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From 2009 to 2011, ten peach and five apricot varieties cultivated and commercially 

available in the Northeast were assessed for quality indices and phytochemical 

content. The objective was to generate qualitative and quantitative information on the 

phenolic, antioxidant, and carotenoid content of these varieties and how they were 

affected by seasonal variations, maturity at harvest, storage and processing. Selected 

varieties were made into value-added, shelf-stable products and evaluated after 

processing and storage for 6 months at 18-20 ˚C. Apricot products had higher 

phytochemical content compared to peaches. Varieties with greatest phenolic and 

antioxidant content were ‘PF 22-007’ peach and ‘Hargrand’ apricot while ‘Babygold 

5’ peach and ‘Hargrand’ apricot had highest carotenoid content. Phenolic and 

antioxidant content generally decreased with on-tree ripening while these components 

remained relatively stable after harvest in cold storage. Carotenoid content increased 

three to six-fold in apricots with both on- and off-tree ripening. Individual phenolic 

and carotenoid compounds identified and quantified by HPLC were influenced by fruit 

type, variety and pre- and postharvest conditions. Evaluation of canned products 

showed a reduction of phytochemical content with peeling and storage. Losses of 

hydrophilic constituents were partly due to migration into syrup while lipophilic 

constituents were less susceptible to leaching. Pre-drying treatments significantly 

influenced dried fruit color and phytochemical content, with a sulfiting treatment the 

most effective. Two alternative treatments, blanching and rhubarb juice+blanching, 



 

proved promising in the production of dried fruit with acceptable color while retaining 

a good level of phenolic content and antioxidant capacity; a rhubarb juice-only 

treatment was suitable only for carotenoid retention. Fruit and sucrose content of jam 

and nectar influenced quality and phytochemical content. Increasing fruit content 

resulted in higher nutraceutical value post-processing and in storage; this effect was 

better assessed using HPLC. Overall results position peaches and apricots as important 

sources of phenolics, antioxidants and carotenoids, with apricots being good to 

excellent sources of vitamin A. Production, varietal selection and postharvest handling 

are important to maximize the nutraceutical quality of fresh fruits, while processing 

conditions and formulation can be optimized to retain healthful bioactive compounds 

thus providing better options for consumers. 
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CHAPTER 1: LITERATURE REVIEW 

 

Background 

The origins of peaches and apricots date back to 10
th

 century BC China and central 

Asia. Both fruits are considered part of Chinese culture, with the peach featuring in the 

legend of the Monkey King (Sun Wukong) in which he attained immortality by eating 

from the Garden of Immortal Peaches. Apricots, first discovered growing wild on 

Chinese mountain slopes, are now primarily associated with Armenia and the 

Mediterranean; the latter remains among the chief producers of the fruit. The peach 

remains relevant in Chinese lore, with tree, fruit and color representing longevity and 

immortality. Both peaches and apricots were imported into Europe – by ancient traders 

and Roman conquerors – and from there to the rest of the world: to North America by 

early Spanish explorers (Mehlenbacher and others 1990; Siddiq 2006a; Siddiq 2006b; 

Bassi and Monet, 2008). 

 

The peach (Prunus persica L.) and apricot (Prunus armeniaca L.) are two of the most 

consumed stone fruits worldwide. Global production for peach in 2010 was 

20,278,439 tonnes
1
 and 3,442,450 tonnes for apricots, with China the top producer of 

the former and Turkey the latter. The USA accounted for 1,044,440 tonnes of peaches 

and 59,400 tonnes of apricots, representing approximately 5.15% and 1.73% of world 

production. These figures show a decline from those of 2009: 1,197,665 and 61,980 

tonnes for the two commodities (FAOSTAT 2012). Despite avid production in 

                                                 
1
 FAOSTAT figures available are for peaches and nectarines. Production values for these two fruits are 



 

2 

California (peaches and apricots), South Carolina (peach), Georgia (peach), 

Washington (apricot) and Utah (apricot), overall production and consumption of these 

fruits show year-to-year declines – fractionally and irregularly for peaches but steadily 

for apricots – with 2011 apricot production estimated to be the lowest in five years 

(USDA ERS 2011; USDA NASS 2011). A suggested reason for this trend is the 

perceived decline in eating quality – mainly taste and juiciness – of both fruits over the 

years (Kader and Mitchell 1989b; Manolopoulou and Mallidis 1999). This can in turn 

be linked to varietal, climatic, distribution and marketing system changes, as well as 

the current demands of urbanization and commercialization (Scorza 2005). 

 

Erstwhile agricultural systems limited crop production and distribution to relatively 

small geographical areas. Customers patronized local orchards almost exclusively, and 

farmers were assured of sale of produce within a relatively short period postharvest. 

Fruit could be allowed to remain on trees until fully ripe, attaining optimum 

development of color, aroma and taste. The current state of produce marketing and 

distribution, separating producers and consumers by considerable distances, has 

necessitated alterations in horticultural practices, particularly harvest and postharvest 

management. Peaches and apricots, both climacteric fruits, present a challenge in 

postharvest storage. Fruit must therefore be picked early enough to ensure sufficient 

shelf life during storage and transport until they reach the final consumer. While 

advantageous to commercial viability of produce, this practice is detrimental to fruit 

development and attainment of optimum quality, offering validity to the consumer 
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complaints (Kader and Mitchell 1989b; Manolopoulou and Mallidis 1999; Kader and 

Barrett 2005). 

Historically, peaches and apricots produced in the Northeast have not enjoyed the 

same scale of interest relative to other producing states (e.g. California) and other local 

fruits (e.g. apples). This can be attributed to a significant number of environmental and 

socio-economic challenges involved in stone fruit cultivation in this region. These 

make both fruits less attractive options for local farmers (Merwin 1994; Hoying and 

others 2005; NYS Climate Office). 

 

Recent developments may indicate a change. These include the USDA/NYSDAM 

Specialty Crops Block Grant Program – born out of the Specialty Crops 

Competitiveness Act of 2004 – which aims to enhance the competitiveness of 

specialty crops, a classification under which these fruits fall (NYSDAM 2010; USDA 

AMS 2012). Other supportive trends include the Buy Local Campaign (NYSDAM 

2012), Community Supported Agriculture (USDA NAL 2012), and food trends 

promoting consumption of fresh and minimal processed foods. The greatest proponent 

for public attention is the ever-increasing evidence of the various health benefits of 

fruits and vegetables (Kader and Barrett 2005; Sanchez-Moreno and others 2006; 

Sloan 2010; USDA HHS 2011). Peaches and apricots have been found to contain 

significant amounts of phenolic and carotenoid compounds and therefore have great 

marketing potential as sources of recommended healthful components – antioxidants 

and vitamin A (Gil and others 2002; Ruiz and others 2005a; Ruiz and others 2005b; 

Vizzotto and others 2006; Dragovic-Uzelac and others 2007). 
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Geography and climate of New York State 

New York State (NYS) has a land area of 128,397 square kilometres with the major 

portion of the state lying between latitudes 42° and 45° N and longitudes 73° 30' and 

79° 45' W. Notable highland regions are the Adirondacks in the northeast and the 

Appalachian (Southern) Plateau in the south. The state contains and is bordered by a 

number of lakes, including the Great Lakes on the Canada-United States border, Lakes 

Champlain and George in the east; St. Lawrence River, Lake Ontario, and Lake Erie in 

the north and west. The Finger Lakes – named for their resemblance to fingers 

extended from a hand – are found in the western part of upstate New York and include 

Canandaigua, Keuka, Seneca, Cayuga and Skaneateles (NYS Climate Office). This 

study was conducted with fruit grown in this region. 

 

The moderating effect of these bodies of water on temperature, aptly called the ‘lake 

effect’, plays an integral role in agriculture in this region. In the fall season, lake 

waters cool more slowly than the land. This reduces the cooling of the atmosphere at 

night on land, delaying the occurrence of freezing temperatures and lengthening the 

growing season for freeze-sensitive crops. The highlands also aid in mitigating the full 

effect of southbound cold fronts from the north. On the other hand, the waters warm 

slowly in spring, reducing atmospheric warming in neighbouring land areas. This 

phenomenon retards plant growth and allows freeze-sensitive crops to reach critical 

early stages of development when the risk of freeze injury is minimized. This also 

implies the lengthening of the cold season and possible fluctuations in early spring, 

posing a threat to early blooming fruits, such as the fruits in question (NYS Climate 

Office; Westwood 1993; Layne and others 1996). 
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Summers tend to be humid in this region, creating favorable conditions for pests and 

diseases whose agricultural damage is exacerbated by harsh winter conditions that 

weaken tree structure and integrity (Westwood 1993). Average orchard lifespan for 

peach in NYS is about 15 years, mainly due to winter damage leading to Cytospora 

canker (Hoying and others 2007). The difficulties in finding suitable varieties that can 

survive in or adapt to this climate and cost of disease-resistant varieties coupled with 

the uncertainty of good yield and monetary gain make investment in and cultivation of 

these fruits unpopular (Lamb and Stiles 1983; Mehlenbacher and others 1990; Merwin 

1994). 

 

Due to the aforementioned issues, breeding programmes have been aimed mainly at 

climatic adaptation – instilling a longer chilling period and a slower response to 

warmth and subsequent bud break (Anderson and Seeley 1993; Layne 1996; Layne 

and others 1996). One of the successes is the ‘Redhaven’ peach, cultivated widely in 

NYS due to its cold hardiness (Scorza and Sherman 1996; Monet and Bassi 2008). 

The work of Richard Layne at the Harrow Research Centre in Ontario, Canada, 

yielded a number of hardy apricot varieties, including ‘Harlayne’, ‘Harogem’ and 

‘Hargrand’, which have fared well in NYS given the similarity in climate (Lamb and 

Stiles 1983; Layne and others 1996). Other varieties grown in NYS, with varying 

degrees of productivity and hardiness, are the peaches ‘Babygold 5’, ‘Glohaven’ and 

‘Harrow Beauty’, and apricots ‘Vivagold’, ‘Harlayne’ and ‘Harcot’ (Lamb and Terry 

1973; Lamb and Stiles 1983; Brown and others 1986). 
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Physiology 

The peach and apricot stem from the order Rosales, family Rosaceae and the genus 

Prunus L. Under this classification, peaches belong to the subgenus Amygdalus while 

apricots fall under subgenus Prunophora, section Armeniaca (Layne and others 1996; 

Bassi and Monet 2008; ITIS 2012a; ITIS 2012b). The trees are deciduous and fruits 

classified as drupes due to the hard, lignified stone (pit) derived from the ovary wall of 

the flower (Westwood 1993). Peach flowers are pink and apricot flowers white, while 

both fruits are in various shades ranging from white to yellow and orange. Young 

fruits start out green (ground color), developing into variety-dependant shades with 

maturity and, with some varieties, attaining a red blush on the portion of the surface 

exposed to the sun. Although visually similar, peaches may be distinguished from 

apricots by the presence of pubescence (fuzz) on their skin (Mehlenbacher and others 

1990; Okie 1998; Scorza 2005). 

 

Fruit may be classified according to ripening date (for peaches, relative to ripening 

date of the variety ‘Elberta’), color (peel, flesh), firmness (high, medium, low 

firmness; melting flesh, non-melting flesh), adhesion of pit to flesh (clingstone, 

freestone), shape (oblong, elliptical, flat) and eating quality (poor, fair, good, 

excellent). Fruits may also be classified as low, medium or high acid cultivars (Okie 

1998; Manolopoulou and Mallidis 1999). Citric and malic acid are the predominant 

acids in both fruits but relative quantities vary according to variety and stage of 

ripening (Kader and Mitchell 1989b; Wang and others 1993; Aubert and Chanforan 

2007). Sucrose, glucose and fructose are the main sugars, with sucrose dominant, and 
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increase in concentration with ripening as starch breaks down (Vizzotto and others 

1996; Drogoudi and others 2008). 

 

Cultivation 

Site selection and management 

Peach and apricot trees do well in light to medium-textured, well-drained gravelly or 

sandy loam soils with moderate fertility, but fare badly in poorly-drained or 

waterlogged soils. Under wet conditions, trees are more susceptible to diseases such as 

Phytophthora root rot. Tile drainage or planting on raised beds may be used to 

improve tree survival, growth, and fruiting at marginal sites. Excessively dry or 

droughty conditions may increase the frequency and cost of irrigation. When required, 

fertilizer can be added to soils of low to moderate fertility; older trees usually require 

only nitrogen fertilizer. Highly fertile soils may result in excessive tree growth 

(causing shading in the lower and interior portions of trees) and undue vigour which 

can contribute to susceptibility to disease, poor fruit quality and reduced productivity 

of the tree in subsequent years (Lamb and Stiles 1983; LaRue 1989; Lockwood and 

Striegler). 

 

Rootstocks 

Rootstocks are selected for their positive influence on yield and fruit quality. For 

cultivation in the Northeast, rootstocks are graded on their cold hardiness, disease and 

pest resistance. Additional advantages include an ability to withstand unfavorable soil 

conditions (pH extremes, poor drainage, waterlogging). Apricot scions generally fare 

well on peach rootstocks, and the most common for both fruit trees are ‘Lovell’, 
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‘Bailey’, ‘Nemaguard’ and ‘Blenheim’ (apricot). A protective coating of white latex 

paint can be applied on trunks to prevent injury caused by temperature fluctuations 

(Yoshikawa and others 1989; Merwin 1994; Andersen and others 2005; Lockwood 

and Striegler). 

 

Training 

The plants require appropriate structuring and orientation to allow for the access and 

penetration of sunlight into the canopy. This improves color development and air 

circulation, reducing the risk of diseases like brown rot (Monilinia sp.) and perennial 

canker (Leucostoma sp.). The best time to train trees is at a young age, when plants 

limbs are more pliable and amenable to restructuring. The most predominant shape for 

peach and apricot trees in the Northeast is the open-center/vase system, with a scaffold 

arrangement of 4 scaffold branches with 4 bifurcations. This system involves heavy 

pruning and a limit to tree height, which has repercussions on survival, hardiness and 

yield of tree/orchard but gives good fruit size. The perpendicular-v is a variation that 

allows for greater density, color and crop value (Walser and others 1994; Hoying and 

others 2005; Hoying and others 2007). 

 

Pruning and thinning 

Pruning is done in spring and may also be conducted in summer, although the latter 

option may result in reduced biomass, lost carbohydrate stores and decreased winter 

hardiness in peaches (Hoying and others 2005; Hoying and others 2007). Thinning is 

usually performed by hand or with a pole, with fruits about 2-4 inches apart either at 

time of pit hardening or just after June drop, which in itself provides a natural form of 
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thinning. Thinning is considered the most expensive practice in production, due to the 

non-mechanized labour involved. Chemical thinning has been proposed as a less 

expensive alternative, but variability in results and the high risk of over-thinning – 

and, by extension, reduction of yield/crop value – makes it an unattractive option 

(Yoshikawa and Johnson 1989; Ingels and others 2001; Osborne and Robinson 2008). 

 

Pests and diseases 

Pests of peaches and apricots, targeting different parts of the tree and fruit, include the 

codling moth (Cydia pomonella), peachtree borer (Synanthedon exitiosa), peach twig 

borer (Anarsia lineatella) and European red mite (Panonychus ulmi). Plum curculio 

(Conotrachelus nenuphar) is of great economic importance in the Northeast as it 

thrives in this climate, being native to regions east of the Rocky Mountains.  

Knowledge of pest life history and characteristics (visual appearance, life cycle, time 

of year, number of generations, overwintering period, interaction with host), record 

keeping (insect sightings, trap catches), conversance with necessary information 

(region-specific insect events, thresholds) and keeping abreast of relevant literature 

(e.g., Scaffolds Fruit IPM Newsletter) are necessary in determining when and how to 

control for pests (Lamb and Stiles 1983; Barnett and Rice 1989; Westwood 1993). The 

opossum (Didelphis virginiana), raccoon (Procyon lotor) and various species of birds 

are larger pests that may directly or otherwise negatively impact yield (Merwin 1994). 

 

Similar to other stone fruits, peaches and apricots are susceptible to several diseases. 

Fungal diseases such as brown rot (Monilinia fructicola and M. fructigena for peach, 

M. laxa for apricot) affect blossoms and fruit and are exacerbated by rainfall. 
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Waterlogged conditions and high humidity can also result in Phytophtora root and 

crown rot (Phytophtora spp.) and powdery mildew (Sphaerotheca pannosa, 

Podosphaera oxycanthae or P. Leucotricha) respectively. Bacterial (Pseudomonas 

syringae) and fungal (Cytospora spp.) cankers threaten root and tree integrity and can 

lead to plant death. Plum pox (Sharka virus) is considered the most serious diseases of 

these stone fruits, as infestation requires the destruction of all possibly infected trees in 

an area, resulting in significant economic losses (Lamb and Stiles 1983; Teviotdale 

and others 1989; Mehlenbacher and others 1990; Westwood 1993; Scorza 2005). 

 

Pest and disease control may utilize conventional, organic or integrated pest 

management (IPM) methods, depending on cultural, financial and environmental 

considerations (Cornell University Cooperative Extension, 2011). 

 

Harvest 

In the Northeast, peaches and apricots are two of the earliest tree fruit species to 

bloom in the spring (March or April). The harvest period runs from July to August for 

apricots and August to September for peaches, varying slightly from year to year.  

Optimum harvest time is based primarily on visual maturity indices such as size, shape 

and color, along with previous experience. Physical (firmness) and chemical (soluble 

solids content, titratable acidity and ethylene production) indices may also be used 

(Kader and Mitchell 1989a; Mehlenbacher and others 1990; Okie 1998). In practice, 

actual assessment of maturity tends to be arbitrary as it is left to the discretion of 

onsite labour. For both fruits, objective and accurate gauges of maturity are needed. 
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Time of harvest, postharvest treatment and storage depend on the intended purpose or 

target market of the fruits. Fruits intended for wide-range distribution are harvested 

earlier and stored at near-freezing temperatures for transport and distribution, while 

fruits meant for local markets can be harvested later. With the latter group, taste, 

juiciness, flavor and the aroma of fruit are more pronounced but shelf life is 

significantly reduced. Contrarily, harvesting fruit earlier sacrifices aesthetic and eating 

quality for longer shelf life. Nevertheless, the climacteric nature of both fruits 

typically necessitates harvesting prior to attaining optimum quality, regardless of 

intended use (Kader and Mitchell 1989b; Manolopoulou and Mallidis 1999). 

 

Fruits are harvested by hand to prevent bruising, a practice also made possible by the 

small commercial quantities produced in this region. Harvesting should be selective as 

rate of ripening is influenced by position on tree, although labour costs may influence 

this practice significantly. The fruits are cooled shortly after picking to extend shelf 

life. Thereafter, they are graded, sorted and stored at low temperatures (0-1 ºC) under 

high humidity (90-95%) to discourage further ripening by inhibiting respiration and 

ethylene production. Postharvest treatment is especially pertinent for apricots given 

their susceptibility to moisture loss and shrivelling. Controlled and modified 

atmosphere storage are two options to prolong shelf life of these fruits (Kader and 

Mitchell 1989b; Manolopoulou and Mallidis 1999; Siddiq 2006a; Siddiq 2006b). 

 

Typical shelf life is 2-4 weeks for peaches and 1-3 weeks for apricots. During 

harvesting, transport and storage, peach and apricot fruit may suffer physiological 

disorders such chilling injury, pit burn (apricots), wounding (bruising), increased 
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respiration and ethylene production all of which can reduce shelf life and lower 

commercial value of produce (Kader and Mitchell 1989a; Westwood 1993; 

Manolopoulou and Mallidis 1999; Siddiq 2006a). 

 

Processing 

Peaches and apricots are consumed fresh, dried and canned, and are also used in the 

manufacture of puree, jam, jelly and beverages (Manolopoulou and Mallidis 1999; 

Siddiq 2006a, Siddiq 2006b). Processing serves as a good means to add value to these 

products, as their climacteric nature limits the amount of time within which they may 

be stored and sold fresh. In the USA, peaches are predominantly consumed fresh 

(52%), canned (38%), frozen (8%) and dried (2%). Apricots, on the other hand, are 

largely utilized as dried products (64%) with other popular forms being canned (16%), 

fresh (15%) and frozen (5%) (USDA ERS 2011). The large size, vibrant color and 

blush coupled with an appealing sugar-to-acid balance may explain why peaches are 

preferentially consumed fresh. 

 

Different requirements exist for fruit channelled into the various products. For fresh 

markets, emphasis is placed on large size, good color (uniform for apricots and with a 

bright blush for peaches), freestone, firm flesh, aroma, uniform ripening and good 

overall appearance (absence of cracks and blemishes) (Mehlenbacher and others 1990; 

Okie 1998). Firmness and color are important attributes in canned or dried goods and 

fruit for such products are harvested early, while still firm in a bid to ensure shape 

retention after processing. Other desired characteristics are uniform shape, regular size 

and good sugar-to-acid ratio. Slices of fruit, peeled or otherwise, are canned in light 
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(20 ºBrix), medium (30 ºBrix) or heavy (40 ºBrix) syrup. Clingstone peaches are 

preferred for canning given their ability to retain texture and flavor (Layne and others 

1996; Siddiq 2006a; Siddiq 2006b). 

 

For dried fruit, color is a critical factor as it influences the perception, appeal and 

commercial potential of the product. To achieve this, there has been a reliance on 

sulfur dioxide in the manufacturing process due to its antibrowning (enzymatic and 

non enzymatic) and preservative and textural properties it lends to dried fruit. 

However, with a rising incidence of sulfite sensitivity, as well as trends towards 

organic, all natural and additive free products, there is an increasing need for 

alternative means of production (Potter and Hotchkiss 1998; Manolopoulou and 

Mallidis 1999). So far, studies conducted using ascorbic acid and blanching variations 

have been moderately successful at best, often not faring favorably in shelf life studies 

or at elevated temperatures. There is still an opening for an effective sulfite-free 

drying treatment (Manolopoulou and Mallidis 1999; Somogyi 2005). 

 

Fruit intended for jam, jelly and beverage production may be harvested later because 

softening, bruising and blemishes do not detract substantially from the raw product. 

Preferably, fruit should have good sugar-to acid balance, with food flavor and aroma 

(Horvath-Kerkai 2006). Peach and apricot puree may be used as starting materials for 

secondary products or considered products in themselves for use as fillings, baby food 

or as an oil substitute (Siddiq 2006a; Siddiq 2006b). 
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Juice is produced on a small scale in some part because of the difficulty of juice 

extraction and clarification due to high pulp and suspended solids content. Efforts to 

improve yield and clarity involve the use of enzymatic liquefaction and decanter 

centrifuges. Fruit beverages are therefore often found in the form of nectars (diluted 

juice beverages), pulpy juices or ingredients in less turbid beverages produced in 

combination with other fruits (Beveridge and Harrison 1995; Beveridge and Rao 1997; 

FDA 2003; McLellan and Padilla-Zakour 2005; Siddiq 2006b; Santin 2008). Jam 

remains a popular product as the production process is simple and requires little 

financial and mechanical input. With changing consumer preferences, there is growing 

demand for lower sugar or calorie versions of these. The challenge here is the 

maintenance of taste, consistency and color with reduction of added sugar or 

replacement with sugar substitutes (Somogyi 2005; Siddiq 2006a; Siddiq 2006b). 

 

Although processing waste may be used as animal feed and kernels channelled into oil 

production, there is ongoing research into making this industry more environmentally 

sustainable by utilizing by-products as sources of dietary fibre and biofuel (Iordanidou 

and others 1999; Monspart-Senyi 2006). 

 

Health and nutrition 

Peaches and apricots are rich reserves of healthful compounds, mainly polyphenolics, 

carotenoids and antioxidants, as well as vitamin C, iron, fibre and potassium. Levels of 

these nutrients vary according to variety, region of cultivation, fruit maturity, climatic 

and environmental factors (Gil and others 2002; Dragovic-Uzelac and others 2007). 

Additionally, bitter apricot kernels contain the chemical laetrile, an amygdalin 
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derivative reputed to have anti-cancer properties but also associated with stomach 

upsets and cyanide production (Femenia and others 1995; Gomez and others 1998). 

 

Polyphenolics 

Phenolics are aromatic compounds with one or more hydroxyl substituents. These 

secondary metabolites are widely distributed in plant tissue and involved in a range of 

functions, acting as part of the plant’s defence system and playing vital roles in color 

(pigmentation and browning) and taste (astringency) of fruit. They can be categorized 

into three major groups: phenolic acids, flavonoids and tannins. Phenolic acids include 

hydroxycinnamic, hydroxybenzoic and hydroxyphenylacatic acids, the first of which 

is relevant to the fruits of interest. Flavanoids are the largest and most important 

phenolic subgroup in peaches and apricots, and are classified as flavan-3-ols, flavonol 

glycosides or anthocyanins, the last of which lends pink, red to violet color to fruits 

and vegetables. The presence of tannins has not been reported in either fruit (Tomas-

Barberan and others 2001; Kim and Lee 2002; Shahidi and Naczk 2004). 

 

Major phenolic compounds in both fruits are catechin, epicatechin, chlorogenic acid, 

neochlorogenic acid and derivatives of cyanidin and quercetin (Tomas-Barberan and 

others 2001; Andreotti and others 2005; Dragovic-Uzelac and others 2005; Ramina 

and others 2008). These compounds have been found in much greater concentrations 

in the peel of both fruits than in the flesh; anthocyanins, located mainly in the skin, 

have been detected in small quantities specifically in flesh tissue near the stone in 

peaches (Tomas-Barberan and others 2001; Gil and others 2002; Ruiz and other 

2005a). Dragovic-Uzelac and others (2007) reported that phenolic compounds in 
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apricots are predominant in the initial and early ripening stages of development, but 

decrease with maturity. Studies have yet to prove strong and consistent correlations 

between color and phenolic content. 

 

Carotenoids 

Carotenoids are tetraterpenoid (C40) compounds composed of isoprenoid (C8) units. 

They are regarded as the most widespread pigments in nature and responsible for 

colors in shades ranging from yellow to orange and red. Animals, unable to synthesize 

carotenoids, obtain them from food consumed. These provide nutrition and color, e.g., 

bird feather color and egg yolk (Rodriguez-Amaya 1999; Fraser and Bramley 2004; 

Melendez-Martinez and others 2006; Britton and Khachik 2009). 

 

Carotenoids detected in peaches and apricots include carotenes α, β and γ-carotene and 

xanthophylls (mono- or dihydroxylated carotenoids) zeaxanthin, lutein, β-

cryptoxanthin and violaxanthin, with β-carotene the predominant carotenoid. 

Proportions differ significantly between varieties, and varietal flesh color can be an 

indication of carotenoid content. In peaches, yellow-fleshed fruit was found to possess 

greater carotenoid content as compared to white-fleshed ones  (Gil and others 2002; 

Vizzotto and others 2006) while in apricots, correlations have been found between 

color, a, of flesh (r=0.93) and hue angle of peel (r=0.84) and carotenoid content (Ruiz 

and others 2005b). Lycopene has been detected in some peach and apricot varieties 

(Katayama and others 1971; Khachik and others 1989; Ruiz and others 2005b). β-

carotene is present throughout fruit development while the presence and 

concentrations of other carotenoids, particularly xanthophylls, has been found to alter 
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from carotenogenesis through fruit development and maturity (Katayama and others 

1971; Breithaupt and Bamedi 2001). Carotenoid content has been reported to increase 

with increasing ripeness, with concentration in peel being 2-3 times higher than in 

flesh (Gil and others 2002; Ruiz and others 2005b; Dragovic-Uzelac and others 2007). 

 

Antioxidants 

Similar to other fruits receiving attention for their nutraceutical potential, the putative 

health benefits of peaches and apricots are accredited mainly to their antioxidant 

content. Antioxidants are compounds active against free radical species (oxidative by-

products from metabolic processes) that damage DNA, proteins and lipids. Although 

research is largely on-going and, in some cases, inconclusive or even contradictory, 

antioxidants are believed to work against the incidence of cardiovascular diseases, 

cancers and aging (Block and others 1992; Ames and others 1993). 

 

Antioxidant properties of peaches and apricots are attributed to both phenolic and 

carotenoid compounds. The chemical structures of both groups (presence of 

conjugated double bonds) allows for the acceptance/donation of electrons from/to free 

radicals (singlet oxygen, superoxide, hydrogen peroxide, hydroxyl peroxide), retarding 

or terminating free radical mechanisms. In both fruits, antioxidant capacity is derived 

from hydrophilic (phenolic) and lipophilic (carotenoid) components, with the former 

being the primary contributor (Prior and others 2003; Wu and others 2004; Drogoudi 

and others 2008). Gil and others (2002) found that white-fleshed peaches possessed 

higher antioxidant capacity as compared to yellow-fleshed ones, while Drogoudi and 

others (2008) found such correlations to be weak in apricots. 
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Although more information is required on the antioxidant activity of specific 

polyphenolic compounds, lycopene has been identified as the main carotenoid 

antioxidant, serving as an efficient singlet oxygen quencher due to its open ring 

structure, with β-carotene displaying antioxidant capabilities to a lesser degree (Paiva 

and Russell 1999; Stahl and Sies 2003; Sass-Kiss and others 2005). Chlorogenic and 

neochlorogenic acid have been found to be chemopreventive towards breast cancer 

(Noratto and others 2009), β-carotene has been suggested to have a preventive effect 

against lung and colorectal cancer (Fraser and Bramley 2004) and lycopene linked to a 

reduced risk of cancer and heart disease (Rao and Agarwal 2000). 

 

Vitamin A 

Peaches and apricots are also sources of vitamin A precursors: carotenoids β-carotene, 

α-carotene and β-cryptoxanthin. Vitamin A deficiency can lead to xerophthalmia, 

blindness and premature death; it remains a leading cause of child mortality in 

developing countries (Rodriguez-Amaya 1999; Fraser and Bramley 2004) and is often 

not consumed in adequate quantities by most Americans (Moshfegh and others 2005). 

Provitamin A compounds are cleaved to produce retinal which is converted to retinol, 

the storage form of vitamin A, in the small intestine by intestinal mucosa. Retinol may 

thereafter be converted into vitamin A for vision and stored in the liver, or retinoic 

acid, which aids in skin health and bone growth. Zeaxanthin and lutein, although 

lacking provitamin A properties, accumulate in the macular of the eye and protect 

against age-related macular degeneration (Landrum 2001; Fraser and Bramley 2004). 
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A recommended dietary value of 300-600 µg retinol equivalents (RE) for children, 

900-1300 µg RE for women, and 900-1200 µg RE for men, equivalent to the 

consumption of 100-200 g per day of a fruit or vegetable containing high carotenoid 

content, has been suggested and upper limits set to prevent hypervitaminosis. Peaches 

and apricots have been described as ‘good’ sources of vitamin A, possessing 10-19% 

of daily value (Ruiz and others 2005b; NIH 2006; USDA ARS 2011; USDA FNIC 

2011). However, given the multifactorial nature of absorption and conversion of 

carotenoids from different food sources, Scott and Rodriguez-Amaya (2006) 

suggested that such assertions be treated with caution. 

 

Bioavailability and bioactivity 

On-going research in this area aims at identifying and quantifying phenolic and 

carotenoid compounds in different varieties and evaluating their antioxidant and 

vitamin A bioavailability and activity in vitro as well as in vivo (Fraser and Bramley 

2004; Shahidi and Naczk 2004; Van Buggenhout and others 2010). Further 

information is also sought on how climatic, cultivation, harvesting, storage and 

processing conditions affect the concentration and availability of these nutrients. 

 

Food safety 

Common microbiological considerations with fresh stone fruits include contamination 

by bacteria Escherichia coli O157:H7, Salmonella and Staphylococcus. These are 

primarily due to soil and human contact and, as they are restrained to the fruit 

surfaces, maintenance of intact skin during and after harvest, and cleaning before 

consumption, is adequate treatment. Moulds Rhizopus, Aspergillus and Penicillum 
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present quality and commercial concerns in fresh and processed products. In processed 

products, handling under sanitary conditions and heat treatment coupled with high 

acid content and low water activity are sufficient to render most peach and apricot 

products safe and shelf stable. The low pH of these fruits (~ 3.5) protects against 

Clostridium botulinum growth but may allow for growth of aciduric yeasts and moulds 

(Worobo and Splittstoessser 2005; Kalia and Gupta 2006). 

 

A cause for concern with stone fruits and their products is allergenicity. Food allergies 

linked to stone fruits have been widely observed and documented in the European and 

Mediterranean population with reactions ranging from mild (local) to severe 

(systemic) (Brenna and others 2000; Brenna and others 2005; Oussama and others 

2007). The unique feature of this phenomenon is the observed allergenic cross-

reactivity among fruits of the family Rosaceae, and between these and the pollen of 

birch (Betula sp.) trees; such linkage between digestive and respiratory allergens is 

uncommon (Pastorello and others 1994). It also significantly increases the risk of 

allergic episodes since an individual, once sensitized to the allergen from one source, 

may be susceptible to allergic reactions by consumption or inhalation of related fruit 

or pollen. The exact mechanism of cross-reactivity is still unknown, but some 

headway has been made in identifying and characterising relevant proteins:  Pru p 1, a 

PR-10 14 kDa protein, and Pru p 3, a PR-14 9 kDa non specific lipid transfer protein 

(nsLTP) highly resistant to extremes of temperature and pH (Pastorello and others 

1999; Hoffmann-Sommergruber 2002; Immunocap 2009). 
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Significant research has been conducted on these two allergens in the Mediterranean 

where they present a problem, and Japan, for scientific interest and as a proactive 

measure. Although most American varieties originate from Europe and some have 

proven to have high concentrations of these allergens no significant medical issues 

have been reported till date (Oussama and others 2007). This may be due to a genetic 

dilution of varieties or a less susceptible consumer population. 

 

Aim of project 

Given the challenges involved in the cultivation of peaches and apricots in Northeast, 

most research on available varieties has revolved around improving climatic 

adaptation, disease and pest resistance. The nutritional implications of these 

modifications have not received adequate attention, although some work has been 

conducted on physical, chemical and sensory characteristics (Lamb and Terry 1973; 

Lamb and Stiles 1983; Brown and others 1986). Available literature is from major 

producing states such as California and it is therefore necessary to determine how the 

unique conditions in the Northeast impact varietal traits and nutrients. 

 

With current trends for increased consumption of fruits and vegetables and increased 

awareness about health complications and diseases linked to poor diet choices, 

consumers are looking for good quality products with proven health benefits. The 

primary aim of this research project was therefore to provide information on the 

quality and nutraceutical value of peach and apricot varieties commercially available 

in the Northeast and to increase knowledge about the health benefits of local varieties 

by assessing their phenolic, carotenoid and antioxidant content in fresh and processed 
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form. Qualitative and quantitative data obtained were intended to contribute to the 

appeal and marketability of these local varieties. 

 

The following hypotheses were tested in the course of this project: 

 Peach and apricot varieties vary in phytochemical content and composition. 

 Fruit maturity at harvest and postharvest storage influences nutritional content. 

 Peach and apricot varieties and their beneficial compounds respond differently 

to processing treatments.  

These were addressed over a course of three harvest seasons: 2009, 2010 and 2011. In 

total, ten peach and five apricot varieties and four categories of processed products 

were evaluated. In 2009 and 2010, varieties were assessed on the basis of their 

physical (color, weight, size, firmness, edible portion), chemical (soluble solids, pH, 

titratable acidity, moisture content) and phytochemical (phenolic, carotenoid and 

antioxidant) properties. Athough summarized in their respective chapters, detailed 

information on varietal physical and chemical parameters, as well as pictures, are 

presented in the appendix (Illustrations A.1 to A.4 and Tables A.1 to A.8).  

 

Of these, three peach and three apricot varieties were selected and evaluated in 2010 

for their phytochemical or economic importance and used to study the effects of 

maturity at harvest and postharvest storage on quality indices and phytochemical 

content. In the same year, the fruit were utilised in the manufacture of typically 

processed fruit products – canned fruit, dried fruit, puree, nectar and jam – to study the 

influence of formulations and processing conditions on nutritional content. The final 
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harvest season (2011) focused on improving the manufacturing processes and products 

based on experiences from the previous year. One variety of each fruit type was used 

for this process and fresh fruit evaluated as in previous years. 

 

The results of the study are presented in this manuscript. The second chapter focuses 

on the results of varietal, seasonal and maturity at harvest studies for peaches in 2009 

and 2010. The third chapter deals similarly with apricots. In the fourth chapter and 

fifth chapters, observations and results for canned and dried fruit from the 2010 and 

2011 seasons are reported. The 2011 jam and nectar study is covered in the sixth 

chapter. Chapters are presented as individual papers for submission to relevant 

journals. 
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CHAPTER 2: PHENOLIC, ANTIOXIDANT AND CAROTENOID CONTENT 

OF SELECTED NORTHEAST PEACH VARIETIES AND THE EFFECT OF 

MATURITY AT HARVEST AND STORAGE ON THESE COMPOUNDS.  

 

Introduction 

There is growing evidence to support claims of the healthful benefits of fruit 

consumption (Kader and Barrett 2005; Sanchez-Moreno and others 2006; Sloan 2010; 

USDA HHS 2011). The peach, Prunus persica, has been found to contain significant 

quantities of phenolic and carotenoid compounds and is therefore considered a notable 

source of antioxidants and vitamin A, both recommended for their positive impacts on 

health (Tomas-Barberan and others 2001; Gil and others 2002; Vizzotto and others 

2006). Antioxidants, which include both phenolic and carotenoid compounds, are 

understood to reduce the risk of cardiovascular diseases and some cancers while 

carotenoids, particularly those with provitamin A potential, play a role in vision 

(Ames and others 1993; Fraser and Bramley 2004). 

 

The main phenolic compounds identified in peaches include flavan-3-ols (catechin, 

epicatechin), cinnamic acids (neochlorogenic acid, chlorogenic acid), flavonol 

glycosides (quercetin-3-glycosides, rutin) and anthocyanins (cyanidin derivatives) 

(Tomas-Barberan and others 2001; Gil and others 2002; Shahidi and Naczk 2004; 

Andreotti and others 2006). Major carotenoids include carotenes (alpha-, beta- and 

gamma-carotene) and xanthophylls (lutein, zeaxanthin, violaxanthin and beta-

cryptoxanthin) (Katayama and others 1971; Breithaupt and Bamedi 2001; Vizzotto 

and others 2006). The presence and quantities of these are subject to varietal, climatic, 
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horticultural and plant developmental influences as well as the portion of fruit 

analyzed (Chang and others 2000; Gil and others 2002; Ramina and others 2008). 

In the United States, peach production is based mainly in California (approximately 

80%), with Georgia and South Carolina rounding up the top three; the industry has 

however experienced a decline in recent years (USDA ERS 2011; USDA NASS 

2011). The Northeast USA is also a producer, albeit of limited quantities. Cultivation 

in this region is fraught with challenges due to adverse climatic conditions in coupled 

with the species’ inherent restrictions to climatic adaptation (Merwin 1994; Layne 

1996; Hoying and others 2005; NYS Climate Office). Breeding programs have 

therefore been aimed at improving acclimatization, pest and disease resistance and 

research on resultant produce focused on aesthetic and sensory characteristics, with 

little data available on the impact of these modifications on inherent bioactive 

compounds (Brown and others 1986; Anderson and Seeley 1993; Layne 1996). 

 

In an era with heightened concern and interest about the healthful benefits of various 

foods, the marketability of fruit and fruit products is increasingly less dependent on 

their taste and appearance, with greater emphasis placed on their nutritive and 

nutraceutical potential. The aim of this study was therefore primarily to evaluate 

phenolic, antioxidant and carotenoid content of a selection of peach varieties currently 

cultivated in the Northeast. Conducted over a two-year period, it also examined the 

effect of seasonal variations, fruit maturity and postharvest storage on bioactive 

compounds. The information obtained will contribute to a more complete picture of 

peach production in the United States beyond the noted powerhouses of the West and 

Southeast. 
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Materials and Methods 

Harvest 

The study was conducted over two years. Ten yellow-fleshed peach varieties were 

sourced from local producers in 2009 and 2010. Of these, three varieties were 

selectively harvested at two developmental stages in 2010 – ‘commercial ripe’ and 

‘tree ripe’ – with the latter occurring 6 days after the former. Fruit harvested at 

commercial ripe were stored for four weeks then analysed as a third treatment – 

storage. 

 

Commercial ripe represented fruit harvested early with adequate firmness to withstand 

handling, transport and storage conditions until it reaches the final consumer; tree ripe 

represented fruit intended for local market and almost immediate consumption (ready-

to-eat). Harvests were mainly conducted in line with recommendations of and 

practices by local farms and fruit harvesting personnel. Fruit was considered 

commercially ripe when it had attained full color and size development while tree ripe 

fruit had decreased firmness and could easily be abscised from the tree. All fruit was 

harvested by hand directly by or under the supervision of the same researcher (to 

reduce bias) and stored at 0 - 1 °C and relative humidity of 90 - 95% until analysis. 

 

Quality indices 

Analyses were performed in triplicate, allotting 5 fruit per replicate. Color parameters 

were measured with a HunterLab UltraScan XE (Hunter Associates Laboratory Inc., 

Reston, VA) and firmness with a TA-XT2 Texture Analyzer (Texture Technologies 

Corp., Scarsdale, NY) using a compression test conducted with a 50 mm cylindrical 
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probe. Weight and cross-sectional diameter were also recorded. Soluble solids (Leica 

Auto ABBE refractometer; Leica Inc., Buffalo, NY), pH (Accumet Basic AB15 pH 

meter; Fisher Scientific, Waltham, MA) and titratable acidity in malic acid equivalents 

(manual titration and Mettler Toledo 20 compact titrator; Mettler-Toledo Inc., 

Columbus OH) were measured from juice extracted using a food processor. Moisture 

content values were obtained from the weight differences before and after 

lyophilisation to constant weight. Homogenized lyophilized fruit was packaged in 

moisture proof bags and stored at 0 ˚C protected from light until antioxidant, phenolic 

and carotenoid analyses. 

 

Phenolic analysis 

Extraction 

Extraction of phenolic compounds followed the method described by Kim and Lee 

(2002). Ten mL 80% methanol was added to 1 g of freeze-dried sample, headspace 

flushed with nitrogen and samples sonicated (Branson 200; Fisher Scientific, 

Waltham, MA) in ice for 20 min, shaking midway. Samples were then centrifuged at 

10,000 rpm for 20 min at 4 °C (Sorvall RC-5B Centrifuge; ThermoScientific, 

Waltham, MA). Supernatant was decanted into a 25 mL volumetric flask and the 

extraction procedure was repeated. Supernatants were combined and topped up to 25 

mL with 80% methanol then transferred into an amber glass vial. Vials were flushed 

with nitrogen, capped and kept at -30 °C until analysis. 
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Total phenolic content  

Procedures by Singleton and Rossi (1965) and Kim and Lee (2002) were used to 

determine total phenolic content. A 200 µL aliquot of phenolic extract was added to 

2.6 mL distilled deionized water (DDW) in a test tube; 200 µL of Folin-Ciocalteu 

phenol was added and the mixture left to stand at room temperature for 6 min. Two 

mL of 7% sodium carbonate solution was added and the mixture vortexed then left to 

stand for 90 min. Absorbance of final product was measured at 750 nm (Barnstead 

Turner spectrophotometer SP-830; Thermo Scientific) and expressed in mg gallic acid 

equivalents (GAE). 

 

HPLC phenolic analysis 

Qualitative and quantitative phenolic compounds analyses followed methods of Kim 

and Padilla-Zakour (2004) and Chantanawarangoon (2005). An Agilent/Hewlett 

Packard series 1100 (Agilent Tech., Palo Alto, CA) was used with a C18 reversed-

phase Symmetry Analytical column (250-mm x 4.6-mm, 5-μm; Water Corp. Milford, 

MA) and a Symmetry Sentry guard column (Water Corp. Milford, MA) of the same 

packing material. The thermostat was set at 25 °C and flow rate at 1 mL/min; the 

diode-array was set to monitor the wavelengths 280 (flavan-3-ols), 320 (cinnamic 

acids), 370 (flavonol glycosides) and 520 nm (anthocyanins). A linear solvent gradient 

was composed of a binary mobile phase system with solvent A, 0.1% phosphoric acid 

in HPLC grade water, and solvent B, 0.1% phosphoric acid in HPLC grade 

acetonitrile. Solvents were applied for 55 minutes as follows: 92% A/ 8% B at 0 min, 

89% A/ 11% B at 4 min, 65% A/ 35% B at 25 min, 40% A/ 60% B at 30 min, 40% A/ 

60% B at 40 min, 65% A/ 35% B at 45 min, 89% A/ 11% B at 50 min, 92% A/ 8% B 
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at 55 min; post-run was for 5 min. One mL of sample was filtered with a 0.45 µm 

nylon filter (Fisherbrand; Fisher Scientific, Waltham, MA), injected and analysed.  

 

Chlorogenic acid, catechin, epicatechin, rutin, cyanidin-3-glucoside and quercetin-3-

glucoside were identified using authentic standards (Sigma Aldrich, St. Louis, MO), 

while epigallocatechin, neochlorogenic acid, kaempferol-3-rutinoside were identified 

using retention time and spectra reported in related literature. Results were reported as 

mg or mg equivalents (eqv) of available standards, with neochlorogenic reported as 

chlorogenic acid eqv, kaempferol-3-rutinoside as kaempferol eqv, cyanidin-3-

glucoside as cyanidin eqv, epigallocatechin and unknown 1 as catechin eqv, and 

quercetin-3-glucoside, unknown 2 and 3 as quercetin eqv. 

 

Total antioxidant capacity assay 

The oxygen radical absorbance capacity (ORAC) assay, as described by Huang and 

others (2002) and Held (2005) was employed. Aliquots of 25 µL of phenolic extract, 

blank (75 mM phosphate buffer), and standardized dilutions (0 - 100 µM) of 6-

hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox; Sigma Aldrich) were 

pipetted in triplicate into a Costar 96-well black opaque plate (Corning Costar 

Corporation, Cambridge, MA) in a preset format. 150 uL of 0.004 µM sodium 

fluorescein solution was dispensed into each well and the plate inserted into a BioTek 

Synergy HT plate reader (BioTek Instruments, Winooski, VT). After a 30-min 

incubation at 37 °C, 25 µL of 2,2’-Azobis (2-amidinopropane) dihydrochloride 

(AAPH; Wako Chemicals, Richmond VA) was dispensed into each well. The plate 

was shaken for 10 sec and fluorescence measured at 1 min intervals over 1 hr at 485 
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nm excitation wavelength and 528 nm emission wavelength. Results were reported as 

µmol Trolox equivalents (TE). 

 

Carotenoid analysis 

A combination of methods by de Sá and Rodriguez-Amaya (2004), Craft (2005), and 

Kwasniewski and others (2010) was used for the extraction, HPLC identification and 

quantification of carotenoids. Ground-up freeze dried sample, 1 g, was reconstituted 

with DDW then extracted with 20 mL of 50:50 methanol/tetrahydrofuran and 10% 

(w/w) magnesium carbonate. Extracts were centrifuged at 6000 rpm for 10 min at 4 

°C, supernatant recovered and precipitate re-extracted. Supernatants were combined 

and transferred to a separatory funnel with 50 mL petroleum ether stabilized with 

0.2% butylhydroxytoluene (BHT) and 25 mL 20% sodium chloride solution. Upon 

phase separation, the petroleum ether fraction was collected and evaporated almost to 

dryness with a rotary vacuum (Buchi rotavapor R-114; Flawil, Switzerland) finishing 

under nitrogen gas. Aliquots were dissolved in 2 mL ethanol stabilized with 30 ppm 

BHT and samples filtered with a 0.2 µm PTFE filter (Millipore Millex; Billerica, MA) 

prior to injection. 

 

An Agilent series 1100 with a Zorbax XDB-C18 column (150 mm x 4.6 mm, 5 µm; 

Agilent Tech., Palo Alto, CA) fitted with a guard column of the same packing material 

was used. The thermostat was set at 23 °C and flow rate at 1 mL/min; the diode-array 

was set to monitor the wavelengths 450, 455, 470 and 475 nm. A gradient was set up 

with a binary mobile phase system of solvent A, 0.1% phosphoric acid in HPLC grade 

water, and solvent B, 0.1% phosphoric acid in HPLC grade acetone. Solvents were 
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applied for 35 min as follows: 30% A/ 70% B from 0 to 20 min, 0% A/ 100% B from 

20 to 30 min and 70% A/ 30% B from 30 to 35 min with a 5 min post-run. β-carotene, 

β-cryptoxanthin, zeaxanthin and lutein were identified and quantified using authentic 

reference samples (Sigma Aldrich) and astaxanthin used as an internal standard. 

Results were reported as µg or µg equivalents (eqv) of available standards. Total 

carotenoid content was derived by the summation of individual compound 

concentrations expressed in β-carotene equivalents. 

 

Statistical analysis 

Data was analysed with JMP 9.0 Statistical Software (SAS Institute Inc, Cary, NC). 

Tests included multivariate analysis, analysis of variance (ANOVA) at p < 0.01 and p 

< 0.05 and comparison of means with the Tukey Significant Difference test at 95% 

confidence interval. Data for bioactive compounds was reported per 100 g edible 

portion (flesh+skin) of fresh fruit. 

 

Results and discussion 

Varietal characterization 

There was significant variation in the harvest dates of varieties over the two years, 

presumably due to different weather conditions each year (Table 2.1). Varieties 

obtained were a mix of clingstone, semi-clingstone and freestone, as well as melting 

and non-melting flesh, with varietal characteristics observed largely corresponding 

with available literature (Okie 1998; Wheatley and Thuente 2001, Frecon and Ward 

2008). In both study years, ‘Redhaven’ peach was the earliest to ripen, in agreement 

with Okie (1998), and ‘Babygold 5’ the latest. 
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Table 2.1. Source, flesh adherence and harvest dates of evaluated Northeast peach 

varieties. 

Variety 
Source 

(Orchard) 
Flesh adherence  

to pit 

Harvest dates 

2009 2010 

Babygold 5 1 Clingstone Sept 8 Aug 29 

Bounty 2 Freestone Sept 7 Aug 29 

Harrow Beauty 2 Freestone Aug 24 Aug 29 

John Boy 2 Semi-clingstone Aug 24 Aug 17 

John Boy II 2 Freestone Aug 24 Aug 17, Aug 23 

PF 22-007 2 Freestone Sept 7 Aug 23 

PF 23 2 Freestone Aug 24 Aug 23, Aug 29 

PF Lucky 13 2 Freestone Aug 24 Aug 11 

Redhaven 3 Semi-clingstone Aug 14 Aug 4, Aug 10 

Vivid 2 Freestone Aug 20 Aug 10 
Contributing orchards: Orchard 1 (Geneva, NY), Orchard 2 (Phelps, NY); Orchard 3 (Geneva, NY). 

 

Quality indices 

Mean firmness, weight, cross-sectional diameter and edible portion percentage for the 

evaluated varieties, with ranges in parentheses, were 41.7 N (24.6 – 51.4), 184.7 g (96 

- 296), 70.1 mm (56.5 – 83.3) and 95.1% (93.2 – 96.6). Fruit weight correlated 

strongly with size (r > 0.97) with ‘PF 22-007’ the largest variety in terms of both size 

and weight, while ‘Harrow Beauty’ was the smallest. ‘Harrow Beauty’ also ranked 

highest in firmness. When left to ripen and soften on the tree, the flesh of this variety 

attains an undesirable, mealy texture. It is therefore preferably harvested while still 

firm and ripened off-tree under cool conditions. 

 

Visually, in 2009 the fruit were larger than those obtained in 2010 (2009 size data not 

available). A possible explanation for these variations was the difference in climatic 

factors over the two years. Average temperature, rainfall and relative humidity (hours 

with RH ≥ 90) over the two growing seasons of March through September were 14.0 
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°C, 7.4 cm, 262.4 h for 2009 and 16.2 °C, 4.6 cm, 266.1 h for 2010 (NEWA 2011). 

Rainfall was copious throughout the 2009 growing season and negligible post-June in 

2010. Overall rainfall amount and pattern, particularly the water deficit late in the 

season (stage III of fruit growth – cell expansion) may explain the smaller fruit in 

2010 due to smaller cell size (Crisosto and others 1994; Behboudian and Mills 1997; 

Johnson 2008). Additionally, pruning and thinning practices in the two years, given 

these were not strictly controlled research orchards, could have exerted some influence 

since early removal of competing flowers/fruits during stage I (cell-division) can 

increase cell numbers (Scorza and others 1991; Marini and Reighard 2008). 

 

Color was reported as Hunter components L (lightness), a (red/green), b (yellow/blue), 

H (hue angle)
2
, and C (chroma)

3
; a and b were consistently in the positive range 

indicating the colors red and yellow (McLellan and others 1995). A comparison of 

varietal skin color from 2009 to 2010 showed decreases in all five color parameters 

(Table 2.2); differences in flesh color between the two years were less uniform. 

Possible links between these observations and available climate data were not found. 

Given the suggested relationship between light exposure and particularly red color 

development (Bassi and Monet 2008), skin color data may be more informative when 

considered together with measured annual or monthly light availability or exposure. 

Observed correlations between color parameters and other measured variables are 

identified and discussed in later sections. 

 

                                                 
2
 Hue angle = tan

-1
 (b/a) 

3
 Chroma = √(a

2
 + b

2
) 
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Table 2.2. Mean values and ranges of quality indices of Northeast peach varieties 
evaluated in 2009 and 2010 (n = 15). 

Parameters 
2009 2010 

Mean Range Mean Range 

Skin L 50.9
a
 40.3 – 59.5 47.0

b
 41.9 – 58.2 

Skin a 27.9
a
 18.5 – 33.2 23.2

b
 17.3 – 31.3 

Skin b 31.5
a
 22.4 – 40.3  24.4

b
 17.4 – 38.0 

Skin H 47.0
a
 36. 8 – 57.7 43.2

b
 34.8 – 61.0 

Skin C 42.3
a
 29.0 – 48.9 33.9

b
 24.6 – 42.3 

Flesh L 68.3
a
 59.7 – 74.8 62.3

b
 56.1 – 68.0 

Flesh a 8.8
b
 4.8 – 13.6 11.2

a
 8.6 – 13.7 

Flesh b 43.8
b
 38.4 – 48.2 45.7

a
 40.2 – 51.0 

Flesh H 78.6
a
 78.6 – 82.9 76.0

b
 71.4 – 80.0 

Flesh C 44.7
b
 38.7 – 49.2 47.1

a
 41.7 – 52.1 

Soluble solids (%) 10.0
a
 8.3 – 12.9 11.0

b
 8.51 – 13.0 

Titratable acidity 0.58
b
 0.44 – 0.74 0.70

a
 0.51 – 1.01 

Sugar-to-acid ratio 17.5
a
 13.1 – 23.5 16.0

a
 11.5 – 21.0 

pH 3.62
a
 3.39 – 3.93  3.62

a
 3.39 – 4.01 

Moisture content (%) 88.6
b
 86.2 – 90.8 87.7

a
 85.3 – 90.3 

Means not connected by the same letter indicate a significant difference in that parameter 
between the two years (alpha = 0.05). 

 

Peach soluble solids content (SSC) was within the ranges of 8 – 12% and 8 – 14% 

given by Kader and Mitchell (1989a) and Okie (1998). ‘PF23’ and ‘PF 22-007’ ranked 

highly in both years with ‘Redhaven’ consistently showing low values. Mean SSC 

increased in 2010 while mean moisture content, inversely correlated to SSC, 

decreased. Both observations can be attributed to rainfall patterns in these years, 

particularly the low amount of rain four to six weeks before the 2010 harvest resulting 

in a greater concentration of soluble solids in 2010 (Li and others 1989, Crisosto and 

others 1994, Crisosto and Costa 2008). Fruit pH remained steady across both years 

and was within the range of 3.5 – 3.8 provided by Tomas-Barberan and others (2001) 

for yellow-fleshed peaches. Titratable acidity (TA) was comparable to values given by 

Gil and others (2002), 0.45 – 0.87 and Kader and Mitchell (1989a), 0.4 – 0.9. 
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Sugar-to-acid ratio (SSC/TA) was computed from measured SSC and TA and did not 

differ significantly between years, despite significant increases in some individual 

varieties (‘Babygold 5’ and ‘Redhaven’). SSC/TA is an indication of the perceived 

sweetness and palatability of fruit. However, other attributes such as firmness and 

water concentration (Lopez and others 2011) and fruit maturity at harvest (Vallverdu 

and others 2012) affect the quality of fruit.  

 

These observations regarding the multifactorial nature of perceived fruit quality were 

confirmed by a sensory (hedonic) test conducted in 2010 with freshly cut tree ripe 

peach slices (Figure 2.1). Correlations were not found between SSC/TA and 

acceptability, with ‘Bounty’ being most accepted and ‘PF Lucky 13’, the most popular 

of the Flaming Fury® peaches (Friday 2011), least accepted. ‘PF 23’, despite its low 

SSC/TA, was second highest, with panel members responding positively to its 

‘juiciness’. Harvest date and postharvest storage also influenced perception, as 

varieties with later harvest dates – obtained closer to the sensory test and stored for 

shorter periods – were typically ranked higher than varieties which were harvested 

earlier in the season. A better representation of consumer acceptability could be 

acquired by conducting tests within equivalent periods after harvest for the various 

varieties. 
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Figure 2.1. Results of sensory evaluation showing acceptability of selected Northeast 

peach varieties in 2010 with ranking based on a 9-point hedonic scale (n = 20). 

 

Phenolic content 

Mean total phenolic content (TP) of peaches was similar in the two years, being 53 mg 

in 2009 and 54 mg in 2010. These values were similar to those reported by Marinova 

and others (2005), 50.9 mg, and fell within the range given by Chang and others 

(2000), 41.5 – 76.5 mg, but were lower than those reported by Wu and others (2004) 

and the USDA database for the phenolic content of selected foods (2010), 163 and 133 

mg respectively. The latter two sources did not specify the color of fruit and may have 

included values for white-fleshed peaches, which have been found to have higher 

phenolic content as compared to yellow-fleshed ones (Gil and others 2002; Bassi and 

Monet 2008). 2009 TP ranges were from 40 (‘PF Lucky 13’) to 89 (‘PF 23’) and 

2010’s from 36 (‘PF Lucky 13’) to 103 mg (‘PF 22-007’) (Figure 2.2).  
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Figure 2.2. Total phenolic content of Northeast peach varieties evaluated in 2009 and 

2010 (GAE:Gallic acid equivalents). Bars not connected by the same letter indicate a 

significant difference between the two years (alpha = 0.05). 

 

Varieties exhibited similar phenolic compound composition (Figure 2.3), although 

epigallocatechin was absent in some varieties in 2009 (Table 2.3). Flavan-3-ols were 

most qualitatively diverse and together with hydroxycinnamates were found in 

greatest concentrations. Overall, ranges for these compounds among varieties (per 100 

g whole fruit) were as follows: Flavan-3-ols: catechin (0.3 – 12 mg), epicatechin (1.8 – 

5.8 mg), epigallocatechin (0.2 – 8.0 mg) and unknown 1 (0.3 – 2.9 mg); 

hydroxycinnamic acids: chlorogenic acid (1 – 10 mg) and neochlorogenic acid (1.2 – 

8.0 mg); flavonol glycosides: kaempferol-3-rutinoside (3.1 – 6.4 mg), quercetin-3-

glucoside (0.4 – 0.8 mg), rutin (0.46 – 0.83 mg), unknown 2 (0.5 – 0.9 mg) and 

unknown 3 (0.4 – 0.9 mg); anthocyanins: cyanidin-3-glucoside (0.7 – 6.2 mg). 
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Figure 2.3. HPLC chromatograms of a peach showing phenolic compounds at 280 nm 

(A), 320 nm (B), 370 nm (C) and 520 nm (D). Compounds identified are 

epigallocatechin (1), catechin (2), unknown 1 (3), epicatechin (4), neochlorogenic acid 

(5), chlorogenic acid (6), rutin (7), quercetin-3-glucoside (8), kaempferol-3-rutinoside 

(9), unknown 2 (10), unknown 3 (11) and cyanidin-3-glucoside (12). 

 

A rather weak correlation of r > 0.64 was found between spectrophotometrically-

determined TP and  HPLC-determined TP. Contrary to spectrophotometric-TP, mean 

2010 HPLC-TP (31.0) was significantly higher than that of 2009 (28.8).  Recognizing 

this as a more accurate measure of phenolic content, this disparity was attributed to the 

difference in rainfall in the two years. 

B 

D C 

A 
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Table 2.3. Phenolic compounds (mg/100 g) in Northeast peach varieties evaluated in 2009 and 2010 (n = 3). 

Phenolic compounds  
Babygold 5 Bounty Harrow Beauty 

2009 2010 2009 2010 2009 2010 

Catechin 0.4 ± 0.2
a
 6.4 ± 0.2

b
 2.3 ± 0.1

b
 4.9 ± 0.9

a
 0.5 ± 0.0

b
 3.4 ± 0.2

a
 

Chlorogenic acid 5.8 ± 0.9
a
 6.1 ± 0.8

a
  6.5 ± 0.8

b
 8.1 ± 0.2

a 
  2.7 ± 0.4

b
 3.7 ± 0.3

a
 

Cyanidin-3-glucoside 3.4 ± 0.5
a
 1.3 ± 0.0

b
 1.5 ± 0.3

b
  3.9 ± 0.1

a
 1.6 ± 0.5

b
 9.7 ± 2.4

a
 

Epicatechin 5.0 ± 0.7
b
 5.9 ± 1.1

a
 4.3 ± 0.5

a
 4.4 ± 0.1

a
 3.7 ± 0.3

b
 4.5 ± 0.0

a
 

Epigallocatechin 1.5 ± 0.3
b
 4.6 ± 0.1

a
 3.8 ± 0.3

a
 3.4 ± 0.2

a
 0.2 ± 0.0

b
 1.4 ± 0.3

a
 

Kaempferol-3-rutinoside 4.6 ± 0.3
a
 6.4 ± 0.8

b
 3.8 ± 0.4

b
 5.8 ± 0.8

a
 3.9 ± 0.2

b
 5.2 ± 0.3

a
 

Neochlorogenic acid 3.7 ± 1.3 
a
 2.9 ± 0.4

a
 4.3 ± 0.5

a
 3.6 ± 0.5

a
 4.6 ± 0.2

a
 1.8 ± 0.2

b
 

Quercetin-3-glucoside 0.58 ± 0.03
b
 0.77 ± 0.02

a
 0.50 ± 0.02

b
 0.81 ± 0.07

a
 0.55 ± 0.01

b
 0.75 ± 0.03

a
 

Rutin 0.63 ± 0.04
b
 0.83 ± 0.04

a
 0.56 ± 0.06

b
 0.82 ± 0.04

a
 0.60 ± 0.01

b
 0.78 ± 0.01

a
 

Unknown 1 2.40 ± 0.01
b
 2.87 ± 0.17

a
 2.02 ± 0.06

a
 2.43 ± 0.52

a
 0.92 ± 0.22

b
 2.10 ± 0.52

a
 

Unknown 2 0.67 ± 0.03
b
 0.92 ± 0.06

b
 0.53 ± 0.03

b
 0.78 ± 0.04

a
 0.60 ± 0.02

b
 0.74 ± 0.05

a
 

Unknown 3 0.63 ± 0.04
b
 0.88 ± 0.04

a
 0.49 ± 0.03

b
 0.74 ± 0.05

a
 0.57 ± 0.02b 0.68 ± 0.05a 

Total 29.3 ± 4.4
b
 39.9 ± 3.7

a
 30.6 ± 3.1

b
 39.7 ± 3.5

a
 20.4 ± 1.9

b
 34.8 ± 4.4

a
 

ND: Not detected. Means not connected by the same letter indicate a significant difference in compound concentration between the two 
years (alpha = 0.05). 
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Table 2.3. (Continued). 

Phenolic compounds  
John Boy John Boy II PF 22-007 

2009 2010 2009 2010 2009 2010 

Catechin 0.9 ± 0.1
b
 2.1 ± 0.1

a
 0.6 ± 0.1

b
 2.3 ± 0.4

a
 3.2 ± 1.3

b
 12.4 ± 0.7

a
 

Chlorogenic acid 2.0 ± 0.3
a
 2.1 ± 0.2

a
 2.2 ± 1.2

a
 2.2 ± 0.5

a
 2.4 ± 0.2

b
 6.3 ± 0.3

a
 

Cyanidin-3-glucoside 3.2 ± 0.8
b
 5.3 ± 0.3

a
 1.9 ± 0.5

a
 2.6 ± 0.1

a
 4.9 ± 0.4

a
 4.3 ± 0.0

a
 

Epicatechin 2.8 ± 0.2
b
 4.1 ± 0.2

a
 3.3 ± 1.2

b
 5.2 ± 0.6

a
 2.6 ± 0.3

b
 3.5 ± 0.4

a
 

Epigallocatechin ND 1.7 ± 0.5 ND 1.4 ± 0.5 1.0 ± 0.0
b
 8.0 ± 0.7

a
 

Kaempferol-3-rutinoside 4.0 ± 0.5
a
 4.8 ± 0.3

a
 4.5 ± 0.2

a
 4.9 ± 0.3

a
 4.1 ± 0.2

b
 5.2 ± 0.1

a
 

Neochlorogenic acid 2.3 ± 0.4
a
 1.5 ± 0.0

b
 2.5 ± 1.3

a
 1.6 ± 0.4

a
 4.5 ± 0.8

a
 4.9 ± 0.3

a
 

Quercetin-3-glucoside 0.55 ± 0.04
b
 0.66 ± 0.03

a
 0.65 ± 0.02

a
 0.63 ± 0.07

a
 0.61 ± 0.06

b
 0.76 ± 0.06

a
 

Rutin 0.58 ± 0.06
b
 0.68 ± 0.00

a 
 0.68 ± 0.05

a
 0.60 ± 0.04

a
 0.65 ± 0.10

b
 0.76 ± 0.06

a
 

Unknown 1 1.12 ± 0.14
a
 1.06 ± 0.07

a
 0.59 ± 0.13

b
 1.51 ± 0.05

a
 0.91 ± 0.10

b
 2.95 ± 0.18

a
 

Unknown 2 0.58 ± 0.03
b
 0.70 ± 0.06

a
 0.58 ± 0.03

b
 0.70 ± 0.06

a
 0.65 ± 0.03

b
 0.78 ± 0.02

a
 

Unknown 3 0.58 ± 0.03
b
 0.69 ± 0.03

a
 0.58 ± 0.03

b
 0.69 ± 0.03

a
 0.61 ± 0.01

b
 0.74 ± 0.02

a
 

Total 18.61 ± 2.6
b
 25.4 ± 1.8

a
 18.1 ± 4.8

a
 24.3 ± 3.1

a
 26.1 ± 3.5

b
 50.6 ± 2.8

a
 

ND: Not detected. Means not connected by the same letter indicate a significant difference in compound concentration between the two 
years (alpha = 0.05). 
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Table 2.3. (Continued). 

Phenolic compounds  
PF 23 PF Lucky 13 Redhaven 

2009 2010 2009 2010 2009 2010 

Catechin 6.8 ± 0.8
a
 3.7 ± 0.4

b
 0.4 ± 0.1

b
 2.1 ± 1.0

a
 1.7 ± 0.5

b
 3.6 ± 0.3

a
 

Chlorogenic acid 8.5 ± 1.9
a
 4.5 ± 0.5

b
 3.5 ± 0.4

a
 2.2 ± 0.1

b
 3.2 ± 0.2

b
 3.6 ± 0.0

a
 

Cyanidin-3-glucoside 2.1 ± 0.9
b
 6.2 ± 0.9

a
 2.0 ± 0.7

b
 5.0 ± 0.8

a
 1.3 ± 0.3

b
 2.1 ± 0.4

a
 

Epicatechin 1.8 ± 0.1
b
 5.8 ± 0.4

a
 2.0 ± 0.2

a
 2.6 ± 0.6

a
 4.3 ± 0.4

a
 3.8 ± 0.2

a
 

Epigallocatechin 3.7 ± 0.7
a
 1.6 ± 0.3

b
 ND 0.5 ± 0.0 1.6 ± 0.2

b
 2.2 ± 0.2

a
 

Kaempferol-3-rutinoside 3.9 ± 0.2
b
 6.0 ± 0.3

a
 3.1 ± 0.0

b
 4.7 ± 0.4

a
 3.3 ± 0.5

a
 4.2 ± 0.5

a
 

Neochlorogenic acid 8.0 ± 0.7
a
 1.9 ± 0.0

b
 2.7 ± 0.8

a
 1.2 ± 0.0

b
 3.7 ± 0.8

a
 1.8 ± 0.0

b
 

Quercetin-3-glucoside 0.58 ± 0.03
b
 0.78 ± 0.06

a
 0.47 ± 0.01

b
 0.67 ± 0.02

a
 0.48 ± 0.07

b
 0.65 ± 0.06

a
 

Rutin 0.57 ± 0.00
b
 0.74 ± 0.03

a
 0.46 ± 0.01

b
 0.62 ± 0.03

a
 0.51 ± 0.10

a
 0.64 ± 0.05

a
 

Unknown 1 1.89 ± 0.12
a
 2.03 ± 0.02

a
 0.41 ± 0.05

b
 0.89 ± 0.19

a
 0.84 ± 0.30

a
 1.12 ± 0.10

a
 

Unknown 2 0.60 ± 0.00
b
 0.84 ± 0.02

a
 0.51 ± 0.00

b
 0.70 ± 0.05

a
 0.50 ± 0.02

b
 0.67 ± 0.06

a
 

Unknown 3 0.58 ± 0.01
a
 0.81 ± 0.04

a
 0.48 ± 0.0

b
 0.68 ± 0.05

a
 0.45 ± 0.02

b
 0.61 ± 0.08

a
 

Total 39.0 ± 5.5
a
 34.9 ± 3.0

a 
 16.0 ± 2.3

a
 21.9 ± 3.2

a
 21.9 ± 3.4

a
 25.0 ± 2.0

a
 

ND: Not detected. Means not connected by the same letter indicate a significant difference in compound concentration between the two 
years (alpha = 0.05). 
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Table 2.3. (Continued). 

Phenolic compounds  
Vivid 

2009 2010 

Catechin 2.1 ± 0.8
b
 7.6 ± 1.6

a
 

Chlorogenic acid 10.0 ± 2.1
a
 10.0 ± 1.3

a
 

Cyanidin-3-glucoside 1.7 ± 1.1
b
 4.6 ± 0.6

a
 

Epicatechin 3.0 ± 0.1
b
 5.6 ± 0.7

a
 

Epigallocatechin 3.0 ± 0.5
b
 5.4 ± 1.0

a
 

Kaempferol-3-rutinoside 3.4 ± 0.2
b
 4.8 ± 0.6

a
 

Neochlorogenic acid 4.8 ± 2.2
a
 4.7 ± 0.2

a
 

Quercetin-3-glucoside 0.53 ± 0.02
a
 0.63 ± 0.05

a
 

Rutin 0.53 ± 0.04
a
 0.61 ± 0.05

a
 

Unknown 1 0.56 ± 0.04
b
 2.00 ± 0.30

a
 

Unknown 2 0.56 ± 0.04
b
 0.71 ± 0.08

a
 

Unknown 3 0.51 ± 0.03
b
 0.64 ± 0.06

a
 

Total 30.7 ± 7.2
b
 47.3 ± 6.5

a
 

ND: Not detected. Means not connected by the same letter indicate a significant difference in compound concentration between the two 
years (alpha = 0.05). 

 



 

52 
 

While Balakumar and others (1993) and Estiarte and others (1994) observed some 

increases in phenolic content of cowpea and pepper leaves with water stress, Tavarini 

and others (2011) found this phenomenon to vary with peach variety and class of 

phenolic compound assessed while Buendia and others (2008) found concentrations to 

increase in the peel but not the flesh of fruit. In this study, increases were observed in 

some varieties but not others, ‘PF 22-007’ showed the greatest response, doubling in 

HPLC-TP from 2009 to 2010. Changes in individual phenolic compound 

concentration were also variety-dependent with no common trend observed. 

 

Correlations were found between HPLC-TP and catechin (r > 0.89) and 

epigallocatechin (r > 0.86), with varieties having highest spectrophotometric-TP and 

HPLC-TP (‘PF 23’ in 2009 and ‘PF 22-007’ in 2010) having consistently higher 

quantities of these compounds. Levels of these two compounds may therefore be 

considered indicative of fruit phenolic content. The susceptibility of epigallocatechin 

to varietal and seasonal influences underlines the need for further clarification 

regarding the nutraceutical properties of individual phenolic compounds in order to 

better understand the implications of their absence in fruit varieties or products. 

 

No significant correlations were found between total or individual phenolic content 

and any quality (physical or chemical) index, although it was noted that ‘Harrow 

Beauty’, which presented visually with a uniform deep red color, was relatively high 

in anthocyanin content. The lack of further information and/or diversity was thought to 

be due to the phenotypic similarities in varieties used, in contrast to a study by 

Vizzotto and others (2007) where phenolic and particularly anthocyanin content was 
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found to have some correlation with flesh color, being highest in red-fleshed peaches, 

followed by white- and yellow-fleshed ones. 

 

Antioxidant capacity 

In 2009, noting the contribution of both phenolic and carotenoid compounds to total 

antioxidant capacity (AOX), hydrophilic and lipophilic antioxidant capacities were 

measured separately (Prior and others 2003). The highest contribution was however 

found to be from the hydrophilic fraction, correlating highly with AOX (r > 0.91), 

with lipophilic compounds contributing on average only 3% of AOX (data not shown). 

This observation informed the decision to employ a variation of the ORAC assay by 

Huang and others (2002) which more directly determined AOX (Figure 2.4); it had 

previously not been used due to its propensity to favor hydrophilic antioxidants. 

 

A good correlation was found between AOX and both spectrophotometric-TP (r > 

0.73) and HPLC-TP (r > 0.76), agreeing with work by Gil and others (2002) and Prior 

and others (2003). Accordingly, varieties with greatest phenolic content in the two 

years – ‘PF 23’ in 2009 and ‘PF 22-007’ in 2010 – had greatest AOX, 2218 and 3020 

µmol respectively. ‘PF Lucky 13’ had the least AOX in both years (865 µmol in 2009 

and 1160 µmol in 2010). 

 

It is difficult to compare these AOX values reliably with those from other studies, 

mainly due the various means by which AOX is measured, given credence to the need 

for a standardized mode of measurement. However, in 2010 the AOX (1973 µmol TE) 
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was very close to the peach ORAC values supplied by the USDA antioxidant database 

for selected foods (2010), 1922.0 µmol, and by Wolfe and others (2008), 1848 µmol. 
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Figure 2.4. Total antioxidant capacity (ORAC) of Northeast peach varieties evaluated 

in 2009 and 2010 (TE: Trolox equivalents). Bars not connected by the same letter 

indicate a significant difference between the two years (alpha = 0.05). 

 

Wang and others (2006) and Buendia and others (2008) found that changes in climatic 

factors including irrigation and sunlight exposure could influence the concentration 

and stability of antioxidant constituents and metabolites; Buendia and others also 

reported a decrease in antioxidant content with regulated deficit irrigation, although 

their assessment was based primarily on vitamin C content. In our study, the 2010 

mean AOX of all varieties, 1973.2, was 40% higher than that of 2009, 1386.6 (p < 

0.01); the majority of varieties showed increases. Given the relationship between 

antioxidant and phenolic content, and the antioxidant assay used (ORAC), this 
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increase was attributed to the differences in rainfall, between the two years, with water 

stress leading to increases in both phenolic and antioxidant content. ORAC results 

were also in better agreement with HPLC-TP, implying that this was a better indicator 

of antioxidant content than spectrophotometric-TP and more accurately showed 

seasonal variation. 

 

Carotenoid content 

Total carotenoid content (TC) was obtained by expressing concentrations of identified 

compounds as µg β-carotene equivalents (BCE). An earlier procedure to 

spectrophotometrically measure total carotenoid content using a modification of the 

method by Davis and others (2007) showed large, inconsistent variations and was 

therefore discontinued. 

 

Carotenoid content varied considerably between varieties, particularly in 2009 (Figure 

2.5). ‘Babygold 5’ had highest TC in both years (596 and 839 µg in 2009 and 2010 

respectively) while ‘Redhaven’ was lowest in 2009 (124.4) and PF 22-007 in 2010 

(425.0). Mean total carotenoid values exceeded the range reported by Gil and others 

(2002) for selected Carlifornia-grown yellow-fleshed peaches (71 – 210 µg/100 g) but 

were lower than those from Vizzotto and others (2006), 2000 – 3000 µg BC/100 g. 

2010 carotenoid concentration fell within the range of 800 to 3700 µg given by 

Vizzotto and others (2007) for yellow-fleshed peach genotypes. These significant 

differences in reported values may be in part due to the various methods of analysis 

and quantification employed. 
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Mean for 2009 was 354 µg while that for 2010 was 60% higher at 558 µg BCE. This 

was in contrast to observations by Buendia and others (2008) who reported decreases 

with deficit irrigation but also mentioned influences by other factors including crop 

load and sunlight exposure. In our study, variety played an important role in the 

degree of fruit carotenoid response to water stress. 
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Figure 2.5. Total carotenoid content of Northeast peach varieties evaluated in 2009 

and 2010 (BCE: β-carotene equivalents). Bars not connected by the same letter 

indicate a significant difference between the two years (alpha = 0.05). 

 

Previous studies have reported links between fruit quality, carotenoid content and 

color variables, with color variable a being identified as indicative of fruit maturity 

(Kader and others 1982; Tourjee and others 1998). In our study, the flesh color 

variable a did show a correlation with TC (r > 0.63); although this was not particularly 

high, it was the strongest correlation between TC and any other physical variable. Ruiz 

and others (2005) have reported a similar correlation between apricot flesh a and total 
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carotenoid content (0.93). This parameter has potential as a means of assessing peach 

fruit carotenoid content. 

 

 

Figure 2.6. HPLC chromatograms of peach varieties showing carotenoid compounds 

at 450 nm. Compounds identified are zeaxanthin (1), lutein (2), β-cryptoxanthin (3) 

and β-carotene (4). 

 
Four carotenoid compounds were definitively identified (Figure 2.6) and their ranges 

are as follows: β-carotene (62.1 – 588.1 µg ), β-cryptoxanthin (3.6 – 57.6 µg), lutein 

(5.8 – 7.9 µg) and zeanxanthin (50.5 – 401.9). While β-carotene, β-cryptoxanthin and 

zeaxanthin were found in all varieties, lutein were absent in some (Table 2.4). 

Although α-carotene has been found in some peach varieties (Gil and others 2002) it 

was not found in ours. A number of unidentified compounds, including one tentatively 

identified as violaxanthin, were also noted. β-carotene was the main indicator of total 

carotenoid content, showing strong correlations in both years (r > 0.9). As previously 

mentioned, some carotenoids, notable β-carotene, possess antioxidant properties; in 

this study, no correlations were observed between β-carotene or TC and AOX. 
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The main appeal of high carotenoids content in peach varieties remains their vitamin 

A potential. This was evaluated taking into consideration the recommended dietary 

allowance (RDA) of 900 µg retinol activity equivalent (RAE) given by the Institute of 

Medicine for males 14 years and older, and accepted methods of calculation of dietary 

provitamin A (1 RAE = 12 µg β –carotene and 24 µg β –cryptoxanthin) (USDA FNC 

2011; NIH 2012). Peach varieties assessed provided 1 to 7% RDA for vitamin A in a 

154 g serving (USDA NAL 2012), making them noteworthy sources of this nutrient. 
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Table 2.3. Carotenoid compounds (µg/100 g) in Northeast peach varieties evaluated in 2009 and 2010 (n = 3). 

Carotenoid 
compounds 

Babygold 5 Bounty Harrow Beauty John Boy 

2009 2010 2009 2010 2009 2010 2009 2010 

Beta-carotene 520 ± 19
a
     550 ± 83

a
 189 ± 67

b
 380 ± 45

a
  207 ± 20

b
  510 ± 65

a
 321 ± 38

a
 295 ± 65

a
 

Beta- 
cryptoxanthin 

46 ± 5.1
a
 58 ± 8.4

a
 21 ± 2.3

b
 47 ± 5.8

a
 4.5 ± 0.6

b
 26 ± 2.8

a
 20 ± 4.6

a
 18 ± 2.3

a
 

Lutein ND ND 8.5 ± 1.3
a
 7.9 ± 0.4

a
 ND ND ND ND 

Zeaxanthin 205 ± 14
b
 290 ± 7.2

a
 170 ± 28

a
 150 ± 18

a
 210 ± 21

a
 211 ± 2.4

a
 370 ± 38

a
 290 ± 2.9

b
 

Total 770 ± 38
a
 890 ± 100

a
 390 ± 99

b
 590 ± 69

a
 420 ± 41.6

b
 750 ± 70.2

a
 710 ± 80

a 
 603 ± 70.2

a
 

 
 

Carotenoid 
compounds 

John Boy II PF 22-007 PF 23 PF Lucky13 

2009 2010 2009 2010 2009 2010 2009 2010 

Beta-carotene 380 ± 48
a
 360 ± 54

a
 210 ± 18

b
 320 ± 21

a
 199 ± 27

b
 590 ± 60

a
 260 ± 24

a
 290 ± 33

a
 

Beta-cryptoxanthin 13 ± 3.4
a
 11 ± 0.7

a
 14 ± 2.6

b
 18 ± 1.4

a
 9.3 ± 0.5

b
 34 ± 2.9

a
 11 ± 1.6

b
 21 ± 1.9

a
 

Lutein ND 4.6 ± 0.2 ND ND 6 ± 0.5
a 5.6 ± 0.1

a
 ND 5.2 ± 0.2 

Zeaxanthin 270 ± 21
a
 160 ± 14

b
 220 ± 21

a
 210 ± 47

a
 230 ± 13

a
 208 ± 17

b
 240 ± 24

b
 310 ± 12

a
 

Total 660 ± 72
a
 540 ± 70

a
 440 ± 42

b
 550 ± 69

a
 440 ± 40

b
 840 ± 80

a
 510 ± 50

b
 630 ± 47

a
 

 
 

Carotenoid  
compounds 

Redhaven Vivid 

2009 2010 2009 2010 

Beta-carotene 62 ± 1.1
b
 290 ± 27

a
 170 ± 15

b
 320 ± 17

a
 

Beta-cryptoxanthin 6.5 ± 1.1
b
 178 ± 2.3

a
 10 ± 1.6

b
 28 ± 2.7

a
 

Lutein 5.8 ± 0.3
b
 6.4 ± 0.2

a
 ND ND 

Zeaxanthin 108 ± 11
b
 402 ± 66

a
 101 ± 9.8

b
 302 ± 30

a
 

Total 180 ± 14
b
 880 ± 96

a
 280 ± 26

b
 650 ± 50

a
 

ND: Not detected. Means not connected by the same letter indicate a significant difference in compound concentration between the two 
years (alpha = 0.05). 
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Maturity at harvest and storage effect 

The influence of maturity at harvest and stated postharvest storage conditions was 

determined for three varieties, ‘John Boy II’, ‘PF 23’ and ‘Redhaven’ in 2010. These 

were selected based on information obtained in 2009 on these varieties, namely high 

phenolic content (‘PF 23’), high carotenoid content (‘John Boy II’) and economic 

importance to the Northeast (‘Redhaven’). 

 

A comparison of commercial ripe (CR) to tree ripe (TR) harvests indicated changes 

occurring when the fruit was allowed to ripen on the tree while contrasting CR with 

storage (ST) showed changes when a fruit was harvested early and stored under cold 

conditions for prolonged periods, in this case, four weeks. Comparing ST to TR 

allowed a study of the effects of early harvest and subsequent long-term cold storage 

(as is largely done in commercial fruit production) versus late harvest (after which 

fruit is consumed within a short period) on fruit properties and constituents. 

 

It should be noted that the definition for CR in particular differs between producing 

regions depending on the required shelf life of fruit, which in turn may be influenced 

by the length of time to consumption or distance over which the produce must be 

transported to its final market. As such, while orchards used for our study required full 

color development for CR harvest, the practice in other producing areas with greater 

output or a wider area of distribution may require that fruit be harvested while still 

green or with minimal colour. Changes in quality indiced and phytochemical content 

as reported in our study should be considered with this in mind. 
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Quality indices 

Firmness decreases with ripening due to loss of tugor, starch degradation and 

breakdown of fruit cell walls owing to the action of cell enzymes and plant hormones, 

mainly pectinmethylesterase and ethylene respectively. It is therefore considered a 

reliable index of fruit maturity or ripeness (Kader and others 1982; Kader and Mitchell 

1989b; Crisosto 1994; Ramina and others 2008). Fruit experienced an average of 70% 

decrease in firmness from CM to TR and 72% from CR to ST (Table 2.5). There were 

no significant differences in mean weight, size or edible portion from CR to TR. 

Given that fruit at this point was at stage IV of development (ripening), significant 

increase in size was not expected between the two harvests (Ramina and others 2008). 

 

Fruit was assessed for possible changes in color of skin and flesh with ripening on- or 

off-tree. No significant differences were observed in skin of fruit (a, b, L, H or C) 

from CR to TR, changes in CR to ST were variety dependant. Flesh color was more 

informative. Mean b, L, C and H decreased from CR to TR and from CR to ST (Table 

10). Differences were most pronounced in changes in b from CR to ST, implying a 

decreased yellowness in the flesh. 

 

Fruits undergo physiological changes with ripening that result in, among other things, 

changes in concentrations of sugars, with increase in sucrose content and overall SSC 

(Kader and Mitchell 1989a; Ramina and others 2008). Other major sugars, primarily 

glucose and fructose, show stable (Brooks and others 1993) or decreased (Vizzotto 

and others 1996) concentration with ripening. Moing and others (2000) found that 

changes in organic acid during ripening, leading to decreases in TA and increase in 
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pH, were regulated mainly by the enzyme phosphoenolpyruvate carboxylase. Overall 

flavor development and consumer acceptability increases with ripening, and this is 

assessed instrumentally using SSC/TA, ideally increasing as the fruit ripens (Salunkhe 

and others 1968; Kader and others 1982; Kader and Mitchell 1989b). 

 

Table 2.4. Mean values of quality indices of selected Northeast peach varieties (‘John 

Boy II’, ‘PF 23’ and ‘Redhaven’) at commercial ripe, tree ripe and in storage (n = 15). 

 Commercial ripe  Tree ripe  Storage 

Firmness (N) 121.1
a
 35.8

b
 34.2

b
 

Weight (g) 168.5
a
 160.1

a
 168.5

a
 

Diameter (mm) 69.5
a
 67.5

a
 69.5

a
 

Edible portion (%) 94.6
a
 94.9

a
 94.6

a
 

Skin L 47.6
a
 45.5

a
 47.1

a
 

Skin a 22.8
a
 22.1

a
 17.9

b
 

Skin b 23.7
a
 22.5

a
 21.0

a
 

Skin H 42.6
a
 43.1

a
 46.5

a
 

Skin C 33.0
a
 31.6

ab
 27.7

b
 

Flesh L 66.4
a
 60.9

b
 62.9

b
 

Flesh a 9.8
b
 11.7

a
 11.1

a
 

Flesh b 51.0
a
 45.2

b
 41.6

c
 

Flesh H 79.0
a
 75.2

b
 74.9

b
 

Flesh C 52.0
a
 46.8

b
 43.0

c
 

Soluble solids (%) 10.0
b
 10.6

b
 12.4

a
 

Titratable acidity 0.80
a
 0.75

a
 0.69

a
 

Sugar-to-acid ratio 12.8
b
 14.4

b
 18.5

a
 

pH 3.51
b
 3.60

b
 3.86

a
 

Moisture content (%) 87.8
a
 88.1

a
 85.4

b
 

Means not connected by the same letter indicate a significant difference in that parameter 
between the stages (alpha = 0.05). 
 

Fruits undergo physiological changes with ripening that result in, among other things, 

changes in concentrations of sugars, with increase in sucrose content and overall SSC 

(Kader and Mitchell 1989a; Ramina and others 2008). Other major sugars, primarily 

glucose and fructose, show stable (Brooks and others 1993) or decreased (Vizzotto 

and others 1996) concentration with ripening. Moing and others (2000) found that 
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changes in organic acid during ripening, leading to decreases in TA and increase in 

pH, were regulated mainly by the enzyme phosphoenolpyruvate carboxylase. Overall 

flavor development and consumer acceptability increases with ripening, and this is 

assessed instrumentally using SSC/TA, ideally increasing as the fruit ripens (Salunkhe 

and others 1968; Kader and others 1982; Kader and Mitchell 1989b). 

 

A comparison of all three varieties showed no significant changes in mean SSC, pH, 

TA, SSC/TA or moisture content from CR to TR. Trends were similar to those 

reported by Salunkhe and others (1968) and Kader and others (1982), i.e., increasing 

SSC and SSC/TA and decreasing TA. From CR to ST, however, mean SSC increased 

by 22%, pH by 10%, and SSC/TA by 44% (p < 0.01 in all cases). Moisture content 

decreased by 2% (p < 0.01) while TA did not change significantly. 

 

For all parameters assessed, ST samples had higher SSC, pH and SSC/TA and lower 

TA compared to TR. Although these results would imply good quality fruit, possibly 

with better taste than TR samples, the ST samples had poor texture with fibrous flesh 

and little juice, particularly ‘Redhaven’. These characteristics matched the descriptions 

for chilling injury and internal breakdown as described by Mitchell and Kader (1989b) 

and Lurie and Crisosto (2005). 

 

Phenolic content 

There was no significant change in mean TP from CR to TR or from CR to ST for 

‘Redhaven’. In ‘John Boy II’ and ‘PF 23’, however, TP declined from CR to TR (p < 

0.05) but did not change significantly from CR to ST (Figure 2.7). This agrees with 
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findings by Kader and others (1982) and Tomas-Barberan and others (2001), who 

reported no clear differences in phenolic content with ripening, as well as those by 

Scordino and others (2011) who reported decreases in phenolic content of yellow-

fleshed peaches with ripening. Tomas-Barberan and others (2001) also observed 

differences in the responses of different varieties, as is the case here, although the 

overarching trend is a decline in TP with on-tree ripening. The lack of change from 

CR to ST echoes a study by Senter and others (1989). Overall, fruit allowed to ripen 

on-tree (TR) had lowest TP, with the order being CR ≥ ST ≥ TR. 
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Figure 2.7. Total phenolic content of ‘John Boy II’, ‘PF 23’ and ‘Redhaven’ peaches 

at commercial ripe (CR), tree ripe (TR) and storage (ST) stages (GAE: Gallic acid 

equivalents). Bars not connected by the same letter indicate a significant difference 

between the stages (alpha = 0.05). 

 
Suggested reasons for observed decreases in phenolic content with ripening include a 

change in their role in the plant, with phenolic decreases leading to a reduction in 

astringency for more acceptable taste and flavor (Dalla Valle and others 2007). 
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Andreotti and others (2008) also reported a decrease in phenolic compounds with on-

tree ripening and recommended further research into the effect of environmental and 

agronomic conditions on the phenolic compounds accumulation to aid in optimisation 

of phenolic levels in ripe fruits. 

 
Changes in individual phenolic compounds were largely variety dependent (Table 

2.6). Catechin, which as noted earlier correlated strongly with phenolic content, 

decreased with both on and off-tree ripening. Epigallocatechin declined from CR to 

TR but CR to ST also proved variety dependent – declining in ‘Redhaven’, stable in 

‘PF 23’ and disappearing entirely in ‘John Boy II’. Flavonol glycosides rutin, 

quercetin-3-glucoside and unknowns 1 and 2 (quercetin derivatives) increased 

significantly with from CR to ST but remained stable with on-tree ripening. HPLC-TP 

decreased from CR to TR in ‘PF 23’ and ‘Redhaven’, supporting the theory of 

phenolic decline with on-tree ripening.
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Table 2.5. Phenolic compounds (mg / 100 g) in ‘John Boy II’, ‘PF 23’ and ‘Redhaven’ peaches at commercial ripe (CR), 

tree ripe (TR) and storage (ST) stages (n = 3). 

ND: Not detected. Means not connected by the same letter indicate a significant difference in compound concentration between the 
stages (alpha = 0.05). 
 
 
 

 

 

 

 

 

Phenolic compounds 
John Boy II PF 23 

CR TR ST CR TR ST 

Catechin 3.5 ± 0.5
a
 2.3 ± 0.4

a
 2.3 ± 0.0

a
 7.3 ± 0.7

a
 3.7 ± 0.4

b
 4.5 ± 0.5

b
 

Chlorogenic acid 2.5 ± 0.4
a
 1.9 ± 0.3

a
 2.4 ± 0.0

a
 7.6 ± 0.8

a
 4.5 ± 0.5

b
 5.7 ± 0.7

ab
 

Cyanidin-3-glucoside 7.2 ± 1.5
a
 2.6 ± 0.1

b
 7.0 ± 1.9

a
 7.0 ± 0.7

a
 6.2 ± 0.9

a
 6.3 ± 0.8

a
 

Epicatechin 3.9 ± 0.2
b
 5.2 ± 0.6

a
 4.7 ± 0.1

ab
 6.2 ± 1.7

ab
 5.8 ±0.4

b
 9.1 ± 0.4

a
 

Epigallocatechin 2.2 ± 1.0
a
 1.4 ± 0.5

a
 ND 2.8 ± 0.2

a
 1.8 ± 0.1

b
 2.8 ± 0.2

a
 

Kaempferol-3-rutinoside 4.6 ± 0.2
a
 4.9 ± 0.3

a
 5.4 ± 0.6

a
 5.8 ± 0.2

a
 6.0 ± 0.3

a
 6.4 ± 0.4

a
 

Neochlorogenic acid 2.6 ± 0.4
a
 1.8 ± 0.3

a
 2.4 ± 0.4

a
 3.0 ± 0.4

a
 1.9 ± 0.0

a
 2.7 ± 0.3

a
 

Quercetin-3-glucoside 0.64 ± 0.04
b
 0.60 ± 0.04

b
 0.78 ± 0.05

a
 0.77 ± 0.07

a
 0.75 ± 0.05

a
 0.86 ± 0.01

a
 

Rutin 0.66 ± 0.02
ab

 0.60 ± 0.04
b
 0.80 ± 0.09

a
 0.79 ± 0.07

a
 0.74 ± 0.03

a
 0.84 ± 0.04

a
 

Unknown 1 1.8 ± 0.2
ab

 1.5 ± 0.1
b
 2.2 ± 0.2

a
 2.9 ± 0.4

b
 2.0 ± 0.0

c
 4.8 ± 0.2

a
 

Unknown 2 0.70 ± 0.04
b
 0.68 ± 0.02

b
 0.86 ± 0.06

a
 0.86 ± 0.06

a
 0.84 ± 0.02

a
 0.94 ± 0.06

a
 

Unknown 3 0.66 ± 0.04
b
 0.67 ± 0.02

b
 0.82 ± 0.05

a
 0.78 ± 0.06

a
 0.81 ± 0.04

a
 0.88 ± 0.04

a
 

Total 31.0 ± 4.5
a
 24.2 ± 2.7

a
 29.7 ± 3.5

a
 45.8 ± 5.4

a
 35.0 ± 2.7

b
 45.8 ± 3.7

a
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Table 2.6. (Continued). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ND: Not detected. Means not connected by the same letter indicate a significant difference in compound concentration between the 
stages (alpha = 0.05). 

 

Phenolic compounds 
Redhaven  

CR TR ST 

Catechin 7.7 ± 0.6
a
 3.6 ± 0.3

b
 3.4 ± 0.6

b
 

Chlorogenic acid 3.1 ± 0.1
b
 3.6 ± 0.0

a
 2.6 ± 0.1

c
 

Cyanidin-3-glucoside 2.9 ± 0.7
a
 2.2 ± 0.4

a
 3.6 ± 0.4

a
 

Epicatechin 4.5 ± 0.5
a
 3.8 ± 0.2

a
 5.2 ± 1.1

a
 

Epigallocatechin 3.6 ± 0.0
a
 2.2 ± 0.2

b
 2.8 ± 0.1

b
 

Kaempferol-3-rutinoside 4.3 ± 0.4
a
 4.2 ± 0.5

a
 5.5 ± 0.9

a
 

Neochlorogenic acid 2.3 ± 0.2
a
 1.8 ± 0.0

b
 1.7 ± 0.0

b
 

Quercetin-3-glucoside 0.67 ± 0.05
ab

 0.53 ± 0.03
b
 0.76 ± 0.08

a
 

Rutin 0.67 ± 0.06
a
 0.64 ± 0.05

a
 0.80 ± 0.09a 

Unknown 1 2.8 ± 1.1
a
 1.1 ± 0.1

a
 2.6 ± 0.2

a
 

Unknown 2 0.67 ± 0.01
b
 0.67 ± 0.06

b
 0.90 ± 0.02

a
 

Unknown 3 0.62 ± 0.01
a
 0.61 ± 0.08

a
 0.75 ± 0.07

a
 

Total 33.8 ± 3.7
a
 25.0 ± 1.9

b
 30.6 ± 3.7

a
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Antioxidant capacity 

A number of compounds in fruits have been found to possess antioxidant activity, 

including polyphenols, carotenoids and vitamins E and C (Dalla Valle and others 

2007). There are various views on the contributions of these compounds, and how 

these are best represented by the different tests available for measuring total 

antioxidant capacity. These concerns were most realized in the assessment of changes 

in AOX with maturity at harvest and storage. 
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Figure 2.8. Total antioxidant capacity of ‘John Boy II’, ‘PF 23’ and ‘Redhaven’ 

peaches at commercial ripe (CR), tree ripe (TR) and storage (ST) stages (TE: Trolox 

equivalents). Bars not connected by the same letter indicate a significant difference 

between the stages (alpha = 0.05). 
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Given the significant correlation between AOX and phenolics, similar results as seen 

with phenolics were expected (i.e. decline or relative stability of phenolics with 

ripening) but not realized. The three varieties studies were all unique with regards to 

changes in AOX with ripening (Figure 2.8). In ‘John Boy II’, AOX was stable with 

on-tree ripening but increased in storage (p < 0.01); ‘PF 23’ remained relatively stable 

from CR to TR and from CR to ST but ST was significantly higher than TR (p < 0.05); 

‘Redhaven’ AOX was stable/equivalent for all three points. 

 

Since the ORAC method employed favors the activity of hydrophilic constituents 

(Prior and others 2003), the influence of other hydrophilic antioxidant compounds 

such as vitamin C could influence AOX values. Both Salunkhe and others (1968) and 

Kader and others (1982) reported increases in ascorbic acid content in peaches with 

both on- and off-tree ripening. The measurement of changes in ascorbic acid 

concentration at different stages of maturity for the various varieties might therefore 

have shed more light on the observed trends.  Contrary to this line of thought, Kalt and 

others (1999) and Gil and others (2002) reported that in berries and peaches 

respectively, phenolic content and not vitamin C was mainly responsible for 

antioxidant activity as observed by the ORAC test. However, the Kalt study also 

showed that storage time and temperature did influence changes in antioxidant 

capacity in these fruits. In our study, the differences in varietal reponse meant we 

could not establish a common trend for changes in antioxidant capacity with peach 

ripening or storage. 
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Carotenoid content 

Previous studies have reported increases in carotenoid content with ripening (Kader 

and others 1982; Salunkhe and others 1989). In ‘John Boy II’ and ‘PF 23’, this 

phenomenon was observed with on-tree ripening (p < 0.05) but not significantly from 

CR to ST (Figure 2.9). Changes in TC with ripening or storage for ‘Redhaven’ were 

not significant. 
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Figure 2.9. Total carotenoid content of ‘John Boy II’, ‘PF 23’ and ‘Redhaven’ peaches 

at commercial ripe (CR), tree ripe (TR) and storage (ST) stages (BCE: β-carotene 

equivalents). Bars not connected by the same letter indicate a significant difference 

between the stages (alpha = 0.05). 

 

Carotenoid development and syntheses of new carotenoids with ripening are due to the 

transformation of chloroplast into chromoplast, resulting in an accumulation of 

carotenoid pigments. These changes also cause changes in color, sometimes 
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augmented by increase in anthocyanins (Ramina and others 2008; Ferrer and others 

2005). Based on this, a correlation between carotenoid content and one or more color 

variables was anticipated; this was not the case in our study. Such clear indices may 

have been realized with a more phenotypically diverse group. 

 

Identified carotenoid compounds were present at all stages except lutein, which was 

absent in CR ‘John Boy II’ (Table 2.7). The overall low quantities of this compound, 

as well as the inability to isolate its precursor α-carotene, may be linked to a number 

of factors. One possible cause may be its destruction or inadequate extraction by the 

chosen methodology; another is low levels of these particular compounds in sampled 

varieties due to varietal, geographic or climatic factors. Alternatively, the cause may 

lie in the metabolic processes involved in carotenogenesis. Britton and Khachik (2009) 

stated that carotenoid composition of fruit during maturation is determined by the 

presence and activity of ripening-specific genes, with absence or low activity of ε-

cyclase and ε-hydroxylase resulting in low levels of α-carotene and lutein. 

 

Katayama and others (1971) reported an increase in β-carotene and β-cryptoxanthin 

concentration with ripening. This was observed together with the increase in TC in 

‘PF 23’, while only β-carotene increased with ripening in ‘John Boy II’. Both 

observations would imply an increase in vitamin A content with on-tree ripening in 

these varieties. 
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Table 2.6. Carotenoid compounds (µg / 100 g) in ‘John Boy II’, ‘PF 23’ and ‘Redhaven’ peaches at commercial ripe (CR), 

tree ripe (TR) and storage (ST) stages (n = 3). 

Variety Maturity Beta-carotene Beta-cryptoxanthin Lutein Zeaxanthin Total 

John Boy II CR 220 ± 11
b 
 9.5 ± 2.6

a
  ND 170 ± 27

a
  400 ± 41

b
 

 TR 360 ± 54
a
 11 ± 0.7

a
 4.6 ± 0.2

b
 160 ± 14

a
 540 ± 69

a
 

 ST 230 ± 35
b
 10 ± 0.7

a
  10 ± 1.4

a
 130 ± 20

a
  380 ± 57

b
 

PF 23 CR 420 ± 54
b
 22 ± 1.7

b
 5.1 ± 0.5

b
 210 ± 41

a
  660 ± 97

b
 

 TR 590 ± 60
a
 34 ± 2.9

a
 5.6 ± 0.1

b
 208 ± 17

a
 840 ± 80

a
 

 ST 406 ± 110
b
  24 ± 0.4

b
 7.1 ± 1.1

a
 233± 0.2

a
 670 ± 110

a
 

Redhaven CR 250 ± 26
a
 16 ± 1.2

a
  4.9 ± 0.7

a
 380 ± 64

a
 650 ± 92

a
 

 TR 290 ± 27
a
 18 ± 2.3

a
 6.4 ± 0.2

a
 402 ± 66

a
  720 ± 96

a
 

  ST 290 ± 63
a
 17 ± 1.4

a
  5.5 ± 0.2

a
 530 ± 15

a
 840 ± 80

a
 

ND: Not detected. Means not connected by the same letter indicate a significant difference in compound concentration between the 
stages (alpha = 0.05). 
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Conclusion 

The study achieved its primary aim of sampling and providing information about a 

substantial number of local peach varieties. It also identified important varieties in 

terms of phenolic and antioxidant (‘PF 22-007’, ‘PF 23’) and carotenoid content 

(‘Babygold 5’). Catechin and β-carotene proved most important indicators for 

phenolic and antioxidant, and carotenoid content respectively. Differences in rainfall 

in the two study years, with 2010 fruit subjected to greater water stress, resulted in 

higher phenolic, antioxidant and carotenoid values for 2010 samples. Maturity at 

harvest and storage studies showed little change in varietal phenolic, antioxidant and 

carotenoid content overall, but variations in varietal response were observed. Trends, 

although not significant with all varieties considered, pointed to declining phenolic 

and increasing carotenoid content with on-tree ripening, while cold storage appeared 

to keep levels of bioactive constituents fairly stable. Changes in antioxidant content 

were very variety-dependant. Inadequate or ineffective storage conditions, coupled 

with long storage time, resulted in chilling injury in fruit. The effects of pre- and post-

harvest practices and conditions on bioactive compounds illustrated the susceptibility 

of these to a range horticultural practices and climatic factors and highlighted the need 

for better understanding and, where possible, control of these in order to ensure 

optimum levels of the nutraceuticals of interest while maintaining or improving 

aesthetic value. 
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CHAPTER 3: EFFECT OF VARIETY, MATURITY AT HARVEST AND 

STORAGE ON THE PHENOLIC, ANTIOXIDANT AND CAROTENOID 

CONTENT OF SELECTED NORTHEAST APRICOT VARIETIES. 

  

Introduction 

Consumption of fruits has been encouraged because of their myriad health benefits 

(Kader and Barrett 2005; Sloan 2010; USDA HHS 2011). The apricot, Prunus 

armeniaca, contains significant quantities of phenolic and carotenoid compounds and 

is therefore considered an important source of antioxidants and vitamin A, both of 

which have positive impacts on human health (Stahl and Sies 2003; Ruiz and others 

2005a; Ruiz and others 2005b; Dragovic-Uzelac and others 2007). Antioxidants, 

comprising both phenolic and carotenoid compounds, reduce the risk of cardiovascular 

diseases and some cancers, while carotenoids play a role in vision (Ames and others 

1993; Paiva and Russell 1999; Fraser and Bramley 2004). 

 

The main phenolic compounds identified in apricots include flavan-3-ols (catechin, 

epicatechin), hydroxycinnamic acids (neochlorogenic acid, chlorogenic acid), flavonol 

glycosides (rutin, quercetin-3-glucoside and other quercetin derivatives) and 

anthocyanins (cyanidin-3-glucoside) (Radi and others 1997; Ruiz and others 2005a; 

Dragovic-Uzelac and others 2007). Carotenoids include carotenes (alpha-, beta- and 

gamma-carotene) and xanthophylls (lutein, zeaxanthin, violaxanthin and beta-

cryptoxanthin) (Katayama and others 1971; Breithaupt and Bamedi 2001; Ruiz and 

others 2005b). Phenolic and carotenoid composition and concentration are subject to 

varietal, climatic and horticultural influences as well as the part of fruit (peel or flesh) 
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analyzed (Katayama and others 1971; Wu and others 2004b; Ruiz and others 2005a; 

Wang and others 2006; Dragovic-Uzelac and others 2007; Drogoudi and others 2008). 

In the United States, apricot production is based mainly in California (approximately 

80%), Washington and Utah. The industry has experienced a decline in consumption 

in recent years (Ledbetter 2010; USDA ERS 2011; USDA NASS 2011). The 

Northeast USA is also a producer but with much smaller quantities than the 

aforementioned states. Apricot cultivation in this region is challenging due to adverse 

climatic conditions which, together with this fruit tree’s inherent restrictions to 

climatic adaptation, limit production (Lamb and Stiles 1983; Merwin 1994; Layne 

1996; NYS Climate Office). Breeding programs have therefore focused on improving 

cold hardiness, late blooming, pest and disease resistance. Research on resultant 

produce has focused on physical and other sensory characteristics (Anderson and 

Seeley 1993; Westwood 1993; Layne 1996; Layne and others 1996) with little data 

available on the impact of these changes on nutrients and bioactive compounds. 

 

Today, the marketability of fruit and fruit products is increasingly less dependent on 

their aesthetic attributes and more strongly linked to their health benefits. The aim of 

this study was therefore to evaluate phenolic, antioxidant and carotenoid content of a 

selection of apricot varieties currently cultivated in the Northeast. The study also 

examined the effect of seasonal variations, fruit maturity and postharvest storage on 

these bioactive compounds. The information obtained contributes to literature on this 

fruit, particularly how it responds to this region’s climatic conditions, and allows for 

better understanding of the its nutraceutical and economic potential. 
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Materials and methods 

Harvest 

The study was conducted over two years, with the harvesting protocol smilar to that 

described in chapter 2 for peaches. Five orange-fleshed apricot varieties were sourced 

from local producers in 2009 and 2010. Of these, four varieties were selectively 

harvested at two developmental stages in 2010 – ‘commercial ripe’ and ‘tree ripe’. 

Fruit of one variety (‘Hargrand’) harvested at commercial ripe were stored for four 

weeks then analysed as a third treatment – storage. 

 
Quality indices 

These were evaluated as described in chapter 2.  

 

Phenolic analysis 

Extraction, total phenolic content and HPLC analysis were performed as described in 

chapter 2. 

 

Total antioxidant capacity assay 

This was performed as described in chapter 2.  

 

Carotenoid analysis 

This was performed as described in chapter 2.  

 

Statistical analysis 

Data was analysed as described in chapter 2.  
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Results and discussion 

Varietal characterization 

There was variation in the harvest dates of varieties during the two years, in response 

to different climatic conditions in each study year (Table 3.1). All varieties were ready 

for harvest between late July and the first week of August. Varieties sourced were a 

mixture of cold-hardy varieties originating from the Harrow Research Station 

(‘Hargrand’, Harlayne’ and ‘Harogem’) and the Vineland Station (‘Vivagold’) in 

Ontario, Canada; ‘Tomcot’ was developed at the Washington State University (Layne 

1996; Conev 2003; NNII 2006). 

Table 3.1. Source and harvest dates of selected Northeast apricot varieties. 

Variety 
Source 

(Orchard) 

Harvest dates 

2009 2010 

Hargrand 1 August 4 July 23, July 29 

Harlayne 1 August 3 July 23, August 3 

Harogem 1 July 28 July 24, August 4 

Tomcot 2 July 27 July 16 

Vivagold 2 July 27 July 16, July 23 

Contributing orchards: Orchard 1 (Geneva, NY), Orchard 2 (Geneva, NY) 

 

Quality indices 

Mean values for firmness, weight and size provided information for characterization 

of the evaluated varieties as they performed specific to this region; some parameters, 

mainly size and weight, were not in accord with the same varieties grown in different 

areas (Mehlenbacher and others 1990; Drogoudi and others 2008). Mean firmness, 

weight, cross-sectional diameter and edible portion percentage for the five evaluated 

varieties, with ranges in parentheses, were 11.7 N (6.7 – 17.7), 44.0 g (24.4 – 49.6), 

42.6 mm (35.1 – 47.8) and 93.2% (91.5 – 94.4). 
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Fruit weight correlated well with size (r > 0.86) with the three Harrow varieties being 

largest (> 48 g, > 43 mm). These varieties were also visually attractive, with 

‘Harogem’ possessing a striking red shade, evident even in its flowers. The uniform 

orange color and large size of ‘Harlayne’ has proven appealing to customers and made 

it a top seller for a major New York fruit producer. 

 

Color was reported as Hunter components L (lightness), a (red/green), b (yellow/blue), 

H (hue angle), and C (chroma); a and b were consistently in the positive range 

indicating the colors red and yellow (McLellan and others 1995). Given the 

phenotypic similarity between varieties assessed, skin and flesh color between 

varieties was not significantly different. Skin color was typically orange, ranging from 

more yellow (‘Tomcot’ and ‘Vivagold’) to more red (‘Harogem’) shades, reflected in 

high b readings for the former group and high a readings for the latter. Differences in 

color over the two study years were less pronounced in the skin as compared to the 

flesh (Table 3.2). 

 

Results of chemical analyses were comparable to those from other studies for apricot 

soluble solids content (SSC), titratable acidity (TA), sugar-to-acid ratio (SSC/TA), 

moisture content and pH (Aubert and Chanforan 2007; Drogoudi and others 2008; 

Mratinic and others 2011). Harlayne and Harogem ranked high in SSC (> 10%) and 

SSC/TA in both years. 2010 varieties had higher SSC, SSC/TA and pH and lower TA 

and moisture content compared to 2009 (p < 0.01 in all cases). SSC, SSC/TA and 

moisture content results were in line with differences in climatic conditions between 

the two years. Average rainfall over the growing season was 2.9 inches in 2009 and 
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1.8 inches in 2010 (NEWA 2011). Rainfall was copious throughout the 2009 growing 

season but negligible post-June in 2010, resulting in a greater concentration of solids 

in fruit that year (Perez-Pastor and others 2007). As with other stone fruits, rainfall 

amount and patterns, particularly the water deficit late in the season (stage III of fruit 

growth – cell expansion) was also implicated in the visually smaller 2010 fruit 

(Crisosto and others 1995; Behboudian and Mills 1997; Johnson 2008). 

 

Table 3.2. Mean values and ranges of quality indices of Northeast apricot varieties 

evaluated in 2009 and 2010 (n = 15). 

Parameters 2009 2010 

Mean Range Mean Range 

Skin L 56.8
a
 (50.3 – 61.8) 54.5

a
 (50.5 – 60.3) 

Skin a 27.2
a
 (18.5 – 33.8) 26.2

a
 (17.8 – 31.5) 

Skin b 45.0
a
 (36.7 – 50.8) 38.3

b
 (33.4 – 45.0) 

Skin H 58.6
a
 (47.8 – 65.5) 55.3

a
 (47.8 – 64.5) 

Skin C 53.3
a
 (44.2 – 58.8) 46.9

b
 (39.5 – 51.5) 

Flesh L 59.3
a
 (53.6 – 63.0) 51.4

b
 (40.8 – 58.2) 

Flesh a 22.4
a
 (17.3 – 24.6) 21.5

a
 (17.6 – 26.8) 

Flesh b 43.5
a
 (36.1 – 47.1) 37.8

b
 (30.0 – 43.7) 

Flesh H 62.9
a
 (61.5 – 64.7) 60.4

b
 (55.7 – 64.7) 

Flesh C 49.0
a
 (45.3 – 51.8) 43.5

b
 (36.3 – 51.3) 

Soluble solids (%) 11.8
b
 (9.9 – 13.7) 13.8

a
 (10.8 – 15.1) 

Titratable acidity 1.82
a
 (1.54 – 2.63) 1.22

b
 (0.82 – 2.05) 

Sugar-to-acid ratio 6.61
b
 (4.89 – 8.71) 12.01

a
 (7.12 – 17.32) 

pH 3.29
b
 (3.04 – 3.49) 3.66

a
 (3.46 – 3.78) 

Moisture content (%) 86.7
a
 (84.7 – 88.2) 84.7

b
 (80.5 – 88.1) 

Means not connected by the same letter indicate a significant difference for that parameter 
between the two years (alpha = 0.05). 

 

Phenolic content 

Mean total phenolic content (TP) of apricots was 121.7 mg in 2009 and 151.0 mg in 

2010. These values were greater than those by the USDA Database for selected foods 

(2010), 79 mg, but overall ranges were within those from studies by Drogoudi and 
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others (2008), 30.3 – 559.6, and Sochor and others (2010) 41 – 170, using similar 

methods of analyses. 2010 mean TP compared favorably against those of more 

popular fruits (e.g. peach, 133 mg and grapes, 170 mg) (USDA ARS 2010). 

‘Hargrand’ consistently stood out in both years, having more than twice the TP of the 

next closest variety (Figure 3.1); ‘Vivagold’ had lowest TP.  Mean TP did not differ 

significantly between the two years, with the varieties responding differently (p < 

0.01) to conditions in the study years (Scalzo and others 2005). 
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Figure 3.1. Total phenolic content of Northeast apricot varieties evaluated in 2009 and 

2010 (GAE:Gallic acid equivalents). Bars not connected by the same letter indicate a 

significant difference between the two years (alpha = 0.05). 

 
Flavan-3-ols were predominant quantitatively, and showed the most diversity 

qualitatively (Figure 3.2). Mean values for phenolic compounds in 2009 and 2010 

respectively, reported as mg/ 100 g, were as follows: Flavan-3-ols: catechin (8.0 and 

7.6), epicatechin (3.1 and 3.7), epigallocatechin (3.7 and 6.4), unknown 1 (1.5 and 
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4.2)
ǂ
 and unknown 2 (3.6 and 5.2)

ǂ
; hydroxycinnamic acids: chlorogenic acid (7.4 and 

5.8) and neochlorogenic acid (10.0 and 8.9); flavonol glycosides: rutin (9.1 and 6.1)
ǂ
, 

quercetin-3-glucoside (1.0 and 1.0), quercetin derivative (1.0 and 1.4)
ǂ
; anthocyanins: 

cyanidin-3-glucoside (0.5 and 0.5)
4
.  
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Figure 3.2. HPLC chromatograms of an apricot showing phenolic compounds at 280 

nm (A), 320 nm (B), 370 nm (C) and 520 nm (D). Compounds identified are 

epigallocatechin (1), catechin (2), unknown 1 (3), epicatechin (4), unknown 2 (5), 

neochlorogenic acid (6), chlorogenic acid (7), rutin (8), quercetin-3-glucoside (9), 

quercetin derivative (10) and cyanidin-3-glucoside (11). 

 
 
Similar to spectrophotometrically-determined TP, mean total phenolic content as 

determined by this method (HPLC-TP) did not vary significantly between the two 

years despite differences in rainfall and water availability, factors which found to 

influence phenolic content in some crops (Balakumar and others 1993; Estiarte and 

                                                 
4
 Symbol (

ǂ
) indicates that mean values for the two years were significantly different. 
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others 1994). Differences in varietal responses to water stress were observed, as 

reported in peaches by Tavarini and others (2011). 

 
A strong correlation (r > 0.92) was found between HPLC-determined TP and 

spectrophotometrically-determined TP, implying that for this fruit both methods were 

equivalent gauges of relative varietal phenolic content. Good correlations were also 

found between HPLC-TP and catechin (r > 0.95), chlorogenic acid (r > 0.88) and 

epigallocatechin (r > 0.81). Levels of these compounds, particularly catechin, may 

therefore be indicative of apricot varietal phenolic content. The varieties exhibited 

similar phenolic profiles, although a lack of anthocyanins was noted in ‘Hargrand’ and 

‘Vivagold’ and, in 2010, ‘Tomcot’ (Table 3.3). This underlines the need for further 

clarification regarding the nutraceutical properties of individual phenolic compounds 

in order to better understand the implications of their absence in fruit varieties or 

products. 

 

No significant correlations were found between total phenolic content, or individual 

phenolic compounds, and any physical or chemical component although ‘Harogem’, a 

variety which presented visually with a deep red color, did stand out in its consistently 

high anthocyanin content (approximately twice the concentration of the next highest 

variety). The lack of further information on correlations in this regard was thought to 

be due to the similarities in flesh and skin colour of varieties evaluated.  However, 

Ruiz and others (2005), who evaluated apricots of varying flesh colors (white, yellow, 

light orange and orange) reported no correlations between phenolic content and flesh 

color. 
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Table 3.3. Phenolic compounds (mg / 100 g) in Northeast apricot varieties evaluated in 2009 and 2010 (n = 3). 

Phenolic compounds 
Hargrand Harlayne Harogem 

2009 2010 2009 2010 2009 2010 

Catechin 18.5 ± 0.4
b
 26.4 ± 1.2

a
 3.4 ± 0.3

a
 0.2 ± 0.0

b
 8.7 ± 0.6

a
 2.7 ± 0.2

b
 

Chlorogenic acid 15.0 ± 0.3
b
 18.4 ± 0.1

a
 8.7 ± 0.3

a
 2.3 ± 0.2

b
 3.8 ± 0.2

a
 2.3 ± 0.1

b
 

Cyanidin-3-glucoside ND ND 0.8 ± 0.0
a
 0.9 ± 0.0

a
 1.2 ± 0.0

b
 2.4 ± 0.3

a
 

Epicatechin 3.6 ± 0.2
b
 4.1 ± 0.3

a
 1.4 ± 0.1

b
 5.8 ± 0.4

a
 5.8 ± 0.2

a
 4.3 ± 0.2

b
 

Epigallocatechin 9.6 ± 1.0
b
 22.7 ± 1.1

a
  1.4 ± 0.2

b
 3.4 ± 0.5

a
 3.6 ± 0.3

b
 4.7 ± 0.3

a
 

Neochlorogenic acid 7.0 ± 0.7
b
 12.9 ± 0.8

a
 5.6 ± 0.2

a
 6.6 ± 0.7

a
 10.2 ± 0.1

a
 5.8 ± 0.1

b
 

Quercetin-3-glucoside 1.1 ± 0.0
b
 1.3 ± 0.0

a
 0.9 ± 0.0

a
 0.9 ± 0.1

a
 1.0 ± 0.0

a
 1.2 ± 0.1

a
 

Quercetin derivative 1.3 ± 0.0
a
 1.3 ± 0.0

a
 1.0 ± 0.0

a
 0.9 ± 0.0

a
 1.3 ± 0.0

a
 1.0 ± 0.1

b
 

Rutin 7.8 ± 0.2
b
 10.8 ± 1.8

a
 6.7 ± 0.4

a
 4.4 ± 0.4

b
 7.1 ± 0.5

a
 6.3 ± 0.4

a
 

Unknown 1  2.0 ± 0.3
b
 7.1 ± 0.6

a
 0.1 ± 0.0

b
 6.0 ± 0.9

a
 3.7 ± 0.1

a
 3.2 ± 0.1

b
 

Unknown 2  7.3 ± 0.7
b
 6.6 ± 0.6

a
 1.7 ± 0.1

b
 5.5 ± 0.6

a
 3.3 ± 0.3

a
 3.9 ± 0.3

a
 

Total 73.1 ± 3.8
b
 111.6 ± 6.5

a
 31.7 ± 1.7

a
 37.0 ± 3.8

a
 49.6 ± 2.4

a
 37.8 ± 3.2

b
 

ND: Not detected. Means not connected by the same letter indicate a significant difference in compound concentration between the two 
years (alpha = 0.05). 
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Table 3.3. (Continued). 

Phenolic compounds 
Tomcot Vivagold 

2009 2010 2009 2010 

Catechin 4.6 ± 0.1
b
 6.5 ± 0.6

a
 3.1 ± 0.0

a
 2.1 ± 0.0

b
 

Chlorogenic acid 6.3 ± 0.2
a
 5.2 ± 0.8

a
 3.4 ± 0.3

a
 3.1 ± 0.0

a
 

Cyanidin-3-glucoside 0.8 ± 0.1 ND ND ND 

Epicatechin 1.4 ± 0.1
b
 2.2 ± 0.1

a
 1.9 ± 0.0

a
 2.0 ± 0.1

a
 

Epigallocatechin 1.8 ± 0.1
b
 5.2 ± 0.6

a
 1.3 ± 0.0 ND 

Neochlorogenic acid 18.6 ± 0.7
a
 12.8 ± 0.9

b
 8.3 ± 0.8

a
 4.6 ± 0.1

b
 

Quercetin-3-glucoside 1.0 ± 0.0
a
 0.8 ± 0.0

b
 0.9 ± 0.0

a
 0.9 ± 0.0

a
 

Quercetin derivative 1.5 ± 0.1
a
 0.9 ± 0.0

b
 1.4 ± 0.1

a
 1.1 ± 0.0

b
 

Rutin 14.5 ± 1.0
a
 4.7 ± 0.1

b
 9.7 ± 0.9

a
 4.9 ± 0.1

b
 

Unknown 1  0.6 ± 0.1
b
 2.8 ± 0.4

a
 1.0 ± 0.2

a
 1.1 ± 0.1

a
 

Unknown 2  2.9 ± 0.2
b
 7.1 ± 0.5

a
 2.2 ± 0.1

b
 2.7 ± 0.1

a
 

Total 54.0 ± 2.7
a
 48.1 ± 4.0

a
 33.1 ± 2.4

a
 22.5 ± 0.5

b
 

ND: Not detected. Means not connected by the same letter indicate a significant difference in compound concentration between the two 
years (alpha = 0.05). 

 

 

 

 

 



 

92 
 

Antioxidant capacity 

In 2009, recognizing the contribution of both phenolic and carotenoid compounds to 

apricot antioxidant capacity (Wu and others 2004; Scalzo and others 2005), 

hydrophilic and lipophilic antioxidant capacities were measured separately in the 

method described by Prior and others (2003). The highest contribution was found to 

be from the hydrophilic fraction, correlating highly with total antioxidant capacity (r > 

0.91), with lipophilic compounds contributing only 2% of AOX (data not shown). 

These results were similar to those reported by Wu and others (2004), who found the 

ORAC lipophilic fraction to be 2.4% of total apricot antioxidant capacity. This 

observation informed the decision to employ a variation of the ORAC assay by Huang 

and others (2002) to determine AOX (Figure 3.3); it had previously not been used due 

to its propensity to favor hydrophilic antioxidants. 

 

A good correlation was found between AOX and both spectrophotometric TP (r > 

0.96) and HPLC TP (r > 0.92), agreeing with work by Prior and others (2003) and 

Drogoudi and others (2008). Accordingly, the variety with greatest phenolic content in 

both years, ‘Hargrand’, had the greatest AOX (6282 and 7165 µmol, in 2009 and 

2010, respectively) while Harlayne and Vivagold were lowest in those two years 

(2182 and 2097 µmol, respectively). There was no set trend in varietal response to the 

difference in climatic factors in the two years and other factors, including variety and 

maturity at harvest, were suggested to be more influential. As with phenolic content, 

AOX correlated most with catechin (r > 0.91), chlorogenic acid (r > 0.83) and 

epigallocatechin (r > 0.80); catechin and chlorogenic acid had previously been found 

to relate significantly with apricot AOX (Roussos and others 2011). 
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Figure 3.3. Total antioxidant capacity (ORAC) of Northeast apricot varieties evaluated 

in 2009 and 2010 (TE: Trolox equivalents). Bars not connected by the same letter 

indicate a significant difference between the two years (alpha = 0.05). 

 

It is difficult to compare these AOX values with those from other studies, mainly due 

to the various methods by which antioxidant capacity is measured, giving credence to 

the need for a standardized mode of measurement (Cao and Prior 1998; Ou and others 

2001; Wu and others 2004b). However, mean ORAC AOX (3945 in 2009 and 3796 in 

2010, and not significantly different from 2009 to 2010) surpassed values given by the 

USDA database for selected foods, 1110 µmol/100 g, and Kevers and others (2007) of 

1027 µmol/100 g. The values from our study also exceeded those reported for two 

highly consumed fruits, apples and grapes (approximately 3000 and 2000 µmol, 

respectively) positioning apricots and ‘Hargrand’ in particular as very important 

dietary sources of the antioxidants. 
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Carotenoid content 

An initial assessment of carotenoid content was conducted in 2009 (data not shown). 

Varietal ranking that year was, in decreasing order, ‘Hargrand’, ‘Harogem’, 

‘Vivagold’, ‘Tomcot’ and ‘Harlayne’. The methodology was optimized and varieties 

reevaluated in 2010 (Figure 3.4). 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Hargrand Harlayne Harogem Tomcot Vivagold

T
o

ta
l 
c
a

r
o

te
n

o
id

 c
o

n
te

n
t 

(µ
g

 B
C

E
/1

0
0

 g
)

Apricot varieties
 

Figure 3.4. Total carotenoid content of Northeast apricot varieties evaluated in 2009 

(BCE: β-carotene equivalents). 

 
‘Hargrand’ was again found to have greatest TC (7371 µg). As had been the case with 

TP and AOX, ‘Harlayne’ rallied from the last position it had assumed in 2009 to 

second place, leaving ‘Tomcot’ with lowest TC (1312 µg). TC range exceeded that by 

Kurz and others (2008), 150 –  3989 µg. Mean TC (4000 µg) has higher than the value 

of 2554 µg given by the USDA (Holden and others 1999), relatively close to that by 

Salunkhe and others (1968), approximately 5000 µg, and lower than those reported by 

Ruiz and others (2005) for light-orange (7385 µg) and orange (12750 µg) flesh apricot 

varieties. The wide variations in reported values are mirrored by the difference in 
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methods by which these compounds were extracted and quantified in the various 

studies. However, using values both from our  study and the USDA database (Holden 

and others 1999), apricot TC remained higher than those of other more frequently 

consumed fruits. Relationships observed by Ruiz and others (2005) between color 

parameter a of flesh (r = 0.93) as well as hue angle of peel (r = 0.84) and total 

carotenoid content were not observed in our study, nor were any strong correlations 

with any other skin or flesh color parameter. A correlation of r = 0.75 was however 

found between TC and AOX, suprisingly high despite the low contribution found from 

lipophilic constituents to total phenolic content. 

 

Four carotenoid compounds were definitively identified and quantified (Figure 3.5) 

and the concentrations of one unknown but prominent and ubiquitous compound also 

recorded. While β-carotene, β-cryptoxanthin, lutein and ‘unknown’ were found in all 

varieties, zeaxanthin was not detected in ‘Tomcot’ and ‘Vivagold’ (Table 3.4). β-

carotene was the predominant carotenoid compound, forming > 90% of quantified 

carotenoid content in all varieties and having a high correlation (r > 0.98) with TC. 

 

A major appeal of apricots remains their provitamin A properties. This was evaluated 

taking into consideration the recommended dietary allowance (RDA) of 900 µg retinol 

activity equivalent (RAE) given by the Institute of Medicine for males 14 years and 

older, and accepted methods of calculation of dietary provitamin A (1 RAE = 12 µg β 

– carotene and 24 µg β –cryptoxanthin) (USDA FNC 2011; NIH 2012). On average, a 

155 g serving (USDA NAL 2012) of the apricot varieties assessed provided on 

average 40% RDA, making them excellent sources of vitamin A. 
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Figure 3.5. HPLC chromatogram of apricot showing carotenoid compounds at 450 

nm. Identified compounds are zeaxanthin (1), lutein (2), unknown (3), β-cryptoxanthin 

(4) and β-carotene (5). 

 

 

Table 3.4. Carotenoid compounds (µg / 100 g) in selected Northeast apricot varieties 

evaluated in 2010 (n = 3). 

Carotenoid 
compounds 

Hargrand Harlayne Harogem Tomcot Vivagold 

Beta-carotene 7200 ± 660 5600 ± 110 4400 ± 350 1150 ± 74 1970 ± 50 

Beta- 
cryptoxanthin 

32 ± 3.9 41 ± 4.1 31 ± 4.0 8 ± 0.5 14 ± 0.0 

Lutein 11 ± 1.1  12 ± 0.1  10 ± 0.3 8 ± 0.6 7 ± 1.1 

Zeaxanthin 240 ± 16  104 ± 7.4  95 ± 10.2  ND ND 

Unknown 26 ± 2.7 29 ± 5.0 41 ± 8.4 68 ± 9.5 67 ± 0.8 

Total 7500 ± 690  5800 ± 130 4500 ± 370 1200 ± 85 2100 ± 50 
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Maturity at harvest and storage effect 

In 2010, the influence of maturity at harvest was determined for four varieties – 

‘Hargrand’, ‘Harlayne’, ‘Harogem’ and ‘Vivagold’. The effect of postharvest storage 

was also evaluated for ‘Hargrand’, primarily because it was the only variety that 

endured the previously stated postharvest conditions. The selection of these varieties 

was based on seasonal availability as well as information obtained in 2009, namely 

high phenolic and antioxidant content (‘Hargrand’), high carotenoid content 

(‘Harogem’) and economic importance (‘Harlayne’). 

 

A comparison of commercial ripe (CR) to tree ripe (TR) harvests indicated changes 

occurring when the fruit was allowed to ripen on the tree while contrasting CR with 

storage (ST) showed changes when a fruit was harvested early and stored under cold 

conditions for prolonged periods, in this case, four weeks. Comparing ST to TR 

allowed a study of the effects of early harvest and subsequent long-term cold storage 

(as is largely done in commercial fruit production) versus late harvest (after which 

fruit is consumed within a short period) on fruit properties and constituents. 

 

It should be noted that the description of CR in particular differs between regions of 

production or even orchards depending on the required shelf life of fruit, which in turn 

may be influenced by the length of time to consumption or distance over which the 

produce must be transported to its final market. As such, while orchards used for our 

study required full color development for CR harvest, the practice in other producing 

areas with a greater output or a wider area of distribution may require that fruit be 

harvested while still green. 
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Quality indices 

Firmness decreases with ripening due to breakdown of fruit cell walls, pectin 

degradation and loss of tugor owing to the action of cell enzymes (including pectin 

methylesterase and β-galactosidase) and plant hormones (including ethylene). 

Firmness is therefore considered a reliable index of fruit maturity or ripeness (Brecht 

and others 1982; Cardarelli and others 2002; Kovacs and Nemeth-Szerdahely 2002; 

Payasi and Sanwal 2010). 

 

Fruit experienced an average of 60% decrease in firmness from CR to TR (Table 3.5); 

with a 73% decrease in ‘Hargrand’ from CR to ST. Mean TR firmness 11.7 N (2.6 lb) 

was within the range of 2-3 lb given by Crisosto and Kader (1999) for ‘ready-to-eat’ 

fruit. There were no significant differences in mean weight, size or edible portion 

between CR and TR. Given that by CR, fruit was in the ripening stage and growth had 

ceased, significant differences in these parameters was not expected between the two 

harvests (Salunkhe and others 1968; Femenia and others 1998). 

 

Fruit was also assessed for possible changes in color of skin and flesh with ripening 

on- or off-tree; strong observations or relationships here could have contributed to the 

search for nondestructive methods of assessment of apricot maturity. However, no 

significant differences were observed in skin or flesh of fruit (a, b, L, H or C) from CR 

to TR. This stood to reason since one of the criteria for pickers in harvesting CR fruit 

(in our study orchards) was full color development, and thus significant increases in a 

or b, as occur in the transition from ground color, were not present in this case 

(Femenia and others 1998). 
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Table 3.5. Mean and range values of quality indices of selected Northeast apricot 

varieties (‘Harlayne’, ‘Hargrand’ and ‘Harogem’) at commercial and tree ripe stages 

(n = 15). 

Maturity 
Commercial ripe Tree ripe 

Mean Range Mean Range 

Firmness (N) 28.3
a
 17.5 – 44.3 11.7

b
 5.5 – 19.9 

Weight (g) 44.3
a
 32.6 – 55.6 48.9

a
 45.0 – 51.6 

Diameter (mm) 44.3
a
 38.2 – 48.1 44.4

a
 41.4 – 48.1 

Edible portion (%) 92.4
a
 87.8 – 94.7 93.6

a
 91.4 – 94.5 

Skin L 54.7
a
 46.9 – 62.3 54.0

a
 50.5 – 59.2 

Skin a 26.3
a
 18.9 – 30.6 26.6

a
 17.8 – 31.5 

Skin b 36.5
a
 27.1 – 44.8 37.5

a
 33.4 – 42.4 

Skin H 53.0
a
 40.9 – 61.6 54.3

a
 47.8 – 64.5 

Skin C 45.9
a
 40.5 – 53.1 46.5

a
 39.5 – 51.5 

Flesh L 54.5
a
 44.8 – 60.3 51.9

a
 40.8 – 58.2 

Flesh a 23.4
a
 21.3 – 26.7 21.8

a
 17.6 – 26.8 

Flesh b 40.3
a
 34.1 – 45.0 38.1

a
 30.0 – 43.7 

Flesh H 59.8
a
 57.8 – 62.1 60.2

a
 55.7 – 64.7 

Flesh C 46.6
a
 40.2 – 52.4 44.0

a
 36.3 – 51.3 

Soluble solids (%) 12.7
b
 11.5 – 14.6 14.4

a
 13.9 – 15.1 

Titratable acidity 1.91
a
 0.83 – 3.57 1.14

b
 0.82 – 1.77 

Sugar-to-acid ratio 8.47
b
 3.53 – 14.03 13.27

a
 8.07 – 17.32 

pH 3.53
b
 3.42 – 3.60 3.70

a
 3.62 – 3.78 

Moisture content (%) 86.5
a
 84.6 – 89.9 84.0

b
 80.5 – 86.4 

Means not connected by the same letter indicate a significant difference in parameter between 
the stages (alpha = 0.05). 

 

Being climacteric fruits, apricots can ripen either on or off the tree (Kader 1999; 

Payasi and Sanwal 2008). Physiological changes as the fruit ripens result in, among 

other things, changes in sugar (sucrose accumulation) and acid concentrations (Bureau 

2006). Overall taste/flavor development and thus consumer acceptance (sensory 

perception) increases with ripening. This may be gauged instrumentally using 

SSC/TA, although actual acceptability tests remain the best means of assessment 

(Salunkhe and others 1968; Crisosto and others 1995; Manolopoulou and Mallidis 

1999; Siddiq 2006). 
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Varieties responded similarly from CR to TR, with increases in SSC (p < 0.01), 

SSC/TA (p < 0.01) and pH (p < 0.01) and decreases in TA (p < 0.05) and MC (p < 

0.01). Observed trends were similar to those reported by Salunkhe and others (1968), 

Crisosto (1994), Gomez and Ledbetter (1997) and Bureau and others (2006). While 

TR SSC (14%) was in excess of that recommended by Crisosto and Kader (1999) for 

consumer acceptance, TA (1.14) was slightly above what they suggested (0.7 – 1.0); 

both observations can be considered characteristic of the selection of varieties 

evaluated. Trends in ‘Hargrand’ from CR to ST were similar to those reported above, 

although TA did not change significantly. 

 

Phenolic content 

Dragovic-Uzelac and others (2007) found declines in phenolic content with maturity 

while the findings of Hegedus and others (2011) were to the contrary. Both groups of 

results were subject to individual varietal characteristics as well as specific 

developmental stages at which sample fruit were harvested and/or evaluated. In this 

study, mean TP at CR and TR (180.7 and 163.2 mg, respectively) did not differ 

significantly; however, the influence of ‘Hargrand’ in skewing mean data was 

apparent. In the three other varieties, TR TP was significantly lower than CR TP (p < 

0.01 in ‘Harlayne’ and ‘Vivagold’, p < 0.05 in ‘Harogem’) (Figure 3.6). Suggested 

reasons for observed decreases in phenolic content with ripening include a change in 

their role in the plant, and a neccesity to ensure the reduction of astringency for better 

taste and palatability (Dalla Valle and others 2007). Andreotti and others (2008), who 

observed similar trends in peaches, recommended further research into the effect of 
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environmental and agronomic conditions on the phenolic compounds accumulation to 

aid in optimisation of phenolic levels in ripe fruit. 
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Figure 3.6. Total phenolic content of ‘Hargrand’, ‘Harlayne’, ‘Harogem’ and 

‘Vivagold’ apricots at commercial ripe (CR), tree ripe (TR) and storage (ST) stages 

(GAE: Gallic acid equivalents). Bars not connected by the same letter indicate a 

significant difference between the stages (alpha = 0.05). 

 

Comparing the three stages in ‘Hargrand’, no significant differences were seen across 

the board, implying that – for this variety – phenolic content remained fairly stable 

regardless of the maturity at harvest (once fruit had reached CR) or post-harvest 

storage, subject to parameters described in our study since storage temperature and 

time have been found to affect phenolic content in other fruits (Kalt and others 1999). 

 

Changes in individual phenolic compound composition and concentration with 

ripening were variety-dependent (Table 3.6). Flavan-3-ols increased in ‘Hargrand’ and 
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decreased in ‘Harlayne’ and ‘Vivagold’, with no significant trend in Harogem. 

Hydroxycinnamic acids decreased in ‘Harlayne’, ‘Harogem’ and Vivagold’ but 

showed the opposite trend in ‘Hargrand’. Flavonol glycosides decreased in ‘Harogem’ 

and ‘Vivagold’ but remained stable in ‘Hargrand’ and ‘Harlayne’. Anthocyanins 

disappeared in ‘Hargrand’ and ‘Vivagold’ (the latter variety also losing 

epigallocatechin) while they increased in ‘Harlayne’ and ‘Harogem’. TR ‘Hargrand’ 

had higher concentrations of individual compounds compared to CR and ST samples. 

 

TP-HPLC remained highly correlated with spectrophotometrically-determined TP (r > 

0.96) and with flavan-3-ols catechin and epigallocatechin and hydroxycinnamic acids 

chlorogenic and neochlorogenic acid (r > 0.90 in all cases). This assay therefore 

confirmed the decline in phenolic content with ripening in the majority of the 

compounds assessed. Catechin and chlorogenic acid, which as noted earlier were 

correlated well with TP decreased with ripening in all four varieties, giving more 

credence to the theory that levels of these compounds were indicative of fruit or 

varietal phenolic content.
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Table 3.6. Phenolic compounds (mg / 100 g) in ‘Hargrand’, ‘Harlayne’, ‘Harogem’ and ‘Vivagold’ apricots at commercial 

ripe (CR), tree ripe (TR) and storage (ST) stages (n = 3). 

Phenolic compounds 
Hargrand  Harlayne 

CR TR ST CR TR 

Catechin 21.6 ± 0.3
b
 26.4 ± 1.2

a
 14.4 ± 0.9

c
 8.7 ± 0.2

a
 0.2 ± 0.0

b
 

Chlorogenic acid 14.8 ± 0.6
b
 18.4 ± 0.1

a
 17.0 ± 2.6

a
 3.4 ± 0.1

a
 2.3 ± 0.2

b
 

Cyanidin-3-glucoside 0.8 ± 0.0 ND ND 0.8 ± 0.0
b
 0.9 ± 0.0

a
 

Epicatechin 2.8 ± 0.2
b
 4.1 ± 0.3

a
 2.7 ± 0.2

b
 10.8 ± 0.1

a
  5.8 ± 0.4

b
 

Epigallocatechin 18.4 ± 0.8
b
  22.7 ± 1.1

a
  12.5 ± 0.3

c
  6.6 ± 0.2

a
 3.4 ± 0.5

b
 

Neochlorogenic acid 10.7 ± 0.6
b
 12.9 ± 0.8

a
 9.7 ± 0.7

b
 10.6 ± 0.2

a
 6.6 ± 0.7

b
 

Quercetin-3-glucoside 1.1 ±0.1
a
 1.3 ± 0.0

a
 1.2 ± 0.1

a
 0.9 ± 0.1

a
 0.9 ± 0.1

a
 

Quercetin derivative 1.2 ± 0.0
a
 1.3 ± 0.0

a
 1.2 ± 0.1

a
 0.9 ± 0.1

a
 0.9 ± 0.0

a
 

Rutin 9.9 ± 1.1
a
 10.8 ± 1.8

a
 12.0 ± 1.2

a
 4.9 ± 0.1

a
 4.4 ± 0.4

a
 

Unknown 1  8.7 ± 0.7
a
 7.1 ± 0.6

a
 4.0 ± 0.2

b
 13.3 ± 0.3

a
 6.0 ± 0.9

b
 

Unknown 2  6.6 ± 0.5
a
 6.6 ± 0.6

a
 5.8 ± 0.6

a
 9.7 ± 0.6

a
 5.5 ± 0.6

b
 

Total 96.6 ± 4.9
b
   110.3 ± 6.6

a
 80.5 ± 6.9

c
 70.6 ± 2.0

a
 37.0 ± 3.8

b
 

ND: Not detected. Means not connected by the same letter indicate a significant difference in compound concentration between the 
stages (alpha = 0.05). 
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Table 3.6. (Continued). 

Phenolic compounds 
Harogem Vivagold 

CR TR CR TR 

Catechin 10.3 ± 0.8
a
 2.7 ± 0.2

b
 6.6 ± 1.0

a
 2.1 ± 0.0

b
 

Chlorogenic acid 4.0 ± 0.4
a
 2.3 ± 0.1

b
 9.2 ± 0.3

a
 3.1 ± 0.0

b
 

Cyanidin-3-glucoside 1.5 ± 0.1
b
 2.4 ± 0.3

a
 0.9 ± 0.0 ND 

Epicatechin 2.6 ± 0.2
b
 4.3 ± 0.2

a
 2.8 ± 0.1

a
 2.0 ± 0.1

b
 

Epigallocatechin 6.5 ± 0.6
a
 4.7 ± 0.3

b
 1.4 ± 0.0 ND 

Neochlorogenic acid 8.1 ± 0.8
a
 5.8 ± 0.1

b
 11.8 ± 0.5

a
 4.6 ± 0.1

b
 

Quercetin-3-glucoside 0.9 ± 0.1
a
 1.2 ± 0.1

a
 1.4 ± 0.1

a
 0.9 ± 0.0

b
 

Quercetin derivative 1.5 ± 0.0
a
 1.0 ± 0.1

b
 2.2 ± 0.1

a
 1.1 ± 0.0

b
 

Rutin 10.6 ± 0.4
a
 6.3 ± 0.4

b
 18.5 ± 0.9

a
 4.9 ± 0.1

b
 

Unknown 1  2.6 ± 0.2
b
 3.2 ± 0.1

a
 1.9 ± 0.5

a
 1.1 ± 0.1

b
 

Unknown 2  2.4 ± 0.1
b
 3.9 ± 0.3

a
 2.6 ± 0.3

a
 2.7 ± 0.1

a
 

Total 51.0 ± 3.7
a
 37.8 ± 3.2

b
 59.3 ± 3.8

a
 22.5 ± 0.5

b
 

ND: Not detected. Means not connected by the same letter indicate a significant difference in compound concentration between the 
stages (alpha = 0.05). 
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Antioxidant capacity 

Given the significant correlation between AOX and phenolics, similar results as seen 

with phenolics were expected (i.e. decline or relative stability of phenolics with 

ripening). This was largely realized (Figure 3.7), with mean AOX at CR and TR (4667 

and 4019 µmol respectively) not differing significantly. Similar to their responses per 

TP, ‘Hargrand’ AOX remained constant while ‘Harlayne’ and ‘Vivagold’ AOX 

decreased with ripening (p < 0.01). The decreases contrasted reports by Hegedus and 

others (2011), one of the few published studies on the effect of ripening on apricot 

AOX. ‘Harogem’, which had shown relatively less phenolic decline with ripening, did 

no change significantly in AOX with ripening. 
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Figure 3.7. Total antioxidant capacity of ‘Hargrand’, ‘Harlayne’, ‘Harogem’ and 

‘Vivagold’apricots at commercial ripe (CR), tree ripe (TR) and storage (ST) stages 

(TE: Trolox equivalents). Bars not connected by the same letter indicate a significant 

difference between the stages (alpha = 0.05). 
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The lack of similar studies with apricots leaves little data with which to contrast our 

observations. Our results indicate that changes in varietal antioxidant capacity with 

ripening are strongly linked with changes in phenolic content. This agrees with 

findings by Gil and others (2002) and Kalt and others (1999), who found phenolic 

compounds to be mainly responsible for antioxidant activity as measured by the 

ORAC test in peaches and berries, respectively. 

 

Carotenoid content 

In all four apricot varieties, an increase in carotenoid content was observed from CR to 

TR. Similar results had been reported by Salunkhe and others (1968), Katayama and 

others (1971) and Dragovic-Uzelac and others (2007) The phenomenon has been 

attributed to an upregulation of carotenoid gene expression (phytoene synthase) with 

ripening (Fraser and Bramley 2004). This enzyme catalyzes the first committed step of 

carotenoid synthesis, the conversion of geranylgeranyl pyrophosphate to phytoene; 

phytoene serves as a precursor of lycopene from which several other carotenoid 

compounds are synthesized. 

 

Of the three categories of bioactive compounds evaluated in this study, carotenoids 

were the only group to show significant change under cold storage, with ‘Hargrand’ 

TC increasing five-fold from CR to ST. Increase in TC with on-tree ripening ranged 

from three-fold in ‘Vivagold’ to six-fold in ‘Hargrand’ (Figure 3.8). 

 

http://en.wikipedia.org/wiki/Geranylgeranyl_pyrophosphate
http://en.wikipedia.org/wiki/Phytoene
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Figure 3.8. Total carotenoid content of ‘Hargrand’, ‘Harlayne’, ‘Harogem’ and 

‘Vivagold’ apricots at commercial ripe (CR), tree ripe (TR) and storage (ST) stages 

(BCE: β-carotene equivalents). Bars not connected by the same letter indicate a 

significant difference between the stages (alpha = 0.05). 

 

Consistent increases with ripening were observed in β-carotene and β-cryptoxanthin, 

as seen by Katayama and others (1971). β-carotene remained the predominant 

carotenoid and main determinant of fruit carotenoid content; the marked increase in 

TC were due to the increases in the concentration of this compound (Table 3.7). 

Zeaxanthin content with ripening was variety-dependant. 

 

The degree of carotenoid increase with apricot ripening was a particularly important 

finding of this study. It has significant implications on how production practices or 

personal preferences (e.g. eating fruit while still firm or unripe) affect the amount of 

vitamin A available (at least in vitro) to consumers.
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Table 3.7. Carotenoid compounds (µg / 100 g) in ‘Hargrand’, ‘Harlayne’, ‘Harogem’ and ‘Vivagold apricots at commercial 

ripe (CR), tree ripe (TR) and storage (ST) stages (n = 3). 

Carotenoid compounds 
Hargrand  Harlayne 

CR TR ST CR TR 

Beta-carotene 1040 ± 78
c
 7200 ± 763

a
 5900 ± 570

b
 1700 ± 150

b
 5600 ± 120

a
 

Beta-cryptoxanthin 12 ± 2.9
b
 32 ± 3.9

a
 25 ± 3.5

ab
 12 ± 2.8

b
 41.1 ± 8.1

a
 

Lutein 8.4 ± 0.8
a
 11 ± 1.1

a
 112 ± 1.4

a
 7.3 ± 0.5

b
 12.0 ± 0.1

a
 

Zeaxanthin 108 ± 2.8
a
 240 ± 10.5

b
 ND ND 104.0 ± 8.4 

Unknown 9.6 ± 1.8
b
 26 ± 2.7

a
 36 ± 10

a
 19 ± 0.8

b
 29 ± 5.0

a
 

Total 1400 ± 86
c
 7500 ± 780

b
 6003 ± 580

a
 1700 ± 160

b
 5800 ± 140

a
 

 

Carotenoid compounds 
Harogem Vivagold 

CR TR CR TR 

Beta-carotene 1200 ± 35
b
 4400 ± 150

a
 690 ± 64

b
 2000 ± 51

a
 

Beta-cryptoxanthin 9.3 ± 0.3
b
  31 ± 3.4

a
 8.7 ± 0.9

b
 14 ± 0.0

a
 

Lutein 13 ± 1.6
a
  10 ± 0.3

b
 5.6 ± 0.1

b
 7.4 ± 1.0

a
 

Zeaxanthin 68 ± 5.2
b
  95 ± 7.0

a
 ND ND 

Unknown 6.6 ± 0.1
b
 41 ± 8.4

a
 63 ± 5.2

a
 67 ± 0.8

a
 

Total 1300 ± 42
b
 4600.0 ± 170

a
 760 ± 71

b
 2060 ± 52

a
 

ND: Not detected. Means not connected by the same letter indicate a significant difference in compound concentration between the 
stages (alpha = 0.05). 
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Conclusion 

This study provided detailed profiles of locally-grown Northeast apricot varieties. It 

also identified ‘Hargrand’ apricot as having impressive phenolic, antioxidant and 

carotenoid content. Flavan-3-ols (catechin and epigallocatechin) and hydroxycinnamic 

acids (chlorogenic and neochlorogenic acid) proved reliable indicators of varietal 

phenolic and antioxidant content, while β-carotene was most indicative of carotenoid 

content. Apricots compared favorably against more popular fruits (apples and grapes) 

in phenolic content and antioxidant capacity and it surpassed them in carotenoid 

content. 

 

Seasonal variations over two years influenced some quality (mainly chemical) indices 

but had less categorical influences on bioactive compound concentration. Varieties 

differed in the responses of their phenolic and antioxidant components to ripening, 

although a trend of decreasing phenolic content was observed in the majority of 

varieties. In all varieties, however, a large increase in carotenoids content was 

observed as fruit ripened on-tree. In the one variety assessed for changes with cold 

storage, phenolic and antioxidant content remained stable while carotenoid content 

increased sharply. The effects of varietal and harvest variations on bioactive 

compounds illustrated the susceptibility of these compounds to horticultural practices, 

and highlighted the need for better understanding and, where possible, control of these 

in order to ensure optimum levels of the nutraceuticals in fruit. 
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CHAPTER 4: THE EFFECT OF PROCESSING AND STORAGE ON THE 

PHENOLIC, ANTIOXIDANT AND CAROTENOID CONTENT OF CANNED 

PEACHES AND APRICOTS. 

Introduction 

The peach (Prunus persica) and apricot (Prunus armeniaca) contain phenolic and 

carotenoid compounds and are considered important sources of antioxidants and 

vitamin A, both recommended for their health benefits (Tomas-Barberan and others 

2001; Gil and others 2002; Ruiz and others 2005a; Ruiz and others 2005b). Dietary 

antioxidants are understood to reduce the risk of cardiovascular diseases and some 

cancers while carotenoids play a role in vision and prevent age-related macular 

degeneration (Ames and others 1993; Paiva and Russell 1999; Fraser and Bramley 

2004; Kader and Barrett 2005). 

 

Being climacteric fruits, peaches and apricots present a challenge in postharvest 

storage (Kader and Mitchell 1989; Kader 1999; Payasi and Sanwal 2008). Processing 

serves as a means to add value, extend fruit shelf life and ensure availability when fruit 

is out of season. In the United States, fruits are consumed more in processed than fresh 

form; 38% of peaches and 16% US of apricots produced in the USA are consumed as 

canned products (Rickman and others 2007b; USDA ERS 2011). An area of concern 

with these products is the successful combination of aesthetic appeal and nutritive 

value (Rickman and others 2007a). 

 

Peaches and apricots are often peeled before canning to ensure a uniform, attractive 

appearance and good mouthfeel (Manolopoulou and Mallidis 1999; Ramaswamy 
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2005; Siddiq 2006a; Siddiq 2006b). Given the higher quantities of phenolic and 

carotenoid compounds in the peel of both fruits as compared to the flesh, this practice 

may result in significant losses in these phytochemicals in peeled canned products 

(Ramaswamy 2005; Tomas-Barberan and others 2001; Gil and others 2002; Ruiz and 

other 2005a). 

 

The thermal treatment involved in canning may also degrade heat labile constituents, 

polymerizing polyphenols and oxidizing antioxidant compounds; results from 

different studies have varied with processing time and temperature (Hamama and 

Nawar 1991; Howard and others 1996; Asami and others 2003). Contrarily, other 

studies have indicated an increase in antioxidant capacity due to the antioxidant 

properties of Maillard reaction products formed during heating (Lingnert and 

Lundgreen 1980; Elizalde and others 1991; Anese and others 1999). The effect of 

heating on carotenoids has been found to be beneficial in some studies and detrimental 

in others (Edwards and Lee 1986; Lessin and others 2007). 

 

The aim of our study was therefore to assess the effect of peeling, thermal treatment as 

well as storage on the composition and concentration of phenolic, antioxidant and 

carotenoid compounds in canned peaches and apricots. The syrup in which fruit was 

canned, a component often unexamined in other studies, was also analysed post-

processing and over a 6-month shelf life study better assess the significance of losses 

due to leaching as opposed to degradation during processing or storage. Results were 

intended to provide insight into the effect of typical canning procedures on healthful 

compounds in this product. 
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Materials and methods 

The study was in two phases, with the first focusing on the effect of peeling prior to 

canning on three peach and three apricot varieties. In the second phase involved one 

peach and one apricot variety; a 6-month shelf life study conducted to monitor the 

stability of phytochemicals in storage. 

 
Harvest 

Three yellow-fleshed peach and orange-fleshed apricot varieties were harvested at 

commercial ripeness (firm, full color development) from local Northeast orchards in 

2010 and 2011. Fruits were harvested at this point to ensure adequate ripeness yet 

sufficient firmness to withstand processing conditions (Ramaswamy 2005; Siddiq 

2006a). Varieties were chosen based on a previous study on Northeast peaches and 

apricots (Campbell and others 2011) for high phenolic content and antioxidant 

capacity (‘PF 23’ peach and ‘Hargrand’ apricot’), high carotenoid content (‘John Boy 

II’ peach and ‘Harogem’ apricot) and economic importance to the Northeast 

(‘Redhaven’ peach and ‘Harlayne’ apricot). ‘Redhaven’ peach and ‘Harlayne’ apricot 

were reassessed in the second phase of the study. Fresh fruit samples were lyophilized, 

homogenized and stored at 0 ˚C until analyses. 

 

Canning 

Canning was conducted following typical canning protocols (Reynolds and others 

1993). The process is illustrated in Figure 4.1, with differences in the two phases 

indicated using broken lines (---) for the first phase and continuous lines for the 

second. Pictures of the final products are shown in Illustration A.5.  
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Wash fruit

Immerse fruit in boiling water for 60 s

Transfer fruit quickly to ice-cold water

Peel skin off fruit

Remove pit and slice (peach) or halve (apricot) fruit

Immerse fruit immediately in antibrowning solutiona

Drain fruit and transfer to preheated  jars

Prepare 30% sucrose solution 
and bring to boil 

Pour syrup over fruit (60% fruit to 40% syrup) 
leaving a ½-inch headspace

Wipe jar rims and screw on lids

Process jars in boiling water (100  C)b

Force-cool jars by transferring first to a lukewarm water bath and then to cold water bath

UNPEELED PEELED

Drain fruit and place in kettlePrepare and add 30% 
sucrose solution

Bring mixture to a boil (105 ˚C)

Transfer mixture to preheated jars leaving a ½-inch headspace

 

a
Antibrowning solution comprised 1.2% citric acid, 0.06% calcium chloride and 0.2% ascorbic acid (Hall 1989). 

b
Jars (8 oz, 237 mL) were capped and processed for 17 min to achieve shelf stability, based on heat penetration studies (lethality of 0.1 min, T ref = 93 ˚C, 

z = 9 ˚C) (Padilla-Zakour 2009). 
 

Figure 4. 1. Flow chart for the production of unpeeled and peeled canned peaches and apricots. 
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Phenolic analysis 

One gram freeze-dried and 5 g canned fruit or syrup were extracted following the 

method described in chapter 2 with 80% methanol used for freeze-dried samples and 

100% methanol for canned fruit and syrup. Total phenolic content and HPLC phenolic 

analysis were also performed as in chapter 2. 

 

Total antioxidant capacity assay 

This was performed as described in chapter 2.  

 
Carotenoid analysis 

This was performed as described in chapter 2; 5 g canned fruit or syrup was extracted 

and analysed. 

 

Shelf life study 

Samples were stored at 18 - 20 ˚C for six months (mo) under dark conditions. 

Phenolic, antioxidant and carotenoid analyses were conducted at 3 mo and again at 6 

mo. Results were compared to those obtained post-processing. 

 
Statistical analysis 

Data was analysed as described in chapter 2, with the respective weights for bioactive 

data stated as required. 
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Results and discussion 

The first phase studied varietal phytochemical response to canning with unpeeled or 

peeled fruit. The effect of these treatments on structural integrity and product 

appearance was noted. Loss of structural integrity was anticipated because the canning 

process results in the solubilization of cell wall polysaccharides and eventual softening 

and breakdown of fruit tissue (Chitarra and others 1989; Apostolopoulos and Brennan 

1993). Visually, unpeeled samples had better integrity compared to peeled samples 

with ‘John Boy II’ peach and ‘Harlayne’ apricots retaining best structure. Apricots 

held together better than peaches, in part due to the less destructive nature of fruit 

sectioning. While peeled and unpeeled apricot samples were visually similar, a 

diffusion of pink to red color into syrup was observed in unpeeled peach samples 

while peeled samples had a more uniform appearance. 

 

As in the fresh samples, canned apricots had on average higher phenolic (four-fold), 

antioxidant (two-fold) and carotenoid (ten-fold) values compared to canned peaches. 

While canned ‘PF 23’ peach retained highest total phenolic content (TP) for both 

peeled and unpeeled samples, peach varieties did not differ significantly in total 

antioxidant capacity (AOX) and total carotenoid content (TC) (Figure 4.2). In apricots 

canned ‘Hargrand’ remained highest in TP and AOX but did not differ from other 

varieties in TC (Figure 4.3). 

 

Previous studies have reported higher concentration of phenolic and carotenoid 

compounds in the peel of fresh peaches and apricots compared to the flesh (Tomas-

Barberan and others 2001; Gil and others 2002; Ruiz and others 2005a; Ruiz and 
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others 2005b). The removal of peel was therefore anticipated to reduce the 

concentrations of these compounds, although few studies have examined the effect of 

this practice in canned fruit. Available literature by Asami and others (2003) reported 

higher phenolic content (1.5-fold) in unpeeled peaches compared to peeled canned 

peaches while Talcott and others (2000) saw higher antioxidant and individual 

phenolic content in peach puree produced from unpeeled peaches compared to the 

alternative. Tomatoes undergoing prolonged heating with their peels intact had greater 

carotenoid compared to their peeled counterparts (Graziani and others 2003). 

 

In our study, although a general decrease in TP was observed with peeling, it was only 

significant (p < 0.05) in ‘PF 23’ (19.2%). No significant differences were observed in 

AOX between the two treatments in all varieties. In TC, lower values (p < 0.01) were 

observed with peeling in ‘PF 23’ (24.7%) and ‘Redhaven’ (27.3%) but not in ‘John 

Boy II’. In apricots, peel removal resulted in decreases in phenolic content (p < 0.01) 

and antioxidant capacity (p < 0.01) only in ‘Hargrand’ (22.1% and 33.9%, 

respectively). However, all apricot varieties showed a decrease in TC (p < 0.01) with 

peeling – 16.1% in Hargrand, 27.0% in Harlayne and 30.1% in Harogem. The 

differences in varietal response to peeling and canning indicate variations in 

distribution of bioactive compounds (between peel and flesh) in the various varieties. 

The results could also imply differences in the stability of these compounds, in the 

various varieties, under the processing conditions. The uniform decline in TC with 

peeling in apricots corroborated the findings of greater, or at least substantial, 

concentration of carotenoids in the skin of fruit. Within reason, that conclusion can 

also be drawn with peaches, given that the majority of varieties responded similarly. 
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Figure 4. 2. Total phenolic content, total antioxidant capacity and total carotenoid 

content of unpeeled and peeled canned ‘John Boy II’, ‘PF 23’ and ‘Redhaven’ peaches 

(GAE: Gallic acid equivalents, TE: Trolox equivalents, BCE: β-carotene equivalents). 

Bars not connected by the same letter indicate a significant difference between 

treatments (alpha = 0.05). 
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Figure 4. 3. Total phenolic content, total antioxidant capacity and total carotenoid 

content of unpeeled and peeled canned ‘Hargrand’, ‘Harlayne’ and ‘Harogem’ apricots 

(GAE: Gallic acid equivalents, TE: Trolox equivalents, BCE: β-carotene equivalents). 

Bars not connected by the same letter indicate a significant difference between 

treatments (alpha = 0.05). 
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Canned fruit syrup or brine is often drained to reduce sugar or sodium intake; this 

practice may result in losses of hydrophilic compounds and nutrients (such as 

phenolics and vitamin C) which can migrate from fruit into the surrounding liquid. In 

their review of nutritional comparison of fresh and processed fruits and vegetables, 

Rickman and others (2007a) noted that most studies did not analyse this fraction. 

Chaovanalikit and Wrolstad (2004) who did conduct this analysis found that 

approximately 50% of phenolic compounds were lost into syrup in canned cherries. 

 

In our study, we assessed the contribution of syrup to the total phytochemical content 

of the canned unit. In peaches, syrup contained 34 – 38% TP, 48 – 52% AOX and 0.5 

– 1% TC and in apricots, 34 – 38% TP, 30 – 48% AOX and 0.5 – 1 % TC of canned 

product after processing. No significant differences were seen with treatment or 

variety except in apricot AOX, with syrup of peeled ‘Hargrand’ (48%) and ‘Harogem’ 

(41%) contained higher AOX (p < 0.01) than that of unpeeled samples (40% and 30%, 

respectively), suggesting that in these varieties there was greater leaching of 

antioxidant compounds in peeled compared to unpeeled samples, which are relatively 

more physically intact. These results confirmed substantial losses of hydrophilic 

compounds – phenolic compounds and ORAC antioxidants, which are comprised 

primarily of phenolic compounds (Kalt and others 1999; Gil and others 2002; See 

Chapters 1 and 2) – if canned fruit syrup was discarded or not consumed. 

 

Studies on nutrient retention with canning vary greatly in their approach. Available 

studies were conducted with different canning procedures and losses computed 

alternatively on wet or dry weight bases. In our study, comparing equivalent quantities 



 

127 
 

of canned to fresh fruit on wet weight basis, the trend in both fruits was decreases in 

phenolic content and antioxidant capacity with canning. These observations were in 

agreement with work by Asami and others (2003) and Chaovanalikit and Wrolstad 

(2004) who reported a reduction of phenolic content with processing of canned 

peaches and cherries respectively, with losses attributed both to processing conditions 

and leaching of these hydrophilic components into syrup. These studies mentioned the 

influence of factors such as processing temperature and syrup composition on losses, 

as well as the varying responses of specific phenolic compounds to treatments. 

Contrarily, Durst and Weaver (2012) observed similar phenolic content and higher 

antioxidant content in canned as opposed to fresh peaches. 

 

We noted higher values in carotenoid content of canned compared to fresh fruits. This 

was in line with studies reporting greater extractability of carotenoids after heat 

processing due to a breakdown of the cellular matrix (Stahl and Sies 1992; Seybold 

and others 2004). Additionally carotenoids, due to their lipophilic nature, are less 

susceptible to leaching into syrup and therefore less affected by the canning process, 

although they can undergo some degradation with oxidation, light or heat (Paiva and 

Russell 1999; Abushita and others 2000; Britton and Khachik 2009). A previous study 

by Durst and Weaver (2012) had resulted in higher but not significantly different 

carotenoid content while Lessin and others (2007) saw decreases in canned peaches. 

Edwards and Lee (1986) also reported nonsignificant differences and suggested that 

changes could be better assessed by accurately accounting for the losses of water and 

water-soluble fruit components, a view supported by Britton and Khachik (2009). 
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HPLC analysis allowed for an examination of the effect of the two canning treatments 

on specific phenolic compounds (Tables 4.1 and 4.2) and accounted for inadequacies 

of the more generalized Folin-Ciocalteu assay, which is susceptible to interference by 

sugar (Waterhouse 2002). Although the effect of peeling on the different classes of 

phenolic compounds varied, peeling typically resulted in a significant decrease in 

specific phenolic compounds and overall HPLC-determined TP. As in the Folin-

Ciocalteu assay, ‘John Boy II’ peach and ‘Hargrand’ apricot were most affected by 

peeling. 

 

Peach flavan-3-ol responses were variety dependent; losses of catechin and 

epigallocatechin, found to correlate best with peach total phenolic content (See 

Chapter 1) influenced final unpeeled versus peeled HPLC-TP. For hydroxycinnamic 

acids, chlorogenic acid decreased across the board while neochlorogenic acid was not 

significantly impacted by peeling. Flavonol glycosides and anthocyanins were most 

uniformly affected by peeling, agreeing with reports of greater concentration of these 

two groups in the peel of these fruits (Chang and others 2000; Tomas-Barberan and 

others 2001). Quercetin-3-glucoside and rutin disappeared in all peeled samples and 

the unidentified flavonol glycoside (unknown 2) in ‘John Boy II’ and ‘Redhaven’ but 

not in ‘PF 23’; kaempferol-3-rutinoside was not significantly affected. The sole 

anthocyanin, cyanidin-3-glucoside, decreased in all peeled samples. Anthocyanins are 

very unstable compounds and known to be influenced by a range of factors including 

pH, temperature, sugar content and food composition (Shahidi and Naczk 2004) which 

in part explains their degradation. 
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Table 4.1. Phenolic compounds (mg / 100 g) in unpeeled and peeled canned ‘John Boy II’, ‘PF 23’ and ‘Redhaven’ peaches (n = 4). 

Phenolic compounds 
John Boy II PF 23 Redhaven 

Unpeeled Peeled Unpeeled Peeled Unpeeled Peeled 

Catechin 1.05 ± 0.12
a
 0.89 ± 0.01

a
 1.52 ± 0.09

a
 0.75 ± 0.04

b
 1.63 ± 0.13

a
 0.51 ± 0.07

b
 

Chlorogenic acid 2.70 ± 0.24
a
 2.37 ± 0.09

b
 6.47 ± 0.38

a
  3.98 ± 0.13

b
 3.73 ± 0.09

a
 2.83 ± 0.13

b
 

Cyanidin-3-glucoside 2.88 ± 0.10
a
 1.88 ± 0.11

b
 4.19 ± 0.26

a
 1.60 ± 0.02

b
 2.22 ± 0.13

a
  1.51 ± 0.07

b
 

Epicatechin 3.81 ± 0.17
a
 4.44 ± 0.31

b
 4.47 ± 0.20

a
 3.99 ± 0.22

a
 4.41 ± 0.65

a
 2.65 ± 0.12

b
 

Epigallocatechin 1.11 ± 0.11
a
 0.95 ± 0.03

a
 1.33 ± 0.07

a
 0.65 ± 0.09

b
 1.18 ± 0.15

a
 0.85 ± 0.31

a
 

Kaempferol-3-rutinoside 7.12 ± 0.02
a
 7.17 ± 0.02

b
 7.38 ± 0.01

a
 7.40 ± 0.04

a
 7.16 ± 0.13

a
 6.94 ± 0.01

b
 

Neochlorogenic acid 2.15 ± 0.22
a
 2.07 ± 0.02

a
   3.75 ± 0.05

a
 2.34 ± 0.11

a
 2.37 ± 0.22

a
 2.48 ± 0.14

a
 

Quercetin-3-glucoside 1.12 ± 0.01 ND 1.15 ± 0.02 ND 1.11 ± 0.01 ND 

Rutin 1.07 ± 0.00 ND 1.07 ± 0.01 ND 1.07 ± 0.00 ND 

Unknown 1 0.94 ± 0.06
a
 0.61 ± 0.11

b
 1.64 ± 0.01

a
 1.31 ± 0.03

b
 1.53 ± 0.10

a
 0.87 ± 0.08

b
 

Unknown 2 1.12 ± 0.01 ND 1.17 ± 0.01
a
 1.12 ± 0.01

b
 1.17 ± 0.01  ND 

Total 25.07 ± 1.06
a
 20.38 ± 0.07

b
 34.14 ± 1.11

a
 23.14 ± 0.69

b
 27.58 ± 1.62

a
 18.19 ± 0.93

b
 

ND: Not detected. Unknown 1: flavan-3-ol; Unknown  2: flavonol glycoside. Means not connected by the same letter indicate a significant 
difference between treatments for that compound (alpha = 0.05). 

 

 



 

130 
 

Table 4.2. Phenolic compounds (mg / 100 g) in unpeeled and peeled canned ‘Hargrand’, ‘Harlayne’ and ‘Harogem’ apricots (n = 4). 

Phenolic compounds 
Hargrand Harlayne Harogem 

Unpeeled Peeled Unpeeled Peeled Unpeeled Peeled 

Catechin 10.29 ± 1.23
a
 4.22 ± 0.30

b
 2.08 ± 0.49

a
 1.02 ± 0.09

b
 2.39 ± 0.16

a
 1.67 ± 0.13

b
 

Chlorogenic acid 13.11 ± 0.81
a
 6.93 ± 0.74

b
 2.43 ± 0.22

a
 2.29 ± 0.25

a
 3.69 ± 0.16

a
 3.00 ± 0.10

b
 

Cyanidin-3-glucoside ND ND ND ND 1.35 ± 0.03 ND 

Epicatechin 2.17 ± 0.21
a
 2.32 ± 0.32

a
 4.79 ± 0.76

a
 5.17 ± 0.53

a
 2.41 ± 0.16

a
 2.28 ± 0.18

a
 

Epigallocatechin 11.30 ± 0.55
a
 6.43 ± 0.38

b
 1.73 ± 0.10

a
 1.33 ± 0.08

b
 3.08 ± 0.20

a
 2.33 ± 0.22

b
 

Neochlorogenic acid 8.85 ± 0.41
a
 4.18 ± 0.32

b
 6.59 ± 1.51

a
 5.34 ± 0.57

a
 7.97 ± 0.38

a
 5.59 ± 0.13

b
 

Quercetin-3-glucoside 1.27 ± 0.05 ND 1.15 ± 0.02 ND 1.31 ± 0.02 ND 

Quercetin derivative 1.31 ± 0.07 ND 1.18 ± 0.03 ND 1.42 ± 0.03
a
 1.12 ± 0.00

b
 

Rutin 7.99 ± 1.44
a
 1.33 ± 0.09

b
 3.74 ± 0.09

a
 1.39 ± 0.03

b
 6.15 ± 0.28

a
 1.59 ± 0.06

b
 

Unknown 1 3.16 ± 0.20
a
 3.30 ± 0.22

a
 6.61 ± 1.98

a
 7.96 ± 0.66

a
 2.51 ± 0.15

a
 1.77 ± 0.17

b
 

Unknown 2 3.45 ± 0.44
a
 3.48 ± 0.16

a
 3.94 ± 0.46

a
 3.09 ± 0.21

a
 1.46 ± 0.08

a
 1.26 ± 0.01

b
 

Total 62.90 ± 5.41
a
  32.19 ± 2.53

b
 34.24 ± 5.66

a
 27.59 ± 2.42

a
 33.74 ± 1.65

a
 20.61 ± 1.00

b
 

ND: Not detected. Unknown 1 and 2: flavan-3-ols. Means not connected by the same letter indicate a significant difference between treatments for 
that compound (alpha = 0.05). 
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Ruiz and others (2005a) reported larger quantities of all four classes of phenolic 

compounds in the skin as compared to the flesh of apricots and therefore peeling 

was theorized to significantly impact the concentrations of these compounds. In 

our canned products, the effect on flavan-3-ols was largely variety-dependent as 

with peaches, although catechin and epigallocatechin – indicators of total phenolic 

content (See Chapter 2) – were observed to decline in all varieties with peeling. 

Hydroxycinnamic acids were reduced significantly in peeled ‘Hargrand’ and 

‘Harogem’ but not ‘Harlayne’. As with peaches, flavonol glycosides were most 

affected, with quercetin-3-glucoside and the quercetin derivative disappearing with 

peeling in all but one instance (‘Harogem’) and rutin content being reduced by 

more than half in all cases. Anthocyanin cyanidin-3-glucoside was completely lost 

in ‘Hargrand’ and ‘Harlayne’ but not in Harogem, a variety particularly unique for 

its deep red blush and marked by high anthocyanin content in fresh form (See 

Chapter 2). 

 

Generally, the losses of these compounds could be attributed to a number of 

factors, including degradation of unstable anthocyanins or greater susceptibility to 

leaching of polar glycosylated flavonol compounds into syrup (Kim and Lee 

2002). Additionally, some phenolic compounds act as antioxidants and may 

therefore be oxidized during processing and storage (thermal action, exposure to 

oxygen and light) of canned produce (Hamama and Nawar 1991; Smith and others 

2005). The absence of specific compounds in peeled samples gives credence to 

their reported situation in fruit peel, while the reduction in quantities of specific 

compounds implies that they may be more greatly concentrated in the peel. 
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Carotenoid compounds have been found to be more concentrated in the peel of 

both fruits, being 2-3 times higher in peel of apricots, with β-carotene being the 

predominant carotenoid (Gil and others 2001; Ruiz and others 2005b). This was 

illustrated by the reduction with peeling in two of the three peach varieties 

evaluated and all three apricot varieties (Tables 4.3 and 4.4). Although a significant 

decrease in β-carotene was observed in these varieties (possibly more noticeable or 

measurable due to its high quantities) changes to other compounds were more 

variety dependent. Our findings generally agreed with those of Graziani and others 

(2003) discussed previously. 

 

These observations informed the design of the second phase of the study, which 

examined in more detail the effect of treatments on total and individual phenolic 

and carotenoid content and antioxidant capacity by processing as well as storage. 

Given the observed losses in canned fruit, in part from leaching into the liquid 

component of the canned product, the syrup fraction was analysed post-processing 

and during storage. ‘Redhaven’ peach was selected for revaluation because of its 

economic importance to the Northeast due to its cold hardiness (Lamb and Terry 

1973; Scorza and Sherman 1996) and its reputation as a reliable commercial 

variety (Monet and Bassi 2008). ‘Harlayne’ apricot was also chosen for its cold 

hardiness (Layne 1996) as well as its consumer appeal which has made it a top 

selling variety in the Northeast. 
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Table 4.3. Carotenoid compounds (µg / 100 g) in unpeeled and peeled canned ‘John Boy II’, ‘PF 23’ and ‘Redhaven’ peaches (n = 4). 

Carotenoid compounds 
John Boy II PF 23 Redhaven 

Unpeeled Peeled Unpeeled Peeled Unpeeled Peeled 

Beta-carotene 870 ± 89a 860 ± 98a  1010 ± 39a 730 ± 42b 930 ± 76a 707 ± 42 b 

Beta-cryptoxanthin 170 ± 7a 190 ± 6a  170 ± 20a 130 ± 2b 160 ± 10a 110 ± 2b 

Lutein ND ND ND ND ND ND 

Zeaxanthin 85 ± 10b 130 ± 9a 70 ± 4b 97 ± 9a 110 ± 11a 96 ± 10a 

Total 1130 ± 106a  1180 ± 110a   1250 ± 63a 970 ± 53b 1200 ± 97a 909 ± 53b 

ND: Not detected. Means not connected by the same letter indicate a significant difference between treatments for that compound (alpha = 0.05). 

 

Table 4.4. Carotenoid compounds (µg / 100 g) in unpeeled and peeled canned ‘Hargrand’, ‘Harlayne’ and ‘Harogem’ apricots (n = 4). 

Carotenoid compounds 
Hargrand Harlayne Harogem 

Unpeeled Peeled Unpeeled Peeled Unpeeled Peeled 

Beta-carotene 17000 ± 980
a
 14100 ± 1070

b
 14600 ± 1030

a
 10600 ± 170

b
 12000 ± 1080

a
 8400 ± 380

b
 

Beta-cryptoxanthin 73 ± 9
b
 101 ± 11

a
 110 ± 7

a
 97 ± 6

b
 107 ± 8

a
 84 ± 8

b
 

Lutein 9 ± 1
a
 9 ± 0.4

a
 15 ± 0.4

a
 13 ± 0.3

b
 16 ± 2

a
 13 ± 1

b
 

Zeaxanthin 270 ± 1
a
 170 ± 1

b
 160 ± 1

a
 160 ± 2

a
 150 ± 20

a
 140 ± 6

a
 

Total 17300 ± 990a 14400 ± 1080
b
 14900 ± 1030

a
 10800 ± 180

b
 12300 ± 1110

a
 8600 ± 390

b
 

ND: Not detected. Means not connected by the same letter indicate a significant difference between treatments for that compound (alpha = 0.05). 
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Figures 4.4 and 4.5 show changes in bioactive compound concentration in canned 

peaches and apricots post-processing and after 3 and 6 mo storage at 18 - 20 ˚C. In 

peaches, unpeeled fruit and syrup had significantly higher TP post-processing. This 

treatment effect was nullified at 3 mo in both fruit and syrup and remained thus 

until 6 mo. The decrease in TP with storage contrasted with its increase in canned 

cherries (5 mo, 22 ˚C) as reported by Chaovanalikit and Wrolstad (2004), who 

attributed this to increased extraction efficiency or depolymerisation of high 

molecular weight polyphenolics. Asami and others (2003) noted differences in TP, 

alternately increasing or decreasing, with different storage time and temperature 

while Rickman and others (2007a) cautioned that the material type of container 

used could affect observed results. In apricots, decrease in fruit TP was only 

significant at 6 mo of storage. These losses appeared to be due in some part to 

migration during storage (Hong and others 2004) as syrup TP steadily increased. 

 

No significant differences were observed between peeled and unpeeled peach 

AOX post-processing, although unpeeled syrup had higher AOX, indicating 

progressively increasing leaching of antioxidant constituents into syrup. Peeled 

fruit and syrup AOX equilibrated over time, while in unpeeled samples, syrup 

increased while fruit decreased in AOX. This observation, namely the marked 

decrease in unpeeled but not peeled fruit AOX, was noted as an anomaly or 

experimental error. A precise cause was not identified although a possible scenario 

is the easier osmotic equilibration between peeled fruit and syrup given the 

reduced structural integrity of peeled samples, as seen in the first phase with 

‘Hargrand’ and ‘Harogem’ syrup in unpeeled samples. In apricots, fruit AOX 

decreased while syrup AOX increased, with the two components, for both 

treatments, attaining equilibrium by 6 mo of storage. 
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Figure 4. 4. Total phenolic content, total antioxidant capacity and total carotenoid 

content of unpeeled and peeled canned ‘Redhaven’ peach fruit and syrup after 

processing and after storage at 3 and 6 months at 18 – 20 ˚C. (GAE: Gallic acid 

equivalents, TE: Trolox equivalents, BCE: β-carotene equivalents). 
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Figure 4. 5. Total phenolic content, total antioxidant capacity and total carotenoid 

content of unpeeled and peeled canned ‘Harlayne’ apricot fruit and syrup after 

processing and after storage at 3 and 6 months at 18 – 20 ˚C (GAE: Gallic acid 

equivalents, TE: Trolox equivalents, BCE: β-carotene equivalents). 



 

137 
 

The lipophilic nature of carotenoids and thus their decreased susceptibility to 

leaching was well-illustrated in the comparison of fruit to syrup TC post-canning 

and with storage in both fruits (Rickman and others 2007b). Peeling made little 

difference in carotenoid content of peach fruit post-processing, suggesting either a 

smaller difference in the peel versus flesh carotenoid concentration of this variety, 

or some transference during the initial pre-peeling heat treatment. Both treatments 

reduced in TC with storage as reported  by Elkin and others (1979), with decreases 

largely due to lipid oxidation; unpeeled fruit eventually had greater TC at 3 and 6 

mo. Unpeeled syrup TC remained higher then peeled TC after processing and 

throughout the storage study. 

 

As with peaches, apricot fruit retained most of its carotenoid content, with 

unpeeled fruit having greater TC after processing and during storage. Contrary to 

peach syrup, however, syrup from peeled fruit had greater TC at all time points. 

The trend for carotenoid content in canned peach and apricot fruit, therefore, 

appears to be a greater concentration with intact peel. However, different factors 

dictate the level of migration, with syrup concentration correlating with initial fruit 

content in peaches, while in apricots, the fracturing of the cell matrix by peeling 

appeared to enhance leaching. 

 

As in the first phase of the study, it was important to gauge the impact of 

discarding syrup. Since canned fruit is typically consumed months to a year after 

production, the contributions of fruit and syrup to TP, AOX and TC of the canned 

product was calculated at 6 mo, taking into consideration the 60:40 fruit to syrup 

ratio per can and transfer of soluble solids.  In peaches, syrup contained 30% TP, 

51% AOX and 1% TC in unpeeled and 29% TP, 40% AOX and 1% TC in peeled 
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samples. For apricots, syrup had 37% TP, 40% AOX and 0.2% TC in unpeeled and 

38% TP, 40% AOX and 1% TC in peeled samples. These values, particularly those 

for hydrophilic constituents, suggest the need to develop consume syrup with fruit 

or find alternative uses for syrup to obtain the full nutraceutical content in canned 

fruits. It would be good to inform consumers of the value of syrup and also to 

direct processors to use syrup with minimal amount of sugar for palatability to 

allow it to be consumed as well without being overly concerned about calories. 

 

Tables 4.5 to 4.8 provides detail on the effect of peeling after canning and by the 

end of the shelf life study (6 mo) on specific phenolic and carotenoid compounds 

in both fruit and syrup. Data corroborated TP values post-processing and indicated 

that for both fruits, unpeeled fruit and syrup retained greater phenolic compound 

content post-processing and after 6 mo. It also showed an equilibration of phenolic 

concentration between fruit and syrup by the end of the storage period. 

 

Peach hydroxycinnamic acids and anthocyanins were found in relatively equivalent 

amounts in fruit and syrup and typically decreased with storage. As in the study by 

Chaovanalikit and Wrolstad (2004), flavonol glycosides, some of which 

disappeared with peeling, remained relatively stable with storage. Flavan-3-ol 

response to storage differed considerably. In apricots, anthocyanins were absent 

post-processing while hydroxycinnamates and flavonol glycosides, significantly 

reduced or eliminated by peeling, were evenly distributed in fruit and syrup where 

available. While hydroxycinnamates decreased with storage, flavonol glycosides 

differed in their responses: rutin decreasing and quercetin glycosides remaining 

stable. Flavan-3-ols responded differently to leaching and storage, with all but 

catechin decreasing over time. 
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Table 4.5. Phenolic compounds (mg / 100 g) in unpeeled and peeled canned ‘Redhaven’ peach fruit and syrup after processing and 

after storage for 6 months at 18 – 20 ˚C (n = 4). 

Phenolic 
compounds 

After processing After 6 months  

Fruit Syrup Fruit Syrup 

Unpeeled Peeled Unpeeled Peeled Unpeeled Peeled Unpeeled Peeled 

Catechin 0.6 ± 0.0
a
 0.4 ± 0.0

b
 ND ND ND ND 0.5 ± 0.0

a
 0.6 ± 0.0

a
 

Chlorogenic acid 5.6 ± 0.1
a
  3.9 ± 0.2

b
 5.4 ± 0.1

a
 3.8 ± 0.1

b
 4.5 ± 0.1

a
 3.8 ± 0.3

b
 4.4 ± 0.3

a
 3.5 ± 0.3

b
 

Cyanidin-3-
glucoside 

1.7 ± 0.1
a
  1.2 ± 0.0

b
 1.7 ± 0.2

a
 1.2 ± 0.0

b
 1.2 ± 0.0 ND ND ND 

Epicatechin 3.2 ± 0.2
a
 2.5 ± 0.3

b
 2.6 ± 0.1

a
 2.0 ± 0.1

b
 1.9 ± 0.1

a
 1.7 ± 0.1

b
 2.4 ± 0.2

a
 2.1 ± 0.1

a
 

Epigallocatechin 9.8 ± 0.6
a
 7.0 ± 0.1

b
 1.5 ± 0.1 1.1 ± 0.1 1.1 ± 0.1

a
 0.9 ± 0.1

b
 1.0 ± 0.2

a
 0.8 ± 0.1

a
 

Kaempferol-3-
rutinoside 

7.1 ± 0.0
a
  6.9 ± 0.1

b
 6.9 ± 0.1

a
 6.9 ± 0.0

a
 6.9 ± 0.1

a
 6.7 ± 0.1

b
 6.9 ± 0.3

a
 6.7 ± 0.0

a
 

Neochlorogenic 
acid 

3.7 ± 0.2
a
 3.2 ± 0.4

b
 3.6 ± 0.0

a
 3.3 ± 0.2

b
 3.1 ± 0.1

a
 2.7 ± 0.0

b
 3.1 ± 0.1

a
 2.6 ± 0.0

b
 

Quercetin-3-
glucoside 

ND ND 1.1 ± 0.0 ND 1.2 ± 0.0 ND 1.2 ± 0.1 ND 

Rutin 1.1 ± 0.0  ND 1.1 ± 0.0 ND 1.1 ± 0.0 ND 1.2 ± 0.1 ND 

Unknown 1 1.1 ± 0.1
a
 0.9 ± 0.1

b
 0.5 ± 0.0

b
 0.8 ± 0.0

a
 1.2 ± 0.1

a
 0.4 ± 0.0

b
 1.0 ± 0.0

a
 0.4 ± 0.0

b
 

Unknown 2 ND ND 1.2 ± 0.0  ND 1.2 ± 0.0 ND 1.2 ± 0.1 ND 

Total 33.9 ± 1.4
a
 25.9 ± 1.2

b
 25.6 ± 0.7

a
 19.0 ± 0.5

b
 23.3 ± 0.7

a
 16.3 ± 0.6

b
 23.0 ± 1.4

a
 16.6 ± 0.5

b
 

ND: Not detected. Unknown 1: flavan-3-ol; Unknown  2: flavonol glycoside. Means not connected by the same letter indicate a significant 
difference between treatments for that compound (alpha = 0.05). 
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Table 4.6. Phenolic compounds (mg / 100 g) in unpeeled and peeled canned ‘Harlayne’ apricot fruit and syrup after processing and 

after storage for 6 months at 18 – 20 ˚C (n = 4). 

Phenolic 
compounds 

After processing After 6 months  

Fruit Syrup Fruit Syrup 

Unpeeled Peeled Unpeeled Peeled Unpeeled Peeled Unpeeled Peeled 

Catechin 0.8 ± 0.1
a
  0.6 ± 0.0

b
 1.1 ± 0.1

a
 0.6 ± 0.1

b
 0.8 ± 0.1

a
 0.2 ± 0.0

b
 0.5 ± 0.0

a
 0.2 ± 0.0

b
 

Chlorogenic acid 3.8 ± 0.2
a
 2.6 ± 0.1

b
 4.0 ± 0.2

a
 2.5 ± 0.1

b
 3.7 ± 0.1

a
 2.6 ± 0.1

b
 3.2 ± 0.3

a
 2.3 ± 0.1

b
 

Cyanidin-3-
glucoside 

ND  ND ND ND ND ND ND ND 

Epicatechin 11.1 ± 0.8
a
 8.7 ± 0.4

b
 11.0 ± 0.6

a
 8.0 ± 0.5

b
 8.3 ± 0.9

a
 5.7 ± 0.4

b
 7.8 ± 0.3

a
 6.0 ± 0.6

b
 

Epigallocatechin 2.4 ± 0.2
a 
 2.3 ± 0.2

a
 3.9 ± 0.6

a
 2.5 ± 0.3

b
 2.6 ± 0.0

a
 1.9 ± 0.2

b
 3.2 ± 0.2

a
 2.5 ± 0.3

b
 

Neochlorogenic 
acid 

12.4 ± 0.7
a
  8.6 ± 0.3

b
 14.6 ± 0.9

a
 9.3 ± 0.3

b
 10.7 ± 7.5

a
 7.5 ± 0.3

b
 11.6 ± 0.4

a
 7.9 ± 0.1

b
 

Quercetin-3-
glucoside 

1.2 ± 0.0 ND 1.2 ± 0.0 ND 1.2 ± 0.0 ND 1.1 ± 0.0 ND 

Quercetin 
derivative 

1.2 ± 0.0  ND 1.2 ± 0.0 ND 1.2 ± 0.0 ND 1.1 ± 0.0 ND 

Rutin 7.1 ± 0.3
a
 2.0 ± 0.0

b
 7.3 ± 0.2

a
 2.0 ± 0.0

b
 5.6 ± 0.1

a
 1.9 ± 0.0

b
 5.3 ± 0.2

a
 1.9 ± 0.0

b
 

Unknown 1 13.3 ± 1.1
a
 10.6 ± 1.1

b
 12.0 ± 1.3

a
 9.4 ± 0.1

b
 9.7 ± 0.7

a
 8.0 ± 0.7

a
 11.6 ± 0.6

a
 8.5 ± 0.7

b
 

Unknown 2 7.8 ± 0.5
a
 6.7 ± 0.2

b
 5.9 ± 0.5

a
 5.1 ± 0.4

a
 5.4 ± 0.5

a
 4.0 ± 0.0

b
 4.7 ± 0.2

a
 3.4 ± 0.5

b
 

Total 61.1 ± 3.9
a
  42.0 ± 2.3

b
 62.2 ± 4.4

a
 39.3 ± 1.7

b
 49.2 ± 3.4

a
 31.9 ± 1.9

b
 50.2 ± 2.2

a
 32.5 ± 2.1

b
 

ND: Not detected. Unknown 1 and 2: flavan-3-ols. Means not connected by the same letter indicate a significant difference between treatments for 
that compound (alpha = 0.05). 
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Table 4.7. Carotenoid compounds (µg / 100 g) in unpeeled and peeled canned ‘Redhaven’ peach fruit and syrup after processing and 

after storage for 6 months at 18 – 20 ˚C (n = 4). 

Carotenoid 
compounds 

After processing After 6 months  

Fruit Syrup Fruit Syrup 

Unpeeled Peeled Unpeeled Peeled Unpeeled Peeled Unpeeled Peeled 

β-carotene 1030 ± 73
a
  900 ± 96

a
 220 ± 7

a
  5 ± 0.4

b
 630 ± 52

a
 503 ± 74

a
 14 ± 2

a
 8 ± 0.4

a
 

β-cryptoxanthin 36 ± 4
a
  37 ± 6

a
 ND ND 24 ± 3

a
 27 ± 2

a
 ND ND 

Lutein 10 ± 0.1 ND ND ND ND ND ND ND 

Zeaxanthin 390 ± 44
a
 400 ± 69

a
 ND ND ND ND ND ND 

Total 1470 ± 120
a
 1330 ± 170

a
 220 ± 7

a
 5 ± 0.4

b
 650 ± 55

a
 530 ± 77

b
 14 ± 2

a
 8 ± 0.4

b
 

ND: Not detected. Means not connected by the same letter indicate a significant difference between treatments for that compound (alpha = 0.05). 

 

Table 4.8. Carotenoid compounds (µg / 100 g) in unpeeled and peeled canned ‘Harlayne’ apricot fruit and syrup after processing and 

after storage for 6 months at 18 – 20 ˚C (n = 4). 

Carotenoid 
compounds 

After processing After 6 months  

Fruit Syrup Fruit Syrup 

Unpeeled Peeled Unpeeled Peeled Unpeeled Peeled Unpeeled Peeled 

β-carotene 18300  ± 640
a
  14400 ± 1400

b
 190 ± 5

b
 509 ± 31

a
 10600 ± 1080

a
 8900 ± 15

b
 37 ± 2

b
 190 ± 18

a
 

β- 
cryptoxanthin 

140 ± 10
a
 130 ± 12

a
 ND ND 86 ± 7

a
 79 ± 3

a
 ND ND 

Lutein 19 ± 0.6
a
 15 ± 2

b
 ND ND 12 ± 0.8

a
 10 ± 1

a
 ND ND 

Zeaxanthin 150 ± 10
a
  150 ± 13

a
  ND ND ND ND ND ND 

Total 18600 ± 660
a
  14700 ± 1400

b
 190 ± 5

b
 509 ± 31

a
  10700 ± 1090

a
 9000.0 ± 20.0 37 ± 2

b
 190 ± 18

a
 

ND: Not detected. Means not connected by the same letter indicate a significant difference between treatments for that compound (alpha = 0.05). 
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β-carotene was the only carotenoid found in syrup in both canned peaches and 

apricots. Given carotenoid insolubility in water, this presence of this compound in 

syrup was thought to be largely due to dispersed plant material in syrup, with β-

carotene most easily and identified and quantified given its high concentration in the 

two fruits. β-carotene and β-cryptoxanthin decreased over the storage period while 

lutein (in peaches) and zeaxanthin (in both fruits) were lost. Even with these losses, 

canned peaches and apricots remained noteworthy sources of vitamin A. At 6 mo, 

considering a 140 g serving of canned fruit (FDA 2012), canned peaches supplied 9% 

(unpeeled) and 7% (peeled) RDA for vitamin A while both canned apricot treatments 

provided > 100% (USDA FNC 2011; NIH 2012). 

 

Using HPLC data, apricot phenolic and carotenoid compounds were more stable under 

storage than those of peaches. Losses in phenolic content by 6 mo were significantly 

greater in peeled (38%) compared to unpeeled (30%) peaches and also in peeled 

(24%) compared to unpeeled (20%) apricots. Lipid oxidation was more severe for both 

fruits, with losses in storage 60% and 56% in peeled and unpeeled peaches and 38% 

and 42% in peeled and unpeeled apricots. The effect of peeling on phytochemical 

content by the time the product was consumed (in this case, 6 mo) was also evaluated. 

Unpeeled peaches had 30% greater phenolic and 18% greater carotenoid content 

compared to peeled samples; unpeeled apricots had 35% and 16% greater phenolic 

and carotenoid content compared to peeled samples. These results are support, at least 

in vitro, the phytochemical benefits of canning fruit with skin. How these changes 

translate in vivo or in terms of bioavailability would require further study. 
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Conclusion 

This study provided information on the effect of canning procedures on the phenolic, 

antioxidant and carotenoid content of different peach and apricot varieties. Water-

soluble fruit phytochemicals, phenolics and antioxidants, were negatively impacted by 

heat treatment and leaching into the surrounding syrup, the extent of losses differed 

between varieties. Carotenoids showed higher values after processing and suffered 

negligible leaching. Peeling prior to canning reduced both phenolic and carotenoids 

content, with flavonol glycosides, anthocyanins and β-carotene most affected. 

Phenolic and carotenoid compounds showed different responses to storage time and 

conditions. HPLC analyses revealed decreases in phenolics and carotenoids 

compounds with storage, with hydrophilic compounds equilibrating in fruit and syrup 

over time while carotenoid compound migration into syrup was minimal. While 

peeling was more detrimental to phytochemical content in apricots than in peaches, 

apricot compounds were more stable under storage than those of peaches. The loss of 

phenolic and antioxidant compounds to syrup suggests the need for consumption of 

the whole product or secondary use of syrup to derive maximum benefit from canned 

produce. Results also illustrated the distribution and relative concentrations of some 

compounds in fruit (flesh and peel). Although research still remains on the specific 

nutraceutical properties of specific compounds, this study does contribute to an 

understanding of the implications of the commercial practice of skin removal prior to 

canning. 
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CHAPTER 5: AN EVALUATION OF THE EFFECT OF FOUR PRE-

DRYING TREATMENTS ON THE COLOUR AND PHYTOCHEMICAL 

CONTENT OF DRIED PEACHES AND APRICOTS. 

Introduction 

The peach (Prunus persica) and apricot (Prunus armeniaca) are sources of 

phenolic and carotenoid compounds which have been found to be beneficial to 

human health (Tomas-Barberan and others 2001; Gil and others 2002; Kader and 

Barrett 2005; Ruiz and others 2005a; Ruiz and others 2005b). Carotenoid 

compounds play a role in vision and protect against macular degeneration (Fraser 

and Bramley 2004). Some phenolic and carotenoid compounds serve as 

antioxidants, which are understood to reduce the risk of cardiovascular diseases 

and some cancers (Ames and others 1993; Paiva and Russell 1999). 

 

Peaches and apricots, both climacteric fruits, present a challenge in postharvest 

storage (Kader and Mitchell 1989; Kader 1999; Payasi and Sanwal 2008). 

Processing serves to add value to fruit, extend shelf life and ensure availability 

when fruit is out of season. The majority of apricots produced in the United States, 

64%, and 2% of peaches are consumed in dried form as final products or as 

ingredients in other products, including baked goods or confectionery (USDA ERS 

2011; Barta 2006). 

 

An area of concern with dehydrated fruits is the use of sulfites to maintain the 

bright yellow-to-orange color vital to the favorable perception and appeal of dried 

peaches and apricots (Potter 1998; Siddiq 2006a; Siddiq 2006b). Sulfur dioxide, in 

a gaseous or liquid medium, is commercially employed as an antimicrobial agent 

and to prevent both the enzymatic and nonenzymatic browning of dried fruit 
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(Joslyn and Braverman 1954; Embs and Markakis 1965; McWeeny and others 

1974). Drying without sulfites results in a leathery texture and a brown to black 

coloration. However, given regulations in different countries restricting sulfite 

levels in dried produce, the incidence of sulfite sensitivity particularly in asthmatic 

individuals and the increasing trends towards all-natural, additive-free products, 

there is the need for sulfite-free processing treatments that can achieve the desired 

texture and color in dried fruit (Freedman 1980; Sapers 1993; Pilizota and Subaric 

1998). Studies evaluating the potential of alternative antibrowning agents including 

ascorbate, honey, and sulfur-containing amino acids have reported moderate 

successes at best, often not faring well in storage studies or at elevated 

temperatures (Son and others 2001; Somogyi 2005). 

 

Our study therefore sought to develop a viable alternative to sulfited dried peaches 

and apricots with a focus on maintaining color as well as healthful compounds. We 

assessed the effect of a number of pre-drying treatments, two of which are unique 

to this study, on the composition and concentration of phenolic, antioxidant and 

carotenoid compounds in Northeast peach and apricot varieties. We also evaluated 

the responses of different peach and apricot varieties to pre-drying treatments and 

conducted a shelf life study to monitor the stability of color as well as the stated 

compounds over time. 

 

Given that in the United States, fruits are predominantly consumed more in 

processed than fresh form (Rickman and others 2007), the results of this study 

were intended to provide useful qualitative and quantitative information on the 

effect of typical drying procedures and a range of pre-drying treatments on both the 

healthful and aesthetic quality of dried peaches and apricots. 
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Materials and methods 

Harvest 

The harvesting protocol and selected varieties were identical to chapter 4.  

 

Drying 

Processing was conducted following typical drying protocols (Brekke and Nury 

1964; Reynolds and others 1993). The study was conducted in two phases, with the 

first (Figure 5.1) evaluating the effect of two treatments on three peach and three 

apricot varieties. In the second phase (Figure 5.2), modifications in blanching time 

and packaging of dried fruit were made based on observations from the first phase. 

One peach and one apricot variety were subjected to four pre-drying treatments. 

Residual sulfur dioxide in sulfited samples was determined using AOAC 963.20; 

post-drying, this was found to be 250 ppm in peaches and 240 ppm in apricots. 

Picture of the final products are shown in Illustration A.6. 

 

Phenolic analysis 

Extraction of phenolic compounds followed the method described in chapter 2 with 

80% methanol used for both freeze-dried and dried samples; 2 g of dried samples 

were extracted. Total phenolic content and HPLC phenolic analysis were also 

performed as in chapter 2. 

 

Total antioxidant capacity assay 

This was performed as described in chapter 2.  
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Wash, depit and slice fruit

Allow mixture to equilibrate in sealed jar for 24 hr at room temperature

Submerge fruit in jar with 30% sucrose solution

Process jars in hot water bath  (85 ˚C) for 60 min

Force-cool jars by transferring first to a lukewarm water bath and then to cold water bath

Submerge fruit in jar with a 30% sucrose 
solution containing 2500 ppm sulfur dioxide

Drain fruit and arrange on racks in dehydrator

Dry at 60 ˚C until a water activity of 0.60 (for blanched samples) or 0.80 (for sulfited samples) is reached 

Allow fruit to equilibrate overnight in an airtight container stored in a cool, dark place. 

Check to verify that desired water activity has been attained by fruit slices. 

Dry further if required until water activity is reached

Store dried fruit in airtight container

BLANCHING SULFITES

 

Figure 5. 1. Flow chart for the production of dried peaches and apricots (phase 1). 
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Wash, depit and slice fruit

Allow mixture to equilibrate in sealed jar for 24 hr at room temperature

BLANCHING
Submerge fruit in jar with 30% 

sucrose solution

Process jars in hot water bath (85 ˚C) for 40 min

Force-cool jars by transferring first to a lukewarm water bath and then to cold water bath

RHUBARB JUICE+BLANCHING
Submerge fruit in jar with 50% rhubarb juice + 

30% sucrose + 20% water solution

Drain fruit and arrange on racks in dehydrator

Dry at 60 ˚C until a water activity of 0.75 – 0.80 is reached 

Allow fruit to equilibrate overnight in an airtight container stored in a cool, dark place. 

Check to verify that desired water activity has been attained by fruit slices. 

Dry further if required until water activity is reached

Vacuum pack dried fruit

SULFITES
Submerge fruit in jar with a 30% sucrose 

solution containing 2500 ppm sulfur dioxide

RHUBARB JUICE-ONLY
Submerge fruit in jar with 50% rhubarb 

juice + 30% sucrose + 20% water solution

 

 

Figure 5. 2. Flow chart for the optimized production of dried peaches and apricots (phase 2). 
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Carotenoid analysis 

This was performed as described in chapter 2; 2 g dried sample was reconstituted, 

extracted and analysed. 

 
Shelf life study 

Samples were stored at 18 - 20 ˚C for 6 months (mo) under dark conditions. 

Phenolic, antioxidant and carotenoid analyses were conducted at 3 mo and 6 mo 

and the results compared to those obtained post-processing. Lightness (L), a and b 

color values were measured post-processing and on a monthly basis over the 

course of the shelf life study with a HunterLab UltraScan XE (Hunter Associates 

Laboratory Inc., Reston, VA); hue (H) and chroma (C) were calculated as tan
-1 

(b/a) and √(a
2
 + b

2
) respectively. A subset of samples was also stored at 4 ˚C and 

their color compared to those at 18 ˚C after the 6 mo. 

 

Statistical analysis 

Data was analysed as described in chapter 2, with the respective weights for 

bioactive data stated as required. 

 

Results and discussion 

The first phase studied fruit and varietal response to different pre-drying 

treatments. After initial trials with a series of treatments including ascorbic acid, 

the stated blanching treatment was selected to compare against the commercial 

practice of sulfite use in terms of their effect on phytochemical content as well as 

organoleptic properties. The procedure we selected employed a longer time-lower 

temperature blanching, based on studies by Lee and Smith (1979) and Lee and 

others (1979). This approach activated pectin methyl esterase, increasing fruit 
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firmness by facilitating cross-linking of free carboxyl groups and decreasing 

solubility of pectic substances. Concomitantly, polyphenol oxidase was denatured, 

limiting enzymatic browning (Queiroz and others 2008). The addition of sucrose in 

both treatments was pertinent to attain better flavor, given the low sugar-to-acid 

ratio of these fruits (7.8 – 13.8 for peaches and 8.9 – 11.7 for apricots). The infused 

sucrose also served as a humectant, maintaining acceptable texture despite the low 

water activity of the dehydrated product. 

 

The low acid nature of both fruits as well as the thermal treatment applied in 

blanched samples served to destroy pathogenic microorganisms. For shelf stability 

and to prevent the growth of spoilage microorganisms, low water activity is the 

main preservative factor in dried products. A final water activity (aw) of less than 

0.85 is necessary to prevent the activity of pathogenic bacteria and 0.6 will 

suppress osmophilic moulds. However, given the antimicrobial properties of sulfur 

dioxide, drying of sulfited products could be halted at a higher aw (0.8) yet remain 

microbiologically stable (Roberts and McWeeny 1972; Ramaswamy 2005; 

Worobo and Splittstoessser 2005; Patkai 2006). 

 

As in fresh form (See chapters 1 and 2), dried apricots had higher total phenolic 

content (TP), total antioxidant capacity (AOX) and total carotenoid content (TC) 

than dried peaches. Fruits responded differently to the two treatments. While 

blanched apricots had four-fold TP, three-fold AOX and fourteen-fold TC 

compared to similarly blanched peaches, sulfited apricots had two-fold TP and 

AOX and eight-fold TC compared to sulfited peaches. 
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Blanching and sulfites protect against the oxidation of phenolic compounds (Joslyn 

and Braverman 1954; Pilizota and Subaric 1998; Queiroz and others 2008). Given 

that the antioxidant capacity of peaches and apricots stems mainly from their 

phenolic content (Prior and others 2003; Wu and others 2004; Drogoudi and others 

2008), these treatments were expected to have a similar protective effect on 

antioxidant components. Baloch and others (1987) reported the ability of both 

blanching and sulfites to protect carotenoid compounds in dehydrated carrots, with 

the use of sulfites deemed more effective; Sabry (1961) recommended a 

combination of the two treatments for best results in dried apricot pulp. 

 

Experimental results generally matched up with these previous studies. In peaches, 

sulfited samples consistently had greater TP, AOX and TC (two-fold in all cases) 

compared to blanched samples (Figure 5.3). Differences in varietal responses to the 

drying process were noted, with dried ‘Redhaven’ surpassing other varieties 

although it was of considerably lower TP and AOX in fresh form. The response to 

treatment in apricots was not as uniform (Figure 5.4). While similar results as in 

peaches were seen in ‘Hargrand’ and ‘Harogem’ TP and TC and ‘Hargrand’ AOX, 

‘Harogem’ AOX did not differ significantly between treatments. Blanched 

‘Harlayne’ samples had higher TP, AOX and TC than sulfited samples.  
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Figure 5. 3. Total phenolic content, total antioxidant capacity and total carotenoid 

content of blanched and sulfited dried ‘John Boy II’, ‘PF 23’ and ‘Redhaven’ 

peaches (GAE: Gallic acid equivalents, TE: Trolox equivalents, BCE: β-carotene 

equivalents). Bars not connected by the same letter indicate a significant difference 

between treatments (alpha = 0.05). 
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Figure 5. 4. Total phenolic content, total antioxidant capacity and total carotenoid 

content of blanched and sulfited dried ‘Hargrand’, ‘Harogem’ and ‘Harlayne’ 

apricots (GAE: Gallic acid equivalents, TE: Trolox equivalents, BCE: β-carotene 

equivalents). Bars not connected by the same letter indicate a significant difference 

between treatments (alpha = 0.05). 
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Given that all varieties underwent identical pre-drying treatments, these differences 

were theorized to be due to differences in sulfite uptake and/or retention by this 

variety, or alternatively a greater compatibility of this variety with the blanching 

procedure employed. 

 

Color and quality were assessed visually. Sulfited samples attained the expected 

bright yellow color, more pronounced in peaches than in apricots. This was 

attributed to better sulfite uptake due to the comparatively greater exposed surface 

area of peach slices as opposed to apricot halves, in line with work by McBean and 

others (1963), who compared sulfur dioxide absorption by peeled and unpeeled 

peaches and apricots and found that fruit skin retarded uptake. Blanched samples, 

on the other hand, were unappealing in terms of both color (dark yellow to brown) 

and texture. It was thought that the longer drying times required to reach the 0.6 aw 

could have allowed for greater nonenzymatic browning during the drying process. 

This treatment could therefore not be considered a suitable alternative for sulfited 

dried products in terms of comparable aesthetic appeal or, particularly in peaches, 

phytochemical content. 

 

These results informed the design of the second phase. ‘Redhaven’ peach was 

selected for reevaluation because of its importance to the Northeast (Lamb and 

Terry 1973; Scorza and Sherman 1996) and its reputation as a reliable commercial 

variety (Monet and Bassi 2008). ‘Harlayne’ apricot was also chosen for its cold 

hardiness as well as its consumer appeal which has made it a top selling variety in 

the Northeast (Layne 1996). 
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A treatment involving the use of rhubarb juice as an antibrowning agent, due to its 

oxalic acid content, was developed. Oxalic acid retards enzymatic browning by 

competitively binding to and chelating copper ions required for polyphenol oxidase 

operation, inhibiting its activity (Hodgkinson 1977; Pilizota and Subaric 1998; Son 

and others 2000a; Son and others 2000b; Son and others 2001). In the study by Son 

and others (2000b), solutions containing at least 20% rhubarb juice (0.07% oxalic 

acid) were found to prevent browning in fresh cut apple slices after a three minute 

dip.  

 

The rhubarb juice for our study, obtained by dicing and crushing rhubarb stems, 

was analyzed by HPLC and found to contain 1.90 g/L oxalic content, with the 50% 

dilution as used resulting in 0.1% oxalic acid content. Given the heat exposure 

required for drying, as well as the need for the dried products to sustain their color 

over a longer period then fresh cut products, a prolonged soak instead of a dip was 

deemed more appropriate. In the rhubarb juice+blanching variation of this 

treatment, a blanching step was incorporated as an additional hurdle. 

 

In order to improve the color and texture obtained with the previous protocol, all 

four treatments were dried to aw of 0.8, which required less heating than had been 

required in the previous phase to reach 0.6. Dried fruit were vacuum packed for 

shelf stability (Smith and others 2005). Additionally, the anaerobic conditions 

produced by vacuum packaging slowed down oxidation and furfural formation, 

reducing the rate of browning (Bolin and Steele 1987). 
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Color 

Visually, differences in color from the various treatments were more pronounced 

in peaches than in apricots. As before, sulfited samples had a bright yellow-orange 

color. Blanching and rhubarb juice+blanching treatments proved most effective in 

producing bright orange colored dried fruit without the use of sulfites. The desired 

antibrowning effect was not achieved in rhubarb juice-only treated products, which 

also retained the characteristic tart rhubarb taste. The thermal component aided in 

sugar uptake in rhubarb juice+blanching samples, resulting in a more acceptable 

sugar-to-acid balance. 

 

The efficacy of these treatments was corroborated instrumentally, with the L value 

considered most appropriate to measure differences between treatments and 

changes in the desired bright color as higher values on the L scale, ranging from 0 

(black) to 100 (white), imply greater lightness in color. a and b were consistently 

in the positive range indicating the colors red and yellow (McLellan and others 

1995; Son and others 2000; Son and others 2001). In peaches, post-processing L 

was in the order sulfites (62.0 ± 9.1), blanching (58.0 ± 3.4), rhubarb 

juice+blanching (55.0 ± 2.4) and rhubarb juice-only (53.0 ± 8.9). In apricots, the 

order was sulfites (52.0 ± 2.8), rhubarb juice+blanching (50.1 ± 2.1), blanching 

(49.0 ± 2.2) and rhubarb juice-only (41.0 ± 4.0). 

 

Since dried products are typically consumed within a year after production, the 

shelf life study allowed for an assessment of the long-term impact of the various 

treatments on color. Visually, sulfited products maintained their color while 

rhubarb juice+blanching and blanched products, especially for apricots, exhibited 

browning over time – losing their bright color within the first month – although not 
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to the same degree as the rhubarb juice-only treatment (Figure 5.5). 
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Figure 5. 5. Color (Hunter L, a, b) of dried peaches and apricots after drying and 

after storage at 3 and 6 months at 18 – 20 °C. 
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Ledbetter and others (2002) reported a decline in L and C values of apricot halves 

with storage. In our study, L did not change significantly within a treatment during 

the storage period although a decreasing trend was observed. This parameter may 

therefore not be best used to gauge loss of bright coloring over time. L values did 

differ significantly between treatments by the end of the shelf life study: sulfites 

(69.5 ± 4.0), rhubarb juice+blanching (56.8 ± 3.8), blanching (56.0 ± 6.1) and 

rhubarb juice-only (46.4 ± 1.3) in peaches, and sulfites (52.1 ± 2.1), blanching 

(46.5 ± 1.8), rhubarb juice+blanching (46.2 ± 1.2) and rhubarb juice-only (44.3 ± 

1.5) in apricots. The a and C values reduced significantly over time for blanching 

and  rhubarb juice+blanching samples in both fruits, but could not be used as a 

definitive means of measuring the change in dried fruit color over time because 

this phenomenon did not occur in all treatments. 

 

Temperature is a critical factor in the progression of browning, increasing at higher 

temperatures. Rossello and others (1994), Joubert and others (2001) and Sagirli 

and others (2008) reported that color of sulfited dried apricot and pears remained 

stable at < 5 ˚C for at least 6 mo. A subset of samples was stored at 4 ˚C for the 

duration of the shelf life study and evaluated at 6 mo. Sulfites, blanching and 

rhubarb juice+blanching samples maintained acceptable color and texture while 

rhubarb juice-only samples retained the dark brown color established post-drying. 

This implied an acceptable shelf life of at least 6 mo for the two treatments, 

blanching and rhubarb juice+blanching, in cold storage. Although the necessity to 

keep these products at refrigerated temperatures may present a problem in their 

commercialization, they still have significant commercial potential as ‘all-natural’, 

aesthetically appealing alternatives to currently available darkly colored sulfite-

free dried fruit. 
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Peaches 

In peaches, phytochemical compound response to sulfites was similar to that 

observed in the first phase of the study, even after accounting for potential 

interference by residual sulfur dioxide interference in Folin-Ciocalteu and ORAC 

assays. Sulfited samples had significantly higher TP (153.8 mg) and AOX (4434.3 

µmol) than those from rhubarb juice+blanching (101.7 mg, 3622.6 µmol), 

blanching (93.9 mg, 3529.5 µmol) and rhubarb juice-only (85.4 mg, 3464.5 µmol); 

values for the other three treatments did not differ significantly (Figure 5.4). 

Sulfited samples again had highest TC (2663.5 µg) while rhubarb juice+blanching 

and rhubarb juice-only samples had similar values (2198.8 µg and 2043.0 µg, 

respectively) and blanched samples had least (1590.8 µg). 

 

In all treatments, TP increased at 3 mo then declined by 6 mo to levels similar to 

those seen post-drying. Similar mid-storage increases have been noted in storage 

studies of both fresh and thermally processed fruit, with some studies citing the 

possibility of increased production, while others suggested an enhanced 

extractability of phenolic compounds and their metabolites over time with tissue 

break down, not necessarily an increase in production or bioavailability (Kalt 

1999; Rickman and others 2007). In blanching and rhubarb juice+blanching treated 

samples, AOX remained stable for the duration of the shelf life study, while AOX 

for both rhubarb juice-only and sulfited samples increased significantly in storage, 

being highest at 6 mo. Although decreases had been expected due to oxidation 

during storage, the observed increases could again be due to greater extractability 

or, particularly in rhubarb juice-only samples, the antioxidant properties of 

Maillard reaction products formed during storage (Lingnert and Lundgreen 1980; 

Bolin and Steele 1987; Elizalde and others 1991; Nicoli and others 1991). 
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Figure 5. 6. Total phenolic content, total antioxidant capacity and total carotenoid 

content of dried ‘Redhaven’ peach post-drying after 3 and 6 months storage at 18 – 

20 ˚C (GAE: Gallic acid equivalents, TE: Trolox equivalents, BCE: β-carotene 

equivalents). 
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In all treatments, TP increased at 3 mo, significantly in the two rhubarb juice 

treatments, then declined by 6 mo to levels similar to those seen post-drying. 

Similar mid-storage increases have been noted in storage studies of both fresh and 

thermally processed fruit, with some studies citing the possibility of increased 

production, while others suggested an enhanced extractability of phenolic 

compounds and their metabolites over time with tissue break down, not necessarily 

an increase in production or bioavailability (Kalt 1999; Rickman and others 2007). 

In blanching and rhubarb juice+blanching treated samples, AOX remained stable 

for the duration of the shelf life study, while AOX for both rhubarb juice-only and 

sulfited samples increased significantly over time, being highest at 6 mo. Although 

a decreasing trend had been expected due to oxidation during storage, the observed 

increases could again be due to greater extractability or, particularly in rhubarb 

juice-only samples, the antioxidant properties of Maillard reaction products formed 

during storage (Lingnert and Lundgreen 1980; Bolin and Steele 1987; Elizalde and 

others 1991; Nicoli and others 1991). 

 

In all four treatments, significant decreases occurred in TC with storage for 6 mo, 

greatest in rhubarb juice+blanching (70%) and least in sulfited samples (50%). 

This agreed with work by Baloch and others (1987) and Sagirli and others (2008); 

the latter reported losses in dried apricots stored between 5-30 ˚C, with losses, 

typically via lipid oxidation, increasing with storage temperatures. 

 

Given the susceptibility of the more generalized tests, particularly the Folin-

Ciocalteu assay, to interference by sucrose and sulfur (Waterhouse 2002), HPLC 

analysis allowed for a more precise evaluation of treatment impact on specific 

phenolic and carotenoid compounds (Tables 5.1 and 5.2). The effectiveness of the 
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sulfiting treatment was thus confirmed, with sulfited samples having greatest 

concentration of the majority of phenolic compounds, particularly 

hydroxycinnamic acids and anthocyanins, and highest HPLC-determined total 

phenolic content (HPLC-TP) at post-processing. The disparity between the sulfited 

and other treatments was however not as great as it had been for the Folin-

Ciocalteu assay-determined TP. Rhubarb juice+blanching and blanching  

treatments, as before, had second and third highest HPLC-TP respectively, with 

rhubarb juice+blanching having greater hydroxycinnamic acid content. In most 

cases, rhubarb juice-only samples, which lacked catechin, pertinent in measureable 

phenolic content, and cyanidin-3-glucoside, had lowest individual and total 

compound concentration. 

 

The increase in TP at 3 mo was reflected in HPLC results for all treatments except 

sulfites; all treatments showed a drop by 6 mo. Of the phenolic classes evaluated, 

flavonol glycoside concentration was similar for the treatments and remained 

relatively stable over storage, the exception being kaempferol-3-rutinoside, which 

decreased over time. Baruah and Swain (1959) found that flavonol glycosides were 

more stable because glycosylation prevented, to a degree, these compounds from 

serving as substrates for polyphenol oxidase. Hydroxycinnamic acids followed the 

trend of peaking at 3 mo, significantly in blanching and rhubarb juice+blanching, 

declining by 6 mo. While flavan-3-ols varied in their response with storage for the 

different treatments, the anthocyanin cyanidin-3-glucoside remained stable in 

sufited samples but disappeared in storage with other treatments. This was 

noteworthy since Joslyn and Braverman (1954) found that sulfites had a 

pronounced bleaching effect on anthocyanins. Our observations may be due to the 

relatively low concentration of sulfites used in our study. 
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Table 5.1. Phenolic compounds (mg / 100 g) in fresh and dried ‘Redhaven’ peach post-drying after 3 and 6 months storage at 18 – 20 

˚C (n = 4). 

 Mo Catechin 
Chlorogenic 

acid 
Cyanidin-3-
glucoside 

Epicatechin Epigallocatechin 
Kaempferol-
3-rutinoside 

Fresh 3.5 ± 0.5 2.5 ± 0.4 7.2 ± 1.5 3.9 ± 0.2 2.2 ± 1.0 4.6 ± 0.2 

Blanching 

0 1.3 ± 0.0
a
 12.0 ± 0.5

b
 3.4 ± 0.3

a
 8.3 ± 0.6

b
 3.3 ± 0.2

a
 17.1 ± 0.1

a
 

3 1.1 ± 0.1
b
  15.7 ± 1.2

a
 2.9 ± 0.0

a
 10.1 ± 0.5

a
 3.6 ± 0.4

a
 17.3 ± 0.3

a
 

6 0.5 ± 0.0
c
 12.1 ± 1.4

b
 ND 8.3 ± 0.8

b
 2.3 ± 0.1

b
 16.7 ± 0.2

b
 

Rhubarb juice+ 
blanching 

0 1.6 ± 0.0
a
 13.1 ± 1.0

ab
 3.3 ± 0.1 9.4 ± 0.8

a
 3.4 ± 0.4

a
 17.3 ± 0.2

a
 

3 1.6 ± 0.1
a
 15.7 ± 1.2

a
 ND 10.1 ± 0.6

a
 3.7 ± 0.2

a
 17.1 ± 0.1

b
 

6 ND 11.3 ± 1.3
b
 ND 6.6 ± 0.2

b
 2.0 ± 0.3

b
 16.9 ± 0.1

b
 

Rhubarb juice-
only 

0 ND 10.8 ± 0.9
a
 ND 11.2 ± 0.2

a
 2.5 ± 1.4 17.1 ± 0.1

a
 

3 ND 12.1 ± 0.9
a
 ND 12.6 ± 1.5

a
 ND 16.9 ± 0.0

a
 

6 ND 10.9 ± 1.0
a
 ND 11.7 ± 0.7

a
 ND 16.6 ± 0.1

b
 

Sulfites 

0 4.5 ± 0.2
a
 15.7 ± 1.6

a
 4.0 ± 0.4

a
 10.7 ± 1.0

a
 6.7 ± 0.6

a
 17.1 ± 0.1

a
 

3 3.7 ± 0.1
b
  16.3 ± 4.3

a
 4.1 ± 0.2

a
 9.7 ± 0.7

a
  5.2 ± 0.4

ab
 17.0 ± 0.2

b
 

6 3.9 ± 0.0
b
 12.7 ± 1.6

a
 4.2 ± 0.3

a
 9.5 ± 0.4

a
 5.0 ± 0.2

b
 16.8 ± 0.1

b
 

ND: Not detected. Unknown 1: flavan-3-ol; Unknown  2: flavonol glycoside. Means not connected by the same letter indicate a significant 
difference between time points for that compound (alpha = 0.05). 
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Table 5.1. (Continued). 

 Mo Neochlorogenic acid Quercetin-3-glucoside Rutin Unknown 1 Unknown 2 Total 

Fresh 2.6 ± 0.4 0.7 ± 0.0 0.7 ± 0.0 1.8 ± 0.2 0.7 ± 0.0 30.3 ± 4.5  

Blanching 

0 8.5 ± 0.7
a
 2.8 ± 0.0

 a
  2.8 ± 0.1

a
 2.2 ± 0.1

b
 2.9 ± 0.0

a
  64.6 ± 2.6

b
 

3 10.1 ± 1.1
a
 2.9 ± 0.0

a
 2.9 ± 0.1

a 
 2.8 ± 0.2

a
 3.0 ± 0.0

a
 72.4 ± 3.9

a
 

6 8.8 ± 1.0
a
 2.8 ± 0.1

a
 2.8 ± 0.1

a
 2.3 ± 0.1

b
 2.9 ± 0.0

a
 59.5 ± 3.8

b
 

Rhubarb juice+ 
blanching 

0 11.0 ± 0.7
ab

 2.8 ± 0.0
 a
 2.8 ± 0.1

a
 2.9 ± 0.3

a
 2.9 ± 0.0

a
 70.4 ± 3.6

ab
 

3 14.5 ± 1.2
a
 2.8 ± 0.0

a
 2.8 ± 0.2

a
 2.5 ± 0.1

ab
 2.9 ± 0.0

a
 73.7 ± 3.7

a
 

6 10.2 ± 3.1
b
 2.8 ± 0.0

a
 2.8 ± 0.2

a
 2.2 ± 0.1

b
 2.9 ± 0.1

a
 57.7 ± 5.4

b
 

Rhubarb juice-
only 

0 9.4 ± 0.9
a
 ND 2.7 ± 0.1

a
 3.0 ± 0.4

a
 2.9 ± 0.0

a
 59.6 ± 4.0

a
 

3 9.8 ± 0.9
a
 ND 2.7 ± 0.0

a
 2.7 ± 0.3

a
 2.9 ± 0.1

a
 59.7 ± 3.7

a
 

6 9.5 ± 0.9
a
 ND 2.7 ± 0.0

a
 2.3 ± 0.1

a
   2.9 ± 0.0

a
 56.6 ± 2.8

a
 

Sulfites 

0 12.7 ± 0.6
a
 2.8 ± 0.0

a
 2.8 ± 0.1

a
 2.9 ± 0.6

a
 3.0 ± 0.1

a
 82.9 ± 5.3

a
 

3 10.6 ± 2.2
ab

 2.7 ± 0.1
a
 2.8 ± 0.1

a
 1.3 ± 0.0

b
 3.0 ± 0.1

a
 76.4 ± 8.3

ab
 

6 7.7 ± 0.4
b
 2.7 ± 0.0

a
 2.8 ± 0.1

a
 2.1 ± 0.2

ab
  3.0 ± 0.0

a
 70.4 ± 3.3

b
 

ND: Not detected. Unknown 1: flavan-3-ol; Unknown  2: flavonol glycoside. Means not connected by the same letter indicate a significant 
difference between time points for that compound (alpha = 0.05). 
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Table 5.2. Carotenoid compounds (µg / 100 g) in fresh and dried ‘Redhaven’ peach post-drying after 3 and 6 months storage at 18 – 

20 ˚C (n = 4). 

 Mo β-carotene β-cryptoxanthin Lutein Zeaxanthin Total 

Fresh 290 ± 17   28 ± 5.5 4 ± 0.8 380 ± 60 706.5 ± 83  

Blanching 

0 1140 ± 58
a
 65 ± 5

a
 31 ± 1

a
 660 ± 10

a
 1890 ± 74

a
  

3 670 ± 38
b
 29 ± 2

b
 23 ± 1

b
 500 ± 64

b
 1220 ± 105

b
 

6 350 ± 40
c
 14 ± 1

c
  22 ± 1

b
 530 ± 20

b
 909 ± 62

c
 

Rhubarb juice+ 
blanching 

0 1640 ± 107
a
 62 ± 2

a
 25 ± 1

a
 620 ± 83

ab
 2350 ± 190

a
 

3 620 ± 22
b
 35 ± 0.1

b
 24 ± 0.2

a
 710 ± 31

a
 1400 ± 53

b
 

6 290 ± 3
c
 11 ± 0.2

c
 21 ± 2

b
 430 ± 12

b
  750 ± 17

c
 

Rhubarb juice-
only 

0 1730 ± 94
a
 73 ± 6

a
 25 ± 1

a
 680 ± 75

a
 2500 ± 180

a
 

3 734 ± 94
b
 43 ± 3

b
 23 ± 2

a
 730 ± 59

a
 1530 ± 160

b
 

6 490 ± 53
c
 8 ± 1

c
 22 ± 0.3

a
 430 ± 34

b
 950 ± 88

c
 

Sulfites 

0 2150 ± 210
a
 61 ± 3

a
 25 ± 1

a
 750 ± 19

a
 2980 ± 240

a
 

3 1040 ± 88
b
 44 ± 4

b
 24 ± 2

a
 610 ± 5

b
 1710 ± 100

b
 

6 970 ± 33
b
 23 ± 4

c
 22 ± 1

a
 540 ± 13

c
 1560 ± 50

c
 

Means not connected by the same letter indicate a significant difference between time points for that compound (alpha = 0.05). 
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Although having positive effects on color and hydrophilic phytochemicals post-

drying, blanching and rhubarb juice+blanching treatments fared worst in storage. 

At 6 mo, losses in phenolic content were in the order sulfites (negligible), rhubarb 

juice-only (15%), rhubarb juice+blanching (27%) and blanching (33%). It was 

speculated that the heating treatment, while initially beneficial, left some 

compounds more susceptible to oxidation and degradation in storage. 

 

As TC was an expression of the various individual carotenoid compounds in β-

carotene equivalents, the HPLC profiles echoed previously discussed results. β-

carotene was the predominant carotenoid compound, comprising on average 65% 

of total carotenoid content in dried peaches, as opposed to 40% in fresh form. It 

was also the key determinant of carotenoid concentration, as treatments did not 

differ as greatly in the concentrations of other carotenoid compounds. Carotenoid 

compounds typically declined in storage; degradation was least in lutein and most 

in β-carotene. Losses by 6 mo were in the order sulfites (48%), blanching (51%), 

rhubarb juice-only (62%) and rhubarb juice+blanching (68%). Losses in carotenoid 

content by far exceeded those in phenolics and antioxidants. 

 

Apricots 

After drying, sulfited apricots had greatest TP (399.2 mg) which was not 

significantly higher than the second highest treatment, blanching (357.1 mg); 

rhubarb juice+blanching (332.3 mg) and rhubarb juice-only (308.0 mg) had lower 

values which did not differ significantly from each other or the blanching 

treatment. The four treatments had relatively equivalent AOX (11840.1 µmol 

sulfites, 11521.1 µmol rhubarb juice+blanching, 10821.4 µmol rhubarb juice-only 

and 10552.0 µmol blanching) and TC (18101.2 µg rhubarb juice+blanching, 
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16952.3 µg rhubarb juice-only, 16792.1 µg blanching and 15501.3 µg sulfites). 

This suggested that for apricots, or specifically this variety (as observed in the first 

phase), sulfite-free treatments were comparable to sulfite treatments with regards 

to their protective effect on the studied phytochemicals, at least post-drying. 

 

TP during storage varied considerably with the different treatments (Figure 5.7). 

While no significant difference was observed throughout the storage study for 

blanched samples, increases were noted in rhubarb juice-only, rhubarb 

juice+blanching and sulfites treatments at 3 mo, decreasing to post-drying levels in 

rhubarb juice-only and rhubarb juice+blanching but holding steady in sulfited 

samples. AOX remained stable during storage in rhubarb juice-only and rhubarb 

juice+blanching but increased in blanched and sulfited samples, peaking at 6 mo. 

The suggested explanation for this phenomenon has previously been discussed. As 

with peaches, TC steadily decreased with storage, least in sulfited samples (Bolin 

and Stafford 1974) and greatest in blanched samples by 6 mo. 

 

HPLC-determined TP mirrored results obtained spectrophotometrically, with the 

sulfites treatment maintaining its position with the highest phenolic content, 

followed by blanching, rhubarb juice+blanching and rhubarb juice-only, with 

successive treatment values not differing significantly from each other (Tables 5.3 

and 5.4). Treatments were nonetheless noted to differ substantially in flavan-3-ol 

content, compound concentrations of which followed the pattern sulfites > rhubarb 

juice+blanching ≥ blanching > rhubarb juice-only. Although there was no clear 

trend for treatment effect on hydroxycinnamic acids and flavonol glycosides, 

rhubarb juice-only performed much better in these categories while rhubarb 

juice+blanching often performed worst. 
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Figure 5. 7. Total phenolic content, total antioxidant capacity and total carotenoid 

content of dried ‘Harlayne’ apricot post-drying after 3 and 6 months storage at 18 – 

20 ˚C (GAE: Gallic acid equivalents, TE: Trolox equivalents, BCE: β-carotene 

equivalents). 
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Table 5.3. Phenolic compounds (mg / 100 g) in fresh and dried ‘Harlayne’ apricot post-drying after 3 and 6 months storage at 18 – 20 

˚C (n = 4). 

 Mo Catechin 
Chlorogenic 

acid 
Cyanidin-3-
glucoside 

Epicatechin Epigallocatechin 
Neochlorogenic 

acid 

Fresh 9.6 ± 1.0 6.5 ± 0.7 1.1 ± 0.1 15.9 ± 1.0 6.6 ± 0.6 22.0 ± 1.0 

Blanching 

0 1.1 ± 0.2
a
 9.2 ± 0.2

a
 ND 21.9 ± 1.3

a
 5.0 ± 0.4

a
 25.0 ± 3.9

a
  

3 1.1 ± 0.1
a
 7.5 ± 1.1

b
 ND 14.1 ± 2.1

b
 4.1 ± 0.3

b
 24.4 ± 2.3

a
 

6 0.9 ± 0.0
b
 7.1 ± 0.4

b
 ND 13.3 ± 1.6

b
 3.4 ± 0.3

b
 22.1 ± 1.2

a
 

Rhubarb juice+ 
blanching 

0 1.3 ± 0.0
a
 7.4 ± 0.7

a
 ND 22.5 ± 1.8

a
 5.2 ± 0.5

a
 22.2 ± 2.6

a
 

3 1.4 ± 0.1
a
 7.7 ± 0.5

a
 ND 17.6 ± 0.9

b
 4.9 ± 0.4

a 
 23.8 ± 1.9

a
 

6 1.1 ± 0.1
b
 7.4 ± 0.8

a
 ND 13.9 ± 1.3

c
 3.5 ± 0.4

b
 23.5 ± 2.0

a
 

Rhubarb juice-
only 

0 0.6 ± 0.0 9.8 ± 0.8
a
 ND 15.0 ± 1.3

a
 4.1 ± 0.4

b
 22.6 ± 1.7

a
 

3 ND 6.6 ± 0.1
b
 ND 13.2 ± 3.0

a
 4.3 ± 0.3

b
  21.4 ± 1.1

a
 

6 ND 6.6 ± 0.4
b
 ND 9.8 ± 2.4

a
 6.5 ± 0.4

a
 21.5 ± 1.9

a
 

Sulfites 

0 1.2 ± 0.2
ab

 8.3 ± 0.3
a
 ND 27.2 ± 2.5

b
 7.1 ± 0.1

c
  23.3 ± 2.4

b
 

3 1.3 ± 0.0
a
 9.5 ± 0.5

a
  ND 34.4 ± 0.4

a
 15.6 ± 0.8

a
 30.9 ± 2.1

a
 

6 1.1 ± 0.0
b
 8.7 ± 0.5

a
 ND 29.7 ± 3.4

ab
 11.6 ± 1.2

b
 26.1 ± 1.2

b
 

ND: Not detected. Unknown 1 and 2: flavan-3-ols. Means not connected by the same letter indicate a significant difference between time points 
for that compound (alpha = 0.05). 
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Table 5.3. (Continued). 

 Mo Quercetin-3-glucoside Quercetin derivative Rutin Unknown 1 Unknown 2 Total 

Fresh 1.2 ± 0.0 1.3 ± 0.0 12.7 ± 0.8 17.5 ± 1.8 11.6 ± 0.3 106.0 ± 7.3 

Blanching 

0 2.9 ± 0.1
a
 3.0 ± 0.0

ab
 16.2 ± 1.2

ab
 26.2 ± 2.6

a
 12.2 ± 1.4

a
 122.7 ± 11.3

a
 

3 2.9 ± 0.1
a
 3.0 ± 0.1

a
 18.0 ± 2.2

a
 9.2 ± 0.4

b
 10.6 ± 0.8

a
 94.9 ± 9.5

b
 

6 2.9 ± 0.0
a
 2.9 ± 0.0

b
 13.5 ± 1.4

b
 6.0 ± 0.6

c
 9.8 ± 1.0

a
 81.9 ± 6.5

b
 

Rhubarb juice+ 
blanching 

0 2.9 ± 0.1
a
 2.9 ± 0.2

a
 11.5 ± 0.9

a
 26.8 ± 1.7

a
 12.7 ± 1.7

a
 115.4 ± 10.2

a
 

3 2.9 ± 0.1
a
 2.9 ± 0.1

a
 14.1 ± 1.4

a
 10.1 ± 1.0

b
 12.6 ± 1.0

a
 98.0 ± 7.4

ab
 

6 2.9 ± 0.1
a
 2.9 ± 0.1

a
 11.8 ± 1.1

a
 6.8 ± 0.5

c
 10.9 ± 0.8

a
 84.7 ± 7.2

b
 

Rhubarb juice-
only 

0 3.2 ± 0.0
c
 2.8 ± 0.1

a
 17.4 ± 1.9

a
 10.1 ± 0.7

a
 10.9 ± 0.8

a
 96.5 ± 7.7

a
 

3 3.5 ± 0.1
b
 3.0 ± 0.1

a
 12.2 ± 1.3

b
 7.4 ± 0.5

b
 11.1 ± 0.5

a
 82.7 ± 7.0

a
 

6 3.7 ± 0.0
a
 2.8 ± 0.0

a
 11.9 ± 0.9

b
 11.6 ± 1.2

a
 7.8 ± 0.8

b
 82.2 ± 8.0

a
 

Sulfites 

0 3.1 ± 0.1
a
 2.9 ± 0.0

b
 13.8 ± 1.1

b
 32.6 ± 2.5

b
 14.1 ± 1.1

b
 133.6 ± 10.3

b
 

3 3.2 ± 0.0
a
 3.0 ± 0.0

a
 16.0 ± 1.0

ab
 41.4 ± 1.1

a
 17.3 ± 0.5

a
 172.6 ± 6.4

a
 

6 3.1 ± 0.0
a
 2.9 ± 0.0

b
 17.8 ± 1.0

a
 18.2 ± 2.4

c
 19.0 ± 0.8

a
  138.2 ± 10.5

b
 

ND: Not detected. Unknown 1 and 2: flavan-3-ols. Means not connected by the same letter indicate a significant difference between time points 
for that compound (alpha = 0.05). 
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Table 5.4. Mean values of carotenoid compounds (µg / 100 g) in fresh and dried ‘Harlayne’ apricot post-drying after 3 and 6 months 

storage at 18 – 20 ˚C (n = 4). 

  β-carotene β-cryptoxanthin Lutein Zeaxanthin Total 

Fresh 18000 ± 1340 140 ± 11 27 ± 2  ND 18200 ± 1400  

Blanching 

0 16100 ± 840
a
  140 ± 7

a
 30 ± 1

a
 360 ± 18

b
  16700 ± 870

a
 

3 5200 ± 230
b 
 33 ± 2

b
 25 ± 2

b
  460 ± 8

a
 5800 ± 240

b
 

6 3800 ± 305
c
 21 ± 0.4

c
 23 ± 1

b
  320 ± 10

c
 4200 ± 320

c
 

Rhubarb juice+ 
blanching 

0 17400 ± 1600
a
 150 ± 5

a
 33 ± 3

a
 360 ± 23

a
 18000 ± 1600

a
 

3 5500 ± 160
b
 33 ± 2

b
 26 ± 1

ab
 370 ± 13

a
 6000 ± 180

b
 

6 5100 ± 200
b
 26 ± 2

b
 26 ± 2

b
 320 ± 14

b
 5500 ± 220

b
 

Rhubarb juice-
only 

0 16300 ± 660
a
 120 ± 10

a
 32 ± 1

a
 420 ± 14

b
 16900 ± 680

a
 

3 6700 ± 400
b
 30 ± 1

c
 30 ± 0.2

ab
 506 ± 45

a
 7300 ± 440

c
 

6 7800 ± 170
b
  50 ± 2

b
  27 ± 2

b
 350 ± 19

c
 8200 ± 190

b
 

Sulfites 

0 14900 ± 1430
a
 105 ± 12

a
 32 ± 2

a
 407 ± 17

b
 15500 ± 1500

a
 

3 10300 ± 310
b
 47 ± 2

b
 31 ± 2

b
 560 ± 17

a
 11000 ± 330

b
 

6 10400 ± 240
b
   61 ± 5

b
 27 ± 2

b
 350 ± 19

c
 10900 ± 270

b
 

ND: Not detected. Means not connected by the same letter indicate a significant difference between time points for that compound (alpha = 0.05).
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The drying process uniformly eliminated the anthocyanin cyanidin-3-glucoside from 

the final product, but made available (or measurable) zeaxanthin, which had been 

undetected in fresh fruit. β-carotene was again identified as the predominant 

carotenoid, comprising greater than 90% of total carotenoid content in both fresh and 

dried apricots and being the key determinant of TC. Blanching also had noticeable 

effects on xanthophylls, as the two treatments with blanching had greater β-

cryptoxanthin content while those without had higher zeaxanthin content. 

 

Treatment type had a distinct influence on phenolic compounds in storage. Rhubarb 

juice+blanching and blanching flavan-3-ol concentration decreased sharply while 

hydroxycinnamic acid and flavonol glycoside content remained relatively stable. 

Rhubarb juice-only showed little consistency in its effect on compounds over time. In 

sulfited samples, an apparent increase in 3 mo followed by a decrease by 6 mo was 

found in flavan-3-ols and hydroxycinnamic acids while flavonol glycosides did not 

change significantly with storage. This resulted in a peaking of sulfited samples 

HPLC-TP at 3 mo, similar to the increase at this point as determined by the Folin-

Ciocalteu assay. Contrary to that test, a decrease was seen by 6 mo to levels similar to 

those post-drying. Comparing this to the significantly reduced HPLC-TP values of 

other treatments by this point, sulfited samples still had a substantially greater HPLC-

TP by the end of the shelf life study with those for the others approximately 

equivalent. 

 

Carotenoid compound degradation with storage was most severe in β-carotene, by 6 

mo reduced by 30% (sulfites) to 80% (blanching).  Zeaxanthin increased at 3 mo in all 
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treatments, although this did not significantly impact TC. By 6 mo, significant 

differences could be seen in TC of the different treatment types, ranking in the order 

sulfites> rhubarb juice-only > rhubarb juice+blanching ≥ blanching, with rhubarb 

juice-only demonstrating even greater capacity here than in peaches to benefit 

carotenoid content. It was proposed that in apricots, while blanching initially made 

carotenoid compounds more measurable, it later had a detrimental effect as these 

compounds were more susceptible to and available for lipid oxidation, resulting in a 

greater degree of carotenoid loss during storage. 

 

Nutritional content and phytochemical retention 

Nutritional content was calculated at the end of the shelf life study as an estimation of 

what was realistically available to the consumer 6 mo after production. A major appeal 

of dried peaches and apricots is their provitamin A status. Considering a 40 g serving 

of dried fruit (FDA 2012) and the dietary reference intake of 900 µg RAE for males 14 

years or older, dietary provitamin A compounds β-carotene and β-cryptoxanthin from 

the different treatments were evaluated (USDA FNC 2011; NIH 2012). A serving of 

dried peaches provided 1.1% (rhubarb juice+blanching), 1.3% (blanching), 1.8% 

(rhubarb juice-only) and 3.6% (sulfites) of the recommended dietary allowance (RDA) 

for vitamin A while apricots supplied 14.1% (blanching), 19.1% (rhubarb 

juice+blanching), 29.0% (rhubarb juice-only) and 38.7% (sulfites). The sulfite-free 

treatments in apricots therefore still resulted in products that are good (blanching and 

rhubarb juice+blanching) or excellent (rhubarb juice-only) sources of vitamin A. 
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Nutrient retention was calculated by comparing the HPLC-determined phenolic and 

carotenoid content of dried products with fresh fruit on a 100 g dry weight basis 

(Table 5.5). Retention was compared after drying and at 6 mo to assess losses due to 

the drying treatment and storage, respectively. The effect of sucrose uptake during the 

pre-drying soak on fruit soluble solids content as well as initial and final moisture 

content in fruits and products were taken into consideration. In both fruits, phenolic 

retention at the end of the 6 mo period was better than that of carotenoids, under the 

treatment conditions used. Dried peaches had better retention of phenolic and 

carotenoid compounds after both drying and storage.  However, while carotenoid 

retention was as good or better than phenolics post-drying, losses were more severe 

during storage. Dried apricots experienced similarly significant losses in carotenoids 

during storage that were likely to decrease further or eventually plateau with time. The 

non-linear progression in phenolics made it difficult to accurately predict their 

response with prolonged storage. The effectiveness of the sulfite-free treatments 

mirrored previous observations, with the two blanching treatments better for phenolic 

retention and the rhubarb juice-only more effective in carotenoid retention. 
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Table 5.5. Phenolic and carotenoid retention in dried ‘Redhaven’ peach and ‘Harlayne’ apricot post-drying and after storage for 6 

months at 18 – 20 ˚C. 

Fruit Treatment 
Phenolic retention (%) Carotenoid retention (%) 

Drying Storage Drying Storage 

Peach Blanching 61.9 57.0 73.0 29.7 

 Rhubarb juice+blanching 59.8 49.0 80.2 25.5 

 Rhubarb juice-only 46.5 44.2 78.5 35.0 

 Sulfites 71.2 60.5 103.0 53.7 

Apricot Blanching 43.3 28.9 35.1 8.8 

 Rhubarb juice+blanching 35.2 25.9 32.8 10.0 

 Rhubarb juice-only 26.7 22.7 27.9 13.6 

 Sulfites 36.9 38.2 25.6 17.9 
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Conclusion 

This study allowed for an assessment of various pre-drying treatments and a 

comparison of their efficacy. The commercial practice of sulfiting did prove to 

produce the most appealing final product in terms of color and phytochemical value. 

Two of the alternative treatments, blanching and rhubarb juice+blanching, have 

potential as inexpensive, easily reproducible, natural alternatives to sulfited dried fruit, 

although products would require storage at refrigerated temperatures to maintain their 

bright color for more than a month. They also proved comparable to sulfiting, 

particularly in apricots, for yielding products of significant phenolic and antioxidant 

content; modifications will be required to sustain these levels in storage. The rhubarb 

juice-only treatment, although incapable of producing the desired color in dried 

products, was most effective in the retention of carotenoid compounds and pro-

vitamin A constituents after drying and in storage. Treatments had varying effects on 

bioactive compounds; notably, anthocyanins were most affected by drying in apricots 

and storage in peaches. Time of consumption after storage may also be pertinent as 

phenolic content was observed to peak at 3 mo after drying, under the conditions of 

our study. Dried peaches had better retention of phenolic and carotenoid compounds 

after both drying and storage; in both fruits, storage was most detrimental to 

carotenoid content. Overall, the study contributes to the search for alternative 

antibrowning treatments, supplying useful information on the effects of such 

treatments on phytochemicals. 
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CHAPTER 6: THE EFFECT OF PROCESSING AND STORAGE ON THE 

PHENOLIC, ANTIOXIDANT AND CAROTENOID CONTENT OF PEACH 

AND APRICOT JAMS AND NECTARS.  

 
Introduction 

The peach (Prunus persica) and apricot (Prunus armeniaca) are sources of 

phenolic and carotenoid compounds, phytochemicals found to have various health 

benefits (Tomas-Barberan and others 2001; Gil and others 2002; Kader and Barrett 

2005; Ruiz and others 2005a; Ruiz and others 2005b). Antioxidants, which include 

both phenolic and carotenoid compounds, have been found to reduce the risk of 

cardiovascular diseases and some cancers while carotenoids play a role in vision 

(Ames and others 1993; Paiva and Russell 1999; Fraser and Bramley 2004). 

 

Postharvest storage is challenging for these fruit since, being climacteric, they can 

ripen off the tree, limiting their shelf life (Kader and Mitchell 1989; Kader 1999; 

Payasi and Sanwal 2008). Processing is a means to add value to these fruits by 

extending shelf life or developing products which ensure year-round fruit 

availability. 

 

A small proportion of peaches and apricots produced in the United States are 

channelled into puree and related products. Puree is used in the production of 

fillings, baby food or as an oil substitute (Siddiq 2006a; Siddiq 2006b). It can also 

serve as a starting material for secondary products including jam and beverages 

(Barta and others 2005). While peach and apricot jam are relatively simple to 

make, beverage production is challenging because of the difficulty involved in 

juice extraction and clarification due to high pulp and suspended solids content of 
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these fruits. Peach and apricot beverages are therefore often in the form of nectars 

(diluted juice beverages), pulpy juices or ingredients in less turbid beverages 

produced in combination with other fruits (Beveridge and Harrison 1995; 

Beveridge and Rao 1997; FDA 2003; McLellan and Padilla-Zakour 2005; Siddiq 

2006b; Santin 2008). 

 

Growing public concern about obesity and other diet-related diseases has created a 

market for lower sugar or low calorie versions of these products (Sloan 2010). 

However, sucrose reduction or substitution causes changes in taste, consistency 

and color which may negatively affect the marketing, perception and consumption 

of low or reduced sugar products (Costell 1993; Somogyi 2005). There is currently 

little information available on the effect of these formula modifications on the 

phytochemical and nutritional value of these products. Furthermore, the extensive 

thermal treatment involved in the processing of jams and nectars as well as storage 

temperatures and conditions may have detrimental effects on compounds 

susceptible to degradation by heat, light or oxidation (Sabry 1961; Hamama and 

Nawar 1991). 

 

Our study investigated the composition and concentration of phenolic, antioxidant 

and carotenoid compounds in peach and apricot jam and nectar with varying 

sucrose and fruit content. Phytochemical content and product quality were 

evaluated post-processing and over a 6-month storage period. Drawing on 

knowledge gained about varietal characteristics, we also assessed the suitability of 

the selected varieties for jam and nectar production. 

 

 



 

189 
 

Materials and methods 

Harvest 

‘Redhaven’ peach and ‘Harlayne’ apricot were selected for this study because of 

their economic importance to the Northeast based upon their cold hardiness (Lamb 

and Terry 1973; Layne 1996; Scorza and Sherman 1996; Monet and Bassi 2008). 

Fruits were harvested from local Northeast orchards at the ‘tree ripe’ stage (ready-

to-eat) to ensure good sugar-to-acid balance and full development of flavor and 

aroma, as well as a softening of flesh tissue to facilitate pureeing (Bureau 2006; 

Horvath-Kerkai 2006; Ramina and others 2008). 

 

Processing 

Figures 6.1 outlines the procedure for the production of puree, which was then 

used as a starting material for jam (Figure 6.2) and nectar (Figure 6.3); yield from 

the pureeing process was 60%. Jam production followed typical protocols as well 

as formulations recommended by the brand of pectin used (Reynolds and others 

1993; Pacific Pectin 2010). Reduced sucrose jams contained at least 25% less 

sucrose than standard jams. To avoid exceeding the target brix, reduced sucrose 

jams underwent a slower heating process over a slightly longer time. Nectar 

ingredients and formulation were in line with USDA Commercial Item Description 

A-A-20118B (Luh 1980; FDA 2003; USDA AMS 2012). Standard nectar was 

developed to have a final Brix of 16 and a sugar-to-acid ratio of 20 – 30 for apricot 

and 30 – 40 for peach nectars. Reduced sucrose nectars were formulated in order to 

have a final product containing 100 calories per serving (240 mL). Pictures of the 

final products are shown in Illustrations A.7 and A.8.
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Wash, depit and slice fruit

Add 10% water to fruit in kettle

Heat mixture to 90 ˚C for 20 min with  crushing and stirring

Run fruit through a pulper finishera using a 1/8 inch (3.2 mm) screen 

Pass second time through the pulper finisher using a 0.027 inch (0.68 mm) screen 

Freeze puree until use

Waste (skin)

Waste (skin)

Brix (˚) pH
Titratable acidity

(g malic acid/100 g)
Sugar-to-acid ratio

Peach 8.5 3.91 0.302 28.1

Apricot 20 3.77 0.831 24.1

PUREE CHARACTERISTICS

 

a
 Model 1858; Langsenkamp Manufacturing, Indianapolis, IN  
 
 
Figure 6. 1. Flow chart for the production of peach and apricot puree. 
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Prepare and add acidulant (6% citric acid) to attain desired pH

Add antifoamb to prevent bubble formation

Slowly add sucrose and heat mixture to boiling (104 ˚C)

Cease heating when target brix is reached

Pour hot jam (≥ 90 ˚C) into preheated jars, wipe rims and screw on lids 

Invert jars for 3 – 5 min then revert to upright position to set

Force-cool jars by transferring first to a lukewarm water bath and then to cold water bath 

STANDARD JAM REDUCED SUCROSE JAM

Check starting soluble solids (brix) and pH of puree

Weigh out sucrose (sugar) and pectina

Begin heating and stir in pectin until dissolved

Preheat jars and lids in 
hot water

Puree 
(%)

Sucrose
(%)

Pectin 
(%)

Final Brix 
(˚)

Peach

Standard 50 48 2 65 – 70 

Reduced 65 32 3 45 – 50 

Apricot

Standard 50 48 2 65 – 70 

Reduced 70 27 3 45 – 50 

FORMULATION:

Stir in  and dissolve as much pectin as possible

Begin heating slowly with stirring to dissolved remaining pectin

 
 
a
 Pacific pectin mix and Pacific LM-3 pectin (Pacific Pectin Mix; Pacific Pectin Inc, Oakhurst, CA) were used for standard and reduced sucrose jams, respectively. 

b
Antifoam (Double strength antifoam, Pacific Pectin Inc). 

 

Figure 6. 2. Flow chart for the production of peach and apricot standard and reduced sucrose jam. 
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Calculate quantities of puree, sweetener (sucrose and/or sugar substitutea), 
water and acid required to meet product specifications

Check starting soluble solids (brix), pH and titratable acidity of puree

Combine and mix ingredients in a primary container

Cover container with a watch glass and heat mixture in microwave to 85 ˚C

Transfer hot nectar into preheated jars, wipe rims and cap jars

Turn jars on their sides for 3 min to ensure sterilization of lids

Force-cool jars by transferring first to a lukewarm water bath and then to cold water bath

Puree
(%)

Sucrose
(%)

Water 
(%)

Stevia 
(%)

Peach

Standard 90 5.03 4.97 -

Reduced 90 2.77 7.23 -

Apricot

Standard 60 4 36 -

Reduced 50 0.2 49.6 0.2

FORMULATION:

 
 
 
a
 (Good&Sweet Stevia, Life Concepts Inc., Rancho Santa Margarita, CA) 

 
Figure 6. 3. Flow chart for the manufacture of peach and apricot standard and reduced sucrose nectar.
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Phenolic analysis 

Extraction of phenolic compounds followed the method described in chapter 2 with 

100% methanol used to extract 5 g of jam and nectar. Total phenolic content and 

HPLC phenolic analysis were also performed as in chapter 2. 

 

Total antioxidant capacity assay 

This was performed as described in chapter 2.  

 

Carotenoid analysis 

This was performed as described in chapter 2; 5 g jam and nectar were extracted 

and analysed. 

 

Shelf life study 

Samples were stored at 18 - 20 ˚C for six months (mo) under dark conditions. 

Phenolic, antioxidant and carotenoid analyses were conducted at 3 mo and again at 

6 mo and results compared to those obtained post-processing. Lightness (L), a and 

b color values were measured post-processing and on a monthly basis over the 

course of the shelf life study with a HunterLab UltraScan XE (Hunter Associates 

Laboratory Inc., Reston, VA). 

 
Statistical analysis 

Data was analysed as described in chapter 2, with the respective weights for 

bioactive data stated as required 
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Results and discussion 

Quality indices 

The reduction of sucrose and caloric content in fruit products while maintaining 

good flavor is currently accomplished by the use of sugar substitutes (Somogyi 

2005). Sugar is nevertheless critical for the formation of hydrophobic bonds 

required for gelation and the prevention of syneresis in jam (Oakenfull and Scott 

1984; Baker 2006). The amount of sugar present also affects the color and texture 

of products (Costell and others 1993; Benamara and others 1999). Although low 

methoxyl pectin, such as the one used in this study, allows for gel formation using 

less sugar (Baker 2006), the effect of sucrose reduction on quality indices of our 

products was evaluated for all these reasons. 

 

Visually, standard jams were darker than reduced sucrose jams. This was 

corroborated instrumentally, with standard jam having lower L values post 

processing and during storage (Table 6.1); differences were more pronounced in 

apricots than in peaches. The disparity between treatments was attributed to a 

greater concentration of Maillard reaction products in standard jam due to its 

higher sucrose content (Abers and Wrolstad 1979; Joslyn 1941; Siddique 2006a). 

This was confirmed by HPLC, with standard jams of both fruits having four- to 

five-fold greater hydroxymethylfurfural (HMF) content than reduced sucrose jam.
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Table 6. 1. Color of peach and apricot jam and nectar post-processing and after storage for 3 and 6 months at 18 – 20 ˚C. 

Fruit Treatment Mo Jam Nectar 

   L a b L a b 

Peach 

Standard 

0 27.6 ± 0.3
b
 0.41 ± 0.04

a
 -0.10 ± 0.28

a
 35.3 ± 0.5

a
 0.90 ± 0.04

a
 5.08 ± 0.23

a
 

 3 28.1 ± 0.2
b
 0.13 ± 0.06

b
 -0.61 ± 0.23

a
 35.5 ± 0.5

a
 0.66 ± 0.10

b
 4.41 ± 0.47

ab
 

 6 28.7 ± 0.5
a
 -0.14 ± 0.03

c
 -0.80 ± 0.50

a
 35.1 ± 0.3

a
 0.50 ± 0.05

c
 4.26 ± 0.39

b
 

 
Reduced 
sucrose 

0 30.2 ± 0.5
a
 1.06 ± 0.08

a
 0.80 ± 0.30

a
 36.1 ± 0.7

a
 0.88 ± 0.02

a
 5.15 ± 0.57

a
 

 3 30.7 ± 0.7
a
 0.59 ± 0.03

b
 0.73 ± 0.54

a
 36.5 ± 0.4

a
 0.62 ± 0.07

b
 4.11 ± 0.41

b
 

 6 30.6 ± 0.2
a
 0.28 ± 0.01

c
 1.09 ± 0.20

a
 36.3 ± 0.2

a
 0.48 ± 0.08

c
 4.41 ± 0.29

ab
 

Apricot 

Standard 

0 28.9 ± 0.3
b
 2.57 ± 0.05

a
 2.85 ± 0.25

a
 40.1 ± 0.9

a
 7.65 ± 0.38

a
 15.0 ± 1.01

a
 

 3 29.4 ± 0.2
ab

 2.40 ± 0.10
b
 2.58 ± 0.40

a
 40.0 ± 0.4

a
 6.83 ± 0.24

a
 13.4 ± 0.60

b
 

 6 29.9 ± 0.6
a
 2.20 ± 0.09

c
 2.12 ± 0.51

a
 39.3 ± 0.7

a
 6.46 ± 0.20

b
 13.2 ± 0.50

b
 

 
Reduced 
sucrose 

0 34.5 ± 0.7
a
 6.60 ± 0.23

a
  10.6 ± 0.98

a
 39.7 ± 0.5

a
 6.91 ± 0.29

a
 14.5 ± 0.30

a
 

 3 35.5 ± 1.0
a
  6.68 ± 0.24

a
 10.4 ± 0.93

a
 39.7 ± 0.7

a
 6.13 ± 0.23

b
 13.1 ± 0.40

b
 

 6 35.9 ± 1.2
a
  6.44 ± 0.29

a
 9.98 ± 0.78

a
 40.0 ± 0.5

a
 5.75 ± 0.27

b
 12.3 ± 0.71

b
 

Means not connected by the same letter indicate a significant difference between time points for that parameter (alpha = 0.05). 
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While L remained relatively stable, a (red color) decreased in storage in both jam 

and nectar and b (yellow color) in nectar. These changes, particularly the loss of 

redness, have been observed with storage of strawberry products and attributed to 

non-enzymatic browning and Maillard product formation, as well as phenolic – 

mainly anthocyanin – degradation or polymerization with other fruit components 

(Wesche-Ebeling and Montgomery 1990; Garcia-Viguera and others 1999; 

Rababah and others 2011). 

 

Sucrose content also affected consistency, assessed visually, with standard jam 

being thicker with better spread. Syneresis was observed in reduced sucrose peach 

jam by 6 mo, implying that the variety used, ‘Redhaven’, was not suitable for this 

product unless in combination with other varieties or with the addition of other 

ingredients to aid and/or maintain gelation (e.g. gum). The set of apricot reduced 

sucrose jam was facilitated by the high fruit soluble solids content of ‘Harlayne’. 

 

Peach nectars did not differ in consistency since both had the same fruit content. 

Apricot reduced sucrose nectar was unique in that less fruit had to be used than in 

their standard version due to the high soluble solids content and thus high caloric 

content of ‘Harlayne’ puree. Nonetheless, the reduced sucrose nectar had 

acceptable taste and consistency. 

 

Jam 

Final Brix and pH for peach jams were 66.0 and 3.05 for standard and 46.5 and 

3.08 for reduced sucrose jams. For apricot jams, final values were 68.4 and 3.14 

for standard and 49.4 and 3.21 for reduced. The difference in sucrose content also 

implied differences in water activity (aw). The dissolution of sucrose molecules in 
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water decreases vapor pressure, lowering the relative humidity of the air around the 

food product in relation to pure water (which has a aw  of 1). Increasing sucrose 

concentration therefore lowers aw, affecting a range of factors including chemical 

stability, enzyme activity and microbial growth (Pintauro 1990). The implications 

of this phenomenon, particularly how it contrasted with fruit content, were 

evaluated in standard and reduced sucrose jams. 

 

The Folin-Ciocalteu test showed no difference in total phenolic content (TP) 

between peach standard and reduced sucrose jam after processing or during storage 

despite the reduced sucrose version containing 30% greater fruit content (Figure 

6.4). Reduced sucrose apricot jam, having 40% more fruit than the standard 

version, had slightly higher TP (p < 0.05) after processing, although the disparity 

became more obvious during storage (Figure 6.5). 

 

In both treatments, decreases were observed in TP during storage. While the 

different peach jams remained indistinguishable even at 6 mo (30% loss in both), 

reduced sucrose apricot jam performed better in storage than standard jam, 

suffering a 25% decrease in TP compared to 50% in the standard. This was in 

agreement with work by Howard and others (2010) who reported better 

performance in storage by sugar-free jam, with higher fruit content, compared to 

jams with sugar. These results imply better stability of phenolic compounds in the 

reduced sucrose medium over time although a putative mechanism is yet to be 

determined. 
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Figure 6. 4. Total phenolic content, total antioxidant capacity and total carotenoid 

content of ‘Redhaven’ peach standard and reduced sucrose jam post-processing 

and after 3 and 6 months storage at 18 – 20 ˚C (GAE: Gallic acid equivalents, 

TE:Trolox equivalents, BCE: β-carotene equivalents). 
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Figure 6. 5. Total phenolic content, total antioxidant capacity and total carotenoid 

content of ‘Harlayne’ apricot standard and reduced sucrose jam post-processing 

and after 3 and 6 months storage at 18 – 20 ˚C (GAE: Gallic acid equivalents, 

TE:Trolox equivalents, BCE: β-carotene equivalents). 
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These observations were attributed to the complex interactions of jam constituents 

with heat treatment (Joslyn 1941; Hubberman 2006). Studies on the effect of heat 

concentration on phenolic compounds are focused mainly on anthocyanin content. 

Sucrose has been found to provide a protective effect in some studies (Wrolstad 

and others 1990; Cemeroglu 1994) while being implicated in anthocyanin 

degradation in others (Hubberman 2006). In light of previous studies, our 

observations would suggest that phenolic retention involves more than just fruit or 

sucrose content, being affected by additional factors such as fruit type, processing 

and storage conditions including time and temperature. 

 

Standard and reduced sucrose jams of both fruits were similar in antioxidant 

capacity (AOX) post-processing. As with TP, AOX is influenced by factors other 

than fruit content; a number of studies have demonstrated that Maillard reaction 

products, formed during heat treatment as well as storage and typically enhanced 

by higher sucrose content, possess antioxidant properties (Lingnert and Lundgreen 

1980; Bolin and Steele 1987; Elizalde and others 1991). Thus the greater sucrose 

concentration of standard jams resulted in AOX comparable to that of reduced 

sucrose jams, despite the difference in fruit content. 

 

In both peach jam treatments, antioxidant capacity remained stable during storage. 

Contrarily, a sharp decrease (35%) was observed in the two apricot jam treatments 

by 3 mo, remaining relatively stable thereafter. The results for peach jam were 

consistent with those by Howard (2010) while those for apricot jam agreed better 

with other studies (Wicklund and others 2005; Rababah and others 2011). All 

relevant studies however stressed the importance of storage temperature on AOX 

because this could affect the hydroxylation and glycolysation of compounds, 
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resulting in gradual decline in antoxidant activity (Srivastava and others 2007). 

 

HPLC analysis allowed for a better evaluation of treatment impact on specific 

phenolic compounds (Tables 6.2 and 6.3). For both fruits, HPLC-determined total 

phenolic content (HPLC-TP) of reduced sucrose jam was greater than that of 

standard jam. The difference was more pronounced in apricot jams, where reduced 

sucrose jam surpassed standard jam in all phenolic classes studied. In peach jams, 

the reduced sucrose versions were greater in all but flavonol glycoside content. 

 

Our results differed from the study by Howard and others (2010) in which levels of 

anthocyanins but not chlorogenic acid or flavonol glycosides were affected by both 

jam type (with or without sugar) and storage of blueberry jam. The difference in 

phenolic composition and stability of blueberries versus stone fruits as well as the 

formulation of model jams may explain the disparities in these experimental 

results. Losses in peach jams by 6 mo were similar (20%) and less severe than in 

apricot jams, with a 47% loss in reduced sucrose jam and 51% in standard jam. 

 

The treatment types differed most significantly in carotenoid content. Given that 

this parameter was analyzed directly by HPLC, differences were better detected. 

Fruit content proved vital as in both fruits, reduced sucrose jams had higher 

carotenoid content post-processing. Carotenoid content decreased in all cases with 

storage, with reduced sucrose apricot jam maintaining a higher TC (p < 0.01) 

throughout storage. No comparable studies were found for changes in carotenoid 

concentration with jam formulation or storage, although carotenoid content in other 

heat-treated products has been found to decrease over time due to oxidation and 

geometrical isomerization (Abushita and others 2000; Britton and Khachik 2009). 
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Table 6. 2. Phenolic compounds (mg / 100 g) in ‘Redhaven’ peach standard and reduced sucrose jam post-processing and after 3 and 6 

months storage at 18 – 20 ˚C (n = 4). 

 Mo Catechin 
Chlorogenic 

acid 
Cyanidin-3-glucoside Epicatechin Epigallocatechin 

Kaempferol-3-
rutinoside 

Standard 

0 1.48 ± 0.05
a
 3.15 ± 0.14

a
  1.37 ± 0.03

a
 2.91 ± 0.18

a
  0.71 ± 0.05   6.82 ± 0.01

a
 

3 0.44 ± 0.03
b
 3.11 ± 0.17

a
 1.17 ± 0.04

b
 2.52 ± 0.05

b
 ND 6.73 ± 0.04

b
 

6 0.31 ± 0.04
b
 2.82 ± 0.14

a
 1.11 ± 0.01

c
 2.00 ± 0.13

c
 ND 6.67 ± 0.01

c
 

Reduced 
sucrose 

0 1.37 ± 0.16
a
 3.65 ± 0.05

a
 1.51 ± 0.01

a
 3.69 ± 0.16

a
 1.07 ± 0.12

a
 6.91 ± 0.03

a
 

3 0.44 ± 0.02
b
 3.52 ± 0.09

a
 1.23 ± 0.00

b
 2.83 ± 0.15

b
 0.47 ± 0.02

b
 6.72 ± 0.01

b
 

6 0.47 ± 0.11
b
 3.21 ± 0.14

b
 1.13 ± 0.01

c
 2.75 ± 0.16

b
 ND 6.69 ± 0.02

b
 

 
 

 Mo Neochlorogenic acid Quercetin-3-glucoside Rutin Unknown 1 Unknown 2 Total 

Standard 

0 2.87 ± 0.19
a
  1.12 ± 0.00

a
  1.13 ± 0.01

a
 0.44 ± 0.02

a
 1.14 ± 0.00

a
 23.32 ± 0.68

a
 

3 2.71 ± 0.10
ab

 1.11 ± 0.01
a
 1.06 ± 0.01

b
 0.35 ± 0.04

b
 1.13 ± 0.01

a
  20.35 ± 0.52

b
 

6 2.52 ± 0.10
b
 1.10 ± 0.00

a
  1.05 ± 0.01

b
 0.40 ± 0.01

ab
 1.12 ± 0.00

a
 19.08 ± 0.46

b
 

Reduced 
sucrose 

0 3.24 ± 0.12
a
 1.12 ± 0.01

a
 1.10 ± 0.04

a 
 0.82 ± 0.04

a
 1.14 ± 0.01

a
 25.62 ± 0.75

a
 

3 3.04 ± 0.06
b
 1.12 ± 0.01

a
 1.07 ± 0.01

a
 0.35 ± 0.01

b
 1.14 ± 0.00

a
 21.94 ± 0.37

b
 

6 3.11 ± 0.01
ab

 1.11 ± 0.00
a
 1.07 ± 0.01

a
 0.39 ± 0.02

b
 1.14 ± 0.00

a
 21.06 ± 0.47

b
 

ND: Not detected. Unknown 1: flavan-3-ol; Unknown  2: flavonol glycoside. Means not connected by the same letter indicate a significant 
difference between time points for that compound (alpha = 0.05). 
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Table 6. 3. Phenolic compounds (mg / 100 g) in ‘Harlayne’ apricot standard and reduced sucrose jam post-processing after 3 and 6 

months storage at 18 – 20 ˚C (n = 4). 

 Mo Catechin Chlorogenic acid 
Cyanidin-3-
glucoside 

Epicatechin Epigallocatechin Neochlorogenic acid 

Standard 

0 0.37 ± 0.01
a
  2.9 ± 0.2

a
 ND 6.1 ± 0.4

a
  2.2 ± 0.1

b
 8.4 ± 1.0

a
 

3 0.25 ± 0.01
b
 2.6 ± 0.2

b
  ND 3.9 ± 0.4

b
 3.1 ± 0.3

a
  7.2 ± 0.4

a
  

6 0.20 ± 0.01
c
 2.0 ± 0.1

c
 ND 2.4 ± 0.1

c
 2.0 ± 0.1

b
 5.0 ± 0.2

b
 

Reduced 
sucrose 

0 0.61 ± 0.06
a
 3.3 ± 0.2

a
 ND 11.1 ± 0.5

a
 3.0 ± 0.4

a
  14.8 ± 0.6

a
 

3 0.24 ± 0.02
b
 3.3 ± 0.3

a
 ND 6.0 ± 0.5

b
 0.9 ± 0.1

b
 10.4 ± 0.8

b
 

6 0.17 ±0.02
c
  2.8 ± 0.2

b
 ND 6.0 ± 0.5

b
 1.4 ± 0.2

b
 9.7 ± 0.5

b
 

 

 

 Mo Quercetin-3-glucoside Quercetin derivative Rutin Unknown 1 Unknown 2 Total 

Standard 

0 1.15 ± 0.02
a
 1.18 ± 0.01

a
 4.9 ± 0.5

a
 8.3 ± 1.0

a
 4.8 ± 0.5

a
 40.3 ± 3.8

a
  

3 1.13 ± 0.01
a
  1.13 ± 0.01

b
  4.2 ± 0.2

b
 2.6 ± 0.1

b
 2.8 ± 0.1

b
 28.9 ± 1.8

b 
 

6 1.11 ± 0.00
b
 ND 3.2 ± 0.1

c
 1.8 ± 0.2

b
 1.8 ± 0.2

c
 19.5 ± 1.0

c
 

Reduced 
sucrose 

0 1.19 ± 0.01
a
 1.22 ± 0.01

a
  7.2 ± 0.2

a
 14.1 ± 0.7

a
 7.3 ± 0.5

a
 63.9 ± 3.3

a
 

3 1.18 ± 0.02
ab

 1.17 ± 0.01
b
 6.3 ± 0.5

b
 3.9 ± 0.5

b
 5.2 ± 0.5

b
 38.6 ± 3.2

b
 

6 1.16 ± 0.01
b
 1.14 ± 0.01

c
 5.5 ± 0.4

c
 2.1 ± 0.2

b
 4.2 ± 0.1

c
 34.2 ± 2.2

b
 

ND: Not detected. Unknown 1 and 2: flavan-3-ols. Means not connected by the same letter indicate a significant difference between time points 
for that compound (alpha = 0.05). 
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Decreases occured in all carotenoid compounds (Tables 6.4 and 6.5). With both 

fruit types, losses were greater in reduced sucrose jams (47% in peach and 48% in 

apricot) compared to standard jams (30% in peach and 36% in apricot). This 

demonstrated the effect of aw on lipid oxidation, a complex interaction that has 

been explained in part by Nelson and Labuza (1992). The formation of lipid free 

radicals, which initiate and propagate oxidation, is catalyzed by trace metals. 

Within the aw of jam (approximately 0.75), greater water or moisture availability 

increases mobility of catalysts in the aqueous phase, including metal ions and 

oxygen, and allows them to move closer to the lipid/water interface. This 

positioning brings them in contact and allows them to react with lipid compounds, 

resulting in free radical formation which facilites lipid oxidation. The reduction of 

water activity by dehydration (up to ~ 0.4) or introduction of water-binding solutes 

like sucrose therefore slows the rate of oxidation (Leung 1987; Bell 2007). 

 

From our study, fruit type and varietal characteristics influenced product 

formulation (fruit versus sucrose content), and processing conditions (time and 

temperature). All these factors influenced the phytochemical content of the final 

product. The type of assay employed was also important, since more sensitive 

analyses (HPLC) detected differences less evident with more generalized tests 

(Folin-Ciocalteu and ORAC assays). 
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Table 6. 4. Mean values of carotenoid compounds (µg / 100 g) in ‘Redhaven’ peach standard and reduced sucrose jam post-processing 

and after 3 and 6 months storage at 18 – 20 ˚C (n = 4). 

 Mo. β-carotene β-cryptoxanthin Lutein + Zeaxanthin Total 

Standard 

0 460 ± 46
a
 9.3 ± 0.9

a
 160 ± 2.3

b
 630 ± 49

a
 

3 290 ± 18
b
 8.7 ± 0.8

a
 210 ± 21

a
 510 ± 40

b
 

6 270 ± 24
b
 7.0 ± 0.2

b
 160 ± 2.6

b
 440 ± 26

b
 

Reduced 
sucrose 

0 750 ± 49
a
 13 ± 0.8

a
 180 ± 7.2

a
 940 ± 57

a
 

3 530 ± 12
b
 8.3 ± 0.1

b
 160 ± 6.2

b
 700 ± 18

b
 

6 320 ± 28
c
  6.7 ± 0.6

c
 160 ± 4.2

b
 490 ± 33

c
 

Means not connected by the same letter indicate a significant difference between time points for that compound (alpha = 0.05). 

 
 
 
 
Table 6. 5. Mean values of carotenoid compounds (µg / 100 g) in ‘Harlayne’ apricot standard and reduced sucrose jam post-processing 

after 3 and 6 months storage at 18 – 20˚C (n = 4). 

 Mo β-carotene β-cryptoxanthin Lutein + Zeaxanthin Total 

Standard 

0 2400 ± 190
a
 36 ± 0.9

a
 9.1 ± 0.5

b
 2500 ± 190

a 
 

3 2200 ± 140
a
 26 ± 5.6

b
 16 ± 1.0

a
 2200 ± 150

a 
 

6 1500 ± 95
b
 6.1 ± 0.2

c
 ND 1600 ± 95

b
 

Reduced 
sucrose 

0 5600 ± 550
a
 74 ± 0.2

a
  ND 5700 ± 550

a
 

3 3800 ± 220
b
 53 ± 6.1

b
 8.8 ± 0.1 3900 ± 220

b
 

6 3100 ± 230
c
 28 ± 2.8

c
 ND 3100 ± 230

c
 

Means not connected by the same letter indicate a significant difference between time points for that compound (alpha = 0.05). 
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Nectar 

Nectars are defined as diluted juice beverages that contain fruit juice or puree, 

water and may contain sweeteners (FDA 2003). They vary in consistency, ranging 

from almost-clear liquid to beverages with high suspended solids, depending on 

the type of fruit and fruit content (Luh 1980). While this definition is relatively 

flexible, the USDA has supplied a commercial item description (CID A-A-

20118B) which details the ingredient, analytical and regulatory requirements for a 

product to attain this classification. 

 

The nectar study investigated the effect of the current trend of sucrose reduction 

and the use of sugar substitutes to produce lower calorie beverages on 

phytochemical content (Somogyi 2005; Sloan 2010; Gibeson 2011). ‘Harlayne’ 

puree had high fruit soluble solids content which allowed for product formulation 

with less than 5% added sucrose. Despite the low soluble solids content of 

‘Redhaven’ puree, its low titratable acidity and consequently high sugar-to-acid 

ratio, allowed for the manufacture of a peach beverage with high fruit content and 

less than 6% added sucrose. The low titratable acidity of peach puree (0.302 g 

malic acid/100 g) negatively affected taste and necessitated an adjustment of pH 

with malic acid (0.487 g malic acid/100 g). 

 

Quality indices of the final products are presented in Table 6.6. The standard nectar 

fulfilled CID requirements while the reduced sucrose versions (particularly in 

apricot) did not meet some of the stipulations. These products still served their 

purpose, experimentally, and in practice could be marketed as 100-calorie fruit 

beverages with high fruit content (>50%). Standard peach nectar had 130 calories 

while standard apricot nectar had 160 calories per 240 mL serving. 
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Table 6. 6. Quality indices of ‘Redhaven’ peach and ‘Harlayne’ apricot standard 

and reduced sucrose nectars. 

 Fruit Treatment Brix (˚) pH 
Titratable acidity 

(g malic acid/100 g) 
Sugar-to-acid 

ratio 

Peach Standard 14.2 3.85 0.44 32.6 

 Reduced 11.7 3.86 0.43 27.2 

Apricot Standard 17.4 3.65 0.70 24.8 

 Reduced 11.4 3.68 0.61 18.7 

 

The two peach nectar treatments did not differ in TP, AOX or TC (Figure 6.6). 

Little difference was expected since that the fruit content was equal and the relative 

differences in added sucrose (5.03% and 2.77% in peach and 4% and 0.2% in 

apricot standard and reduced sucrose, respectively) were considered too slight to 

significantly impact phytochemical stability. AOX remained stable with storage in 

both treatments while TP decreased, as observed in grape and apple juice studies 

(Spanos and others 1990; Spanos and Wrolstad 1990). The phenolic profile 

remained similar to that of peach jam (Dragovic-Uzelac 2005). In this instance, 

HPLC phenolic data agreed with the observations from the Folin-Ciocalteu test 

(Table 6.7). There were no clear patterns in storage losses of phenolic compounds, 

although hydroxycinnamates experienced the least decrease in storage. Reduced 

sucrose nectar suffered greater losses at 6 mo (21%) than standard nectar (14%). 

 

As TC was an expression of the various individual carotenoid compounds in β-

carotene equivalents, HPLC profiles matched the observations in TC (Table 6.8). 

Carotenoid compounds typically declined in storage, with degradation most 

evident in the provitamin A compounds. Losses were significantly greater in 

reduced sucrose (32%) as compared to standard (24%) nectar. The effect of water 

and sucrose content could be the reason behind this although, given how small the 

differences between treatments were, other factors were more likely to be involved. 



 

208 
 

0

5

10

15

20

25

30

35

40

45

50

0 3 6

T
o

ta
l 
p

h
e
n

o
li

c
 c

o
n

te
n

t 
(m

g
 G

A
E

/ 
1

0
0

 g
)

Months in storage

0

250

500

750

1000

1250

1500

1750

2000

0 3 6

T
o

ta
l 
a

n
ti

o
x

id
a

n
t 

c
a

p
a

c
it

y
 (

µ
m

o
l 

 T
E

/ 
1

0
0

 g
)

Months in storage

0

100

200

300

400

500

600

700

0 3 6

T
o

ta
l 
c
a

r
o

te
n

o
id

 c
o

n
te

n
t 

(µ
g

 B
C

E
/1

0
0

 g
)

Months in storage

0

100

200

300

400

500

600

700

0 3 6

T
o

ta
l 
c
a

r
o

te
n

o
id

 c
o

n
te

n
t 

(µ
g

 B
C

E
/1

0
0

 g
)

Months in storage

Standard

Reduced

  

 

Figure 6. 6. Total phenolic content, total antioxidant capacity and total carotenoid 

content of ‘Redhaven’ peach standard and reduced sucrose nectar post-processing 

and after 3 and 6 months storage at 18 – 20 ˚C (GAE: Gallic acid equivalents, TE: 

Trolox equivalents, BCE: β-carotene equivalents). 
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Table 6. 7. Phenolic compounds (mg / 100 g) in ‘Redhaven’ peach standard and reduced sucrose nectar post-processing and after 3 

and 6 months storage at 18 – 20 ˚C (n = 4). 

 Mo Catechin 
Chlorogenic  

acid 
Cyanidin-3-glucoside Epicatechin Epigallocatechin Kaempferol-3-rutinoside 

Standard 

0 1.44 ± 0.13
a
 4.69 ± 0.06

a
  1.58 ± 0.01

a
 4.30 ± 0.06

a
 1.86 ± 0.06

a
   7.06 ± 0.02

a
 

3 0.53 ± 0.04
b
 4.67 ± 0.10

a
 1.22 ± 0.00

b
 3.93 ± 0.18

a
 0.77 ± 0.05

c
 6.85 ± 0.01

b
 

6 0.53 ± 0.07
b
 4.02 ± 0.19

b
 1.11 ± 0.01

b
 4.31 ± 0.29

a
 1.01 ± 0.08

b
 6.78 ± 0.02

c
 

Reduced 
sucrose 

0 1.37 ± 0.10
a
 4.81 ± 0.08

a
 1.59 ± 0.01

a
 4.38 ± 0.11

a
 2.01 ± 0.04

a
   7.07 ± 0.01

a
 

3 0.54 ± 0.06
b
 4.63 ± 0.01

a
 1.23 ± 0.01

b
 3.75 ± 0.06

b
 1.00 ± 0.07

b
 6.86 ± 0.01

b
 

6 0.41 ± 0.02
b
 4.10 ± 0.15

b
 1.11 ± 0.01

c
 3.25 ± 0.22

c
 0.95 ± 0.18

b
  6.77 ± 0.03

c
 

 

 Mo Neochlorogenic acid Quercetin-3-glucoside Rutin Unknown 1 Unknown 2 Total 

Standard 

0 4.09 ± 0.01
a
 1.14 ± 0.01

a
 1.10 ± 0.00

a
 1.23 ± 0.16

a
 1.18 ± 0.00

a
 29.68 ± 0.52

a
 

3 4.11 ± 0.02
a
 1.13 ± 0.00

a
 1.10 ± 0.01

a
 0.84 ± 0.02

b
 1.17 ± 0.00

b
 26.33 ± 0.44

b
 

6 3.58 ± 0.04
b
 1.13 ± 0.00

a
 1.09 ± 0.00

b
 0.94 ± 0.07

b
 1.16 ± 0.00

c
 25.67 ± 0.78

b
 

Reduced 
sucrose 

0 4.16 ± 0.18
a
 1.14 ± 0.01

a
 1.11 ± 0.01

a
 1.42 ± 0.02

a
 1.19 ± 0.01

a
  30.26 ± 0.57

a
 

3 4.04 ± 0.17
a
 1.14 ± 0.01

a
 1.10 ± 0.01

a
 0.86 ± 0.04

b
 1.18 ± 0.00

b
 26.33 ± 0.50

b
 

6 3.55 ± 0.08
b
 1.13 ± 0.00

b
 1.09 ± 0.00

b
 0.48 ± 0.00

c
 1.16 ± 0.01

c
 24.00 ± 0.70

c
 

Unknown 1: flavan-3-ol; Unknown  2: flavonol glycoside. Means not connected by the same letter indicate a significant difference between time 
points for that compound (alpha = 0.05). 
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Table 6. 8. Mean values of carotenoid compounds (µg / 100 g) in ‘Redhaven’ peach standard and reduced sucrose nectar post-

processing and after 3 and 6 months storage at 18 – 20 ˚C (n = 4). 

Treatment Mo Beta-carotene Beta-cryptoxanthin Lutein + Zeaxanthin Total 

Standard 

0 490 ± 37
a
 18 ± 0.7

a
 200 ± 7.1

a
 700 ± 45

a
 

3 320 ± 19
b
 10 ± 0.4

b
 194 ± 16

a
 520 ± 35

b
 

6 340 ± 23
b
  6.7 ± 0.4

c
 190 ± 20

a
 530 ± 43

b
 

Reduced 
sucrose 

0 520 ± 24
a
 19 ± 0.6

a
 200 ± 2.7

a
 730 ± 27

a
 

3 370 ± 22
b
 11 ± 1.0

b
 184 ± 7.4

b
 570 ± 30

b
 

6 320 ± 29
c
 7.0 ± 0.9

c
 170 ± 7.3

b
 500 ± 37

c
 

Means not connected by the same letter indicate a significant difference between time points for that compound (alpha = 0.05). 
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The high sucrose content of ‘Harlayne’ necessitated the use of stevia as well as a 

reduction in fruit content to attain the target caloric content in the reduced sucrose 

nectar. The strong taste profile of apricot sufficiently masked the aftertaste 

associated with sugar substitutes (Somogyi 2005). The lower fruit content was 

however disadvantageous to nutraceutical value (Figure 6.7). As with peach nectar, 

and in contrast to jams, fruit content was the determining factor in nectar 

phytochemical content; this was evident even in the more generalized Folin- 

Ciocalteu and ORAC tests. This observation was attributed to less interference by 

sucrose or browning reaction products (HMF was not detected in nectar) given the 

less intensive heat treatment as well as the relatively simpler formulation of nectars 

(Dragovic-Uzelac and others 2005). 

 

Standard nectar had higher TP and TC (p < 0.01) after processing and in storage 

while AOX, though higher in standard nectar post-processing, was similar to 

reduced sucrose levels after 6 mo storage. TP and AOX decreased relatively 

uniformly with storage in both treatments. HPLC analyses showed that standard 

nectar was higher in almost all phenolic compounds after processing (Table 6.9). 

The disparity between treatments decreased with time with standard nectar at 6 mo 

having only slightly higher phenolic content (30%) than its reduced sucrose 

counterpart (26%). 

 

Carotenoid loss in storage was more pronounced in reduced sucrose (32%) than 

standard nectar (24%). This was attributed to starting fruit content, although the 

greater water content in reduced sucrose nectar (30%) could have some effect on 

the rate of lipid oxidation. Lutein and zeaxanthin, which had been stable in all 

other products during storage, were lost within the first 3 mo (Table 6.10). 
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Figure 6.7. Total phenolic content, total antioxidant capacity and total carotenoid 

content of ‘Harlayne’ apricot standard and reduced sucrose nectar post-processing 

and after 3 and 6 months storage at 18 – 20 ˚C (GAE: Gallic acid equivalents, TE: 

Trolox equivalents, BCE: β-carotene equivalents).
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Table 6. 9. Phenolic compounds (mg / 100 g) in ‘Harlayne’ apricot standard and reduced sucrose nectar post-processing after 3 and 6 

months storage at 18 – 20 ˚C (n = 4). 

 Mo Catechin 
Chlorogenic  

acid 
Cyanidin-3-glucoside Epicatechin Epigallocatechin 

Neochlorogenic  
acid 

Standard 

0 0.35 ± 0.03
a
 4.1 ± 0.0

a
 ND 11.8 ± 0.3

a
 3.2 ± 0.3 13.4 ± 0.3

a
 

3 0.21 ± 0.01
b
 3.9 ± 0.1

b
 ND 10.3 ± 0.3

b
 ND 12.3 ± 0.1

b
 

6 0.20 ± 0.04
c
 3.3 ± 0.1

c
 ND 8.4 ± 0.3

c
 ND 11.6 ± 0.3

c
 

Reduced 
sucrose 

0 0.32 ± 0.03
a
 3.7 ± 0.0

a
 ND 9.9 ± 0.2

a
 2.5 ± 0.2 11.6 ± 0.2

a
 

3 0.17 ± 0.00
b
 3.3 ± 0.1

b
 ND 8.9 ± 0.2

b
 ND 10.7 ± 0.1

b
 

6 0.18 ± 0.06
b
 3.0 ± 0.0

c
 ND 7.1 ± 0.3

c
 ND 10.5 ± 0.1

c
 

 

 Mo Quercetin-3-glucoside Quercetin derivative Rutin Unknown 1 Unknown 2 Total 

Standard 

0 1.19 ± 0.01
a
 1.22 ± 0.01

a
 7.4 ± 0.1

a
 14.8 ± 0.5

a
 8.0 ± 0.2

a
 65.4 ± 1.7

a
 

3 1.19 ± 0.01
a
  1.20 ± 0.01

b
 7.2 ± 0.1

b
 9.5 ± 0.8

b
 6.2 ± 0.2

b
 52.0 ± 1.7

b
 

6 1.19 ± 0.01
a
 1.18 ± 0.01

c
 7.0 ± 0.1

c
 7.3 ± 0.3

c
 5.9 ± 0.6

b
 46.0 ± 1.7

c
 

Reduced 
sucrose 

0 1.17 ± 0.00
a
 1.20 ± 0.01

a
 6.4 ± 0.0

a
 12.3 ± 0.2

a
 6.4 ± 0.2

a
 55.5 ± 1.1

a
 

3 1.17 ± 0.00
a
 1.18 ± 0.00

b
 6.2 ± 0.1

b
 8.0 ± 0.4

b
 5.6 ± 0.2

b
 45.2 ± 1.2

b
 

6 1.17 ± 0.01
a
 1.16 ± 0.00

c
 6.1 ± 0.1

b
 6.6 ± 0.3

c
 5.2 ± 0.6

c
 41.0 ± 1.5

c
 

ND: Not detected. Unknown 1 and 2: flavan-3-ols. Means not connected by the same letter indicate a significant difference between time points 
for that compound (alpha = 0.05). 
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Table 6. 10. Carotenoid compounds (µg / 100 g) in ‘Harlayne’ apricot standard and reduced sucrose nectar post-processing after 3 and 

6 months storage at 18 – 20 ˚C (n = 4). 

 Mo β-carotene β-cryptoxanthin Lutein+ Zeaxanthin  Total 

Standard 

0 16000 ± 1200
a
 120 ± 9.5

a
 200 ± 15

a
 16300 ± 1200

a
 

3 13300 ± 2040
ab

 85 ± 2.2
b
 150 ± 10

b
 13500 ± 2050

ab
 

6 12100 ± 1060
b
 96 ± 6.2

b
  ND 12200 ± 1070

b
 

Reduced 
sucrose 

0 12500 ± 580
a
 91 ± 3.7

a
 150 ± 8.6

a
 12700 ± 600

a
 

3 12400 ± 250
a
  91 ± 0.5

a
 9.6 ± 0.4

b
 12500 ± 250

a
 

6 8600 ± 770
b
 71 ± 6.6

b
 ND 8700 ± 780

b
 

ND: Not detected. Means not connected by the same letter indicate a significant difference between time points for that compound (alpha = 0.05). 
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Nutritional content 

Nutritional content was calculated at the end of the shelf life study as an estimation of 

what was realistically available to the consumer 6 mo after production. A major appeal 

of peach and apricot products is their provitamin A content. Considering the dietary 

reference intake of 900 µg RAE for males 14 years or older, dietary provitamin A 

compounds β-carotene and β-cryptoxanthin from the different treatments were 

evaluated per 20 g serving of jam and 240 mL for beverages (FDA 2012). Jams were 

generally poor sources of vitamin A, with peach standard and reduced sucrose jams 

supplying 0.5% and 0.6% RDA, while apricot standard and reduced sucrose jams 

supplied 2.9% and 5.8% RDA. Peach nectar was a better source of vitamin A, with a 

serving providing 7.2% in standard and 6.8% RDA in reduced sucrose versions. 

Apricot nectar was an excellent source, providing > 100% RDA in both standard and 

reduced sucrose forms. 

 

Conclusion 

The study provided information on the effect of jam and nectar formulations – mainly 

the reduction of sucrose and increase of fruit – on product quality and phytochemical 

content. Reduction of sucrose affected the color, taste, texture and long-term quality of 

products; varietal characteristics must be carefully considered in selection of varieties 

or blends for production. In jams, fruit content had a limited effect on phenolic and 

antioxidant compounds, but played a significant role in the levels of these compounds 

in nectar. Fruit content determined the carotenoid content in jams and nectars and 

products with greater fruit content maintained higher carotenoid and vitamin A content 

throughout the shelf life study. Sucrose content was found to influence the stability of 
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carotenoid compounds during product storage, with increased sucrose content 

protecting against carotenoid degradation particularly in jams. For both products, but 

more importantly in jams, the nutraceutical value of the final product was influenced 

by myriad factors including fruit and varietal type, processing and storage conditions 

as well as assay employed. 
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CHAPTER 7: CONCLUSION, FUTURE WORK AND RECOMMENDATIONS 

 

Summary of findings 

The study generated qualitative and quantitative information on a significant number 

of Northeast peaches and apricots and their value-added products. It also produced 

information relevant to peach and apricot cultivation, handling and processing beyond 

this region. It contributes substantially to the limited literature available on apricots 

that, although hitherto receiving less public and scientific attention compared to 

peaches, were found to be richer in phytochemical, primarily carotenoid, content. 

 

Allowing fruit to ripen on-tree, while beneficial to perceived fruit quality, negatively 

impacted phenolic and antioxidant content but increased carotenoid content, especially 

in apricots. These horticultural influences must be taken into consideration in the 

scheduling of harvests if fruit is to be promoted based on its nutraceutical value. The 

identification of selected varieties – ‘Hargrand’ apricot, ‘PF 22-007’ peach and 

‘Babygold 5’ peach – as having high concentrations of healthful bioactive compounds 

may contribute to increased patronage by both growers and consumers of these two 

fruits. 

 

The evaluation of processed products emphasized the need to find a balance between 

aesthetic appeal and nutraceutical value. The peeling of fruit for better visual 

appearance and mouthfeel was found to be detrimental to phytochemical content. 

While sulfited dried fruits had both good color and high concentrations of the 
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compounds of interest, the use of sulfiting agents continues to be viewed negatively by 

an increasingly health-conscious population. This study was successful in developing 

two promising alternative pre-drying treatments which produced dried fruits of good 

value. The effects of jam and nectar formulation were also assessed. Fruit content was 

the main indicator of jam carotenoid content, but its effect on phenolics and 

antioxidants was influenced by fruit type and variety. In nectars, fruit content 

determined overall phytochemical content post-processing although, other factors 

impacted compound stability in storage. This study showed that it was possible to 

develop reduced and low calorie products of good aesthetic and nutritive value by 

building on the knowledge of varietal characteristics. 

 

With processed products, the importance of optimizing processing and storage 

conditions was demonstrated. Varietal selection was also important as it was noted 

that ‘Redhaven’ peach, which had relatively low to average concentrations of 

bioactive compounds in fresh form, was comparable to or outperformed other varieties 

after processing. Contrary to growing public perception about the negative effects of 

processing, the products evaluated remained significant sources of healthful 

compounds. 

 

Results obtained from HPLC analysis of fresh and processed products showed the 

effects of different factors on specific phenolic and carotenoid compounds. Thermal 

treatments typically increased β-carotene content and decreased anthocyanin content. 

Flavanol glycosides tended to be most stable in storage while anthocyanin and β-
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carotene suffered most degradation. Our findings highlight the need for better 

understanding of the actual nutraceutical properties of these compounds to allow for 

the development of production and processing procedures which best protect or 

augment beneficial compunds. 

 

Future work 

Future work to build on these findings should include studies on the changes in total 

and individual phenolic and carotenoid content of fruits with ripening; storage studies 

at different temperatures and for different time periods would also provide useful 

information. There is still a need for non-destructive methods to assess fruit ripeness 

and nutritive content and research in this area would be particularly beneficial to 

growers. Processing treatments evaluated in this study could be improved by the 

assessment of the effect of different processing and storage time and temperatures on 

product quality as well as bioactive compounds. The development of standard, 

product-specific formulae for calculating nutrient retention would be very welcome, as 

it would allow for more accurate comparison of different treatments and the 

improvement of current ones.  

 

Given that the main appeal of these fruits remains their potential health benefits, 

research on the bioavailability of these compounds, in vivo, and their mechanisms of 

action would be most enlightening, since such work will advise on the production, 

handling and processing of these fruits for maximum nutraceutical value.
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APPENDIX 

 

(a) (b) (c) (d)
 

Illustration A. 1. Peach (a) and apricot (b) flowers, and peach (c) and apricot (d) fruit on tree. 

 

 

 

(a) (d)(b) (c)
 

Illustration A. 2. Peach (a) and apricot (b) fruit pictured next to USA quarters for scale; halved peach (c) and apricot (d) fruit. 
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‘Babygold 5’ ‘Bounty’ ‘Harrow Beauty’ ‘John Boy’ ‘John Boy II’

‘PF-22007’ ‘PF 23’
‘PF Lucky 13’ ‘Redhaven’ ‘Vivid’

 

Illustration A. 3. Northeastern USA peach varieties evaluated in this study. 

 
 
 
 
 

‘Hargrand’ ‘Harlayne’ ‘Harogem’ ‘Vivagold’‘Tomcot’

 
 

Illustration A. 4. Northeastern USA apricot varieties evaluated in this study. 
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Table A. 1. Firmness, weight, cross-sectional diameter and edible portion of selected Northeast peach varieties. 

Variety Firmness (N) Weight (g) Diameter (mm) Edible portion (%) 

Babygold 5 46.7 ± 4.1 220.7 ± 11 73.3 ± 1.4 93.2 ± 0.6 

Bounty 24.6 ± 0.8 179.3 ± 10 69.0 ± 0.3 94.9 ± 0.4 

Harrow Beauty 49.5 ± 14.4 96.0 ± 7.0 56.5 ± 2.3 94.8 ± 0.4 

John Boy 45.2 ± 4.0 189.3 ± 4.7 71.5 ± 0.7 95.8 ± 0.2 

John Boy II 34.3 ± 1.5 174.7 ± 10 70.5 ± 1.1 95.7 ± 0.2 

PF 22-007 51.4 ± 6.2 296.3 ± 14 83.3 ± 1.5 96.6 ± 0.1 

PF 23 30.9 ± 4.9 184.0 ± 6.1 70.2 ± 1.2 95.3 ± 0.7 

PF Lucky 13 37.5 ± 3.9 198.3 ± 2.5 72.6 ± 0.7 96.1 ± 0.2 

Redhaven 40.2 ± 5.4 121.3 ± 11 61.9 ± 1.5 93.6 ± 0.1 

Vivid 49.1 ± 6.4 187.0 ± 9.5 72.3 ± 1.8 95.1 ± 0.5 
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Table A. 2. Color parameters a, b, L, hue angle (H) and chroma (C) of peel of selected Northeast peach varieties. 

Variety 
a b L 

2009 2010 2009 2010 2009 2010 

Babygold 5 24.1 ± 4.8 19.9 ± 2.3 27.0 ± 4.8    34.2 ± 3.3 49.1 ± 3.0 56.4 ± 2.1 

Bounty 24.0 ± 1.5 20.0 ± 0.6 35.4 ± 2.8 24.5 ± 1.3 53.6 ± 3.1 47.5 ± 1.2 

Harrow Beauty 31.8 ± 1.1 23.8 ± 0.4 35.7 ± 2.6 20.4 ± 1.7 51.2 ± 3.1 43.8 ± 0.8 

John Boy 30.5 ± 1.2 25.5 ± 2.5 30.5 ± 2.1 18.9 ± 1.9 48.9 ± 2.4 43.9 ± 0.5 

John Boy II 28.6 ± 2.0 21.0 ± 1.4 33.1 ± 3.7 20.1 ± 0.5 50.9 ± 4.8 44.6 ± 1.8 

PF 22-007 30.0 ± 4.2 27.1 ± 4.2 33.0 ± 7.5 23.7 ± 1.3 50.7 ± 9.0 46.1 ± 1.2 

PF 23 27.0 ± 0.9 20.9 ± 3.3 28.0 ± 4.9 19.4 ± 1.9 46.4 ± 6.2 42.6 ± 0.6 

PF Lucky 13 29.4 ± 1.8 24.1 ± 1.2 30.3 ± 1.3 23.3 ± 2.2 49.9 ± 2.5 44.9 ± 1.9 

Redhaven 25.3 ± 2.9 24.2 ± 2.2 28.8 ± 1.7 28.0 ± 2.8 55.5 ± 2.7 49.2 ± 2.5 

Vivid 28.3 ± 2.3 25.1 ± 1.2 33.3 ± 3.7 31.4 ± 1.2 52.5 ± 4.1 51.2 ± 0.3 

 

Variety 
H C 

2009 2010 2009 2010 

Babygold 5 45.0 ± 3.0 56.9 ± 3.9 36.2 ± 6.4  39.7 ± 2.7 

Bounty 54.2 ± 2.9 45.3 ± 1.3 42.8 ± 2.8 31.6 ± 1.1 

Harrow Beauty 47.6 ± 3.1 38.1 ± 1.6 47.9 ± 1.2 31.4 ± 0.9 

John Boy 44.1 ± 2.9 35.5 ± 0.7 43.2 ± 1.6 31.7 ± 3.1 

John Boy II 47.9 ± 4.9 41.9 ± 2.2 43.9 ± 2.4 29.1 ± 1.2 

PF 22-007 46.4 ± 11 38.2 ± 1.5 45.0 ± 4.1 36.0 ± 3.9 

PF 23 43.5 ± 6.5 40.9 ± 2.1 39.0 ± 3.6 28.5 ± 3.7 

PF Lucky 13 45.0 ± 2.4 40.2 ± 2.5 42.3 ± 0.4 33.5 ± 1.8 

Redhaven 47.8 ± 4.4 46.4 ± 0.9 38.4 ± 1.0 37.1 ± 3.5 

Vivid 48.7 ± 5.8 48.6 ± 1.5 43.9 ± 1.4 40.1 ± 1.0 
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Table A. 3. Color parameters a, b, L, hue angle (H) and chroma (C) of flesh of selected Northeast peach varieties. 

Variety 
a b L 

2009 2010 2009 2010 2009 2010 

Babygold 5 9.1 ± 0.7 10.1 ± 0.7 47.2 ± 0.9 47.2 ± 0.7 68.9 ± 0.9 63.3 ± 0.8 

Bounty 7.8 ± 0.2 11.0 ± 0.5 45.1 ± 0.5 50.0 ± 0.8 67.9 ± 1.1 62.7 ± 1.5 

Harrow Beauty 8.6 ± 0.3 9.8 ± 1.3 43.0 ± 1.0 45.5 ± 1.7 73.1 ± 1.6 64.8 ± 4.4 

John Boy 11.9 ± 1.7 12.8 ± 0.8 40.7 ± 0.5 42.6 ± 1.2 62.8 ± 3.7 59.5 ± 2.4 

John Boy II 11.6 ± 1.2 12.9 ± 0.7 46.1 ± 0.4 43.0 ± 1.0 65.9 ± 0.5 57.2 ± 1.0 

PF 22-007 6.2 ± 1.3 10.0 ± 1.1 38.7 ± 0.2 42.4 ± 2.0 69.0 ± 0.3 63.5 ± 2.5 

PF 23 9.2 ± 0.1 12.6 ± 1.4 45.3 ± 1.0 46.4 ± 0.7 68.7 ± 0.6 59.5 ± 0.7 

PF Lucky 13 10.0 ± 1.1 10.9 ± 0.5 40.5 ± 1.2 43.3 ± 3.0 67.8 ± 2.0 60.2 ± 2.3 

Redhaven 6.2 ± 0.4 9.6 ± 0.7 45.4 ± 1.1 46.2 ± 1.9 71.0 ± 0.9 66.0 ± 2.5 

Vivid 7.6 ± 0.8 11.8 ± 1.1 46.0 ± 1.0 50.4 ± 0.5 67.5 ± 1.5 66.6 ± 0.6 

 

Variety 
H C 

2009 2010 2009 2010 

Babygold 5 79.2 ± 0.7 77.9 ± 0.8 48.0 ± 1.0  48.2 ± 0.6 

Bounty 80.2 ± 0.3 77.6 ± 0.3 45.8 ± 0.5 51.2 ± 0.9 

Harrow Beauty 78.8 ± 0.3 77.2 ± 2.5 43.8 ± 1.0 46.5 ± 1.4 

John Boy 73.6 ± 2.3 73.0 ± 1.0 42.4 ± 0.6 44.5 ± 1.3 

John Boy II 75.7 ± 1.5 72.5 ± 1.7 47.5 ± 0.1 44.9 ± 0.9 

PF 22-007 80.8 ± 1.8 76.7 ± 2.0 39.2 ± 0.4 43.6 ± 1.8 

PF 23 78.4 ± 0.4 74.8 ± 1.5 46.2 ± 0.9 48.1 ± 1.0 

PF Lucky 13 76.0 ± 2.0 75.3 ± 2.1 41.7 ± 0.9 44.7 ± 2.8 

Redhaven 82.3 ± 0.3 78.3 ± 0.8 45.9 ± 1.2 47.2 ± 1.9 

Vivid 80.6 ± 0.8 76.8 ± 1.3 46.6 ± 1.1 51.8 ± 0.3 
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Table A. 4. Soluble solids, titratable acidity, sugar-to-acid ratio, pH and moisture content of selected Northeast peach varieties. 

Variety 
Soluble solids (%) Titratable acidity (g malic acid /100 g) Sugar-to-acid ratio 

2009 2010 2009 2010 2009 2010 

Babygold 5 9.7 ± 0.4 11.8 ± 0.5 0.48 ± 0.03 0.42 ± 0.03  20.4 ± 0.4 28.1 ± 2.2  

Bounty 8.6 ± 0.2  12.0 ± 0.6 0.48 ± 0.03 0.70 ± 0.03 17.8 ± 1.1 17.5 ± 0.3 

Harrow Beauty 9.8 ± 0.1 10.2 ± 0.6 0.61 ± 0.02 0.54 ± 0.07 15.9 ± 0.6 19.2 ± 2.6 

John Boy 10.3 ± 0.2 10.8 ± 0.3 0.47 ± 0.02 0.73 ± 0.01 22.1 ± 1.1 14.9 ± 0.4 

John Boy II 12.2 ± 0.6 10.0 ± 0.8 0.65 ± 0.05 0.51 ± 0.04 18.8 ± 1.7 19.8 ± 0.7 

PF 22-007 10.9 ± 0.2 11.9 ± 0.5 0.61 ± 0.05 0.62 ± 0.09 18.0 ± 1.4 19.3 ± 2.4 

PF 23 10.9 ± 0.3 12.5 ± 0.8 0.70 ± 0.03 0.74 ± 0.10 15.4 ± 1.1 16.7 ± 0.4 

PF Lucky 13 8.9 ± 0.5 11.1 ± 0.4 0.54 ± 0.02 0.69 ± 0.04 16.5 ± 0.5 16.1 ± 0.4 

Redhaven 8.9 ± 0.5 9.2 ± 0.9 0.62 ± 0.06 0.44 ± 0.11 14.4 ± 1.6 22.0 ± 5.1 

Vivid 9.7 ± 0.6 10.0 ± 0.3 0.60 ± 0.02 0.74 ± 0.03 16.1 ± 1.0 13.5 ± 0.1 

 

Variety 
pH Moisture content (%) 

2009 2010 2009 2010 

Babygold 5 3.87 ± 0.08 3.96 ± 0.06 88.5 ± 0.1 85.4 ± 0.1 

Bounty 3.79 ± 0.03 3.75 ± 0.02 89.9 ± 0.5 86.6 ± 0.5 

Harrow Beauty 3.53 ± 0.02 3.66 ± 0.03 88.3 ± 0.2 88.2 ± 0.4 

John Boy 3.65 ± 0.05 3.64 ± 0.02 88.4 ± 0.3 88.0 ± 0.6 

John Boy II 3.45 ± 0.05 3.57 ± 0.04 86.4 ± 0.2 88.7 ± 0.7 

PF 22-007 3.52 ± 0.06 3.48 ± 0.07 87.3 ± 0.3 86.9 ± 0.4 

PF 23 3.51 ± 0.04 3.58 ± 0.08 87.6 ± 0.2 86.1 ± 0.5 

PF Lucky 13 3.56 ± 0.02 3.50 ± 0.03 89.7 ± 0.0 88.1 ± 0.6 

Redhaven 3.77 ± 0.03 3.64 ± 0.05 90.7 ± 0.2 89.4 ± 1.0 

Vivid 3.59 ± 0.04 3.42 ± 0.03 89.2 ± 0.5 89.1 ± 0.5 
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Table A. 5. Firmness, weight, cross-sectional diameter and edible portion of selected Northeast apricot varieties. 

Variety Firmness (N) Weight (g) Diameter (mm) Edible portion (%) 

Hargrand 6.7 ± 1.6 48.9 ± 1.8  43.2 ± 1.2 94.2 ± 0.3  

Harlayne 11.8 ± 2.1 49.6 ± 1.6 45.1 ± 0.7 94.4 ± 0.0 

Harogem 10.5 ± 0.2 48.2 ± 2.8 47.8 ± 0.5 94.3 ± 0.3 

Tomcot 11.6 ± 1.8 24.4 ± 2.6  35.1 ± 1.6 91.8 ± 0.6 

Vivagold 17.7 ± 1.9 48.9 ± 3.4 41.8 ± 0.3 91.5 ± 0.2 
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Table A. 6. Color parameters a, b, L, hue angle (H) and chroma (C) of peel of selected Northeast apricot varieties. 

Variety 
a b L 

2009 2010 2009 2010 2009 2010 

Hargrand 20.3 ± 1.6 20.2 ± 2.3 41.9 ± 2.2 35.4 ± 1.9 56.2 ± 0.0 53.1 ± 1.8 

Harlayne 28.8 ± 3.0 26.7 ± 0.9 40.8 ± 4.1 39.9 ± 2.2 55.0 ± 3.7 53.4 ± 2.1 

Harogem 31.2 ± 3.3 28.6 ± 0.9 43.1 ± 5.2 34.4 ± 0.2 53.5 ± 4.5 50.8 ± 0.3 

Tomcot 29.1 ± 1.9 24.7 ± 0.2 50.0 ± 0.7 41.7 ± 3.2 58.1 ± 1.2 56.5 ± 3.7 

Vivagold 26.4 ± 2.4 30.7 ± 0.8 49.5 ± 1.3 40.4 ± 0.9 61.2 ± 0.5 58.6 ± 0.7 

 

Variety 
H C 

2009 2010 2009 2010 

Hargrand 64.4 ± 1.1 60.0 ± 3.8 46.7 ± 2.5 41.0 ± 1.4 

Harlayne 54.2 ± 5.5 56.0 ± 1.4 50.6 ± 2.2 48.3 ± 2.0 

Harogem 52.9 ± 6.7 48.5 ± 0.5 54.5 ± 1.7 45.9 ± 0.6 

Tomcot 59.7 ± 2.0 59.2 ± 1.9 58.3 ± 0.5 48.6 ± 2.6 

Vivagold 61.9 ± 2.0 52.7 ± 0.6 56.3 ± 1.9 50.8 ± 1.2 
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Table A. 7. Color parameters a, b, L, hue angle (H) and chroma (C) of flesh of selected Northeast apricot varieties. 

Variety 
a b L 

2009 2010 2009 2010 2009 2010 

Hargrand 18.6 ± 1.3 21.0 ± 0.6 38.1 ± 2.4 31.6 ± 1.7 54.6 ± 1.1 42.8 ± 1.8 

Harlayne 22.7 ± 0.5 19.6 ± 2.0 46.4 ± 0.8 37.3 ± 3.0 61.8 ± 0.5 51.7 ± 3.5 

Harogem 23.7 ± 0.4 20.2 ± 1.6 45.8 ± 0.3 40.5 ± 1.2 59.9 ± 0.6 56.2 ± 1.7 

Tomcot 23.1 ± 0.3 20.1 ± 1.5 43.6 ± 1.0 36.6 ± 3.0 61.6 ± 1.3 49.3 ± 3.8 

Vivagold 23.7 ± 0.9 26.5 ± 0.4 43.7 ± 1.6 42.9 ± 0.9 58.4 ± 1.3 56.8 ± 0.7 

 

Variety 
H C 

2009 2010 2009 2010 

Hargrand 64.1 ± 0.5 56.3 ± 0.8 42.4 ± 2.7 38.0 ± 1.8 

Harlayne 64.0 ± 0.4 62.5 ± 1.0 51.7 ± 0.9 42.2 ± 3.5 

Harogem 62.6 ± 0.3 63.7 ± 1.1 51.6 ± 0.4 45.3 ± 1.8 

Tomcot 62.2 ± 0.2 61.2 ± 0.5 49.4 ± 1.0 41.8 ± 3.3 

Vivagold 61.6 ± 0.1 58.4 ± 0.2 49.8 ± 1.8 50.5 ± 1.0 
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Table A. 8. Soluble solids, titratable acidity, sugar-to-acid ratio, pH and moisture content of selected Northeast apricot varieties. 

Variety 
Soluble solids (%) Titratable acidity (g malic acid /100 g) Sugar-to-acid ratio 

2009 2010 2009 2010 2009 2010 

Hargrand 13.2 ± 0.4 14.3 ± 0.3 2.46 ± 0.15 1.70 ± 0.10 5.4 ± 0.5 8.3 ± 0.3 

Harlayne 11.5 ± 1.1 14.7 ± 0.3 1.65 ± 0.05 1.14 ± 0.04 7.0 ± 0.7 13.0 ± 0.2 

Harogem 12.9 ± 0.7 14.5 ± 0.4 1.56 ± 0.02  1.01 ± 0.07 8.3 ± 0.5 14.5 ± 1.0 

Tomcot 10.5 ± 0.5 11.2 ± 0.6 1.81 ± 0.05 1.25 ± 0.08 5.8 ± 0.3 9.0 ± 0.4 

Vivagold 10.6 ± 0.9 14.1 ± 0.1 1.61 ± 0.08 0.91 ± 0.10 6.6 ± 0.8 15.7 ± 1.8 

 

Variety 
pH Moisture content (%) 

2009 2010 2009 2010 

Hargrand 3.08 ± 0.04 3.68 ± 0.06 84.8 ± 0.2 80.9 ± 0.4 

Harlayne 3.46 ± 0.03 3.67 ± 0.04 87.0 ± 0.1 83.9 ± 0.2 

Harogem 3.18 ± 0.01 3.69 ± 0.04 85.6 ± 0.1 84.7 ± 0.4 

Tomcot 3.40 ± 0.02 3.48 ± 0.03 87.9 ± 0.3 87.8 ± 0.5 

Vivagold 3.35 ± 0.03 3.77 ± 0.01 88.2 ± 0.0 86.3 ± 0.2 
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Unpeeled PeeledUnpeeled Peeled

‘Harlayne’ apricot‘Redhaven’ peach

 
Illustration A. 5. Canned peaches and apricots (unpeeled and peeled). 

 

‘Harlayne’ apricot

‘Redhaven’ peach

Rhubarb juice-only Rhubarb juice+blanching  Blanching Sulfites 

Rhubarb juice-only Rhubarb juice+blanching  Blanching Sulfites 
 

Illustration A. 6. Dried peaches and apricots (rhubarb juice-only, rhubarb juice+blanching, blanching and sulfites). 
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Standard Reduced sucroseStandard Reduced sucrose

‘Harlayne’ apricot‘Redhaven’ peach

 
Illustration A. 7. Peach and apricot jam (standard and reduced sucrose). 

 
 

Standard Reduced sucrose

‘Harlayne’ apricot‘Redhaven’ peach

Standard Reduced sucrose
 

Illustration A. 8. Peach and apricot nectar (standard and reduced sucrose). 


