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Understanding the conditions that drive phenomena like fatigue crack ini-

tiation in polycrystalline samples requires knowledge of the stress state at the

crystal scale. Even during uniaxial tensile loading, the stress state at the crys-

tal scale is often complicated due to anisotropic single crystal properties and

the arrangement of neighboring grains. Instead of manufacturing specimens

on the size scale of the microstructure, diffraction of synchrotron x-rays with

in situ mechanical loading provides the means to probe the micromechanical

response within deforming polycrystals. Measurement of lattice Strain Pole

Figures (SPFs) is a robust technique for quantifying the three dimensional mi-

cromechanical state within a polycrystalline sample. The focus of this work was

to bring the SPF experiment to the level of a measurement capability as opposed

to a one-off style experiment. This dissertation is composed of three related

studies, each of which is presented as a chapter that can be read independently.

Chapter 1 contains a manuscript which was provisionally accepted for pub-

lication in Experimental Mechanics [56]. The work investigates the intercon-

nected nature of the SPF coverage and the regions of orientation space probed

by each diffraction measurement. The major contribution is a new technique

for quantifying how well a set of lattice strain measurements (SPFs) probes each

crystal orientation. The orientation space sampling matrix, defined Γ(R), repre-



sents the set of lattice strain measurements that interrogate each crystal orien-

tation. The rank of Γ(R) can be used to quantitatively compare different exper-

imental configurations. The net result is a new tool for selecting experimental

conditions to produce optimal sets of SPF data.

Chapter 2 is a second manuscript that was provisionally accepted for publi-

cation in the Journal of Strain Analysis for Engineering Design [55]. The focus of

this effort was the development of an expression for the lattice strain uncertainty

that delineates the contributing factors into terms that vary independently: (i)

the contribution from the instrument and (ii) the contribution from the material

under investigation. The instrument portion of the lattice strain uncertainty is

explored and modeled using a calibrant powder method (diffraction from an

unstrained material with high precision lattice constants).

Chapter 3 focuses on quantifying the evolution of lattice strains due to

cyclic mechanical loading. To interpret the cycle-by-cycle variation in the lattice

strains as experimental fluctuations or material evolution a new methodology

was developed that combines x-ray diffraction experiments with in situ meche-

chanical loading and crystal-based finite element simulations. Merging what

can be measured at grain scale with a simulation of the deforming polycrystal

provides a robust tool for studying micromechanical behavior. A key finding of

the work is that the lattice strain evolution due to cyclic loading occurs rapidly

during the earliest portion of the samples fatigue life, and slows as the sample

approaches failure.
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CHAPTER 1

A MECHANICAL TESTING CAPABILITY FOR MEASURING THE

MICROSCALE DEFORMATION BEHAVIOR OF STRUCTURAL

MATERIALS

1.1 Introduction

Mechanical testing - broadly defined as measuring the response of an engineer-

ing material subjected to external loads - has evolved immensely over the past

several decades. Some of the obvious advances – including computer-driven

digital machine controllers, innovative multiaxial load actuation and complex

control of specimen temperature and environment – have produced unprece-

dented improvements in our understanding of engineering material behavior

under some of the most demanding service and processing conditions imagin-

able. Mechanical testing’s most important contribution to mechanical design

has been the production of validation and calibration data for high fidelity ma-

terial models. The most useful interaction between experiments and simula-

tions occurs when the resolution, accuracy and precision of both simulated and

experimental data are well understood. So, while scientific excitement and an

innate drive towards discovery are crucial for the creation of a new experimen-

tal measurement, the important work of creating a mechanical testing capabil-

ity - which consists of establishing resolution, accuracy and a standardization of

best practices - begins after that first measurement is made. This paper describes

such a standardization process for an important new micromechanical testing

methodology.

In the lattice Strain Pole Figure (SPF) experiment, in situ loading and high

1



energy x-ray diffraction are used to monitor the distortion of crystals within a

deforming polycrystalline aggregate [5, 6, 48, 51]. The loaded specimen is re-

oriented relative to the x-ray beam so that every crystal within the diffraction

volume is interrogated. Using a methodology motivated by quantitative tex-

ture analysis [2, 7] the lattice strain tensor (elastic) at each crystal orientation -

referred to here as the Lattice Strain Distribution Function (LSDF) can be quan-

tified from the SPF data [4]. The single crystal elastic moduli can then be em-

ployed to produce the full stress tensor at each orientation within the aggregate

[3, 4, 49, 66]. Previous efforts have shown that there are appreciable variations

in the average stress tensor for different crystallographic orientations within a

polycrystal even when subjected to simple uniaxial tension [5, 49].

The SPF experiment utilizes components that are common to every mechani-

cal testing laboratory. The loads are applied with an actuator and a conventional

load cell and strain gages are used to monitor the macroscopic deformation be-

havior of the specimen. Other aspects of the SPF experiment are less familiar

to the experimental mechanics community. As described in detail in the other

publications listed above as well as in later sections of this paper, the lattice

strains themselves - which are similar to the normal strains indicated by a resis-

tance strain gage during elastic deformation - are manifest as shifts in diffraction

peaks. The goal of the SPF experiment is to quantify the crystal scale mechanical

response. In terms of establishing a standard set of experimental practices that

will produce “optimal” sets of SPF data, therefore, a few basic questions must

be addressed. (i) To what extent do diffraction measurements made during an

SPF micromechanical experiment probe each crystal orientation? (ii) Can the se-

lection of diffraction measurements be optimized to interrogate all orientations

within the aggregate?
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By carefully addressing these two questions, the SPF experiment can be el-

evated from the status of a one-off experiment or “heroic effort” to a true mea-

surement capability with a comprehensive metric for quantifying how well

each crystallographic orientation is interrogated. In the following sections

we present a brief overview of the classes of mechanical tests that explicitly

probe the micromechanical material response of polycrystalline samples. We

quickly move to an overview of high energy x-ray diffraction methods. We

describe in detail our method for measuring lattice SPF data – along with a

careful description of our specimen loading/orientation system or diffractome-

ter, which resides within the A2 experimental station of the Cornell High En-

ergy Synchrotron Source (CHESS). The overview focuses on characterization

of micromechanical material response – with a specific emphasis on the role of

diffraction experiments. We then describe the SPF experimental setup at CHESS

including short primers on high energy x-ray diffraction and a description of

crystal orientations. Using SPF measurements on Low Solvus High Refractory

(LSHR) nickel base superalloy, we introduce the rank of the orientation space

sampling matrix, Γ(R), as a means to quantify the influence of each diffraction

measurement – with particular emphasis on the role of pole figure coverage and

the lattice planes measured in sampling orientation space.

1.2 Measuring Microscale Material Response in Deforming

Polycrystals

Within the field of mechanics of materials there is an expanding need for experi-

ments designed to probe the mechanical response of a polycrystalline aggregate
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at the size scale of individual grains (crystals). Microscale stress-strain data are

creating new understanding of grain scale deformation processes and driving

new discoveries on their own right. However, the need for reliable crystal scale

data has been driven in large part by the down–scale migration of mechanical

design and analysis. Validation and calibration of microscale material models

cannot be reliably accomplished with macroscopic data - there are many ways to

mistakenly “predict” macroscopic stress-strain data using microscale state vari-

ables. Understanding the material response at the grain scale enables an under-

standing of the boundary value problem that drives important processes such as

microplasticity and fatigue crack initiation. Micromechanical testing methods,

which utilize in situ mechanical loading, provide critical insight into the com-

plicated relationship between orientation-dependent single crystal properties

and the material response at the grain and subgrain level within a deforming

polycrystal.

1.2.1 Methods for Probing Microscale Deformation Behaviors

There are two basic methods for probing material behavior at the scale of the

individual grain within a polycrystal.

(i) The first involves extracting miniature grain scale test samples, which are

deformed using microscale loading machines [31, 33, 59, 62]. The predom-

inance of these efforts investigate the influence of sample dimensions on

the mechanical properties, often in concert with the formation and propa-

gation of dislocations [58, 61]. Theoretically, grain scale properties can be

extracted from such experiments under closely controlled loading condi-
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tions. Using post-mortem microstructural interrogation techniques such

as Transmission Electron Microscopy (TEM), indirect connections can be

made to dislocation processes. An example of such an experiment that al-

lows for real time observation of dislocation nucleation and motion is the

work of Robertson [54]. The advantage of this experiment is the ability to

monitor structure evolution in situ .

(ii) The second category of micromechanical tests employs standard size spec-

imens but uses diffraction of high energy x-rays or neutrons to observe

changes in the crystalline structure of engineering alloys at the grain scale

during in situ loading conditions [12, 15, 23, 45, 48, 52, 67]. This is the

class of experiments described in this paper. These tests provide a direct

link between the forces and strains measured at the macroscale and rel-

evant structure evolution, which is quantified in real time using x-rays.

We begin by describing the various types of high energy x-ray diffraction

experiments below.

1.2.2 Micromechanical Testing Using High Energy X-ray

Diffraction

The general approach for these experiments is to load the specimen to a pre-

scribed macroscopic stress level then measure the strain pole figures. Upon

completion of the diffraction measurements the load is increased; or in a related

experiment, additional cycles are applied. Then the load is stabilized and the

diffraction procedure is repeated. The object of these experiments is to under-

stand the way stress is redistributed within the aggregate as the specimen state
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is evolved by either the addition of increased tensile stress or by the addition of

loading cycles. Advancements in x-ray detector technologies combined with the

penetration power of synchrotron x-rays and in situ loading have produced a set

of high energy x-ray diffraction capabilities that are unparalleled and prove to

be an incredible resource for high fidelity diffraction experiments on bulk sam-

ples. Use of area detectors and the immense brilliance at current synchrotron

facilities lead to the rapid completion of diffraction measurements.

There are three relevant coordinate systems for diffraction experiments. The

coordinate systems are defined relative to the laboratory frame, the sample

frame, and the crystal frame. The schematic shown in Figure 1.1 depicts the

transmission diffraction geometry highlighting the relationship between the in-

coming x-rays, the sample, the diffracted beam of x-rays, and the detector. The

scattering vector, s, bisects the incoming and diffracted beam of x-rays. Each

scattering vector is normal to the family of crystallographic planes ({hkl}) that

satisfy Bragg’s Law:

nλ = 2dc||s sin θc||s (1.1)

Here n is an integer, λ is the x-ray wavelength, dc||s is the lattice spacing, and

2θc||s is the angle between the transmitted and the diffracted beams [17]. The

subscript c||s indicates each diffraction measurement by the normal to the fam-

ily of crystallographic planes in the crystal frame, c, which is parallel to the

scattering vector, s. The centroid of the diffracted intensity distribution repre-

sents the average crystallographic plane spacing from crystals satisfying Bragg’s

law. As the sample is loaded, the lattice plane spacing changes. This loading-

induced change is manifest as a change in the Bragg angle, 2θc||s, which enables

the crystal lattice itself to act literally as an ‘elastic strain gage’. For an indi-

vidual crystal within the aggregate, diffraction measurements of lattice strains
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Figure 1.1: Two dimensional schematic showing the relationship between
the specimen, detector and a single scattering vector, s. The
Bragg angle is 2θc||s. At high energies, Bragg’s law is satisfied
when s is almost perpendicular to the incoming beam; this cor-
responds to small 2θc||s angles. The opposite scattering vector,
-s, probes the same group of crystals as s. The laboratory coor-
dinate system is shown.

represent the projection of the elastic strain tensor in the direction of the scatter-

ing vector, s. With a sufficient number of measurements in different directions,

similar to using a strain gage rosette, the elastic strain tensor for the crystal can

be obtained. Significant advances have been made in the area of individual

crystal lattice strain measurement during in situ loading including the pioneer-

ing 3DXRD work done by Risoe at the European Synchrotron Research Facility

(ESRF) [45, 52] and the High Energy Diffraction Microscopy (HEDM) suite of

experiments developed at the Advanced Photon Source (APS) beamline 1-ID-C

[1, 26, 41, 42]. Obtaining strain information from enough individual crystals to

approach statistical significance however, is problematic. The lattice Strain Pole

Figure (SPF) method is an alternative that sacrifices grain-by-grain spatial cor-

relation but utilizes aggregate or powder data to determine the most likely strain

tensor for each crystal orientation.
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1.2.3 Powder Diffraction Methods

Instead of measuring crystal-by-crystal lattice strains as is done in the 3DXRD

or HEDM methods, powder diffraction methods for lattice strains yield distri-

butions of strain behavior based on crystal orientation - similar to the Orien-

tation Distribution Function (ODF) from Quantitative Texture Analysis (QTA)

[11, 37, 68]. Instead of spots, ideal powder diffraction data are complete Debye

rings. Robust powder diffraction techniques can be applied to determine aver-

age lattice strains for groups of crystals that satisfy Equation 1.1 [5, 6, 48]. The

goal of the powder experiment for lattice strain is to understand the orientation

dependent deformation behavior within a “material point” in the sample. In

addition to directly investigating the material response, these experiments pro-

duce much needed micromechanical data for corroboration with crystal-based

constitutive models [13, 19, 49]. Through comparing the average lattice strain

values for groups of crystals that satisfy the diffraction condition (Bragg’s Law

in Equation 1.1) in both the experiment and the simulation, the micromechanical

response can be investigated to develop a deeper understanding of the material

behavior [53, 70].

With the analogy between a peak shift and a normal strain obtained with

a resistance type strain gage, rotation of the sample with respect to the x-ray

corresponds to placing gages in multiple orientations. The positioning equip-

ment used in these experiments (diffractometer) is integral in the measurement

of lattice strains in polycrystalline alloys. Each reorientation allows for different

subsets of crystals, with different orientations, to be interrogated - producing

additional unique lattice strain measurements. These measurements can be de-

picted on lattice Strain Pole Figures (SPFs), which are analogous to traditional
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orientation pole figures, however with normal strain values plotted rather than

pole densities [48]. Following the approach of QTA, we utilize several SPFs

(which are basically two dimensional strain projections) to obtain the average

lattice (elastic) strain tensor for each crystallographic orientation, referred to as

the Lattice Strain Distribution Function (LSDF) [3, 4, 65, 66]. As in QTA, this pro-

cess is referred to as pole figure inversion and different lattice strain inversion

techniques have been used [4, 65]. Once the LSDF, ε˜(R), is obtained, the stress

as a function of crystallographic orientation, σ˜ (R), can be determined through

Hooke’s law and the single crystal elastic moduli. For the case of limited mea-

surements several constraint conditions, such as a self consistent stress field [66]

or a smoothing constraint on the strain and dilation fields over orientation space

[4], have been imposed to make the problem tractable.

Due to anisotropic single crystal properties and the inherent inhomogeneity

of the deformation at the crystal scale, the stress state at each orientation will

not be equivalent to the applied macroscopic stress [60]. The average stress

for each orientation can be compared with simulations directly or through a

spherical harmonic decomposition [49]. Through such rigorous comparisons,

confidence in both the experiments and simulations is gained; providing a new

framework to investigate phenomena like fatigue due to cyclic loading. One of

the most consistent results that have been obtained from both the single crystal

experiments as well as the powder tests, is the variation in stress state that exists

within the deforming aggregate [41, 49]

The ability to obtain the average elastic strain tensor for all possible crystal

orientations from diffraction data is governed by the number and direction of

the lattice strain measurements and the method used to reconstruct the LSDF
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from these projections. The relative weight of each measurement is coupled to

the set of orientations interrogated and the direction of the measurement in a

manner similar to selecting the number and direction of strain gages applied to

a sample. As will be developed in later sections, the set of lattice strain measure-

ments that probe each orientation can be represented by the orientation space

sampling matrix, Γ(R). The major contribution of this paper is the development

of a new metric, the rank of Γ(R), for quantifying how well a set of diffraction

measurements probe the micromechanical state.

1.2.4 The Lattice Strain Pole Figure (SPF) Experiment

Building an SPF begins with Bragg’s Law as depicted in Equation 1.1. The

diffracted intensity from a typical polycrystalline sample (powder) is presented

in Figure 1.2(a). Each ring in the pattern is due to diffraction from a specific

family of crystallographic planes. Rings closer to the center of the detector have

smaller Bragg angles or, as indicated by Equation 1.1, larger average lattice

plane spacing, dc||s. During a monochromatic diffraction experiment (fixed λ),

only a subset of crystals within the irradiated volume satisfies the Bragg con-

dition for a particular c||s combination. These crystals are typically distributed

throughout the irradiated volume, but share the same orientation to within an

arbitrary rotation about the scattering vector, s. Due to anisotropy of the single

crystal properties, and variations in the orientation of neighboring grains, each

of the participating crystals may experience different boundary conditions and

a complicated local stress state [30].

The overlay of the reference diffraction pattern (initial state) and a strained
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Figure 1.2: (a) A typical diffraction pattern for a Low Solvus High Refrac-
tory (LSHR) nickel base superalloy with a calibrant powder
(CeO2) applied to the surface of the specimen. Each concentric
Debye ring corresponds to diffraction from a particular family
of crystallographic planes ({hkl}s) from either the LSHR or the
CeO2. (b) A section of the diffraction spectra corresponding to
an azimuthal bin at angle, η. To create a spectrum the inten-
sity is integrated over an azimuthal segment, ∆η, from (a). The
shift in the {200} LSHR peak towards smaller 2θ is consistent
with a tensile strain. The {220} peak from the calibrant powder
is shown on the left and has no change during loading.

diffraction pattern for a portion of the same azimuthal bin (∆η) is shown in Fig-

ure 1.2(b), highlighting the shift of the LSHR {200} peak. Shift in the peaks create

distortions of the Debye rings shown in Figure 1.2(a). At a point in the defor-

mation history, each peak shift corresponds to a particular c||s combination. The

stationary peak in Figure 1.2(b) is from an unstrained cerium dioxide (CeO2) cal-

ibrant powder. The calibrant powder is used to verify instrument parameters

such as the sample to detector distance, the pattern center, and the detector tilts

[5, 48]. More specific information on the reduction of diffraction data for the SPF

experiment appears in [5]. By changing the sample orientation, normal strain
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measurements at different crystal orientations can be made for each new c||s. To

build an SPF, the strain for a particular {hkl} is plotted at the intersection of the

scattering vector and a reference sphere. This sphere represents the pole figure

surface and a point on the sphere is defined relative to the sample coordinate

system. Rotation of the sample using the diffractometer, labeled in Figure 1.1,

allows more unique measurements to be obtained. A detailed description of

basic SPF determination from loaded samples can be found in [48]. Once the

lattice spacing in the loaded state is determined, the calculation of lattice strain

is analogous to conventional engineering strain:

εc||s =
dc||s − d0

c||s

d0
c||s

(1.2)

where εc||s is the normal strain for the particular c||s combination and d0
c||s is the

reference plane spacing. Due to the typically small magnitude of lattice strains

in metallic alloys, the use of a simple engineering strain as defined in Equa-

tion 1.2 is satisfactory. If large elastic strains and rotations are anticipated a finite

strain formulation describing the distortion of the unit cell might be warranted.

There are two common methods for defining the initial plane spacing d0
c||s.

First, if the material has well characterized lattice parameters, they can be used

to unequivocally calculate d0
c||s. This approach produces a single reference spac-

ing for each {hkl} that is unchanged by the measurement direction. Using this

definition, the residual lattice strain in the material can be determined by com-

paring to the measured peak positions at zero macroscopic load. The second

method merely employs the plane spacing at zero load for each scattering vec-

tor. This method is independent of any prior knowledge of the lattice parame-

ters and, as such, is insensitive to residual lattice strains in the material. For a

sample with no residual lattice strain, the two methods would obviously pro-

duce equivalent results.
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1.2.5 Crystal Orientations and Fibers Through Orientation

Space

There are many methods for describing the orientation of a single crystal rela-

tive to a fixed sample coordinate system. One of the most intuitive methods is to

represent a crystal orientation by the rotation matrix, R, that maps a vector from

the crystal coordinate system to the sample coordinate system, vsam = Rvcrys.

Here both vsam and vcrys are defined in Cartesian coordinate systems with or-

thonormal basis vectors. As described in Figure 1.1, diffraction occurs when the

normal of a candidate set of crystallographic planes defined in the crystal co-

ordinate system, c, is parallel to the scattering vector, s, which is written in the

sample coordinate system. The crystal orientations, therefore, that satisfy these

conditions are defined by:

Rc = ±s ∀R (1.3)

The subset of orientations that diffract are unchanged by the sign of the mea-

surement direction and result in antipodal symmetry on the SPFs.

The scattering vector is defined by the unit vector s = [u v w]. The basis

vectors for the sample coordinate system are defined relative to the flat tensile

sample as the loading direction (LD), the long dimension in the cross-section,

referred to as the transverse direction (TD), and the short transverse or normal

direction (ND). The sample and laboratory coordinate systems are aligned when

ND is aligned with incoming x-ray and TD is aligned with the vertical direction

(labeled y in Figure 1.1) in the laboratory frame.

The relationship between the basis vectors for the crystal coordinate system
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and the Miller indices ({hkl}) is more complicated. The basis vectors for the crys-

tal frame are referred to as lattice vectors (a1, a2, a3) and are selected to represent

the periodicity of the lattice. The lattice vectors are said to be primitive when

the unit cell defined by the lattice vectors has the minimum possible volume.

For the common cubic metallic systems, face centered cubic (FCC) and body

centered cubic (BCC), it is conventional to forgo the use of the primitive lattice

vectors and to define the crystal basis vectors to be aligned with the {100} cube

plane normals. For cubic materials, therefore, c = 1
√

h2+k2+l2
[h k l] where h, k, and

l are the Miller indices {hkl}. The definition of c for a general crystal structure

requires a change of the basis vectors to an orthonormal set for use in Equa-

tion 1.3. This change of basis vectors is simplified by the use of the reciprocal

lattice. Each point in the reciprocal lattice represents an {hkl} and is commonly

used to describe diffraction. An introduction to the reciprocal lattice can be

found in [35], but a brief overview will be provided here.

The basis vectors for the reciprocal lattice are defined relative to the lattice

vectors, ai, as:

b1 = 2π
a2 × a3

a1 · (a2 × a3)
(1.4)

b2 = 2π
a3 × a1

a1 · (a2 × a3)
(1.5)

b3 = 2π
a1 × a2

a1 · (a2 × a3)
(1.6)

A vector that is normal to the set of diffracting planes is defined in reciprocal

space by [35]:

G = hb1 + kb2 + lb3 (1.7)

Using the reciprocal lattice we map each {hkl} to an orthonormal set of basis

vectors and normalize G to define the relevant crystal direction for use in Equa-
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tion 1.3:

c =
G
‖ G ‖

(1.8)

In addition to the rotation matrix R, there are a number of ways to param-

eterize orientations. Perhaps the most useful for computing within orientation

space and for graphical depiction is the Rodrigues parameterization [27]. The

direction of a Rodrigues orientation vector from the origin of the space defines

a rotation axis, and the magnitude of the vector is related to the rotation angle:

r = n tan
(
φ

2

)
(1.9)

where n is the axis of rotation and φ is the angle of rotation about the axis [27, 39,

50]. The relationship between the Rodrigues vector and the orientation matrix

R is:

R =
1

1 + r · r
(I(1 − r · r) + 2(r ⊗ r + I × r)) (1.10)

where I is the identity tensor, and ·, ⊗, and I × r indicates the dot product, the

dyad, and the skew tensor from r, respectively [39, 50].

A single diffraction measurement corresponds to a point on the detector and,

as described previously, is defined by both a crystal and sample direction. The

orientations participating in a single diffraction measurement share a common

plane normal and form a straight line in Rodrigues space. This line is known as

a crystallographic fiber. When crystal symmetries are accounted for, the space

comprised of all possible Rodrigues vectors is bounded for many crystal types,

and referred to as the fundamental zone [27, 32, 39]. Any segment of a fiber that

extends beyond the boundary of the fundamental zone can be remapped back to
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an equivalent location within the fundamental zone resulting in the fiber being

broken into many segments constituting the set of crystal orientations repre-

sented by a rotation of 2π about the scattering vector. For an introduction to

Rodrigues space and calculations over the fundamental zone, the authors rec-

ommend [2, 27, 32, 39]. The fundamental zone for a cubic material is shown in

Figure 1.3 with a finite element mesh overlaid [39]. Any point in the fundamen-

tal zone specifies a crystal rotation with respect to the sample axes shown. The

point in the center of the region corresponds to the identity matrix (no rotation).

The FEM discretization of the fundamental zone, first introduced in [39], allows

us to fully represent field quantities in Rodrigues space such as the ODF and

the lattice strain distribution function defined in the next section. More on the

fundamental zone for crystal symmetries other than cubic can be found in [32].

Figure 1.3: The cubic fundamental zone in Rodrigues space parametrized
with finite elements. The mesh has 600 independent nodes and
is composed of tetrahedral elements. Here the axes indicate the
sample loading direction (LD), transverse direction (TD), and
normal direction (ND).

As discussed, each lattice strain measurement is the average normal strain

from all the crystal orientations satisfying the diffraction condition. To design

a diffraction experiment that fully probes orientation space, and to understand

the regions of orientation space probed by each measurement, let us first con-

sider the results from the azimuthal bin highlighted in Figure 1.2(a). The scat-
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tering vectors associated with each {hkl} in the η bin shown in Figure 1.2(a) are

nominally in the sample loading direction - differing between the {111} and the

{311} by only 3o (for λ = 0.2480
◦

A). However, due to the differences in the crys-

tal directions, the fibers associated each {hkl} are significantly different. These

fibers are shown in Figure 1.4. Recall from Equation 1.3, these are the crystallo-

graphic orientations that can contribute intensity for each {hkl} for a scattering

vector near LD. With the exception of the {200}||LD fiber, the configuration of

these lines in orientation space are not especially intuitive. The striking differ-

ences between the fibers are due to the cubic symmetry of the LSHR crystal and

the resulting difference in the number of equivalent planes within each {hkl}

family - a property known as multiplicity [17].

Figure 1.4: The {111}||LD, {200}||LD, {220}||LD, and {311}||LD fibers, go-
ing left to right are plotted in the fundamental zone.

The quality of orientation pole figures is often linked to pole figure cover-

age [68]. From Figure 1.4, it is clear that for micromechanical testing especially,

it is also necessary to consider the section of orientation space being sampled

during each measurement. Specifically, for identical pole figure coverage, dif-

ferent regions of orientation space are sampled for each {hkl}. Probing a wide

range of orientation space is essential for determining the lattice strain tensor

at each orientation - the LSDF. Each measurement contains information about

the weighted projection of the orientation-averaged strain tensors that fall along
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the fiber. The influence of each lattice strain measurement, or point on the pole

figure, on the determination of the LSDF (Inversion) is coupled to the region

and direction of the corresponding crystallographic fiber. Mapping peak shifts

(lattice strains) from diffraction measurements back to individual orientations is

the fundamental challenge of the SPF inversion. The hope for a solution lies in

multiple lattice strain measurements that involve each crystal orientation. Ob-

taining the greatest amount of lattice strain information from each orientation

during an SPF experiment improves our ability to determine the LSDF.

1.2.6 The Lattice Strain Distribution Function (LSDF)

The Lattice Strain Distribution Function (LSDF) is the lattice strain tensor at

each orientation, ε˜(R). In a powder sample, the intensity for each diffracted

peak comes from the crystals along the fiber defined by c||s. The peak shift on

the detector is due to the orientation averaged projection of the LSDF along the

fiber in the direction of the scattering vector, s:

εc||s =
dc||s − d0

c||s

d0
c||s

=

∫
c||s

sε˜(R)sT f (R)dR∫
c||s

f (R)dR
(1.11)

where T indicates the transpose. Here, f (R) is the Orientation Distribution

Function (ODF) [3] defined as:

dVβ

Vβ

≡
1

VΩ

f (R)dR. (1.12)

Here Vβ is the volume of the real material, VΩ is the associated volume in orien-

tation space. Additionally, the integral of the ODF over the orientation space,

Ω, must equal one and f (R) ≥ 0.

18



The LSDF is often the objective of the powder experiments and can be used

with Hooke’s law and the single crystal elastic constants, C
≈

, to obtain the aver-

age stress for each crystal orientation [4–6, 49]:

σ˜ (R) = C
≈
ε˜(R) (1.13)

The inversion process presented in [4] seeks to determine the LSDF using the

finite element discretization shown in Figure 1.3. The LSDF can be represented

with a finite element discretization over the fundamental zone. The LSDF is

defined within an element in orientation space as,

ε˜(R) = [N(R)]{ε} (1.14)

where {ε} is the vector of nodal point values of the LSDF and [N(R)] are shape

functions defined in orientation space. The 600 node finite element mesh shown

in Figure 1.3, combined with the six components of the LSDF, results in 3600 de-

grees of freedom (number of nodes × the six components of the LSDF) necessary

for the inversion process. The SPF experiment can now be described from the

standpoint of defining the LSDF at each node in orientation space.

1.3 Measuring SPFs at CHESS Experimental Station A2

The {hkl}s that produce diffracted intensity are governed by the crystal structure

and lattice parameters of the sample, x-ray wavelength, and the experiment

geometry. Similar to increasing the distance between a projector and a screen,

an increase in the sample to detector distance while holding the material and

wavelength fixed will result in fewer diffracted {hkl}s captured by the detector.

19



However, the shift of a peak results in a larger physical distance on the detector

which improves the strain resolution. Clearly, experiment conditions should

be optimized to produce the maximum number of {hkl}s while still maintaining

adequate sensitivity for peak shifts measured on the detector.

1.3.1 Material and Specimen Design

The SPF experiments we describe were conducted on the nickel base superal-

loy LSHR, which was developed by NASA as a new high temperature turbine

disk alloy that can be heat treated to produce fine or coarse grains to vary the

mechanical performance [28]. The LSHR material had an average grain size of

approximately 3µm and the x-ray intensities measured indicate a near uniform

ODF. The specimen geometry for the LSHR corresponded to a flat sample with

a gage length of 36.83 mm and a cross section of 1 mm x 1.25 mm (ND x TD).

For diffraction experiments in transmission, the allowable specimen thickness is

governed by the penetration depth of the x-rays, which is determined from the

absorption characteristics of the material and the x-ray energy [48]. The LSHR

sample thickness was designed specifically for the 50 keV x-rays at CHESS A2.

To build reliable SPFs and to quantify the LSDF, the material grain size and x-

ray beam size must be coordinated so the diffraction volume contains “enough”

grains to satisfactorily represent a distribution. Each measurement must consti-

tute the response from a material point (in the continuum sense). If the number

of participating crystals decreases, so that the lattice strain response can be sig-

nificantly changed by the addition of several crystals to the diffraction volume,

the general concept of a material point is violated. The azimuthal bin size is also
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linked to the number of crystals interrogated. The complete LSHR Debye rings

shown in Figure 1.2(a), and the relatively small grain size of the LSHR, indicate

that idea of material point is satisfied with each diffraction pattern divided into

72, 5o azimuthal bins (η).

1.3.2 Experiment Conditions

The SPF experiment was conducted in transmission with 49.989 keV (λ =

0.2480
◦

A) x-rays in the A2 experimental station at the Cornell High Energy Syn-

chrotron Source (CHESS). The flux at this energy for a 5.3GeV synchrotron is

approximately 5.52 × 1011 photons/mm2/second, which is orders of magnitude

greater than a typical rotating anode laboratory source at the same energy. The

beam path for the x-ray experiment can be seen in the schematic in Figure 1.5.

The A2 hutch is approximately 4 x 2 m2 and is located 35.5 m downstream from

the wiggler (series of magnets with alternating polarity) where the x-rays are

produced [69]. The x-ray beam from the wiggler contains a wide range of en-

ergies. A silicon {111} double-crystal monochromater is used to select a single

energy to within a bandwidth of 50 eV. The cross-section of the incoming beam

is set to 0.5 x 0.5 mm2 by two sets of tungsten slits. The flight chamber (he-

lium filled chamber to minimize x-ray interaction with air) and a collimator

(lead cylinder to minimize x-ray scattering along the beam path) are used to

minimize the amount of spurious x-rays. After leaving the collimator, the x-ray

strikes the sample mounted within the diffractometer. A MAR345 area detector

was placed 645 mm from the sample. The detector has 100µm square pixels and

a diameter of 345 mm. For these experiment conditions the {hkl}s considered are

the {111}, {200}, {220}, and {311} as shown in Figure 1.2.
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Figure 1.5: Schematic showing the relevant components in the x-ray beam
path at CHESS A2 for the SPF experiment.

The diffractometer, labeled in Figure 1.5 and pictured in Figure 1.6, allows

for the reorientation of the loaded sample [57]. Traditional diffractometers can

precisely reorient small samples, but do not offer in situ loading capabilities

[17]. The addition of the loadframe, labeled G in Figure 1.6, drastically increases

the amount of rotated mass and the need for substantial structural members to

resist deflection. Two rotational axes are used to reorient the specimen relative

to the x-ray beam. For sample symmetry considerations, the specimen loading

direction (LD) was chosen as one rotational axis (χ) and the vertical axis per-

pendicular to the beam as the second (ω). The most important attribute for our

diffractometer is the ability to reorient a specimen during loading with minimal

changes to the position of the specimen centroid with respect to the incoming

x-ray beam. The loadframe is capable of holding a constant load while being

rotated and can apply and maintain loads of up to ± 2250 N in tension or com-

pression at a frequency of up to 100 Hz. We typically conduct load control ex-

periments due to the strong dependence of lattice strain on the applied load

[51].

The experimental procedure using the system shown in Figure 1.6 consists of

a sequence of diffraction measurements and sample rotations [48]. Atω = χ = 0o

the sample ND is aligned with the direct beam. The angular range for the rota-
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Figure 1.6: Loadframe/diffractometer employed for the SPFs experiments
depicting the relevant components.

tions are from ω = [−40o to 35o] and χ = [0o to 25o]. Once the desired point in the

load history is attained the load is reduced to a constant value at 90% of the peak

value to reduce the effect of creep during the diffraction measurements [18]. A

complete in situ tension test contains many hold periods in the load history (in

both the elastic and elastic-plastic regimes) to measure SPFs at specific points

[5, 6, 48, 51].

1.4 Orientation Space Sampling

In this section we derive an explicit relationship between the sample orienta-

tions that are possible at each load step, the set of {hkl}s observed and the crystal

orientations interrogated during each diffraction measurement. Due to the lim-

ited set of crystallographic planes that diffract and the nature of Bragg’s law, for
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a given experimental setup there are a fixed number of crystallographic fibers

(diffraction measurements) that can pass through a point in orientation space.

Optimal design of a diffraction experiment comes from a recognition of the con-

nection between sample orientations relative to the x-ray beam and the nature of

the relationship between {hkl}s and potential fiber directions. An understanding

of how each diffraction measurement probes orientation space and the selection

of key measurement directions can be used to optimize an investigation of the

crystal scale mechanical response.

To illustrate the problem, let us consider three sample orientations used on

the LSHR material: (ω, χ)= (−40o, 0o), (0o, 0o), and (35o, 0o). In Figure 1.7 the SPF

coverage is shown with the corresponding fibers in orientation space. As ex-

pected, plotting many fibers produces a completely intractable figure, therefore

to allow for each fiber to be identified, the fibers are shaded from black to gray

with every other azimuthal bin omitted. The relationship between all of these

fibers and a single crystal orientation is complex. From Figure 1.7 we can see

that the challenge of determining the impact of these measurements at each

crystal orientation is nontrivial.

Our focus is on defining a technique for quantifying the extent to which each

crystal orientation is interrogated during a diffraction experiment. Presentation

of the technique will be shown for a range of SPF coverage using the crystal

structure of the LSHR and the experiment conditions presented in Sect. 1.3.2.

The experiment configurations considered are: diffraction measurements in the

LD and TD directions only (typical neutron experiment), a single diffraction

pattern (ω = χ = 0o), and three results achieved using different ranges of ω and

χ.
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(a)

(b)

(c)

(d)

Figure 1.7: (a) Results from three different diffraction patterns are shown
on both the SPFs and in the fundamental zone. The results
correspond to the {111}, {200}, {220}, and {311} going left to
right. The shading varies from gray to black along a single
band to allow for identification of each point. The fibers shown
in (b), (c) and (d) are each from a single band of data indicated
in (a).
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Table 1.1: Multiplicity values for an FCC material.

{hkl}s {111} {200} {220} {311}

Multiplicity (M) 8 6 12 24

1.4.1 The Orientation Space Sampling Matrix, Γ(R)

To quantify the relationship between the experimental conditions and the re-

gions and directions in orientation space that each fiber probes we consider a

single orientation Ri, with an elastic strain tensor ε˜(Ri). As defined in Equa-

tion 1.3 for a given crystal vector, c, we can unequivocally define a scattering

vector, s, such that a crystallographic fiber will pass through Ri. The maximum

set of fibers that interrogate Ri is fixed by two things: 1) the {hkl}s that can be

measured in the diffraction experiment and 2) their crystallographic multiplic-

ities. In the LSHR experiment we collect data for the {111}, {200}, {220}, and

{311} planes. The multiplicity of an {hkl} depends on the crystal system and

is defined as the number of unique crystallographic planes within a unit cell

that have different orientations but share a common plane spacing [17]. LSHR

is FCC and the multiplicities for the observed {hkl}s are shown in Table 1.1. To

quantify the set of fibers that probe Ri, the multiplicities for each {hkl} are com-

bined with Equation 1.3 to generate a list of c||s combinations. For instance the

scattering vectors required to produce all six possible {200} fibers correspond

to Ric where c = 1
2 [ 2 0 0], 1

2 [ -2 0 0], 1
2 [0 2 0], 1

2 [0 -2 0], 1
2 [0 0 2], and 1

2 [0 0 -2].

Due to the antipodal symmetry of pole figure data (±s), the potential number

of measurement directions is halved. For each {hkl} considered, the number of

possible measurement directions that probe Ri is one-half the multiplicity. For
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the four {hkl}s in Table 1.1, the total number of unique fibers that probe each

orientation is limited to 25. Therefore, at an orientation Ri, there are 25 possible

lattice strain measurements that can probe ε˜(Ri).

Single Crystal Measurements

To illustrate the importance of measuring lattice strains in many directions, let

us consider a single crystal i of the LSHR, with an orientation Ri subjected to an

elastic strain state ε˜(Ri). Each lattice strain measurement constitutes a projection

of the tensor in the measurement direction:

εc||s = sε˜(Ri)sT (1.15)

By expressing ε˜(Ri) as a vector this expression can be rearranged as [34]:

εc||s = [u2 v2 w2 2vw 2uw 2uv]



ε11(Ri)

ε22(Ri)

ε33(Ri)

ε23(Ri)

ε13(Ri)

ε12(Ri)



(1.16)

with the unit scattering vector, s, previously defined as s = [u v w]. For m mea-

surements (scattering vectors) of the same crystal i, Equation 1.16 can be written

in matrix form as:

[εc||s] = Γ(Ri){ε(Ri)} (1.17)

where {ε(Ri)} = {ε11(Ri) ε22(Ri) ε33(Ri) ε23(Ri) ε13(Ri) ε12(Ri)}T , [εc||s] is the list of

measured lattice strains for the m measurements, and the orientation space sam-
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pling matrix, Γ(Ri), is defined:

Γ(Ri) =



u2
1 v2

1 w2
1 2v1w1 2u1w1 2u1v1

u2
2 v2

2 w2
2 2v2w2 2u2w2 2u2v2

.

.

.

u2
m v2

m w2
m 2vmwm 2umwm 2umvm



(1.18)

where m can be at most the number of unique fibers for each orientation, 25 for a

single crystal of LSHR using the experiment conditions presented in Sect. 1.3.2.

Additional measurements beyond the 25 unique fibers would be replicants and

could be used to minimize the influence of experimental fluctuations. To deter-

mine the lattice strain tensor for a single crystal i, Γ(Ri) must contain six linearly

independent rows. The rank of a matrix is defined as the number of linearly

independent rows. For Γ(Ri) the maximum rank is equal to the number of in-

dependent strain components, six. So if Γ(Ri) spans R6, a six-dimensional space

of real numbers, then the strain tensor for the crystal i can be determined from

the lattice strain measurements. If additional measurements are made the prob-

lem of determining the lattice strain tensor becomes one of linear least squares.

From linear algebra, we know that six measurements (rows of Γ(Ri)) do not en-

sure that Γ(Ri) spans R6.

Orientation Space Sampling Matrix for a Polycrystal

For a polycrystal, each lattice strain measurement comes from many crystal ori-

entations along individual fibers. To quantify the orientation space matrix, Γ(R),

for each orientation, we restrict our investigation to the orientations defined by
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the nodes of the finite element discretization described previously, Figure 1.3.

Recall that for each orientation, there exits a finite set of potential scattering vec-

tors defined by Ric. For the LSHR and the experiment conditions presented in

Sect. 1.3.2, this set of scattering vectors is limited to 25. To discern whether a

measurement probes a given orientation, a tolerance of 2.5o between the mea-

sured scattering vector and the set of potential scattering vectors for the orien-

tation is employed.

Using this criteria, the orientation space sampling matrix, Γ(R), can be cal-

culated for each orientation (node), and the extent to which each orientation

is interrogated can be quantified. The rank of Γ(R) for each crystal orientation

can be used to generate a field over orientation space that indicates how well

each orientation is sampled by a set of SPF data. Again, the maximum possible

rank of Γ(R) is equal to the number of independent strain components, six. So

if the orientation space sampling matrix spans R6 at each orientation, then the

inversion process simplifies to a matrix operation.

The relationship between the LSDF and the SPFs can be expressed using

nodal point values. Here the LSDF for each node is defined as a vector:

{ε} = {ε11(R1) ... ε11(Rn) ε22(R1) ... ε22(Rn) ε33(R1) ... ε33(Rn)

ε23(R1) ... ε23(Rn) ε13(R1) ... ε13(Rn) ε12(R1) ... ε12(Rn)}T ,
(1.19)

where n equals 600 and is the total number of nodes in the fundamental zone

shown in Figure 1.3. For p measurements the set of lattice strains is expressed
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as:

[εc||s] =



ε1

.

.

.

εp


(1.20)

where the subscript c||s for each lattice strain measurement is replaced with an

index that ranges from 1 to p. In an analogous manner to that of the single

crystal example, the relationship between the LSDF and the SPFs is defined:

[εc||s] = Γ∗{ε} (1.21)

where Γ∗ is the polycrystal sampling matrix. The polycrystal sampling matrix

combines information from the scattering vector with a weight for the contribu-

tion of each orientation to the lattice strain measurement. The subset of orien-

tations that contribute to a single measurement is indicated by a characteristic

function defined:

{Bc||s} = {B(R1) ... B(Rn)} (1.22)

where {Bc||s} is defined for each node in orientation space to be one if the orienta-

tion contributes to the measurement, and zero if it does not. The ODF is defined

for each node as:

{ f } = { f (R1) ... f (Rn)}. (1.23)

Using both {Bc||s} and { f }, the contribution of each orientation to a single lattice

strain measurement is defined:

{Fc||s} =
{ f (R1)B(R1) ... f (Rn)B(Rn)}

{ f }{Bc||s}
T . (1.24)

Here {Fc||s} is a vector containing normalized weights such that the components

sum to one. Using {Fc||s} and the scattering vector, s, the polycrystal sampling
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matrix is defined:

Γ∗ =



u2
1{F1} v2

1{F1} w2
1{F1} 2v1w1{F1} 2u1w1{F1} 2u1v1{F1}

.

.

.

u2
p{Fp} v2

p{Fp} w2
p{Fp} 2vpwp{Fp} 2upwp{Fp} 2upvp{Fp}


(1.25)

where the subscript c||s for each {Fc||s} is replaced with an index that ranges from

1 to p to indicate each measurement.

To solve Equation 1.21 for the LSDF using matrix operations requires the

rank of Γ∗ to be 3600 (the number of nodes × the six degrees of freedom in the

LSDF). When the rank of Γ∗ is 3600, the rank of the orientation space sampling

matrix, Γ(R), is six for all nodes in the mesh. It is beneficial to measure as many

of the 25 potential fibers at each orientation as possible. Measurements in addi-

tion to the six linearly independent required for Γ(R) to span R6 for each orien-

tation (p > n), act to minimize the influence of experimental error and enables

the use of least squares for determining the LSDF. Once the LSDF is determined

for each node, the LSDF value for an arbitrary orientation can be determined

with Equation 1.14 using the finite element shape functions. It is worth noting

that the LSDF obtained by solving Equation 1.21 is influenced by experimental

errors and additional constraints may be needed depending on the quality of

the lattice strain data.

When the rank of Γ∗ is less than 3600, additional constraints are necessary

to find a unique solution to the inversion process [4, 66]. The orientation space

sampling matrix, Γ(R), can be used to identify the orientations that are poorly

sampled. Using both the orientations where Γ(R) is rank deficient and the set

of 25 potential fibers for each orientation, measurements that produce linearly

31



Table 1.2: SPF experiment configurations investigated.

Configuration Description

1 Measurements in the LD and TD directions only

(conventional neutron diffraction experiment)

2 Single diffraction pattern (ω = χ = 0o)

3 Configuration presented in Figure 1.7

4 Rotations about the vertical axis (ω=-40o to 35o

in nine increments with χ = 0o) using the diffractometer

shown in Figure 1.6

5 SPF coverage used in the LSHR experiments

(ω=-40o to 35o in nine increments with

χ = 0o and χ = 12.5o and ω=-25o to 25o in

six increments with χ = 25o)

independent rows of Γ∗ can be identified.

The orientation space sampling matrix is explored using a range of exper-

imental configurations. The SPF coverage investigated is shown for the {111}

SPF in Figure 1.8, where each SPF corresponds to one of the experiment config-

urations defined in Table 1.2. The five configurations were selected to demon-

strate the orientation space sampling matrix for common diffraction experi-

ments where configuration (1) represents a typical neutron experiment, (2) rep-

resents a single sample orientation using an area detector, and (3) to (5) rep-

resent increasing amounts of SPF coverage obtained with the diffractometer

shown in Figure 1.6.

The number of fibers that pass through each orientation is shown over the
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Figure 1.8: SPF coverage for the experiment configurations described in
Table 1.2. For configurations 2 to 5 the measurement positions
on the SPF correspond to the {111}. The measurement positions
for the remaining {hkl}s differ from the {111} by less than a few
degrees.

fundamental zone for the different experiment configurations in Figure 1.9. For

the set of {hkl}s measured there exists at most 25 independent fibers that can

pass through a single orientation. The total number of unique measurements,

increases from left to right in Figure 1.9. For (5) a minimum of 10 fibers pass

through each orientation.

The rank of the orientation space sampling matrix, Γ(R), for each of the ex-

periment configurations is plotted over orientation space in Figure 1.10. The

results show a drastic increase in the rank of the orientation space sampling ma-

trix at each orientation with increasing SPF coverage, left to right in Figure 1.8.

For SPF configuration (4), 588 of the 600 nodes in the finite element mesh are of

rank six. If necessary the rank deficient nodes could be isolated and additional

measurements prescribed from the set of 25 potential fibers to increase the rank

of Γ(R) for the specific orientations. For (5), the SPF coverage used in the LSHR

experiment, the rank of the orientation space sampling matrix has a uniform

value of six over orientation space.

We motivated our effort to quantify how well a set of SPF data probes ori-
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Figure 1.9: The number of unique fibers that pass through each orienta-
tion for the configurations described in Table 1.2 are shown in
the fundamental zone. The top row shows the outer surface
of the fundamental zone and the bottom row shows three inte-
rior orthogonal plane sections of the same region. The upper
limit for the {hkl}s measured is 25 fibers per orientation. Due
to incomplete SPF coverage for the different configurations the
most fibers to pass through a single orientation is 17 for (5).

Figure 1.10: The rank of the orientation space sampling matrix over ori-
entation space for each of the configurations described in Ta-
ble 1.2. By moving from (1) to (5) the inversion problem be-
comes over constrained.
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entation space with (3), and the corresponding fibers shown in Figure 1.7. By

shifting the focus from all the fibers in the fundamental zone, to the subset of

fibers that probe each orientation, we are able to quantitatively investigate the

orientation space coverage as shown by Figure 1.9 and Figure 1.10 .

1.5 SPF Experiment on LSHR

The macroscopic behavior of a LSHR specimen subjected to a uniaxial stress

state is shown in Figure 1.11(a). Diffraction measurements of LSHR were made

while the load was held at 225 MPa, 450 MPa, and 720 MPa in uniaxial tension.

The SPF experiment is not limited to the elastic regime [5, 48, 49], but since the

focus of this paper is on developing an understanding of diffractometer config-

uration, pole figure coverage, and potential rank of the orientation space sam-

pling matrix for each crystal orientation, we focus on three loads in the elastic

regime. The load history for the experiment is shown in Figure 1.11(b) where

both stress and strain are plotted versus time. SPFs were measured for the four

{hkl}s at the three different load steps. Each SPF combines lattice strain data

from 24 different sample orientations. Each diffraction pattern was divided into

72 azimuthal bins leading to 1728 unique lattice strain measurements per {hkl}.

The SPFs are presented in Figure 1.12 and for plotting purposes lattice strains

are shown both for ±s.

The SPF for each {hkl} shows that for the in situ conditions, the largest tensile

lattice strains are nominally in LD and most compressive in TD from the Pois-

son effect. The magnitude of the lattice strains in LD between the different {hkl}s

follows the general trends consistent with the single crystal elastic anisotropy of
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(a) (b)

Figure 1.11: (a) Macroscopic engineering stress vs. engineering strain
curve for the LSHR in the as forged state. (b) Stress and strain
plotted vs. time for the LSHR specimen. To mitigate creep ef-
fects the load is decreased to 90% during the diffraction mea-
surements. During the periods where the load is held con-
stant, the sample is rotated to allow additional unique scatter-
ing vectors to be measured. For scale our load hold period is
approximately an hour using the MAR345 area detector.

the material where the {200} is the most compliant (largest lattice strain mag-

nitude) and the {111} is the stiffest in uniaxial tension. Variation in the lattice

strain values between neighboring points on an SPF are not expected to vary

significantly over a few degrees. The lattice strain uncertainty that is commonly

quoted for these experiments is approximately ±1 × 10−4 [5]. This value is con-

sistent with our experimental data.

1.6 Discussion

Upon initial examination, designing a measurement capability that would con-

ceivably interrogate every orientation within a deforming polycrystalline ag-

gregate feels like a daunting task. However, the geometric predictability that
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(a)

(b)

(c)

Figure 1.12: SPFs for {111}, {200}, {220}, and {311} going left to right.
Top to bottom corresponds to the SPFs measured at a macro-
scopic stress of (a) 225 MPa, (b) 450 MPa, and (c) 720 MPa in
tension.

accompanies crystal symmetries and the enormous number of diffraction mea-

surements that are possible with high energy x-rays and area detectors have

made it possible to define and easily quantify the orientation space sampling

matrix, Γ(R), for each crystal orientation. Experiment design then becomes a

matter of understanding the effect that each experimental parameter (x-ray en-

ergy, sample to detector distance, number, orientation, and angle range of spec-

imen rotation axes) has on the rank of Γ(R) at each crystal orientation. Under-

standing the rank of Γ(R) allows us to judge the quality of a set of SPFs in a

more meaningful and quantitative manner than pole figure coverage. Whether
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our ultimate intent is to compare measured SPFs to simulation results or to in-

vert a set of SPFs for the LSDF and eventually the average stress for each ori-

entation (σ˜ (R)); understanding of the orientation space sampling matrix can be

used to select experiment conditions, govern the design of new apparati like a

diffractometer, and determine the {hkl}s and scattering vectors to best probe the

material response - particularly for the case of limited measurements and mate-

rials with strong textures. The definition of Γ(R) now allows us to declare a set

of SPFs as good, better or best.

Time at synchrotron facilities is a valuable resource. Understanding the rela-

tionship between each diffraction measurement and the LSDF elevates the SPF

micromechanical testing techniques to a point where the experiment can be op-

timized prior to making a measurement. The material characteristics, the x-ray

wavelength, the sample to detector distance, the detector size, and the diffrac-

tometer design dictate the SPF coverage. The SPF coverage and the {hkl}s mea-

sured can be used to identify the independent fibers that probe each orientation,

and which are accessible to a given experimental setup. Generally speaking, the

quality of the information about the three dimensional deformation state of the

polycrystalline aggregate improves with increased SPF coverage. The degree

to which the results improve can be quantified by the rank of Γ(R) for each

orientation and the number of fibers measured. The discussion will focus on

three topics: the maximum number of fibers that probe a single orientation, the

impact of limited SPF coverage, and the use of Γ(R) to investigate relationship

between SPFs and the LSDF.
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1.6.1 The Number of Potential Fibers that Probe Each Orienta-

tion

The maximum number of fibers that probe a single orientation is fixed by the

{hkl}s measured and their corresponding multiplicities. The addition of each in-

dependent {hkl} increases the maximum number of fibers that can probe each

orientation by one-half the multiplicity. The addition of {hkl}s at higher Bragg

angles is often limited by the size of the detector and the experimental condi-

tions. For the LSHR and the experimental conditions employed, the maximum

number of fiber the probe each orientation was 25.

It is worth noting that for an orientation, Ri, measurement of additional

higher order planes, such as the {111} and the {222} does not increase the max-

imum number of potential fibers that can interrogate each orientation. Since

each fiber is defined by Equation 1.3, where for cubic materials c = 1
√

h2+k2+l2
[h k l],

then for a fixed scattering vector the {111} and {222} fibers are identical. When

diffraction from the {111} and {222} peaks is measured with an area detector,

the scattering vectors are slightly different (different s’s), and the result is anal-

ogous to more {111}measurement directions.

1.6.2 Limited SPF Coverage

While the maximum number of fibers that probe each orientation for the LSHR

using the experiment conditions presented in Sect. 1.3.2 is 25, the number of

diffraction measurements made depends on the experimental configuration.

Using the rank of Γ(R) as a metric, the impact of limited SPF coverage due to
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interference between x-rays and the experimental apparatus during the rotation

of the sample (referred to as shadowing) can be quantified. Given a desire for

the orientation space sampling matrix to be of rank 6 for all orientations, the

minimum allowable SPF coverage can be established and used to constrain the

experiment design. For the case where only limited measurements are possible,

due to time or shadowing constraints, the orientation space sampling matrix

can be used with the ODF to maximize the volume of the material interrogated.

For a material with a strong texture, the subset of orientations that represent the

largest volume fraction of the material can be used to prescribe measurement

directions that most effectively interrogate the material response. Additionally,

the quality of an experimental design can be assessed and adapted if crucial

regions of orientation space are not adequately sampled.

As the number of measurements decreases, the impact of which {hkl}s are

measured increases. Though the SPF coverage will be similar for different

{hkl}s, the variation in the amount of orientation space probed is appreciable.

As shown by the the four fibers in Figure 1.4, the range of orientations that

are encompassed by a single fiber scales with the multiplicity. As a result, a

single {200} measurement probes significantly fewer orientations than a {311}

measurement. It is important to note that though the {200} fibers constitute

the minimal amount of orientation space sampling, if an experiment was de-

signed such that all possible {200} fibers were accessible, the orientation space

sampling matrix for each orientation would only span R3. Measurement of sev-

eral {hkl}s greatly improves the rank of the orientation space sampling matrix

for similar SPF coverage. Moreover, due to anisotropic single crystal properties,

the lattice strains for each {hkl} shown in Figure 1.12 can be different. Depending

on the nature of the investigation, it may be valuable to measure certain {hkl}s
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that correspond to extreme values of the single crystal elastic response, rather

than maximizing orientation space coverage.

1.6.3 The Link Between SPF Data and the LSDF

The polycrystal projection matrix, Γ∗, links the experimentally measured lattice

strains (SPFs) to the average strain tensor experienced by each crystal orien-

tation within the diffraction volume (LSDF). Each lattice strain measurement

represents a row in Γ∗, and for Equation 1.21 to be solved directly there must

be at least as many linearly independent rows in Γ∗ as there are degrees of free-

dom in the LSDF (3600 for the mesh shown in Figure 1.3). When the rank of

Γ∗ is insufficient to determine the LSDF directly, additional constraints can be

applied to obtain a unique solution. Such is the case for configurations 1-4 in

Figure 1.8. From an experiment design perspective, the rank of Γ(R) can be used

to identify orientations that are insufficiently probed (rank less than 6), and new

measurements that interrogate the rank deficient orientations can be prescribed

to generate additional linearly independent rows in Γ∗. When it is not possi-

ble to make additional measurements to improve the inversion process, it is

conceivable to use the rank of each orientation space sampling matrix as a con-

fidence measure for inversion results. Additional measurements beyond the set

required for Γ(R) to span R6 at each orientation can be used to suppress experi-

mental fluctuations.

As with any matrix inversion, the experimental error for the lattice strain

measurements influences the inversion of SPF data for the LSDF. Investigation

of the rank of Γ(R) focuses on the mapping between the LSDF and the SPF data,
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and should be used as a guide to determine which measurement directions best

probe orientation space. If sufficient measurements are made for the rank of

Γ(R) to be six for each orientation, the validity of the inversion results will still

be directly linked to the experimental error for each measurement.

1.7 Summary/Conclusions

Investigations of the manner in which the stress is distributed over the orienta-

tions within a loaded aggregate, and the microscale elastic-plastic deformation

in general, have the potential to advance our understanding of crystal scale ma-

terial response. Instead of manufacturing test specimens on the size scale of

the microstructure, our approach has been to “observe” mechanical tests with

high energy x-rays. Measurement of lattice Strain Pole Figures (SPFs) provides

a robust technique for quantifying the three dimensional micromechanical state

within a polycrystalline sample. The penetration of high energy x-rays com-

bined with the availability of x-ray area detectors enables the collection of enor-

mous volumes of lattice strain data from specimens loaded in situ . Conven-

tional approaches developed for the limited number of scattering vectors used

in neutron diffraction experiments do not utilize these potentially massive data

sets that can be generated. With access to more independent lattice strain mea-

surements, developing the means to quantitatively compare sets of lattice strain

data is paramount. Therefore, the focus of this work was to bring the SPF ex-

periment to the level of a measurement capability as opposed to a one-off style

experiment. Exploration of the experimental technique employed results for a

nickel base superalloy, Low Solvus High Refractory (LSHR).
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The interconnected nature of the SPF coverage and the regions of orienta-

tion space probed were discussed following the analogy of applying resistance

type strain gages to a sample; where each measurement represents the orienta-

tion averaged normal strain in the direction of the crystallographic fiber. Key

findings include:

• Each data point on an SPF corresponds to the peak shift from an individ-

ual x-ray diffraction experiment. The set of orientations within a poly-

crystalline aggregate that are interrogated by each measurement are pre-

dictable from the details of the x-ray experiment configuration, the x-ray

wavelength, and the material characteristics. These orientations lie along

a crystallographic fiber in orientation space. A fiber is defined by a sample

direction, relative to LD, TD, and ND, and a crystal direction indicated by

the lattice plane normal ({hkl}).

• Due to crystal symmetries and the set of {hkl}s observed, the maximum

number of potential fibers that can interrogate each orientation within a

polycrystal is finite. For the FCC LSHR, we observed the {111}, {200},

{220}, and {311} lattice planes and the total number of fibers that can

probe each orientation is equal to one-half the sum of multiplicity for each

{hkl}. This results in a maximum of 25 fibers per orientation. Measurement

of several {hkl}s for the same SPF coverage greatly increases the number of

independent fibers that interrogate each orientation.

• A finite element discretization of orientation space provided a list of orien-

tations at which the fibers, produced from the SPF data, could be investi-

gated. The actual number of fibers accessible for each orientation depends

on the SPF coverage, which, in tern depends on the experimental config-

uration. The orientation space sampling matrix, Γ(R), comprises the di-
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rection information for each fiber that probes an orientation, R. The rank

of Γ(R), which also varies over orientation space, is an important quantity

related to SPF inversion. If the rank of Γ(R) is six at every orientation, SPFs

can be inverted directly for the lattice strain distribution function.

• The rank of Γ(R) can be used to optimize the selection of diffraction mea-

surements for the SPF experiment and prescribe experiment conditions.

Sets of lattice strain measurements can be quantitatively compared, allow-

ing for the SPF micromechanical experiment to be optimized prior to mak-

ing a measurement at the x-ray beam line. In particular, the rank of Γ(R)

can be used in the selection of SPF coverage and the {hkl}s that best probe

orientation space.

• SPFs from LSHR depict lattice strains that are consistent with the relative

stiffness between {hkl}s for measurements in the loading direction. SPF

data fill a critical role in corroborating crystal-based mechanics simula-

tions and bolster investigations of the mechanical response at the crystal

scale. This work represents an important step in the process of standard-

izing the SPF experiment in order to better understand the ‘quality’ of the

data.
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CHAPTER 2

QUANTIFYING THE UNCERTAINTY OF SYNCHROTRON-BASED

LATTICE STRAIN MEASUREMENTS

2.1 Introduction

Investigations into stress driven mechanisms at the crystal scale within a poly-

crystalline sample, such as those active during fatigue crack initiation, are lim-

ited by the lack of experimental data at the relevant length scale. Diffraction-

based experiments employing in situ mechanical loading that isolate the me-

chanical response of subsets of crystals within the deforming aggregate can pro-

vide insight into the stress state at the crystal length scale [9, 12, 16, 22, 38, 48,

49, 64]. Variation of the stress state (magnitude and direction) from one crys-

tal orientation to the next is a key finding from these experiments [5, 49]. Such

stress distribution information can prove to be extremely valuable for validating

crystal scale modeling frameworks [49]. Experimental uncertainty is one glar-

ing question that arises whenever comparisons to simulation are made, how-

ever. An essential step present in many lattice strain measurement experiments

is the approximation of experimental error or “noise” by measuring the appar-

ent lattice strains present in an unconsolidated sample constructed of a pow-

der with precisely measured lattice parameters. Because this standard sample

is completely strain free, the difference between the measured lattice spacing

and the theoretical values computed using the precise lattice parameters can be

used to establish the “error bar” associated with the experiments. A value typ-

ically cited in the recent neutron and x-ray literature is on the order of ±100µε

(±1 × 10−4) [5, 10, 12, 40, 48, 63]. While a necessary component of a modern
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diffraction experiment, this single measure of error (sometimes stated as reso-

lution) fails to account for all the possible variation in uncertainty that can take

place over the broad ranges of scattering vectors and families of crystallographic

planes that we see in these experiments. Nor is this error a true uncertainty

value since it is not typically associated with a specific confidence interval.

In this paper, we present a comprehensive definition of lattice strain un-

certainty and a detailed description of its determination. We propose an ex-

pression that separates the uncertainty into a set of approximately orthogonal

components: one associated with the instrument being used to make the mea-

surement and another that considers the material under investigation. Since

the instrument component is present regardless of material, it is the focus of

the paper. We use experimental data from lattice Strain Pole Figure (SPF) ex-

periments [48] conducted using at two distinct facilities: the A2 experimental

station at the Cornell High Energy Synchrotron Source (CHESS) and beam line

1-ID-C at the Advanced Photon Source (APS). Two types of area x-ray detec-

tors were employed. At CHESS, a MAR345 online image plate was used and a

GE 41RT amorphous silicon detector was employed at APS. The data sets from

these experiments provide the basis for developing a model that can be used to

estimate the instrument portion of the uncertainty using apparent strains mea-

sured from a calibrant sample. We employed cerium dioxide (CeO2) powder

with a well documented lattice parameter of of 5.411
◦

A. The paper begins with

a short diffraction primer and an overview of the lattice SPF experiment. The

next sections will introduce the lattice strain uncertainty, with the focus on the

instrument portion of the uncertainty and the contributing sources of error. The

key result is a procedure for determining the instrument portion of the lattice

strain uncertainty for a given set of instrument conditions.
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2.2 Background

Prior to introducing the experimental technique it is advantageous to establish

some basic terminology using the conventions established in [25]. A source of

experimental error leads to the measured value being offset from the true value.

There are two classes of error, systematic and random. A systematic error limits

the accuracy of the experiment by creating a bias in the data. Random errors

contribute to the precision limit for each measurement. The uncertainty is a

precision interval which represents the probable range, for a fixed degree of

confidence, about the measured value in which the true value is expected to

occur. The uncertainty for each measurement accounts for the convolution of

the different sources of error. Resolution is the smallest measurement possible

with a detector and establishes the minimum resolvable lattice strain.

A typical diffraction experiment conducted in transmission is shown in Fig-

ure 2.1. Instead of tracking individual crystals within the aggregate, the diffrac-

tion experiments described here interrogate an undifferentiated aggregate of

crystals - a so called powder experiment [48]. The diffraction data corresponds

to a typical material point. The relevant quantities for the experiment are the

scattering vector, s, which is the bisector of the incoming and diffracted x-ray

and the Bragg angle, θc||s, which is half the angle between the transmitted and

diffracted x-ray. The subscript c||s indicates the specific diffraction measurement

where c is the plane normal for the crystallographic family ({hkl}) that is diffract-

ing and the scattering vector, s. The diffraction condition for each measurement

is defined by Bragg’s law as,

nλ = 2dc||s sin θc||s (2.1)

where n is an integer, λ is the x-ray wavelength, and dc||s is the lattice plane
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spacing [17]. The energy is related to the wavelength by,

E =
hc
λ

(2.2)

where h is Plank’s constant and c is the speed of light.

Figure 2.1: Schematic of a diffraction experiment experiment conducted in
transmission. Here D and ρ are the sample to detector distance
and the radial distance on the detector, respectively.

Each lattice strain measurement corresponds to a radial (ρ) shift of a

diffracted peak on the detector (referred to as a peak shift) and is defined us-

ing Equation 2.1 as,

εc||s =
dc||s − d0

c||s

d0
c||s

=
sin θ0

c||s

sin θc||s
− 1 (2.3)

Strain is measured relative to an initial or unstrained state of the material des-

ignated with the superscript 0. These values can be calculated using either the

lattice parameter of the material or, for unstrained samples using in situ load-

ing, the lattice spacing at zero load.

2.2.1 The Lattice Strain Pole Figure (SPF) Experiment

The SPF experiment employs high energy x-ray diffraction to quantify lattice

strains in many directions for polycrystalline materials [5, 6, 48, 49, 56]. The
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enormous number of distinct lattice strain measurements is the salient feature

of this technique. The lattice strain data are plotted on pole figures to convey

the orientation of the strain measurement relative to the directions of the spec-

imen. To construct an SPF for a specific {hkl}, each measurement is plotted at

the intersection of a unit sphere, representing the pole figure surface, and the

scattering vector, as shown in Figure 2.1.

By reorienting the sample relative to the x-ray beam, different crystals in

the aggregate are interrogated and the pole figures are populated. This exper-

iment is often combined with in situ loading such that SPFs are measured at

many points in the deformation history to quantify the evolving micromechani-

cal state of the material. At a desired point in the deformation history we reduce

the load slightly to mitigate creep effects and make a series of diffraction mea-

surements that populate the pole figures [19]. An example of a lattice SPF for a

nickel-based superalloy measured at a macroscopic stress of 720 MPa in uniax-

ial tension is shown in Figure 2.2. As expected, the largest tensile values of the

lattice strain occurs near the loading direction, with compressive strains in the

transverse direction consistent with the Poisson effect.

The use of a calibrant powder is a key aspect of our SPF experiment proce-

dure. We fix an x-ray transparent container containing the unstrained calibrant

powder (calibrant insert) to the sample. A schematic depicting the sample and

calibrant insert relative to the components that make up the x-ray beam path is

shown in Figure 2.3. Diffraction data from the calibrant are used to assess the in-

strument portion of the lattice strain uncertainty and to monitor the experiment

geometry. More on the experimental procedure and illustrations can be found

in [5, 6, 48, 49, 56]. The importance of fixing the calibrant insert to the deforming
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Figure 2.2: The {200} lattice SPF measured at a uniaxial macroscopic stress
of 720 MPa for a nickel-based superalloy - Low Solvus High
Refractory (LSHR). The coordinate system is relative to the
sample and the directions are the Loading Direction (LD), the
Transverse Direction (TD), and the Normal Direction (ND) [56].

sample for ensuring high fidelity results will be discussed in Sect. 2.5.

Figure 2.3: Schematic of the components that make up the x-ray beam path
for the experiment conducted at CHESS. The monochromator
isolates a single x-ray energy to within 50 eV, the slits define the
cross section of the incoming x-ray beams, and the flight cham-
ber and the collimator are used to minimize the scatter from
sources other than the sample. The experiment conducted at
the APS employed a similar arrangement of components along
the x-ray beam path.
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2.2.2 Diffraction Data

A typical diffraction pattern from a 7075-T6 aluminum sample with a CeO2 cal-

ibrant insert fixed to its surface is shown in Figure 2.4(a). Since thousands of

crystals are interrogated simultaneously in the SPF experiment, the diffraction

data are complete Debye rings. A typical x-ray area detector is composed of dis-

crete regions or pixels, which are distributed in a rectangular array. Diffraction

data are discrete intensity values which represent the intensity measured by the

individual pixel areas.

To more easily take advantage of the circular shape of the rings, the inten-

sity data are mapped from the rectangular coordinates of the detector to polar

coordinates. A pattern center is established, then each point on the detector can

be represented by a radial distance (ρ) and an azimuthal angle (η). Each diffrac-

tion pattern is then sectioned into radial (∆ρ) and azimuthal bins (∆η) which

are integrated to produce arrays of radial positions versus intensities for each

azimuthal bin, such as the one shown in Figure 2.4(b) for the ∆η highlighted in

Figure 2.4(a). The objective of the data reduction methodology is to identify the

radial positions of the diffracted peaks on the area detector and, using the ex-

periment geometry shown in Figure 2.1, calculate 2θc||s for each peak. Each 2θc||s

value, therefore, corresponds to the most likely plane spacings for the crystals

that contribute to the intensity distribution that makes up the peak. These 2θc||s

values are used to calculate lattice strains and are represented as discrete points

on the SPFs.

The integration of the intensity for each bin (defined by ∆ρ and ∆η) can be

easily performed numerically using finite elements - this is one of the strengths

of the method. While a number of discretization and rebinning schemes have
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(a)

(b)

Figure 2.4: (a) Typical diffraction pattern measured with the MAR345 area
detector at CHESS for an aluminum sample with a CeO2 cal-
ibrant insert fixed to the sample. (b) The array of radial posi-
tions versus intensities for the highlighted azimuthal bin in (a).
A region of the array is selected to indicate the similar charac-
teristics of the calibrant and aluminum peaks.
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been proposed and used extensively, the use of finite elements to discretize the

detector surface is extremely straight forward. A brief overview of the applica-

tion of finite elements for processing area detector data will be provided here;

a more complete discussion is available in [14]. A schematic of a detector is

shown in Figure 2.5(a) with both radial and azimuthal bins overlaid on a square

grid representing the pixel array on the area detector. Here the inner and outer

rings bound the region of interest on the detector. The center of each pixel is

treated as a node and assigned the value of the pixel intensity. The nodes are

grouped to form triangular elements over which the intensity is allowed to vary.

Using linear interpolation functions we calculate the intensity at any point on

the detector as a function of the nearest nodes (pixel values). An example of

two triangular elements defined by four pixels is shown in Figure 2.5(b). Each

pixel has coordinates defined (px
i , py

i ), where the subscript i indicates the pixel

number. The use of an isoparametric map (mapping that employs the same in-

terpolation functions as used for the intensity) allows for any point within an

element, labeled ‘A’ in Figure 2.5(b), to be related to a position within a ref-

erence element (triangle with unit length sides) with coordinates defined (ξ, β)

[14]. This relationship is expressed by,

px
A = px

1ξ + px
2β + px

3(1 − ξ − β) (2.4)

py
A = py

1ξ + py
2β + py

3(1 − ξ − β) (2.5)

By solving these equations for ξ and β, we can calculate the intensity at point ‘A’

using linear interpolation,

IA = I1ξ + I2β + I3(1 − ξ − β). (2.6)

Using the interpolation functions we define new triangular elements that ex-

actly represent the bin geometry as shown for a single azimuthal bin in Fig-

ure 2.6. The integration can now be performed using numerical quadrature to
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generate an array of radial positions versus intensities for each azimuthal bin

[14].

(a) (b)

Figure 2.5: (a) Schematic of an area detector with four radial and eighteen
azimuthal bins overlaid. (b) Two triangular elements defined
by four pixels. The intensity value at any point ‘A’ within the
element can be calculated using the neighboring nodal point
values and the linear interpolation functions.

Figure 2.6: Schematic of a grid of square pixels is shown with a single az-
imuthal bin defined with triangular elements overlaid.

To extract quantitative information about the diffracted peaks from each ar-

ray of radial positions versus intensities the data are represented by the super-

position of a smoothly varying background function and an analytic peak pro-

file function for each diffracted peak [5]. The information within each peak fit

provides the position, intensity, and width of the diffracted peak on the detector.

A common peak profile function used to represent synchrotron diffraction
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data is the pseudo-Voight analytic peak profile function, which combines Gaus-

sian and Lorentizian peak shapes using the rule of mixtures [5, 72],

ypV(2θ) = S (wG(2θ) − (1 − w)L(2θ)). (2.7)

Here S scales the function to match the measured intensity and w is a mixing

parameter to balance the Gaussian and Loretzian contributions in G and L re-

spectively. The Gaussian and Lorentzian functions are defined as,

G(2θ) = exp−
(2θ−2θ∗)2

2κ2 (2.8)

and

L(2θ) =
(Λ

2 )2

(Λ
2 )2 + (2θ − 2θ∗)2

(2.9)

where 2θ∗ is the peak position and κ and Λ specify the width of the peak. The

calculated spectrum is defined as,

ycal = pd + ΣN
i=1ypV

i (2.10)

where pd is a smoothing varying background function - often a polynomial, and

N is the number of diffracted peaks ({hkl}s). The peak positions are found by

iterating the fit parameters to minimize the difference between the observed

intensity, yobs, and the calculated intensity, ycal,

Ry = Σb
i=1(yobs

i − ycal
i )2 (2.11)

The number of data points used in this minimization, b, is established by the

number of radial bins employed during the integration.
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2.3 Lattice Strain Uncertainty

The uncertainty for each lattice strain measurement is represented as εc||s ± Uc||s.

There are many sources of error which can cause the measured lattice strain

value to deviate from the true value. We have elected to approximate the total

uncertainty in a traditional format [25],

Uc||s =

√
U i

c||s
2

+ Um
c||s

2 + ... (2.12)

This formulation is advantageous since the dominant contributions to the un-

certainty can be explicitly represented, while leaving the possibility for addi-

tional influences to be quantified as the experiment evolves. The instrument,

in the context of the lattice strain uncertainty, encompasses the experimental

conditions and the procedure employed to reduce the data. In short, the instru-

ment represents all aspects of the experiment that influence the measurement

of diffracted peak positions on the area detector. The term U i
c||s constitutes the

minimum lattice strain uncertainty for an experimental configuration and will

be investigated in the subsequent sections.

The most significant source of error that contributes to Um
c||s is related directly

to the number of crystals probed by each measurement. Each lattice strain mea-

surement in an SPF experiment amounts to a statistical sampling problem. The

diffraction measurement probes a subset of the irradiated crystals that satisfy

the diffraction condition (Bragg’s law in Equation 2.1). This subset is unique

to the sample, and the resulting lattice strain value is the mean for all the crys-

tals satisfying the c||s combination. Since the goal of the SPF experiment is to

measure the true lattice strain value for the subset of orientations probed by

each measurement, it is necessary to probe a statistically significant number

of crystals. Determining Um
c||s for each measurement is coupled to the number
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of diffracting crystals, the grain morphology, and the variation in the lattice

strains between the diffracting crystals. The probable number and morphol-

ogy of the crystals can be addressed using microstructure characterization tech-

niques, such as Electron Back Scatter Diffraction (EBSD). Without measuring

strains in each individual crystal that satisfies the Bragg condition, the statistical

lattice strain variance for each c||s combination cannot be determined. To avoid

the uncertainty due to statistical sampling errors, the SPF experiment has been

restricted to materials where the number of diffracting crystals is large enough,

several hundred to thousands for each measurement, such that the measured

lattice strain value can be assumed to be the true lattice strain value. Applica-

tion of experiments to measure lattice strain for a broader range of materials

require that Um
c||s be determined and is the focus of ongoing work.

Another potential source of error that contributes to Um
c||s is the ambiguity

of overlapping diffracted peaks. Diffraction data are the superposition of the

x-ray intensity that reaches the detector. Consider the highlighted portion of

the diffracted spectra in Figure 2.4(b). Identifying the the exact peak position

of the {311} aluminum peak is dependent on separating the contribution to the

intensity from the different peaks. As stated in [5, 6], this problem could be

addressed by incorporating a model for strain as function of crystal orientation

into the Rietveld technique [72], but currently such models are not available for

use.
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2.3.1 Instrument Contribution (U i
c||s)

The instrument contribution to the lattice strain uncertainty arises from several

sources of error including the integration method employed to transform the

raw data to diffraction spectra, the identification of diffracted peak positions,

the model for the relationship between the sample and detector, and the ex-

perimental conditions employed. To investigate the instrument portion of the

lattice strain uncertainty we conducted the SPF experiment on a CeO2 calibrant

powder specimen using the two sets of experimental conditions shown in Ta-

ble 2.1. The pertinent characteristics of the detectors employed are shown in

Table 2.2. A key difference between the two detectors is the type of readout

mechanism employed. A more detailed discussion of the detector hardware is

provided in [40]. The range of sample directions interrogated for the CHESS

experiment corresponds to the coverage shown for the SPF in Figure 2.2. The

SPF coverage employed for the APS experiment corresponds to a series of sam-

ple rotations about a vertical axis between -60o and 60o in 2.5o increments. At

0o the sample was normal to the incoming x-rays. A total of 17280 and 31752

unique lattice strain measurements were made for the CHESS and APS exper-

iment, respectively. These massive data sets enable a statistics-based approach

for quantifying the uncertainty. This marks an important shift from an uncer-

tainty estimated from a single event, to that calculated from an ensemble.

Each diffraction measurement can be used to determine the mean lattice

strain for the crystals satisfying the diffraction condition. A set of diffraction

measurements, therefore, constitutes a set of mean values. If a series of identi-

cal diffraction measurements (same c||s combination) were made, each from an

independent sample, then from the central limit theorem in statistics we expect
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Table 2.1: The experimental conditions used in the two experiments.

Experiment Energy (KeV) D(mm) Beam Size(µm2) η (#, deg. incr.)

CHESS 49.989 ≈650 500 × 500 72, 5o

APS 90.500 ≈1450 250 × 250 72, 5o

Table 2.2: The characteristics of the area detectors employed.

Experiment Detector Size Pixel Size (µm2)

CHESS MAR345 345 mm diameter 100×100

APS GE 41RT 409.6×409.6 mm2 200×200

the set of lattice strains to approximate a normal distribution [24]. If a set of

measurements follow a normal distribution, then the uncertainty can be deter-

mined from the standard deviation of the measurements and a scaling factor for

the degree of confidence [25],

U i
c||s = tφc||s. (2.13)

For 95% confidence t = 1.96 and corresponds to 95% of the area under a standard

normal curve [25]. Here φc||s is the standard deviation of the repeated lattice

strain measurements (same c||s combination, but independent samples). It is

currently not possible to determine φc||s for each measurement, but there should

be absolute commonality between lattice strains for each {hkl} measured on a

calibrant sample,

U i
hkl = tφhkl. (2.14)

The lattice strain distributions for each {hkl} are shown in Figure 2.7 and

Figure 2.8. Each distribution is expected to be both centered about zero and
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Figure 2.7: CeO2 lattice strain distributions are shown for each {hkl} for the
experiment conducted at CHESS. Though each measurement
pertains to a specific c||s combination, to investigate the instru-
ment portion of the uncertainty data for each {hkl} are grouped
together.

follow a normal distribution. The mean of the mean lattice strains for each {hkl}

was found for both experiments to be 3.8 × 10−7 and 4.6 × 10−7, respectively.

The standard deviation of the means for the lattice strain distributions was 1.4×

10−5 and 3.0 × 10−6, respectively. The largest deviation from zero a single lattice

strain distribution occurred for the {111} lattice strain distribution in Figure 2.7.

This offset is due to an artifact in diffraction data near the center of the pattern

which is associated with the sample holder. This issue will be explored more in

Sect. 2.3.1.

From statistics we know the skewness and kurtosis of a normal distribution
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Figure 2.8: CeO2 lattice strain distributions are shown for each {hkl} for the
experiment conducted at the APS.

to be 0 and 3, respectively [24]. The average skewness for the lattice strain distri-

butions in Figure 2.7 and Figure 2.8 was found to be 0.007 and 0.03, respectively.

The average kurtosis for each experiment was 2.6 and 3.2, respectively. Using

the χ2 goodness of fit test [24], which estimates the likelihood that a set of mea-

surements is from a normal distribution, we found that all but on of the lattice

strain distributions for each {hkl} were normal to within 95% confidence. The

{222} for the experiment conduction at CHESS (Figure 2.7) was determined to

be normal to within 90% confidence. This reduction in confidence for the {222}

will be addressed in Sect. 2.3.2.

The application of Equation 2.14 to the data presented in Figure 2.7 and Fig-

ure 2.8 is shown in Figure 2.9. Both sets of U i
hkl values are significantly smaller
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than the previously quoted values of ±1 × 10−4. The variations between the

different {hkl}s shown in Figure 2.9 appear qualitatively similar for both instru-

ments. The difference in the U i
hkl values between the CHESS and the APS exper-

iments is most likely due to the sharp difference in the detector readout mecha-

nisms. These results clearly demonstrate that a single value for the instrument

portion of the uncertainty is inadequate for experiments interested in the subtle

evolution of the crystal stress state during deformation. In addition, diffraction

from a material of interest will inherently produce diffracted data that differ

from the calibrant. Therefore, quantifying U i
hkl for each calibrant {hkl} provides

insight into possible uncertainty values, but is insufficient to determine the in-

strument uncertainty for lattice strain measurements on materials other than

the calibrant. Moreover, the discontinuity in U i
hkl between the {311} and {222}

results for both experiments indicates that interpolation between the different

U i
hkl values may lead to erroneous results.

To accurately estimate the instrument portion of the uncertainty we devel-

oped a model, defined U i∗
hkl, that is capable of reproducing the uncertainty values

measured for the calibrant shown in Figure 2.9. This model assumes that sys-

tematic contributions to the instrument uncertainty are minimized, and that the

uncertainty is governed by the resolution of the position and intensity measure-

ments using the detector. Application of U i∗
hkl to the measured uncertainties for

each calibrant {hkl} allows for the model parameters to be determined and used

to estimate the instrument portion of the uncertainty for other materials of in-

terest. Prior to outlining U i∗
hkl, and the connection to the lattice strain resolution,

we will introduce the dominant sources of experimental error.
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(a)

(b)

Figure 2.9: The measured lattice strain uncertainty for each CeO2 {hkl} are
shown for the experiments conducted at (a) CHESS and the (b)
APS. Each data point corresponds to the {hkl} indicated at the
top of the figure.

Integration Parameters

As described in Sect. 2.2.2, the data reduction procedure begins with convert-

ing each diffraction pattern to polar coordinates. The data within each bin are

integrated using finite elements to generate arrays of radial positions versus

intensities like the array shown in Figure 2.4. The use of finite elements for

performing the integration adds a degree of smoothing to the measured data.
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The abrupt intensity changes between pixels is the result of measuring intensity

over the finite area of each pixel. It is probable that the actual intensity varies

smoothly within and between pixels, but due to the discrete pixel values, the

diffraction pattern is distorted. As such, the smoothing introduced by the finite

elements is not detrimental to the results.

Selection of the parameters such as the size and number of triangular ele-

ments used to represent each bin (∆ρ, ∆η) have the potential to contribute to

the instrument portion of the uncertainty. To avoid numerical errors during the

integration process the aspect ratio of the elements employed to represent the

azimuthal bin geometry, as shown in Figure 2.6, are typically constrained to less

than 4:1 (ratio of the base to height of the element). The maximum number of

elements employed is limited by the computational requirements. The element

size should be selected such that the constraint on the aspect ratio is satisfied,

but additional discretization does not greatly improve the results.

Diffracted Peaks Identification

The discrete points resulting from the integration described above are difficult

to employ as a spectrum. Therefore, a smooth curve is often ‘fit’ to the data.

Fitting diffracted peaks during the data reduction procedure contributes to the

instrument uncertainty in several ways. The quality of the fit is proportional

to the magnitude of Ry (Equation 2.11) and is a source of error that contributes

to the instrument uncertainty. The fit is an important quantity that represents

both the analytic profile function and the treatment of the background data. As

previously stated, diffraction data are the superposition of any x-rays that reach

the sample. Spurious x-rays from sources other than the sample (components
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along the beam path, air, etc.) contribute to the background on the detector.

The scaling parameter S is an indicator of the measured intensity above the

background and is coupled to the resolution of diffracted peak positions. The

uncertainty in the measured peak positions increases as the scaling parameter

S approaches zero; indicating that there is no longer sufficient diffracted signal

to identify a peak.

Often the most pronounced contribution to the background occurs near the

center of the diffraction pattern. For these experiments the grips that hold the

sample within the loadframe absorb x-rays and produce a visible contrast pat-

tern in the background signal. These sharp changes in the background are an

insidious effect that can lead to low Ry values, while the peak position is offset

significantly. It is probable that the slight offset of the {111} lattice strain distri-

bution from a mean value of zero, shown in Figure 2.7, is due to this effect.

Modeling the Experiment Geometry

As described in Sect. 2.2, a lattice strain accompanies a radial shift of the inten-

sity on the detector. As described in detail in [5], the accuracy of the conversion

of a radial shift to a lattice strain depends on how the detector is aligned with the

x-ray beam. The model for the experiment, referred to as the geometric model,

is used to correct for the detector not being centered or orthogonal with respect

to the incoming x-ray. This model consists of two parameters for the detector

center (cx, cy), two detector tilts, D, and a distortion correction for the detector

(ρ∗). The distortion correction addresses the systematic error with the detector

due to the arrangement of pixels, the readout mechanism, and the electronics.

Different corrections have been used for each of the detectors considered. The
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Table 2.3: Parameters for the distortion correction for the GE 41RT detector
published in [40].

a1 a2 n1 n2 ρd

−3.174 × 10−5 −2.595 × 10−4 3.111 2.295 204.8

MAR345 distortion correction is a constant radial shift [5],

ρ∗ = ρ + ρ0 (2.15)

where ρ∗ is the undistorted radial positions and ρ0 is a constant. Typically ρ0

shifts the data by much less than a pixel. The distortion correction used for the

GE 41RT amorphous silicon detector is more complicated [40],

ρ∗ = fρ (2.16)

f (ρ, η) = a1

(
ρ

ρd

)n1

cos(4η) + a2

(
ρ

ρd

)n2

+ 1 (2.17)

Typical values for a1, a2, n1, n2, and ρd presented in [40] are shown in Table 2.3.

A short overview of the implementation of the geometric model will be pro-

vided here, but a more complete discussion is given in [5]. Implementation

of the geometric model begins with a very precise understanding of the lat-

tice parameters of the calibrant material. The difference between the expected

calibrant peak positions and the measured peak positions for several calibrant

peaks, over a range of Bragg angles, are minimized by adjusting the parameters

of the geometric model (cx, cy, detector tilts, D, and ρ∗). To determine the opti-

mal geometric model parameters a nonlinear least squares optimization routine

is utilized. Each iteration of the optimization involves a slight perturbation of

the model parameters, a remapping of the data, and the identification of the new

peak positions to be used in calculating the difference between the expected and

measured Bragg angles.
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The geometric model maps the entire diffraction pattern from the initial to

‘corrected’ positions and, as such, has immense potential to impact the lattice

strain uncertainty. After implementation there are two common sources of er-

ror that remain. First, employing a nonlinear optimization process to determine

the ‘best’ possible set of model parameters is initial guess dependent. Currently

the software package Fit2D is used to generate an initial guess [29]. The sec-

ond common source of error is a systematic failure of the model to represent

the detector; for instance an incomplete or inaccurate distortion correction that

introduces a bias to the measured lattice strains.

Lattice Strain Resolution / Experimental Conditions

Since each diffraction pattern is represented by pixels with specific position and

intensity values, the resolution of the lattice strain measurements is linked to

these quantitates. More explicitly, the resolution for the lattice strain measure-

ments is defined by the smallest resolvable change in the position of a diffracted

peak and the intensity required to identify diffracted peak positions on the area

detector. The smallest resolvable change of a single point on the detector is gov-

erned by the detector point spread function. Each diffracted peak spans many

pixels (≈ 20) in the radial direction and can be seen in Figure 2.4(b). Since each

peak is fit with an analytic function, it is possible to resolve changes in the peak

position that are much less than a pixel. If the sources of error contributing to

each lattice strain measurement are minimized, then the instrument portion of

the uncertainty will approach a limit established by the resolution.

The experimental conditions that most influence U i
c||s are the sample to detec-

tor distance (D), the x-ray energy, and the size of the x-ray beam cross section.
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To investigate the influence of these parameters on the lattice strain uncertainty,

we define the smallest resolvable peak shift to be δρmin. Using Equation 2.3, the

geometric relationship 2θ = arctan( ρD ), and all radial positions on the detector,

and not just an exact measurement indicated by a c||s, we can write a continu-

ous function for the minimum resolvable lattice strain using δρmin,

εmin =
sin( arctan( ρD )

2 )

sin( arctan( ρ−δρmin
D )

2 )
− 1. (2.18)

The minimum resolvable lattice strain, εmin, is shown in Figure 2.10 for three

different values of δρmin using the experimental conditions employed for the

CHESS experiment (shown in Table 2.1 and Table 2.2).

Figure 2.10: The minimum resolvable lattice strain for three δρmin values
show a characteristic decline in the minimum lattice strain
value with increasing 2θ values.

To investigate the influence of the x-ray energy and the sample to detector

distance on the uncertainty we set δρmin = 3.5µm. For discussion purposes let

us consider the {111}, {200}, {220}, and {311} diffracted peaks for pure aluminum
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(FCC) with a lattice constant of 4.054
◦

A. From Equation 2.1 and the plane spac-

ings for each {hkl} we determine the Bragg angle as a function of the x-ray en-

ergy. For a fixed D of 650 mm, we find that the radial position of each peak

decreases with increasing x-ray energy as shown in Figure 2.11(a). The corre-

sponding minimum resolvable lattice strains for δρmin = 3.5µm are shown in

Figure 2.11(b).

(a)

(b)

Figure 2.11: (a) The radial peak position of four aluminum {hkl}s are shown
for varying x-ray energies at a fixed sample to detector dis-
tance of 650 mm. (b) The minimum lattice strain for δρmin =

3.5µm is shown to increase with increasing x-ray energy for
the radial positions in (a).
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Conversely, for a fixed x-ray energy of 50 keV the radial positions on the de-

tector increase linearly with D. The results for the same four {hkl}s are shown

in Figure 2.12(a). Using Equation 2.18 and δρmin = 3.5µm, values for εmin are

found to decrease with increasing D and are shown in Figure 2.12(b). The pro-

nounced reduction of the minimum lattice strains with increasing D shows that,

for a fixed x-ray energy, the SPF experiment should be conducted at as large a

sample to detector distance as possible.

(a)

(b)

Figure 2.12: (a) For a fixed x-ray energy the radial positional of the
diffracted peaks increases linearly with the sample to detec-
tor distance. (b) The minimum resolvable lattice strains are
shown for a peak shift of δρmin = 3.5µm.
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As shown in Figure 2.11 and Figure 2.12, the x-ray energy and the sample

to detector distance scale the lattice strain uncertainty by governing the radial

position of each diffracted peak on the detector. These parameters should be

selected such that the outer most {hkl} of interest is measured near the edge

of the detector to minimize εmin. In addition, the selection of these parameters

is further constrained by the absorption of the sample, the characteristics of

the synchrotron, and the physical constraints of the experimental station. The

optimal set of parameters varies for each experiment, but consideration of εmin

should guide the decision process.

To a lesser degree, the x-ray energy bandwidth and the cross section of the

incoming beam play a role in the instrument portion of the lattice strain uncer-

tainty. Both parameters contribute to the breadth of the diffracted peaks, and

are typically constrained to less than 50 eV and 500µm × 500µm, respectively.

These parameters are selected to allow for the diffracted peaks to be ‘sharp’,

in an effort to minimize data ambiguity due to the overlap of diffracted peaks.

Moreover, the SPF technique assumes that the diffraction comes from a point in

space. As the beam size increases, spatial features in the data begin to play a

role and slight perturbations in the uniformity of the flux of the direct beam are

manifested as peak shifts between measurements. These shifts can be corrected

using the calibrant material, and will be discussed in Sect. 2.5.

2.3.2 Model for U i
hkl

If all of the sources of error are minimized, then U i
hkl is expected to be a func-

tion of the resolution. The resolution for lattice strain measurements, as previ-
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ously described, is governed by the smallest resolvable peak shift on the detec-

tor, δρmin, and the intensity required to identify the position of diffracted peaks.

We define the model for the instrument uncertainty, U i∗
c||s, to be the superposition

of separate terms for each aspect of the resolution,

U i∗
c||s = f (δρmin) + f (S ). (2.19)

Recall that S is the scaling factor for the intensity in Equation 2.7. To investigate

the proposed functional form we assume U i∗
c||s is equivalent to U i∗

hkl for the lattice

strains measured for the calibrant material. In Figure 2.13, the measured uncer-

tainty for the calibrant lattice strains are presented again with the addition of

the average intensity for each {hkl}, S hkl. The general downward trend of U i
hkl

with increasing 2θ values correlates well with the observed trends of εmin shown

in Figure 2.10. From the strength of this comparison we define f (δρmin) to be

Equation 2.18.

We have consistently observed that the difficulty in determining peak po-

sitions increases as the peak intensity approaches the level of the diffraction

pattern background. Therefore, we have chosen to represent f (S ) as inversely

proportional to the intensity, i.e.

f (S ) = S α

(S lim

S

)
(2.20)

Here S lim is the maximum possible pixel value (a property of the detector) and

S α scales the intensity contribution to the uncertainty. To investigate f (S ) we

compare the variation in U i
hkl with the magnitude of the measured intensities

between the different {hkl}s. It is important to note that the the sharp intensity

changes the between the {hkl}s are due to the characteristics of the material, in

particular the crystal structure, and only the magnitude of the intensity for each
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(a)

(b)

Figure 2.13: The measured uncertainty and the average intensity scaling
factor for each CeO2 {hkl} is show for both the (a) CHESS and
the (b) APS experiment. The difference in the magnitude of
the measured intensities between the detectors is due to the
difference in maximum allowable intensity values.

{hkl} is expected to contribute to f (S ). The most significant discontinuity of

the measured U i
hkl values occurs between the {311} and the {222} peaks. This

deviation corresponds to a significant reduction of S hkl for the {200}. Further

investigation shows a similar reduction in S hkl between the {111} and the {200}

peaks, without a sharp change in the U i
hkl values. A comparison between the

two results shows that the average intensity for the {200} peaks remains much

greater than that of the {222}. It is probable that the reduction in the confidence
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Table 2.4: The resulting parameters for Equation 3.7 are presented for both
experiments.

Experiment δρmin S α S lim

CHESS 2.9µm 1.6 × 10−8 216

APS 1.8µm 7.6 × 10−9 214

that the {222} lattice strain distribution in Figure 2.7 is normal, is due to the

difficulty in determining the peak positions for such low average intensity.

The uncertainty parameters δρmin and S α are determined from fitting U i∗
hkl

to the measured uncertainty for the calibrant, U i
hkl. Once these parameters are

known, the instrument portion of the uncertainty can be calculated for each

measurement using Equation 2.19 for the exact position on the detector and the

measured intensity of the diffracted peaks.

2.4 Results

The uncertainty parameters in Equation 2.19 are optimized using least squares

such that U i∗
hkl matches U i

hkl and the results are presented in Table 2.4 for both

experiments. The function evaluated for each calibrant {hkl} is shown in Fig-

ure 2.14, with the exact contribution from f (δρmin) and f (S ) shown explicitly.

The results show close agreement between the measured and calculated uncer-

tainties except for the last {hkl} considered for both experiments.

To investigate f (S ) directly we made two diffraction measurements in suc-

cession where the only difference was the length of time for each exposure. For
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(a)

(b)

Figure 2.14: The calculated lattice strain uncertainties are shown overlaid
on the measured values for both the (a) CHESS and the (b)
APS experiments. Each component of the uncertainty from
Equation 2.19 is also shown independently.

a constant x-ray flux, the measured intensity values scale with the exposure time

for each measurement. From these two diffraction patterns we can investigate

the variation in U i
hkl values due to a change in the measured intensity for the

entire diffraction pattern. The results are shown in Figure 2.15. As expected, the

uncertainty is greater for the measurements with low intensity (short exposure)

as compared with the measurement made with a longer exposure time.
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(a)

(b)

Figure 2.15: (a) The (a) U i
hkl and (b) intensity values are shown for two mea-

surements made in succession with different exposure times
shows using the CHESS experimental configuration. As ex-
pected, the uncertainty increases as the intensity decreases.

Each diffraction pattern was measured in succession and the time between

images is set by the x-ray flux and the detector readout time. For the CHESS

and the APS experiments, the time between measurements was approximately

3.5 minutes and 2 seconds, respectively. We can investigate the influence of time

on the lattice strain results by monitoring the geometric model parameters for

each image. The parameters which vary significantly between measurements

77



are the pattern centers and are shown in Figure 2.16. The progression between

measurements is indicated by the shading of the data points from black (first) to

gray (last). The observed movement is systematic in nature and the magnitude

is greater than the δρmin values shown in Table 2.4. If this movement was left

unaccounted for it would introduce a systematic bias to the results.

(a)

(b)

Figure 2.16: The change in the pattern center position is shown with in-
creasing time by the data points ranging from black (first im-
age) to gray for both the (a) CHESS and the (b) APS experi-
ments.
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2.5 Discussion

The development of a new experiment typically involves an approximation of

sensitivity. Does the change in the measured experimental variable represent

an acceptable change in the quantity of interest? For mechanical testing these

are often questions like what range of load or strain corresponds to a full scale

output of ± 10 volts? The next step with such a system is often quantifying

resolution - the smallest voltage change that might be detected by one’s mul-

timeter. The excitement of early results that display trends that might match

our intuition – the load signal gets larger as weights are added to the system -

is quickly replaced with the stark realization that we do not really know how

“good” the measurements are. A robust estimation of the signal to noise ratio

may be the most important step in the development of a mechanical testing ca-

pability. From a formal statistical perspective, this step is the quantification of

experimental uncertainty associated with a particular confidence interval. With

an accurate approximation of experimental uncertainty, lattice Strain Pole Fig-

ure data evolve from experimental curiosities that mainly define micromechani-

cal trends for the orientations within the polcrystalline aggregate to high fidelity

results that can be compared on equal footing with results from large scale poly-

crystal simulations. More importantly, by creating an analytical expression for

uncertainty in terms of the experimental variables, experimental design can be

improved to obtain a particular uncertainty value. This is especially important

considering the enormous cost associated with synchrotron beam time.

Measurement of lattice strain requires the ability to identify subtle peak

shifts on the area detector. Prior to identifying a peak shift the diffraction data

are converted from a grid of pixel intensity data, to polar coordinates where
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the pixel data are parsed into different azimuthal bins and integrated to pro-

duce arrays of radial positions versus intensities. Due to the discrete nature of

the intensity data, this procedure can be simplified through the use of a simple

finite element representation. The finite element method is a robust tool that

is commonly used for representing seemingly continuous fields by discretizing

the subject domains. Often complex differential equations are solved using fi-

nite elements. The application of the finite element method to diffraction data is

straight forward and minimizes the uncertainty introduced during the integra-

tion procedure. This is advantageous for studies interested in quantifying ever

smaller perturbations of diffracted peaks.

The combination of the high speed area detectors, the immense brilliance

of typical synchrotron x-rays, and the number of unique measurement direc-

tions interrogated during an SPF experiment result in potentially massive lattice

strain data sets. These data sets provide the foundation for the application of a

statistics-based approach for quantifying the uncertainty. This uncertainty is a

precision interval, for a specific confidence level, in which the probable value

is expected to occur. Better understanding of the uncertainty for each measure-

ment bolsters the application of SPF experiment to study the subtle evolution of

lattice strain distributions during processes like cyclic mechanical loading.

Development of a functional representation for U i
c||s enables the instrument

portion of the uncertainty to be determined for materials other than a calibrant.

The quality of the comparison between the U i∗
hkl and the U i

hkl values for both

experiments, shown in Figure 2.14, indicates that the uncertainty can be ap-

proximated using simple functions of the lattice strain resolution. In essence,

using Equation 2.19 and the parameters in Table 2.4 we can calculate the in-
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strument portion of the uncertainty for the exact position and the intensity of

each diffracted peak without a significant modification of the SPF experimental

procedure. The uncertainty parameters in Table 2.4 illustrate possible values,

but are not fundamental quantities for the synchrotron facilities. Due to the

convolution of many sources of error and the robustness of the data reduction

procedure employed, these values must be calculated for each experiment. The

difference between the levels of uncertainty for the two experiments cannot be

contributed directly to the x-ray source. It is probable that the differences in the

detector readout mechanisms and the complexity of the distortion corrections

are more likely sources. It is not possible to identify the source of this offset

definitively from these results. The values presented here should be used as a

benchmark for experiment planning and as a metric for comparing data reduc-

tion techniques.

The model developed for the instrument portion of the lattice strain uncer-

tainty is based on all of the sources of error being minimized such that the res-

olution governs the results. The presence of systematic features in the back-

ground of the diffraction data, any incompleteness of the detector distortion

correction, and the variation of the experimental configuration between mea-

surements are the most significant sources of systematic error that must be con-

sidered. Due to the discrete nature of the calibrant results on the area detector, it

is not possible to fully characterize and address the influence of systematic pat-

terns present in the background for all possible situations. Often great lengths

are taken to ensure that systematic features are minimized prior to conducting

the experiment. Similarly, it is not possible to use the calibrant peak positions to

develop a complete mapping for each pixel from a distorted to an undistorted

configuration. The distortion corrections currently employed are continuous
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functions that are the best fit for calibrant data, but are insensitive to local fluc-

tuations. In both experiments the distortion corrections were found to account

for most of the systematic offset. Any remaining distortions in the data biases

the results and are not explicitly accounted for using the proposed model for

the instrument portion of the lattice strain uncertainty.

In addition to conducting a full set of measurement using only a calibrant

sample, employing a calibrant insert on the deforming sample allows for both

the instrument uncertainty and the geometric model parameters to be quanti-

fied and monitored throughout the experiment to ensure the data reduction pro-

duces consistent results. To accurately remap the raw data to polar coordinates

the diffraction pattern center must be identified. The pattern center is found

from the calibrant, and corresponds to the centroid of the flux of the direct x-ray

beam. Variation in the pattern centers between measurements is due to the rel-

ative movement of the slits, the detector, and the x-ray beams. Of these possible

sources, the slight changes in the uniformity of the flux between measurements

is the most substantial and must be accounted for. The approximate 30µm and

15µm variation in pattern centers found for the CHESS and APS experiments

and shown in Figure 2.16 would, if unaccounted for, result in the lattice strains

for the {111} peak to be offset by as much as 5.8 × 10−4 and 2.4 × 10−4, respec-

tively. These errors act to bias the data and limit the applicability of estimating

the lattice strain uncertainty using Equation 2.14.
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2.6 Summary/Conclusions

Creating an approximation of the experimental uncertainty associated with the

lattice Strain Pole Figure (SPF) experiment has the potential to transform this

new method from a one-off “heroic effort” into a true measurement capability

– one that can be employed hand-in-hand with detailed polycrystal simula-

tions to create new understanding of micromechanical deformation processes

like microcrack initiation. Due to the significant cost associated with producing

synchrotron x-rays, SPF data are perhaps some of the highest value mechanical

testing results currently being produced. It is the role of the experimentalist to

approximate possible sources of error within his/her experimental method, but

with the large amount of lattice strain data produced during a typical SPF ex-

periment, conventional statistical analysis-based uncertainty determination can

be applied. We proposed an expression for uncertainty that consists of “vec-

tor” components linked to the instrument and the material. This format does

not preclude the addition of new uncertainty components as the experimental

technique evolves. The focus of the paper is on the instrument portion of the un-

certainty and was investigated with lattice strains measured at two synchrotron

facilities using different experimental conditions – including two different x-ray

detectors – at CHESS and the APS. The material portion of the uncertainty is

most tightly coupled to the number of diffracting crystals, and the variation of

the lattice strains between these crystals.

To investigate the instrument portion of the lattice strain uncertainty we ap-

plied the SPF experiment technique to an unstrained cerium dioxide powder. By

calculating lattice strains for this unstrained powder we investigated the uncer-

tainty for the exact experimental conditions employed. The results show uncer-
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tainties well below previously quoted values, but more importantly, the results

vary due to the position on the detector and the intensity of the diffracted peaks.

Using these two parameters we developed a new model capable of recreating

the uncertainties measured for the unstrained powder. This model for the in-

strument portion of the uncertainty can now be applied to diffraction results

from materials other than an unstrained powder. By accurately quantifying the

uncertainty we can confidently apply this experimental technique to more com-

plex problems where the “signal-to-noise” ratio is expectedly small. Key find-

ings from this paper include:

• A finite element discretization of the x-ray detector surface greatly simpli-

fied the integration process employed during the processing of diffraction

data.

• The lattice strain uncertainty can be separated into independent sources

coupled to the experimental configuration (instrument) and the material

under investigation.

• The instrument portion of the uncertainty varies with the selection of the

x-ray energy, sample to detector distance, and the characteristics of the

area detector employed.

• A new model for the instrument portion of the uncertainty based on the

lattice strain resolution was developed. The model parameters are deter-

mined from fitting results from an unstrained powder. Using this model

the instrument portion of the uncertainty can be determined for materi-

als other than the calibrant from the exact position and intensity values

measured with the detector.

• The addition of an unstrained powder in an x-ray transparent container
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to the back of the deforming sample allows for both the instrument por-

tion of the lattice strain uncertainty and the experimental conditions to be

monitored throughout the experiment to ensure the quality of the data is

consistent between measurements.
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CHAPTER 3

QUANTIFYING THE EVOLUTION OF CRYSTAL LEVEL STRESSES DUE

TO CYCLIC LOADING IN AA7075-T6

3.1 Introduction

The complex boundary conditions within a deforming polycrystal establish the

crystal level stresses that drive processes like the initiation of fatigue life limiting

defects. Over the past 10-15 years diffraction-based experiments and crystal-

based simulations have shown the investigation of lattice strains to be a viable

method for probing the crystal level stress state in deforming polycrystalline

samples [9, 12, 16, 18, 22, 38, 48, 64]. These investigations have enabled new

understanding and the development of models for capturing the mechanical re-

sponse below the macroscopic length scale. Most of these efforts have consisted

of comparing lattice strains, measured and simulated in relatively few direc-

tions. This limited set of measurements has not warranted a truly integrated

approach of experiments and simulations to study the material behavior.

The recent availability of high rate x-ray area detectors has enabled the gen-

eration of massive numbers of lattice strain measurements. During a typical

neutron diffraction experiment, lattice strains are measured in the sample load-

ing and transverse directions. The prodigious data sets that can be generated

using high rate x-ray area detectors represent an opportunity to reassess how

investigations are conducted, which assumptions and models are applied, and

ultimately how lattice strains are interpreted. At the core of this effort is the

development of a new methodology for studying the grain scale response of

a deforming polycrystal founded on the union of high energy diffraction mea-
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surements with in situ mechanical loading and crystal-based finite element sim-

ulations. This integrated approach provides a more complete picture of the mi-

cromechanical response of engineering materials than is possible with investi-

gations based on comparing individual experiments and simulations.

This new methodology of integrated experiments and simulations is applied

to study fatigue - in particular, the zero-tension fixed stress amplitude cyclic

loading of an aluminum alloy 7075-T6 (AA7075-T6) sample. The fatigue life of

a test specimen undergoing cyclic loading can be divided into two parts: the

time required to initiate a fatigue life limiting defect and the time to propagate

the defect to failure. There has been significant emphasis on the latter portion

with the development of fracture mechanics, while the earliest stages of fatigue

damage are not well understood. Quantifying the evolution of the stress state

at the crystal scale prior to the nucleation of a fatigue life limiting defect has

remained an elusive goal within the field of mechanics of materials. Under-

standing the crystal level stresses that drive the initiation of fatigue life limiting

defects is an important step for the development of new models capable of pre-

dicting fatigue failures. The goal of this effort is to quantify the cycle-by-cycle

changes in the elastic lattice strains, which are related to the stress state at the

grain scale, during fixed stress amplitude cyclic loading. The lattice strain evo-

lution is expected to be small, and the interpretation of the results as ‘signal’ or

‘noise’ is at the forefront of this effort.

The structure of this paper is as follows: an overview of how polycrystals de-

form, descriptions of x-ray diffraction techniques, lattice strain measurements,

and crystal-based finite element simulations are presented first. Next, the pro-

cedure for quantifying measured and simulated lattice strains is demonstrated

87



for the AA7075-T6 sample and results are shown at several load steps during

monotonic response (cycle zero). Using the monotonic results, we outline a pre-

cise estimate of the uncertainty for each measurement that is built on combining

results from the experiment and simulation. We then investigate the evolution

of the lattice strains measurements with increasing cyclic deformation using the

uncertainty estimate to interpret the results. A key finding of this paper is that

the stress state at the crystal scale evolves rapidly during the early of portion of

the fatigue life and slows as the sample approaches failure.

3.2 Background

Investigating elastoplastic deformation in polycrystalline alloys requires an ar-

ray of characterization probes and sophisticated models. Before exploring the

means by which these polycrystals deform and are investigated, it is worthwhile

to outline the relevant length scales. From a continuum mechanics perspective

we define the grain, the aggregate or polycrystal, the specimen, and the compo-

nent. Each grain (synonymous with crystal) is a collection of unit cells formed

by atoms that are fixed at specific periodic intervals. The aggregate is commonly

referred to as a continuum point and is defined to be a collection of grains. Each

aggregate has a statistical aspect to it in terms of the number, size, and orien-

tation distributions of the set of crystals. The specimen is comprised of many

aggregates. The component constitutes all possible specimens; specimens are

designed such that the distinction between the specimen and the component is

minimal. A schematic of the relationship between the relevant length scales is

shown in Figure 3.1.
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these properties for materials like the AA7075 is necessary for the simulation to represent the deforming

polycrystal. Integration of the finite element simulation with the diffraction data allows for these properties

to be perturbed until the lattice strain response is captured. The blending of the diffraction results and the

simulation pushes us closer to the underlying goal of understanding the probable stress state for each grain

in the sample. Similarly, interpretation of the lattice strain results is built on using the simulation results to

approximate the lattice strain variation between the grains contributing to each diffraction measurement.

3.1 Investigation Details

The AA7075-T6 is an aerospace alloy that is regularly used in the skin and fuselage of aircraft. The sample

was cut from a 1.63 mm sheet such that the LD was aligned with the sheet transverse direction. The gage

length of the specimen was 36.83 mm long with a 1× 1.2mm2 (ND×TD) cross-section. The average grain

size was determined from EBSD and optical micrographs to be ∼ 19.5µm. Two EBSD scans are shown

for the rolling plane and the sheet transverse/normal plane in Figure 3 with each grain overlaid with a

random color. The ODF, shown in Multiples of a Uniform Distribution (MUD), was found using a Rietveld

analysis of the diffraction data [34–36].

300µm

(a) (b)

Figure 3: EBSD data for AA7075-T6 are shown for both the (a) rolling plane and the (b) sheet trans-
verse/normal plan. A random color is overlaid to distinguish the different grains.

The experiment was conducted in the A2 experimental station at the Cornell High Energy Synchrotron

Source (CHESS). An x-ray energy of 49.989 KeV (λ = 0.2480
◦
A) with a bandwidth of 50 eV was selected

using a silicon {111} double-crystal monochromater. The beam size of 0.5 × 0.5mm2 was defined by two
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size was determined from EBSD and optical micrographs to be ∼ 19.5µm. Two EBSD scans are shown
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random color. The ODF, shown in Multiples of a Uniform Distribution (MUD), was found using a Rietveld

analysis of the diffraction data [34–36].
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Figure 3.1: Schematic of the relevant length scales for studying elastoplas-
tic deformation in polycrystalline alloys.

Conventional mechanical testing consists of measuring the response of a

sample to external loads. Investigations of the macroscopic response alone are

inadequate to study the micromechanical conditions that lead to the formation

of a fatigue life limiting defect. Even during simple uniaxial tension, within the

deforming polycrystal there is variation in the stress state both within and be-

tween the grains due to anisotropic single crystal properties and the complex

arrangements of grains. To accommodate mechanical equilibrium at the grain

scale, each grain responds to the boundary conditions prescribed by the neigh-

boring grains. Developing new techniques that probe this length scale, during

macroscopic loading, are paramount for investigating the evolution of the crys-

tal level stresses due to cyclic loading.

3.2.1 Crystal Orientations and Diffraction Measurements

There are many ways to represent the orientation of a single crystal relative to

the sample coordinate system. One method is to represent each orientation by

the rotation matrix, R, which maps a vector from the crystal coordinate system
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to the sample coordinate system, vsam = Rvcrys. Here both vsam and vcrys are de-

fined in Cartesian coordinate systems. For a cubic crystal the basis vectors for

a vector in the crystal coordinate system, vcrys, are aligned with the {100} cube

plane normals. The basis vectors for a vector in the sample coordinate system,

vsam, are defined relative to the sample Loading Direction (LD), Transverse Di-

rection (TD), and Normal Direction (ND).

The relevant direction for diffraction measurements is the bisector of the in-

coming and diffracted x-ray beams shown in Figure 3.2, and defined the scat-

tering vector, s. Diffraction occurs for the subset of crystals with plane normals,

{hkl}s, aligned with s. The diffraction of monochromatic x-rays (fixed wave-

length, λ) is represented by Bragg’s law [17],

nλ = 2dc||s sin θc||s (3.1)

Here n is an integer, dc||s is the crystallographic plane spacing, and θc||s is half the

angle between the transmitted and diffracted x-ray beams shown in Figure 3.2

and is referred to as the Bragg angle. The subscript c||s indicates the specific

measurement where for cubic materials c is defined c = 1
√

h2+k2+l2
[h k l] and s

the scattering vector. The orientations that satisfy Equation 3.1 share a crys-

tallographic plane normal which is parallel with the scattering vector and are

explicitly defined as a crystallographic fiber. The orientations that comprise the

fiber satisfy,

Rc = ±s ∀R (3.2)

The ±s is due to the subset of orientations interrogated being unchanged by the

sign of the measurement direction.
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Figure 3.2: The transmission diffraction geometry is shown. Here D is the
distance between sample and the area detector and ρ is the ra-
dial position of the diffracted x-ray on the detector.

3.2.2 Rodrigues Parameterization and the Orientation Distri-

bution Function

The rotation matrix, R, can also be represented using the Rodrigues parame-

terization [27]. A Rodrigues orientation vector is an angle-axis representation

where the direction of the vector from the origin of the space defines a rotation

axis, and the magnitude is related to the rotation angle,

r = n tan
(
φ

2

)
(3.3)

Here n defines the axis of rotation and φ is the angle of rotation about the axis

[27, 39, 50]. A strength of the Rodrigues parameterization is that the orientations

that define a fiber (Equation 3.2) form a straight line in Rodrigues space. The

application of crystal symmetries reduces the space comprised of all possible

Rodrigues vectors to a bounded region for many crystal types. This reduced set

of orientations is referred to as the fundamental zone [2, 27, 32, 39]. Any portion

of a fiber that extends beyond the boundary of the fundamental zone can be

remapped back to an equivalent orientation within the fundamental zone. The

result is that a fiber shown in the fundamental zone appears as many segments
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[56].

Calculations over the fundamental zone are performed using a finite ele-

ments representation where each node represents an orientation [39]. Repre-

senting the fundamental zone with finite elements allows for field quantities to

be defined over orientation space and provides a robust framework for calcu-

lating fiber averaged quantities (i.e. orientation pole figures). A more complete

description of the fundamental zone and the use of finite elements over orien-

tation space can be found in [2, 27, 32, 39]. Use of the software package, OdfPf,

greatly simplified the process of generating a finite element mesh for the funda-

mental zone and the calculation of fiber averaged quantities [8].

The Orientation Distribution Function (ODF), f (r), represents the likelihood

of a crystal having a particular orientation relative to the sample reference

frame. This relationship is formally defined over the fundamental zone as,

dVβ

Vβ

≡
1

VΩ

f (r)dr (3.4)

Here Vβ is the volume of the material in physical space, VΩ is the associated

volume in orientation space. The integral of the ODF over the fundamental

zone must equal one and f (r) ≥ 0.

3.2.3 Lattice Strain Measurements

There are few techniques available for probing the grain scale mechanical re-

sponse of a deforming polycrystal. The most notable combine in situ mechani-

cal loading and high energy diffraction to measure lattice strains at many points

in the deformation history. Lattices strain experiments can be separated into two
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categories based on whether the measurements probe the response of individ-

ual grains within the aggregate [1, 26, 41, 42, 45, 52], or an aggregate comprised

of grains that satisfy the diffraction condition (so called powder experiment)

[9, 12, 16, 18, 22, 38, 48, 64]. The diffraction data consist of isolated ‘spots’ for

the single grain experiment and complete Debye rings for the aggregate experi-

ment. For this effort we focus on the aggregate experiment.

Lattice strains are the average normal strain in the direction of the scattering

vector for the subset of crystals that satisfy Bragg’s Law (Equation 3.1). Each

lattice strain measurement is defined using the plane spacing as,

εc||s =
dc||s − d0

c||s

d0
c||s

(3.5)

Here d0
c||s is the initial or unstrained plane spacing. For a cubic material only one

lattice constant is needed to describe the crystal lattice.

The Lattice Strain Pole Figure (SPF) Technique

The lattice Strain Pole Figure (SPF) experiment, presented in [48], combines

in situ loading with high energy x-ray diffraction to determine lattice strains in

engineering materials. The diffraction experiment is conducted in transmission

(Figure 3.2) and the sample is deformed using load control due to the strong

dependence of lattice strain on the applied load. Each SPF consists of the lattice

strain data measured in many directions for a particular {hkl}. To generate an

SPF, the measured lattice strains are plotted at the intersection of the scattering

vector, s, and a unit sphere as shown in Figure 3.2. A point on an SPF is defined

relative to the sample coordinate system. Sample rotations increase the number

of independent measurement directions - resulting in an increase in SPF cover-

age. An SPF experiment consists of a series of loading interruptions, or holds, in
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the deformation during which a series of diffraction measurements (along with

sample rotations) are conducted. During each of the holds, the load is reduced

by 10% to minimize creep effects during the series of diffraction measurements

[18].

Since lattice strains are elastic, the SPFs have also been used to determine

the most likely lattice strain tensor, and ultimately the stress tensor, for each

crystal orientation [4–6]. For more background on the SPF technique the authors

recommend [5, 48, 56].

Diffraction Data

An example of a diffraction pattern for the AA7075-T6 sample is shown in Fig-

ure 3.3(a) with three aluminum Debye rings indicated. In addition to the alu-

minum, there are also Debye rings from an unstrained cerium dioxide (CeO2)

powder. The CeO2 powder is held within an x-ray transparent container that is

fixed to the sample and referred to as a calibrant insert. The calibrant insert is

used to quantify both the experiment geometry and the lattice strain uncertainty

associated with the instrument itself [5, 55].

The area detector is made up of a regular grid of rectangular pixels. Each

pixel quantifies the x-ray intensity measured over its area. The raw data are

therefore an array of position and intensity values. Typically, each diffraction

pattern is mapped from the rectangular array defined by the pixels to polar

coordinates and azimuthally parsed into radial/azimuthal subregions (∆ρ,∆η).

The intensity within each subregion can be integrated to generate arrays of ra-

dial position versus intensity for each bin (η)[55]. Using the experiment geome-
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try shown in Figure 3.2 these arrays are converted to 2θ versus intensity like the

example shown in Figure 3.3(b).

The resulting arrays of 2θ values versus intensity for each η bin are then

fit with an analytic profile function for each diffraction peak. For synchrotron

data a pseudo-Voight analytic peak profile function, which combines Gaussian

and Lorentizian peak shapes [5, 55, 72], is often used. By minimizing the dif-

ference between the superposition of a smoothly varying background and the

peak profile functions, the positions of each peak can be determined [5, 55].

With the peak positions (2θc||s) quantified, lattice strain can be calculated using

Equation 3.1 and Equation 3.5.

xη

Δη

Al 200
Al 111

Al 220

y

(a) (b)

Figure 3.3: (a) One quarter of the surface of an area detector displaying a
typical diffraction pattern for the AA7075-T6 sample with a 5o

azimuthal bin (∆η) indicated. (b) Spectrum for the highlighted
bin with the same aluminum peaks indicated.

The conversion of raw diffraction data to lattice strains relies heavily on

models for the detector, the experiment configuration, and even the material

under investigation. Ideally the detector would be positioned at a know dis-

tance from the sample, and the surface of the detector would be centered and
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orthogonal to the incoming x-ray beams. To convert diffracted intensity to lat-

tice strains necessitates an accurate model for the experiment geometry [5]. The

model parameters consist of the coordinates of the pattern centers, two tilt an-

gles, the sample to detector distance (D in Figure 3.2), and a distortion correc-

tion for the detector. The model parameters are determined using diffraction

results for the calibrant material. Using the well known lattice parameters for

the CeO2, the x-ray wavelength, and an initial guess for the model parameters

a set of expected peak positions can be calculated for the calibrant. The model

parameters are determined by minimizing the difference between the measured

and expected calibrant peaks [5]. After the data are mapped to a ‘corrected’ con-

figuration the lattice strains can be calculated. The initial guess for the model

parameters is found using the data reduction software Fit2D [29].

Each diffracted peak used to calculate a lattice strain measurement repre-

sents a subset of crystals within the sample that satisfies the diffraction condi-

tion. In essence, each lattice strain measurement is a statistical sampling prob-

lem linked to the interpretation of dc||s as the average plane spacing for the sub-

set of orientations that satisfy Equation 3.2. The goal of the SPF experiment is

that each lattice strain measurement (analogous to a sample mean in statistics)

provide insight into the true lattice strain value (population mean). Without

an estimate of the difference between the true and measured lattice strain, it is

difficult to interpret the lattice strain results.

The need for an estimate of the lattice strain uncertainty for each measure-

ment can be explored with a simple example. Consider the iso-strain case for a

polycrystal. A lattice strain measurement from a single grain would be sufficient

to capture the true lattice strain value. Conversely, as the variation in the lattice
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strains between the probed grains increases, the measured value is coupled to

the both the number of grains interrogated and the magnitude of this variation.

To approximate the variation in the lattice strains between the crystals that con-

tribute to a single diffraction measurement we use a crystal-based elastoplastic

finite element model to simulate the response of a virtual polycrystalline spec-

imen under the same loading conditions as in the experiment. Estimating a

precision interval, referred to as the uncertainty, about the measured value in

which the true value is expected to occur is central to the interpretation of the

results at this length scale.

3.2.4 Crystal-based Finite Element Simulation

An elastoplastic constitutive model, which approximates the behavior of a sin-

gle crystal, is implemented within a finite element formulation to model the

behavior of an aggregate of crystals. The finite element formulation is imple-

mented on a distributed computing (parallel) architecture. An overview will

be provide here, but a complete description of the finite element model and its

implementation can be found in [21, 46, 47].

The elastoplastic constitutive model incorporates anisotropic elasticity, cou-

pled with plastic deformation by crystallographic slip on a restricted number

of slip systems. The inelastic shearing is rate-dependent and for FCC materials

occurs on 12 {111}<110> slip systems. By assuming crystallographic slip to be

the dominant mode of inelastic deformation in a crystal, the crystal kinematics

can be represented by a multiplicative decomposition of the deformation gradi-

ent into plastic, rotational, and elastic stretching portions. Accordingly, texture
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evolution is represented through crystallographic lattice reorientation [46, 47].

The simulation models the response of a polycrystalline aggregate to the ap-

plied boundary condition using the weak form of the equations of equilibrium

and implicit time-integration of the constitutive equations. A virtual specimen

in the shape of a cube is instantiated with thousands of grains, each composed of

multiple elements. All the finite elements associated with one grain are assigned

the same initial lattice orientation, and the lattice orientations of the grains are

assigned by random sampling of the ODF.

A major strength of these simulations is the explicit representation of the

stress state for each element - providing information at the grain, and subgrain

level. In essence, the simulation monitors the stress state of each crystal, and

directly represents the processes by which the material deforms. Results from

the crystal-based simulations can be sampled by isolating elements oriented to

satisfy the diffraction condition. The strain tensor for each element can then be

projected in the direction of the scattering vector to ‘build’ the lattice strain dis-

tribution grain-by-grain. Having access to the whole distribution, and not just

the mean lattice strain value that is accessible experimentally, enables the varia-

tion in the lattice strains between the different diffracting grains to be calculated.

Additionally, the combination of a crystal-based finite element simulation with

experimental data at the grain scale allows for the pertinent model parameters

that govern the lattice strain response to be determined.

Moreover, results from both the experiment and the simulation can also be

used to determine the Lattice Strain Distribution Function (LSDF), which is the

most likely strain tensor for each crystallographic orientation [3, 4, 56, 65, 66].

Using the LSDF, Hooke’s law, and the single crystal elastic moduli the average
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stress for each crystal orientation can be determined. Rigorous comparisons of

the experimental and simulated results can be conducted using the coefficients

of a spherical harmonic decomposition of the stress over orientation space [49].

3.3 Measuring/Simulating SPFs for AA7075-T6

To quantify and monitor lattice strain evolution during fixed stress amplitude

cyclic loading requires a suite of characterization probes and precise models

to interpret the results. To explore the techniques used to build the measured

and simulated SPFs we will consider several load steps during the monotonic

loading for cycle zero (the initial loading cycle). The first step in such an inves-

tigation is to characterize the state of the material, initialize the virtual sample,

and simulate the macroscopic response. The investigation into the grain scale

response requires information from both the simulation and experiment. As

might be expected, the use of a precise set of material constants, including the

single crystal elastic moduli and slip system strength is needed to simulate the

material response [70]. The addition of alloying elements can perturb the single

crystal properties of a pure material. Quantifying these properties for alloys like

AA7075-T6 is necessary for the simulation to accurately represent the deform-

ing polycrystal. Integration of the finite element simulation with the diffrac-

tion data allows for these properties to be perturbed until the simulated lattice

strains match those measured experimentally.
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3.3.1 Material Characterization

The AA7075-T6 is an aerospace alloy that is regularly used in the skin and fuse-

lage of aircraft. The AA7075-T6 sample used was cut from a 1.63 mm thick

rolled sheet acquired from Alcoa for its near equiaxed grains. The coordi-

nate system for the sheet is defined by the sheet rolling direction (L), the long

transverse direction (LT), and the short transverse direction (ST). Recall that the

sample coordinate system was defined by the loading direction (LD), the trans-

verse direction (TD), and the normal direction (ND). Using the symbol || to in-

dicate parallel, the relationship between the sample and the sheet was LD||LT,

TD||L, and ND||ST. The gage length of the specimen was 36.83 mm long with a

1 × 1.2mm2 (ND×TD) cross-section (schematic shown in Figure 3.8). An Elec-

tron Back Scattered Diffraction (EBSD) scan for the sheet rolling plane is shown

in Figure 3.4 with each grain overlaid with a random color. The average grain

size was determined from EBSD and optical micrographs to be ∼ 19.5µm. The

ODF was found using a Rietveld analysis of the diffraction data and is shown

in Multiples of a Uniform Distribution (MUD) in Figure 3.5 [7, 43, 44].

The macroscopic stress-strain response of the sample is measured during the

deformation with a load cell and a strain gage fixed to the sample. The mono-

tonic portion of the stress-strain response is shown in Figure 3.6. At many points

in the deformation history the applied load is reduced to 90% of the previous

value and the series of diffraction images necessary for an SPF are measured

using different sample orientations.

The lattice parameter for the face centered cubic AA7075-T6 was determined

from the diffraction data prior to loading. By varying the lattice parameter until

the difference between the measured and expected plane spacings was mini-
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these properties for materials like the AA7075 is necessary for the simulation to represent the deforming

polycrystal. Integration of the finite element simulation with the diffraction data allows for these properties

to be perturbed until the lattice strain response is captured. The blending of the diffraction results and the

simulation pushes us closer to the underlying goal of understanding the probable stress state for each grain

in the sample. Similarly, interpretation of the lattice strain results is built on using the simulation results to

approximate the lattice strain variation between the grains contributing to each diffraction measurement.

3.1 Investigation Details

The AA7075-T6 is an aerospace alloy that is regularly used in the skin and fuselage of aircraft. The sample

was cut from a 1.63 mm sheet such that the LD was aligned with the sheet transverse direction. The gage

length of the specimen was 36.83 mm long with a 1× 1.2mm2 (ND×TD) cross-section. The average grain

size was determined from EBSD and optical micrographs to be ∼ 19.5µm. Two EBSD scans are shown

for the rolling plane and the sheet transverse/normal plane in Figure 3 with each grain overlaid with a

random color. The ODF, shown in Multiples of a Uniform Distribution (MUD), was found using a Rietveld

analysis of the diffraction data [34–36].

300µm

(a) (b)

Figure 3: EBSD data for AA7075-T6 are shown for both the (a) rolling plane and the (b) sheet trans-
verse/normal plan. A random color is overlaid to distinguish the different grains.

The experiment was conducted in the A2 experimental station at the Cornell High Energy Synchrotron

Source (CHESS). An x-ray energy of 49.989 KeV (λ = 0.2480
◦
A) with a bandwidth of 50 eV was selected

using a silicon {111} double-crystal monochromater. The beam size of 0.5 × 0.5mm2 was defined by two

10

L

LT

Figure 3.4: EBSD data for AA7075-T6 are shown for the plane defined by
the sheet rolling direction (L) and the long transverse direction
(LT). An arbitrary color is overlaid for each grain.

Figure 3.5: The ODF for the AA7075-T6 calculated from the diffraction
data using MAUD [44]. The colorbar is in Multiples of a Uni-
form Distribution (MUD)
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Figure 3.6: Experiment and simulation macroscopic stress-strain curves
are shown for the monotonic portion of the deformation. The
points indicate where the SPFs were measured. The circled
points indicate the stress levels associated with the SPFs shown
in Figure 3.9, Figure 3.10, Figure 3.11, and Figure 3.12.

mized, the lattice parameter that best fit the initial plane spacings was found to

be 4.056
◦

A. This value matches the lattice constant found in [73] for the same

material with two different grain sizes to within ±0.005
◦

A.

3.3.2 Diffraction Experiment Details

The experiment was conducted in the A2 experimental station at the Cornell

High Energy Synchrotron Source (CHESS). An x-ray energy of 49.989 KeV

(λ = 0.2480
◦

A) with a bandwidth of 50 eV was selected using a silicon {111}

double-crystal monochromater. The beam size of 0.5mm×0.5mm was defined by

two sets of tungsten slits. The experiment was conducted in transmission with

approximately 650 mm between the sample and the MAR345 area detector (D

in Figure 3.2). The detector pixel size is 100µm × 100µm. A detailed schematic of
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the components in the beam path and a description of the experimental method

can be found in [56]. The diffractometer used for these experiment, shown in

Figure 3.7, allows for the rotation of the specimen about a vertical axis orthogo-

nal to the x-ray (ω) and the specimen LD (χ) [57]. The zero position (ω = χ = 0o)

is defined such that the sample normal is aligned with the incoming x-ray beam.

Measurements were made for ω=-40o to 35o in nine increments with χ = 0o and

χ = 12.5o, and ω=-25o to 25o in six increments with χ = 25o. To increase the num-

ber of crystals that contribute to each measurement the sample was reoriented,

or rocked about each (ω, χ) pair by ±2.5o in ω and χ. The benefits of sample

rocking will be discussed in Sect. 3.4.2. These measurements were repeated at

each point shown in Figure 3.6. The SPFs were also measured at 515MPa for

cycle numbers 1, 5, 10, 20, 50, 100, 500, and 1000. The full stress-strain curve is

shown in Figure 3.19.

Figure 3.7: The loadframe/diffractometer is shown with key components
labeled [57].
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3.3.3 Simulation Details

A virtual specimen was instantiated with 2916 complete rhombic dodecahedra

grains, where each complete grain was comprised of 48 10-node tetrahedra ele-

ments. There were also additional partial grains added to create the surfaces of

the cube. The virtual specimen has a total of 192,000 finite elements contribut-

ing to the mesh. The virtual specimen underwent uniaxial tensile loading, with

a deformation history analogous to the monotonic portion of that applied in the

experiment. As shown in Figure 3.8, the sample LD, TD and ND directions cor-

respond to the X, Y and Z directions of the finite element mesh, respectively.

Both the experiments and simulations were conducted in load control. A con-

stant velocity was applied on the positive X surface of the finite element mesh,

while the X = 0 face of the mesh was constrained in the X-direction. The two

positive Y and Z surfaces of the mesh were traction-free, while the Y = 0 and Z

= 0 surfaces had symmetry boundary conditions imposed. The simulation was

conducted by Su Leen Wong.

The influential parameters for the simulation are the strain hardening con-

stants and the single crystal elastic moduli. An isotropic hardening law was

used to evolve the slip system strengths. The required constants were deter-

mined by adjusting the values until the simulated and measured macroscopic

stress-strain curve compared well. A more complete description of the model

and the model constants can be found in [71].

The lattice strain response in the elastic-plastic transition regime is influ-

enced by a combination of the elastic and plastic anisotropy [70]. Due to the ad-

dition of alloying elements, the single crystal elastic moduli for AA7075-T6 will

not be identical to those for pure aluminum. In particular, the anisotropic ratio
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• Coordinated program of x-ray diffraction experiments and finite element simulations

• Measure and compute stresses at the level of crystals

Approach
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• X-ray diffraction measurements of elastic lattice 

strains under in situ cyclic loading
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Figure 3.8: The relationship between the specimen and the virtual speci-
men is shown schematically. The color of the grains making up
the virtual specimen corresponds to the orientation. The x-ray
beam size of 0.5mm × 0.5mm is also indicated.

can vary significantly [20]. To determine the elastic moduli we start with the

single crystal elastic moduli of pure aluminum reported by Hosford [34]. The

values for the single crystal elastic moduli most suited to AA7075-T6 were de-

termined by comparing a suite of simulated lattice strains using different mod-

uli to the measured lattice strains following the procedure outlined in [18, 70].

The lattice strains are compared for all the measurements made throughout the

deformation history and the best fit corresponds to the lowest difference be-

tween the measured and simulated lattice strains. The elastic constants used

were C11=101.5 GPa, C12=60.0 GPa, and C44=29.0 GPa. The selection of the

elastic constants is aided by a wide range of scattering vectors to avoid biasing

the simulation toward a select few directions.
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3.3.4 Measured and Simulated SPFs During the Monotonic Re-

sponse

Both the measured and simulated SPFs for the monotonic loading at 0, 135, 400,

and 515 MPa are shown in Figure 3.9, Figure 3.10, Figure 3.11, and Figure 3.12,

respectively. The results are shown with a different color bar for each load step

to allow for variation between the experiment and simulation to be visible. Each

figure shows the SPFs for the experiment (exp.) and the simulation (sim.). The

difference (dif.) between the two (exp.-sim.) are shown for all but the zero load

SPFs (Figure 3.9). The simulated SPFs at 0 MPa shown in Figure 3.9 are zero by

definition. The differences between the experiment and simulation in Figure 3.9

are due to the presence of a residual lattice strain distribution in the sample. The

overall trends for the SPFs in Figure 3.10, Figure 3.11, and Figure 3.12 show the

most tensile lattice strains near LD and the most compressive near TD. These

trends are present in both the simulated and the experimental results. Each el-

ement in the simulations is initialized with a zero strain state. The influence

of the residual is most visible for the {200} SPFs throughout loading. Overall

the experiment and simulation compare well with increasing deformation. To

interpret changes in the lattice strains as a result of material evolution or ex-

perimental fluctuations we need to estimate the uncertainty in the lattice strain

experimental data.
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111 200 220

sim.

exp.

Figure 3.9: The measured (exp.) and the simulated (sim.) SPFs are shown
at 0 MPa. The simulation assumes the initial lattice strains to
be zero.

3.4 Lattice Strain Uncertainty

Recently we have proposed a new framework for the lattice strain uncertainty

for each measurement was presented which separates the contributing sources

of error into two categories that vary independently [55],

Uc||s =

√
U i

c||s
2

+ Um
c||s

2 + ... (3.6)

These sources represent the contribution to the uncertainty from the instrument

used to make the measurements, U i
c||s, and the contribution to uncertainty from

the material under investigation, Um
c||s. The instrument contribution to the un-

certainty was shown in [55] to be related to the experiment geometry and the

resolution of the position and intensity of diffracted peaks on the area detector.

The material portion of the uncertainty is related to the number of diffracting

crystals, and the variation in the lattice strain between these crystals. Previous

investigations have implicitly relied on the assumption that enough crystals sat-
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111 200 220

sim.

exp.

(a)

111 200 220

dif.

(b)

Figure 3.10: (a) The measured and the simulated SPFs at 135 MPa. The
difference is shown in (b).

isfy the diffraction condition that the contribution to Um
c||s could be assumed to be

zero. If Um
c||s is not zero, the results may be difficult to interpret. For the investi-

gation of lattice strain changes due to cyclic loading, where the ‘signal-to-noise’

ratio is expected to be small, it is necessary to estimate Um
c||s.
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111 200 220

sim.

exp.

(a)

111 200 220

dif.

(b)

Figure 3.11: (a) The measured and the simulated SPFs at 400 MPa. The
difference is provided in (b)

3.4.1 Estimating the Uncertainty Contribution from the Instru-

ment, U i
c||s

The instrument in this case represents all aspects of the experimental configura-

tion and data reduction software employed to determine a lattice strain value.

A brief description the procedure used to quantify the instrument portion of

the uncertainty for each measurement will be provided here. A more complete
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sim.
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(a)
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dif.

(b)

Figure 3.12: (a) The measured and the simulated SPFs at 515 MPa. (b) The
difference is more pronounced than in the previous SPFS.

description of the procedure is available in [55].

The instrument portion of the uncertainty represents the limitations of the

tool and is present for each measurement. The lattice strain resolution is defined

by the smallest resolvable peak shift on the detector, δρmin, and the intensity

(S) required to identify the position of the diffracted peaks. The model for the

instrument portion of the uncertainty developed in [55], is defined to be the
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superposition of separate terms for each aspect of the resolution,

U i
c||s =

{
sin( arctan( ρD )

2 )

sin( arctan( ρ−δρmin
D )

2 )
− 1

}
+ S α

(S lim

S

)
(3.7)

Here ρ and D were previously defined in Figure 3.2, S α scales the intensity con-

tribution to the instrument portion of the uncertainty, and S lim is the maximum

possible pixel value for the detector (S lim = 216 for the MAR345 detector). The

two model parameters, δρmin and S α, are determined by applying the model to

the unstrained calibrant material where the lattice strains are expected to be

zero. A detailed development of the model for the instrument portion of the

uncertainty can be found in [55].

Using the diffraction results from the CeO2 calibrant insert, we determined

the model parameters for Equation 3.7 for each load step. The mean and the

standard deviation of the δρmin and S α for all the load steps measured were

found to be 2.84 ± 0.05µm and (1.6 ± .3) × 10−8, respectively. These values for the

model parameters agree well with those presented in [55]. Using Equation 3.7

the instrument portion of the uncertainty was determined for the exact position

(ρ) and intensity (S ) of the measured diffracted peaks.

3.4.2 Estimating the Uncertainty Contribution from the Mate-

rial, Um
c||s, for AA7075-T6

To estimate the uncertainty associated with the material both the number of

crystals interrogated by each measurement, and the variation in the stress state

between these crystals must be considered. In essence, the minimum number

of crystals required for each measurement to have the same lattice strain uncer-
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tainty is coupled to the variability in the mechanical response. This variation in

lattice strain between each crystal participating in a diffraction measurement is

due to the anisotropic single crystal properties (elastic and plastic), the effect of

neighboring grains, the type of loading, and the level of deformation. It is not

possible to precisely discern the lattice strain variance from powder diffraction

alone. The breadth of diffracted peaks contains information about the variance,

but it is complicated by other sources such as the instrument broadening and

the dislocation density of the material. To estimate the lattice strain variance we

use the simulation for the same loading conditions.

As previously described, each diffraction measurement results in the mean

lattice strain for the set of crystals crystals satisfying the diffraction condition

(along a crystallographic fiber). If identical lattice strain measurements were

made for different samples (same c||s combination), the set of lattice strains

would produce a distribution of mean values. From the central limit theorem

in statistics, we expect that this set of lattice strains would approximate a nor-

mal distribution [24]. The material portion of the uncertainty is related to the

standard deviation of this distribution of mean values. Using the central limit

theorem, the standard deviation of the distribution of means values is defined

[24],

Ψ̄c||s =
Ψc||s
√

G
(3.8)

Here Ψc||s is the standard deviation for the set of diffracting crystals and G is the

number of grains contributing to each measurement. To determine the uncer-

tainty value for the measurement we combine Ψ̄c||s with a confidence interval

using the Student’s t-distribution [25],

Um
c||s = tΨ̄c||s (3.9)
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Here t is a function of the degree of confidence and the number of crystal con-

tributing to the lattice strain measurement (G). For our effort, the confidence

level used was 95%. For G greater than 120, t approaches an asymptote at 1.96

and corresponds to 95% of the area under a standard normal curve. Values for t

when G is below 120 are tabulated in [24].

Probable Number of Crystals per Measurement

The probable number of crystals that contribute to each lattice strain measure-

ment is coupled to the set of orientations that satisfy Equation 3.2. Each point

on a Debye ring (Figure 3.3(a)) corresponds to a specific point on a SPF and a

fiber through orientation space. The relationship between a lattice strain mea-

surement in LD for the {200} SPF and the corresponding fiber is shown in Fig-

ure 3.13(a). The exact subset of orientations probed experimentally, however, is

linked to a larger region in orientation space. For a 5o azimuthal (η) bin, like

the one shown in Figure 3.3(b), the set of orientations that diffract correspond

to a range of scattering vectors. In Figure 3.13(b) an SPF is shown with a 15o

azimuthal bin on the SPF. The set of scattering vectors that contribute to a lat-

tice strain measurement represent a region or patch on the SPF. For the SPF in

Figure 3.13(b), the long dimension of the patch is defined by the η bin size and

the short dimension is due to the finite range of orientations over which a single

crystal diffracts. Consider a simple diffraction experiment where a single crys-

tal is rotated at a constant speed about a fixed axis while a detector measures

the intensity for each angular value. For our experimental configuration, the

resulting plot of rotation angle versus intensity would show a peak with a full

width half max (FWHM) of ≈ 0.3o. This 0.3o is the short dimension for the patch
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shown in Figure 3.13(b). The set of orientations that contribute to a lattice strain

measurement are represented by a set of fibers defined by the patch geometry

and the {hkl}.

To increase the probable number of crystals the contribute to each lattice

strain measurement we can change the experiment procedure such that more

orientation are included. One method would be to increase the η bin size.

This approach leads to the results being averaged over elongated patches on

the sphere. Another option is to change the orientation of the sample during

the diffraction measurement. By rotating, or rocking, the sample about a fixed

(ω, χ) set, a different patch geometry can be defined. Consider three cases of

sample rocking: (ω = ±10o, χ = 0o), (ω = 0o, χ = ±10o), and the results for the

two rotations in series. The range of scattering vectors for the AA7075-T6 {111}

before azimuthal binning are show in Figure 3.14. Rocking the sample during

the diffraction measurement increases the range of scattering vectors consid-

ered for all three cases. For both Figure 3.14(a) and Figure 3.14(b), dividing the

Debye rings into η bins would result in a different patch geometry for each bin.

The amount of orientation space sampled would therefore be different for each

measurement. This variable sampling can be minimized by rocking about two

axes (ω, χ) in succession and the results are show in Figure 3.14(c).

An example of a ±2.5o rock about both ω and χ produces a 5o × 5o patch cen-

tered about LD for the {200} SPF is shown in Figure 3.13(c). The corresponding

group of fibers probes a larger portion of orientation space. Shifting between

the configuration in Figure 3.13(b) to Figure 3.13(c) the aspect ratio (length to

width) for the patch on the SPF over which the lattice strain response is aver-

aged changes from 50:1 to 1:1. The patch geometry selected for the AA7075
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Figure 3.13: The relationship between a patch on the {200} SPF and
the corresponding region of orientation space interrogated is
shown for (a) a point aligned with LD, (b) a 0.3o × 15o patch
centered about LD, and a 5o × 5o patch centered about LD.

sample was a 5o × 5o region on the SPF. This patch size is larger than a typi-

cal diffraction measurement (Figure 3.13(b)) to increase the number of crystals

contributing to each measurement. The patch employed for the simulation was

a 10o diameter circle about the center of each experimental patch. The simula-

tion patch was selected to be larger than the patch used in the experiment to

increase the number of elements within the simulation that contribute to each

lattice strain measurement.

To determine the number of crystals that contributes to a patch on the SPF

p, we need to account for crystal symmetries. For a cubic crystal there are 24

symmetry operators defined Gi. The crystallographic multiplicity (M) is the

number of unique vectors within the set defined Gic for all i. The multiplicity

for the {hkl}s considered are shown in Table 3.1.
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(a) (b) (c)

Figure 3.14: The scattering vectors for the AA7075-T6 {111} lattice strain
measurements due to rocking by (a) ω = ±10o, χ = 0o, (b) ω =

0o, χ = ±10o, and (c) the result of rocking by (a) and (b) in
series.

The ODF over the fundamental zone is shown in Figure 3.5. To calculate

the volume fraction of the ODF that contributes to a patch p, we must account

for both the multiplicity and the anitpodal symmetry on the SPF (±s in Equa-

tion 3.2). The relationship between the volume fraction of the material interro-

gated within the physical sample and the volume fraction of the ODF sampled

can be written as,

VcG
Vβ

=
M

∫
p
(
∫

c||s f (R)dR)ds∫
sphere

(
∫

c||s f (R)dR)ds
(3.10)

Here Vc is the average volume of a single crystal. Recall that Vβ is the volume of

irradiated material, f (R) is the ODF, p is the patch on the sphere, and M is the

multiplicity. As the sample is rotated Vβ changes and the minimum value occurs

when ND is aligned with the incoming x-ray. The expression can be rewritten

for the probable number of crystals as,

G =
MVβ

∫
p
(
∫

c||s f (R)dR)ds

Vc

∫
sphere

(
∫

c||s f (R)dR)ds
(3.11)

This expression assumes that the patch size is sufficiently small such that each

crystal contributes at most one time to a patch. As the patch size increases, it is
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no longer possible to scale the results by the multiplicity. Moreover, if the mul-

tiplicity for an {hkl} does not include the antipodal symmetry, then this expres-

sion would underestimate the number of orientations that contribute to each

measurement.

For the general case we define the pole projection operator Pc such that,

PcR = Rc (3.12)

Using the inverse of the projection operator we can represent all the orientations

that when projected contribute to a patch p,

Fc,p = P−1
ci

s ∪ (s ∈ p) (3.13)

where ci = Gic. Now the relationship between the volume fractions can be

defined as,
VcG
Vβ

=

∫
Fc,(p∪−p)

f (R)dR∫
VΩ

f (R)dR
(3.14)

Table 3.1: Multiplicity values for the {hkl}s considered.

{hkl}s 111 200 220

Multiplicity (M) 8 6 12

Using Equation 3.11, the average grain size of ∼ 19.5µm, and the ODF pre-

sented in Figure 3.5 we find the probable number of grains contributing to each

measurement and the results are shown in Figure 3.15(a). The exact number

of elements within the simulation that contributes to each lattice strain value

and the results are shown in Figure 3.15(b). The qualitative similarities between

Figure 3.15(a) and Figure 3.15(b) are expected since the ODF is used to estimate

the number of crystals and assign orientations to each element in the virtual

specimen.
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Figure 3.15: (a) The probable number of grains that contribute to each
measurement and (b) the number of elements contributing to
each simulated lattice strain are shown for each {hkl}.

Lattice Strain Standard Deviation, Ψc||s

The standard deviation for each lattice strain measurement is coupled to the

anisotropy of the single crystal properties, the deformation history, and the

number of grains contributing to the measurement. Recall that the diffracting

crystals satisfy Equation 3.2 and each crystal has a different set of neighboring

grains. The simulated lattice strain standard deviations at 0, 135, 400, and 515

MPa are shown in Figure 3.16. Initially the lattice strain for each element is zero

by definition, and standard deviation is shown in Figure 3.16(a) is zero. As ex-

pected, the standard deviation increases with increasing load in a nonuniform
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manner, particular post yield and is shown in Figure 3.16(b), Figure 3.16(c), and

Figure 3.16(d). This evolution impacts the interpretation of the measured lattice

strains. For a fixed number of grains per measurement, the evolving standard

deviation results in a variation in the lattice strain uncertainty. The patterns

shown in Figure 3.16(d) are an indication of the orientation dependence of the

variation in the stress states between the grains the make up each measurement.

It is worth noting that the minimum lattice strain standard deviation is in the

loading direction for each {hkl}.

3.4.3 Lattice Strain Uncertainty Results

Due to the complexity in the response of deforming polycrystals, the impor-

tance of separating ‘signal’ from ‘noise’ is important for investigating complex

deformation phenomena. The interpretation of lattice strains as indications of

meaningful material evolution is dependent on the uncertainty in each measure-

ment. False interpretation of subtle lattice strain changes as material evolution

instead of experimental fluctuations could cloud our understanding of the grain

scale deformation. The lattice strain uncertainty, calculated using Equation 3.6,

is show as ± values in Figure 3.17(a). The largest uncertainty occurs below TD

on the {200} SPF. This corresponds to a region on the SPF where both the prob-

able number of crystals per measurement is low and the lattice strain standard

deviation is high. The lowest uncertainty occurs for the {220} SPF due to the

high multiplicity resulting in more crystals contributing to each measurement.

Recall that the initialization of the orientation for each element in the virtual

sample is done by randomly sampling the ODF. The simulated lattice strains
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Figure 3.16: The standard deviation of the simulated lattice strains are
shown at (a) 0 MPa, (b) 135 MPa, (c) 400 MPa, and (d) 515
MPa.
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are the mean value for the elements that satisfy the diffraction condition. If the

simulation was run again with a different random sampling of the ODF, some

variation in the lattice strains is expected. In an analogous manner to the mea-

sured lattice strains, if the simulation was conducted several times with differ-

ent initial orientations assigned to each element we could build a distribution

of simulated lattice strain values (for the same c||s combination). The mean of

this distribution of simulated lattice strains is the true simulated lattice strain

value. Using the central limit theorem, we expect that true simulated mean for

the lattice strain results to be related to the number of elements sampled and

the variation between the simulated lattice strains for each element [24]. To es-

timate the uncertainty in the simulated lattice strains we use Equation 3.9, with

the number of elements instead of the number of crystals. The resulting uncer-

tainties are shown in Figure 3.17(b). The trends in the lattice strain uncertainty

between the simulation and experiment are similar, but the uncertainty in the

simulated results is much lower.

Grouping Lattice Strain Results

An advantage of synchrotron x-rays and area detectors is the ability to quickly

accumulate lattice strains for many scattering vectors. If we define a circular re-

gion B on the SPF, we can average the measurements that fall within the region,

εc||B =

∑N
j=1 εc||j

N
(3.15)

Here j represents a measurement in B and N is the number of measurements

included in the average. The benefit to using Equation 3.15 is that the mean

lattice strain over a region Bwill have a lower uncertainty than the contributing

measurements. The underlying process by which this occurs is that the ‘signal’
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Figure 3.17: (a) The experimental lattice strain uncertainty is plotted for
each measurement. The region with the highest uncertainty
occurs on the {200} SPF below TD. (b) The lattice strain uncer-
tainty for the simulated results was determined using Equa-
tion 3.9.

adds, whereas the random error present in each measurement cancels with the

addition of more independent measurements. To estimate the uncertainty for

the grouped results we use the uncertainties for each measurement and com-

mon error propagation techniques. For two measurements with known uncer-

tainties, m1 ± u1 and m2 ± u2, the uncertainty for m1 + m2 is defined [25],

u1+2 =

√
u2

1 + u2
2 (3.16)
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The uncertainty for the division of the same two quantities is [25],

u1/2 =

√(
m1

m2

)2 ( u1

m1

)2

+

(
u2

m2

)2 (3.17)

Combining these expressions we estimate the uncertainty for the region B on

the SPF as,

Uc||B =

√√√∑Nj=1 Uc||j∑N
j=1 εc||j

2

ε2
c||B (3.18)

A demonstration of this process with B defined to have a 5o radius is shown

for the lattice strains measured at 515MPa. The mean lattice strain results are

shown in Figure 3.18(a). The total number of measurements that were averaged

in each B are shown in Figure 3.18(b). The largest number of measurements

is 29 and occurs near TD for the {111}. The uncertainties after grouping the

measurements are shown in Figure 3.18(c) and are significantly lower than those

in Figure 3.17(a). The tradeoff between grouping and individual lattice strain

measurements is lower uncertainty values versus angular resolution on the SPF,

respectively.

3.5 Cyclic Lattice Strain Results

The AA7075-T6 sample underwent zero-tension cyclic loading with a peak

value of 572 MPa. The complete macroscopic stress-strain curve for the sam-

ple is shown in Figure 3.19. The SPFs were measured at 515MPa (90% of the

peak load) at many points during the cyclic deformation. Since lattice strains

are coupled to the crystal level stresses, the evolution of the lattice strains dur-

ing fixed stress amplitude loading are expected to be small. To ensure that any

cycle-by-cycle variation in the lattice strains is visible on the SPFs, we present
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Figure 3.18: (a) The mean of the measured lattice strains at 515MPa within
a 5o radius circle about each glyph. (b) The number of mea-
surements included in each grouping is shown. (c) The un-
certainties for the mean lattice strain results are shown for the
same points presented in (a) and (b).
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each SPF as the difference between the cycle of interest and the cycle zero re-

sults (i.e. the first cycle is identified by 1-0). The cycle zero results were shown

previously in Figure 3.12(a). The results for cycle 1-0, 10-0, and 100-0 are shown

in Figure 3.20. The magnitude of the lattice strains in Figure 3.20 are on the

same order as the uncertainty results shown in Figure 3.17(a). There is a slight

increase in the lattice strains near LD for all three {hkl}s. The scale for the SPFs

in Figure 3.20 is biased by a few scattering vectors. To improve the ‘signal-to-

noise’ ratio we will group the cyclic SPF results using the 5o region employed in

Figure 3.18.
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Figure 3.19: The macroscopic stress-strain curve for the AA7075-T6 sam-
ple. The sample was cycled between 0 and 572 MPa. The
sample failed after 1588 cycles.

The uncertainties for the grouped lattice strains are lower than those for in-

dividual measurements. The grouped lattice strain results for the SPFs shown

in Figure 3.20 are presented in Figure 3.21. The grouped results shown the lat-

tice strains are increasing near LD for all three {hkl}s. The {200} SPFs also show

increasingly compressive lattice strains near TD. By comparing the results in

Figure 3.21 with the uncertainties in Figure 3.18(c), we find the lattice strain evo-

lution due to cyclic loading to be above the level of the ‘noise’. In addition to
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exp. cycle 
1-0

exp. cycle 
10-0

exp. cycle 
100-0

Figure 3.20: The cyclic lattice strains for each {hkl} are shown as a differ-
ence between the cycle of interest and cycle zero at 515 MPa.
The difference SPFs are shown for cycles 1-0, 10-0, and 100-0,
respectively.

the increased signal, the smooth variation between neighboring measurements

on the SPF lends confidence to these trends beyond that possible for a lone mea-

surement.

From the SPFs alone it is difficult to determine whether the lattice strain evo-

lution is constant throughout the fatigue life or whether it occurs more rapidly

during a particular portion. To investigate the overall magnitude of the lattice

strain evolution with increasing cyclic deformation we calculate a root mean

squared (RMS) value for each cycle. We define the SPF RMS to combine lattice

strains from each {hkl} and use the uncertainty to weight the contribution of each
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Figure 3.21: The cyclic lattice strains in Figure 3.20 are presented after
grouping the results within 5o regions. The grouped differ-
ence SPFs are shown for 1-0, 10-0, and 100-0, respectively.

measurement,

∆εRMS =

√√√
H∑
i=1

N∑
j=1

wi|| j∆ε
2
i|| j (3.19)

Here ∆εi|| j is the difference values shown in Figure 3.21, N is the number of

measurements, H is the number of {hkl}s, and wi|| j is a weight based on the un-

certainty in each measurement defined,

wi|| j =
1/U2

i|| j∑H
l=1

∑N
k=1 1/U2

l||k

(3.20)

The SPF RMS is shown with increasing cycles in Figure 3.22. The SPF

RMS, which combines information from 5184 independent lattice strain mea-

surements, shows that the majority of the lattice strain evolution occurs during
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the first portion of the samples fatigue life. The lattice strain evolution occurs

rapidly for the first 50 cycles, and slow as the sample approaches failure after

1588 cycles. It is worth noting that the magnitude of ∆εRMS is less than the peak

values in Figure 3.21 since it incorporates many scattering vectors with little or

no lattice strain evolution.
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Figure 3.22: The SPF RMS is shown with increasing cycles. The sample
failed after 1588 cycles. The insert shows the SPF RMS for the
first 100 cycles.

3.6 Discussion

Integrating SPF data with crystal-based finite element simulations, beyond the

comparison of lattice strains in a few directions, provides a new tool to study
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complex phenomena like the evolution of lattice strains due to cyclic loading.

Interpreting the variation in lattice strains during fixed stress amplitude cyclic

loading as ‘signal’ or ‘noise’ is an important step toward understanding how

the crystal level stresses evolve prior to the initiation of a fatigue life limiting

defect. With a precise estimate of the ‘worth’ of each measurement we can sepa-

rate experimental fluctuations from material evolution and identify lattice strain

changes due to cyclic loading. The discussion will focus on the cyclic lattice

strain evolution and the integration of the SPF experiment with crystal-based

finite elements simulations.

3.6.1 Cyclic Lattice Strain Evolution

Recall that each lattice strain measurement is the average normal strain for the

set of diffracting crystals. Cycle-by-cycle variation in the crystal level stresses is

manifested on the SPFs as lattice strain evolution. For the first time, evidence

that the crystal level stresses evolve rapidly during the earliest portion of the

samples fatigue life during fixed amplitude cyclic loading in a polycrystal has

been quantified. With this discovery comes the opportunity to develop new

theories to explain the measured trends.

One such hypothesis for why the lattice strains evolve rapidly at first, and

then less as the sample approaches failure is linked to the Single Crystal Yield

Surface (SCYS) [36, 53]. The SCYS is a five-dimensional faced surface in devia-

toric stress space. Each facet is defined by the stress state necessary to activate

a particular slip system. The intersection of two facets form an edge, where

two slip systems are active. The intersection of fives edges is defined as a ver-
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tex. When the stress state is in a vertex of the SCYS, polyslip (accommodating

general deformation) can occur. It has been shown that during large scale de-

formation the crystal stresses reach the SCYS, and then the stress moves toward

a vertex [53].

The level of deformation experienced by the AA7075-T6 is insufficient to ex-

pect the majority of the crystal stresses to be in a vertex of the SCYS. However,

it is likely that during each cycle the stress state experienced by some crystals is

sufficient to cause yielding. As these crystals yield, the stress state could shift

slightly along the SCYS in the direction of the nearest vertex. It may be possi-

ble that the progression toward a vertex under fixed stress amplitude loading is

limited, and that with each cycle the number of crystals within the sample that

yield decreases. This reduction in the number of plastically deforming crystals

would correspond with less evolution of the crystal level stresses, and the level-

ing off of the SPF RMS value with increasing cycles. In addition, if the leveling

of the SPF RMS correlates with sample failure for both other samples and differ-

ent materials, it may be possible to use ∆εRMS to estimate the number of cycles

remaining prior to failure.

3.6.2 Integrating the Experiment and Simulation

In addition to the ability to estimate the material contribution to the lattice strain

uncertainty, the connection with the simulation provides an opportunity for

more in depth investigations. In a parallel effort [71], the cyclic response of

the AA7075-T6 sample was simulated for the same loading condition. The sim-

ulated SPFs also shown lattice strain evolution with increasing cycles near LD,
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but the magnitude of the evolution is significantly less. Going beyond direct

comparison with the SPFs, the simulation can also be used to conduct param-

eter studies to discern the most influential material properties, investigate the

role of the SCYS during cyclic loading, and use the full spatial information in the

simulation to investigate the stresses at the crystal level directly. Since the ori-

entation of each element in the simulation is known, the simulation results can

also be used to determine the most likely stress for each orientation. Variation

in the stress over orientation space during cyclic loading, if limited to certain

orientations, may prove to be likely initiation sites for fatigue life limiting de-

fects.

Residual Lattice Strains

Currently the integration of SPF experiments and crystal-based simulations is

complicated by the presence of a residual lattice strain distribution in the ma-

terial as shown by the SPFs in Figure 3.9. Incorporating a residual lattice strain

distribution into the simulation is a nontrivial task. Such a procedure would

require initializing the simulation with a nonzero elastic strain tensor for each

element such that the simulated residual lattice strains match those measured

experimentally. This initial distribution would not be unique since the SPFs do

not convey spatial information. Obtaining this match while satisfying equilib-

rium would be difficult. Moreover, due to the presence of the residual lattice

strain, it is not possible to use the simulated lattice strain standard deviation to

quantify the uncertainty prior to loading. It is possible an estimate of the stan-

dard deviation based on the single crystal elastic anisotropy may be a viable

alternative.
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Patch Geometry and Grouping Measurements on the SPF

Lattice strain data are represented in two ways on the SPF: the patch, p, for indi-

vidual measurements and the region, B, over which lattice strains are grouped.

Both p andB are regions on the SPF, but they represent distinctly different quan-

tities. The patch (p) on the SPF represents the set of scattering vectors that make

up each measurement. Specifying a patch on the SPF fixes the set of orientations

that contribute to each measurement (Figure 3.13) and is directly related to the

centroid of each diffracted peak used to calculate lattice strain. Accurately rep-

resenting the set of orientations contributing to each measurement is important

for interpreting lattice strain results.

Typically diffraction data measured with an area detector produce elongated

patches with high aspect ratios (length to width) and low surface areas (Fig-

ure 3.13(b)). By reorienting or rocking the sample during a diffraction measure-

ment the patch size and shape can be adjusted to change the number of crystals

contributing to each measurement. The use of rocking enables the application of

the SPF technique to study materials with larger average grain sizes. Moreover,

the patch size and shape used in the experiment should be similar to that ap-

plied to the simulation results to ensure that the measured and simulated lattice

strains can be compared one-to-one.

The massive numbers of lattices represented on the SPFs in Figure 3.20 en-

able new approaches to interpreting the lattice strain results. Grouped lattice

strain results, like those shown in Figure 3.18 and Figure 3.21, represent the

mean lattice strain value for a selected region, B. Since combining measure-

ments results in the ‘signal’ adding and the ‘noise’ canceling, grouped data pro-

duces results with lower uncertainties beyond what is possible with an individ-
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ual measurement.

A single region B, contains lattice strain information from many different

patches. The key difference between p and B is that p represents the exact

set of scattering vectors which contributed to the individual lattice strain mea-

surement (diffracted peak) and B is used as a post-processing tool which sacri-

fices angular resolution on the SPF for lower uncertainties in the grouped lattice

strain results.

3.7 Summary /Conclusions

Investigations of the crystal level stresses during cyclic deformation are impor-

tant for understanding the micromechanical conditions which drive the initia-

tion of fatigue life limiting defects. Quantifying the evolution of these stresses

during cyclic loading has remained a challenge within the field of mechanics

of materials. Measurement of lattice strains, which are coupled to the crystal

stresses, provide the means to investigate the stress state at the crystal level.

The goal of this effort was to quantifying the lattice strain evolution during

zero-tension fixed stress amplitude cyclic loading of an aluminum alloy 7075-

T6 (AA7075-T6) sample.

During fixed stress amplitude loading, the magnitude of lattice strain evolu-

tion is expected to be small. To interpret the results as ‘signal’ or ‘noise’ a new

methodology that combines x-ray diffraction with in situ mechanical testing

and crystal-based finite element simulations was developed. Previous inves-

tigations have focused on corroborating simulated and measure lattice strains

in relatively few directions. Capitalizing on the recent availability of high rate x-
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ray detectors, we have generated massive amounts of lattice strain data which

enabled more than corroboration, but rather the union of crystal-based finite

element simulations and diffraction experiments to provide a more complete

picture of the stress state at the grain scale within a deforming polycrystal. This

approach enables the evolution of lattice strains due to cyclic loading to be inter-

preted as experimental fluctuations or material evolution. Key findings include:

• The lattice strain evolution due to fixed stress amplitude loading is small,

but measurable. The lattice strains are increasing due to cyclic loading

near the loading direction for the {111}, {200}, and the {220} crystallo-

graphic families. The results also show the lattice strains are becoming

more compressive near the transverse direction for the {200}.

• Investigation of the the root mean square (RMS) of the lattice strain results

show most of the lattice strain evolution occurs during the earliest portion

of the samples fatigue life. The RMS values appear to reach an asymptote

prior to the sample failing. It may be possible to use the RMS of the lattice

strains to predict the number of cycles remaining prior to fatigue failure.

• The interpretation of lattice strains is linked to an estimate of the uncer-

tainty. Each lattice strain measurement is a statistical sampling problem.

To estimate the uncertainty we combine the probable number of crystals

expected for each measurement with the simulated lattice strain standard

deviation. In essence, the uncertainty is not just related to the number of

diffracting crystals, but the variability in the lattice strain between these

crystals.

• The finite element simulation enables us to calculated the lattice strain

standard deviation from the elements in the simulation oriented to satisfy
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the diffraction condition. This robust estimate for the variation between

the diffracting crystals enables the interpretation of subtle lattice strain

evolution as ‘signal’ or ’noise’.

• A benefit of measuring massive numbers of lattice strains is that new re-

gions of interest can be defined on the lattice strain pole figures and the

results can be averaged. This procedure trades angular resolution on the

pole figures for a mean value with an uncertainty lower than the con-

tributing measurements. This smoothing process aids in identifying subtle

trends like the evolution of lattice strains during cyclic loading.
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CHAPTER 4

SUMMARY

The lattice Strain Pole Figure (SPF) experiment combines high energy x-ray

diffraction with in situ mechanical loading to measure lattice strains within a

deforming polcrystal. Such investigations into the stress driven deformation

mechanisms active at the grain scale have immense potential to produce re-

sults that challenge our intuition. Interpretation of these results, particularly

where the “signal-to-noise” ratio is expectedly small, requires a shift of the SPF

experiment from a one-off style experiment to a measurement capability. The

prominent contributions of this dissertation include:

• The interconnected nature of the SPF coverage and the regions of orien-

tation space probed was explored and a new metric was developed for

optimizing the selection of SPF measurements.

• A new framework was proposed for the lattice strain uncertainty that sep-

arates the contributions from the instrument employed and material un-

der investigation.

• A new model for the instrument portion of the uncertainty-based on the

lattice strain resolution was developed. Using this model the instrument

portion of the uncertainty can be determined from the exact position and

intensity values of each diffracted peak measured with the area detector.

• The integration of crystal-based finite element simulations and diffraction-

based lattice strain experiments enables a more complete picture of the mi-

cromechanical response. The feedback between the experiment and simu-

lation at the grain scale provides a new basis for investigating deformation

phenomena at the grain scale.
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• The interpretation of lattice strains is linked to an estimate of the uncer-

tainty. Each diffraction measurement is a statistical sampling problem.

The material contribution to the lattice strain uncertainty can be estimated

using the probable number of contributing crystals and the variability in

the lattice strain between these crystals. A finite element simulation can

be used to approximate this variation in the lattice strains. Without an es-

timate of the variation between the diffracting crystals it is not possible to

interpret subtle evolution as “signal or noise”.

• Lattice strains measured during fixed stress amplitude cyclic loading of

an aluminum alloy 7075-T6 sample evolve with increasing cycles. The

majority of the lattice strain evolution occurs during the earliest portion of

the samples fatigue life and slows prior to failure.
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