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_Abstract:

The reachability set for vector addition systems of
dimension less than or equal to five are shown to be effectively
computable semilinear sets. Thus reachability, equivalence and
containment are decidable up to dimension 5. An example of a

non-semilinear reachability set is given for dimension 6.
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Introduction

Vector addition systems or equivalent formalisms like
Petri Nets have been studied extensively as a model for paral-
lelism and resourcé allocation in operating systems [6,7].

Hack [4] and Rabin (see [1]) have shown that the equivalence

and containment problems for arbitrary vector addition systems
are undecidable. A number of other properties such as finite-
ness are known to be decidable [5,7]. However, the reachability
problem, i.e., given an initial configuration, can one reach a
specified configuration, has been left open. Some partial results
have been obtained, notably by Van Leeuwen [8) who proved that
the reachability problem is decidable up to dimension 3 and
several authors (see Cardoza [2]) who showed that for reversible
or self-dual vector addition systems, the reachability problem
(as well as the equivalence problem) is decidable. (This par-
ticular case corresponds to the word problem for commutative
semigroups.) Both of these partial results depend, at least
implicitly on the fact that the reachability set is semilinear
which is not in general true.

In this paper we show that the reachability set is an
effectively computable semilinear set for dimensions less than
or equal to 5. This proves that reachability, equivalence and
containment are decidable up to dimension 5. An example of a
non-semilinear reachability set is given for dimension 6. Thus

results for higher dimension will need basically new approaches.



An important concept which we use extensively is that

of a semilinear set. For C and P © /Nn let

Z'c,p) = (x| cinc, Gyreeesa €N and Pyre+eePy € P,
k

Xx=c+ I a,p,!l
i=lii

For convenience we write @c,P) for P{c},P). If P is finite,
then fc,P) is said to be a linear set. P is the set of periods.
A set is semilinear if it is a finite union of linear sets.

The class of semilinear sets is' closed under union, intersection
and complement [3]. For L €/A™ and v in Z." the shift of L with
respect to v, denoted L+v, is the set {x+v|x in L} /Nn. The
class of semilinear sets is closed under shift as seen in the

following technical lemma.
lemma 1.1: If L is semilinear, then L+v is semilinear.

Preci: Since the class of -semilinear sets is closed under union
we need only show that L+v is semilinear for L a linear set. Note
that for v > 0, Pc,P)+v is just Pc+v,P). Let P = {Pyreeeipy ).
Associate with each element x of g}(c,P)-tv any k-tuple (al,... ,mk)
k

- a.p, + v. Let B be the set of elements of
i=1 14

such that x = ¢ +

T(c,P)+v corresponding to minimal k-tuples. Then .;?(c,?)-w =,,(£(B,P).
Since B is finite, mc,PHv is semilinear.

The cone generated by a set of vectors P = {pl,...,pk) and



We introduce a variation of the vector addition system
by adding a finite state control. The addition of states often
reduces the number of dimensions needed to model a given system.
For a vector addition system with states the reachability set
is semilinear up to dimension 2 but not, iq geheral, semilinear
for dimension 3 or higher. Since this model reduces the dimen=-
sion at which non-semilinear sets arise, it is our hope that
it will make it easier to prove further results for non-semilinear

cases.,
I. Preliminaries

We first give basic definitions and notation used
throughout the paper. Let IN denote the set of nonnegative integers
{0, 1, ...}, Z denote the set of all integers {..., =1, 0, 1, ...}
and IR denote the rag}onals. Léth”(Zln) denote the set of
n-tuples of elements of Jf(Z). If t is an n-tuple, Hi(t) is the
ith component of t. Unless otherwise specified, operations on
tuples are componentwise extensions of the usual operations (e.g.
for v and w in UVn, v+w is defined by Hi(v+w) = Hi(v)+ni(w) for
i=1 to n). An important exception is the relation < between
elements of IN™. v < w means M (v) < M, (w) i=1,...,n but
Vv < W means Hi(v) < Hi(w) i=1l,...,n and nj(v) < nj(w) for some
j» 1 £3 £ n. Also an obvious but important fact is that for
n > 1, < is not a total order on [N ". We use v ¥ w to express
that v and w are incomparable. Any set of pairwise incomparable
elements of UVn is finite, hence the minimum of a subset of an

is finite.



-4~

k
a point b is the set €b,p) = {x|x € IN®, x=b + % @;p;, @; in IR}.
i=1 .

Wwe will make use of the fact thatfl’(B,P) is semilinear even if B

and P are infinite provided there exists a finite subset Pf =

% 1,...,pk} € P such that B eaxo,Pf) for some Xqs and P G%(O,Pf).

We IZirst show that if P is finite, then &(B,P) is semilinear.

lerma 1.2: Let B _c_:an be a possibly infinite set and
? = {pl....,pk} g[N" a finite set such that B is contained in

the cone C generated by P and some x Theny = dl(B,P) is

0°
sexilirear.
Broof: Let B = {b,,b,,...}. Delete from B each b, such that
there exists j < i, bi € gﬂbj,P). This does not change the set
4. 1f B becomes finite clearly & is semilinear by definition of
a senilinear set.

Assume B is still infinite. Each bi can be expressed

k k

b. = x, + I a,p, + I

i 07 4oy iE niPy 0 <oy <l.on; eN

1

There is a finite number of constants c, ¢ ewn such that

s 4P = ¢ 0 < 3y < 1. So an infinite subset of the bi's must

i=2

T k

te of the form b, = X9+ ¢+ I mp.. Represent the jth element
i=1

oI this subset by the vector <ni,...,n}3<>. Since there is an

infinite number of these vectors, there must be an infinite increasing

ss2gi2nce, hence there exists bi’ bj’ i < j such that the representation

cf =, is less than that of bj' Hence bj e J((bi,P),

-
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a contradiction. Hence we conclude that the new B is finite and

(f is semilinear.

Lemma 1.3: Let B and P be possibly infinite subsets of N" such that

for some finite set P, c P, B € @lx,,P,) for some x,, and P € €(0,P,).

Then ',;f(B,P) is semilinear. .

Proof: B,P) =ﬂ([’(B,P),Pf) and hence is semilinear by the

previous lemma since o/ (B,P) E%xo,Pf) .

Lemma l.4: Consider an infinite sequence of linear sets [ﬁxi,Pi)
such that Pl nonempty and for each i, Pi c Pi+l' contained in a

i i U/ )=
one dimensional space f. Then ;o A% oPy) Jf(xi,Pi) for

some finite set F.

Proof: Without loss of generality we can assume that Pl contains
some vector a. Thus & is partitioned into a finite number of
equivalence classes modulo a. Since a must be in each Pi’ if x
is in y(xi,Pi) then all y > x in the same equivalence class must
also be in f[(xi,Pi) . But there are only finitely many equivalence
classes and for a given x there are only finitely many y < x in
the same class. Thus there are only a finite number of i such
that Sl)(xi'Pi) contains an x not in any Q(xj,Pj), j <i. @A

We use the term boundary to designate an hyperplane of
the form {x]l‘[i(x) =0, x € IN?} for some i. Boundaries separate
INP £rom the rest of /A

An n-dimensional vector addition scheme i is a finite

subset of Z.". An n-dimensional vector addition system (VAS
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for short) is a pair (x,W where x in|N" is called the start
point and W € Z". The reachability set of the VAS (x,W),
denoted R(x,W) is the set of all z, z = x+v;+ ... +vj, where each
v; is in W and for 1 <4 < j, x+vy+ ... +v, > 0. The sequence
VieeeorVy is called a W-path or path when W is understood, valid

at x, vl+...vj is the displacement of the path. A W-path is

sometimes noted p € W*, using the notation of regular expressions.
IfD EW*, W= {wl,.,.,wk} we define x(p) € MJk, the folding of p,
by Ii(x(p)) equals the number of occurrences of Wy in p. Of
course, a folding corresponds to many paths, and for a given
start point some (or all) may be nonvalid.

The reachability problem is to determine for a VAS (x,V)
and a point y whether y is in R(x,W). It is an open problem
whether the;e is a decision procedure for solving all instances

£ the problem. The problem is solvable up to dimension 3 [8]
and in various special cases, for example when W is self-dual

(v € W ‘<=> -v € W) (see for example Cardoza [2]).

II. Vector Addition Systems with States (VASS).

In this section we present a new model for vector addition
systens that includes a finite state control. We first show
that an n-dim VASS can be simulated by an (n+3)-dim VAS, hence
the two formulations have the same power. Next we prove that a
2-¢éim VASS has an effective semilinear reachability set. Finally

we give an example of a 3-dim VASS that generates exponentiation,



hence its reachability set is not semilinear.

A vector addition scheme with states is a vector addition

scheme W, together with a finite state control S. Transitions o
are in S + S x W. The transition p + (q,v) can be applied at

the point x in state p and yields the point x+v in state q,
provided that x+v > 0.

A vector addition system with states (VASS for short) is

a vector addition scheme with states <W,S> together with a

starting point x, and a starting state P, € Ss.

0

Lemma 2.1: An n-dim VASS can be simulated by an (n+3]-dim VAS.

Proof: We give the construction of the VAS. The last three

coordinates encode the state while the first n coordinates are
as in the VASS. Assume that the VASS has k states yreee Ty

Let ai=i for i=1 to k, bk=k+1 and bi=bi+1+k+1 for i=1 to k-l.

If the VASS is at v in state a3 then the VAS will be at (v,ai,bi,O),
For each i the VAS has two dummy transitions t; and t'i defined

so that t; goes from (v,ai,bi,O) to (v,o,ak /b 1} and

-i+1'"k=i+
L}

t i goes from (V’O’ak-i+l’bk-i+l) to (v,bi,o,ai). Note that ti

and t'i modify only the last three components. In addition

there is a transition t"i for each transition i + (j,w) of the

VASS, defined so that t"i goes from (v,b. ,O,ai) to (v+w,a. 'bj’

provided v+w > 0.
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Clearly any path of the VASS can be mimicked by the VAS.
It remains to be shown that the VAS cannot do something unintended.
Wwe will only show that t"i can only be applied if the last three
corponents are bi’ 0 and a; respectively. The other cases are
similar. Observe that for each i and j, a; <Ay bi > bi+1'
a; < bj and bi-bi+l = k+1 > aj. Let v"i be the vector (w, aj—bi,
bj' -ai) which accomplishes the transition t"i. Note that the
n*lSt and last components are negative. Hence t"i cannot be
applied when the last three coordinates are (ai,bi,O) or
(o'ak-i+l’bk-i+l) since either the first or third components are
null. Let the last three coordinates he (bm,O,am). Then if
o< i, t"i ‘cannot be applied since a-a; < 0. Ifm>1i, then
t"i cannot be applied since bm+aj—bi < aj-(k+1) <0y

Sifice an n-dim VASS can trivially simulate an n-dim VAS,
these two :gdels have essentially the same power.

e are now going to show that the reachability set for
each 2-dim VASS is semilinear. The idea is the following.
Start enumerating paths. On encountering a path containing a
ubrath starting and ending in the same state from some x to
some Y, Y > X, we observe that the subpath can be repeated as
often as we like, giving an infinite set of paths. Thus if z
is any point reachable from y, we can reach the set of points
‘z+i{y-x) i=1,2,...}. We enumerate the reachability set by

enurerating such linear sets continuing this process until a

collection of linear sets is constructed which is closed under



transitions of the VASS. Even though the above process does not
in general terminate, in dimension 2 it does terminate implying
that the reachability set of a 2-dim VASS is semilinear.

The intuitive reason why the enumeration terminates in
the 2-dimensional case is as follows. If the process does not
terminate, then there is an infinite path such that points along
this path are not in previously computed linear sets. The set
of periods for the linear sets corresponding to points on this
path must eventually have arbitrarily large cardinality. By
Lemma 1.3 this implies that the cones generated by the pericds
must be "widening" infinitely often. In dimension 2 this implies
that eventually periods parallel to the axis vectors can be
added and hence the cones cannot widen further.

In the following we make these ideas precise. A short
path is a path with no repeatihg state except that the first

and last state are the same. A short positive path is a short

path with a positive displacement. Note that there is only
finitely many short paths. An axis is a vector with one positive
component and all other components zero.

We give an algorithm that constructs a tree labelled by
3-tuples [x,p,A ] where x is in /Nz, p is a state and A ¢ /Nz.
The label [x,p,Ax] denotes the fact that every point in the
linear set ﬂﬁx,Ax) can be reached in state p. When a new vertex
is added with label Ix,p,AxJ the displacement of any short pos-

itive path which is valid at x is added to the set of periods
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Ax. Also if there is a path valid at x whose displacement is
an axis, the axis is added to Ax if a parallel axis vector is
not already present. Each vertex inherits the periods of its
father. 1If .g?x,Ax) is contained in.gﬂz.Az) where the vertex
labelled {z,p,Az] is an ancestor of [x,p,Ax], the path is

terminated at [x,p,Ax] since any descendant of [x,p,Ax] is

ejuivalent to a descendant of [z,p,Ax] which is closer to the

root. In this case [x,p,Ax] is marked.

Al-orithm

Input: The set of transitions and the start point %y and start

—

state p, forming a vass.
0

A -
%

“
~

C:eatg root labelled (xo, Py Ax 1:

#nile there are unmarked leaves do

Fick an unmarked leaf [x, p, Ax];

Add to Ax all displacements of short positive paths from

» to p valid at x;

Ao\
if there exists c e ﬂJz' c =($) or {g,such that

.

a) c is not colinear to any vector of Ax, and



b) either i) there exists an ancestor [z,p,Az] of
[x,p,Ax] such that x-z = ¢, or '
ii) for some non positive short path from P

to p valid at x, with displacement a, and’
some b € A s there exists a, B € /Nsuch

that aa + Bb = ¢

then add ¢ to Ax’

If there exists an ancestor {z,p,Az] of [x,p,Ax] such

thatﬁ?(z,Az) contains x and Az = Ax

then mark [x,p,Ax]

else for each transition p + (q,v) do .
begin
Let a = @) Vytee .ty vy for a in.gﬂo,Ax) whe;e

A = {Vl""'vk)

for eacﬁ a in ERO,AX) corresponding to a minimunm
tuple (al,...,ak) such that x+a+v >0 do
Construct a son [y,q,Ay] where y = x+a+v and

end;

if [x,p,Axf has no son then mark (x,p,A ;



 aa-

lem—a 2.2: There existsla constant b such that for each label
[x,p,A.] of the tree, ]Axl < b. Moreover if [x,p,A ] is an

ancestor of [y,q.Ay] then A C Ay.

Prcof: Ax contains only displacements of shovt positive paths
and at most 2 axis vectors, hence there is a bound on IAxI.
If [x,p,Ax] is an ancestor of [y,q,Ayl then Ax E;AY since sons

inherit the periods of the fathers.

Zerma 2.3: The preceding algorithm always terminates, and the

corresronding tree is finite and effectively computable.

Procf: Assume the algorithm never terminates. All instructions

inside the while loop are finite, so the only possibility is that
the while loop itself never terminates. But each time the loop
is executed a new vertex is visited, hence an infinite tree is
constructed. Since the fan-out of the tree is finite, because
Ax"is bounded, there must be an infinite path, by application
0f Xdnig's lemma. e are now going to show that all paths must

be finite, hence that the algoritnm terminates.

Assume that there is an infinite path with vertices

[xi’?"Ax ], i=0,1,... . By Lemma 2.2 the Ax 's remain

- i i
unchanced beyond some finite io. Thus there is. an infinite
sath [x,,p,,Aa], 1 = io,io+1,... for some A. We will show that

there exists a cone @%yo,A) such that all but a finite number
c: xi's lie in the cone. But by Lemma 1.2 only a finite

nutber of X, may lie in the cone, a contradiction. From this



we concluﬁe the path is finite. It remains to show the
existence of the cone Qﬁyo,A).

We first show that only a finite number of the xy from
the path may lie on the same horizontal or vertical line.
Suppose xil,xiz,... lie on the same horizontal or vertical line.

The sequence Xy 01Xy e has a minimum say X; . Also an axis
1 2 m

vector colinear to the horizontal or vertical line must be in A
since there must exist a pair of indices ij < ij’ for which

X, <Xy . Hence for all k,;{(xi ,A) lie in the cone}é(xi WD)

J i’ k n
g = fini .
and by Lemma 1.2 ikaf.(xik,A) fzéng(xik,h) for some finite F

Thus there exists ij < ij' such that x; is in aﬁ(xi_lh)-

J

Hence the last vertex should be marked and the seguence
terminated, a contradiction. Thus only a finite number .of Xy
may lie on the same horizontal or vertical line.

Consider any fixed c; in Hvz and let D = {x|x > co).
The region IN 2—D is composed of a finite number of vertical and
horizontal lines and thus by the previous argument contains only
a finite number of Xy from any infinite path in the tree. Choose
Cqy sufficiently large so that all transitions and short paths
are valid at Cpe hence at any point of D. Since the path in the
tree has only a finite number of points outside D, there exists

an index jo such that xj ,xj 410 - are in D. In general
0 0

X, = X, .+a,+v, where v, is a transition and a, is a minimal
i i-1 71 i i i
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displacement such that %y > 0. However at any point in the region
D, vy is valid, hence ai=0 and the path in the tree is also a path
oZ the VASS.

We will show that for each state p, there can be only a
finite nurber of vertices [xi,p,A]~with xg outside the cone

ka; ,A) where Xg is the first point on the path in state p,
-0 0

io > jo. Let [xi,p,A], is i° be another point on the path in
state p. £ i does not exist, then our claim is trivially true.
k -
Clearly Xy=x; = £ W, where the wj's are displacements of short
0 j=1
2aths since there is a W-path from Xy to Xy and from state p to

0
state p. e consider several cases.

Case 1l: A does not contain any axis vector. Then either

i) all wj's are positive hence wj € A and Xy € Z&xi WA)
0

(hrence no X4 outside ‘the cone) or

V%
3

all wj's and all vectors of A are colinear, so

x; € @x; ,A) or x; < x, (hence a finite number of
- 0 0

xi's outsicde the cone).

Case 2: A contains both axis. ThenlN 2--%ao(xi ,A) is composed of
0

finitely many vertical and horizontal lines, and by an earlier
argument these lines can contain only finitely many points of

the path.
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Case 3: A contains one axis, say ¢ = (0,a). Let vy be the vector

of A with smallest slope (possibly infinite if vy=C, but not

zero). let v, = (a,b) and vl-L = (-b,a) (v

and points "above"'vl. Then all wj's make a positive dot product

l¢ is orthogonal to vye

-
with vl'L » because otherwise if say wj-vlL

wj >0, wj smaller slope than Vs and wj‘must be in A, or wj

and we can introduce a second axis. In both cases there is a

< 0, then either

<0

o T
contradiction. So (xi-xio) -vl¢ > 0 and X; is above the line

x. +8v.,. Hence either x., € @x. ,A) if x, > x. , or x, lies on
i 1 i i i-"1 i

0 0 0
one of a finite number of vertical lines.

In all three cases, there can be only a finite number of

the xi's reached in state p outside ﬁﬂxi ,A). Let X be the set
0

of xi's such that Xy is reached in state p, x;

(g
; € €(xio,a). 1f

X is finite then there is only a finite number of x,'s reached
in state p. Suppose X is infinite by Lemma 1.2 QﬂX,A) = Q%B,A)
where B is a finite subset of ?. Hence there exists X € B,

X. € X, 1 < j such that x,

3 J
terminate at xj. A contradiction. So there can be only a

€ Qﬁxi,A). But then the path should

finite number of the xi's reached in state p. Since this is
true for all states, the path is finite. Hence the tree is finite

and the algorithm terminates. @
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Let Tp =kJ$ﬁx,Ax) where the union is over all vertices

{x,p,Ax] of the tree.
erma 2.4: Tp is an effectively computable semilinear set.

Proof: Clear since the tree is finite by previous lemma.

The next lemma shows that indeed we compute the reachability

ezma 2.5: let Rp be the set of points reachable in state p.

el 3e) = m
Then R? Ap for all states p.

trss that for any node [x,p,Ax], Q(x,Ax) ERP.

2asis: Let (xo,po,Axol be the label of the root. Let w € Ax .
0

Zizher w is the displacement of a short positive path from Py

to 24 valid at Xy or w is an axis vector, w = &a+sb where a

is the displacement of a Aonpositive short path from Py to Pg’
walid at X, and b is the displacement of a short positive path
Zrom 9y 0 Dy valid at Xqe In this case, we can apply first

the I copies of b, followed by the o copies of a, hence w is also
valigd at Xgr and w > 0. In both cases, xXotw is reachable in

state p,, and xo+w > X hence xo+a, a e(Q%O,Axo) is reachable

Q- -aen £ (¢
in state p,, from x, andtgﬁxo,Axo) g;Rpo.

i-ction hyoothesis: Assume that for each vertex (x,p,Ax] of

&~ i at most n-1, ykx,Ax)ﬁg Rp. Let [y,q,Ax] be a vertex of
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depth n, and let [x,p,Ax] be its father. Soy = x+al+v, where
a, G_Q%O,Ax), and p *+ (q,v) is a transition. Let z eéZQy,Ay).

We will show that z € Rq. z = y+a, a € ZﬂO,Ay). Since Axtg Ay’

= L ¢ - =
a = ay+a;, a, €:L(0,A), a, €,jﬂo,Ay A). Now z = x+a +a,+v+a,,

and x+al+a2 € Qﬁx,Ax) is reachable in state p, by induction

hypothesis. p + (gq,v) is valid at x+a so it is also valid at

1’

x+a +a,, hence x+al+a +v = y+a2 € Rq. Now, by an argument similar

1 2
to the one used in the basis part, all vectors of Ay-Ax are
positive displacements of paths valid at y, hence at y+a2. So z =
yta,+a, € Rq. g

Part 2: R_C Tp for all p. We show by induction on the length

P
of the W-path from X to z (in state p) that z € Tp.

T = .
Basis: if z X, then 2z €<[%xo,Axo) f;!bo.

Induction hypothesis: Assume that for each state p anéd any point

z reachable in state p by a path of length n-l, 2z eﬁr(x,Ax) for
some vertex [x,p,Ax].
Let z be reachable in state p by a path of length n. Let

q + (p,v) be the last transition of the path and z = y+v. By
induction hypothesis, y e‘Q&x,Ax) for some vertex [x,q,Ax]. So
Yy = xtc, ¢ € QﬂO,Ax). We may assume that x is not a leaf.
Otherwise either

i) no transition is applicable at x, a contradiction, or

ii) ,Qﬂx,Ax) <@ (x',n,) for some interior vertex [x',c,al,

and we may replace x by x'.



let A_ = {vl,....vk}. Then x has sons x+a+v for each

LIAN %

a = a4,v, corresponding to a minimum tuple of a's such that

i=1 * 4

Xx+a+v > 0. Since x+c+v > 0 we can write ¢ = a1+a2 e.Q%O,Ax)

such that t = x+al+v is a‘son of x labelled [t,p,At] and

z = t+a,. But a, is in ,([’(O,Ax) Sg10,a.). Hence z is in .,(f(t,}\t).
3y parts 1 and 2, Rp = 'I‘p for all p. B

Theorem 2.6: In a 2-dim VASS, the set of points reachable in any

given state is semilinear and effectively computable.
Prcof: Clear from Lemmas 2.4 and 2.5.

Ccrollary 2.7: Equivalence and reachability are decidable for

2-3im VASS.

e now give an example of a 3-dim VASS that generates
expcrnentiation, hence in general, 3-dim VASS have non-semilinear
reachability sets.
lerma 2.8: There exists a 3-dim VASS with a non-semilinear
reachability set.

Srzcf: Censider the following 3-dim VASS with two states, p and
S. The start point and state are Xy = (0,0,1) and, P, = P-

The transitions are:

ty: 2+ (p,(0,1,-1)) ty: p > (q,(0,0,0))
:3: g -~ (q,(0,-1,2)) t4: q + (p,(1,0,0)).
X

Zet condition (1) be 0 < X,+x, < 2 1 ana condition (2) be
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x,+1

1
0 < 2xy4xy, <2 1 .

Claim: x = (xl,xz,x3) is reachable in state p if and only if (1)
holds, and x = (xl,xz,x3) is reachable in state q if and only if
(2) holds.

We first show =>. Note that initially (1) holds and

i) if (1) holds and we apply t (1) still holds,

ll
ii) if (1) holds and we apply t,, (2) holgs,
iii) if (2) holds and we apply t3, (2) holas,

iv) 1if (2) holds and we apply t (1) holds.

4'
Hence any reachable point satisfies (1) or (2) depending
upon the state. We now show <=, i.e. if (1) or (2) holds, then

we can reach x in the appropriate state. The proof is by

induction on the first coordinate X

Basis: If X = 0 and (1) holds then either

i) x = (0,0,1) and x is reachable in state p by the
null path or

ii) x = (0,1,0) and x is reachable in state » by

transition tl.

If x) = 0 and (2) hnlds then either

i) x = (0,1,0) and x is reachable in state g by tltz
ii) x = (0,0,1) and x is reachable in state g by t2
iii) x = (0,0,2) and x is reachable in state q by tltZtB'

So in all cases x is reachable in the right state.
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Induction hvoothesis: Assume that all points satisfying (1) or

(2) and x, < al-l can be reached in the appropriate state. Let

1
a
a = (a,,a,,a,) and assume that (1) holds, i.e. 0 < a,+a, < 2 1.
17273 2 73 -
we will show that a is reachable in state p.
a,-1
issume that 0 < aytag < 2 . Then by the induction

hvpothesis, a' = (al-l,az,a3) is reachable in state p, and by

aprliving t2t4, we reach a in state p. So now we assume that

a,-1 a al-l al-l

2% <a+a, <2, Let ata, =2 +b where 0 < b < 2 .

2 73 - 2 73 -
al-l
3y the induction hypothesis, there is a path to a' = (al-l,b,Z =b)
b a2

since a' satisfies (1). But now, at a' we can apply tz(t3) t4(tl)

a,-1 a,-1

and we get.(al,az,2 +b-a2) in state p. Since 2 +b-a, = a

2 3’

we have reached a in state p.
A similar argument shows that if (2) holds we can reach a
in staze ¢. Hence, by induction, our, claim is true. Clearly

+he reachability set is not semilinear, thus our lemma. H

Note that although the reachability set is not semilinear,
we can scecify it completely by recursive relations, hence

e

chability is decidable for this particular example. Indeed,
a possible way to solve the reachability problem would be to
orove that the reachability set can always be effectively

recresented by some recursive relations.

: 7Th2 example we have presented is in some sense the

simslest non-semilinear VASS. If we reduce by one the dimension,
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or the number of states, or even the number of transitions, we
get a semilinear reachability set. Also, there is a very similar

3-dim VASS (2 states, 4 transitions) that generates squaring.

Conclusion: In this section we have introduced VASS and showed
that they have non-semilinear reachability sets for dimension
as low as 3 (In the next section we will see that for VAS this
happens only at dimension 6). So it might be easier to use VASS
to prove results on non-semilinear systems. Also with VASS, it
is possible to reduce the dimension of a system when one
coordinate remains bounded, replacing each value of that co-
ordinate by a state. In fact we use this property in the proof
that 5-dim VAS have semilinear reachability sets.

Short of solving the general reachability problem, it
would be interesting to solve the reachability problem for 3-dim

VASS, since they have non-semilinear reachability sets.

III. 5-dim VAS have a semilinear reachabilitv set.

In this section we show that the set of all z reachable
from a given x is semilinear provided we restrict x andé z to be
sufficiently large. .The first part, based on Van Leeuwen's
results, is the case where x and z have n-1 large coordinates
(larger than some computable constant b). In the second part
we extend this to points having n-2 large coordinates (larger
than some computable constant c). Finally, in part threce we use

these results to show that 5-dim VAS have semilinear reachability



sets.

In this part we iﬁvestigate some properties of paths and
reachability sets when either endpoint of a path, or even an
intermediate point, is sufficiently far from n-1 boundaries, in
a sense to be defined latter. This part is inspired from
Van Leeuwen [8]. We first give some of his notations and results
and then give some generalizations and improvements of these
results. Many of these results use the fact that a nonvalid
Dath can always be reordered so that at least one coordinate
ramains positive.

A principal arcone is a subset of[ﬁln of the form

ix x > v: for some v € an. It can be viewed as/f{n shifted
byv a ocsitive vector v.
Let x € j/"n, AC ]Nn. A web of x with respect to A
is a set L of VW-paths such that:
i) each path in L is a valid path from x to some y in A.
ii) if Py is a valié path from x to some y in A, then
there exists pé in L, X(p,) < x(py)-
iii) if P,s P, are in L, then X(pl) and X(Pz) are
incomparable.
InZorrmally speaking, a web is a minimal set of shortest paths
f£rcm x to A. Webs are always finite no matter what A is.

Zcwever it is not always known how to compute them.



Lemma 3.1:  ([van Leeuwen] For each x € ]Nn and principal arcone

A, the web of x with respect to A can be effectively determined.

A W-transformation area S is a subset of IN™ such that any

(nonvalid) W-path between two points x and y of S can be rearranged
into a valid path from x to y.

We now give a slightly generalized version of one of

Van Leeuwen's theorems.

Lemma 3.2: For each j, 1 < j < n, there is an effectively

computable vy with Hj(vj) 0 such that A = {x|x > vj} is a
W-transformation area.. Moreover, vj can be chosen indepencdent

of the positive vectors of W.

Proof: The first part of the lemma is Van Leeuwen's theoren.

It remains to be shown that vj can be chosen independent of the
positive vectors of W. Note that this property is useful when
dealing with linear starting sets gﬂx,P): We can then just add

P to W, and consider x as the starting point. The transformation
areas are unchanged.

Assume that we partition W into Wl and wz, wl containing
all positive vectors of W and wz the rest. Using Van Leeuwen's
construction, find a Wz—transformation area A = {x|x > vj}.
Then A is also a W~-transformation area. Consider a (nonvalid)
W-path from x to y, both x and y in A. Rearrange the path so

that all positive vectors are at the beginning. We get a valid

path from x to z, z in A, followed by a nonvalid W,-path from
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z to y. Since both z and y are in a wz-transformation area,

this path can be rearranged into a valid path.

We can find transformation areas with an even more

ceneral fcrm as the next lemma shows:

lerma 3.3: There is an effectively computable constant

3 = (b,...,b) such that the set of points having n-1 coordinates
larger than b is a V-transformation area. Again, B is
indecendent of the positive vectors of W.

cI: Note that this transformation area is of the form

S = P X » > LS re 1. ') = X t) = i R
s 5:1_x xzvlyi where I (v J) b, HJ(V J) 0, i # j. Let

v, Se as in the previous lemma. Let ¢ = max Hi(v.) and
’ i3

S = max {-I.(w)l:i(w) <0, we€W, 1<i<n} and b = c(d+l).

we are going to show that this choice of b satisfies our lemma.
Assune there is a nonvalid path p from x to y, both in S.

2% x-and v are larger than the same vj, then by Lemma 3.2 we can

arrange D into a valid path. So without loss of generality,

we can assume that x > vi, My(x) < K, (v,) <c, andy > vj,

Wi N I,(v,) < e. (This is because vi> v
- - had



Now since M, (x) < I, (v,) < c and M, (y) > Iyl =b >e,

p must coﬁtain some vectors with a positive first coordirnate. 1In
fact, a sequence of at most ¢ vectors must increase the first
coordinate from Hl(x) to at least c. Let pl be this sequence. If
we put the sequence Py at the beginning, we get a valid path from
X to some 2 followed by some path from z to y. But then

My(z) > ¢ > My(vy) and I,(z) > B, (x) -=c.d>b=-c.d >c> I (vy).
Hence both z and y are larger than v, so the path from z to y can
be rearranged into a valid path. Hence our lemma.

We now use these results to show that in some cases, the
reachability set is semilinear. First when the starting point
has n-1 sufficiently large coordinates, and then when any
intermediate point has n-1 large coordinates. *

Given a vector addition scheme W, the set of points
reachable from 0, by not necessarily valid paths is an
effective linear set Lo = 5&0,?). Note that each period o of
P can be generated by a nonvalid path from 0 to p. For any

X € /N n, the set of points y > x reachable from x by a (noavalid)
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Fath is Lo+x = L(x,P). 1f x is sufficiently large, the paths

generating each period become valid when applied at x. Hence

there exists a constant ca such that for all x, 2> ca
R(xo,w)fj ix'x > xo} is equal to(gqxo,P). Moreover c3

-~ & 7 j
2csen so that “j(cw)

can be

0, by reordering paths generating the

cericds of P, so that they are always valid in the jth dimension.

we show that ca has a stronger pgoperty.

w2 3.4: There exists an effectively computable constant

c; ELNS, :j(ca) = 0 such that for each Xg > cg, R(xo,w) = #s,P)

for some firite, effectively.cohputable B and P.

2rosf: Taxe c)
22 Taxe C’w’

already have YQXO,P) = R(xo,w)f\ {x|x > x

and P as defined before, and let Xg > ca. We
<

0}. Also if

x € R(XQ,W), then ﬂﬂx,P) giR(xo,W). To see this, note that if

2 € 4.0,P), xrp = x +p+(x=xg) . But X +p € R(xy,W) and x-x, is

0 0
+p since it is valid at x

0

a valid path at x SO.x+p € R(xo,W),

0 0’
To Ziné 3, we are going to- close &ﬂxo,P) under shifts by vectors

of W. To do that we construct a‘tree labelled by points x,

where a son is a shift of its father. More precisely:

i) The root is labelled Xg.

ii) If x is an unmarked leaf, for all w € W, shift
4°x,?) by w. The shifted set is of the form
4i2,?) for some finite D. If D is empty, mark x.

iii) Create a son y for each y € D. If y > z for
some ancestor z of y, mark y.



Clearly this tree is finite since the fan-out is finite, and the

paths of the tree are made of decreasing or incomparable points,
N ;

hence are finite'. We want to show that Qﬂg,?) = R(xo,w) where

B is the set of all labels of tHe tree.
. .

First J{(B,P) & R(x),W) since all labels of the tree are
clearly rqachabletfrom &0. Also X(B,P).contains %n, SO it
suffices to show that;iKB,P) is closed under shift by any

vector of W, Let x be a vertex of the tree. Then either

i) X is unmarked, then the shift of:f(x,P) is included
in QQB,P) since we create a son y of x for each
. constant of (p,P), the shift of #x,P).

ii) x is marKed and the shift of;fhm?) is eﬁﬁty, or .

iii) x is marked because it has some ancestor y, y < X.
“But then, since x is reachable fromly, x 3 vy,
x € ly,p) and ¥x,P) € Yly,P) so the shift of X (x,P)
is contained in the shift of x(y,P).

In each case, the shift of ¥(x,P) is included in H(3,P). &
In the nexﬁ'lemma we give,a stronger result, namely the
set of points reachable through a point having n-1 large cocrdinates

is semilinear, no matter where X, is.

Lemma 3.5: There exists an effectively computable constant Ki,
Hj(xi) = 0 such that for all x, in /A]n, the set of points

reachable from x, through a point y, y > Ka, is an effective

0
semilinear set.
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2rcof: let vj, Hj(vj) = 0 define a W-transformation area as in
terma 3.2, Let ¢ with nj(ca) = 0, be defined as in Lemma 3.4.
1‘

W

(XS
-

~af i - 2dy = b 3 = 3
Sefine X, by Ij(x)) = 0 and Ky max(vg,cy). Let A {x|x > k).
we want to show that the set of points reachable through paths

having at least one point in A is semilinear. Pick some starting

"

cint xo, xo € an. Note that if xo € A, we are done by lemma

w

.4. W2 can cetermine the web of % with respect to A, by
lerma 3.1, let s = {pl,...,pm} be this web. Let zg. i=1l,...,m
be the points of A reached from Xq by the paths Py i=1,...,m
2y definition of a web the p; are valid paths at Xq- By Lemma
3.4, R{zi,w) is an effective semilinear set. We will show that
any pcint reachable through A is also reachable through some zZ;.
Let z be reachable from Xq through some y € A. Let p be
a valid path from %y to y. By definition of a web, there exists
2 € S such that v (p) > x(pi), hence y is reachable from z; by

a (noavalid) path. However A is also a W-transformation area,

so this path can be rearranged into a valid path, hence y and 2
m

are in R(z,,w). So the set we are looking for is L)R(zi'w)'
- i=1

which is semilinear by Lemma 3.4. Q1

w2 can ceneralize this result even more.

Trzzre~ 3.6: There exists a constant Kw, such that for all

x, € 2N, the set of points reachable from Xy through a
Doint having any n-1 coordinates larger than Kw's is an

effective senilinear set.
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Proof: Let k = max H.(Kj). Then K = (k,k,...,k) clearly
e 1<3<n 1w W
1<i<n
satisfies the theorem since if x has n-1 coordinates larger than

Kw's (all but the jth) one) then x > Ka and Lerma 3.5 applies.

The interesting point of this theorem is that when we
compute a reachability set we can restrict paths to have at least
one small coordinate, that is paths running in some £inite nurmber
of n-1 dimensional spaces. We will see next that for paths with
at least two small coordinates, we can only get a weaker result.
Furthermore, these results do not hold at all for paths with 3
small coordinates, since we can simulate states.

We are now concerned with points far from n-2 boundaries.
We are going to show (Theorem 3.11l) that the set of points z
reachable from some point X, is semilinear when z's and %, are
sufficiently far from the same n-2 boundaries. Without ioss of
generality, we assume in the following that the n-2 large
coordinates are the last n-2. We first prove (Lerma 3.9) the
existence and computability of a constant C GINn, Hl(C) = ZZ(C) =0
such that for all x and y greater than C there is a valid path
from x to y if and only if there is a path valid in the first
two dimensions. We then prove (Lemma 3.10) that the set of
points reachab;e from some X, with a path valid in two dimensions
is an effective semi;inear set.

We first define C and then prove it has the required

properties. Let B = (b,b,...,b) € IN® be a constant such that



the set of points having n-1 coordinates larger than b is a
WetransZormation area, as in Lemma 3.3. Let V = {vl,vz,...,ve}
be the set of displacements vy of paths of length at most bz,

such that il(vi) = ﬂz(vi) = 0 (i.e. the projection of the path
sanerating v along first 2 coordinates is a loop). Find b'

such that the set {xi]i(x) >b', i=3,...,n} is a V-transformation
area as in lLemma 3.3. Note that V is equivalent to an (n-2)-dim
system. Finally we define ¢ by: ¢ + Hi(p) + Hi(p') > Max(b,b")

for all i = 3,...,n and for all W-paths p, p' of length at most

b™. let C = (9,0,c,...,¢c) and consider a path from x to z,

valid in first two dimensions, x and y larger than C.

Zemm2 3.7: If the path from x to z contains a point y such that

Preci:  Let ¥y (possibly equal to x) be the first point along
the zath such that :l(yl)‘i b or Hz(yl) > b. Let Yo (possibly
ecuzl to y, or z) be the. last such point. Now consider the

orojsction of the path along the first two dimensions. X means

Frem the path from x to §l extract a loop-free path Py
from X to §l' In " this path goes from x to some point yi
wrare §i = ¥,. similarly extract from the path from §2 to z a
co-Zree path from §2 to z. In N % this path goes from some

TO 2z where §§ = §2. Now we have a path from x to yi to yé to

(3]

. 3ut the paths from x to yi and from y; to z are of length



less than bz, hence they are valid. They are valid in first
two dimensions because they are obtained from valid paths by
removing loops. They are valid in other dimensions because
Mi(x) > ¢, N;(2).>cand ¢ # I,(p) > 0 for all p of length less
than b2, i = 3,...,n.

Moreover Hi(yi) > b, Hi(yé) > blfoé i=3,...,n ané by
assumption Hl(yi) > b or nz(yi) > b and nl(yé) >bor Hz(yi) > b.
So yi and yé are in the same W-transformation area and the path

from yi to y% can be rearranged into a valid path.

Lemma 3.3: Assume that the path from x to z is such that its
projection along the first two dimensions lies in the square

{0,b] x [0,b] and consists of a loop-free path from X to § followed
by a number of simple loops from y to y, followed by a locp-free
path from § to z. Then the path can be rearranged into a valié

path.

Proof: Paths from X to y and from y to z are of length less than
b2 since they are loop-free. Also simple loops from § to ; are
vectors of V. Let Yy be the ith point along the path such that
Y; =Y. i=1,...,m for some arbitrary m. In the n-dimensional
space, we have a path from x to Yy to Yy e toO Yo to z. Also
I (y,) + Ii(p) > Max(b,b'), Hj () + nj (p) > Max(b,b') for
j = 3,...,n and any p of length at most b2. B

Note that there is a V-path from Yy to Yo and both points

are in a V-transformation area, hence the V-path can be rearranged

into a valid V-path. In fact we have a stronger property. Since



:i(yl) + Ti(p) >b', Hi(ym) + Hi(p) > b', all points y' of the

.i(p) >0, fori = 3,...,n,

vazli@ V-path are such that I, (y') +

3

anZ any p of length at most bz. Corsider the W-path induced by

tme valid V-vath, i.e. consider each vector of V as a pati in W.
Any point on the W-path is of the form y'+p where y' is on the

" path and p is a portion of a simple loop, hence of length at most
b", So =zhe W-path is also valid in the ith dimension, i = 3,...,n.
Morazover the Wepath is still valid in the first two dimensions

since we have just reordered loops around y. Hence we have a

valid pa+¢h Ircm x to z.

. - . n
3.9: There exists an effective constant C € IN,

g]
L}

e

o

such that for @il %, z greater than C 1if there

% to z valid in the first two dimensions, it can

intc a valid path from x to z.

e take C as before and consider a pata from x to z

first two dimensions, %, z > C. We are going to

can rearrange the path so that it satisfies eicher

emma 3.8. In both cases, we can then rearrange

th2 pash into a valid one.

= that the projecticn of the path along the first
tws éimensions lies entirely in the square [2,b] x [0,b]. If not,
condisiens of lLemma 3.7 are satisfied.

Izt v be a point along the path with largest first

ccsrdinzze. Extract a lcop free path from % to y and from



¥y to z. The rest of the original path can be deccmposed into
simple loops. All we have to prove is that thes~ lcops can be
applied at ; so that the new path is valid in the £first two
dimensions. This is clearly truc if we apply these lccps at v
starting with the point on the loop with the smallest sccond
coordinate. ’

Once this is done, either one locé goes outside the
square [0,b] x [0,b] and we can apply Lemma 3.7, or eall loerns
remain in the square and we can apply Lemma 3.8, In both cases

the path from x to z can be rearranged into a valid path.

Remark: The region {x!x > C} has a property similer tc, but
wcaker than a W-transformation area. A path from x to z
greater than C can be reordered into a valid path, but only if

it is already valid in two dimensions.

Lemma 3.10: The sct of points reachable from some point

with
2
a path valid in the first two dimensions is an effective seni-

linear set. -

Proof: Let W = {vl,...,vk} be the vector addition scheme and

let A be the n x kX natrix whose columns are the vectors o W

If p is a W-path define y €N by T (v)

n

Ty (2)). Then a
path from Xy to x must satisfy Xq t Ay = x.

We now characterize the projection of such a path

the first two Jdimensions. Let S = [0,b] x [0,b] where &

a W-transformution area as in Lemma 3.3. Consider a valicé nath



(in these 2 dimensions) from 20 to X and let El be the first
roins out of S (El possibly equal to Eo) let Ez be the last

Toint out of S (52 possibly egual to El or X). If there is no

roint out of §, let z, = z, = x. fThe path Lrom §0 to El is

either null or inside S (except for last point). lHence the set

I

SI Ioidings of such paths can be exvressed as a semilinear se
: . - 1.2 .
is the union o0f b~ + 1 sets, one for each point of §,
arnd zhe erzty path for x, outside S. There is a similar set

“ 0

L,{X) for paths from z, to Xx. BEut then the conditions:
Hy ¥ Ay =X, Y = ¥y + Yoyt Vs Yy € Ll(xo), Y, € Lz(x)

are verified if and only if there exists a valid path p from X

TO X with {3 = y. Together with the first condition we get:

Zy t Ay =, ¥ Sy, tY, ty,
¥y € Ll(xo) ’ v, € Lz(\)

wnich is true if and only if there exists a path p from Xq to
+{») =y, and the rath is valid in the £first two

itions akove have a semilinear set of solutions,

Us:ing Lemmas 3.9 and 3.10 we are able to prove the next
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orem 3.11: There exists a constant C, effectively corm:

with Fll(C) = Fiz(C) = 0 such that the sct of

from a given Xgr Mg and z greater than C, is

lirvar sot,

Pronf: Let %y be grcater than C, wher
By Loemma 3.9 the set of z's, z greater than C, reachaszle tv a
valid path, is the same as tic set of z's reachadble by a patx
valid in the first two dimensicus. By Lemrma 3.10,

the intorsection of a semilinear set and {x:

semilincar, U3

Corollaxy 3.12: For thc same constant C, and any sot of

P, the sct of z's reachable from JJxO,P), % and z create

C, 1is an effective semilirear set.

Proc:: R(;(x(

J,P),H) = R{x

whether the constant C is the same for the schemas W and U

ever if C satisfics Lemma

Lemma 3.9 for WV P, hence our Corollary,

ps

Yle are now ready to prove that a 5-dim VAS has an

semilinear recachability set. Informally, we can view |

—
>
3
2
i
[

)

joint) union of 5-dim subsnaces, each one far from n-2
(i.e. 3) boundaries, together with a Zinite unicn of subszaces
where three dimensicons are bounded. The subspaces whare thrss
dimensions are bounded can be simulated by a 2-dim VA3S. Sirnce

we can compute the reachability set in both types of sutczzaces
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(in a somawhat rectricted sense), the main problem is with paths
crcssing from ore subspace to another.
et c be a constant such that for all pairs i,j, i # 3

the st of »oints x reachable from Xy

varanteed by theorem 3.11. Define C,., i #j by

b
b
M4
“
o
"
n
(]
t
o
u

.

[l = nE i X j T I, . = 1. . =
LS50 c, 7 , X # 3 and .l(ClJ) LJ(Clj) 0. Let
R,. = ixx2>C.} andR=\U Ri;. Let R,., = {x|I;(x) < ¢
J i,3 3 4 i
T s o, Dol < c)fori#j #k, and let R=
i i, 3.k

-

. . o + 5 .= . .
cte that RAvw R = ..»7, and each Ri4} is the union of ¢
j%

s¢t 0Z Toints x such that x € R,., and x + v € R for some
- 13X Tyr

me czher coints. A We-path going directly £rom a region

'
N
N
(g}
(«

Paths can also

union of lines

througn a line: L € E if the path has a

the next point along the path is in another




13: Let L0 be a semi

points rcachable from L

inear starting set.

through paths that never cres

4]

0
a line ot E is5 an ecffective semilinecar set.

Proof: We use a tree-hased argument: We consiruct a tree
by semilinear sets. Edyges ccrrespond to snifts and closurcs.

More preciscly:

(1) The root is labelled by LO'

cenerality that L0 lies entirely in

o

(2) Let L be
i) L <

roi

o+
oy
(W]
v
I

t of points L' of

any path, as guaranteed



L by all vectors of W, getting L". Crcate a new

£ 1 v =" bs = L" R
son of L, L, =L N Rp Or Lygr = L n qur for

each p,q,r.

Note that

the trce is finite since along any path, closure under

a region R, for fixed p and g, can occur only once, and closurcs
o

R__,. Clearly the union of the labels of the tree is a
samilirear s2¢, and it is the set of all points rcachable from
Z. by rz:ihs that never crosses through E.

_ezz . e the nunber of lines of E. We are going to show,
Sy inductienoon i, 0 < i < m that the set of points reachable
Ir:m L. v paths crossing through i lines of E is an effective
szrilincary set, The previous lemma is the basis, and the result

o2r 1 = & ¢ives our main Theorem:

Civen a semilircar starting set LO' the reachability

im VAS is an effective semilinear set.

Troif: Iooindurtion on the nuber of lines of E crossed.
the previous lemma, 3.13.

Assume that for any set of k lines of E,

kK < m=1l, the set of pcints reachable from

sot 0, though paths crossing only through lines

.sseeesr -» 25 an effective semilinear set.



Consider a set of k+1 lines of E, LO’ 11, eeeys % and

a starting set L,. We are going to alternate closure urde
0 s

o
"
(2]
I
o+

b
“

crossing throuch 21, [N ik’ and shifts w € W that crcate crozsings

through ZO. lence we keep geiting new crossing points in o

until the whole process is

Q
t
13
]
(b}

losed uncder both orerations.
problem is to do that in a finite nunber of stens.

For that we observe tha. 1f a path creosses infinitelss
often through io, then there must be a pair ¥,¥Y, % € 4 vz e i,

% <y and x occurs before y along the nath. If so thrhe lircar

set (x,{y-x}) is recchable. Morcover any successor c¢f x inharics

the period y-x.
Mgain we are going to use a tree-bdsed argument, sinze we
have to kxeep track cf the ancestors of a given set. let L

the starting sct. By induction hypothesis, we can cotnute tha

3

set L, of points reachable from L
l L
k* We intersect 20

set.  We create a separate tree for each

through 4,,...,2

of this set.

root is lzazelled 7l _,». ) T
e 4

be an unmarked lear. We ghlcfz

' A - 3 23 > T ¢ o D = 7 orasTs
L' N o For each lincar compornent ”(Xj+l"j+l) oZ 1", grazce

a new son of (x.,¥.). If r(x. P..,) is contaired in thz
( ]I ]) .(\ y1! j+1 t <



-Gy=-

anicn e its ancestors, mark it. If not, add Pj to Pj+" If
- 5 s = dY Y ey e DA cevme o .
Cin is goill crmpty kut xj+l v ony for some ancestor X, adad

Xi.q7™#; SO Py,y. Continue this process until all leaves are

cing to shcw that this tree is finite. Assume

Ity

s an infinite path labelled by l(x.,Pi) I = 0,000,

IZ ¢he P.'s remain empty then the xj's ruct be strictly

«wnich is impossible. So P, contains at least one
r v for sufficiently large j's. But by Lenma 1.4, there

can te onli a finite nunber of distinct _(x.,Pj) in the cone

senarawzd by v, hence one of the ».'s shculd be morked, a

rciule that the tree is finite, hence the process is
~iv., It sho1:ld pe clear thut 1f L is the union of the
tirels of zhe =ree, then L is the sct of all points of ZO reach=-

azl2 ficm L., by maths crossing throuwgh LO,L,,...,ik. By

olisin: L oonier paths crossing through “l""'l”’ we get all the
I3
saliner w2 * paths crossing taroud:: 10,2,,...,2k.

she induction hypothesis is true for k+l, and by inducticn,

Since the exponential example of Saction II canh be

:7 wosho 1 6=dim VAS (using Lewvia 2017, we have:

> reachability 'sct of an n-dim VAL iz an

for n < 5, and is not in general




Corollary 3.16: Reachability, Eguivalence, Contzinment are &ll
decidable for n-dim VAS, n < 5.

From these results, we can draw scme conclusicns. Tirct
any new results on VAS must come from at least 6-dimznsicnzl

systems.  Howzver, it is very hard to have any irntuitizn cn what

can hapwen in HdG(b:: not in HJSZ). So the VAS3

more interesting, since open problencs arise as low as
ki

Je

£1s0, most results so far

cn the fact thuat the reachability

such approachcs cannot be used directly for further rc
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