inter-
faces in MgB2/insulator/Pb Josephson tunnel junctions, Appl. Phys. Lett. 89,
202513 (2006).

[23] K. Chen, Y. Cui, Q. Li, C. G. Zhuang, Z.-K. Liu, and X. X. Xi, Study of
MgB2/I/Pb tunnel junctions on MgO (211) substrates, Appl. Phys. Lett. 93,
012502 (2008).

[24] R. K. Singh, R. Gandikota, J. Kim, N. Newman, J. M. Rowell, MgB2 tunnel
junctions with native or thermal oxide barriers, Appl. Phys. Lett. 89, 042512
(2006).

[25] R. P. Vasquez, C. U. Jung, M. S. Park, H. J. Kim, J. Y. Kim, and S. I. Lee,
X-ray photoemission study of MgB2, Phys. Rev. B 64, 052510 (2001).

[26] K. B. Garg, T. Chatterji, S. Dalela, M. Heinonnen, J. Leiro, B. Dalela, R. K.
Singhal, Core level photoemission study of polycrystalline MgB2, Solid State
Commun. 131, 343 (2004).

[27] R. P. Vasquez, Intrinsic Photoemission Signals, Surface Preparation, and Sur-
face Stability of High Temperature Superconductors, J. Electron Spectrosc.
Relat. Phenom. 66, 209 (1994).

[28] J. C. Fuggle, XPS, UPS and XAES Studies of oxygen adsorption on polycrys-
talline Mg at 100K and 300K, Surf. Sci. 69, 581 (1977).

[29] J. S. Corneille, J.-W. He, and D. W. Goodman, XPS characterization of ultra-
thin MgO films on a Mo(100) surface, Surf. Sci. 306, 269 (1994).

[30] D. Peterka, C. Tegenkamp, K.-M. Schroder, W. Ernst, and H. Pfnur, Oxygen
surplus and oxygen vacancies on the surface of epitaxial MgO layers grown on
Ag(100), Surf. Sci. 431, 146 (1999).

[31] P. Liu, T. Kendelewicz, G. E. Gordon, and G. A. Parks, Reaction of water
with MgO(100) surfaces. Part I: Synchrotron X-ray photoemission studies of
low-defect surfaces, Surf. Sci. 413, 287 (1998).

[32] W. E. Moddeman, A. R. Burke, W. C. Bowling, and D. S. Foose, Surface
oxides of boron and B12O2 as determined by XPS, Surf. Interface Anal. 14,
224 (1989).

206



[33] Y. Wang and M. Trenary, Surface chemistry of boron oxidation. 2. The re-
actions of boron oxides B2O2 and B2O3 with boron films grown on tanta-
lum(110), Chem. Mater. 5, 199 (1993).

[34] C. W. Ong, H. Huang, B. Zheng, R. W. M. Kwok, Y. Y. Hui, and W. M.Lau,
X-ray photoemission spectroscopy of nonmetallic materials: Electronic struc-
tures of boron and BxOy, J. Appl. Phys. 95, 3527 (2004).

[35] W. K. Park, R. Wilken, K. Parkinson, L. Greene, B. H. Moeckly, and J.
Rowell, Unpublished (2005).

[36] J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of
X-Ray Photoelectron Spectroscopy, ULVAC-PHI, Inc. and Physical Electronics
USA, Inc., Chigasaki, Japan (1995).

[37] R. N. King, Esca binding energy calculator, Surface Science Laboratories,
Mountain View, CA, USA (1984).

[38] J. M. Hill, D. G. Royce, C. S. Fadley, L.F. Wagner, and F. J. Grunthaner,
Properties of Oxidized Silicon as Determined by Angular-Dependent X-ray
Photoelectron Spectrocscopy, Chem. Phys. Lett. 44, 225 (1976).

[39] S. Tanuma, C. J. Powell, D. R. Penn, Calculations of Electron Inelastic Mean
Free Paths (IMFPS).4. Evaluation of Calculated IMFPs and of the Predictive
IMFP Formula TPP-2 for Electron Energies between 50 and 2000 eV., Surf.
Interf. Anal. 21, 165 (1993).

[40] X. Z. Liao, A. Serquis, Y. T. Zhu, J. Y. Huang, L. Civale, D. E. Peterson, F.
M. Mueller, and H. F. Xu, Mg(B,O)2 precipitation in MgB2, J. Appl. Phys.
93, 6208 (2003).

[41] C. Jariwala, A. Chainani, S. Tsuda, T. Yokoya, S. Shin, Y. Takano, K. Togano,
S. Otani, and H. Kito, Comparative study of the electronic structure of MgB2

and ZrB2, Phys. Rev. B 68, 174506 (2003).

[42] A. Goldoni, R. Larciprete, S. Lizzit, S. La Rosa, A. Bianco, and M. Bertolo,
Occupied density of states in MgB2 revealed by photoemission microscopy,
Phys Rev B 66, 132503 (2002).

[43] A. Santoni, U. B. Vetrella, G. Celentano, U. Gambardella, and A. Mancini,
X-ray photoemission study of MgB2 films synthesized from in-situ annealed
MgB2/Mg multilayers, Appl. Phys. A-Mater. Sci. Process. 86, 485 (2007).

207



[44] Y. Cui, J. E. Jones, A. Beckley, R. Donovan, D. Lishego, E. Maertz, A. V.
Pogrebnyakov, P. Orgiani, J. M. Redwing, and X. X. Xi, Degradation of MgB2

thin films in water, IEEE Trans. Appl. Supercond. 15, 224–227 (2005).

208



CHAPTER 6

XPS STUDIES OF AlN TUNNEL BARRIERS

6.1 Introduction

Ultrathin films of Aluminum Nitride (AlN) are applicable as tunnel barriers in

both superconducting Josephson Junctions (JJs) and in Magnetic Tunnel Junctions

(MTJs). This material is potentially useful as a replacement for Aluminum Oxide

(AlOx) for two major reasons. AlN is composed of covalent Al-N bonds and when

made stoichiometric should be unreactive at room temperature. In addition to

this physical property, AlOx is extremely difficult to make in its stoichiometric

form (Al2O3) using conventional thermal oxidation techniques upon thin films of

Al. Such thermally oxidized Al films are typically O deficient [1], which means

there are O vacancies in the tunnel barrier layer which are sources of electronic

noise [2], which is particularly detrimental to JJ performance, and may promote

spin scattering which degrades MTJ device sensitivity.

With the discovery of extremely high TMR in MgO-based MTJs, AlOx is no

longer the tunnel barrier of choice for future MTJs. However, companies such as

Everspin still use AlOx as the tunnel barrier in some of their product lines since it

is a more reliable material in terms of uniform performance in contemporary de-

vices. [3] Although AlN is a candidate tunnel barrier material, several researchers

have previously shown that it is very difficult to make pure AlN in any conven-

tional thin film growth process because AlOx, AlOxNy, and AlN all form during

the deposition. Transport measurements of MTJs with AlOxNy barriers made by

reactive sputtering and direct oxidation with barrier stoichiometries measured by

Rutherford Back Scattering show that AlOx performance is better than AlOxNy
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performance, and that both of these tunnel barriers perform better than AlN. [4]

Although AlN has not been shown to be an ideal material for MTJs, it is still

used widely in JJs. Nb / AlN / Nb [5–14], MgB2 / AlN / MgB2 [15] and NbN /

AlN / MgB2 JJs [16] have all been successfully fabricated. The ultimate goal of this

project is to study the effect of O inclusions within the AlN tunnel barrier upon

JJ device performance. The XPS studies discussed in this chapter represent the

first step in this correlated materials and electronic transport research that aims

to improve the understanding of how to form ideal AlN barriers for JJs. I started

this study by developing the growth techniques for the film stacks, performing

the XPS studies contained in this chapter, and by taking some initial STS data

on AlN barrier layers. With the inclusion of more co-workers on the project, the

scope of the investigation has grown such that currently Yun Li is exploring the

behavior of AlN (AlOxNy) tunnel barriers. She is also working towards making

film layers for patterning devices and for Pinshane Huang who is beginning an

STEM/EELS investigation that should make further XPS studies unnecessary.

Therefore, the data and discussion presented in this chapter serve to provide some

feedback regarding the chemistry of the structures that form in the various growth

processes. My goal is to provide some insight regarding which techniques are likely

to be the best for growth of JJ structures that can be made by our team.

6.2 Experimental Details

The details of the spectrometer are the same as in Chapters 3 and 5. It was

calibrated to the Au 4f7/2 line at 83.96 eV and the system has a resolution of ∼
0.5 eV. I grew the thin film samples using several different techniques in both Prep
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Figure 6.1: XPS data from Nb / Al films exposed to a N beam after in-situ
vacuum transfer.
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1 and Prep 2 and then vacuum transferred them to the XPS system for study. I

performed the first set of experiments on 20 nm Nb / 7 nm Al bilayers that I e-beam

(Nb) and thermally (Al) evaporated on thermally oxidized Si before exposing them

to a beam of atomic N at various powers for different times. I vacuum transferred

some samples from one deposition chamber to another in the interconnected film

growth system before N exposure, and I exposed some samples to N directly after

thin film growth without chamber transfer. I studied a second set of samples that

included sputtered Nb / AlN bilayers grown on a Si / 8.5 nm Au Schottky barrier in

the hopes of taking BEEM measurements. However, Nb scatters ballistic electrons

substantially, so I could not obtain any BEEM current. I formed the 6.5 nm thick

dc sputtered Nb base electrode on the thermally evaporated Au layer at 100 W

sputtering power, and then I deposited the AlN layer with reactive rf sputtering

under two different conditions. I deposited the AlN at 100 W rf power in either

100% Ar or in 100% N2. [17, 18] These films are identical to several films studied

by Yun Li with Scanning Tunneling Spectroscopy (STS) and her work continues at

present to investigate the influence of O within the AlN upon the barrier bandgap.

I made most of the samples in pairs where I annealed one of each pair in the oven

in Prep 1 at 250 or 300oC for 1 hour and I normalized all of the data in this chapter

to the highest intensity signal in each spectral region.

6.3 Nitrogen Beam Exposed Aluminum Films

The data presented in this section are from Al films that were exposed to a beam

of atomic N at various power levels, either after in-situ vacuum transfer to an

adjacent chamber or within the same chamber in which the films were deposited.

The data in Figure 6.1 are from Si / SiOx /20 nm Nb / Al films that were first
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Figure 6.2: XPS data from sputter-etched, air-exposed PSMBE AlN films
(from ref [19]).
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vacuum transferred in-situ to an adjacent chamber for N beam exposure and then

vacuum transferred to the XPS system for study. A bare Al film was also studied

as a control sample to aid the identification of the Al 2p photoemission peak for

AlOx which appears at ∼ 75.5 eV. The other samples in Figure 6.1 were exposed to

the atomic N beam at 150, 200, or 250 W for 3 min. Each of these samples shows

both AlOx (∼ 75.5 ev) and AlN (∼ 74.5 eV) species in addition to the signature of

metallic Al (∼ 73 eV) in the Al 2p spectral region. The N 1s spectral region shows

the presence of two peaks. The lower binding energy (BE) peak at ∼ 397.5 eV is

attributable to the N within the AlN film and the higher BE peak is due either

to N that is bonded with both Al and O or to N chemisorbed on the film surface.

The O 1s spectral region also contains two peaks. The lower BE peak is due to O

in the AlOx component because the peak location is the same for the control AlOx

sample and the test films (∼ 532 eV). [1] The higher BE peak is likely due to O

that is chemisorbed on the film surface. Estimates of film stoichiometry suggest

that the films are nitrogen deficient (AlN0.4−0.5) which is likely due to the partial

film oxidation preventing nitridation. These peak assignments are similar to those

measured by Rosenberger and co-workers (see Fig. 6.2) [19] who sputter-etched

air-exposed plasma source molecular beam epitaxy grown AlN films, Perrem and

co-workers (see Fig. 6.3) [20] who abrasive polished oxidized AlN films, and Liao

and co-workers who studied air-exposed and heat treated AlN powders (see Fig.

6.4) [21].

The data from the samples in Figure 6.1 indicate that merely exposing the Al

film to high vacuum conditions (∼ 5 x 10−7 Torr) is sufficient to lightly oxidize the

film surface. Since the samples all receive the same vacuum transfer dose (∼ 10−5

Torr-seconds) the data suggest that either the vacuum exposure before nitridation

or the vacuum exposure during vacuum transfer is sufficient to partially oxidize
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Figure 6.3: XPS data from abrasively polished oxidized AlN films (from ref
[20].
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the film surface. These measurements show that the low power N exposure used

to form these AlN films is insufficient to fully nitridize the film surface and that

some Al is oxidized in this process. I carried out similar experiments at higher

N beam power levels of 400 and 600 W for significantly longer times of 15 or 30

minutes. The XPS data from these films (not shown) have AlN Al 2p signal levels

that are identical to the data from the samples shown in Figure 6.1, even after

UHV annealing at 250oC. This suggests that the in-situ transfer process initially

oxidizes the film, which makes the surface less reactive to the subsequent exposure

to the atomic N beam.

The XPS data shown in Figure 6.5 are from films that I processed in a fashion

similar to those discussed above with one major difference. I re-configured the

deposition chamber for the growth of these films such that I grew the Al film in

the same chamber where the N beam exposure process took place. These samples

are similar to those in Figure 6.1 in terms of their photoemission spectra and

estimated stoichiometry values (AlN0.5−0.6). However, there is slightly more AlN

Al 2p signature in these films in comparison to those on Figure 6.1. Annealing

the samples to 300oC for 1 hour slightly changes the sample chemistry. The first

notable change is that the AlOx Al 2p peak increases in signal intensity relative to

the AlN Al 2p peak. Also, the higher BE N 1s peak is reduced in signal intensity

relative to the AlN N 1s peak and the estimated N film film content increases.

These changes suggest that annealing drives O which is bonded to both Al and N

(higher BE N 1s peak) into the AlOx, which is probably lower in the film stack and

thus accounts for the apparent increase in the N film content. The O 1s spectra

are very similar in shape and intensity to those in Figure 6.1 and do not change

with sample annealing, suggesting that the AlOx component is not reduced during

the annealing process. These measurements of N beam exposed AlN (AlOxNy)
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Figure 6.4: XPS data from air-exposed AlN powder from ref [21].
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films clearly show that the films always contain both AlOx and AlN which would

certainly effect electron transport in a working device.

Nb / Al / AlN / Nb JJs with AlN tunnel barriers made with a similar N beam

exposure process show very good device behavior. [22, 23] Given the high quality of

the devices presented in these publications, it is unlikely but difficult to say for sure

whether the films in these JJs contain some AlOx. This points to an interesting

extension of the gettering process during film growth described in chapters 2, 3,

4 and 7 of this dissertation. The vacuum chamber where the atomic N source is

located also contains a Ti sublimation pump. A batch of test experiments utilizing

this pump for its gettering properties during N beam exposure could substantially

reduce AlOx formation during film growth, which will likely make better AlN

barrier materials.

6.4 RF Sputtered AlN Films

Sputtering is an effective way to make uniform thickness thin film structures over

large area substrates. In an effort to explore an alternative approach to forming

AlN with atomic N beam exposure and in an effort to develop deposition techniques

suitable for making high quality AlN-based JJs, I investigated the growth of AlN

barrier layers using reactive rf sputtering from an AlN target in either 100% ultra-

high purity (UHP) Ar or 100% UHP N2. I grew all the AlN layers in this section

directly on a Si / 8.5 nm Au / 6.5 nm Nb base structure as described above. In

Figure 6.6, I compare XPS data from 2 nm thick AlN films grown in Ar with

XPS data from 2 nm thick AlN films grown in N2. There are very significant

differences between the films made with these two sputtering gasses. The Al 2p,
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spectral region shows that the films sputtered in Ar have a higher peak BE than

those sputtered in N2. Comparison of the N 1s and O 1s spectral regions shows

that the Ar sputtered films also have higher N 1s and O 1s peak BEs. These

features suggest that rf sputtering AlN in Ar forms more AlOx than rf sputtering

in N2. Also, in comparison with the AlN powder data in Fig. 6.4, the XPS data

from the films sputtered in N2 suggest the film surface is more AlN-like than the

films sputtered in Ar. The estimated stoichiometry values for the Ar sputtered

films are AlN0.4 before annealing and AlN0.6 after, behavior similar to the N beam

exposed samples. The N2 sputtered films appear to be roughly stoichiometric,

but these numbers are misleading. The estimated stoichiometry is AlN1.1 before

annealing and does not change after annealing, which could suggest a nonreactive

AlN-AlOxNy film structure.

Close investigation of the Nd 3d spectra from these films, shown in Fig. 6.7,

indicates that while the Ar sputtered films do not modify the Nb film chemistry,

the N2 sputtering process dramatically changes the Nb film surface as the AlN

film grows. The Nb 3d peak structure is completely different for the N2 sputtered

film. Comparison with the data from the work of Lucci and co-workers (see Fig.

6.7) [24] on reactively dc-sputtered NbN films shows that increased peak intensity

around ∼ 207 eV is indicative of NbN and NbOx formation. [24–27] A significant

feature of the Nb 3d data is the increase in the relative intensity of the peak at ∼
207 eV after annealing. The relative intensity of N to Al is constant before and

after annealing, and there is a slight decrease in the relative intensity of the higher

BE N 1s peak after annealing. These peak intensity changes suggest that O that

was bonded to Al and N bonds with Nb after the anneal. Therefore, it is very

likely that the large increase in the N content in the estimated stoichiometry for

these films is actually an overestimate because the N in the NbOxNy is counted
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as being in the AlN layer. For the sake of consistency and comparison with the

other films, these number are fine since they reflect a relative and not an absolute

measure of stoichiometry. A more detailed peak fitting scheme will probably not

help since the AlN and NbOxNy N 1s peaks appear to lie within ∼ 0.5 eV of one

another and thus cannot be de-convolved uniquely.

The data in Fig. 6.9 and Fig. 6.10 show the Al 2p, N1s, and O 1s XPS data for a

range of film thicknesses (1-3 nm) of N2 sputtered AlN films. I show the Nb 3d XPS

data from these samples in Fig. 6.7. All the XPS data are qualitatively the same

for the entire thickness range. The Al 2p AlN peak shows a slight relative intensity

increase as a function of thickness and both the higher BE N 1s and O 1s peaks

also show slightly higher relative peak intensity as a function of thickness. The O

1s peak shifts slightly to higher BE as a function of thickness, perhaps suggesting

there is a slight increase in the AlOx content with increased sputtering time. As

discussed previously, the N 1s peak changes slightly, decreasing with annealing.

The largest changes appear in the Nb 3d data in Fig. 6.7 where the NbOxNy peak

intensity increases after annealing for all cases. However, the relative intensity is

roughly the same for the 2 and 3 nm thick films suggesting the NbOxNy layer is

beneath the AlN as expected. The estimated relative stoichiometry values of AlN1.7

for the 1 nm film, AlN1.1 for the 2 nm film, and AlN0.6−0.7 for the 3 nm film make

more sense in light of these Nb 3d spectra. The reactive rf sputtering process in N2

is forming NbN, and likely some NbOx, at the Nb / AlN interface. This chemical

process is similar to the CoFeB / MgO growth process discussed in Chapter 3 and

provides a bit more resolution on the complexities of the chemical reactions driven

by the reactive sputtering process. As in the case of the N beam exposed samples,

the use of a getter material during sputtering may provide greater control over the

O content in these reactively sputtered films. Study of the electrode and barrier
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Figure 6.8: Nb 3d XPS data reactively dc sputtered NbN film using progres-
sively higher N concentration in Ar/N2 process gas (from ref[24]).
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composition for films sputtered in a mixture of Ar and N2 may provide additional

control over the barrier performance.

6.5 STM/STS Measurements of Nitrogen Beam Exposed

Aluminum Films

In the course of these XPS studies, I also began a few STM/STS studies, which

gave some initial measurements of the topography and electronic structure of the

N beam exposed Al surface. I took the topographic image in Fig. 6.11 from the

surface of a 7 nm Al film grown on 20 nm of Nb that I exposed to an atomic N

beam at 400 W for 20 minutes, as described earlier in this chapter. I prepared this

film identically to the sample measured in Fig. 6.5, but instead of being vacuum

transferred to the XPS system, I in-situ transferred the sample to an STM system

(Old BEEM). The surface appears amorphous, but relatively smooth. I took the

STS data in Fig. 6.12 at several different spots on the sample surface and averaged

them. Each trace represents the average of multiple individual traces from various

spots of the surface. The data suggest that there are regions of wider or smaller

bandgap behavior depending on the quantity of low energy defect states which

smear together to form the bandtail shown on the right hand side of the top panel

in Fig. 6.12. A possible explanation for this behavior is that the Al, O, and N

that are present at or near the film surface are not uniformly mixed and thus

have different bandstructure. XPS gives an average chemical behavior over a spot

size of ∼ 1 mm in diameter, while STM probes a spot size on the order of ∼ 1

nm in diameter. Yun Li has since extended these measurements and is currently

investigating the dependence of the AlN bandgap on O defects.
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Figure 6.9: XPS data from 1-2 nm thick AlN films rf sputtered on Nb in N2

before and after vacuum annealing.

226



537 536 535 534 533 532 531 530 529 528

 

 

537 536 535 534 533 532 531 530 529 528

 

 

78 77 76 75 74 73 72 71

 

 

401 400 399 398 397 396 395

 

 

78 77 76 75 74 73 72 71

 

 

 

401 400 399 398 397 396 395

 

 

AlNx

N
o

rm
a
li

z
e
d

 I
n

te
n

s
it

y
 (

A
rb

. 
U

n
it

s
) N 1sAl 2p O 1s

N
o

rm
a
li

z
e
d

 I
n

te
n

s
it

y
 (

A
rb

. 
U

n
it

s
)

727476

Binding Energy (eV)

N(AlNx)

AlON

727476 530533536

2 nm
AlN[N]

3 nm
AlN[N]

300 C 
1hr

300 C 
1hr

AlN1.1

AlN1.1

AlN0.6

AlN0.7

N(AlNx)

Al-O-N

AlNx

8.5nm Au 

/ 6.5nm Nb

398400 396

398400 396 530533536

Figure 6.10: XPS data from 2-3 nm thick AlN films rf sputtered on Nb in
N2 before and after vacuum annealing.
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Figure 6.11: Topography of the surface of an Al film exposed to a beam of
atomic N at 400 W for 20 minutes.
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6.6 Summary

In summary, AlN films formed both by by N beam exposure and by reactive rf

sputtering inherently introduce O into the AlN film. The reactive rf sputtering

process, when performed in an atmosphere of pure N2, nitridizes the underlying Nb

film. This behavior has also been observed in Co / AlN bilayers which confirms that

the reactive rf sputtering process, when performed in N2, acts to plasma nitridize

the underlying film surface. The use of a getter before and during deposition may

provide better control over the O content in N beam exposed and sputtered AlN

films. These studies provide some clues as to barrier formation, however the full

effect of O defects and barrier composition upon transport can only be addressed

when correlated with STS measurements and transport measurements from JJ

structures.
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CHAPTER 7

FOLLOW-UP EXPERIMENTS, FUTURE DIRECTIONS, AND

DISSERTATION SUMMARY

In this chapter I propose experiments that are extensions of the research de-

scribed in this dissertation. My hope in writing them all down here is that these

ideas may be explored by current or future researchers on the materials physics

side of the Buhrman Group which could provide extremely useful developments for

device structures for measurement by both the Buhrman and Ralph Groups. Sev-

eral of these ideas, particularly those that involve device measurements, were sub-

stantially aided by discussions with Pat Braganca, Mark Tseng, Yun Li, Praveen

Gowtham, Judy Cha, Pinshane Huang, Ozhan Ozatay, Luqiao Liu, Oukjae Lee,

Dan Ralph, Bill Egelhoff, and of course, Bob Buhrman.

7.1 MgBO Tunnel Barrier Growth

The experiments discussed in Chapter 3 and Chapter 4 clearly show that rf sput-

tering of MgO on a B-alloyed electrode forms MgBO through the reaction of O

ions from the sputtering plasma with the alloy B. It appears that MgO does not

sputter as a molecule but rather as O and Mg ions, likely Mg2+ and O2−, or some

variation. I grew the sputtered barriers for the XPS studies discussed in Chapter

3 at low power (100 W, 2” target ∼ 4.9 W/cm2), and I grew the tunnel barriers

in the MTJ samples discussed in Chapter 4 at higher power (300 W, 2” target ∼
14.8 W/cm2). Although I grew the structures at different power densities, both

barrier materials are MgBO. There are a few significant differences in the barrier

preparation techniques. One is the use, or lack of use, of a getter material during

the barrier deposition. The other is the chamber pressure at which I lit the MgO
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sputtering gun. Both of these conditions effect the initial barrier deposition and

could play a substantial role in the barrier formation. Deeper understanding of the

mechanisms at work during the barrier deposition could provide more control over

the RA and TMR of the MTJ formed, and could ultimately lead to more robust

MTJ device structures.

The studies performed to date that investigate the chemical composition of

the MgBO tunnel barrier materials described in this dissertation suggest that the

tunnel barriers formed with rf sputtering include upwards of 5-10 % B content,

and exploration of the naturally occurring phases of magnesium-borates suggests

Mg3B2O6 because if its cubic crystal structure, low B content, and trigonal coordi-

nation of B to O. Stoichiometry estimates using XPS have two complications. One

is that the structure measured is a bilayer and not a full MTJ. This may generate

a potential difference across the barrier which could enhance the diffusion of B

towards the surface of the tunnel barrier. Also, the XPS measurement is not well

resolved in terms of sample depth. Since it is likely that B reacts with surface O,

and since XPS is a surface sensitive measurement, any XPS stoichiometry estimate

is probably an overestimate of the B concentration in the MgBO. Angle dependent

XPS measurements could provide some better estimates, but EELS is a stronger

technique for these experiments since it can be used to investigate full MTJs. How-

ever, the EELS measurement has the issue of background substraction from the

signal. Since the B K-edge is a low intensity feature, it is difficult to achieve exact

values for the B composition, making stoichiometry estimates a little inaccurate.

Although this is a challenge, the uncertainty is significantly smaller for EELS than

for XPS in terms of stoichiometry estimates.

The experiments outlined in the next paragraphs describe a body of research
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that aims to fully understand and further control MgBO tunnel barrier formation.

The initial presumption is that MgBO barriers are more beneficial than MgO bar-

riers because they have a smaller bandgap and thus a smaller energy barrier height.

This allows for the possibility that MgBO barriers could be more electrically thin

(smaller RA product) for a given physical barrier thickness in comparison to MgO

barriers. Also, it is possible that MgBO barriers are more thermally stable (less

reactive) and are therefore less sensitive to the heating effects caused by extended

current wear in a working MTJ. While these contentions may not be correct, they

provide a starting point for investigating MgBO barriers as a benefit as opposed

to a detriment, which is how these materials have been presented and perceived

by the MTJ community to date.

7.1.1 MgO Sputtering Power, Chamber Pressure, and Get-

ter Use

One important follow up experiment is the systematic study of the barrier chemical

composition and junction TMR and RA as a function of sputtering power, chamber

pressure, and getter use. Some studies of this already exist in the MgO MTJ

literature, but a detailed investigation of the electrode-barrier interfaces, barrier

chemistry, and subsequent as-grown and annealed device performance using the

correlated measurement (XPS, STS, EELS, CIPT, and magnetics measurements)

approach outlined in Chapter 4 will certainly provide a great deal of interesting

and useful information regarding optimal barrier growth conditions for achieving

thermally stable, robust tunnel barriers for STT and sensor devices. There are

several limitations to consider. One is the range of rf power that can be used. The

rf power supply for the AJA system can reach 500 W, however, this makes the
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target and the sputtering gun extremely hot. This is not necessarily a problem

for short barrier depositions, but for making thickness calibration samples it could

cause some problems. If such a high power is to be used, then another thickness

calibration method besides the standard liftoff and profilometry approach should

be used. Lower power promotes very slow film growth and requires an extended

time to get a film thick enough to measure by profilometry (typically I make a FM

/ MgBO / FM / Cu structure 50 nm thick where the MgBO layer is ∼ 1-10 nm

thick). With this in mind, it is advisable to find a more accurate way to measure

the growth rate of thin MgBO barriers for these experiments.

Another consideration is the number of targets. The AJA system in its current

configuration allows 7 targets. If the layers are going to be patterned, then it is

not essential to include a Ta / CuN seed layer. A different seed layer, such as

Ta / Ru or Ta / TaN, can be used instead. Therefore, the use of both Mg and

Ta getters during barrier deposition can be studied if the chamber is setup (for

example) with Ta (gun 1), MgO (gun 2), Mg (gun 3), FeCoB (gun 4), Py80B20

(gun 5), IrMn (gun 6), Ru (gun 7). An additional adjustment is getter sputtering

power. For the samples discussed in this dissertation, I used 50 W, but higher

powers may be more beneficial since the getter material will deposit faster and will

likely have a greater gettering effect during deposition.

With these two conditions addressed, one can carry out careful experiments

that adjust sputtering power, chamber pressure during the lighting of the MgO

target, and use of Mg, Ta, or other getter materials during the MTJ layer growth.

Then one can pattern samples for transport studies and characterize them with

EELS and magnetometry. Also, the prep 2 system in the D7 lab can make nearly

identical samples. Here there are 4 sputtering guns, so if one used (for example)
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MgO, Mg (or Ta), FeCoB, and Py80B20, then one can investigate the electronic

structure of the MgO. While these barriers are not exactly the same as the barrier

grown in the AJA (no seed layers or IrMn pinning layer), they would provide more

insight regarding the nature of defect states in the tunnel barrier, tunnel barrier

bandgap changes with deposition conditions (and annealing), and band offset as a

function of electrode composition and deposition conditions.

7.1.2 MgBO Target Sputtering

Although careful estimation of the barrier stoichiometry is important, a relative

measurement of the MgBO barrier is all that is really required to investigate the

use of tunnel barriers grown from an MgBO target of a particular composition in

comparison with MgBO barriers formed as described in Chapter 3 and Chapter

4. XPS and EELS measurements both show that B from the electrodes enters the

barrier when MgO is sputtered, so a natural question is whether this is enhanced

or suppressed by starting with a MgBO sputtering target. The primary reasons

to attempt such barrier formation are to study the effect on the electrodes, par-

ticulary on electrode crystallization as a function of annealing and the resultant

magnetic performance of the electrodes. Also, if the sputtered MgBO material

does not oxidize the base electrode, or oxidizes it differently than the MgO de-

position does, this could provide a more robust or less noisy barrier material. In

addition, one can conduct another set of experiments that compares the use of an

MgBO target with both the MgBO barrier formation and the growth of MgBO by

co-sputtering MgO with metallic B. While this may not be an ideal barrier ma-

terial [1], investigating the material formed could provide some clues about what

aspects of MgBO barriers are non-ideal or need improvement. Obviously, one can
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adjust all of the experimental parameters discussed in the previous paragraphs for

the MgBO target and MgO-B co-sputtering depositions.

7.2 Glassy Magnetic Electrodes

Previous studies show that one of the major benefits of using glassy magnetic

electrodes in MTJs that incorporate MgO tunnel barriers is that as the MTJ is

annealed the MgO imprints its crystal structure on the electrodes as they change

from amorphous materials into polycrystalline materials. The work in this disser-

tation shows that these B-based alloys have another benefit in terms of sample

chemistry. The alloy B reduces transition metal oxides during annealing which ef-

fectively decreases the quantity of antiferromagnetic interfacial oxides in the MTJ

which degrade device performance. The templating and oxide reducing charac-

teristics of B-based alloys make them prime candidates for further study in MgO

MTJ structures.

7.2.1 New B-based Alloys

The work in chapter 4 demonstrates that Ni-Fe-B alloys can be successfully in-

corporated in high TMR, low RA MTJ structures. One interesting extension of

this investigation is to study the possible incorporation of other alloy materials

designed with specific magnetic properties to see if the inclusion of glass forming

B is beneficial to making MgBO-based MTJs with carefully engineered electrodes.

One set of experiments is to study the incorporation of a wider range of Ni-Fe-

B alloys, like Py90B10 or Py85B15. Another interesting candidate alloy is Conectic
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(Ni77Fe14Cu5Mo4). [2] This extremely soft alloy is highly useful in sensor structures

and could possibly be incorporated into MgBO based MTJs with the addition of

20 %B in the alloy (Ni62Fe11Cu4Mo3B20). The metallurgy of this system should

first be investigated to ensure that such an alloy target can even be made, then a

study of the device performance and magnetics can proceed.

7.2.2 Out of Plane Magnetized Free Layers

The use of out of plane magnetized electrodes has shown some encouraging re-

sults with regards to possibly lowering the critical current density required for

STT switching. In addition, out of plane magnetized electrodes are interesting for

oscillator studies. The layers used for this purpose that typically show up in the

literature are usually composed of multilayers of Ni and Co, both of which will form

detrimental antiferromagnetic oxides when in contact with MgO. Study of the use

of a thin (∼ 1-4 Å) layer of CoFeB, NiFeB, or another B-based alloy, upon which

is grown the Ni / Co multilayer could prove beneficial for out of plane magnetized

free layers without the formation of antiferromagnetic interfacial oxides. [3] This

structure has the additional benefits of forming a locally epitaxial Fe / MgBO /

Fe MTJ since the MgO barrier will imprint its structure on the B-based alloy and

the alloy B will be incorporated into the tunnel barrier.

7.3 MTJ Device Fabrication and Transport Measurements

The previous paragraphs describe materials studies geared towards understanding

the physical and chemical properties of MgO and MgBO based MTJ structures.
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Although the materials physics is of great inherent interest, it is ultimately the

fabrication and study of working MTJ devices that is of broader interest to the

research community. To fully correlate the materials studies with transport mea-

surements and thus understand more deeply the impact of the various materials

considerations upon device behavior, we need a reliable device fabrication process

to form working MTJs for transport measurements.

7.3.1 MTJ Transport Measurements

Once the device fabrication process is complete, a wide range of transport studies

is possible. I should note here that Mark (Hsin-Wei) Tseng is already hard at

work on developing this process and is likely to have completed it by the time this

dissertation is available to anyone in the Buhrman Group who cares to consider the

experiments I propose here. One reasonable place to start the device measurements

is with TMR scans. A simple measurement of V/I as a function of applied field

will give a first glimpse of the device quality. This should give a measurement of

TMR (∆R
R

) and the device resistance times the patterned area will give the device

RA product. This provides a comparison with CIPT measurements of unpatterned

layers which will indicate if patterning has changed the device properties. Another

interesting study is the behavior of TMR as a function of applied bias. This

measurement is a good test bed for comparing MgBO barriers of different MgBO

compositions to see if there is any change in device performance. As the bias

voltage is increased, the energy landscape of the electrodes changes, so in some

sense TMR vs. V is a probe of the electrode density of states and spin polarization

as a function of energy. This measurement may also be a window to differences

in defect states within the tunnel barrier, although measuring the derivative of
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differential conductivity dI2

dV 2 is a more direct approach. With patterned junctions

in hand, one measurement of great interest is the 1/f noise of different barriers. [4]

Careful investigation of the 1/f noise for various MgBO compositions will provide

useful information regarding the utility of the MgBO barrier in sensor applications

and may also point to the physical nature of barrier defects.

From an engineering and reliability standpoint, measurements of breakdown

voltage and current wear out are important for the long term behavior of a de-

vice. With patterned devices it would be highly useful to compare the breakdown

voltage of, for example, Mg/MgO bilayer barriers with the breakdown voltage of

MgBO barriers. This is one way to determine if MgBO barriers are more robust

than MgO barriers. Also, a measurement of TMR as a function of time for a

particular current bias will provide a direct measurement of the current wear out

properties of various barrier materials. Considering that the MTJs of interest for

STT applications are on the order of 1 nm thick and that the voltage applied

across the barrier necessary to excite STT is on the order of 0.5 V, the electric

field applied across the barrier is on the order of what is applied in electrochemistry

experiments. This raises the question as to whether any electrochemical reactions

are taking place during typical device usage. The work of Houssameddine and

co-workers shows significant changes in MTJ performance after current wear out

which suggest possible barrier modifications. [5] Voltage breakdown and current

wear out properties in conjunction with chemical analysis will be very useful in

determining optimal barrier composition.
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7.3.2 STT MTJs and FIB EELS Studies

The STT behavior of devices with different barrier compositions is of great interest.

This is the natural progression of the project and the reason why I began developing

an MgO MTJ growth process to begin with. Once the device patterning process

is complete and working devices are routine, the next step is to push towards

measuring STT switching in MgBO MTJs. Provided this is achievable, there

are a number of exciting studies that can be explored. Obviously, study of the

switching behavior and thermal stability of different free layer materials used with

different MgBO barrier compositions is one interesting investigation. Another

obvious extension is to study the microwave power emitted by MTJs that are

fabricated in either a conventional sense (free layer on top) in the ”inverted” sense

(free layer on bottom) [6] or fabricated with thick bottom electrodes for study of

vortex formation. [7] Each of these is worthy of study and could lead to many more

exciting experiments.

In keeping with the theme of correlated transport, electronic, chemical, and

magnetic studies, an experiment of particular interest to me is to pick a partic-

ular device parameter to study, for example breakdown voltage, or current wear

out. Then identify two nominally identical working devices (meaning just TMR

is measured) from a wafer with a particular barrier chemistry and electrode con-

figuration. Then put one of the two devices through a series of measurements of

the device parameter in the study (i.e. breakdown voltage) until the device fails.

Finally cut out both the control sample and the destroyed sample using focused

ion beam (FIB) for cross-sectional TEM / STEM / EELS investigations.
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7.3.3 Double Barrier Junctions

Perhaps the most interesting proposal is the formation of double barrier MTJs

(Figure 7.1). The key component is the free layer, sandwiched between two bar-

rier layers. If this material can be made crystalline then many interesting device

properties should emerge. The results of the studies on PyB free layers discussed

in Chapter 4 suggest that crystallization of a PyB free layer sandwiched between

two MgBO layers is probable, and I am currently conducting experiments with

Judy Cha and Mark (Hsin-Wei) Tseng on these structures. The results of these

initial studies should give a better idea of what free electrode thicknesses are likely

to work. The major challenge is to form a layer that is thick enough to maintain

thermal stability while thin enough to fully crystalize.

Double barrier MTJs are beneficial for increasing V1/2, the bias voltage value

for which the device TMR decreases by a factor of 1/2 from its low bias value.

[8] Double junction structures have substantial benefits for STT devices if the

two fixed layers are pinned such that they are oriented in an antiferromagnetic

arrangement. This provides twice the STT since both the transmitted and reflected

spin-polarized tunnel currents impart a torque on the free layer. [9] In addition

to these enhancements, a thin, crystalline free layer between two tunnel barrier

layers can create spin-filtering states within the tunnel barrier. [10] This should

improve the effective spin-polarization of the tunneling currents and thus the STT

efficiency. [11] Such a structure has the possibility of decreasing both the current

required for switching and the time required to make a switch in a STT device.
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Figure 7.1: Cartoon of a double barrier junction incorporating MgBO barri-
ers and a PyB free layer.
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7.4 MgB2 / MgBO / MgB2 Josephson Junction Develop-

ment

Since the discovery of superconductivity in MgB2 and the development of high

quality thin film growth processes many research groups have worked towards

the development of all-MgB2 JJs. As mentioned in Chapter 5, to date all-MgB2

JJs have not demonstrated the performance necessary for useful devices. The

experiments outlined in this section provide some ways to study the materials

physics in these systems that may be helpful in determining the best approach to

forming successful, high quality all-MgB2 JJs.

7.4.1 MgB2 / MgBO Annealing Studies

In order to form high quality all-MgB2 JJs two important details must be ad-

dressed. One is the formation of good tunnel barrier materials that do not degrade

the quality of the base electrode. The other is the subsequent formation of a good

MgB2 top electrode on this tunnel barrier material. The experiments in Chap-

ter 5 address the first issue and the second issue is addressed by work that Mark

(Hsin-Wei) Tseng and I did on annealing MgB2 / MgBO bilayers. Since the re-

quired deposition temperature for good MgB2 growth is between 500 and 700oC

depending on the deposition technique we investigated the effect of annealing on

both the electrode and the tunnel barrier with XPS. This work is on-going, but

the initial results are that reactively evaporated films with barrier layers formed

by exposure to oxygen do not substantially degrade for anneals up to 500oC for 30

minutes. The barriers do not get dramatically thicker, but the effect of the anneal

upon film TC is unknown at present. In addition to chemical analysis and barrier
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thickness estimates as a function of annealing, measurements of film TC before and

after annealing will be helpful in determining film quality. These studies can be

correlated with transport studies performed by our collaborators to fully inform

which procedures are likely to form the best all-MgB2 structures.

7.4.2 MgB2 / MgBO Barrier Thickness Studies

The experiments discussed in Chapter 5 provide some baseline measurements of

the MgB2 films and their surface oxides formed by a variety of oxidation tech-

niques. One crucial step in the formation of high quality JJs is the control of

the tunnel barrier and one missing piece in the investigations performed by our

team to date is an accurate thickness estimate. While XPS is excellent at chemical

identification and is good at chemical quantification, the power of the technique

gets significantly weaker when dealing with a mixed oxide material like MgBO.

Also, while thickness estimation with XPS is often very accurate in systems like

Si / SiOx, a multilayer sample like the samples discussed in Chapter 5, especially

one that has been exposed to atmosphere, makes for a difficult time in getting

accurate numbers. With this in mind it would be very helpful to find an appro-

priate technique, perhaps TEM, for generating accurate thicknesses for the tunnel

barriers formed by specific growth and post-growth oxidation techniques. With

this calibration, one will yield more reliable thickness estimates from XPS studies.
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7.5 Nb / AlN / Nb and Nb / NbN / AlN / NbN / Nb

Josephson Junction Growth

The investigations of AlN tunnel barriers in Chapter 6 provides a good starting

point for developing a process for making AlN-based JJs. These structures should

be sputtered to form full wafers that can be processed with techniques similar

or identical to those used to fabricate micron-sized MTJs. The first step in the

development of AlN-based JJ thin film growth is to sputter Nb and NbN layers

for resistivity versus temperature measurements. This can be easily started by

growing Nb, NbN, or Nb/AlN on thermally oxidized Si wafers or chips and capping

the layers with Cu. Then, using the van der Pauw dipper described in Chapter 2,

sheet resistance versus temperature can be measured which can easily be converted

to resistivity versus temperature provided the thickness of the thin film is known.

The effects of the Cu layer, which is used as a cap to prevent Nb oxide formation,

will need to be included in this calculation to get a precise measurement, but

this should be reasonably done by measuring Cu thin films by the same process.

The XPS measurements of the various AlN samples shows that for some deposition

processes (reactive rf sputtering of AlN in N) the Nb electrode is actually nitridized

and oxidized, so the film layer is Nb / NbOxNy /AlNz. One study that should be

done in conjunction with the transport measurements is to vary the Ar:N ratio

during reactive rf sputtering. These films can then be studied with both EELS

and ρ vs. T measurements to get a good idea of TC as a function of electrode and

barrier composition. With this knowledge in hand, one can then incorporate Ta /

CuN seed layers for smoothing and top Nb layers to form complete JJ structures

for patterning and ultimately for low temperature transport studies.
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7.6 Hybrid Magnetic Tunnel Junction - Josephson Junc-

tion Film Layer Growth

The final proposed structure is a hybrid MTJ-JJ device. This is far and away

the most difficult structure to make, but with the other techniques and studies

described in this dissertation, and provided the Nb / AlN / Nb JJ process becomes

reality, then it is my opinion that there is only one crucial step that would need

to be worked out to allow the development of the hybrid device film layers. This

device structure is interesting for a number of reasons. First, superconductivity

and ferromagnetism are natural enemies, so any device that can include them both

successfully is of broad scientific interest. However, in terms of applications, this

device structure allows the low temperature operation of an interconnected JJ and

MTJ and could be the basis of a very fast memory technology. [12]

The next paragraphs propose a multi-step process that could provide the means

to making the film layers for this hybrid device concept. The idea is to load the AJA

sputtering system with 7 targets (Ta, Cu, MgO, FeCoB, IrMn, AlN, Nb) which

will allow first the growth of the JJ structure, then removal from the chamber

to deposit the spacer layer / superconducting ground plane / spacer layer stack,

then re-introduction into the AJA to grow the MTJ. Step one of the device layer

growth is the formation of the Ta / CuN seed layers for smoothing, which is

described in Chapter 2. The next step is the growth of a Nb / AlN / Nb JJ with

a Cu capping layer to prevent oxidation. Provided the process (or some variation

of the process) describe in the previous section is successful, then this step should

be easily incorporated onto the Ta / CuN layers.

Then the wafer is taken out of the chamber and a Cu spacer layer / Nb super-
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Figure 7.2: Cartoon of hybrid MTJ - JJ device film layers. The dashed lines
indicate breaks in the deposition when the wafer is removed from
vacuum and placed in a different deposition chamber.
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conducting ground plane / Cu spacer layer structure is deposited by high power

sputtering. The purpose of the ground plane is to make a diamagnetic film plane

that will prevent the field from the MTJ layers from influencing the JJ perfor-

mance without dramatically changing the MTJ performance. A few Oe field may

be enough to disturb the JJ performance, but exactly how much field magnitude

is currently unknown. The location of the Nb ground plane in the stack may prove

to crucial to the performance of this device and this is one of the most important

open questions regarding the development of this device structure. In addition,

these sputtered Cu / Nb / Cu layers must be smooth enough to grown a good MTJ

structure on top of them. AFM studies of surface smoothness will provide a means

to optimize the post growth processing required to get a film smooth enough to

successfully deposit the MTJ on top of these sputtered layers. After this step, the

wafer is re-introduced in to the AJA and another stack of Ta / CuN seed layers is

deposited. It is possible that rf backsputtering to etch and clean the film surface

will be beneficial for this step. Then the MTJ layers and finally a Ta / Cu capping

layer are deposited. The MTJ must be annealed to activate high TMR and the

studies in Chapter 6 show that the AlN barriers get some additional benefit from

annealing as well. This will not be an easy or straightforward process to develop,

especially since it is difficult to know just how thick the spacer layers need to be,

and it may also be very difficult to successfully smooth the spacer layers enough to

get good MTJ growth. Also, annealing may diffuse Cu throughout the structure,

so low temperature, long time annealing procedure are probably best. In addition,

the device fabrication will be very challenging. I propose to put the JJ on the

bottom since its device area should be larger. This should allow the fabrication

steps to proceed as a hybrid between nano-pillar and micro-pillar fabrications. It

will not be easy, but it could be a very exciting, and highly fundable project for
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one or more future students.

7.7 Dissertation Summary

The research presented in this dissertation investigated the development of thin

film growth processes for fabrication of both MTJ and JJ structures focused pri-

marily on the chemical, electronic, and structural properties of tunnel barrier ma-

terials and the interfaces they make with the electrode materials to which they

are adjacent. I developed a process that is capable of making MgO (MgBO)-based

MTJ thin film device layers that have TMR, RA, and magnetic characteristics

that are comparable to several industrial research groups. I studied the materials

properties of these junction structures along with MgB2 oxidation processes and

AlN tunnel barrier formation. While the work presented in this dissertation is ca-

pable of standing alone as a body of research, there is little doubt the the greatest

accomplishment of my research efforts of these past years is developing techniques

and procedures that will allow my colleagues to make new MTJ and JJ device

structures with few limitations.

I conducted XPS studies on CoFeB / MgO bilayer samples which show that

MgO barrier growth can be controlled in such a way as to either prevent or promote

electrode oxidation. If the electrode is protected with a Mg layer, then stoichio-

metric, crystalline MgO forms. Alternatively, if the plasma formed in rf sputtering

oxidizes the electrode, then a MgBO material with promising physical and chem-

ical properties forms. In both cases, the post-growth annealing that is required

to activate high TMR in MgO-based MTJs reduces Fe and Co oxides formed in

the deposition process through a reaction of B from the electrode with O in the
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transition metal oxides. In the case of MgBO barriers, annealing causes an atomic

rearrangement of the Mg, B, and O species, and the formation of a different barrier

oxide material adjacent to a crystalline CoFe electrode. Increased control over the

barrier composition by including an Mg layer, or through use of getter materials

during the rf sputtering deposition of MgO is due to the capture of oxygen lib-

erated from the MgO target in the early stages of sputtering. However, reaction

between B from the electrode and sputter deposited MgO is an inherent part of the

formation of rf sputtered MgO-based MTJs and the ability to intentionally make

MgBO barriers provides an opportunity to fabricate MTJ devices that potentially

have more robust transport characteristics due to the increased thermal stability

of MgBO in comparison to MgO.

In conjunction with Judy Cha and Bill Egelhoff, I studied the correlated results

of STEM/EELS, STS, CIPT, and magnetics research which shows that MgBO-

based MTJs have several advantages over MgO-based MTJs. As-grown MgBO-

MTJs exhibit a TMR which increases with decreasing barrier thickness and as-

grown MgBO barriers have fewer low energy defect states than MgO barriers.

There is also no substantial increase in these defect states in MgBO barriers after

annealing. Comparison of MTJs with MgBO barriers with MTJs with Mg/MgO

bilayer barriers shows that MgBO barriers yield higher TMR values and lower RA

values than MgO barriers of comparable thickness. Py80B20 alloy top electrodes

are capable of forming MgBO MTJs with high TMR (∼ 150 %) and low RA (∼ 15

Ω(µm)2) values after annealing. These MTJs also show desirable magnetic charac-

teristics of low MS and HC , and the coupling in these layers decreases dramatically

after annealing due to interfacial oxide reduction by the B content in the MgBO

and in the interfacial region of the electrode. B is not only important for the

formation of ultra-thin, low-resistance, highly spin-filtering tunnel barriers, but is
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also the crucial component for enabling the use of superior ferromagnetic, Py-based

electrode materials for spin torque MRAM and magnetic sensor applications.

I also studied MgBO barriers in a different material system through an ex-

ploration of the oxidation of MgB2 thin films. The highly reactive nature of Mg

dominates the oxidation of the MgB2 film surface, but the surface oxide is com-

posed of both Mg and B components and is similar to the MgBO materials I

observed in MTJ structures. Exposure to N2 or O2 promotes formation of MgO

on the MgB2 film surface and the surface becomes completely composed of MgO if

the oxidation process is carried out at elevated temperatures for an extended time.

If the oxidation occurs at lower temperatures, then the surface oxide formed is a

mixed MgBO, similar to the native MgB2 surface oxide. The oxidation process

depletes the film surface of Mg, forming MgOx, and promotes development of el-

emental B, and B sub-oxide near the film surface. The degree of formation of the

elemental B, and B sub-oxide species is dependent upon the method of delivery of

O to the film surface as well as the sample temperature during oxidation. These B

species are likely to effect MgB2 / MgBO / MgB2 JJs formed with these oxidation

processes. Ion milling and water exposure oxidize and etch the MgB2 film surface

in similar ways to different extents. These chemical studies provide insights into

optimal MgBO barrier formation techniques for future MgB2-based JJ devices.

I started another project developing the growth processes for AlN tunnel bar-

riers formed both by N beam exposure of Al films and by reactive rf sputtering

of AlN in either Ar or N2 process gas for use in Nb / AlN / Nb or Nb / NbN

/ AlN / NbN / Nb JJs. Both AlN growth processes introduce O into the AlN

film, which could possibly be controlled with getter material in a manner similar

to the way these getter materials are used in MgO and MgBO-based MTJ growth.

254



These XPS studies show that when one uses a pure N2 atmosphere for reactive rf

sputtering of AlN, the film growth nitridizes the underlying Nb film, similar to the

way MgO oxidizes CoFeB. These studies provide some insights regarding optimal

AlN barrier formation for JJ structures that can now be further developed by other

researchers.

Finally, I constructed a list of experiments ranging from systematic and guar-

anteed to produce interesting materials studies to complicated with a high risk

of failure. I did my best to make the descriptions detailed enough as to provide

direction and encouragement, and vague enough as to allow modification, improve-

ment, or rejection if need be. My hope in assembling these experiments is that

my outstanding colleagues may choose to investigate some of my ideas, and with

a little work, eclipse everything I have accomplished in my time here. I wish you

good luck, well-behaved vacuum systems, and piles of publications.
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