The Block Jacobi Method for
Computing the Singular Value
Decomposition

Charles Van Loan
TR 85-680
June 1985

Department of Computer Science
Cornell University
Ithaca, NY 14853

The Block Jacob! Hethod
for Computing the
Singular Yalue Decomposition

Charles Van Loan
Department of Computer Science
405 UpsonHall
Cornell University
Ithaca, New York 14853

Abstract

Jacobi techniques for computing the symmetric eigenvalue and
singular value decompositions have achieved recent prominance because
of interest in parallel computation. They are ideally suited for certain
multiprocessor systems having processorsthat are connected in nearest
neighbor fashion. If the processors are reasonably powerful and have
significant local memory, then block Jacobi procedures are attractive
because they render a more favorable computation to communication
ratio. This paper examines some of the practical details associated with
two block Jacobi methods for the singular value decomposition. The
methods differ in how the 2-by-2 subproblems are solved.

This paper was presented at the 7th International Symposium on the
Mathematical Theory of Networks and Systems, Stockholm, Sweden, June
10-14, 1985. The research was partially supported by ONR Contract
N0001483-K-0640.

§1. Introduction

The singular value decomposition (SVD) of a matrix A& R™ " (m 2 n)
has many important applications. In the SVD we seek real orthogonal U
(mxm) and V (nxn) such that UTAV=diag(gy ... O). See Golub and Van

Loan (1983). It is usually assumed that gy 22 Cp 2 0 but we will not

insist upon this normalization. In this paper we examine a method for
computing the SVD that is a block generalization of the paralle! Jacobi
scheme discussed in Brent, Luk, and Van Loan (1985) . Our focus is onthe
behavior of our algorithm and not upon the details of its parallel
‘implementation. We will document the implementation of our scheme in a
multiple array processorenvironment in another paper.

Jacobi procedures proceed by making A increasingly diagonal by
solving a judicious sequence of 2-by-2 SVD subprobiems. Suppose A is
square and let off(A)denote the Frobenious norm of A’s off-diagonal
elements, i.e,

off(A)=sqrt (Z laij|2).

%]

For a given dimension, let J(i,j,6) denote a Jacobi rotation of & degrees
in the (i,j) plane, e.g,

1 0 0 0 |
J2,40) = 0 cos(®) 0 sin(e)
o 0 1 0
| 0 -sin(@) 0 cos(e) |

Forsythe and Henrici (1960) essentially proposed the following Jacobi
SVD procedure for square matrices:

Algorithm 1.1

Given Ae R™ andeps > 0, the following algorithm computes n-by-n
orthogonal matrices U and V such that off(U'AV) < eps:| A . Alis

overwritten by UTAV.

U «1
V]
Do While (of f(A)> eps-| Al¢)
Fori=1n-1
Forj =i+n
Compute cosine-sine pairs (c;,s;) and (cp,s,) such that
Tla; a; d; 0
G 5 a” au Cz S - 1
-5y € aji 3y -Sp Co 0 do

Set Jy = J(1,j,6y) and Jp = J(i,j,6;) and compute the updates
Ae 4TAJ, , UeUdy, and V&V, .

There are several ways to solve the 2-by-2 subproblems. For details, see
Brent, Luk, and Van Loan (1385).

Animportant feature of any Jacobiprocedure is the order in which the
off-diagonal entries are zeroed. Algorithm L1 incorporates the
cyclic-by-row ordering in that the off-diagonal elements are zeroedin
row-by-row fashion. Note that zeroed entries do not stay zero--they
generally become nonzeroas the result of subsequent rotations. However,
it canbe shown that

of f(JTAJp)2= off(A)? - a2 - ay?

and thus, A becomes "more diagonal” after each update. A single pass
through the While-loop is called a sweep . The algorithm usually
terminates in 6-10 sweeps for typical nand eps, e.g, n=* 100 , eps =
10712,

Jacobi methods, particularly for the symmetric eigenvalue problem,
have a long history. See Jacobi (1846), Henrici(1958), Hansen (1962) ,
and Schonhage(1964) as well as the discussion and references in Golub
and Van Loan (1983, p.295ff). In subsequent sections we develop a block
variant of Algorithm 1.1 that is attractive in certain multiprocessor
environments. Block Jacobi methods were first analyzed in Hansen(1960).

-3 -

The general form of the block algorithm is given in §2 together with a
relevant convergenceresult. In §3 we discuss the parallel ordering. By
zeroing the off-diagonal blocks according to this ordering a significant
amount of concurrency can be introduced. In §4 we discuss two ways
that the 2-by-2 block subproblems can be solved and other practical
issues associated with the block Jacobi approach.

We mention that just about everything in this paper carries over to the
symmetric eigenvalue problem--just set U=V in the sequel.

SZ. A Block Jacobi SVD Procedure

A block version of Algorithm 1.1 is easy to specify with suitabie
notation. Assume n = kp and that we partition Ae¢ RN 35 follows:

An A Ay
Az A Ay
= . : . . pxp
(2.1) A I : Ay €R
LA A2 A

(The case of nonsquare blocks will be discussed in §4.) Denote the j-th
block columns of A, U, andV by A] , Uj , and Vj . Note that these are

n-by-p matrices and that we have A=[Ay,.., A 1,U=[U;,., U], and

V=V V1. I
Q = Qn 012 p
Q21 Qz2] »

P P

is orthogonal then we let J(i,j,Q) = (Zij) denote the k-by-k block matrix
with p-by-p blocks that is the identity everywhere except Z; = Qy, Zij =
Q. Z;; = Qy . and ij = Qg2 .

with this notation we have the following procedure.

Algorithm 2.1

Given Ae R™ | the partitioning (2.1) and eps > 0, the following
algorithm computes n-by-n orthogonal matrices U and V such that
of f((U'AV) < eps-| Aflp. Ais bverwritten by UTAV.

U «l

V «]

Do While (of f(A)> eps-| A|g)
For i=1:k-l

Forj =i+ :K
Compute the SVD UgTAgVg= Eg Where

Ag = [Al An]
Ai A
Set J; = J(i,jUg) and Jo = J(i,,Vg) and perform updates
AeJTA AeAl, , UeUJ,and V< V). e,

[Aiq] “ UoT[AiQ] , q= Ik
Ajq Alq
U,

Uy, 4y 1« IU;. Y
[vl'vl] « [V',Vl]vo

One pass through the while loopis called a o/ock sweep. Analogousto
the scalar case, A becomes "more diagonal” after each update. Indeed it is
not hard to show that

Off(TAJ)2 = of f(A)2- | Ay 12~ || Ay 2~ of f(A)2 - of f(A)2

To set the stage for subsequent analysis, we refine Algorithm 2.1 in
several ways. First, we take steps to guarantee termination. This can be
done by incorporating a threshold. Threshold Jacobi procedures are
well-known in the scalar case for the symmetric eigenproblem. In that
setting the zeroing of a;; is skipped if |a;;| < where 7 is the (usually
small) threshold parameter. The size of T may be fixed or it may vary
from sweep to sweep. See Rutishauser (1966). In the block situation we

pass over the (i,j) subproblem if
(22) WALD = sart] A 12 + 1A 121

is small accordingto the threshold criteria.

The threshold parameter must be suitably related to the termination
criteria if convergenceis to be ensured and here we wish to make another
modification of Algorithm 2.1. Instead of quitting when off(A)is small
we use its block analog:

OFF(A)? = E | Ay Ie 2.

iz

By terminating when OFF(A)is small the final matrix A will be nearly
block diagonal. The diagonalization process is then completed by
computing the SVD's of the diagonal biocks (in paraliel).

In Algorithm 2.1 the 2-by-2 block subproblems are exactly
diagonalized. As we are about to point out, complete diagonalization of
the subproblems is unnecessary and so we merely insist that if we

compute
[Bii Bij] = Uy [Aii Aij] A
Bi Bj Ai A

| B 12+ | Bjj 2 s 62 p(Ai)?

then

for some fixed & < | . Recommended values for 6 are discussed in §4.

The last feature of Algorithm 2.1 that we wish to amend concernsthe
ordering. Instead of just considering the cyclic-by-row scheme we wish
to consider the general ordering

(23) G o (igf) o i)

where r=k(k-1)/2 and i <j, for m=1:r.Overall we obtain

Algorithm 2.2

Given AeR™" ops>0,0<6<1, partitioning (2.1), ordering (2.3),
and a threshold © < eps | A [/ k, the following algorithm computes

orthogonal U and V such that OFF(UTAV)<s eps || A ;.

U«
Vo« |
Do While (OFF(A)>eps | Af¢)

Form = 1:k(k-1)/2

(L) «Gnip
If p(Aij) 2 T
then

Compute orthogonal Ug and Vg such that if

{Bn Bij] = UBT[Aﬂ Ajj
Bji Bjj Ai Aj

I Bij 12 + | B;i HFQ < 02 p(Aij)?

Vo

Let J; = J(i,jUg) and Jo = J(i,j,Vg) and perform the
updates A « J;TAJ, , U « UJ; , and V « VJ,.
(See Algorithm 2.1 for details.)

There are several details associated with Algorithm 2.2 that we
pursue in the next sections. These include (a) parallel implementation, (b)
the precise procedure for solving the 2p-by-2p subproblem, (c) the
application of the resulting orthogonal transformations, (d) what to doif
A is rectangular, and (e) the values for v and . However, before we take
up these very practical matters we confirm that the preceeding algorithm
converges.

Theorem 2.1
Algorithm 2.2 terminates after a finite number of block sweeps..

Proof. _
If no subproblems are solved during a particular block sweep then we
have j(A,ij) <t forall iandj that satisfy 1 i <j<k. Thus,

OFF(A2 = £ p(AL)? < k(k-1) t2/2 seps? | A2
P<j
and termination is achieved.
On the other hand, if subproblem (i,j) is solved during a block sweep it
is easy to show using the definition (2.2) that the updated matrix JTAJ,
matrix satisfies:

OFF(A)R - p(AD? + p(JTAd,, 1,))2
OFF(A) - (1 - 62) p(A,i))?

(2.4) OFF(J,TAJ,)?

A U

But if subproblem (i,j) is solved then z < p(A,i,j) and so from (2.4) we
have OFF(J;TAJ,)2 < off(A)2 - z2(1 - 62) . Thus, after s block sweeps
OFF of the original A is diminished by s-T-sqrt(! - 62). It follows that
the condition OFF(A)s eps-| A [must eventually be satisfied. |

See Hansen (1960) for further results pertaining to the convergenceof
block Jacobi methods.

-8 -

§3. Block Jacobi SVD with Parallel Ordering

The key to speeding up Algorithm 2.2 is to solve nonconflicting
subproblems concurrently. For example, if k = 8 then the (1,2) , (34) ,
(5,6), and (7,8) subproblems are nonconflicting in that with four
processors we could solve the four subproblems and perform the
necessary updates of A, U,andV a/ lhe same time . For general k we
may proceedas follows:

Algorithm 3.1

suppose A= [Ay,.., A l, U=[Uy,., U, andV=1[V,.., V], wheren

=kp and each block column is in R™P . Assume that k is even, that we
have N = k/2 processors Py .., Py, and that P contains the block

columns Ay, , Ay, Uiy + Ui Vaio and Vg, . If fori=1toN, P,
executes the following algorithm , then

A« [J0L,20(1) - J(k-1kU(N) ITALIK-1k,V(1) = J(1,2V(N))]
U« Udiag(U(1) ,.., U(N))
Vv« Vdiag(V(1) ,.. V(N))

where U(i) and V(i) are the 2p-by-2p orthogonal matrices that solve
subproblem (2i-1,2i).

Solve subproblem (2i-1,2i) as in Algorithm 2.2. Let U(i) and V(i) be the
resulting orthogonal matrices.

[AQi-l ’ A2l] * { AQi-] s A2|] V(])
[Vagiy» Vg1« [Vgy, Vg 10D
[Upiy . Uyl [Ugpy . Uy TUCH

Broadcast U(i) to every other processor.
Collect U(1) , =, UGi-1) , UGi+1) , =, U(N).

[Agy . Ayl « diagQU() .. UN))TLAy Ayl

Note that some coordination is required among the processors. This very
important detail will be dealt with in another paper.

we now show how the repeated application of Algorithm 3.1 can
diagonalize A if the block columns are redistributed among the
processorsin between the applications of the procedure. To illustrate we
return to our example where A is an 8-by-8 block matrix (k = 8).
Partition the set of 28 off-diagonal index pairs into seven rotation
sels as follows:

L. (12) (34) (56 (7.8)
i (14) (26) (338) (57

1L (16) (48) (2,7) G99
V. (1.8) (6,7) (45 (23)
V. (,7) (58 (38 (24
VL. (15 (3,7) (28) (48)
VIL (1,3) (25 (4,7) (68)

The four SVD problems specified by eachrotation set are nonconflicting.
Read left to right, top to bottom, the aboveis an instance of the para//e/
ordering . 1t can be easily derived by imagining a chess tournament
among 8 players in which each player plays every other player exactly
once. In between rounds (rotation sets) the players (block columns) move
to adjacent tables (processors)in musical chair fashion:

Round | :] 3 S 7
2 4 6 8
Round Il] 2 3 S

NN
N
(€]

Round I

etc.

- 10-

In the matrix setting we start off with Aresiding in processorsPy, P,
P3;, and P4 as follows:

Py P2 Ps3 Pq
An A Az A Ais A Arr A
Az Az A2z Azq Azs Az Az7r Azg
Az Az A3z Azg Azs Azg Az Azs
Ag1 Ag2 Aaz Asa Ags Agg Agr Aag
As) Asz As3 Asq Ass Asg As? Asg
Agr A2 Ac3 Asa Ags Ase As? Ass
A7 Aqz A7z Arq A¢s Arg A77 Ave
Agr Ag2 Ags Agq Ags Agg Agr Ags

Subproblems (1,2),(3,4), (5,6), (and (7,8) are solved via Algorithm 3.1.
To get ready for subproblems (1.4) , (26) , (38) , and (57) we
reapportion A among the processorsas follows:

Py Pa Ps Pg
An A Az Ag Az Agg Ais Arp
Asr Asg Asz Asg Asz Asgs Ags Agr
Az Azq Azz Az Azz Az Azs Age
Ag1 Agq Agz Asgg Ags Agg Ags Agt
Az Azq Azz Ass Azz Asg Aszs Azt
Agr Agq Agz Agg Ag3z Agsg Ags Agt
Asi Asq Asz Asg As3 Asg Ass Asp
A7 Azqg Arz2 Azg A7z Arg Ars Ar7

Notice that solving the current (1,2) , (3,4) , (5,6) ,and (7,8) problems is
equivalent to solving the (1,4) , (2,6) , (3,8) , and (5,7) subproblems of the
unpermuted A--precisiely what we are supposed to do.

Next, we apply Algorithm 3.1 and shuffle the resulting matrix exactly
as before. wWe're then set to process the third rotation set (chess
tournament round), i.e., subproblems (1,6) , (4,8),(2,7), and (35) . Etc.

In the N processor situation the shuffling is most easily described
through the n-by-n (n = kp) permutation matrix

- 11-

(3.1 P=[E,Eq,Ez,Eg.E3,Eq, . Ep g, Epu Epgy By
where the E; are block columns of the n-by-n identity:
I,=[E, Bz, Epl E;eR™ ., n=kp

In particular, after each application of Algorithm 3.1 block columns 2i-
and 2i of the matrix PTAP are stored in processorP; . Overall we have

‘Algorithm 3.2

Suppose A=[Ay, Al ,U=[U,., Ul =1, andV =[Vy.., V1=1,

are given where n = kp and each block column is nsp. Assume that we
have N = k/2 processors and that processor i contains block columns
2i-1 and 2i of A, U, and V. Given eps > 0 the following algorithm
computes orthogonal Uand V such that OFF(UTAV)< eps | Af;.

Do While (OFF(A)>eps | Af¢)

For rotationsset =1 : N-1

Apply Algorithm 3.1.

Perform the updates A« (PTAP ,U« UP, and V « VP
where P is given by (3.1). (Notice that this implies a
reshuffling of the matrices A, U, and V among the
processors.)

Readers familiar with the one-sided Hestenes SVD algorithm may be
confused. Brent and Luk(1985) discuss the implementation of that
procedure on a linear array. We are using a linear array to carry out the
2-sided Jacobi SVD procedure. It wouid be possible to implement
Algorithm 3.2 on a quadratic array, but for expository reasons we have
assumed a linear array of processors.

With this breezy development of the parallel block Jacobi SVD
algorithm we are ready to look at some important practical details.

- 12 -

$4. Practical Details and Experience
Applying the Orthogonal Transformations

Most of the computational effort in Algorithm 3.1 is spent calculating
products of the form ZC and C'Z where Z e R%*2 s orthogonal and C ¢
RZPAN The obvious method for doing this requires 4np? flops. However,
there is an interesting aiternative that begins by computing the
Householder upper triangularization of Z:

Hzp_i v H*l Z = R

Since R is orthogonal, R = diag(z!) . Then, to compute ZC (for example)
we sequentially apply the Householder matrices:

C«<RC
Fori = 1:2p-1
| C < hiC

If we just count flops this "Householder” approach requires 2/ (4np? +
8p3) flops and is thus more economical when p < n/4. (This is often the
case in multiprocessor environments since it implies k > 4 .) Moreover,
representating Z as a product of Householders requires half the space of
the conventional representation . This allows for a reduction in
communication costs associated with the transmission of an orthogonal
matrix from one processor to another. Thus, the Householder alternative
has certain advantages as it does in conventional settings. (See Golub and
Van Loan (1983 , pp. 41-2).)

Solving the Subproblems

In the typical subproblem we are presented with a submatrix

Ag = | An Aur| P
Az A2 | p

P P

- 13-

and must chooseorthogonal Uy and Vg such that

Ug™AqVp = Bg= | Bn Br
Boy B2

satisfies

4.n | 512";:}2 + By 2 < 020 Al + 1 Azl 1 = 62 plALD2 .

.forsome & <! . (See Theorem 2.1.) We study two distinct approachesto
this problem.

Method 1. (Partial SVD via Row-Cyclic Jacobi)
Use the row cyclic Jacobi procedure (Algorithm 1.1) to compute Ug and
Vg such that (4.1) holds for some & . That is, keep sweeping until Agis
sufficiently closeto 2-by-2 block diagonal form.
Cost » 50p° flops per sweep
Method 2. (Golub-Reinsch SVD with Bidiagonalization Pause)
Recall that the Golub-Reinsch algorithm begins with a

bidiagonalization of the matrix. After p steps of this initial reduction we
have

x x 00 0O0O0O
0 xx 000O0GOC
0 0Ox x 00 0O
Ug"AgVg = 0 0 0 x b 0 0 O (=4
0 0 0 0 & & % «
0 0 0 0 & & ® X
0 00 0 x 8% % X
0 00 0 x x & X

- 14 -

where Ug=Hy-H) and Vg = GG, (products of Householders). Note that

the (p,p+!1) entry is all that prevents the reduced matrix from being block
diagonal. This suggests that if |b] < epu(A,i j) then Agis sufficiently
close to block diagonal formand we set Ug = Ugand Vg = Vg. If b is too
large, we complete the bidiagonalization and proceed with the iterative
portion of the Golub-Reinsch algorithm terminating as soon as the
absolute value of the current (p,p+1) entry is less than e p(ALf) .

Cost & 18 p3 (if bidiagonal pause successful)
~ 80 p3 (otherwise)

Method 1 is appealing because it can exploit the fact that the subproblems
are increasingly block diagonal as the iteration progresses. On the other
hand, Method 2 is appealing because it is much cheaper whenever the
bidiagonal pause is successful or whenever two Or more sweeps are
needed by Method 1. Furthermore, Method 2 can handle rectangular
problems more gracefully.

Handling Rectangular Problems

Up to this point we have assumed that A is a square block matrix with
square blocks. It is possible to relax these restrictions. To illustrate,
suppose each block is 4-by-2. The subproblems are thus 8-by-4. If
Method 2 is applied and the full SVD is computed then we obtain

0,0 0 0
, 00
3 0

cNoNoNoNollele)
oo oo 0o Q
o © 9 oAqQ
oOOOQ

- 15 -

Note that structure of the reduced matrix conflicts with the aim of block
diagonalization--the (1,2) block is nonzero. However, there is a simple
remedy : interchange rows 4 and 5 with rows 6 and 7.-In general, straight
forward row and column interchanges following the SVD computation are
sufficient to make Method 2 work on problems with rectanguiar blocks.
(The blocks need not be all of the same dimension.)

The same techniques work with Method 1, except that the rectangular
subproblems must be “made square” by adding zero rows (or columns)
before the Jacobi procedure canbe applied. This manuever is discussed in
Brent, Luk, and Van Loan (1985) and is somewhat costly. Let L and S be
the larger and smaller of the subproblem’'s dimensions. The Jacobi
‘approach will involve O(L3) flops whereas the Golub-Reinsch procedure
will require O(L2S) flops.

Experimental Observations

Toget a feel for the various options discussed above we ran numerous
examples on a VAX 780 in the MATLAB environment. (Machine precision =
10716 .) We report on one typical 24-by-24 example which we solved
using various values of 8, k, and p . In this example | A |¢ % iS5 and we

terminate as soonas OFF(A)< 10 .
To begin with, convergence is quadratic. Consider the k =6 ,p = 4
situation using Method 2. Tabulating OFF(A)we find

Sweep | 8=10"1° 0=.25 6=50 [=75
I g7x10 ! qixip ! 12x10 ! 14x10 !
2 | 22xi0! 28x10 ! 41xip ! 6ixi0 0
3 | .goxi0 O 34x10 0 | q0x 100 | 13x10 O
4 | 32x10 73 a8x10 -3 | 27071 | 67x10 7!
s | .36x10 8 70x10 © | 23x10 *4 | .49x10 74
6 conv conv 24x10 ~N 72x10 710
7 conv conv

In general, we find that the number of block sweeps is a very mildly
increasing function of 6. Indeed, we have found that the number of block

- 16 -

sweeps is usually minimal so long as 6 € (0,.25] . Here we report on the
number of block sweeps necessary for various k , p, and 6.

k p [e=10® | e=25 6=50 [6=.75
38 4 4 5 5
4 6 S 5 6 7
6 4 6 6 7 7
8 3 6 6 8 8
2 2 6 7 8 10

'Another obvious fact is revealed by the table: the number of sweeps
increases with k.

we mention that when Method 2 is used to solve the subprobiems, the
number of times that the bidiagonal pause is successful rapidly decreases
as the iteration proceeds. For example, inthe (k ,p,©)=(4,6,.5)
situation, the bidiagonal pause was successful 83% of the time during the
first block sweep, 16% of the time during the second block sweep, and
never again thereafter.

Although the results that we have reported thus far have all been with
Method 2, they essentially apply when the subproblems are solved via the
Jacobi approach (Method 1). Thus, how one solves the subproblem doesn’t
really matter from the standpoint of block sweeps. Moreover, for & = .25
we find that two sweeps in Method 1 almost always suffice to solve the
subproblem. Based on the flop counts given above we see that the two
subproblem methods are equally efficient. Method 1, however, is quite a
bit simpler to implement and may be preferable in situations when there
is limited program memory in the processors.

Acknowledgement

The author wishes to thank Clare Chu for performing some of the
computations discussed in this paper.

References

R. Brent and F. Luk (1985), "The Solution of Singular Value and Symmetric
Eigenproblems onMultiprocessor Arrays”, SIAM J. Scientific and
Statistical Computing, 6, 68-84.

R. Brent, F. Luk, and C. Van Loan (1985), "Computation of the Singular
Value Decomposition Using Mesh Connected Processors”, J. VL3I
and Computer Systems 1, 242-270.

G. Forsythe and P. Henrici (1360) , "The Cyclic Jacobi Method for
Computing the Principal Values of a Complex Matrix”, Trans.
Amer. Math. Soc., 94, 1-23.

GH. Golub and C. Van Loan (1883), Malrix Computations , Jonns
Hopkins University Press, Baltimore Md.

E. Hansen (1960) , "On Jacobi Methods and Block-Jacobi Methods for
Computing Matrix Eigenvalues, PhpD. Thesis, Stanford
University, Stanford, California.

E. Hansen (1962), "On Quasicyclic Jacobi Methods”, ACM J., 9, 118-135.

P. Henrici (1958), " Onthe Speed of Convergenceof Cyclic and Quasicyclic
Jacobi Methods for Computing the Eigenvalues of Hermitian
Matrices’, SIAM J. Applied Math.,, 6, 144-62.

C.G.J. Jacobi (1846) ,"Uber ein Leiches Vehfahren Die in der theorie der
Sacular-storungen Vorkommendern Gleichungen Numerisch
Aufzulosen,” Crelle’s Journal , 30, 51-94.

H. Rutishauser (1966), " The Jacobi Method for Real Symmetric Matrices”,
Numer. Math., 16, 205-223.

A. Schonhage (1964), "On the Quadratic Convergence of the Jacobi
Process”, Numer. Math, 6, 410-412.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif

